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We prove a nesting phenomenon for twisted Frobenius extensions. Namely,
suppose R ⊆ B ⊆ A are graded superrings such that A and B are both twisted
Frobenius extensions of R, R is contained in the center of A, and A is projective
over B. Our main result is that, under these assumptions, A is a twisted Frobenius
extension of B. This generalizes a result of Pike and the second author, which
considered the case where R is a field.

1. Introduction

Frobenius extensions, which are a natural generalization of Frobenius algebras,
appear frequently in many areas of mathematics, from topological quantum field
theory to categorical representation theory. Several generalizations of Frobenius
extensions have been introduced since their inception. In particular, Nakayama and
Tsuzuku [1960] introduced Frobenius extensions of the second kind. These were
further generalized to the concept of (α, β)-Frobenius extensions in [Morita 1965],
where α and β are automorphisms of the rings involved. The corresponding theory
for graded superrings was then developed in [Pike and Savage 2016], where they
were called twisted Frobenius extensions.

In the literature, one finds that many examples of (twisted) Frobenius extensions
arise from certain types of subobjects. For instance, if H is a finite-index subgroup
of G, then the group ring R[G] is a Frobenius extension of R[H ], where R is a
commutative base ring. This example dates back to the original paper [Kasch 1954]
on Frobenius extensions. Another example comes from the theory of Hopf algebras.
In particular, it was shown in [Schneider 1992, Corollary 3.6(1)] that if K is a Hopf
subalgebra of H, then H is a Frobenius extension of K of the second kind. Yet an-
other example comes from Frobenius algebras themselves. Namely, it was shown (in
the more general graded super setting) in [Pike and Savage 2016, Corollary 7.4] that
if A is a Frobenius algebra over a field, B is a subalgebra of A that is also a Frobenius
algebra, and A is projective over B, then A is a twisted Frobenius extension of B.
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The goal of the current paper is to shed more light on this “nesting” phenomenon.
Namely, we consider the situation where we have graded superrings R ⊆ B ⊆ A
such that A and B are both twisted Frobenius extensions of R, and R is contained
in the center of A. We call these nested Frobenius extensions. We first prove that
these assumptions imply A and B are untwisted Frobenius extensions of R (see
Corollary 3.2). Then, our main result (Theorem 3.8) is that, provided A is projective
over B, it follows that A is a twisted Frobenius extension of B. The twisting is
given in terms of the Nakayama automorphisms of A and B. In particular, even
though A and B are untwisted Frobenius extensions of R, A can be a nontrivially
twisted Frobenius extension of B. This result can be viewed as a generalization of
[Pike and Savage 2016, Corollary 7.4] to the setting of arbitrary supercommutative
ground rings.

The organization of the paper is as follows. We begin in Section 2 by recalling the
definition of twisted Frobenius extensions of graded superrings, together with some
related results. In Section 3, we examine nested Frobenius extensions R ⊆ B ⊆ A,
where R is contained in the center of A. We begin by proving that A and B are, in
fact, untwisted Frobenius extensions of R (Corollary 3.2). Then, after establishing
several important lemmas, we prove our main result (Theorem 3.8), that A is a
twisted Frobenius extension of B, provided A is projective over B. We conclude in
Section 4 with several applications of our main result. In particular, we explain how
the aforementioned examples of group rings and Hopf algebras can be deduced
from our main theorem. We also give an example arising from nilcoxeter rings.

Note on the arXiv version. For the interested reader, the tex file of the arXiv version
of this paper includes hidden details of some straightforward computations and
arguments that are omitted in the pdf. These details can be displayed by switching
the details toggle to true in the tex file and recompiling.

2. Twisted Frobenius extensions

In this section we recall the definition of twisted Frobenius extensions, together
with some of their properties that will be used in this paper. We refer the reader to
[Pike and Savage 2016] for further details.

Fix an abelian group3 and by graded, we mean3-graded. In particular, a graded
superring is a 3×Z2-graded ring. In other words, if A is a graded superring, then

A =
⊕

λ∈3,π∈Z2

Aλ,π , Aλ,π Aλ′,π ′ ⊆ Aλ+λ′, π+π ′, λ, λ′∈3, π, π ′∈ Z2.

We denote the multiplicative unit of A by 1A. To avoid repeated use of the modifiers
“graded” and “super”, from now on we will use the term ring to mean graded
superring and subring to mean graded subsuperring. Similarly, by an automorphism
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of a ring, we mean an automorphism as graded superrings (homogeneous of degree
zero).

We will use the term module to mean graded supermodule. In particular, a left
A-module M is a 3×Z2-graded abelian group with a left A-action such that

Aλ,πMλ′,π ′ ⊆ Mλ+λ′, π+π ′, λ, λ′ ∈3, π, π ′ ∈ Z2,

and similarly for right modules. If v is a homogeneous element in a ring or module,
we will denote by |v| its 3-degree and by v̄ its Z2-degree. Whenever we write
an expression involving degrees of elements, we will implicitly assume that such
elements are homogeneous.

For M, N two 3×Z2-graded abelian groups, we define a 3×Z2-grading on
the space HOMZ(M,N ) of all Z-linear maps by setting HOMZ(M,N )λ,π , λ ∈3,
π ∈ Z2, to be the subspace of all homogeneous maps of degree (λ, π). That is,

HOMZ(M,N )λ,π
= { f ∈ HOMZ(M,N ) | f (Mλ′,π ′)⊆ Nλ+λ′, π+π ′ for all λ′∈3, π ′∈ Z2}.

For A-modules M and N, we define the 3×Z2-graded abelian group

HOMA(M,N )=
⊕

λ∈3,π∈Z2

HOMA(M,N )λ,π ,

where the homogeneous components are defined by

HOMA(M,N )λ,π
= { f ∈ HOMZ(M,N )λ,π | f (am)=(−1)π āa f (m) for all a ∈ A, m ∈ M}.

We let A-mod denote the category of left A-modules, with set of morphisms from M
to N given by HOMA(M,N )0,0. Similarly, we have the category of right A-modules
with morphisms from M to N given by

{ f ∈ HOMZ(M,N )0,0 | f (ma)= f (m)a for all m ∈ M, a ∈ A}.

We will call elements of HOMA(M,N )λ,π homomorphisms of degree (λ, π) and, if
they are invertible, isomorphisms of degree (λ, π). Note that they are not morphisms
in the category A-mod unless they are of degree (0, 0). We use similar terminology
for right modules.

If M is a left A-module, we let `a denote the operator given by the left action
by a; that is,

`a(m)= am, a ∈ A, m ∈ M. (2-1)

If M is a right A-module, then for each homogeneous a ∈ A, we define a Z-linear
operator

ra : M→ M, ra(m)= (−1)ām̄ma, a ∈ A, m ∈ M. (2-2)
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If A1 and A2 are rings, then, by definition, an (A1, A2)-bimodule M is both a
left A1-module and a right A2-module such that the left and right actions commute:

(a1m)a2 = a1(ma2) for all a1 ∈ A1, a2 ∈ A2, m ∈ M.

If M is an (A1, A2)-bimodule and N is a left A1-module, then HOMA1(M,N ) is a
left A2-module via the action

a · f = (−1)ā f̄ f ◦ ra, a ∈ A2, f ∈ HOMA1(M,N ), (2-3)

and HOMA1(N,M) is a right A2-module via the action

f · a = (−1)ā f̄ (ra) ◦ f, a ∈ A2, f ∈ HOMA1(N,M). (2-4)

For λ∈3, π ∈Z2, and an A-module M, we let {λ, π}M denote the3×Z2-graded
abelian group that has the same underlying abelian group as M, but a new grading
given by ({λ, π}M)λ′,π ′ = Mλ′−λ, π ′−π . Abusing notation, we will also sometimes
use {λ, π} to denote the map M→ {λ, π}M that is the identity on elements of M.
We define a left action of A on {λ, π}M by a · {λ, π}m = (−1)π ā

{λ, π}am. In this
way, {λ, π} defines a functor from the category of A-modules to itself that leaves
morphisms unchanged.

Suppose M is a left A-module, N is a right A-module, and α is a ring automor-
phism of A. Then we can define the twisted left A-module αM and twisted right
A-module Nα to be equal to M and N, respectively, as graded abelian groups, but
with actions given by

a ·m = α(a)m, a ∈ A, m ∈ αM, (2-5)

n · a = nα(a), a ∈ A, n ∈ Nα, (2-6)

where juxtaposition denotes the original action of A on M and N. If α is a ring
automorphism of A, and B is a subring of A, then we will also use the notation
α

B AA to denote the (B,A)-bimodule equal to A as a graded abelian group, with
right action given by multiplication, and with left action given by b · a = α(b)a
(where here juxtaposition is multiplication in the ring A), even though α is not
necessarily a ring automorphism of B. We use A AαB for the obvious right analogue.
By convention, when we consider twisted modules as above, operators such as ra
and `a defined in (2-1) and (2-2) involve the right and left action (respectively) in
the original (i.e., untwisted) module.

Definition 2.1 (twisted Frobenius extension). Suppose B is a subring of a ring A,
that α is a ring automorphism of A, and that β is a ring automorphism of B.
Furthermore, suppose λ ∈3 and π ∈ Z2. We call A an (α, β)-Frobenius extension
of B of degree (−λ, π) if A is finitely generated and projective as a left B-module,
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and there is a morphism of (B, B)-bimodules

tr : βB AαB→ {λ, π}B BB

satisfying the following two conditions:

(T1) If tr(Aa)= 0 for some a ∈ A, then a = 0.

(T2) For every ϕ ∈ HOMB(
β

B A, {λ, π}B B), there exists an a ∈ A such that ϕ =
tr ◦ ra.

The map tr is called a trace map. We will often view it as a map β

B AαA→ B BB

that is homogeneous of degree (−λ, π). If A is an (α, β)-Frobenius extension of B
for some α and β, we say that A is a twisted Frobenius extension of B. If A is an
(idA, idB)-Frobenius extension of B, we call it a Frobenius extension or untwisted
Frobenius extension (when we wish to emphasize that the twistings are trivial).

Remark 2.2. We say the extension is of degree (−λ, π) since that is the degree of
the trace map. If A and B are concentrated in degree (0, 0), then (α, β)-Frobenius
extensions were defined in [Morita 1965, p. 41]. In particular, an (idA, β)-Frobenius
extension is sometimes called a β−1-extension, or a Frobenius extension of the
second kind; see [Nakayama and Tsuzuku 1960].

If B is a subring of a ring A, then we define the centralizer of B in A to be the
subring of A given by

CA(B)= {a ∈ A | ab = (−1)āb̄ba for all b ∈ B}. (2-7)

If A is an (α, β)-Frobenius extension of B, then we have the associated Nakayama
isomorphism (an isomorphism of rings)

ψ : CA(B)→ CA(α(B)),

which is the unique map satisfying

tr(ca)= (−1)āc̄ tr(aψ(c)) for all a ∈ A, c ∈ CA(B). (2-8)

Proposition 2.3. The ring B is an untwisted Frobenius extension of R of degree
(−λ, π) if and only if there exists a homomorphism of (R, R)-bimodules tr : B→ R
of degree (−λ, π), and finite subsets {x1, . . . , xn}, {y1, . . . , yn} of B such that
(|yi |, ȳi )= (λ− |xi |, π − x̄i ) for i = 1, . . . , n, and

b = (−1)π b̄
n∑

i=1

(−1)π x̄i tr(byi )xi =

n∑
i=1

yi tr(xi b) for all b ∈ B. (2-9)

We call the sets {x1, . . . , xn} and {y1, . . . , yn} dual sets of generators of B over R.

Proof. This is a special case of [Pike and Savage 2016, Proposition 4.9], where the
twistings are trivial. �
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3. Nested Frobenius extensions

In this section, we introduce our main object of study, nested Frobenius extensions,
and prove our main result (Theorem 3.8). We begin with a simplification result.

Lemma 3.1. Suppose A is an (α, β)-Frobenius extension of R of degree (−λ, π),
with trace map tr and Nakayama isomorphismψ . Furthermore, suppose CA(R)= A.
Then α|R = β and ψ |R = idR .

Proof. For all r ∈ R and a ∈ β

R AαR , we have

tr(ar)= tr(a)α−1(r)= (−1)r̄(π+ā)α−1(r) tr(a)

= (−1)r̄ ā tr(β(α−1(r))a)= tr(aβ(α−1(r))),

where the second and fourth equalities follow from the fact that CA(R)= A. Since
the trace map is linear, this implies

tr(a(r −β(α−1(r))))= 0 for all a ∈ β

R AαR.

By (T1), we have β(α−1(r))= r for all r ∈ R. It follows that α|R = β.
Similarly, for all r ∈ R and a ∈ β

R AαR , we have

tr(ar)= (−1)r̄ ā tr(ra)= tr(aψ(r)),

and so ψ |R = idR by (T1). �

Corollary 3.2. If A is a twisted Frobenius extension of R and CA(R)= A, then A
is in fact an untwisted Frobenius extension of R of the same degree.

Proof. Suppose A is an (α, β)-Frobenius extension of R of degree (−λ, π), with
trace map tr and Nakayama isomorphism ψ . Furthermore, suppose that CA(R)= A.
Then, by Lemma 3.1, A is an (α, α)-Frobenius extension of R and α(R)=β(R)= R.
The result then follows immediately from [Pike and Savage 2016, Corollary 3.6]. �

For the remainder of this paper, we fix rings

R ⊆ B ⊆ A, with CA(R)= A.

This implies CB(R) = B and CR(R) = R. In particular, R is supercommuta-
tive, and so we do not distinguish between left and right R-modules. In light of
Corollary 3.2, we suppose that A and B are untwisted Frobenius extensions of R
of degrees (−λA, πA) and (−λB, πB), respectively. We denote their trace maps by
trA and trB and their Nakayama isomorphisms by ψA and ψB , respectively. We call
A and B nested Frobenius extensions of R.

Remark 3.3. The assumption that CA(R) = A implies that ψA and ψB are ring
automorphisms of A and B, respectively. In fact, this is precisely why we assume
CA(R)= A.
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For an R-module M, we define

M∨ = HOMR(M,R).

If, in addition, M is a (B,A)-bimodule, then it is straightforward to verify that M∨

is an (A,B)-bimodule with action given by

a · f ·b= (−1)ā f̄ f ◦ ra◦`b= (−1)ā f̄+āb̄ f ◦`b◦ ra, a ∈ A, b∈ B, f ∈M∨. (3-1)

Note that B is naturally a (B,B)-bimodule via left and right multiplication. We
denote this bimodule by B BB to emphasize the actions. Therefore, if M is a (B,A)-
bimodule, HOMB(M,B BB) is an (A,B)-bimodule via the actions (2-3) and (2-4).

Lemma 3.4. For any (B,A)-bimodule M, the map

HOMB(
ψBM, B BB)→ M∨, f 7→ trB ◦ f, (3-2)

is a homomorphism of (A,B)-bimodules of degree (−λB, πB).

Proof. By Lemma 3.1, we have ψB(r) = r for all r ∈ R. Thus, any element
f ∈ HOMB(

ψBM, B) is also an element of HOMR(M,B), and hence trB ◦ f ∈ M∨.
The map (3-2) is also clearly of degree (−λB, πB), since trB is.

It remains to show that (3-2) is a homomorphism of (A,B)-bimodules. It is
clearly a homomorphism of abelian groups. For a ∈ A and f ∈ HOMB(

ψBM,B),
we have

trB ◦(a · f )= (−1)ā f̄ trB ◦ f ◦ ra = (−1)āπB a · (trB ◦ f ).

Thus, (3-2) is a homomorphism of left A-modules. Now let b ∈ B and y ∈ ψB
B MA.

Then

trB ◦( f · b)(y)= (−1)b̄ f̄ trB ◦(
rb ◦ f )(y)

= (−1)b̄ f̄ trB ◦(
rb( f (y)))

= (−1)b̄ ȳ trB( f (y)b)

= (−1)b̄ f̄ trB(ψ
−1
B (b) f (y))

= trB( f (by))= trB ◦ f ◦ `b(y)= ((trB ◦ f ) · b)(y).

Thus the map (3-2) is also a homomorphism of right B-modules. �

Let
{xi }

n
i=1 and {yi }

n
i=1

be dual sets of generators of B over R, where |xi |+ |yi | = λB and x̄i + ȳi = πB for
each i = 1, . . . , n (see Proposition 2.3).
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Proposition 3.5. If M is a (B,A)-bimodule, then the map

M∨→ HOMB(
ψBM, B BB),

θ 7→

(
m 7→ (−1)πB(θ̄+m̄)

n∑
i=1

(−1)ȳi (πB+m̄)θ(yi m)xi

)
,

(3-3)

is a homomorphism of (A,B)-bimodules of degree (λB, πB). Moreover, the maps
(3-2) and (3-3) are mutually inverse isomorphisms of (A,B)-bimodules.

Proof. The map

m 7→ (−1)πB(θ̄+m̄)
n∑

i=1

(−1)ȳi (πB+m̄)θ(yi m)xi (3-4)

is clearly a homomorphism of abelian groups. Now let b ∈ B and m ∈ ψBM. Then
b ·m = ψB(b)m maps to

(−1)πB(θ̄+b̄+m̄)
n∑

i=1

(−1)ȳi (πB+b̄+m̄)θ(yiψB(b)m)xi

(2-9)
= (−1)πB(θ̄+b̄+m̄)

n∑
i=1

(−1)ȳi (πB+b̄+m̄)θ

( n∑
j=1

yj trB(x j yiψB(b))m
)

xi

= (−1)πB(θ̄+b̄+m̄)
n∑

i, j=1

(−1)ȳi (πB+b̄+m̄)+ȳj (πB+x̄ j+ȳi+b̄)θ
(
trB(x j yiψB(b))yj m

)
xi

= (−1)πB(θ̄+b̄+m̄)
n∑

i, j=1

(−1)ȳi (πB+b̄+m̄)+(ȳj+θ̄ )(πB+x̄ j+ȳi+b̄) trB(x j yiψB(b))θ(yj m)xi

= (−1)πB(θ̄+b̄)
n∑

i, j=1

(−1)ȳi (πB+b̄)+m̄(x̄ j+b̄)θ(yj m) trB(x j yiψB(b))xi

= (−1)πB(θ̄+b̄)
n∑

i, j=1

(−1)ȳiπB+m̄(x̄ j+b̄)+b̄x̄ j θ(yj m) trB(bx j yi )xi

(2-9)
= (−1)πB(θ̄+b̄)

n∑
j=1

(−1)πB ȳj+m̄(x̄ j+b̄)+b̄ ȳj θ(yj m)bx j

= (−1)b̄(θ̄+πB)+πB θ̄

n∑
j=1

(−1)πB ȳj+m̄x̄ j bθ(yj m)x j

= (−1)b̄(θ̄+πB)b
(
(−1)πB(θ̄+m̄)

n∑
j=1

(−1)ȳj (πB+m̄)θ(yj m)x j

)
.
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Thus (3-4) is a homomorphism of left B-modules of degree (λB, πB). Since the (set-
theoretic) inverse of a bimodule homomorphism is also a bimodule homomorphism,
it remains to show that (3-2) and (3-3) are mutually inverse.

Let f ∈HOMB(
ψBM, B BB). The map (3-2) followed by (3-3) sends f to the map

m 7→ (−1)πB(πB+ f̄+m̄)
n∑

i=1

(−1)ȳi (πB+m̄) trB( f (yi m))xi

= (−1)πB(πB+ f̄+m̄)
n∑

i=1

(−1)ȳi (πB+m̄+ f̄ ) trB(ψ
−1
B (yi ) f (m))xi

= (−1)πB( f̄+m̄)
n∑

i=1

(−1)πB x̄i trB( f (m)yi )xi
(2-9)
= f (m).

Thus (3-3) is left inverse to (3-2).
Now let θ ∈ M∨. The map (3-3) followed by the map (3-2) sends θ to the map

m 7→ (−1)πB(θ̄+m̄)
n∑

i=1

(−1)ȳi (πB+m̄) trB(θ(yi m)xi )

=

n∑
i=1

(−1)ȳi m̄θ(yi m) trB(xi )=

n∑
i=1

(−1)ȳi (θ̄+ȳi ) trB(xi )θ(yi m)

=

n∑
i=1

(−1)ȳi θ(trB(xi )yi m)=
n∑

i=1

θ(yi trB(xi )m)= θ
( n∑

i=1

yi trB(xi )m
)

(2-9)
= θ(m).

Hence (3-3) is also right inverse to (3-2). �

We will let
κ : (B AψA

A )
∨
∼=
−→ HOMB(

ψB
B AψA

A , B BB)

be the special case of the isomorphism (3-3) of (A,B)-bimodules where one takes
M to be B AψA

A .

Proposition 3.6. The map

ϕA : A AB→ (B AψA
A )
∨, ϕA(a)= trA ◦

rψA(a),

is an isomorphism of (A,B)-bimodules of degree (−λA, πA).

Proof. The map ϕA is clearly a homomorphism of abelian groups. Let r ∈ R, a ∈ A,
and x ∈ A AψA

B . Then
ϕA(a)(r x)= trA ◦

rψA(a)(r x)= (−1)ā(r̄+x̄) trA(r xψA(a))

= (−1)ā(r̄+x̄)+πAr̄r trA(xψA(a))= (−1)r̄(ā+πA)r trA ◦
rψA(a)(x)

= (−1)r̄(ā+πA)rϕA(a)(x).

Thus, ϕA(a) ∈ (B AψA
A )
∨.
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Now, for a, a′ ∈ A and x ∈ A AψA
B , we have

ϕA(a′a)(x)= trA ◦
rψA(a′a)(x)

= (−1)x̄(ā
′
+ā) trA(xψA(a′a))

= (−1)x̄(ā
′
+ā) trA(xψA(a′)ψA(a))

= (−1)ā
′(x̄+ā) trA ◦

rψA(a)(xψA(a′))

= (−1)ā
′(x̄+ā)ϕA(a)(xψA(a′))

= (−1)ā
′āϕA(a) ◦ rψA(a′)(x)

= (−1)ā
′πA(a′ ·ϕA(a))(x).

Thus ϕA is a homomorphism of left A-modules of degree (−λA, πA).
On the other hand, for a ∈ A, b ∈ B, and x ∈ A AψA

B , we have

ϕA(ab)(x)= trA ◦
rψA(ab)(x)

= (−1)(ā+b̄)x̄ trA(xψA(ab))

= (−1)(ā+b̄)x̄ trA(xψA(a)ψA(b))

= (−1)ā(x̄+b̄) trA(bxψA(a))

= trA ◦
rψA(a)(bx)= trA ◦

rψA(a) ◦ `b(x)= (ϕA(a) · b)(x).

Thus ϕA is a homomorphism of right B-modules.
It remains to show that ϕA is an isomorphism. Suppose ϕ(a)= ϕ(a′) for some

a, a′ ∈ A. This implies ā = ā′. Then, for all x ∈A AψA
A , we have

ϕ(a)(x)=ϕ(a′)(x) =⇒ trA ◦
ra(x)= trA ◦

ra′(x)

=⇒ (−1)ā x̄ trA(xψA(a))= (−1)ā
′ x̄ trA(xψA(a′))

=⇒ 0= (−1)ā x̄ trA
(
x(ψA(a)−ψA(a′))

)
.

It thus follows from (T1) that ψA(a) = ψA(a′), and hence a = a′. Thus ϕA is
injective.

Now, every element ϕ ∈ (B AψA
A )
∨ can be viewed as an element of HOMR(R A,R).

Then, by (T2), there exists an a ∈ A such that ϕ = trA ◦
ra. Since ψA is a ring

isomorphism, we have

trA ◦
rψA(ψ

−1
A (a))= trA ◦

ra = ϕ.

Thus, ϕA is surjective. �

Proposition 3.7. The map

κ ◦ϕA : A AB→ HOMB(
ψB

B AψA
A , B BB)
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is an isomorphism of (A,B)-bimodules of degree (λB − λA, πA+πB). Moreover,
the map

tr : ψB
B AψA

B → B BB, tr(a)= (−1)πB(πA+ā)
n∑

i=1

(−1)ȳi (πB+ā) trA(yi a)xi

is a trace map; i.e., it satisfies conditions (T1) and (T2).

Proof. Since κ ◦ϕA is a composition of (A,B)-bimodule isomorphisms, it too is an
(A,B)-bimodule isomorphism. Now, for a ∈ A AB, we have

(κ ◦ϕA)(1A)(a)= (κ(trA ◦
rψA(1A)))(a)= (κ(trA))(a)

= (−1)πB(πA+ā)
n∑

i=1

(−1)ȳi (πB+ā) trA(yi a)xi .

Then by [Pike and Savage 2016, Proposition 4.1], tr is left trace map. �

Theorem 3.8. Let A be a ring extension of B, and B be a ring extension of R, with
CA(R)= A. Suppose that A is a Frobenius extension of R of degree (−λA, πA), with
Nakayama automorphism ψA, and that B is a Frobenius extension of R of degree
(−λB, πB), with Nakayama automorphismψB . If A is projective as a left B-module,
then A is a (ψA, ψB)-Frobenius extension of B of degree (λB − λA, πB + πA).
Moreover, the induction functor A AB ⊗B − is right adjoint to the shifted twisted
restriction functor {λB − λA, πB +πA}

ψB
B AψA

A ⊗A− .

Proof. Since A is a Frobenius extension of R, it is finitely generated as an R-module,
and hence also finitely generated as a left B-module. Moreover, by Proposition 3.7,
there is a trace map satisfying (T1) and (T2). Thus A is an (ψA, ψB)-Frobenius
extension of B. The final assertion follows from [Pike and Savage 2016, Theo-
rem 6.2]. �

Remark 3.9. Recall that, by Corollary 3.2, we gain no generality in Theorem 3.8
by allowing for A and B to be twisted Frobenius extensions of R. In the case that
R is a field, concentrated in degree (0, 0), Theorem 3.8 recovers [Pike and Savage
2016, Corollary 7.4].

4. Applications

In this final section, we give several examples that illustrate Theorem 3.8. In
particular, we see that a number of results that have appeared in the literature follow
immediately from this theorem.

Example 4.1 (group rings). Let R be a supercommutative ring, G a finite group,
and H a subgroup of G. Consider the following group rings over R:

R ∼= R[{e}] ⊆ R[H ] ⊆ R[G],
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where e is the identity element of G. By construction, R[H ] and R[G] are free as
R-modules. It is easy to verify that the map

tr : R[G] → R, tr
(∑

g∈G

rgg
)
= re

satisfies (T1) and (T2) with α and β both the identity map. Thus R[G] and R[H ] are
both untwisted Frobenius extensions of R and their Nakayama automorphisms are
the identity automorphisms. The ring R clearly lies in the center of R[G] and R[G]
is free as a left R[H ]-module, with basis given by a set of left coset representatives.
Therefore, by Theorem 3.8, R[G] is an untwisted Frobenius extension of R[H ]. In
the case that R is concentrated in degree (0, 0), this recovers the well-known result
that a finite group ring is a Frobenius extension of a subgroup ring.

Example 4.2 (Hopf algebras). Let R be an unique factorization domain, let H be a
Hopf algebra over R that is finitely generated and projective as an R-module, and let
K be a Hopf subalgebra of H. Then H and K are both untwisted Frobenius exten-
sions of R by [Pareigis 1971, Corollary 1]. Let ψH and ψK denote their respective
Nakayama automorphisms. If H is projective as a left K -module (this condition is
automatically satisfied when R is a field by [Nichols and Zoeller 1989, Theorem 7]),
then H is a (ψH , ψK )-Frobenius extension of K by Theorem 3.8. Moreover, we
have that H is an (idH , ψK ◦ψ

−1
H )-Frobenius extension of K by applying [Pike

and Savage 2016, Proposition 3.4] with u = 1H. That is, it is a Frobenius extension
of the second kind. Thus we recover the result [Schneider 1992, Corollary 3.6(1)].

Example 4.3 (nilcoxeter rings). Let R be a supercommutative ring and fix a non-
negative integer n. The nilcoxeter ring Nn over R is generated by the elements
u1, . . . , un−1 with the relations

u2
i = 0 for 1≤ i ≤ n− 1,

ui u j = u j ui for 1≤ i, j ≤ n− 1 such that |i − j |> 1,

ui ui+1ui = ui+1ui ui+1 for 1≤ i < n− 1.

As an R-module, Nn has the basis {uw | w ∈ Sn}, where Sn is the symmetric group
on n elements. Multiplication of basis elements is given by

uvuw =
{

uvw if `(v+w)= `(v)+ `(w),
0 if `(v+w) 6= `(v)+ `(w),

where ` is the length function of the symmetric group. So Nn is free and thus
projective as an R-module. Now consider the R-linear function determined by

trn : Nn→ R, trn(uw)=
{

1 if w = w0 ∈ Sn,

0 if w 6= w0 ∈ Sn,
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where w0 denotes the permutation of maximal length in Sn . It can be shown that Nn

is an untwisted Frobenius extension of R of degree
(
−
(n

2

)
,
(n

2

))
with trace map trn ,

and the Nakayama automorphism associated to trn is given by ψn(ui )= un−i ; see
[Pike and Savage 2016, Lemma 8.2], where one replaces F with R. Although the
author of [Khovanov 2001, Proposition 4] works over the field Q, his proof that Nn

is projective as a left Nn−1-module still holds over R. It is clear that CNn (R)= Nn .
Therefore, by Theorem 3.8, Nn is a (ψn, ψn−1)-Frobenius extension of Nn−1 of
degree

((n−1
2

)
−
(n

2

)
,
(n

2

)
+
(n−1

2

))
.
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