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Given a graph G, its k-coloring graph has vertex set given by the proper k-colorings
of the vertices of G with two k-colorings adjacent if and only if they differ at exactly
one vertex. Beier et al. (Discrete Math. 339:8 (2016), 2100–2112) give various
characterizations of coloring graphs, including finding graphs which never arise as
induced subgraphs of coloring graphs. These are called forbidden subgraphs, and
if no proper subgraph of a forbidden subgraph is forbidden, it is called minimal
forbidden. In this paper, we construct a finite collection of minimal forbidden sub-
graphs that come from modifying theta graphs. We also construct an infinite family
of minimal forbidden subgraphs similar to the infinite family found by Beier et al.

1. Introduction

A graph G = (V, E) consists of a set V = V [G] = {v1, . . . , vn} of vertices and a
set E = E[G] ⊆ {vv′ : v, v′ ∈ V } of edges, where vv′ represents an unordered pair
of vertices. In this paper, we assume G has finite order (i.e., |V | is finite), v 6= v′

whenever vv′ ∈ E , and G has at most one edge between a single pair of vertices.
A graph H is an induced subgraph of G if V [H ] ⊆ V [G] and vv′ ∈ E[H ] if and
only if vv′ ∈ E[G].

Given k ∈ N, a proper k-coloring of a graph G is a function α : V [G] →
{1, 2, . . . , k} such that α(v) 6= α(v′) whenever vv′ ∈ E[G]. The k-coloring graph
of G, denoted by Ck(G), is the graph with vertex set consisting of all proper
k-colorings of G. Edges between colorings exist if and only if the colorings differ
at precisely one vertex of G. Figure 1 shows an example. When discussing
properties of Ck(G), we refer to G as the base graph for Ck(G).

Interest in coloring graphs stems from applications in theoretical physics. Color-
ing graphs model the Glauber dynamics of the antiferromagnetic Potts model at zero
temperature [Dyer et al. 2006; Jerrum 1995; Molloy 2004; Vigoda 2000]. Beier et
al. [2016] approach coloring graphs from an inverse perspective, asking “Given a
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graph G ′, does there exist a graph G and natural number k such that Ck(G)= G ′?”
We build on their work on permissible and forbidden subgraphs of coloring graphs.

A graph H ′ is called permissible if it is an induced subgraph of some coloring
graph. If H ′ is not an induced subgraph of any coloring graph, we say H ′ is forbid-
den. The graph H ′ is called minimal forbidden if H ′ is forbidden and each proper
induced subgraph of H ′ is permissible. Beier et al. define an infinite two-parameter
family of graphs Mn,p and show an infinite number of them are minimal forbidden.
They define another infinite collection of graphs called theta graphs and completely
classify them into permissible, minimal forbidden, and forbidden but not minimal.

The goal of this paper is to formalize and enhance the tools and techniques for
studying the forbidden and permissible subgraphs of coloring graphs introduced in
[Beier et al. 2016] and to provide new examples. This will aid others investigating
coloring graphs and, perhaps more interestingly, other types of transition graphs,
like those found in [Cohen and Teicher 2014; Zhang et al. 1988; Haas 2012; Mohar
2007].

Section 2 expands on coloring edge labeling and edge labeling partitions, which
were first introduced in [Beier et al. 2016]. We also recall necessary results from that
paper involving permissible subgraphs. As an application of Section 2, we give two
new collections of minimal forbidden subgraphs in Section 3. One collection comes
from modifying theta graphs, and the other is an infinite subset of the two-parameter
family of graphs Ln,p, which we define in that section. Finally, Section 4 provides
several future directions for this work.

Our notation and conventions follow [Beier et al. 2016; Diestel 1997]. If we are
unsure whether a graph is a coloring graph, we sometimes refer to it as a candidate
coloring graph. Base graphs will be denoted by G, and candidate coloring graphs
will be denoted by G ′. Subgraphs (usually induced) of G and G ′ will be denoted by
H and H ′ respectively. Vertices in the coloring graph will be identified by Greek
letters (α, β, γ, . . . ), and vertices in the base graph will be denoted by lowercase
letters (u, v, w, . . . ).

We denote by In the graph consisting of n vertices and no edges. Given graphs
G1 = (V1, E1) and G2 = (V2, E2), we denote their disjoint union by G1 tG2. The
Cartesian product of G1 and G2, denoted by G1 �G2, has vertex set V1× V2 with
an edge between (v1, v2) and (w1, w2) exactly when v1 = w1 and v2w2 ∈ E2 or
v2 = w2 and v1w1 ∈ E1.

2. Background

In this section, we recall and formalize definitions, theorems, and techniques from
[Beier et al. 2016] needed to analyze forbidden and permissible subgraphs. We
begin with a discussion of edge labeling of coloring graphs, which is a key tool
used to prove graphs are minimal forbidden.
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Figure 1. Coloring edge labeling of C3(P1).

An edge labeling of a graph is a function with domain the edge set of the graph.
Given a graph G and k ∈N, the coloring edge labeling of the coloring graph Ck(G)
is the map from E[Ck(G)] to V [G] that labels each edge αβ ∈ E[Ck(G)] with the
unique vertex of V [G] at which the colorings α and β differ. This labeling technique
was first introduced in [Beier et al. 2016, p. 2102], where it is referred to as edge
labeling. Figure 1 shows the coloring edge labeling for coloring graph C3(P1),
where V [P1] = {u, v}.

For a graph H ′, we call an edge labeling a proper edge labeling if there exists a
graph G and a k ∈ N such that H ′ is an induced subgraph of Ck(G) and the edge
labeling of H ′ coincides with the coloring edge labeling of Ck(G). An improper
edge labeling is an edge labeling that is not proper.

It follows from these definitions that a graph H ′ is permissible if and only if it has
a proper edge labeling. In [Beier et al. 2016, Corollary 12], it is shown that all cycles
except C5 are permissible subgraphs, so a cycle Cn of size n 6= 5 must have at least
one proper edge labeling. We use properties of proper edge labelings of cycles to an-
alyze proper edge labelings of more complicated graphs. The following lemma sum-
marizes properties of coloring edge labelings of cycles used in [Beier et al. 2016].

Lemma 1. A proper edge labeling of a cycle Cn must satisfy the following condi-
tions:

(1) Each label must occur at least twice.

(2) Adjacent edges have the same label if and only if n = 3.

(3) If a cycle has three edges consecutively labeled u, v, u with u 6= v then either
n = 4 or u occurs as a label at least three times.

While the conditions outlined in Lemma 1 are necessary for a proper edge
labeling of a cycle, they are not sufficient. One can show that the edge labeling
in Figure 2 is not proper though it meets all conditions in Lemma 1. Also, we
emphasize that the conditions in Lemma 1 are necessary only for cycles.

Also introduced in [Beier et al. 2016, p. 2102] is the concept of edge label
partitioning. The edge label partition corresponding to a proper edge labeling of a
cycle Cn is the partition of n consisting of the number of occurrences of each label.
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Figure 2. An improper edge labeling of C12.

C3 C4 C6 C7 C8 C9

3 ` 3 4 ` 2, 2 6 ` 3, 3 7 ` 2, 2, 3 8 ` 4, 4 9 ` 2, 3, 4
6 ` 2, 2, 2 8 ` 2, 2, 4 9 ` 3, 3, 3

8 ` 2, 3, 3 9 ` 2, 2, 2, 3
8 ` 2, 2, 2, 2

Table 1. Edge label partition types for small cycles.

For example, the edge label partition corresponding to the proper edge labeling of
C6 shown in Figure 1 is 6 ` 3, 3 since u and v each occur three times. Note that
each proper edge labeling corresponds to a unique edge label partition. However, a
partition does not necessarily uniquely determine a proper edge labeling.

Moreover, not every partition of n corresponds to a proper edge labeling. In fact,
conditions on edge labelings stated in Lemma 1 give restrictions on which partitions
can be edge label partitions. Each part of an edge label partition must be greater
than 1 according to the first condition in Lemma 1. Also by the first condition, no
part of an edge label partition can be greater than half of n. The following is a
complete list of possible edge label partition types for Cn with 3≤ n ≤ 9. (Recall
C5 is forbidden, so there are no edge label partitions of 5.)

Table 1 is very useful when attempting to find proper edge labelings of graphs.
For instance, if H ′ contains an induced copy of C7, then a proper edge labeling of
H ′ must have exactly three distinct labels on that cycle and a corresponding edge
label partition type of 7 ` 2, 2, 3. We can then use Lemma 1 to further investigate
how those labels could be arranged.

In addition to examining cycles, our analysis of forbidden subgraphs builds on
the following results about permissible and forbidden subgraphs.

Theorem 2 [Beier et al. 2016, Theorem 9]. If H ′1 and H ′2 are permissible, then
H ′1 t H ′2 is permissible. Alternately, if H ′1 t H ′2 is forbidden, then either H ′1 or H ′2
is forbidden.

Theorem 3 [Beier et al. 2016, Theorem 10]. If H ′1 and H ′2 are permissible, then
H ′1 � H ′2 is permissible. Alternately, if H ′1 � H ′2 is forbidden, then either H ′1 or H ′2
is forbidden.
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Figure 3. Attaching P3 to C6.

These two preceding theorems allow us to construct a number of permissible
subgraphs. Since the path P1 is permissible, given any permissible subgraph H ′,
it follows that P1 � H ′ is permissible. Note that H ′ with one new vertex and an
edge from that new vertex to any other vertex is an induced subgraph of P1 � H ′.
We call this attaching a copy of P1. More generally, we refer to the process of
identifying an endpoint of a path with some vertex of a graph H ′ as attaching a
path to H ′. Figure 3 shows an example of attaching a path to a 6-cycle. By an
inductive argument, we arrive at Corollary 4. By similar arguments, Corollaries 5
and 6 also follow from Theorems 2 and 3.

Corollary 4 [Beier et al. 2016, p. 2104]. A permissible subgraph with any number
of paths of any length attached is permissible.

Corollary 5 [Beier et al. 2016, Corollary 11]. All trees are permissible.

Corollary 6 [Beier et al. 2016, Corollary 12]. The graph Cn for n 6=5 is permissible.
The graph C5 is forbidden.

In addition to appending paths to build new permissible subgraphs, we can
sometimes add additional vertices along induced paths of permissible subgraphs to
get new permissible subgraphs. The next theorem explains the conditions under
which this can be done. The result of replacing an edge of a graph with P2 will be
called subdividing an edge.

Theorem 7 [Beier et al. 2016]. Let H ′ be a permissible subgraph containing a
degree-2 vertex whose neighbors are not adjacent. The graph obtained by subdivid-
ing both edges incident to the vertex of degree 2 is also permissible.

This subdivision theorem is useful when studying permissibility of so-called
theta graphs. A (generalized) theta graph, denoted by T (m1,m2, . . . ,mk) where
mi ≤mi+1 for all i , consists of a collection of internally disjoint paths of lengths m1,
m2, . . . ,mk with a single common initial vertex u and terminal vertex v where
u 6= v. Thus, u and v will have degree k, while all other vertices have degree 2.
Note that theta graphs generalize cycles since Cn = T (1, n − 1). The collection
of generalized theta graphs are completely categorized as permissible, minimal
forbidden, or forbidden not minimal in [Beier et al. 2016]. Any theta graph not
containing those listed in the following theorem is permissible.

Theorem 8 [Beier et al. 2016, Theorem 15]. The complete list of minimal forbidden
theta graphs is

T (1, 4), T (1, 2, 2), T (2, 2, 2), T (3, 3, 3) and T (2, 2, 4).
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Figure 4. Mn,p, where n, p ≥ 1.

An infinite set of minimal forbidden subgraphs is introduced in [Beier et al.
2016]. These are part of the set of graphs denoted by Mn,p, where n, p ≥ 1. These
graphs contain a chain of n− 1 induced copies of C4 with a path of length p+ 1
between two vertices, as seen in Figure 4. The following theorem, which is needed
in our arguments, summarizes the results on Mn,p graphs from [Beier et al. 2016].

Theorem 9 [Beier et al. 2016, Lemma 16, Theorem 17]. The family Mn,p is for-
bidden but not minimal if and only if n ≥ 1 and p ≤ 2. The family Mn,3 is minimal
forbidden if and only if n ≥ 2.

3. Two collections of minimal forbidden subgraphs

Figure 5 has 14 new examples of minimal forbidden subgraphs that come from
modifying the structure of generalized theta graphs. We will prove graph (a) is
minimal forbidden by applying the language and lemmas from the previous section.
The proofs that the other graphs are minimal forbidden are very similar in style and
are therefore left to the reader.

The proof that a graph is minimal forbidden breaks into two parts: showing
it is forbidden and showing it is minimal. To prove a graph is forbidden, we
focus on its induced cycles examining their interactions and showing they have no
simultaneous proper edge labelings. To prove a forbidden subgraph is minimal, we
show that each of its proper induced subgraphs is permissible. Since subgraphs
of permissible subgraphs are permissible, it is sufficient to show that all induced
subgraphs obtained by removing one vertex are permissible.

Theorem 10. Graph (a) in Figure 5 is a minimal forbidden subgraph.

Proof. Consider the following graph H ′, which is Figure 5(a) with a choice of
vertex names:

α1

α2 α3

α4

α5 α6

α7

α8
α9
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(a) (b) (c) (d) (e) (f)

(g) (h) (i)

(j) (k) (l) (m) (n)

Figure 5. A finite collection of minimal forbidden subgraphs.

Since α5 is not a vertex of an induced C3, a proper edge labeling of H ′ must assign
a different label to each of the four edges incident to α5. Since the edges incident
to α5 are part of two edge-disjoint induced copies of C4, these induced copies of
C4 will have repeated edge labels, say u, v, u, v and w, x, w, x . However, each
induced copy of C4 shares two consecutive edges with an induced copy of C7.
Thus this C7 would have at least four distinct edge labels, which is not possible by
Lemma 1. We conclude H ′ is forbidden.

Next, we demonstrate that H ′ is permissible by arguing that removing any vertex
from H ′ yields a permissible subgraph. Removing α1, α2, α6, or α7 from H ′ results
in a copy of theta graph T (2, 2, 5), which is permissible by Theorem 8. Removing
α5 forms a tree, which is permissible by Corollary 5. Upon removing α3 or α8

from H ′ we obtain C4 with three paths of length 1 or 2 attached. Such graphs are
permissible by Theorem 3 and Corollary 5. Removing α4 or α9 results in a tree
attached to two copies of C4 that share a vertex. Two copies of C4 glued at one vertex
is an induced subgraph of C4 � P2, which is permissible by Theorem 3. Appending
a tree is then permissible by Corollary 5. It follows that all proper induced subgraphs
of H ′ are permissible, and so H ′ is a minimal forbidden subgraph. �

We now construct a new infinite family of minimal forbidden subgraphs similar
to the subset of Mn,p graphs discussed in [Beier et al. 2016]. Figure 6 shows the
graph Ln,p with n, p ≥ 0; the vertex names in the figure will be referenced in our
arguments.
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δ1δ2δ3δ4

γ1γ2γ3

γ4

β0β1βn−1βn

α0α1αn−1αn

εp ε1

Figure 6. Vertex labels for Ln,p, where n, p ≥ 0.

Lemma 11. For all p ≥ 1 and n ≥ 0 with p+ n ≥ 3, the graph Ln,p is permissible.

Proof. We begin by arguing that L2k,1 is an induced subgraph of Ck+1(I4) and
L2k+1,1 is an induced subgraph of Ck+2(I4) for k ≥ 1. Note that we include 0 as
a color. Consider I4 with V [I4] = {u, v, w, y}. We represent colorings of I4 as
sequences of four numbers. For instance, the sequence 1230 corresponds to the
coloring α where α(u)=1, α(v)=2, α(w)=3, and α(y)=0. Figure 7 shows a set
of colorings of I4 using k+ 1 colors that span a copy of L2k,1 in Ck+1(I4).

For n = 2k+ 1, the construction is almost the same. Consider the colorings in
Figure 7 with the following modifications. Add colorings 00k(k+1) and 10k(k+1)
on the left. Change the top coloring from 01kk to 01k(k+1) and the rightmost
colorings from 22kk and 21kk to 22k(k+1) and 21k(k+1). One can check that
these colorings span a copy of L2k+1,1 in Ck+2(I4).

Consider Ln,p with p> 1, n ≥ 0, and p+n ≥ 3. Then n+ p−1≥ 2, and hence
it follows by the previous argument that Ln+p−1,1 is permissible. Removing all ver-
tices βi from Ln+p−1,1 with n+1≤ i ≤ n+ p−1 yields an induced copy of Ln,p. In-
duced subgraphs of permissible subgraphs are permissible, so Ln,p is permissible. �

For n+ p < 3, the graphs Ln,p are forbidden but not minimal. Indeed, the graph
L0,0 contains an induced copy of T (2, 2, 4), the graph L0,1 contains an induced

01kk

00kk 00(k−1)k

10kk 10(k−1)k

0011

1011

0001

1001

0000

1000

1100

0200

2200

2100

22k0

21k0

22kk

21kk

Figure 7. L2k,1 is an induced subgraph of Ck+1(I4).
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G

µ0 µn

ν0 νn

Figure 8. The graph G ′ described in Lemma 12.

copy of M2,3, and the graph L1,0 contains an induced copy of M3,3. The graphs
L2,0, L0,2, and L1,1 each contain an induced copy of graph (d) in Figure 5. Our
final goal is to show that Ln,0 is minimal forbidden for all n ≥ 3, but first we need
one additional lemma.

Lemma 12. Let G be a permissible subgraph containing an induced path of length n
on vertices µ0, . . . , µn . Then the graph G ′ with V [G ′] = V [G] ∪ {ν0, . . . , νn} and

E[G ′] = E[G] ∪ {νiνi+1 : 0≤ i < n} ∪ {µiνi : 0≤ i ≤ n}

is also permissible. The graph G ′ is shown in Figure 8.

Proof. Since G is permissible, the graph G � P1 is permissible. The graph G ′ is an
induced subgraph of G � P1. �

Theorem 13. For n ≥ 3, the graph Ln,0 is minimal forbidden.

Proof. Any proper edge labeling of Ln,0 must restrict to a proper edge labeling of
the central copy of C6 spanned by α0, β0, γ3, γ4, δ3 and δ4. By Lemma 1, the only
possible proper edge labelings of C6 are (a) u, v, u, v, u, v or (b) u, w, v, u, w, v,
where u, v, and w are distinct vertices in a base graph. Without loss of generality,
assume edge β0α0 has label u. This is illustrated in Figure 9.

In case (a), edges α0γ4, δ4β0, and γ3δ3 have label v, while edges γ3γ4 and δ3δ4

have label u. By Lemma 1, all edges αiβi for 1 ≤ i ≤ n must have label u, and
edges δjγj for 1≤ j ≤ 3 must have label v. Furthermore u must label at least one
more edge in the induced (n+6)-cycle highlighted in Figure 9.

Invoking Lemma 1 once again, we see that u cannot label αi−1αi for any 1≤ i ≤n
or edges αnδ1 and γ2γ3 since u labels an adjacent edge in each case. Thus u can
only label edge γ1γ2. This contradicts the third statement in Lemma 1 since the
cycle under consideration has size greater than 4. We conclude that a proper edge
labeling of Ln,0 restricting to the labeling of C6 in case (a) does not exist.

In case (b) by Lemma 1, the edges αiβi for 1 ≤ i ≤ n and γjδj for 1 ≤ j ≤ 3
must have label u. With these forced edge labelings, the (n+6)-cycle shown in
Figure 9 does not have a proper edge labeling satisfying the conditions of Lemma 1
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Figure 9. Possible edge labelings for Ln,0 from the proof of
Theorem 13, case (a) on the left and case (b) on the right.

since u cannot label two edges. We conclude that a proper edge labeling of Ln,0

restricting to the labeling of C6 in case (b) does not exist. Since no proper edge
labeling of Ln,0 restricts to a proper edge labeling of the central copy of C6, we
conclude that Ln,0 has no proper edge labeling and is therefore forbidden.

We now check that each induced subgraph of Ln,0 spanned by all but one vertex
is permissible. We refer to the vertex labels of Ln,0 shown in Figure 6. There are
seven cases.

Case 1: Removing δ1 or αn yields a 6-cycle with two disjoint chains of 4-cycles,
one of which has an attached copy of P1. Recall that 6-cycles are permissible by
Corollary 6 and attaching paths to permissible subgraphs yields new permissible
subgraphs by Corollary 4. Finally, note that by inductively applying Lemma 12 to
a path of length 1, one can append a chain of 4-cycles to a permissible subgraph to
obtain another permissible subgraph.

Case 2: Removing β0, α0, δ3, δ4, γ3, or γ4 yields a proper induced subgraph of
Mn+4,0 possibly with paths attached. The graph Mn+4,0 is permissible by Theorem 9,
so every induced subgraph is also permissible. Once again, Corollary 4 allows us
to attach a paths.

Case 3: Removing βi for 1≤ i ≤ n yields a copy of P1 attached to L i−1,n−i+1 with
a chain of 4-cycles attached along a path of length n− i , as in Lemma 12. Since
n ≥ 3 and i ≥ 1, it follows that (i − 1)+ (n− i + 1)≥ 3. Thus by Section 3 we see
that L i−1,n−i+1 is permissible.

The remaining cases are proven with explicit constructions. In the figures, strings
of lengths 3 and 4 represent colorings of I3 and I4. If n is even, we say n = 2k, and
if n is odd, say n = 2k+ 1. Since n ≥ 3, we have k ≥ 1 for n even or odd.

Case 4: For n ≥ 3, the graph spanned by all but vertex δ2 of Ln,0 is an induced
subgraph of Ck+3(I3), as is shown in Figure 10 for n even and Figure 11 for n odd.

Case 5: If n is odd, the subgraph of Ln,0 spanned by all but vertex γ1 is an induced
subgraph of Ck+4(I3), as is shown in Figure 12. For n even, the subgraph of Ln,0

spanned by all but vertex γ1 is an induced subgraph of Ck+2(I4), as is shown in
Figure 13.
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0kk 0(k−1)k

1kk 1(k−1)k

011

111

001

101

000

100

1(k+1)0

0(k+2)0

3(k+2)0

3(k+1)0

3(k+2)(k+1) 3k(k+1)

0k(k+1)

Figure 10. Case 4 for n even.

0k(k+1) 0kk

1k(k+1) 1kk

011

111

001

101

000

100

1(k+1)0

0(k+2)0

3(k+2)0

3(k+1)0

3(k+2)(k+2) 3k(k+2)

0k(k+2)

Figure 11. Case 4 for n odd.

0k(k+1) 0kk

1k(k+1) 1kk

011

111

001

101

000

100

1(k+2)0

0(k+3)0

(k+2)(k+3)0

(k+2)(k+2)0

(k+2)(k+3)(k+1)

(k+2)(k+2)(k+1) 0(k+2)(k+1)

Figure 12. Case 5 for n odd.

Case 6: The graph spanned by all but vertex γ1 of Ln,0 is the result of removing one
vertex from one of the graphs in Figures 12 and 13 (depending on parity of n) and
attaching a copy of P1. By the previous case and Corollary 4, this is permissible.
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0(k−1)(k−1)0 0(k−1)(k−1)1

1(k−1)(k−1)0 1(k−1)(k−1)1

0110

1011

0001

1001

0000

1000

1(k+1)00

0k00

kk00

k(k+1)00

kk(k−1)0

k(k+1)(k−1)0 0(k+1)(k−1)0

Figure 13. Case 5 for n even.

21kk

20kk 10kk 1011 1010

0000

1000

1100

0300

2300

2100

23(k+1)0

21(k+1)0

23(k+1)k

21(k+1)k

Figure 14. Case 7 for n odd.

Case 7: In Figure 14, the colors of the last two vertices are alternately incremented
as we move to the left away from the central 6-cycle until the very last step where
the color of the first vertex is changed. When a vertex αi for 1≤ i ≤ n is removed
from Ln,0, there will be one missing vertex among the empty vertices shown in
Figure 14. Vertices in positions αj for j > i should be assigned colorings by
changing the second vertex in the coloring below from color 0 to color 1. For the
vertices in positions αj with j < i , the colorings should differ from the ones below
by changing the first vertex from color from 1 to 0. One can check that the colorings
shown in Figure 14, together with the ones just described, span Ln,0 with vertex αi

removed inside of Ck+2(I4). The same concept works for n even. The labels are
shown in Figure 15. �

4. Future directions

Given time and creativity, it seems certain one could find many other examples
of minimal forbidden subgraphs of coloring graphs, but there are several other
interesting directions one could explore related to this research. This paper builds on
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21(k−1)k

20(k−1)k 10(k−1)k 1011 1010

0000

1000

1100

0300

2300

2100

23(k+1)0

21(k+1)0

23(k+1)k

21(k+1)k

Figure 15. Case 7 for n even.

[Beier et al. 2016] to provide a template for showing graphs are minimal forbidden,
but are there other less brute-force ways to show graphs are minimal forbidden?

Coloring edge labelings are still not completely understood. We provide some
necessary conditions for edge labelings of cycles to be proper, but are there others?
Are there sufficient conditions for an edge labeling of a cycle to be proper? Closely
related to this, can we find a simple method for determining when a partition is an
edge labeling partition? Finally, coloring graphs are a particular type of transition
graph. To what extent will the methods presented here apply to other types of
transition graphs? Other examples of transition graphs can be found in [Cohen and
Teicher 2014; Zhang et al. 1988; Haas 2012; Mohar 2007].
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283Zero divisor graphs of commutative graded rings
KATHERINE COOPER AND BRIAN JOHNSON

297The behavior of a population interaction-diffusion equation in its subcritical regime
MITCHELL G. DAVIS, DAVID J. WOLLKIND, RICHARD A. CANGELOSI

AND BONNI J. KEALY-DICHONE

311Forbidden subgraphs of coloring graphs
FRANCISCO ALVARADO, ASHLEY BUTTS, LAUREN FARQUHAR AND

HEATHER M. RUSSELL

325Computing indicators of Radford algebras
HAO HU, XINYI HU, LINHONG WANG AND XINGTING WANG

335Unlinking numbers of links with crossing number 10
LAVINIA BULAI

355On a connection between local rings and their associated graded algebras
JUSTIN HOFFMEIER AND JIYOON LEE

involve
2018

vol.11,
no.2

http://dx.doi.org/10.2140/involve.2018.11.181
http://dx.doi.org/10.2140/involve.2018.11.195
http://dx.doi.org/10.2140/involve.2018.11.207
http://dx.doi.org/10.2140/involve.2018.11.219
http://dx.doi.org/10.2140/involve.2018.11.235
http://dx.doi.org/10.2140/involve.2018.11.243
http://dx.doi.org/10.2140/involve.2018.11.253
http://dx.doi.org/10.2140/involve.2018.11.271
http://dx.doi.org/10.2140/involve.2018.11.283
http://dx.doi.org/10.2140/involve.2018.11.297
http://dx.doi.org/10.2140/involve.2018.11.311
http://dx.doi.org/10.2140/involve.2018.11.325
http://dx.doi.org/10.2140/involve.2018.11.335
http://dx.doi.org/10.2140/involve.2018.11.355

	1. Introduction
	2. Background
	3. Two collections of minimal forbidden subgraphs
	4. Future directions
	References
	
	

