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For a given integer k, general necessary and sufficient conditions for the existence
of integer solutions to an equation of the form x2C y2 D z2 � k are given. It
is shown that when there is a solution, there are infinitely many solutions. An
elementary method for finding the solutions, when they exist, is described.

1. Introduction

Finding solutions to quadratic Diophantine equations in three or more variables
has been of interest since ancient times. One example is Pythagoras’ equation
x2 C y2 D z2, which was studied at least 3500 years ago by the Babylonians.
Another example is its generalization x2Cy2Cw2 D z2, which was completely
solved by Catalan [1885] (also see [Ayoub 1984]). A further generalization is
the equation x2 C y2 D z2 � k for a given integer k ¤ 0. Frink [1987] gave
a complete solution to the equations of the form x2 C y2 D z2 C 1. Moreover,
solutions to the equation x2Cy2 D z2� k with k D 1; 2 were crucial in finding
the minimum number of arcs in primitive digraphs with smallest large exponent;
see [MacGillivray et al. 2008]. When k is a perfect square, the solution set can
be found using Catalan’s method. In the previous reference, the solution set is
described when k D 1; 2.

We study the equation x2Cy2 D z2� k for any fixed integer value of k. It is
advantageous to write zD xC t for some integer t . Hence we seek solutions x;y; t

to the Diophantine equation

x2
Cy2

D .xC t/2� k: (1)

We give conditions on k and t for which the equation has no solution, and describe
an elementary method for finding all solutions to the equation in the cases when
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they exist. If t D 0 then (1) becomes y2 D�k, which has a solution if and only if
�k is a perfect square. Thus in the sequel we consider only nonzero integers t .

2. Background

In an attempt to make this article self-contained, we review some relevant back-
ground from elementary number theory. The results and proofs in this section
can be found in standard number theory books; for example, see [Apostol 1976;
Kumanduri and Romero 1998].

We shall make use of quadratic congruences, that is, congruences of the form
x2� a .mod m/, for integers a and m. The integer a is a quadratic residue modulo
m if the congruence x2 � a .mod m/ has a solution, and a quadratic nonresidue
modulo m otherwise.

Suppose p is an odd prime and p does not divide a. The Legendre symbol,
denoted by .a=p/, is defined by�

a

p

�
D

�
1 if a is a quadratic residue modulo p,
�1 if a is a quadratic nonresidue modulo p.

Theorem 1 [Kumanduri and Romero 1998, p. 216]. Suppose p is an odd prime
which divides neither a nor b. Then:

(1)
�

a2

p

�
D 1.

(2)
�

ab

p

�
D

�
a

p

��
b

p

�
.

(3) Euler’s criterion: a.p�1/=2
�

�
a

p

�
.mod p/.

Proposition 2 [Apostol 1976, p. 181; Kumanduri and Romero 1998, p. 414].
Suppose p is an odd prime with p ¤ 3. Then�

�1

p

�
D

�
1 if p � 1 .mod 4/,
�1 if p � 3 .mod 4/,

(2)

�
2

p

�
D

�
1 if p � 1; 7 .mod 8/,
�1 if p � 3; 5 .mod 8/,

(3)

�
3

p

�
D

�
1 if p � 1; 11 .mod 12/,
�1 if p � 5; 7 .mod 12/.

(4)

Proposition 3 [Kumanduri and Romero 1998, p. 428]. For every odd prime p ¤ 5,�
5

p

�
D

�
1 if p � 1; 4 .mod 5/,
�1 if p � 2; 3 .mod 5/.

We use the notation .a; b/ to denote the greatest common divisor of integers a

and b.
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Proposition 4. Suppose a; b 2 N and p is a prime, and assume k D k1pb with
.k1;p/D 1. Consider the congruence

y2
��k .mod pa/: (5)

(1) If b < a, then the congruence (5) has an integer solution if and only if b is
even and �k1 is a quadratic residue modulo pa�b .

(2) If b � a, then the congruence (5) always has a solution.

Proof. (1) The congruence y2 ��k .mod pa/ has a solution if and only if there
exists an integer m such that m2 D �k C paq D pb.�k1 C pa�bq/. Since p

does not divide �k1 C pa�bq, we have pb jm2 but pbC1 does not divide m2,
thus b is even. Now, divide both sides of m2 D pb.�k1Cpa�bq/ by pb . Then
m2

1
D�k1Cpa�bq, for some integer m1, which implies x2 ��k1 .mod pa�b/

has a solution. The converse is trivial.

(2) If b � a, then y2 ��k .mod pa/ has a solution if and only if there exists an
integer m such that m2D�kCpaqDpa.�k1pb�aCq/. If a is even, say aD2ˇ for
some integer ˇ, then for any integer u, any number of the form mD˙upˇ satisfies
m2 D .˙pˇ/2.�k1pb�aC u2C k1pb�a/. So any such m with 0 �m � pa � 1

is a solution to the congruence y2 � �k .mod pa/. If a D 2ˇC 1 is odd, then
by a similar argument m D ˙upˇC1, with 0 � m � pa � 1, is a solution to the
congruence y2 ��k .mod pa/. �

For any integer n> 1, and given congruence f .x/� 0 .mod n/, let N.n/ denote
the number of solutions to the congruence f .x/� 0 .mod n/.

Lemma 5 [Apostol 1976, p. 118]. Suppose f .x/ is a polynomial with integer
coefficients. Let t D p

e1

1
p

e2

2
: : :p

er
r be the prime factorization of t .

(1) The congruence f .x/ � 0 .mod t/ has a solution if and only if each of the
congruences f .x/� 0 .mod p

ei

i /, i D 1; 2; : : : ; r , has a solution.

(2) N.t/D
Qr

i N.p
ei

i /.

The following results will also be used in solving (1).

Lemma 6 [Apostol 1976, p. 178]. If p is an odd prime and p does not divide k,
then y2 ��k .mod p/ has either exactly two distinct solutions or no solution.

Lemma 7 [Nasserasr 2007, p. 38]. If p is an odd prime and .k;p/D 1, then every
solution to the congruence y2 ��k .mod pe/, e � 2, generates a solution to the
congruence y2 ��k .mod p/ and conversely.

If the modulus in Lemma 6 is a composite number, we have the following result.

Lemma 8. If t D p
e1

1
p

e2

2
: : :p

er
r , where p1;p2; : : : ;pr are distinct odd primes,

r; ei 2 N, and .k; t/D 1, then y2 ��k .mod t/ has 2r distinct solutions y if �k



884 BOYER, MACGILLIVRAY, MORRISON, MYNHARDT AND NASSERASR

is a quadratic residue modulo pi for each pi , i D 1; 2; : : : ; r , and no solution
otherwise.

Proof. Suppose for each pi , iD1; 2; : : : ; r there is a solution to y2��k .mod pi/.
Using Lemma 6, there are exactly two solutions for each congruence. Lemma 5
implies that s2 � �k .mod t/ has exactly 2r distinct solutions. If one of the
congruences s2��k .mod pi/, i D 1; 2; : : : ; r , has no solution, then by Lemma 5,
the congruence y2 ��k .mod t/ has no solution. �

The following is a special case of y2 ��k .mod p/ when k is a perfect square.

Lemma 9. Let p be an odd prime, and a be an integer such that p does not
divide a. Then the congruence y2��a2 .mod p/ has exactly two distinct solutions
if p � 1 .mod 4/ and no solution otherwise.

Proof. The congruence y2��a2 .mod p/ has exactly two distinct solutions if and
only if �

�a2

p

�
D

�
�1

p

��
a2

p

�
D 1: (6)

Since .a2=p/D1, (6) holds if and only if .�1=p/D1D .�1/.p�1/=2 (using Euler’s
criterion). The last equation holds if and only if p � 1 .mod 4/. �

3. General results

We give solutions to the equation

x2
Cy2

D .xC t/2� k:

First, we show that it is possible to remove common divisors of k and t .

Proposition 10. Suppose t has prime factorization of the form tD
Qr

iD1 p
ei

i and let
kDk1p

fi0
i0

, where 1� i0� r and pi0
−k1. Then the equation x2Cy2D .xCt/2�k

is equivalent to x2
1
Cy2

1
D .x1C t1/

2� k1, where p2
i0
−.k1; t1/.

Proof. We prove the statement for the case fi0
� ei0

. The case fi0
> ei0

is similar.
Depending on whether fi0

is even or odd we have fi0
D 2˛C ˇ with ˇ D 0; 1.

Since p2˛
i0
j .k; t/, if the equation has a solution, then p2˛

i0
jy2. Thus, dividing both

sides of the equation y2 D 2xt C t2� k by p2˛
i0

implies�
y

p˛i0

�2

D 2

�
x

p˛i0

��
t

p˛i0

�
C

�
t

p˛i0

�2

�

�
k

p2˛
i0

�
:

This is equivalent to x2
1
Cy2

1
D .x1C t1/

2� k1p
ˇ
i0

, and the result follows. �

In Proposition 10, if ˛ D 1, in solving the equation we can consider k=p2
i0

and
t=pi0

instead of k and t , respectively. By repeating this process on each common
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prime factor p of k and t such that p2 j k and p j t , we arrive to an equation of the
form x2Cy2D x2C2xtC t2�k with a few possibilities for common divisors of
k and t listed below.

Lemma 11. For every common prime factor p of k and t , (1) can be reduced to an
equation of a similar form where k and t satisfy one of the following conditions:

(1) .k; t/D 1.

(2) .k; t/D sp where p does not divide s, p2 does not divide k and p2 j t .

(3) .k; t/D sp where p does not divide s, p2 does not divide k, and p2 does not
divide t .

Therefore, without loss of generality, in solving (1) we may assume that k and t

satisfy one of the conditions in Lemma 11.
We consider the cases for t odd and t even separately.

3.1. Solutions to x2C y2 D .xC t/2 � k when t is odd. If t is odd and y is a
variable, the solutions to y2 � t2� k .mod 2t/ and y2 ��k .mod t/ are related.

Lemma 12. Suppose t is odd and k is an even integer. Then m is a solution to
y2 � t2� k .mod 2t/ if and only if it is an odd solution to y2 ��k .mod t/.

Proof. If m is a solution to y2 � t2 � k .mod 2t/, then there exists q 2 Z such
that m2 D �k C t.2q C t/. Since t is odd and k is even, m is an odd solution
to y2 ��k .mod t/. For the converse, note that if m is an odd solution to y2 �

�k .mod t/, then m is a solution to y2 � t2 � k .mod t/. Since m2 � t2C k is
even and t is odd, m is a solution to y2 � t2� k .mod 2t/. �

In this case, if all solutions to y2 ��k .mod t/ are odd, then they all generate
distinct solutions to y2 � t2� k .mod 2t/. However, if y2 ��k .mod t/ has an
even solution v, then vC t is an odd solution to y2 � �k .mod t/ and thus it is
a solution to y2 � t2 � k .mod t/. That is, for t D

Qr
iD1 p

ei

i , we can choose 2r

distinct solutions to the congruence y2 � �k .mod t/ to be odd, and they will
generate 2r distinct solutions to the congruence y2 � t2� k .mod 2t/.

Lemma 13. Suppose t and k are odd integers. Then m is a solution to y2 �

t2� k .mod 2t/ if and only if it is an even solution to y2 ��k .mod t/.

Proof. If m is a solution to y2 � t2� k .mod 2t/, then m is even and there exists
q 2 Z such that m2D�kC t.2qC t/. Since t and k are odd, m is an even solution
to y2 � �k .mod t/. If m is an even solution to y2 � �k .mod t/, then m is a
solution to y2 � t2� k .mod t/. Now, m2� t2C k is even and t is odd, so m is a
solution to y2 � t2� k .mod 2t/. �

Similarly, in this case, if all solutions to y2��k .mod t/ are even, then they all
generate distinct solutions to y2� t2�k .mod 2t/. However, if y2� t2�k .mod t/
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has an odd solution v, then vC t is an even solution to y2 ��k .mod t/ and thus
is a solution to y2� t2�k .mod 2t/. Similar to the previous case, we can generate
2r distinct solutions to the congruence y2 � t2� k .mod 2t/ by choosing enough
even solutions to y2 ��k .mod t/.

Therefore, when t is odd, solving the congruence y2 ��k .mod t/ is critical in
solving (1). We study the cases of .k; t/¤ 1 and .k; t/D 1 separately.

Lemma 14. Let tD
Qr

iD1 p
ei

i be the prime factorization of t . Consider the equation
x2Cy2 D .xC t/2� k:

(1) If .k; t/D sp and p does not divide s, p2 does not divide k, and p2 j t , for
some common prime factor p of k and t , then the equation has no solution.

(2) If the above case does not hold for any common prime factor of k and t , and
there exists a prime p such that .k; t/D sp, p does not divide s, p2 does not
divide k, and p2 does not divide t , then the equation has a solution if and only
if every congruence y2 � �k .mod p

ei

i / with pi ¤ p has a solution of the
form y � 0 .mod p/.

Proof. (1) In this case, one of the congruences obtained from the congruence
y2��k .mod t/ is equivalent to y2��k1p .mod p2/, where .k1;p/D 1. Using
Proposition 4, this congruence has no solution, which implies that (1) has no solution.

(2) In this case, one of the congruences obtained from the congruence y2 ��k

.mod t/ is equivalent to y2��k1p .mod p/. Using Proposition 4, this congruence
always has a solution, namely y � 0 .mod p/. Since y2 � �k .mod t/ has a
solution if and only if each of the congruences y2 ��k .mod p

ei

i / with pi ¤ p

for all other prime divisors of t has a solution, the result follows. �
Now consider the case where .k; t/D 1 and t is odd.
Using Lemma 5, if t D

Qr
iD1 p

ei

i is an odd integer, then the congruence y2 �

�k .mod t/ is equivalent to the system of congruences

y2
��k .mod p

e1

1
/;

y2
��k .mod p

e2

2
/;

:::

y2
��k .mod per

r /:

That is, if one of the above congruences does not have a solution, then the
congruence y2��k .mod t/ has no solution. Now, if all of the above congruences
have solutions, then each congruence can be replaced by a linear congruence, and
the resulting system of congruences can be solved using the Chinese remainder
theorem.

The following is a consequence of Lemmas 8, 12, and 13.
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Corollary 15. If t D p
e1

1
p

e2

2
: : :p

er
r , where p1;p2; : : : ;pr are distinct odd primes

and r; ei 2 N, then y2 � t2� k .mod 2t/ has 2r distinct solutions for y if �k is a
quadratic residue modulo pi for each pi , i D 1;2; : : : ; r , and no solution otherwise.

Theorem 16. Suppose t is odd and k is an integer with .k; t/D 1. The equation
x2Cy2D .xC t/2�k has integer solutions x, y, t if and only if �k is a quadratic
residue modulo pi for every prime divisor pi of t . For any such t , there are infinitely
many solutions.

Proof. Suppose x2 C y2 D .x C t/2 � k has integer solutions x, y, t . Then,
y2 � t2�k .mod 2t/, so by Corollary 15, �k is a quadratic residue modulo every
prime divisor of t .

Now, suppose t D p
e1

1
p

e2

2
: : :p

er
r where �k is a quadratic residue of every pi .

By Corollary 15, y2 � t2� k .mod 2t/ has 2r distinct solutions. Let m be such a
solution that is also a least residue of y modulo 2t . Now, x, y, t with y DmC2tq,
x D .y2� t2C k/=.2t/, is a solution to the equation x2Cy2 D .xC t/2� k for
all q 2 Z. Therefore, for any such t , there are infinitely many solutions. �

The above results give an algorithm for computing the solutions to the equation
x2C y2 D .x C t/2 � k when t is odd. To illustrate this algorithm, we present
an example for each of the cases k � 0; 1; 2; 3 .mod 4/. For this we consider
k D 12; 5; 6; 15, respectively.

3.1.1. Examples for k � 0; 1; 2; 3 .mod 4/. For the case k � 0 .mod 4/, consider
the example k D 12. That is, we want to solve x2 C y2 D .x C t/2 � 12 when
t is odd and has a prime factorization t D

Qr
iD1 p

ei

i . Since t is odd, the only
possibilities for .12; t/ are 3 and 1. First we consider .12; t/D 3. Using Lemma 14,
if 9 j t , then there is no solution to the equation; if 9 does not divide t , then there is
a solution to the equation if and only if y � 0 .mod 3/ and y2 ��12 .mod p

ei

i /

has a solution for each pi ¤ 3, i D 1; 2; : : : ; r . Since .12;pi/D 1 for pi ¤ 3, the
latter congruence is equivalent to finding whether or not �12 is a quadratic residue
modulo each p

ei

i ; this can be done using Euler’s criterion or quadratic reciprocity.
The result for each congruence will be a linear congruence and then the Chinese
remainder theorem can be used. Now, consider the case .12; t/D 1.

The parity of t depends on the parity of x and the parity of y as follows:

� If both x and y are even, then x2Cy2� 0 .mod 4/. This leads to .xC t/2�

0 .mod 4/, which implies that t is even.

� If x and y are both odd, then x2Cy2�2 .mod 4/. Then .xCt/2�2 .mod 4/,
which is a contradiction since no square is congruent to 2 modulo 4.

� If x and y are of opposite parity, then x2Cy2� 1 .mod 4/. This implies that
.xC t/2 � 1 .mod 4/, meaning that x and t are of opposite parity.
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Proposition 17. (i) If p¤ 3 is an odd prime, then s2��12 .mod p/ has exactly
two distinct solutions if p � 1 .mod 6/ and no solution otherwise.

(ii) If tDp
e1

1
p

e2

2
: : :p

er
r , where p1;p2; : : : ;pr are distinct odd primes, all greater

than 3, and r; ei 2 N, then s2 � �12 .mod t/ has 2r distinct solutions if
pi � 1 .mod 6/ for each i D 1; 2; : : : ; r , and no solution otherwise.

Proof. (i) First suppose s2��12 .mod p/ has exactly two distinct solutions. Since
.4=p/D .22=p/D 1,�

�12

p

�
D

�
�1

p

��
3

p

��
4

p

�
D 1 D)

�
�1

p

��
3

p

�
D 1:

We consider the two cases .�1=p/D .3=p/D 1 and .�1=p/D .3=p/D�1:

(1) .�1=p/D .3=p/D 1. Then, using (2) and (4), we get one of the following:

(i) p � 1 .mod 4/ and p � 1 .mod 12/. These congruences imply p �

1 .mod 2/ and p � 1 .mod 3/, respectively. By the Chinese remainder
theorem p � 1 .mod 6/.

(ii) p � 1 .mod 4/ and p � 11 .mod 12/, which is impossible.

(2) .�1=p/D .3=p/D�1. Then, using (2) and (4), we get one of the following:

(i) p � 3 .mod 4/ and p � 5 .mod 12/, which is impossible.
(ii) p � 3 .mod 4/ and p � 7 .mod 12/. These congruences imply p �

1 .mod 2/ and p � 1 .mod 3/, respectively. By the Chinese remainder
theorem, p � 1 .mod 6/.

For the converse, suppose p � 1 .mod 6/. Then either p � 1 .mod 12/, which
implies .�12=p/ D .�1=p/.3=p/.4=p/ D .1/.1/.1/ D 1, or p � 7 .mod 12/,
which implies .�12=p/D .�1=p/.3=p/.4=p/D .�1/.�1/.1/D 1. In either case,
s2 ��12 .mod p/ has exactly two distinct solutions.

(ii) If r D 1, then the result follows from the Case (1). For r > 1, suppose that for
i D 1; 2; : : : ; r , the prime pi is congruent to 1 modulo 6. Then the result follows
from the Case (1) and Lemma 8. For the converse, suppose s2 � �12 .mod t/

has exactly 2r distinct solutions. Then each congruence s2 � �12 .mod pi/,
i D 1; 2; : : : ; r , has a solution and by the Case (1), pi is congruent to 1 modulo 6
for all i D 1; 2; : : : ; r . �

Also, if t D p
e1

1
p

e2

2
: : :p

er
r where p1;p2; : : : ;pr are distinct odd primes and

r; ei 2N, then s2� t2�12 .mod 2t/ has 2r distinct solutions if each pi�1 .mod 6/

and no solution otherwise.

Proposition 18. Let t be an odd number with .12; t/D 1. The equation x2Cy2 D

.xC t/2� 12 has integer solutions for x,y,t if and only if every prime divisor of t

is congruent to 1 modulo 6. For any such t , there are infinitely many solutions.
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Proof. Note that x2 C y2 D .x C t/2 � 12 implies that y2 � t2 � 12 .mod 2t/.
Then by Lemma 12 and Proposition 17, every prime divisor of t is congruent to
1 modulo 6. For the converse, suppose t D p

e1

1
p

e2

2
: : :p

er
r with pi � 1 .mod 6/

for all i D 1; 2; : : : ; r . By Lemma 12 and Proposition 17, y2 � t2 � k .mod 2t/

has 2r distinct solutions. Let m be such a solution that is also a least residue of y

modulo 2t . Then, x, y, t with yDmC2tq, xD .y2� t2C12/=.2t/, is a solution
to the equation x2Cy2 D .xC t/2�12 for q 2 Z. Therefore, for any such t , there
are infinitely many solutions. �

For the case k � 1 .mod 4/, we consider k D 5. In this case, .5; t/ equals 1

or 5. If .5; t/D 5, and 25 does not divide t , then the equation has no solution. If
.5; t/D 5, and 25 j t , then the equation has a solution if and only if the following
system of equations has a solution:

y � 0 .mod 5/ and y2
��5 .mod p

ei

i / for all pi ¤ 5:

Similarly to the previous example, this system can be reduced to linear equations.
We now consider the case .5; t/D 1.

The next lemma can be obtained from Proposition 3.

Lemma 19. (i) If p ¤ 5 is an odd prime, then s2 ��5 .mod p/ has exactly two
distinct solutions if p � 1; 3; 7; 9 .mod 20/ and no solution otherwise.

(ii) If t D p
e1

1
p

e2

2
: : :p

er
r where p1;p2; : : : ;pr are distinct odd primes, pi ¤ 5

for all i D 1; 2; : : : ; r , and r; ei 2 N, then s2 � �5 .mod t/ has 2r distinct
solutions modulo t if each pi � 1; 3; 7; 9 .mod 20/ and no solution otherwise.

We now have the following.

Proposition 20. Suppose t is odd with .5; t/D 1. The equation

x2
Cy2

D .xC t/2� 5

has integer solutions x, y, t if and only if every prime divisor of t is congruent to
1; 3; 7; 9 modulo 20. For any such t there are infinitely many solutions.

For the case k � 2 .mod 4/ we consider k D 6. In this case, since t is odd, we
have either .6; t/D 3 or .6; t/D 1. If 9 j t , there is no solution; if 9 does not divide t ,
then the equation has a solution if and only if there is a solution to

y � 0 .mod 3/ and y2
��6 .mod p

ei

i / for all pi ¤ 3:

Hence we consider the case when .6; t/D 1. We shall use a lemma which follows
from (3).

Lemma 21. (i) If p ¤ 3 is an odd prime, then s2 ��6 .mod p/ has exactly two
distinct solutions if p � 1; 5; 7; 11 .mod 24/ and no solution otherwise.



890 BOYER, MACGILLIVRAY, MORRISON, MYNHARDT AND NASSERASR

(ii) If t Dp
e1

1
p

e2

2
: : :p

er
r , where p1;p2; : : : ;pr are distinct odd primes, .6; t/D 1

and r; ei 2N, then s2 ��6 .mod t/ has 2r distinct solutions modulo t if each
pi � 1; 5; 7; 11 .mod 24/ and no solution otherwise.

Proposition 22. The equation x2Cy2 D .xC t/2� 6 with .t; 6/D 1 has integer
solutions x, y, t if and only if every prime divisor of t is congruent to 1; 5; 7; 11

modulo 24. For any such t there are infinitely many solutions.

Finally, k D 15 is considered as an example for the case k � 3 .mod 4/. The
cases when .15; t/D 3; 5; 15 are similar to the previous examples. We only consider
the case when .15; t/D 1.

Lemma 23. (i) If p � 7 is an odd prime, then s2 � �15 .mod p/ has exactly
two distinct solutions if p � 1; 7; 17; 19; 23; 31; 43; 47; 49; 53 .mod 60/ and
no solution otherwise.

(ii) If tDp
e1

1
p

e2

2
: : :p

er
r where p1;p2; : : : ;pr are distinct odd primes, .15; t/D1,

and r; ei 2 N, then s2 � �15 .mod t/ has 2r distinct solutions modulo t if
each pi is congruent to 1; 7; 17; 19; 23; 31; 43; 47; 49; 53 modulo 60, and no
solution otherwise.

Proposition 24. The equation x2Cy2D .xC t/2�15 with .15; t/D 1 has integer
solutions x, y, t if and only if every prime divisor of t is congruent to 1, 7, 17, 19,
23, 31, 43, 47, 49, 53 modulo 60. For any such t there are infinitely many solutions.

3.2. Solutions to x2Cy2 D .xC t/2�k when t is even. Now we consider the
equation x2Cy2 D .xC t/2� k when t is even.

Proposition 25. Let k; t be integers and suppose t is even. Then m is a solution to
the congruence y2� t2�k .mod 2t/ if and only if it is a solution to the congruence
y2 ��k .mod 2t/.

Proof. Note that since t is even, 2t j t2. Now, m is a solution for y2 � t2 � k

.mod 2t/ if and only if 2t j .m2� t2C k/ if and only if 2t j .m2C k/. �

Thus, in this section our focus is on congruences of the form y2� t2�k .mod 2t/.
We first show that when pD 2, there is no solution to (1) in Case (2) or Case (3) of
Lemma 11.

Lemma 26. Consider integers k, t :

(1) If 2 j .k; t/ but 4 does not divide k, and 4 j t , then the congruence y2 �

�k .mod 2t/ has no solution.

(2) If 2 j .k; t/ but 4 divides neither k nor t , then the congruence y2 � �k

.mod 2t/ has no solution.
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Proof. (1) Suppose k D 2˛ and t D 4ˇ for some integers ˛ and ˇ, where ˛ is odd.
The congruence y2��k .mod 2t/ has a solution if and only if there exist integers
m, q such that m2 D�2.˛C 4ˇq/. This is not possible since ˛C 4ˇq is odd.

(2) Suppose k D 2˛ and t D 2ˇ for some odd integers ˛ and ˇ. As above, the
congruence y2 � �k .mod 2t/ has a solution if and only if there exist integers
m, q such that m2 D�2.˛C 2ˇq/. This is not possible since ˛C 2ˇq is odd. �

If 2 does not divide .k; t/ but .k; t/¤ 1, the same argument as the case of t odd
can be used. Thus, without loss of generality, we can assume that .k; t/D 1. This
implies that k is odd. Let t D 2r s where r 2N and sD

Qu
iD1 p

ei

i is an odd integer.
Since .2rC1; s/D 1, using Lemma 5, the congruence y2 � �k .mod 2t/ can be
reduced to two congruences:

y2
��k .mod 2rC1/; and y2

��k .mod s/:

The congruence y2 � �k .mod s/ can be solved using the results from the
previous section. We now consider different cases for r for the remaining congruence
y2 ��k .mod 2rC1/.

The following result can be found in most number theory books; see [Kumanduri
and Romero 1998, p. 231] for example. We restate it using the notation used in this
work.

Lemma 27 [Kumanduri and Romero 1998, p. 231]. Suppose k is odd and r � 1.
Consider the congruence

y2
��k .mod 2rC1/: (7)

(1) If r D 1, the congruence (7) has exactly two distinct solutions if �k �

1 .mod 4/ and no solution otherwise.

(2) If r � 2, the congruence (7) has exactly four distinct solutions if �k � 1

.mod 8/ and no solution otherwise. If y0 is a solution, then �y0 and˙y0C2r

are also solutions.

An application of the above results can solve (1) when t is even, as follows.

Theorem 28. Assume k is odd and consider (1) with t D 2r s, where s is an odd
integer and r > 0:

(1) If r D 1, then (1) has a solution if and only if �k � 1 .mod 4/ and y2 �

�k .mod s/ has a solution.

(2) If r � 2, then (1) has a solution if and only if �k � 1 .mod 8/ and y2 �

�k .mod s/ has a solution.

In each case, if there is one solution, there are infinitely many solutions.



892 BOYER, MACGILLIVRAY, MORRISON, MYNHARDT AND NASSERASR

Proof. Using Proposition 25, we know that x2Cy2D .xC t/2�k has a solution if
and only if y2 ��k .mod 2t/ has a solution. The conditions for the existence of a
solution in each case follow from Lemma 27 and the discussion preceding it. Now,
suppose m is a solution to y2��k .mod 2t/. Using Proposition 25, we see that it is
also a solution to y2� t2�k .mod 2t/. Thus, the triple .x;y; t/ with yDmC2tq,
x D .y2� t2C k/=.2t/, is a solution to the equation x2Cy2 D .xC t/2� k for
all q 2 Z. Since q can be chosen arbitrarily, there are infinitely many solutions. �
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