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For p prime and k ≥ 2, let us define G(k)
p to be the digraph whose set of vertices is

{0, 1, 2, . . . , p−1} such that there is a directed edge from a vertex a to a vertex b
if ak
≡ b mod p. We find a new way to decide if there is a cycle of a given length

in a given graph G(k)
p .

Introduction

Let k ≥ 2 be an integer and let p be prime. Let us define G(k)
p to be the digraph

whose set of vertices is {0, 1, 2, . . . , p− 1} such that there is a directed edge from
a vertex a to a vertex b if ak

≡ b mod p.
This paper extends the results given in [Somer and Křížek 2004] (which provides

a way to determine whether there is a cycle of length t in a given graph G(2)
p ) and

[Wilson 1998] (which considers G(k)
p ; see also [Somer and Křížek 2009]). In this

paper, we provide our own way to determine the existence of a cycle of given length
in G(k)

p . First, we examine the existence of length-t cycles where t is prime. Later
on, we explore the case of cycles of length u where u is composite, and we conclude
with a study of digraphs that admit some cycle lengths but do not allow others.

Now, we will introduce one of the key theorems of this paper, mentioned in
[Niven, Zuckerman and Montgomery 1991]. Here, φ stands for the Euler totient
function.

Theorem 1. Suppose m = 1, 2, 4, pα or 2pα, where p is an odd prime and α
is a positive integer. If gcd(a,m) = 1 then the congruence xn

≡ a mod m has
gcd(n, φ(m)) solutions or no solution, according to whether

aφ(m)/ gcd(n,φ(m))
≡ 1 mod m

or not.
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On the existence of length-t cycles given t prime,
and length-u cycles given u ≥ 2

Based on the theorem in our Introduction, we have the following corollaries, which
are crucial in determining the existence of a length-t cycle for t prime.

Corollary 2. Let p be a prime. The congruence xn
≡ 1 mod p has gcd(n, p− 1)

solutions.

Corollary 3. Let p be a prime and let k ≥ 2. The subgraph G(k)
p \{0} has gcd(k−1,

p− 1) cycles of length 1.

Since we are curious about the existence of length-t cycles in G(k)
p given t prime,

we want to know if the following equations have any solutions:

xkt
≡ x mod p, xk

6≡ x mod p.

By our two corollaries, the above equations are equivalent to

gcd(kt
− 1, p− 1) > gcd(k− 1, p− 1).

Similarly, since we are also curious about the existence of length-u cycles in G(k)
p

given u composite, we want to know if the following equations have any solutions
(here, ui runs over the proper divisors of u):

xku
≡ x mod p, xku1

6≡ x mod p, xku2
6≡ x mod p, · · · .

Once again, our corollaries tell us that the above equations are equivalent to

gcd(ku
− 1, p− 1) > gcd(kui − 1, p− 1)

for ui running over all proper divisors of u. So, we have the following results:

Theorem 4. Given u ≥ 2, k ≥ 2, and p prime, there exists a length-u cycle in G(k)
p

if and only if gcd(ku
−1, p−1)> gcd(ku′

−1, p−1) for all proper divisors u′ of u.

Remark. Theorem 4 follows from Theorem 5.6 of [Somer and Křížek 2009], which
also gives formulas for how many cycles exist of a given length; if t is prime, for
example, then the number of length-t cycles is

gcd(kt
− 1, p− 1)− gcd(k− 1, p− 1)

t
.

The following theorem, which is a result of [Lucheta, Miller and Reiter 1996,
pp. 230–231], is also a special case of a more general result in [Wilson 1998,
pp. 232–233]. Another version with k = 2 appeared in [Somer and Křížek 2004,
Theorem 3.3].

Theorem 5 (Lucheta, Miller, Reiter). Let p be a prime. There exists a cycle
of length u in G(k)

p if and only if u = ordd k for some divisor d of p − 1 with
gcd(d, k)= 1, where ordd k denotes the multiplicative order of k modulo d.
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Here are four corollaries following from Theorems 4 and 5 that give us precise
information on what cycle lengths are possible (or impossible) in G(k)

p for various
primes p and powers k:

Corollary 6. Fix a prime t. Given any integer k ≥ 2, there are infinitely many
primes p such that G(k)

p has a length-t cycle. Moreover, G(k)
p contains a 1-cycle for

all primes p.

Corollary 7. Fix an integer u ≥ 2. Given any integer k ≥ 2, there are infinitely
many primes p such that G(k)

p does not have a length-u cycle.

Corollary 8. Fix an integer u ≥ 2. Let p= 22n
+1 be a Fermat prime, where n ≥ 0.

The possible cycle lengths in G(k)
p for p a Fermat prime are very limited:

(1) There are never any odd-length cycles (aside from the length-1 cycles).

(2) If k is even, there are no cycles at all (aside from the length-1 cycles) in G(k)
p .

(3) If k is odd and u is even, G(k)
p contains a length-u cycle if and only if

u | ordp−1 k. Moreover, ordp−1 k | 22n
−2 if n ≥ 2 and ordp−1 k | 22n

−1 if n =
0 or 1.

Corollary 9. Fix an integer u ≥ 2, and let p be prime. Then, there are infinitely
many integers k such that G(k)

p contains no length-u cycle.

Proof of Corollary 6. Since gcd
(
1,
∑t−1

i=0 ki
)
= 1, by Dirichlet’s theorem on the

infinitude of primes in arithmetic progressions we know that there are infinitely
many primes p such that p ≡ 1 mod

∑t−1
i=0 ki. Now given such a prime p, we have

gcd
(
(k− 1)

t−1∑
i=0

ki , p− 1
)
≥

t−1∑
i=0

ki or gcd(kt
− 1, p− 1)≥

t−1∑
i=0

ki.

On the other hand, gcd(k − 1, p − 1) ≤ k − 1. Since it is not hard to see that
k − 1 <

∑t−1
i=0 ki, we have gcd(kt

− 1, p − 1) > gcd(k − 1, p − 1). Thus, by
Theorem 4, we can conclude that there are infinitely many primes p such that G(k)

p

has a length-t cycle, as desired. Finally, the last assertion of our statement holds,
since both 0 and 1 are clearly vertices in 1-cycles. �

Proof of Corollary 7. Let q1, q2, . . . be the odd primes in order of size, and let qr

be the largest prime less than or equal to ku ; since both u and k are at least 2, then
qr is at least 3. By the Chinese remainder theorem and Dirichlet’s theorem, there
exist infinitely many primes p such that

p ≡ 3 mod 4, p ≡ 2 mod q1q2 · · · qr .

The first equivalence implies 2 | p− 1 but 4 - p− 1, while the second implies p− 1
is relatively prime to q1q2 · · · qr . Now suppose G(k)

p actually does have a length-u
cycle for u ≥ 2. It follows from Theorem 5 that u = ordd k for some divisor d > 1
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of p− 1 (note that if d = 1 then this would imply u = 1, a contradiction), with d
relatively prime to k. Let us consider the options, keeping in mind what we just
wrote about p− 1. If k is odd, then either d = 2 or d ≥ qr+1. But if d = 2 then
u = ord2 k = 1, which is a contradiction. Hence, our only option is d ≥ qr+1. If
k is even, then d must be odd and so again our only option is d ≥ qr+1. But with
d ≥ qr+1, since 1 < ku < qr+1 we have u is not, in fact, the order of k mod d,
which contradicts our statement earlier that u = ordd k. Hence, G(k)

p does not have
a length-u cycle for u ≥ 2. �

Before we move on to the next proof, we need to establish this useful result.

Lemma 10. For k odd and a ≥ 2, the order ord2a+1 k is either equal to ord2a k or
to 2 ord2a k.

Proof of Lemma 10. If we let w = ord2a k, then we know that 2a
| kw− 1. Consider

k2w
−1= (kw−1)(kw+1). We know 2a divides kw−1 and since k is odd, 2 divides

kw+1, so we know 2a+1 divides k2w
−1. Hence, ord2a+1 k divides 2w, but ord2a+1 k

is at least w, and so we conclude that ord2a+1 k is either w or 2w, as desired. �

We are now ready for the following:

Proof of Corollary 8. Let p be the Fermat prime 22n
+1 where n≥ 0, so p−1= 22n

.
Now, suppose G(k)

p contains a cycle of length u≥ 2. Then by Theorem 5, u= ordd k
for some divisor d of p − 1 = 22n

. By Euler’s generalization of Fermat’s little
theorem, this implies u |φ(d), but d is a power of 2 and so (thanks to the well-
known formulas for Euler’s phi function) this implies u is as well. By Theorem 5,
we also have d and k are relatively prime; since u | d , we know u and k are relatively
prime as well. With this in mind, let us consider the possibilities for u and k. We
cannot have u ≥ 2 be an odd integer, as this contradicts u ≥ 2 being a power of 2;
hence, G(k)

p never contains a cycle of length u ≥ 2 for u odd. We also cannot have
u and k both be even integers, as this contradicts u and k being relatively prime;
hence, G(k)

p contains no cycles of length u for u and k both even.
The only option left is to have u ≥ 2 even and k ≥ 2 odd. Theorem 5 tells us

that we have a length-u cycle if and only if u = ordd k for some divisor d of p− 1;
let us establish that this is equivalent to u | ordp−1 k. For the first Fermat prime
p = 220

+ 1 = 3, it is easy to verify that there are no even-length cycles in G(k)
3

because this graph contains only the vertices {0, 1, 2}; likewise, ordp−1 k = 1 and
this admits no even divisors. For the next Fermat prime p = 221

+ 1= 5, similar
calculations reveal that we can have even length-u cycles only for k ≡ 3 mod 4
and for u = 2, in which case u is indeed an even divisor of 2= ordp−1 k (and vice
versa). For both of those two cases (namely, for p = 22n

+ 1 with n = 0 or 1), it is
easy to check that ordp−1 k | 22n

−1, as desired.
It remains to consider the other Fermat primes p= 22n

+1 for n≥ 2. If u= ordd k
for some divisor d of p− 1 = 22n

, then (recalling that u and d and p− 1 are all
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powers of 2) it is certainly true that u | ordp−1 k, as ordd k cannot be greater than
ordp−1 k and both are powers of 2. For the other direction, suppose u | ordp−1 k,
and let us show that u = ordd k for some divisor d of p− 1. Starting with 1 as the
order of k mod 2, we imagine finding the orders of k mod 22, mod 23, mod 24, and
so on, up to mod 22n

. Lemma 10 tells us that at each step, the order of k either stays
the same or doubles. At the last step in this sequence (modulo 22n

) the order of k is
a multiple of u. Hence, at some step along the way (say, when our modulus is 2b

for b ≤ 2n) we know that the order of k mod 2b is equal to u. Hence, we let d = 2b

and we have u = ordd k for d a divisor of p− 1, as desired.
Finally, we recall from [Gallian 2010, p. 160] that the multiplicative group of units

modulo 22n
, commonly written (Z22n )∗, is isomorphic to Z22n−2⊕Z2 for n≥2. Hence,

the order of any odd number k modulo p−1 will be a divisor of 22n
−2, as desired. �

Proof of Corollary 9. Note that if p is a Fermat prime, then by Corollary 8 we can
simply choose k to be any even number. Of course, for p = 2 the conclusion is
trivial. For the more general case, we choose k ≥ 2 to be an integer equivalent to
1 mod p− 1. There are clearly infinitely many such k. Note that gcd(k, p− 1)= 1
and also k ≡ 1 mod d for any divisor d of p−1. Thus, ordd k = 1 for any divisor d
of p− 1 and so by Theorem 5 we know G(k)

p has no u-cycles for any u ≥ 2. �

On the existence of cycles of different lengths in the same digraph

We now consider cycles of composite length, and we show that the existence of
certain cycles implies the existence of other, longer cycles.

Theorem 11. Let u = lcm(u1, u2), where u1 and u2 are positive integers. If G(k)
p

contains cycles of length u1 and length u2 respectively, then G(k)
p also contains a

cycle of length u.

Proof. Suppose in G(k)
p there exist cycles of lengths u1 and u2. By Theorem 5, we

know that there exist d1 and d2 such that d1 | (p−1), d2 | (p−1) and u1 = ordd1 k,
u2 = ordd2 k. Also, let d = lcm(d1, d2) and u = lcm(u1, u2). Since d1 | (ku1 − 1)
and u1 | u, we have d1 | (ku

− 1). By the same reasoning, d2 | (ku
− 1). Therefore,

d | (ku
− 1); that is, ku

≡ 1 mod d. So, gcd(d, k)= 1. Assume there exists u′ ≤ u
such that ku′

≡ 1 mod d. So, ku′
≡ 1 mod d1 and ku′

≡ 1 mod d2. Since u1 is the
order of k mod d1, we have u1 | u′. Likewise, u2 | u′. Therefore, lcm(u1, u2) | u′;
that is, u | u′. So u ≤ u′. By assumption we know u′ ≤ u; thus, u = u′. So, the
order of k mod d is u. Since d = lcm(d1, d2), we have d | (p− 1). Thus again by
Theorem 5, we know there is a length-u cycle in G(k)

p . �

Corollary 12. Let u = lcm(u1, u2, u3, . . . , un), where u1, u2, . . . , un are positive
integers. If G(k)

p contains a cycle of length ui for each i , then G(k)
p also contains a

cycle of length u.
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It turns out that for even k, the opposite direction is not always true. Later we
present a digraph G(k)

p that has a 12-cycle and a 1-cycle but no cycles of length 2,
3, 4, or 6. The following result indicates that this is hardly an isolated occurrence.

Theorem 13. Let u be a composite number and let k be even.

(1) If k 6= 2 or u 6= 6, then there exist infinitely many primes p such that in G(k)
p

there exists a length-u cycle but no length-u′ cycles in which u′≥ 2 is a positive
divisor of u.

(2) For the case k = 2 and u = 6, suppose for some prime p that G(2)
p has a cycle

of length 6. Then there must also exist a cycle of either length 2 or 3 in G(2)
p ;

furthermore, if G(2)
p has cycles of length 6 and 3 then it must also have a cycle

of length 2. The smallest prime p such that G(2)
p has both a length-6 and a

length-2 cycle is p = 19; in this case, though, G(2)
19 does not have a length-3

cycle. The smallest prime p such that G(2)
p has cycles of lengths 2, 3, and 6 is

p = 43.

Before we start our proof, we need to introduce a very useful lemma proved
independently by Bang [1886] and Zsigmondy [1892], as seen in a recent paper by
Roitman [1997]:

Lemma 14 (Bang and Zsigmondy). Let k and u be integers greater than 1. There
exists a prime divisor q of ku

− 1 such that q does not divide k j
− 1 for all j where

0< j < u, except exactly in the following cases:

(1) k = 2s
− 1, where s ≥ 2, and u = 2;

(2) k = 2 and u = 6.

Proof of Theorem 13. First, let us discuss the case where k = 2 and u = 6; that
is, we suppose there exists a length-6 cycle in G(2)

p . By Theorem 4, we must have
gcd(26

− 1, p− 1) > 1. Now since 26
− 1= 63, we know p− 1 must be divisible

by either 7 or 3. Since 23
− 1 is 7 and of course 22

− 1 is 3, we conclude that either
gcd(23

−1, p−1)> 1 or gcd(22
−1, p−1)> 1 and hence (again by Theorem 4) we

must have a cycle of length 3 or length 2. Now suppose (for the sake of argument)
that G(2)

p happens to have both a length-6 cycle and a length-3 cycle but no length-2
cycle. If we let Ai represent the number of cycles of length i in the graph of G(2)

p ,
then Theorem 5.6 of [Somer and Křížek 2009] tells us

A6 =
1
6

(
gcd(p− 1, 63)− A1− 2A2− 3A3

)
.

Clearly, A1 = 1 since the only nontrivial solution to x2
≡ x mod p is x = 1. We

are assuming that A2 = 0 and that A3 and A6 are both positive, and so the above
equation becomes

A6 =
1
6

(
gcd(p− 1, 63)− 1− 3A3

)
.
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Figure 1. The digraph G(2)
19 has a 6-cycle and 2-cycle but no 3-cycle.

Since A3 > 0, for A6 to be a nonzero integer we must have gcd(p−1, 63) be either
9, 21, or 63, which are all equivalent to 3 mod 6. But 1+ 3A3 will be equivalent to
1 or 4 mod 6, and the difference of these two expressions can never be 0 mod 6,
which contradicts A6 being an integer. Hence, the presence of a length-6 cycle and
a length-3 cycle really does force there to be a length-2 cycle.

By inspection, p = 19 is the smallest prime p such that G(2)
p has a 6-cycle and a

2-cycle; it is easily seen that it does not have a 3-cycle. Also by inspection, p = 43
is the smallest prime p such that G(2)

p has a 6-cycle, a 2-cycle, and a 3-cycle. See
Figure 1 for the graph of G(2)

19 .
Now if k 6= 2 or u 6= 6, then in order to prove the theorem it is sufficient to show

that there are infinitely many primes p such that for the graph G(k)
p the following

conditions hold: for u1, u2, . . . nontrivial proper divisors of u,

gcd(ku
−1, p−1)> 1, gcd(ku1−1, p−1)= 1, gcd(ku2−1, p−1)= 1, . . . .

(By Corollaries 2 and 3, these equations will also imply that the only cycles of
length 1 in G(k)

p will be the 1-cycle with vertex 0 and the 1-cycle with vertex 1.) By
Lemma 14, we know that there exists a prime divisor q | ku

− 1 such that q -k j
− 1

for 0< j < u. Now, consider the set of equivalence relations

p− 1≡ 0 mod q, (1)

p− 1≡ 1 mod s, (2)

where s = lcm(ku1 − 1, ku2 − 1, . . . ). Since q is prime, it is obvious that q -s and
therefore we can apply the Chinese reminder theorem to get

p− 1≡ q[q−1
]s mod qs,

where [q−1
]s is the unique positive integer less than s that is the inverse of q

modulo s.
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Figure 2. The digraph G(2)
11 has a 4-cycle but no 2-cycle.

Thus, p= (q[q−1
]s+1)+qs ·n, where n∈N. Since q[q−1

]s≡1 mod s, we know
q[q−1

]s+1≡ 2 mod s, so gcd(q[q−1
]s+1, s)≤ 2. Now k is even, so s is odd, and

we know gcd(q[q−1
]s+1, s)=1. On the other hand, it is obvious that q -q[q−1

]s+1;
therefore gcd(q[q−1

]s+1, qs)= 1. Thus, by Dirichlet’s theorem, there are infinitely
many primes p of the form p = (q[q−1

]s + 1)+ qs · n, as desired. �

Now, let us do some examples to illustrate the methods given above.

Example. For p a prime, p ≡ 11 mod 15, we know G(2)
p always has a 4-cycle but

never has a 2-cycle. This can be shown via the methods of the above proof with
k = 2, u = 4, and u1 = 2, so q = 5 and s = 3. The two smallest primes p of this
type are 11 and 41. The digraph for G(2)

11 is given in Figure 2.

Example. Likewise, using k = 2, u = 9, and u1 = 3, we can show that for p a
prime equivalent to 366 mod 511, the graph G(2)

p always has a 9-cycle but never
has a 3-cycle. The smallest prime equivalent to 366 mod 511 is 877, and a partial
digraph for G(2)

877 is given in Figure 3.

Example. Finally, using k=2, u=12, and {u1, u2, u3, u4} equal to {2, 3, 4, 6}, the
techniques of our proof of Theorem 13 show that for p a prime, p≡1262 mod 4095,
the graph G(2)

p always has a 12-cycle but never has cycles of lengths 2, 3, 4, or 6.
The smallest p in this equivalence class is 21737. (This is the smallest prime that
arises from the technique of Theorem 13, but it is not the smallest prime p such
that G(2)

p has a cycle of length 12 but none of lengths 2, 3, 4, or 6; experimentation
shows that the first such prime would be 53, not 21737. We will explain this further
in a moment.)

One problem with the above examples (all of which arise from the techniques
of Theorem 13) is that while they guarantee an infinite list of primes that satisfy
the given requirements, it is not necessarily a complete list. For example, suppose
we want to find all primes p such that for G(2)

p we have cycles of length 12, but
no cycles of lengths 2, 3, 4, or 6. By our first example, we know any prime of
the form p ≡ 1262 mod 4095 will certainly work (and the first prime in this list
is 21737). But as mentioned above, p = 53 works just fine as well. Let us see if
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Figure 3. The digraph G(2)
877 has eight components each of the forms

shown in the top row, and just one component each of the forms
shown in the bottom row. In particular, it has a 9-cycle but no 3-cycle.

we can demonstrate how to find all such primes p such that the digraphs G(2)
p will

have cycles of length 12 but not length 2, 3, 4, or 6.
In order to find such p’s, we need

gcd(212
−1, p−1) > 1, (3)

gcd(26
−1, p−1)= 1, (4)

gcd(24
−1, p−1)= 1, (5)

gcd(23
−1, p−1)= 1, (6)

gcd(22
−1, p−1)= 1, (7)

gcd(21
−1, p−1)= 1. (8)

By Lemma 14, we know there exists a prime divisor q such that q | 212
− 1 but

q - 2i
− 1, where i ∈ {2, 3, 4, 6}, and a brief calculation shows q = 13. Therefore,

we have 13 | gcd(212
−1, p−1) and so it follows that p−1= 13n, or p= 13n+1.

In order for (4)–(7) to hold, we must make sure that n does not contain any proper
divisor of (2i

− 1), where i ∈ {2, 3, 4, 6}; that is, 3, 5, and 7 must not divide n. So,
a complete list of primes p can be written as the set

{p is prime : p = 13n+ 1 where n ∈ N and 3, 5, 7 -n}.

The smallest p is indeed 53.
If we glance at (3)–(8), we might wonder if we can modify them to give us more

liberty in deciding what cycles we want to have and not have in our G(k)
p . Suppose

we want to change the above example to have a digraph with cycles of lengths 12
and 2, but no other cycles of lengths 3, 4, or 6. By Theorem 4, we need to start with

gcd(212
− 1, p− 1) > gcd(22

− 1, p− 1) > 1.
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Since 22
− 1 | 24

− 1 and 22
− 1 | 26

− 1, we know that gcd(24
− 1, p − 1)

and gcd(26
− 1, p − 1) will both be at least as large as gcd(22

− 1, p − 1), but
to prevent G(2)

p from having cycles of length 4 or length 6, we need them to be
no larger than gcd(22

− 1, p− 1). Finally, to avoid any 3-cycles, we would like
gcd(23

− 1, p − 1) = 1. We can satisfy all these requirements if we are able to
establish the six equations

gcd(212
− 1, p− 1)= q2q12, (9)

gcd(26
− 1, p− 1)= q2, (10)

gcd(24
− 1, p− 1)= q2, (11)

gcd(22
− 1, p− 1)= q2, (12)

gcd(23
− 1, p− 1)= 1, (13)

gcd(21
− 1, p− 1)= 1, (14)

where q2 and q12 are both primes. (Note the similarity between these six equations
and the ones given earlier in (3)–(8).)

Fortunately, this is indeed possible. Lemma 14 guarantees that we can find
appropriate primes q2 and q12; our choices here will be q2 = 3 and q12 = 13. We
also need to ensure that p− 1 does not contain any other primes that might also
appear in 2k

−1 as k runs over the divisors of 12. This can be satisfied by restricting
ourselves to the set

{p is prime : p = 39n+ 1 where n ∈ N and 3, 5, 7 -n}.

It turns out the smallest such p is 79.
Naturally, we seek to generalize this technique, and the following theorem gives

the appropriate conditions in which this can be done.

Theorem 15. Let u ≥ 4 be any composite number, let k ≥ 2, and let u′ ≥ 2 be a
proper divisor of u. So long as we do not have either k = 2 and u′ = 6, or k = 2
and u = 6 and u′ = 3, then there exist infinitely many primes p such that G(k)

p has
both a u-cycle and a u′-cycle but has no w-cycle, where w is any other nontrivial
proper divisor of u.

Remark. The two restrictions in the above theorem are thanks to Theorem 13,
which tells us that every digraph G(2)

p which contains a 6-cycle will also contain
either a 2-cycle or 3-cycle, and that if it contains a 6-cycle and 3-cycle then it must
also have a 2-cycle.

Proof of Theorem 15. We begin by considering the case where k is even and different
from 2. This avoids the two exceptions to Lemma 14, and so we know there exist
two separate primes q and q ′ such that q | ku

− 1 but q -kw − 1 for all w < u, and
q ′ | ku′

− 1 but q ′ -kw − 1 for all w < u′. Since k is even, the primes q and q ′ are
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necessarily odd. We want to set up a system similar to the ones in (9)–(14); in this
context, our system will be

gcd(ku
− 1, p− 1)= qq ′, (15)

gcd(k y
− 1, p− 1)= q ′ if y < u and y divisible by u′, (16)

gcd(kz
− 1, p− 1)= 1 if z < u and z not divisible by u′. (17)

(Here, y and z run over the proper divisors of u.) These three conditions, along
with Theorem 4, would guarantee the existence of a cycle of length u and one of
length u′ and would prohibit any cycles of length w for w any other nontrivial
divisor of u. It remains to show there are infinitely many such primes p that satisfy
(15)–(17). Fortunately, this is not too hard. Let Q be the product of all the primes
other than q and q ′ that divide ku

− 1. Since neither q nor q ′ divide k1
− 1 and

since k > 2, there is at least one such prime, and since k is even, all such primes in
Q are odd primes. If we now require

p− 1≡ qq ′ mod (qq ′)2, (18)

p− 1≡ 1 mod Q, (19)

then we are guaranteed (15)–(17), as we now briefly demonstrate.

• To begin with, (18) tells us that qq ′ divides into p− 1, but no higher power of q
or q ′ does so. Also, (19) tells us that no other prime ρ that divides into Q will also
divide into p− 1. Hence, the gcd’s in (15)–(17) must be either 1, q, q ′, or qq ′.

• To establish (15), we note that by definition, both q and q ′ divide into ku
− 1.

• For (16), we note that q ′ divides into ku′
− 1, which divides into k y

− 1 for y
divisible by u′, and that q does not divide into any k y

− 1 for y < u.

• As for (17), note that kz
− 1 is not divisible by q for any z < u. If kz

− 1 was
divisible by q ′, then q ′ would divide the gcd of kz

− 1 and ku′
− 1. This gcd is

kd
−1 where d = gcd(z, u′) and since z is not divisible by u′ then we know d < u′,

but this contradicts our definition of q ′. Hence, kz
− 1 is not divisible by either q

or q ′ and so we have established (17).

We can now apply the Chinese remainder theorem to write (18) and (19) as
p− 1≡ A mod Q(qq ′)2 for some integer A, which implies

p ≡ 1+ A mod Q(qq ′)2

Are we now able to apply Dirichlet’s theorem to claim that there are infinitely many
primes that satisfy the above equivalence? Almost! We need only ensure that 1+ A
is relatively prime to Q(qq ′)2. Since (18) tells us that A ≡ 0 mod q , then A+ 1≡
1 mod q , and the same holds for q ′. Hence, A+ 1 is relatively prime to q and to q ′.
Now let ρ be one of the primes that divides Q. We know from (19) that A≡1 mod ρ,
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which means A+1≡ 2 mod ρ, but of course ρ is an odd prime, so A+1 is relatively
prime to ρ. We conclude that A+1 is relatively prime to Q(qq ′)2, and so we can ap-
ply Dirichlet’s theorem to complete the proof (for this case where k even and k > 2).

Next, we consider k = 2, u = 6, and u′ = 2. This is a very specific case, and if
we set p ≡ 19 mod 63 to be prime, it is easy to verify that all four of the equations

gcd(26
− 1, p− 1)= 9, (20)

gcd(22
− 1, p− 1)= 3, (21)

gcd(23
− 1, p− 1)= 1, (22)

gcd(21
− 1, p− 1)= 1. (23)

are satisfied. Naturally, there are infinitely such primes p (the first one is p=19) and
Theorem 4 tells us that G(2)

p will have a 6-cycle and a 2-cycle but never a 3-cycle.
Next, consider k = 2 with neither u nor u′ equal to 6. Since this avoids the

exceptions to Lemma 14, as before we can find the two separate primes q and q ′

such that q | ku
−1 but q -kw−1 for all w < u, and q ′ | ku′

−1 but q ′ -kw−1 for all
w< u′. We would like to define Q to be the product of all primes ρ different from q
and q ′ that divide 2u

−1, but it is possible that no such primes ρ exist (consider, for
example, q = 73 a factor of 29

− 1, and q ′ = 7 a factor of 23
− 1: there are no other

prime factors of 29
− 1). If this is the case, simply set Q = 1 and proceed as before.

Next, consider when k > 2 is odd and we do not have u′ = 2 and k = 2s
−1 with

s ≥ 2. Lemma 14 gives us the primes q and q ′ as before, and since q and q ′ do not
divide k1

− 1 (by definition), both q and q ′ are odd primes. However, in our earlier
work, (15)–(17) depended on some of the equations gcd(kz

− 1, p− 1) being equal
to 1, but now that kz

− 1 is even, this is no longer possible. Instead, we will ask
that p ≡ 3 mod 4 (which will mean that p− 1 is divisible by 2 and not 4), and we
seek to establish the system

gcd(ku
− 1, p− 1)= 2qq ′, (24)

gcd(k y
− 1, p− 1)= 2q ′ if y < u and y divisible by u′, (25)

gcd(kz
− 1, p− 1)= 2 if z < u and z not divisible by u′. (26)

By Theorem 4 this will be sufficient to create our desired digraph G(k)
p . But can

we find primes p that satisfy (24), (25), and (26)? Of course! Let Q be the product
of all the odd primes other than q and q ′ that divide ku

− 1, with the understanding
that if no such primes exist then Q = 1. If we now require

p− 1≡ qq ′ mod (qq ′)2, (27)

p− 1≡ 1 mod Q, (28)

p− 1≡ 2 mod 4, (29)
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then we are guaranteed (24)–(26), as we now briefly demonstrate:

• As seen earlier, (27) tells us that qq ′ divides into p− 1, but no higher power of
q or q ′ does so. Also, (28) tells us that no other prime ρ that divides into Q will
also divide into p− 1. And, (29) guarantees that 2 | (p− 1) but 4 does not. These
observations, along with k− 1 being even, tell us that the gcd’s in (24)–(26) must
be either 2, 2q , 2q ′, or 2qq ′.

• To establish (24), we note that both p− 1 and ku
− 1 are divisible by q and q ′.

• For (25), we note that q ′ divides into ku′
− 1, which divides into k y

− 1 for y
divisible by u′, and that q does not divide into any k y

−1 for y< u. This is identical
to our proof for (16).

• Likewise, (26) is proved the same way as (17).

As before, we can now use the Chinese remainder theorem to write p =
1+ A mod 4Q(qq ′)2 for some appropriate A, and it is easy to show that 1+ A
and 4Q(qq ′)2 are relatively prime, thus allowing us to finish the proof by using
Dirichlet’s theorem.

The very last case to consider is when k = 2s
− 1 for s ≥ 2, and u′ = 2. The

issue here is that k− 1 and ku′
− 1 will have exactly the same prime divisors (just

to different powers) so we cannot find an appropriate prime q ′ as we did earlier,
where q ′ was supposed to divide ku′

− 1 but not k− 1. Instead, we have to proceed
as follows. First, choose a prime q such that q | ku

− 1 but q -kw − 1 for all w < u.
Note that q is necessarily odd. We now seek to establish

gcd(ku
− 1, p− 1)= 4q, (30)

gcd(k y
− 1, p− 1)= 4 if y < u and y divisible by 2, (31)

gcd(kz
− 1, p− 1)= 2 if z < u and z not divisible by 2. (32)

To do this, we let Q be the (possibly empty) product of all the odd primes other
than q that divide into ku

− 1, and we require

p− 1≡ q mod q2, (33)

p− 1≡ 1 mod Q, (34)

p− 1≡ 4 mod 8. (35)

Once more, we can easily show that (33)–(35) imply (30)–(32):

• Equations (33)–(35) imply that p−1 is divisible by q but not q2, by 4 but not 8, and
by no other prime factor ρ of ku

−1. Keeping in mind that k is odd, we see that the
gcd’s in (31) and (32) must be either 2 or 4, and in (30) we must have either 2q or 4q .

• To establish that (30) is equal to 4q and not 2q, we note that ku
− 1 is divisible

by k2
− 1, which (since k = 2s

− 1) is divisible by 4.
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• For (31), we note again that ku
− 1 is divisible by 4.

• Finally, for z odd, kz
− 1 factors as (k − 1)(kz−1

+ kz−2
+ · · · + 1). The first

expression is k−1= 2s
−2, which is divisible by 2 but not 4. The second expression

is the sum of an odd number of odd terms, and hence odd. Thus, (32) is indeed
equal to 2 and not 4.

As before, we summarize (33)–(35) as a single expression p= 1+ A mod 8Qq2

for some appropriate A, and it is now fairly routine to finish the proof by using
Dirichlet’s theorem. �
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[Somer and Křížek 2009] L. Somer and M. Křížek, “On symmetric digraphs of the congruence
xk
≡ y (mod n)”, Discrete Math. 309:8 (2009), 1999–2009. MR Zbl

[Wilson 1998] B. Wilson, “Power digraphs modulo n”, Fibonacci Quart. 36:3 (1998), 229–239. MR
Zbl

[Zsigmondy 1892] K. Zsigmondy, “Zur Theorie der Potenzreste”, Monatsh. Math. Phys. 3:1 (1892),
265–284. MR Zbl

Received: 2014-01-21 Revised: 2017-06-08 Accepted: 2017-06-21

dresdeng@wlu.edu Department of Mathematics, Washington and Lee University,
Lexington, VA, United States

wenda-tu@uiowa.edu Department of Statistics and Actuarial Science,
University of Iowa, Iowa City, IA, United States

mathematical sciences publishers msp

http://www.jstor.org/stable/24539988
https://webbox.lafayette.edu/~reiterc/nt/pmp_pp.pdf
https://webbox.lafayette.edu/~reiterc/nt/pmp_pp.pdf
http://msp.org/idx/mr/1390409
http://msp.org/idx/zbl/0855.05067
http://msp.org/idx/mr/1083765
http://msp.org/idx/zbl/0742.11001
http://dx.doi.org/10.1090/S0002-9939-97-03981-6
http://msp.org/idx/mr/1402885
http://msp.org/idx/zbl/0914.11002
http://dx.doi.org/10.1023/B:CMAJ.0000042385.93571.58
http://dx.doi.org/10.1023/B:CMAJ.0000042385.93571.58
http://msp.org/idx/mr/2059267
http://msp.org/idx/zbl/1080.11004
http://dx.doi.org/10.1016/j.disc.2008.04.009
http://dx.doi.org/10.1016/j.disc.2008.04.009
http://msp.org/idx/mr/2510326
http://msp.org/idx/zbl/1208.05041
http://www.fq.math.ca/Scanned/36-3/wilson2.pdf
http://msp.org/idx/mr/1627384
http://msp.org/idx/zbl/0936.05049
http://dx.doi.org/10.1007/BF01692444
http://msp.org/idx/mr/1546236
http://msp.org/idx/zbl/24.0176.02
mailto:dresdeng@wlu.edu
mailto:wenda-tu@uiowa.edu
http://msp.org


involve
msp.org/ involve

INVOLVE YOUR STUDENTS IN RESEARCH
Involve showcases and encourages high-quality mathematical research involving students from all
academic levels. The editorial board consists of mathematical scientists committed to nurturing
student participation in research. Bridging the gap between the extremes of purely undergraduate
research journals and mainstream research journals, Involve provides a venue to mathematicians
wishing to encourage the creative involvement of students.

MANAGING EDITOR
Kenneth S. Berenhaut Wake Forest University, USA

BOARD OF EDITORS
Colin Adams Williams College, USA

John V. Baxley Wake Forest University, NC, USA
Arthur T. Benjamin Harvey Mudd College, USA

Martin Bohner Missouri U of Science and Technology, USA
Nigel Boston University of Wisconsin, USA

Amarjit S. Budhiraja U of North Carolina, Chapel Hill, USA
Pietro Cerone La Trobe University, Australia

Scott Chapman Sam Houston State University, USA
Joshua N. Cooper University of South Carolina, USA
Jem N. Corcoran University of Colorado, USA

Toka Diagana Howard University, USA
Michael Dorff Brigham Young University, USA

Sever S. Dragomir Victoria University, Australia
Behrouz Emamizadeh The Petroleum Institute, UAE

Joel Foisy SUNY Potsdam, USA
Errin W. Fulp Wake Forest University, USA

Joseph Gallian University of Minnesota Duluth, USA
Stephan R. Garcia Pomona College, USA

Anant Godbole East Tennessee State University, USA
Ron Gould Emory University, USA

Andrew Granville Université Montréal, Canada
Jerrold Griggs University of South Carolina, USA

Sat Gupta U of North Carolina, Greensboro, USA
Jim Haglund University of Pennsylvania, USA

Johnny Henderson Baylor University, USA
Jim Hoste Pitzer College, USA

Natalia Hritonenko Prairie View A&M University, USA
Glenn H. Hurlbert Arizona State University,USA

Charles R. Johnson College of William and Mary, USA
K. B. Kulasekera Clemson University, USA

Gerry Ladas University of Rhode Island, USA

Suzanne Lenhart University of Tennessee, USA
Chi-Kwong Li College of William and Mary, USA

Robert B. Lund Clemson University, USA
Gaven J. Martin Massey University, New Zealand

Mary Meyer Colorado State University, USA
Emil Minchev Ruse, Bulgaria
Frank Morgan Williams College, USA

Mohammad Sal Moslehian Ferdowsi University of Mashhad, Iran
Zuhair Nashed University of Central Florida, USA

Ken Ono Emory University, USA
Timothy E. O’Brien Loyola University Chicago, USA

Joseph O’Rourke Smith College, USA
Yuval Peres Microsoft Research, USA

Y.-F. S. Pétermann Université de Genève, Switzerland
Robert J. Plemmons Wake Forest University, USA

Carl B. Pomerance Dartmouth College, USA
Vadim Ponomarenko San Diego State University, USA

Bjorn Poonen UC Berkeley, USA
James Propp U Mass Lowell, USA

Józeph H. Przytycki George Washington University, USA
Richard Rebarber University of Nebraska, USA

Robert W. Robinson University of Georgia, USA
Filip Saidak U of North Carolina, Greensboro, USA

James A. Sellers Penn State University, USA
Andrew J. Sterge Honorary Editor

Ann Trenk Wellesley College, USA
Ravi Vakil Stanford University, USA

Antonia Vecchio Consiglio Nazionale delle Ricerche, Italy
Ram U. Verma University of Toledo, USA

John C. Wierman Johns Hopkins University, USA
Michael E. Zieve University of Michigan, USA

PRODUCTION
Silvio Levy, Scientific Editor

Cover: Alex Scorpan

See inside back cover or msp.org/involve for submission instructions. The subscription price for 2018 is US $190/year for the electronic
version, and $250/year (+$35, if shipping outside the US) for print and electronic. Subscriptions, requests for back issues and changes of
subscriber address should be sent to MSP.

Involve (ISSN 1944-4184 electronic, 1944-4176 printed) at Mathematical Sciences Publishers, 798 Evans Hall #3840, c/o University of
California, Berkeley, CA 94720-3840, is published continuously online. Periodical rate postage paid at Berkeley, CA 94704, and additional
mailing offices.

Involve peer review and production are managed by EditFLOW® from Mathematical Sciences Publishers.

PUBLISHED BY

mathematical sciences publishers
nonprofit scientific publishing

http://msp.org/
© 2018 Mathematical Sciences Publishers

http://msp.org/involve
http://msp.org/involve
http://msp.org/
http://msp.org/


inv lve
a journal of mathematics

involve
2018 vol. 11 no. 2

181Finding cycles in the k-th power digraphs over the integers modulo a prime
GREG DRESDEN AND WENDA TU

195Enumerating spherical n-links
MADELEINE BURKHART AND JOEL FOISY

207Double bubbles in hyperbolic surfaces
WYATT BOYER, BRYAN BROWN, ALYSSA LOVING AND SARAH TAMMEN

219What is odd about binary Parseval frames?
ZACHERY J. BAKER, BERNHARD G. BODMANN, MICAH G. BULLOCK,
SAMANTHA N. BRANUM AND JACOB E. MCLANEY

235Numbers and the heights of their happiness
MAY MEI AND ANDREW READ-MCFARLAND

243The truncated and supplemented Pascal matrix and applications
MICHAEL HUA, STEVEN B. DAMELIN, JEFFREY SUN AND MINGCHAO YU

253Hexatonic systems and dual groups in mathematical music theory
CAMERON BERRY AND THOMAS M. FIORE

271On computable classes of equidistant sets: finite focal sets
CSABA VINCZE, ADRIENN VARGA, MÁRK OLÁH, LÁSZLÓ FÓRIÁN AND

SÁNDOR LŐRINC
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