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We consider the rate of volume growth of large Carnot–Carathéodory metric balls
on a class of unbounded model hypersurfaces in C2. When the hypersurface has
a uniform global structure, we show that a metric ball of radius δ� 1 either has
volume on the order of δ3 or δ4. We also give necessary and sufficient conditions
on the hypersurface to display either behavior.

1. Introduction

The study of holomorphic functions on pseudoconvex domains � ⊆ Cn (n ≥ 2)
often reduces to studying the partial differential operator ∂̄ on � given by ∂̄( f )=∑

f z̄ j dz̄ j . We can study the boundary values of holomorphic functions (on b�)
by studying the partial differential operator ∂̄b induced on b� by ∂̄ . We locally
express ∂̄b in terms of differentiation with respect to (n−1)-antiholomorphic vector
fields (the so-called Cauchy–Riemann, or CR, vector fields on b�) that are tangent
to b�. Under mild nondegeneracy conditions on b� we can access a family of
metrics on b� specifically adapted to the study of ∂̄ and ∂̄b, in the sense that they
capture important geometric aspects of b�. One of these, the Carnot–Carathéodory
(CC) metric d( p, q), measures the infimal length of paths on b� that not only
connect the points p and q, but are also almost-everywhere tangent to the real and
imaginary parts of the CR vector fields; see [Street 2014] for an extensive history
of this metric and its applications to the study of ∂̄ and ∂̄b.

In this paper we consider the CC metric d( p, q) induced on the boundary of
a model pseudoconvex domain � ⊂ C2 by the real and imaginary parts of the
CR vector field on b�. In particular, we seek to understand the volume growth of
the metric balls Bd( p, δ) when � is of the form

�= {(z1, z2) ∈ C2
: Im(z2) > P(z1)},
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where P : C→ R is smooth, subharmonic, and nonharmonic. Under mild nonde-
generacy conditions on 1P is it known [Montanari and Morbidelli 2012; Nagel
et al. 1985; 1988; 1989] that for δ ≤ 1 the metric ball Bd( p, δ) is comparable to a
“shorn” or “twisted” ellipsoid with radius δ in the directions spanned by the real
and imaginary parts of the CR vector field and radius 3((z1, z2), δ) in the Re(z2)-
direction. If we equip b� with the Lebesgue measure dm(z, t) that it receives via
its identification with C×R given by (z1, z2) 7→ (z, t), where z = z1 = x + iy and
t = Re(z2), then this small CC metric ball has volume comparable to that of the
twisted ellipsoid:

Vol(Bd( p, δ))≈ δ23( p, δ). (1-1)

We build on the earlier work of the second author [Peterson 2014] which sought to
understand the possible rate of growth of Vol(Bd( p, δ)) for model domains � such
that when δ is large, the Euclidean radius

3((z1, z2), δ)= sup
{
|Re(z′2− z2)| : d((z1, z2), (z1, z′2)) < δ

}
of Bd((z1, z2), δ) in the Re(z2)-direction is essentially independent of (z1, z2). The
quantity 3( p, δ) is called the global structure of b�, and we make precise the
(z1, z2)-independence condition described above with the following definition.

Definition 1.1. If there exists δ0 > 0, a function f : [δ0,+∞)→ [0,+∞), and
positive constants 0 < c < C < +∞ such that c f (δ) ≤ 3( p, δ) ≤ C f (δ) for all
δ ≥ δ0 and p ∈ b�, then we say that ( f (δ), δ0) is a uniform global structure or
UGS for b�.

For such domains � we also have (1-1) when δ is large (see Remark 3.3), and
therefore the volume growth of CC metric balls of any size is completely understood
once we understand 3( p, δ) for large δ.

Example 1.2. In [Nagel et al. 1988], it is shown that when P(z1) is a subharmonic,
nonharmonic polynomial (and where 1P has degree m− 2),

3((z1, z2), δ)≈

m−2∑
k=0

( k∑
α=0

∣∣∣∣ ∂k1P

∂zα1∂ z̄k−α
1

(z1)

∣∣∣∣)δk+2.

In particular, when P(z1)= |z1|
2 (so that 1P(z1)≡ 4) we have 3((z1, z2), δ)≈

4δ2, and therefore (δ2, 1) is a uniform global structure for b�.
On the other hand, if P(z1)= |z1|

4, then 3((z1, z2), δ)≈ |z1|
2δ2
+|z1|δ

3
+δ4
≈

(|z1| + δ)
2δ2, and therefore is not uniform in z1 ∈ C. This shows that b� has no

uniform global structure. More generally, if P is a subharmonic, nonharmonic poly-
nomial, then b� does not have a uniform global structure when 1P is not constant.

The following result from [Peterson 2014] controls the growth of uniform global
structures.
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Theorem 1.3 [Peterson 2014, Theorem 1.2]. If b� has a UGS ( f (δ), δ0), then there
are positive constants 0< c < C <+∞ such that cδ ≤ f (δ)≤ Cδ2 for all δ ≥ δ0.

So when b� has a UGS and δ� 1, the global structure at any point grows at
least linearly and at most quadratically in δ. Examples are given in [Peterson 2014]
where b� has a UGS linear in δ and quadratic in δ. Our question is whether there
exist examples where the UGS grows somewhere “between” linear and quadratic.
For instance, are there examples for b� with UGS (δ3/2, δ0) or (δ log δ, δ0)?

Example 1.4. To see that this question is not trivial, fix α ∈
(
0, 2

3

)
and choose a

subharmonic function P : C→ R such that 1P(z) = (1+ |z|2)−α/2. Using our
techniques and those of [Peterson 2014] one can show that there exist constants
0< c < C <+∞ such that for all δ > 0,

cδ2−α
≤3((0, 0), δ)≤ Cδ2−α and 3((δ3/2, 0), δ)≤ Cδ2−3α/2.

Thus 3((0, 0), δ) grows at a rate comparable to δ2−α, but 3((δ3/2, 0), δ) grows
no faster than δ2−3α/2. This illustrates that it is possible for the global structure to
grow (in δ) at nonpolynomial rates, but

(
since α < 3

2α
)

not necessarily uniformly
in the base point (z1, z2).

Our first main theorem (proven in Section 4) answers our question negatively.

Theorem 1.5. If b� has UGS ( f (δ), δ0), then either (δ2, δ∗) or (δ, δ∗) is a UGS
for b� for some δ∗ > 0.

We subsequently give necessary and sufficient conditions on b� for both linear
(Theorem 5.1) and quadratic (Theorem 5.2) growth of the UGS, thereby completely
describing the conditions under which any particular model domain has a uniform
global structure.

The volume growth of CC metric balls in model domains � as above for large δ
is only explicitly understood when P is a subharmonic, nonharmonic polynomial
[Nagel et al. 1988] or in the limited examples considered in [Peterson 2014]
mentioned above. In some situations one can obtain upper bounds for the rate
of volume growth (see [Chang and Chang 2014]), but one cannot hope for precise
control of Vol(Bd( p, δ)) for general P . On the other hand, applications of volume
growth estimates are many and varied; for example, one can use these estimates to
identify spaces of homogeneous type [Coifman and Weiss 1977], study singular
integral operators [Stein 1993], and even to decide whether or not the boundaries of
two model domains are quasiconformally equivalent [Fässler et al. 2015; Heinonen
and Koskela 1998].

Our paper is structured as follows: Section 2 gives relevant definitions and
notation that will be used extensively throughout the paper and recalls past results.
In Section 3 we gain some intuition about how a UGS behaves and prove a key and
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explicit alternative characterization of the UGS. In Section 4 we prove Theorem 1.5,
followed in Section 5 by necessary and sufficient conditions for a given model
domain to possess a uniform global structure. Section 6 concludes the paper and
offers future directions of study.

2. Preliminaries

With � as in the Introduction, the space of tangential CR vector fields on b� is
spanned by

Z = 2
∂

∂ z̄1
− 4i Pz̄1(z1)

∂

∂ z̄2
.

We identify b� with C×R via the diffeomorphism (z1, z2) 7→ (z, t)∈C×R, where
z = z1 = x + iy and t = Re(z2). Under this transformation, Z becomes

Z = 2
∂

∂ z̄
−2i Pz̄(z)

∂

∂t
=

(
∂

∂x
+ Py(x, y)

∂

∂t

)
− i
(
−
∂

∂y
+ Px(x, y)

∂

∂t

)
def
= X− iY.

As stated in Introduction, we give b� the Lebesgue measure dm(z, t) that it
receives upon identification with C×R. For the rest of the paper, we work on C×R

instead of b� to simplify notation.
We define the CC metric d : (C×R)× (C×R)→ [0,+∞) by

d( p,q)= inf
{
δ > 0 : ∃γ : [0,1]→C×R, γ (0)= p, γ (1)= q,

γ ′(s)= δα(s)X (γ (s))+ δβ(s)Y (γ (s)) a.e.,

α,β ∈FPWS[0,1], |α(s)|2+ |β(s)|2< 1 a.e.
}
. (2-1)

Here FPWS[0, 1] (read “finite piecewise smooth”) denotes the set of functions
f : [0, 1] → R which are smooth except at a finite number of points and whose
derivatives extend continuously to those points from each side separately.

The global structure 3((z, t), δ), the radius in the t-direction of the CC ball, is
then defined as

3((z, t), δ) def
= sup

{
|t ′− t | : d((z, t), (z, t ′)) < δ

}
. (2-2)

Note that the quantity (2-2) is actually independent of the t-coordinate because
the solutions to the differential equation in (2-1) are translation invariant in t . To
simplify notation, we will therefore write 3(z, δ) instead of 3((z, t), δ) for the
remainder of the paper, treating 3 as a function from C× (0,+∞) 7→ [0,+∞).
The first observation of [Peterson 2014] is that definition (2-2) is in fact equivalent
to the following statement in terms of curves in C, independent of t :

3(z,δ)= sup
{∮
γ

Py dx−Px dy : γ : [0,1]→C,

γ (0)= γ (1)= z, |γ ′(s)| ≤ δ a.e.,

γ ′(s)=α(s)+iβ(s), α,β ∈FPWS[0,1]
}
. (2-3)
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We write L(γ )=
∫ b

a |γ
′(s)| ds for the usual Euclidean length of a piecewise smooth

curve γ : [a, b]→C. The following geometric definition from [Peterson 2014] will
be essential to our understanding of global structures.

Definition 2.1. We say A ⊂ C is a pen if A is open, connected, simply connected,
and bA can be parametrized by a continuous piecewise smooth curve γ : [0, 1]→C

with γ ′(s) = α(s)+ iβ(s), where α, β ∈ FPWS[0, 1]. We call L(bA) = L(γ ) the
amount of fencing used to enclose A. For a fixed z ∈ C and δ > 0, we say that a
finite collection of pens R = (R1, . . . , RN ) is a (z, δ)-stockyard if

z ∈
N⋃

i=1

bRi ,

N∑
i=1

L(bRi )≤ δ, and
N⋃

i=1

bRi is connected.

Remark 2.2. We will often use the fact that given a pen A, we have A⊆ B(z,L(bA))
for any point z ∈ A, where B(z, ρ) denotes the open Euclidean disc in C of radius ρ
centered at z.

Thinking of global structures in terms of (2-3), [Peterson 2014] provides the
following theorem.

Theorem 2.3 [Peterson 2014, Theorem 1.1].

3(z, δ)= sup
(z,δ)−stockyards R

∑
Ri∈R

∫
Ri

1P(w) dm(w).

Here dm( · ) denotes the Lebesgue measure on C. The problem of calculating
the global structure, an inherently three-dimensional problem, is therefore reduced
to a question in two dimensions. Furthermore, notice that because P was assumed
to be subharmonic and nonharmonic, we can think of 1P as a density function
in the plane. In this context, integration over a pen measures the “mass” of the
region covered by the pen, and integration over a stockyard is then the sum of the
mass collected by the individual pens. The global structure 3(z, δ) is then just the
most mass one can collect with a stockyard touching z constructed with at most δ
amount of fencing.

We introduce the following simpler notation for use in our estimates. For two
nonnegative quantities A and B, we write A . B (read “A is controlled above by
B”) if there exists some constant c > 0, independent of all relevant quantities, such
that A ≤ cB. We say A & B (read “A is controlled below by B”) if B . A, and
A ≈ B (read “A is comparable to B”) if both A . B and B . A.

3. Alternate description of uniform global structures

When b� has a UGS ( f (δ), δ0) and when δ ≥ δ0, we expect that for every point z
in the plane we can find a high density region whose distance from the point is
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no more than δ. We should then be able to construct a (z, Nδ)-stockyard for an
appropriately fixed natural number N which covers this region with one or more
pens. Otherwise 3(z, δ) would be uncontrollably small at certain points. We also
expect that no point should be within δ of a region of exceedingly high density.
Otherwise 3(z, δ) would be uncontrollably large at certain points. Before we make
this notion precise in Proposition 3.4 of this section, we need two lemmas.

A simple observation about one formula for a UGS is the following.

Lemma 3.1. If b� has UGS ( f (δ), δ0), then (supz∈C3(z, δ), δ0) is also a UGS
for b�.

Proof. Fix some z ∈ C. By the definition of UGS, there exist constants c,C > 0
independent of z and δ such that

c f (δ)≤3(z, δ)≤ C f (δ).

So C f (δ) is an upper bound for {3(z, δ) : z ∈ C}, which gives supz∈C3(z, δ) ≤
C f (δ) since the supremum is the least upper bound. Also supz∈C3(z, δ) ≥
3(z, δ)≥ c f (δ). So then

3(z, δ)≤ C f (δ)≤ C
c

sup
z∈C

3(z, δ) and 3(z, δ)≥ c f (δ)≥ c
C

sup
z∈C

3(z, δ)

for all δ ≥ δ0. Therefore (supz∈C3(z, δ), δ0) is a UGS for b�. �

Lemma 3.1 makes it clear that we can take f (δ) to be a monotonically increasing
function of δ. We next show that f (δ) does not increase too quickly in the sense
that if we double the amount of fencing available to construct stockyards, then the
amount of mass one can collect should not grow exceedingly fast.

Lemma 3.2. If b� has UGS ( f (δ), δ0) then f (δ) ≈ f (2δ) for all δ ≥ δ0, with
constants independent of δ.

Proof. By Lemma 3.1 we can without loss of generality take f (δ)= supz∈C3(z, δ).
For if (g(δ), δ0) is any other UGS for b� and we can prove the lemma for f (δ),
then g(δ)≈ f (δ)≈ f (2δ)≈ g(2δ). We prove first that f (2δ)≈ f (3δ) for large δ
and will show at the end of the proof that this is sufficient to establish the lemma.

Because f (δ) is a nondecreasing function, we trivially have f (2δ)≤ f (3δ). We
need only show then that f (3δ). f (2δ). To this end, fix z0 ∈ C and δ ≥ 2

3δ0, and
let R be any arbitrary (z0, 3δ)-stockyard. There is a FPWS curve γ : [0, 1] → C

with γ (0)= γ (1)= z0, L(γ )≤ 3δ, and∑
Ri∈R

∫
Ri

1P(w) dm(w)=
∮
γ

Py dx − Px dy.

We now produce seven continuous, piecewise smooth curves γk : [0, 1] → C,
k= 1, . . . , 7, with L(γk)≤ 2δ and γ ′k(s)=αk(s)+iβk(s) with αk, βk ∈ FPWS[0, 1]
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such that ∮
γ

Py dx − Px dy =
7∑

k=1

∮
γk

Py dx − Px dy.

Without loss of generality, suppose that γ has constant speed so that∫ 1/3

0
|γ ′(s)| ds =

∫ 2/3

1/3
|γ ′(s)| ds =

∫ 1

2/3
|γ ′(s)| ds ≤ δ. (3-1)

For convenience, we define z1 = γ
( 1

3

)
, z2 = γ

( 2
3

)
, and z3 = γ (1)= z0. We also

denote by −−→z, w the directed line segment from z to w.
Now we have∮
γ

Py dx−Px dy

=

∫
γ [0,1/3]

Py dx−Px dy+
∫
γ [1/3,2/3]

Py dx−Px dy+
∫
γ [2/3,1]

Py dx−Px dy

+

∫
−−→z0,z1

Py dx−Px dy+
∫
−−→z1,z2

Py dx−Px dy+
∫
−−→z2,z3

Py dx−Px dy

+

∫
−−→z1,z0

Py dx−Px dy+
∫
−−→z2,z1

Py dx−Px dy+
∫
−−→z3,z2

Py dx−Px dy

=

∮
γ [0,1/3]+−−→z1,z0

Py dx−Px dy+
∮

γ [1/3,2/3]+−−→z2,z1

Py dx−Px dy

+

∮
γ [2/3,1]+−−→z3,z2

Py dx−Px dy+
∮

−−→z0,z1+
−−→z1,z2+

−−→z2,z3

Py dx−Px dy. (3-2)

We consider the contours of integration in each integral.
We define γi = γ

[1
3(i − 1), 1

3 i
]
+
−−−−→zi , zi−1 for i = 1, 2, 3. By (3-1), the length of

each contour γ
[1

3(i −1), i
3

]
is no more than δ. And as the straight line between the

endpoints of these contours, each directed line segment −−−−→zi , zi−1 also has length no
more than δ. In other words, each γi for i = 1, 2, 3 is a closed curve of length no
more than 2δ.

The last integral in (3-2) is taken over a closed contour composed of three
line segments, each of length no more than δ. For each j = 0, 1, 2 define b j =
1
2(z j + z j+1) to be the bisector of segment −−−−→z j , z j+1, and for convenience define
b−1 = b2. We then define γ j+4 =

−−−→z j , b j +
−−−−→b j , b j−1 +

−−−−→b j−1, z j and define γ7 =
−−−→b0, b1+

−−−→b1, b2+
−−−→b2, b0. Then we have∮

−−→z0,z1+
−−→z1,z2+

−−→z2,z3

Py dx − Px dy =
7∑

k=4

∮
γk

Py dx − Px dy.
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But by similar triangles,

L(γk)=
1
2 L(−−→z0, z1+

−−→z1, z2+
−−→z2, z3)≤

3
2δ

for each k = 4, 5, 6, 7. Combining these observations with (3-2) and (2-3), we have

∑
Ri∈R

∫
Ri

1P(w) dm(w)=
7∑

k=1

∮
γk

Py dx − Px dy

≤

7∑
k=1

3(γk(0),L(γk))≤ 3 f (2δ)+ 4 f
( 3

2δ
)
≤ 7 f (2δ)

for all (z0, 3δ)-stockyards R. Therefore by Theorem 2.3 we see 3(z, 3δ)≤ 7 f (2δ)
for all z ∈ C; hence

f (3δ)= sup
z∈C

3(z, 3δ)≤ 7 f (2δ).

In summary, for all δ ≥ 2
3δ0 we have

f (2δ)≤ f (3δ)≤ 7 f (2δ). (3-3)

Now fix δ ≥ δ0. Because f (δ) is a nondecreasing function, we also trivially have
f (δ)≤ f (2δ). But by monotonicity and (3-3) we see

f (2δ)≤ f
(9

4δ
)
≤ 49 f (δ).

Therefore, f (δ)≈ f (2δ) for all δ ≥ δ0. �

Remark 3.3. Lemma 3.2 was used implicitly in [Peterson 2014] without proof or
statement. The arguments of [Peterson 2014] show that for any fixed z ∈ C,{
(w, s) ∈ C×R : |w− z|< 1

4δ, |s− t − T (z, w)|<3
(
z, 1

4δ
)}
⊆ Bd((z, t), δ)

and

Bd((z, t), δ)⊆
{
(w, s) ∈ C×R : |w− z|< 3δ, |s− t − T (z, w)|<3(z, 3δ)

}
,

where

T (z, w)=−2Im
(∫ 1

0
(w− z)Pz(r(w− z)+ z) dr

)
is the “twist” of the CC ball. Lemma 3.2 then yields the formula

Vol(Bd((z, t), δ))≈ δ23(z, δ) for δ ≥ δ0

when b� has UGS ( f (δ), δ0). This shows that we can think of Bd((z, t), δ) as a
“twisted” ellipsoid in the case of large δ, not just small δ as in (1-1).

We are now ready to make precise the intuition laid out in the beginning of this
section.
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Proposition 3.4. If b� has UGS ( f (δ), δ0), then

3(z, δ)≈ sup
ẑ∈B(z,δ)

sup
0<δ̂≤δ

δ

δ̂

∫
B(ẑ,δ̂)

1P(w) dm(w)

uniformly for z ∈ C and δ ≥ δ0.

Proof. As in the proof of Lemma 3.2, we assume without loss of generality that
f (δ) is a nondecreasing function. For any choice of ẑ ∈ B(z, δ) and 0 < δ̂ ≤ δ,
define a (z, 4πδ)-stockyard R = (R0, R1, . . . , RN ) composed of one pen R0 which
is a circle touching z and some point on bB(ẑ, δ̂) and N = bδ/δ̂c copies of B(ẑ, δ̂).
Using the fact that bδ/δ̂c ≥ δ/(2δ̂) because δ ≥ δ̂ > 0, we have

3(z, δ)≈ f (δ)≈ f (16δ)≥ f (4πδ)&3(z, 4πδ)

≥

∑
Ri∈R

∫
Ri

1P(w) dm(w)≥
⌊
δ

δ̂

⌋∫
B(ẑ,δ̂)

1P(w) dm(w)

≥
δ

2δ̂

∫
B(ẑ,δ̂)

1P(w) dm(w).

Therefore,

3(z, δ)& sup
ẑ∈B(z,δ)

sup
0<δ̂≤δ

δ

δ̂

∫
B(ẑ,δ̂)

1P(w) dm(w).

Now let R = (R1, . . . , RM) be an arbitrary (z, δ)-stockyard. For i = 1, . . . ,M, fix
some point zi ∈ Ri . Then, recalling Remark 2.2, we have

∑
Ri∈R

∫
Ri

1P(w) dm(w)≤
M∑

i=1

∫
B(zi ,L(bRi ))

1P(w) dm(w)

=

M∑
i=1

L(bRi )

δ

δ

L(bRi )

∫
B(zi ,L(bRi ))

1P(w) dm(w)

≤

M∑
i=1

(
L(bRi )

δ

)
sup

ẑ∈B(z,δ)
sup

0<δ̂≤δ

δ

δ̂

∫
B(ẑ,δ̂)

1P(w) dm(w)

≤
δ

δ
sup

ẑ∈B(z,δ)
sup

0<δ̂≤δ

δ

δ̂

∫
B(ẑ,δ̂)

1P(w) dm(w)

= sup
ẑ∈B(z,δ)

sup
0<δ̂≤δ

δ

δ̂

∫
B(ẑ,δ̂)

1P(w) dm(w).

Therefore

3(z, δ)≤ sup
ẑ∈B(z,δ)

sup
0<δ̂≤δ

δ

δ̂

∫
B(ẑ,δ̂)

1P(w) dm(w). �
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4. Proof of Theorem 1.5

Proposition 3.4 reveals very strong information about the density in the space around
a point when there is a UGS. Armed with this knowledge, we are almost ready to
prove Theorem 1.5. We begin by recalling and proving two lemmas, the first of
which is a technical result from [Peterson 2014].

Lemma 4.1 [Peterson 2014, Lemma 4.1]. If b� has a UGS, then there are constants
C1,C2 > 0, depending only on 1P and δ0, such that

(a) inf
z∈C

sup
ẑ∈B(z,δ)

sup
0<δ̂≤δ

(δ̂+ δ̂2)−1
∫

B(ẑ,δ̂)
1P(w) dm(w)≥ C1 for all δ ≥ δ0;

(b) sup
z∈C

sup
δ>0
(δ+ δ2)−1

∫
B(z,δ)

1P(w) dm(w)≤ C2.

Remark 4.2. Note that increasing δ0 can only possibly increase C1 and will not
affect the constant C2.

We also need a short geometric lemma.

Lemma 4.3. Let 0< a ≤ b. Then within any disc of radius b in C, one can pack at
least b2/(16a2) disjoint discs of radius a.

Proof. Without loss of generality, assume the disc of radius b is centered at the
origin. Since B(0, a)⊂ B(0, b), we can always pack at least one disc of radius a
inside of B(0, b). If 2a >

√
2b, then we have at least one disc of radius a inside of

B(0, b), and

1>

√
2b

2a
>

b2

2a2 >
b2

16a2 .

Note now that for all x ≥ 1, we have x = bxc+α for some α ∈ [0, 1) so that

bx2
c =

⌊
(bxc+α)2

⌋
<
⌊
(bxc+ bxc)2

⌋
= b4bxc2c = 4bxc2.

Assume that 2a ≤
√

2b. The disc B(0, b) contains a square of side length⌊√
2b

2a

⌋
2a ≤

√
2b

centered at the origin. This square contains exactly b
√

2b/(2a)c2 disjoint squares
of side length 2a, each of which contains a disc of radius a. So we again see that
B(0, b) contains at least ⌊√

2b
2a

⌋2

>
1
4

⌊
b2

2a2

⌋
≥

b2

16a2

discs of radius a. �

We are now ready to prove Theorem 1.5.
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Proof of Theorem 1.5. Proposition 3.4 shows that there is some constant c > 0 such
that

sup
ẑ∈B(z,δ)

sup
0<δ̂≤δ

δ

δ̂

∫
B(ẑ,δ̂)

1P(w) dm(w)≥ c f (δ)

for all z ∈ C and δ ≥ δ0. So for all z ∈ C and δ ≥ δ0, there exists ẑ ∈ B(z, δ) and
0< δ̂ ≤ δ such that

1

δ̂

∫
B(ẑ,δ̂)

1P(w) dm(w)≥
c
2

f (δ)
δ
.

Now suppose f (δ)= δ is not a UGS for b�. That is, lim supδ→+∞ f (δ)/δ =+∞.
Then, taking C2 > 0 as in Lemma 4.1, we can choose δ1 > max(1, δ0) such that
f (δ1)/δ1 > 4C2/c. Choose δ̂ associated to δ = δ1 as above. If δ̂ ≤ 1, then by
Lemma 4.1 we have

2C2 <
c
2

f (δ1)

δ1
≤

1

δ̂

∫
B(ẑ,δ̂)

1P(w) dm(w)≤
2

δ̂+ δ̂2

∫
B(ẑ,δ̂)

1P(w) dm(w)≤ 2C2,

which is impossible. Therefore for all z ∈C, there exists ẑ ∈ B(z, δ1) and 1≤ δ̂≤ δ1

such that ∫
B(ẑ,δ̂)

1P(w) dm(w)≥
c
2

f (δ1)

δ1
δ̂ ≥ 2C2 > 0.

It follows that for all z ∈ C,∫
B(z,2δ1)

1P(w) dm(w)≥
∫

B(ẑ,δ̂)
1P(w) dm(w)≥ 2C2.

By Lemma 4.3, for all δ≥ δ1, we can pack N >δ2/(16δ2
1) disjoint discs of radius 2δ1

within a disc of radius 2δ. So for all z ∈ C,∫
B(z,2δ)

1P(w) dm(w)≥ N2C2 >
δ2

16δ2
1
· 2C2 ≈ (2δ)2.

Then for all δ ≥ 2δ1 and some z1 ∈ bB(z, δ),

f (δ)≈ f (2πδ)≈3(z1, 2πδ)≥
∫

B(z,δ)
1P(w) dm(w)& δ2.

But Theorem 1.3 implies f (δ). δ2 for all δ ≥ 2δ1 ≥ δ0. Therefore setting δ∗ = 2δ1

we see that if f (δ)= δ is not a UGS for b�, then (δ2, δ∗) is a UGS for b�. �

So a UGS must grow in a linear or quadratic fashion. Linear growth means
that for any point, the stockyards which pick up the most mass enclose a small,
dense, nearby disc as many times as possible. Quadratic growth means a stockyard
which picks up the most mass does so by taking a pen consisting of one large disc,
collecting as much area as possible.
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5. Identifying uniform global structures

So far, almost all of the results of this paper have taken as hypothesis that b� has
a UGS and considered what that means for the global structure 3. To look at an
arbitrary model domain and determine if there is a UGS is a much more difficult
question. But with Theorem 1.5, we see that we only need to provide conditions
to identify uniform global structures where either f (δ) = δ or f (δ) = δ2. The
following two theorems provide necessary and sufficient conditions for each case.

Theorem 5.1. The hyperspace b� has UGS (δ, δ0) if and only if

(a)
∫

B(z,δ)
1P(w) dm(w). δ for all z ∈ C and δ > 0, and

(b) there exist constants δ∗ > M > 0 such that

inf
z∈C

sup
ẑ∈B(z,δ∗)

sup
0<δ̂≤M

1

δ̂

∫
B(ẑ,δ̂)

1P(w) dm(w)& 1.

Proof. Suppose (δ, δ0) is a UGS for b�. For any z ∈ C, fix some point z1 with
|z1− z| = δ. If 2πδ ≥ δ0 then∫

B(z,δ)
1P(w) dm(w)≤3(z1, 2πδ)≈ 2πδ ≈ δ.

If 0< 2πδ < δ0, then taking a stockyard consisting of bδ0/(2πδ)c copies of B(z, δ)
gives

δ0

4πδ

∫
B(z,δ)

1P(w) dm(w)≤
⌊
δ0

2πδ

⌋∫
B(z,δ)

1P(w) dm(w)≤3(z1, δ0)≈ 1.

Therefore (a) holds.
Also, for any fixed δ∗≥ δ0 > 0, Lemma 4.1 gives some constant C1 > 0 such that

inf
z∈C

sup
ẑ∈B(z,δ∗)

sup
0<δ̂≤δ0

1

δ̂

∫
B(ẑ,δ̂)

1P(w) dm(w)

≥ inf
z∈C

sup
ẑ∈B(z,δ0)

sup
0<δ̂≤δ0

1

δ̂

∫
B(ẑ,δ̂)

1P(w) dm(w)

≥ inf
z∈C

sup
ẑ∈B(z,δ0)

sup
0<δ̂≤δ0

1

δ̂+ δ̂2

∫
B(ẑ,δ̂)

1P(w) dm(w)≥ C1.

Therefore (b) holds (with M = δ0).
Now we suppose (a) and (b) hold. For any δ > 0 and z ∈C, let R= (R1, . . . , RN )

be an arbitrary (z, δ)-stockyard. For each i = 1, . . . , N , fix some point zi ∈ Ri .
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Then recalling Remark 2.2, (a) gives∑
Ri∈R

∫
Ri

1P(w) dm(w)≤
∑
Ri∈R

∫
B(zi ,L(bRi ))

1P(w) dm(w).
∑
Ri∈R

L(bRi )≤ δ.

Therefore 3(z, δ). δ uniformly for z ∈ C and δ > 0.
For any z ∈ C, fix a ẑ ∈ B(z, δ∗) and 0< δ̂ ≤ M such that

1

δ̂

∫
B(ẑ,δ̂)

1P(w)dm(w)& 1,

as given by (b). Then for all δ ≥ 2πM ≥ 2πδ̂, there is a (z, πδ∗+δ)-stockyard R
which consists of one circular pen touching z and some point on bB(ẑ, δ̂) and
bδ/(2πδ̂)c copies of B(ẑ, δ̂). Then

3(z, πδ∗+ δ)≥
∑
Ri∈R

∫
Ri

1P(w) dm(w)

≥

⌊
δ

2πδ̂

⌋∫
B(ẑ,δ̂)

1P(w) dm(w)≥
δ

4πδ̂

∫
B(ẑ,δ̂)

1P(w) dm(w)

& δ = 2πM
δ

2πM
≥

2πM
2πM +πδ∗

(πδ∗+ δ),

where here we have used the fact that if c≥0 and a≥b>0, then a/b≥ (a+c)/(b+c).
Therefore 3(z, δ)≈ δ for all δ ≥ δ0 with δ0 = πδ

∗
+ 2πM . �

Theorem 5.2. The hypersurface b� has UGS (δ2, δ0) if and only if there exists
δ∗ > 0 such that, uniformly for z ∈ C,

(a)
∫

B(z,δ)
1P(w) dm(w). δ when δ ≤ δ∗, and

(b)
∫

B(z,δ)
1P(w) dm(w)≈ δ2 when δ ≥ δ∗.

Proof. Suppose (δ2, δ0) is a UGS for b�. Then for any z ∈ C and some point z1

with |z1− z| = δ we have∫
B(z,δ)

1P(w) dm(w)≤3(z1, 2πδ)≈ (2πδ)2 ≈ δ2

for all δ ≥ δ0.
Proposition 3.4 shows that there is some constant c > 0 such that

sup
ẑ∈B(z,δ)

sup
0<δ̂≤δ

δ

δ̂

∫
B(ẑ,δ̂)

1P(w) dm(w)≥ cδ2
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for all z ∈ C and δ ≥ δ0. So for all z ∈ C and δ ≥ δ0, there exists ẑ ∈ B(z, δ) and
0< δ̂ ≤ δ such that

1

δ̂

∫
B(ẑ,δ̂)

1P(w) dm(w)≥ 1
2 cδ.

Taking C2 > 0 as in Lemma 4.1, choose some δ1 >max(1, δ0, 4C2/c). Choose δ̂
associated to δ = δ1 as above. If δ̂ ≤ 1, then by Lemma 4.1 we have

2C2 <
c
2
δ1 ≤

1

δ̂

∫
B(ẑ,δ̂)

1P(w) dm(w)≤
2

δ̂+ δ̂2

∫
B(ẑ,δ̂)

1P(w) dm(w)≤ 2C2,

which is impossible. Therefore for all z ∈C, there exists ẑ ∈ B(z, δ1) and 1≤ δ̂≤ δ1

such that ∫
B(ẑ,δ̂)

1P(w) dm(w)≥ c
2
δ1δ̂ ≥ 2C2 > 0.

It follows that for all z ∈ C,∫
B(z,2δ1)

1P(w) dm(w)≥
∫

B(ẑ,δ̂)
1P(w) dm(w)≥ 2C2.

By Lemma 4.3, for all δ≥ δ1, we can pack N >δ2/(16δ2
1) disjoint discs of radius 2δ1

within a disc of radius 2δ. So for all z ∈ C,∫
B(z,2δ)

1P(w) dm(w)≥ N
∫

B(z,2δ1)

1P(w) dm(w) >
δ2

16δ2
1
· 2C2 ≈ (2δ)2.

Therefore, ∫
B(z,δ)

1P(w) dm(w)≈ δ2

for all δ ≥ 2δ1 > δ0. Setting δ∗ = 2δ1, we see (b) holds. Also, Lemma 4.1 yields∫
B(z,δ)

1P(w) dm(w)≤ C2(δ+ δ
2).

But if δ ≤ δ∗ then ∫
B(z,δ)

1P(w) dm(w)≤ C2(δ
∗
+ 1)δ ≈ δ,

so (b) holds.
Now we suppose (a) and (b) hold so that for δ ≤ δ∗ we have∫

B(z,δ)
1P(w)dm(w)≤ aδ

and for δ ≥ δ∗ we have ∫
B(z,δ)

1P(w)dm(w)≤ bδ2
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for some constants a, b> 0 independent of z ∈C. For δ ≥ 1, let R = (R1, . . . , RN )

be an arbitrary (z, δ)-stockyard. Without loss of generality, we may relabel the pens
so that L(bRi ) ≤ δ

∗ for i = 1, . . . , L and L(bRi ) ≥ δ
∗ for i = L + 1, . . . , N for

some integer L ∈ {0, . . . , N }. For each i = 1, . . . , N , fix some zi ∈ Ri . Recalling
Remark 2.2, we have∑

Ri∈R

∫
Ri

1P(w) dm(w)

=

L∑
i=1

∫
Ri

1P(w) dm(w)+
N∑

i=L+1

∫
Ri

1P(w) dm(w)

≤

L∑
i=1

∫
B(zi ,L(bRi ))

1P(w) dm(w)+
N∑

i=L+1

∫
B(zi ,L(bRi ))

1P(w) dm(w)

≤ a
L∑

i=1

L(bRi )+ b
N∑

i=L+1

L(bRi )
2

≤ a
L∑

i=1

L(bRi )+ b
( N∑

i=L+1

L(bRi )

)2

≤ aδ+ bδ2 . δ2.

So 3(z, δ). δ2 for all δ ≥ 1.
Using (b), we may take a stockyard consisting of one large circular pen with

radius δ ≥ δ∗ and center z1 satisfying |z1− z| = δ to see that

3(z, 2πδ)≥
∫

B(z1,δ)

1P(w) dm(w)≈ δ2
≈ (2πδ)2.

Therefore 3(z, δ)≈ δ2 for all δ ≥ δ0 with δ0 =max(1, δ∗/(2π)). �

6. Future directions

Although the results of this paper completely describe the nature of uniform global
structures for the model domains we consider, several interesting avenues for further
study present themselves when we weaken our hypotheses. One such direction
would be to extend the results of this paper to higher dimensions. That is, is there
an appropriate notion of stockyards in higher dimensions with which to analyze the
global structure on the boundary of a model domain in Cn? It is not clear how the
Green’s theorem argument used in [Peterson 2014] to prove Theorem 2.3 would
generalize or even how (if at all) the notion of stockyards should generalize to
higher dimensions.

One could also relax the conditions on P which determine the boundary b�.
For example, do similar results hold assuming that P is only once differentiable
and that 1P as a distribution is nonnegative? One could also allow P to be a more
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general function for which � is pseudoconvex, that is, take P = P(z1,Re(z2)). In
such a situation, the volume of CC balls with such a choice of P would a priori
depend on the Re(z2)-direction. Since the methods of this paper heavily exploited
the Re(z2)-translation invariance of �, it is unclear if these methods can be easily
extended to handle the more general situation.
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