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This is the third and final part of a study of wrinkles in thin membrane structures.
High-fidelity, geometrically nonlinear finite element models of membrane struc-
tures, based on thin-shell elements, are used to simulate the onset and growth
of wrinkles. The simulations are carried out with the ABAQUS finite element
package. The accuracy of the results is demonstrated by computing the character-
istics of the wrinkles in two specific membrane structures that were investigated
experimentally and analytically in the first two papers in this series.

1. Introduction

This is the third and final part of a study of wrinkles in thin membrane structures.
High-fidelity, geometrically nonlinear finite element models of membrane struc-
tures, based on thin-shell elements, are used to simulate the formation and growth
of wrinkles.

Previous numerical studies of wrinkled membranes have largely focussed on
determining the region(s) affected by wrinkles and the direction of the wrinkles. It
is now possible to compute the actual shape and size of the wrinkles in structures of
realistic shape and size. Here we present a general procedure for carrying out such
simulations using the commercially available finite element package ABAQUS
[ABAQUS 2001]. The effectiveness of the proposed procedure is demonstrated by
computing the wrinkle details of two particular membrane structures, which we had
investigated in detail, both experimentally and analytically [Wong and Pellegrino
2006a; 2006b]. It is shown that the accuracy of the wrinkles computed in this way
is such that the numerical simulation can now be seen as a replacement for physical
experimentation, although the computer run times are currently still impractically
long for the present procedure to be adopted as a design tool. A significant, im-
mediate benefit of the present work is that one can probe the simulation results
in order to gain additional insights into the characteristics of wrinkles and their
evolution under varying loads or boundary conditions.

Keywords: post-buckling behaviour, mode jumping, thin shell finite elements, membrane structures,
wrinkling.
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The layout of the paper is as follows. The next section presents a brief review of
previous numerical studies of membrane wrinkling, including a few, recent studies
that have adopted shell-based models of the membrane.

Section 3 sets out the proposed finite element procedure. The membrane is
represented with a fine mesh of thin-shell elements; first it is lightly prestressed,
then a buckling analysis is done to determine a number of incipient buckling modes,
which are then seeded as initial imperfections for the main, geometrically nonlin-
ear wrinkling analysis. An alternative model is presented in Section 4. Here the
structure is represented by membrane elements and an essentially two-dimensional
no-compression elastic solution is sought by means of an iterative procedure that
alters the effective Poisson’s ratio in order to eliminate any compressive stresses
(solutions obtained from this membrane model were used as a reference in [Wong
and Pellegrino 2006b], to compare with the analytical solutions presented there).

Section 5 presents a study of a rectangular membrane in simple shear. First, the
sensitivity of the wrinkle details to the magnitude of the seeded imperfections, the
type of finite elements and the mesh density used for the simulation are investigated.
Next, the overall response of the membrane is studied, including the characteristics
of the wrinkles. Finally, the way the wrinkles change with the shear displacement
is investigated, and it is found that the number of wrinkles changes suddenly, both
when decreasing or decreasing the old displacement. The mechanism through
which new wrinkles are created, or wrinkles disappear, is explained.

Section 6 presents a study of a square membrane that is pulled at the corners.
This problem is representative of currently proposed applications of membranes in
future spacecraft structures, and has already been examined from an experimental
and analytical viewpoint in the previous two papers in this series. Here the finite
element simulation is shown to capture both of the wrinkling regimes that had been
observed in the experiments, and details of the corresponding stress distributions
are also obtained.

Section 7 discusses the outcomes of the present study and concludes the paper.

2. Review of previous numerical studies

The vast majority of all previous numerical solutions of wrinkled membranes have
adopted a purely in-plane model of the structure, hence assuming that bending
stresses are negligibly small. This approach will be reviewed first. It can accurately
predict the stress distribution in the membrane, including wrinkled regions, and
also the extent of these regions, but it provides no information on wrinkle details.
An alternative approach is to model the membrane as a thin shell; recent work
along these lines will be reviewed in the latter part of this section.
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2.1. Models using membrane elements. The first finite element solution to in-
corporate wrinkling theory was the Iterative Materials Properties model (IMP)
developed in [Miller and Hedgepeth 1982; Miller et al. 1985]. It is based on
the observation that if during a simulation a membrane element is deemed to be
wrinkled, the geometric strain in the direction perpendicular to the direction of
the wrinkles, due to out-of-plane deformation of the material, can be modelled by
introducing a variable effective Poisson’s ratio for the element.

Hence, instead of using the standard “taut” modulus matrix, based on Hooke’s
law for plane stress and given by

Dt =
E

1 − ν2

 1 ν 0

ν 1 0

0 0 1
2(1−ν)

 .

Miller et al. used the “wrinkled” modulus matrix

Dw =
E
4

 2(1+P) 0 Q

0 2(1−P) Q

Q Q 1

 ,

where P = (εx − εy)/(ε1 − ε2) and Q = γxy/(ε1 − ε2); εx , εy , γxy are the engineer-
ing components of plane strain; ε1, ε2 are the major and minor principal strains
(ε1 ≥ ε2); and the directions 1 and 2 are parallel and perpendicular to the wrinkles,
respectively. For later on, note that σ1, σ2 are the major and minor principal stresses
(σ1 ≥ σ2).

Adler [2000] implemented this model as a user-defined material (UMAT) sub-
routine in the ABAQUS finite element package [ABAQUS 2001]. At any stage of
a standard ABAQUS iteration Adler’s IMP subroutine begins by calculating the
principal strain and stresses at any point using Dt , initially assuming the element
to be taut, and then checks:

• If σ2 ≥ 0, the element is taut and so no change is needed;

• If σ2 < 0 and ε1 ≤ 0, the element is slack and so all stress components are
zero;

• If σ2 < 0 and ε1 > 0, the element is wrinkled, so the stress components are
recomputed using Dw.

This is known as the combined wrinkling criterion, as a combined stress/strain
condition has to be satisfied for a wrinkle to exist. Wrinkling criteria based purely
on stress or strain have potential shortcomings and are less accurate [Kang and Im
1997; Liu et al. 2001].

Successful predictions of the shape and pattern of the wrinkled regions in a
square membrane subjected to point loads, and also in inflated balloons of different
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shapes were obtained by Adler [2000]. The main problem was that the solution
tended to diverge in the presence of many slack regions.

Johnston [2002] used the same approach to analyse the static and dynamic be-
haviour of the sunshield for a space telescope. This sunshield consists of several
reflective foils which wrinkle extensively.

An alternate tension field model was developed by Liu et al. [1998] and incor-
porated into the nonlinear finite element code TENSION6. The main difference
between this method and IMP is that, instead of modifying the material properties
iteratively, the user preselects a so-called penalty tension field parameter to provide
a small amount of stiffness in the direction transverse to the wrinkles. This helps to
overcome the numerical singularities associated with vanishingly small diagonal
terms in the tangent stiffness matrix. Liu et al. [1998] carried out a simulation
of the deployment of a parachute. Modelling issues, including the selection of
the penalty term, influence of the order of integration and local remeshing in the
wrinkled regions are all discussed in this paper.

Liu et al. [2000] combined the approach of their earlier paper with the semian-
alytical determination of the impending buckling mode by Lin and Mote [1996].
The resulting two-level analysis is able to determine both the extent of the wrin-
kled regions, by determining the stress field with TENSION6, and the wrinkle
wavelength and amplitude, by applying Lin and Mote’s eigenvalue analysis to de-
termine the number of wrinkles. The wrinkle amplitude is then determined through
an argument essentially equivalent to that put forward in [Wong and Pellegrino
2006b, Section 4]. It is implicitly assumed that the number of wrinkles will not
vary once the wrinkles have started to form (which is not correct), and that the
wrinkled region can be assumed to behave as a simply supported rectangular plate.
Liu et al. [2000] have shown this approach to provide reasonably accurate results
for a square membrane subjected to a specific combination of tension and shear.

Several iterative schemes that use no-compression material models have been
proposed. In their simplest form, these schemes begin by assuming that the be-
haviour of the membrane is linear elastic. Then, any compressive principal stresses
are set to zero and the associated stiffness matrix coefficients are also set to zero.
The principal stresses are recalculated at every iteration, to avoid history depen-
dency in the results. An early study of airbag inflation based on this approach [Con-
tri and Schrefler 1988] set a sample problem that many others have subsequently
tackled. An analogous approach was attempted by the present authors, using the
*NO COMPRESSION option in ABAQUS, but poor convergence was observed.

Finally, a number of membrane finite elements that incorporate wrinkling within
their formulation have been derived from a continuum mechanics approach. The
methods proposed range from using a modified deformation tensor [Roddeman
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et al. 1987], to a geometrically modified [Nakashino and Natori 2005] or energet-
ically modified [Haseganu and Steigmann 1994; Barsotti and Ligaro 2000] stress-
strain tensor.

2.2. Models using shell elements. Tomita and Shindo [1988] were the first to
make use of a three-dimensional shell description of a wrinkled membrane, in
a study of the residual wrinkles in a thin metallic plate that has been pulled diag-
onally. This paper started with an analysis of the onset of wrinkling, which was
assumed to be the outcome of a bifurcation from plane deformation to out-of-plane
deformation of the plate. The plate was initially represented by a mesh of thin-
plate elements, including the effects of material nonlinearity, but the growth of the
wrinkles was then traced by switching the model to isoparametric shell elements.

The last five years have seen regular use of the ABAQUS package, and recently
also of ANSYS [ANSYS 2000], to simulate the onset of wrinkling in a tensioned
strip [Friedl et al. 2000] and the growth of wrinkles. Three approaches to the
simulation of wrinkle growth have been proposed, differing in the way the out-
of-plane deformation is triggered at the beginning of a geometrically nonlinear
analysis. In [Wong and Pellegrino 2002a] and [Wong et al. 2003] we started by
extracting a set of eigenvalues/eigenvectors of the tangent stiffness matrix of the
structure. Instead, Leifer and Belvin [2003] applied a set of equal and opposite,
small magnitude forces perpendicular to the membrane and with a resultant of
zero. Finally, Tessler et al. [2003; 2004] and Papa and Pellegrino [2005] imposed
randomly distributed, out-of-plane imperfections, of similar magnitudes to those
imposed in [Wong and Pellegrino 2002a].

The choice of finite elements and the type of analysis procedure are essentially
equivalent in the three simulation techniques (the details are explained in Sections
3 and 5), so the key difference between the first approach and the other two is the
additional burden of the initial eigenvalue/eigenvector extraction. In the present
study it was found that this additional computation requires only a small fraction of
the total simulation time, hence this burden is not significant. The three approaches
have been tested on similar problems and found to work equally well for a mem-
brane under shear, where the wrinkles are relatively uniform. For a membrane
under equal corner loads the agreement between experiments and results from
eigenvector-based perturbations, presented in this paper, is better than the latest
results with random imperfections; see Tessler et al. [2005, Figure 5].

3. Three-dimensional finite element models

The bending stiffness of a membrane, although small, plays a key role in determin-
ing the shape and amplitude of the wrinkles. Therefore, it is essential that it should
be included in any models that aim to capture this kind of detail. Two options are
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available, first to model the membrane with thin-plate elements and second to use
thin-shell elements. Since the first option would only work for flat or nearly flat
membranes, the second option has been pursued.

ABAQUS offers several shell elements, and preliminary runs were carried out
with 3-node triangular and 4-node quadrilateral general purpose elements with full
integration (S3, S4); these elements have six degrees of freedom at each node. 4-
node and 9-node reduced integration, thin-shell elements (S4R5, S9R5), with five
degrees of freedom per node, were also investigated. ABAQUS also provides other
shell elements which are mainly suited for thick shell problems. This is a different
class of problem and no detailed investigation of these elements was carried out.

The S3 element uses constant bending curvature and membrane strain approxi-
mations; therefore a very fine mesh is required to capture the bending deformation
due to wrinkling. Note that the fineness of the discretisation that is required is
related to the expected wrinkling wavelength. The formulation of element S4
is similar to S3 for bending, but the in-plane strain field has been enhanced to
eliminate shear locking effects. Both S4R5 and S9R5 are thin shell elements with
three in-plane translations and two in-plane rotation components. They use reduced
integration with hourglass control to avoid shear locking. Both elements can model
thin shells fairly accurately and S4R5 was chosen since it is computationally more
economical. A detailed comparison of the performance of different shell elements
in the analysis of a shear membrane will be presented in Section 5.1.2.

After defining the finite element mesh, type of elements, and material properties,
a wrinkling analysis employing thin shell elements is typically performed in three
stages, as follows.

3.1. Initial conditions. The initial stage of the analysis applies a small uniform
prestress to the membrane, to stabilize it. Several strategies can be used to apply
this initial prestress. One technique is to prescribe a set of edge displacements,
corresponding to the level of prestress required. This technique is particularly
useful for setting up the true stress state of a membrane structure, e.g. to reproduce
the conditions that may exist at the beginning of a test. However, if a uniform stress
state is required instead, e.g. to avoid initial numerical singularities, this simpler
prestress can be obtained more readily by prescribing a set of initial stresses using
the *INITIAL CONDITIONS, TYPE=STRESS parameter in ABAQUS. In the
latter case, only membrane forces, bending moment and twisting moments can be
specified for shell elements.

After applying the initial prestress, a static, geometrically nonlinear equilib-
rium check (*STATIC, NLGEOM) is performed. This check induces a small
re-distribution of the state of prestress, together with small in-plane displacements.
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3.2. Eigenvalue/eigenvector extraction. The next step of the analysis determines
the buckling mode-shapes of a lightly prestressed membrane. These modes are
then used as small, initial imperfections that trigger the formation of wrinkles in
the subsequent, geometrically nonlinear simulation.

An eigenvalue buckling analysis (*BUCKLE) is used to obtain the possible
wrinkling modes of the membrane subjected to its actual boundary conditions and
loading. The loading is typically defined in terms of a set of applied forces or
displacements at the edge of the membrane, and has to represent the loads on the
real structure. It is important that both the initial stresses and displacements from
the previous stage of the analysis, as well as those due to the applied load, should
be included in the calculation of the tangent stiffness matrix; ABAQUS performs
these calculations by default. The eigenvalues and eigenvectors of the tangent
stiffness matrix correspond to the load magnitudes and shapes of the possible wrin-
kling modes of the membrane. Two solvers are available in ABAQUS to extract
the eigenvalues, namely subspace iteration and the Lanczos method. The default,
subspace iteration method is generally quicker when only a few (typically, less
than 20) eigenmodes are needed.

After computing the buckling mode-shapes, a linear combination of all, or some
selected eigenmodes is introduced into the structure as a geometrical imperfection.
In standard buckling analysis of imperfection-sensitive structures, the imperfec-
tions that are seeded in the structure are normally obtained as linear combinations
of the eigenvectors corresponding to the lowest eigenvalues. However, the main
objective of the present study is not finding the lowest eigenvalue, corresponding to
the load which would cause the first wrinkle to form. The first wrinkle forms almost
as soon as the load is applied, but we are interested in following the evolution of
this first wrinkle, leading to the formation of a second one, and so on until a large
number of wrinkles have formed. It is generally best to introduce in the membrane
a rather general kind of imperfection, e.g. one obtained as the combination of many
eigenvectors. In cases where some features of the final wrinkling pattern are known,
introducing in the imperfection mode shape eigenmodes that resemble this pattern,
as well as several other eigenmodes, generally increases the speed of convergence
during the initial stages of the simulation.

Once a set of eigenmodes has been chosen, geometrical imperfections are in-
troduced in the form of out-of-plane deformations of the membrane, using the
*IMPERFECTION directive:

1z = 6iwiφi ,

where wi is the i-th eigenmode and φi is a scaling factor whose magnitude is chosen
as a proportion of the thickness of the membrane. Values between 1% and 100%
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of the thickness have been used, and the sensitivity of the predicted response to
different φi ’s has been determined, see Section 5.1.1.

3.3. Simulation of wrinkle growth. A geometrically nonlinear (*NLGEOM) in-
cremental analysis is carried out under edge displacement incrementation, using
the Newton–Raphson solution method. Since the equilibrium path of a wrinkled
membrane includes many unstable branches, each corresponding to a localised
snap-through due to the formation of an additional wrinkle, the only type of so-
lution algorithm able in theory to compute the full response of the structure is
an arc-length solution. The full response of the structure cannot be computed by
increasing monotonically a single displacement parameter, but all attempts to use
the arc-length solution method in ABAQUS (*RIKS) were unsuccessful, possi-
bly because wrinkling is a highly localised type of instability. Hence, monotonic
displacement incrementation was the only viable option.

A very effective way of addressing the numerical singularities associated with
an instability is to switch from a quasi-static simulation to a transient dynamic
analysis. Thus, one would simulate the actual dynamic response of the structure
as it snaps, in order to compute the first static equilibrium state after snapping has
occurred. This idea can be straightforwardly implemented in ABAQUS using the
STABILIZE function. However, instead of computing the actual dynamics of the
snap, when an instability is detected ABAQUS automatically introduces pseudo-
inertia and pseudo-viscous forces at all nodes, and switches from a solution of the
actual stiffness equations to a solution of a set of pseudo-equations-of-motion.

The default fictitious viscous forces are calculated on the basis of the model’s
response in the first increment of the analysis step, by assuming that the energy
dissipated is a prescribed fraction of the strain energy during the first step. This
fraction is called damping intensity, or stabilise factor, in ABAQUS and has a
default value of 2 × 10−4. To achieve good accuracy, it is generally desirable to
set this parameter to the lowest possible value for which convergence can still be
achieved.

The flowchart in Figure 1 summarises the complete simulation procedure.

4. Two-dimensional finite-element models

In addition to the model presented in the previous section, that has been used very
extensively for the work presented in this paper, a number of comparative two-
dimensional analyses were also carried out. In these analyses the structure was
modelled with a mesh of membrane finite elements, typically 3-node triangular
or 4-node quadrilateral full/reduced integration general purpose elements (M3D3,
M3D4, M3D4R). As well as the standard linear-elastic material model, a wrinkled
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Figure 1. Flowchart for wrinkling analysis using thin shell model.

material definition was implemented through the user-defined material subroutine
(UMAT) developed by Adler [2000].

The analysis procedure for the membrane model was similar to that presented
in Section 3 for the shell model, but there is no eigenvalue/eigenvector extrac-
tion. After setting up the FE model of the structure, using membrane elements,
an additional parameter is provided after the *MATERIAL, ELASTIC option
USER=IMP.

The model was set up either in two dimensions, by constraining all out-of-plane
degrees of freedom, in which case no initial prestress was needed, or in three di-
mensions, and in this case a small initial prestress was used to numerically stabilise
the model, as for the thin-shell model.
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Figure 2. Finite element mesh for membrane in shear.

5. Membrane in simple shear

This section presents a study of the formation and growth of wrinkles in an initially
flat and stress-free, linear-elastic rectangular membrane subject to simple shear.
The dimensions of the membrane are shown in Figure 2, and the material properties
are listed in Table 1.

Figure 2 shows the finite element mesh used for a preliminary analysis that was
carried out. It consists of 3960 four-noded quadrilateral S4R5 thin-shell elements;
each element has an aspect ratio of approximately one. The analysis started with
a relatively fine mesh, in order to properly resolve the wrinkles. The element
size was initially set to be smaller than the wrinkle half-wavelength, which in the
present problem can be estimated from [Wong and Pellegrino 2006b, Eq. (14)].
Also shown in the figure is the final horizontal shear displacement, δ = 3 mm, of
the upper edge of the membrane.

Using the *BOUNDARY, ENCASTRE option, The bottom edge of the mem-
brane was fully constrained. This was the only boundary condition assigned in the
model history definition, and so it remained active through all analysis steps. The
other boundary conditions were modified during the analysis, as explained in the
next section.

Thickness, t (µm) 25
Young’s Modulus, E (N/mm2) 3500
Poisson’s ratio, ν 0.31
Density, ρ (kg/mm3) 1.5 × 10−6

Table 1. Kaptonr membrane properties
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The upper edge of the membrane was connected to a series of B21 beam ele-
ments, with a 15 mm wide by 30 mm deep rectangular section, E = 215000 N/mm2

and ν = 0.35, modelling the sliding element of the experimental rig used in [Wong
and Pellegrino 2006a]. The beam elements were connected to the nodes along the
upper edge of the membrane using the multi-point constraint option *MPC, TIE.

5.1. Simulation details. Each simulation consisted of three steps, as follows.
The first step consisted in pretensioning the membrane by moving the upper edge

by 0.5 mm, in the y-direction. Then, a geometrically nonlinear equilibrium check
was performed. The geometric stiffness provided by the prestress has the effect of
increasing the out-of-plane stiffness of the thin membrane. Only translation in the
y-direction was allowed for the two side edges, and all six degrees of freedom of
the bottom edge were completely constrained.

In the second step, an eigenvalue buckling analysis was carried out with a pre-
scribed horizontal displacement of 3 mm at the upper edge. The model boundary
conditions were modified by using the *BOUNDARY, OP=MOD option. This
has the effect of moving the upper edge nodes in the horizontal x-direction by the
prescribed displacement. All degrees of freedom of the nodes along the two side
edges were completely free, to simulate the actual situation in the experimental
model.

Earlier analyses had shown that the eigenmodes corresponding to eigenvalues
smaller than 0.2 correspond to local deformation modes of the membrane (note
that this particular value of the smallest eigenvalue depends on the initial prestress
applied in the first step), and hence are of limited interest for the wrinkling analysis.
Therefore, the Lanczos solver in ABAQUS was set to produce only eigenmodes
whose eigenvalues are greater than 0.2. The first four symmetric modes are pre-
sented in Figure 3. Note that all of these modes closely resemble the expected wrin-
kled pattern, i.e., the parallelogram of wrinkles observed experimentally in [Wong
and Pellegrino 2006a] and also predicted analytically in [Wong and Pellegrino
2006b]. Also note that all four modes have approximately the same wavelength.
The chosen geometrical imperfections were then seeded onto the pristine mesh
using the *IMPERFECTION command.

The third and final step consisted of two substeps. First, the initial pretensioning
step was repeated, as described earlier, but this time with the upper edge only
displaced by 0.05 mm to give an initial prestress of approximately 1.5 N/mm2.
Note that, although in the first step a much higher prestress had been used, in order
to avoid the presence of many localised modes in the eigenvalue buckling analysis
step, here a smaller prestress is sufficient to provide a small, initial out-of-plane
stiffness to the membrane, but without affecting the final results. Then, in the
second substep the upper edge was moved horizontally by 3 mm while all other
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Figure 3. First four eigenmodes with eigenvalue > 0.2, for mem-
brane is shear.



WRINKLED MEMBRANES III: NUMERICAL SIMULATIONS 75

degrees of freedom were constrained. All translational degrees of freedom of the
side edges were left free, but the rotations were constrained to aid convergence.

The STABILIZE function was activated for this substep. The parameter that
controls the amount of numerical damping has the default value 2 × 10−4. This
parameter was adjusted almost continuously, according to the level of difficulty of
converging to a solution, by using the *RESTART option. This approach allows
the numerical damping to be made very small, to minimise the deviation between
the computed equilibrium path and the actual path, and to be increased only when
necessary. The smallest factor used in the rectangular membrane simulations was
1 × 10−8 (*STABILIZE, FACTOR =1E-8) .

5.1.1. Initial imperfections. Many different combinations of eigenmodes and scal-
ing factors were considered to test the sensitivity of the results of the detailed
wrinkling analysis. For each set, a complete wrinkling simulation was carried out
and the maximum and minimum out-of-plane displacements, wmax and wmin, were
computed. A set of sample results are shown in Table 2.

Note that the maximum displacements remain practically unchanged when the
magnitude of the imperfections is increased by a factor of 10. Also note that the
particular displacements listed in the table correspond to the largest two wrinkles,
on either side of the membrane, but the smaller wrinkles between these large ones
were also found to have the same amplitude and wavelength, regardless of the size
of imperfection.

It was thus concluded that the particular magnitude of the chosen imperfection
is not critical. It was decided to use a “standard” imperfection consisting of the
first four eigenmodes corresponding to eigenvalues greater than 0.2, normalised to
a unit length by ABAQUS, each multiplied by a scaling factor φi = 0.125t .

5.1.2. Comparison of different elements. After selecting a standard set of imper-
fections on the basis of a mesh of S4R5 thin shell elements, as described in Section
5.1.1, a detailed study of the performance of different elements was carried out.

Table 3 lists the number of wrinkles n (see Section 5.3), the wrinkle wavelength
2λ, the amplitude A, and the total simulation time for each type of element.

φ1, . . . , φ4 wmax (mm) wmin (mm)
0.025t 1.12 −1.49
0.125t 1.09 −1.49
0.250t 1.14 −1.51

Table 2. Sensitivity of membrane in shear to imperfection magnitudes
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Element S3 S4 S4R5 S9R5 M3D4
n 13 11 16 16 9
2λ (mm) 28.6 33.9 21.2 23.0 42.3
A (mm) 0.651 0.999 0.432 0.453 0.83
CPU (s) 31869 5714 10192 79419 791

Table 3. Number of wrinkles, wavelength, amplitude and total
simulation time for different element types, for membrane in
shear.

The most important parameter is the total number of wrinkles, since it can
be readily compared to the experimental observations. In [Wong and Pellegrino
2006a] we observed 19 wrinkles when a 3 mm displacement was imposed on a
25 mm Kaptonr film.

Here, elements S3 and S4 predicted 13 and 11 wrinkles, whereas S4R5 and
S9R5 both predicted 16 wrinkles. Note that S3 failed to converge with the specified
stabilize factor of 1 × 10−8; the results presented in Table 3 were obtained by
specifying a damping factor of 5 × 10−3. The membrane element M3D4, with a
standard linear-elastic material model, predicted only 9 wrinkles.

Hence, elements S4R5 and S9R5 match the experimental results most closely.
Since S4R5 is superior in terms of computational efficiency and economy, it was
adopted for all the following analyses.

5.1.3. Sensitivity to mesh density. The initial mesh, shown in Figure 2, predicted
a smaller number of wrinkles than that observed in the experiment. Therefore, two
additional mesh sizes were used to investigate the effect of mesh density on the
final wrinkled shape.

The two meshes consisted of 6950 and 13134 elements, approximately double
and four times the number in the initial mesh. Both of the denser meshes predicted
the same number of wrinkles as in the experiment (Table 4), which suggests that
the solution becomes mesh-independent after a particular level of refinement.

No. elements Total dof No. wrinkles
3960 19800 17
6950 34750 19

13134 65670 19

Table 4. Dependence of number of wrinkles on mesh density.
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Figure 4. Shear force-displacement relationship, for membrane in shear.

Since the computational time increases roughly proportionally to the number of
elements, the mesh with 6950 S4R5 elements was selected. The results presented
and discussed from now on are all based on this model.

5.2. Global behaviour of wrinkled membrane. The overall relationship between
the total shear force applied to the membrane and the shear displacement, δ, has
been computed using three different models; the results are shown in Figure 4.
Both the shell model and the IMP membrane model predict an initial in-plane shear
stiffness of 101 N/mm, which quickly decreases by about a third as the wrinkles
begin to form. Afterwards, the response is essentially linear. The membrane model
with standard, linear-elastic material does not capture the softening associated with
the formation of wrinkles (although a certain amount of waviness is created as a
result of the initial imperfections).

A vector plot of the midsurface stress distribution (obtained from the shell
model) corresponding to the final displacement δ = 3 mm is shown in Figure 5.
For each element, the directions and magnitude of the two principal stresses have
been plotted, but the major stress, σ1, is so much larger than the minor stress,
σ2, that only one vector can be seen. The direction of the major principal stress
corresponds to the direction of the wrinkles, which are clearly uniform and inclined
at 45◦ in the central part of the membrane. There are two lightly stressed triangular
regions near the side edges, and the top right and bottom left corners act as stress
risers, with stress concentrations of up to 2.5 times the average stress.

Figure 6 shows the overall, final wrinkle pattern in the membrane. The wrinkles
in the central region are at 45◦ to the edges, but near the pair of corners that move
closer together the wrinkles are “pinned” and hence form a kind of fan region.
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A deeper understanding of the stress distribution in the wrinkled membrane can
be obtained by considering the principal stresses across the midheight section, at
y = 64 mm, defined by the section line A-A in Figure 6. Figure 7 shows plots of the
major and minor principal stresses through the midplane of the membrane for two
values of the shear displacement. The plots show that σ1 increases rapidly, starting
from zero at the edges, to an approximately uniform, positive value, whereas σ2

remains very small. Close inspection shows this value to be always negative and
roughly uniform across most of the section.

5.3. A closer look. The linearity of the overall load-deflection response computed
in Section 5.2 hides some interesting instabilities, which become apparent on closer
inspection. When the shear displacement is gradually and monotonically increased,
the existing set of wrinkles grow in amplitude, then become unstable and give
rise to an extra wrinkle, and hence all of the wrinkles suddenly have a smaller
wavelength and amplitude, and then the cycle repeats.

50 N/mm2

Figure 5. Plot of principal stress directions and magnitudes, for
membrane in shear, showing that the major principal stress is (i)
uniformly at 45◦ in the centre region and (ii) about three times
larger near the top right and bottom left corners.

x

y
z

A A

Figure 6. Perspective view of wrinkle pattern, for membrane in
shear with δ = 3 mm.
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A complete history of how the wrinkle pattern grows is shown in Figure 8. This
figure is a plot of δ versus the position of the points of maximum and minimum
out-of-plane displacement, i.e. the crests and troughs of the wrinkles, across the
midheight section of the membrane.
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Note that the solid lines on the two sides of the plot are practically straight and
vertical, indicating that the edge wrinkles do not move. Looking further towards the
centre of the plot, the first dotted line and the second solid line are continuous, but
gently curved outwards. Many other lines contain one or more bifurcation points,
which indicate that additional wrinkles are created. The first five bifurcations occur
very quickly, at the start of the simulation; afterwards the values of δ associated
with each jump can be clearly identified, and are labelled (6)–(10) on the right-hand
side of the figure. As the number of wrinkles increases, the membrane becomes
more stable and hence a greater increase of δ is required for the next bifurcation
to occur.

Because the wrinkles can most easily reorganise themselves in the middle of the
membrane, new wrinkles tend to appear close to the edges. The large wrinkles on
the sides do not move; they are “pinned” at the corners, as already noted.

Figure 9 shows the different shapes of the midheight section of the membrane,
for increasing δ’s. The particular shapes shown here were obtained immediately
after the bifurcations labelled (2), (4), (6), (7), (9) and (10) in Figure 8. The number
of wrinkles, n, defined as the number of crests in each plot, is 9, 11, 13, 14, 16
and 17 respectively. The outermost crest at each side is not counted. Note that
the wrinkle amplitude in the central region increases from 0.13 mm to 0.33 mm in
these plots, while the wavelength decreases visibly.

5.4. Mode jumping. The sudden transitions from one wrinkled shape to another,
noted in the previous section, were observed experimentally in [Wong and Pel-
legrino 2006a]. Each change in the number of wrinkles is a mode jump in the
post-buckling response of the membrane.

Mode jumping in stiffened panels under compression has been studied in depth
by Stein [1959b; 1959a]. A key difference is that, whereas in Stein’s work mode-
jumping clearly showed in the load-shortening curves for the panels, here the load-
deflection curve is linear, as seen in Figure 4. The reason is that each mode-jump is
associated with a change of compressive stresses in the membrane, but their mag-
nitude is negligibly small in comparison with the tensile stresses in the membrane.

Mode jumps have been explained in terms of the interaction of the branches of
a set of bifurcation points adjacent to the critical load [Riks 1998]. For the present
study, the sequence of jumps is seen most clearly in a plot of the minor principal
stress, σ2, versus the shear displacement at a representative point of the membrane.
For example, Figure 10 shows the stresses at three points near the centre of the
membrane. Which particular point is chosen is not significant, but jumps that are
associated with an instability that is distant from the chosen point might not show,
therefore we have monitored the stress at several points and chosen three after
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Figure 9. Mid-height cross-sections for different δ’s.

completing the analysis. Note that σ2 is always compressive, and far smaller in
magnitude than the tensile stresses plotted in Figure 7.

The stress jumps numbered (1)–(10) in Figure 10 are the same that were inves-
tigated in Section 5.3. Jump (1) occurred almost immediately after beginning to
increase δ. This jump was facilitated by the initial geometric imperfections. Due
to these imperfections, the first jump is directly into a configuration with n = 7
wrinkles. This jump is followed in rapid sequence by jumps (2)–(5); and then
the membrane settles in a relatively stable configuration. It is interesting to note
that, as the membrane becomes more stable, σ2 remains almost constant between
consecutive jumps.

Next, we discuss jump (6) in more detail. Figure 11 shows a sequence of cross-
sections of the membrane, corresponding to the 8 points labelled (a-h) on the en-
larged part of Figure 7. Figure 11(a-b) shows a 13-wrinkle shape that remains stable
until σ2 has almost reached a peak, at point (c). Here a small asymmetry begins
to appear in the cross-sectional plot, which rapidly grows into a new wrinkle (d-e).
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Thus, the transition from 13 to 14 wrinkles occurs over a very small increment of
δ. Then the new mode becomes stable and the magnitude of σ2 starts to decrease.

It is also interesting to simulate a loading-unloading cycle. Figure 12 is a plot
of the variation of the number of wrinkles when δ is increased from 0 to 3 mm,
and then decreased to 0, and finally increased again to 3 mm. Note that during
unloading the wrinkles tend to stay on, thus the final number of wrinkles does not
start decreasing until the shear displacement has been reduced to δ = 0.8 mm. At
this point the number of wrinkles suddenly decreases from 17 to 14. Thus, the
behaviour upon unloading is different from that upon loading.

During reloading the membrane generally follows the same path as during the
initial loading, however the final configuration with 17 wrinkles is achieved slightly
earlier this time. This difference may be due to the effect of the geometrical im-
perfections left in the membrane at the end of the first load cycle, which may have
facilitated the formation of the “correct” pattern of wrinkles. Also note that the
stabilise factor was continuously adjusted during each simulation, and also during
load reversal; it is difficult to quantify the effect of this variation.

6. Square membrane under corner loads

This section presents a study of wrinkles in an initially stress free and perfectly
flat square membrane, pulled at the four corners by two diagonal pairs of equal

0 1 2 3
0

0.02

0.04

0.06

0.08

0.1

(6) 

(7) 
(8) 

(9) 

(10) 

(1- 5) 

−
σ

2
 (

N
/m

m
2
)

Displacement δ (mm)

(a) 

(b) 

(c) 
(d) 

(e) 
(f) 
(g) 

(h) 

Figure 10. Variation of minor principal stress at three points near
centre of membrane under shear.
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and opposite forces, T1 and T2. Its dimensions are defined in Figure 13 and the
material properties are given in Table 1.
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Figure 13. One quarter of the finite element mesh square membrane.

The corners of the square are truncated, to model the actual corners of the ex-
periment in [Wong and Pellegrino 2006a]. They have a width of 25 mm, as shown
in Figure 13.

6.1. Simulation details. The membrane and corner tabs were modelled using S4R5
thin shell elements of different thicknesses. The corner beams were modelled using
beam elements with the Circ general beam section. The *MPC, TIE function was
used to connect each beam node to the corresponding shell element node. The
membrane was constrained in both x and y-directions at the centre node; all four
side edges were left free; the z-translations and all rotational degrees of freedom
of the corner beam nodes were restrained. The corner loads were distributed uni-
formly over the nodes of the beams (with only half of the forces applied at the end
nodes).

The analysis procedure was essentially identical for all of the simulations. First,
a uniform prestress of 0.5 N/mm2 was applied to provide some initial out-of-plane
stiffness to the membrane. This was achieved by using the *INITIAL CONDI-
TION, TYPE=STRESS parameter in ABAQUS. A nonlinear geometry analysis
was then carried out, with the *NLGEOM option activated, to check the equilib-
rium of the system with this initial prestress.

Second, an eigenvalue/eigenvector extraction was carried out. Many global
mode-shapes were selected, and were then superposed — each multiplied by the
scaling factor φi = 0.025t — and introduced as an initial geometrical imperfection
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at the start of the final analysis step. A smaller value of φi was chosen for the
square membrane than for the rectangular membrane, because it had been found
that this configuration is more sensitive to the magnitude of the initial imperfection,
particularly at lower stress levels.

Third, an automatically stabilised nonlinear simulation of wrinkle growth was
performed. Because the wrinkle amplitude is initially very small, the increment
step was set equal to 0.001 of the total load. The stabilize factor was set to 10−12,
to minimize the effect of numerical damping on the final solution; this value was
found to be sufficient for convergence. Despite the initial symmetry of the perfect
structure, note that the imperfections are not symmetric and so the whole structure
was analysed.

The loading of the membrane was applied in two steps. The first step involved a
symmetric loading, T1 = T2 = 5 N, applied at all corners. Then, T2 was maintained
constant at 5 N while T1 was increased up to 20 N, corresponding to a final load
ratio of T1/T2 = 4. The second load step was carried out as a follow-on to the
first step. Without changing the boundary conditions, T1 was increased to 20 N by
using the *LOAD, OP=MOD command while keeping T2 constant at 5 N.

No separate eigenvalue extraction was carried out for the second load case, as
it was found that the out-of-plane deformation at the end of the first load step
naturally develops into the wrinkled profile for the second step. Also note that the
same stabilize factor used in the symmetric case was employed. However, it was
found that a higher value was required when thinner membranes were analysed.

6.2. Wrinkle details. Figure 14 shows the deformed shape of the membrane sub-
jected to T1 = T2 = 5 N. The wrinkle pattern is symmetrical, like the loading, and
the wrinkle amplitudes were found to be very small in this case. In the figure, the
out-of-plane deformation, in the z-direction, has been magnified 100 times for the
wrinkle details to show clearly.

Three asymmetric load cases were then considered: T1 = 10, 15, 20 N, with T2 =

5 N. The shape under the final loading is shown in Figure 15, and it is significantly
different from that in Figure 14; a continuous, large diagonal wrinkle goes between
the two more heavily loaded corners. In addition to this diagonal wrinkle, fans
of small wrinkles can still be seen near the other two corners. The out-of-plane
displacements in this plot have been amplified 10 times, for clarity.

The transition from the wrinkled shape shown in Figure 14 to that of Figure 15
is gradual, as can be seen from the contour plots of the out-of-plane displacements
for increasing T1/T2, shown in Figure 16.

The initial pattern, shown in Figure 16 (top), is almost perfectly symmetric. It
consists of four, practically identical fans of 9 wrinkles, one at each corner. Within
each fan, each wrinkle subtends approximately the same angle, but the central
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wrinkles have greater amplitude than the edge ones. Note that the wrinkle heights
above and below the membrane are approximately equal.

When T1 is increased to 10 N, the fans of wrinkles at the top left and bottom
right corners become longer and deeper (see second panel in Figure 16), but the
number of wrinkles in each fan is still 9. The wrinkle heights above and below
the membrane continue to be approximately equal. The wrinkles at the other two
corners become smaller in both amplitude and number.

When T1 is increased to 15 N, the top left and bottom right fans merge and three
diagonal wrinkles (down-up-down) go through the middle of the membrane. Note
that the maximum wrinkle height above the membrane is now +0.4 mm, but below
the membrane it is now −0.25 mm.

x

y
z

Figure 14. Wrinkled shape for T1 = T2 = 5 N (amplified 100 times).
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Figure 15. Wrinkled shape for T1 = 20 N and T2 = 5 N (amplified
10 times).
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Figure 16. Contours of out-of-plane displacement for T2 = 5 N
and (from top to bottom) T1 = 5 N, 10 N, 15 N, 20 N.
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Finally, when T1 is increased to 20 N (bottom panel in Figure 16), the diagonal
wrinkles increase in amplitude, approximately five times, while maintaining the
down-up-down profile. The wrinkles in the other corners increase in amplitude.

To analyse the final shape of the membrane in more detail, the out-of-plane
displacements at three cross-sections (A-A, B-B and C-C in Figure 15) have been
plotted in Figure 17. In addition to the three cross-sectional deformation plots
obtained from the simulation, the figure shows also the experimental measurements
from [Wong and Pellegrino 2006a].

Experiments and simulations match closely in the central region, and particularly
the wrinkle wavelengths have been captured accurately. Gravity was included in
the numerical simulations, to better capture the deformation of the edges; however,
Figure 17(a-b) shows that the simulation still underpredicts the displacements of
the edges of the membrane.

6.3. Effects of load magnitude on wrinkles. This section considers the variation
of the wrinkle details with the magnitude of the applied loads. Figure 18(a) compares
the cross-section at a distance of 105 mm from point O, which is roughly where
the maximum displacements occur, for the case T1 = T2 = 5 N with the case
T1 = T2 = 20 N. As can be seen, the wrinkle amplitudes increase, but the wavelength
does not change.

Figure 18(b) compares the central cross-section, at a distance of 355 mm from
point O, for the case T1 = 20 N, T2 = 5 N with the case T1 = 40 N, T2 = 10 N.
Note that the wrinkle wavelength decreases when the applied load is increased.
Also note that the small downwards wrinkle almost disappears, leaving an almost
antisymmetric down-up wrinkle.

6.4. Stress distribution. Figure 19 shows the distribution of major midplane prin-
cipal stresses in the membrane, for the four load ratios. The stress limits were set at
6.0 and 0 N/mm2 in order to better visualize the stress variation. The general trend
is that the stress decreases as one moves away from the corners of the membrane.
For T1/T2 = 1 — see Figure 19(a) — the higher stresses are localized near the four
corners, but for increasing T1/T2 the larger major principal stresses tend to spread
along the main diagonal.

Because wrinkling is associated with the existence of (small) compressive stres-
ses, it is instructive to consider also the distribution of the minor principal stresses,
shown in Figure 20. The thin-shell model allows these stresses to become negative.
For ease of comparison, the maximum and minimum stress limits were set at 1.0
and -2.0 N/mm2. The key things to note are: (i) for T1/T2 = 1 — see Figure
20(a) — there are four identical regions of negative stress; (ii) two of these regions
become smaller for T1/T2 = 2 and 3, while the other two regions grow bigger and
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for cross-sections at distances (a) 105 mm, (b) 177 mm,
(c) 355 mm from the corner, for T1 = 20 N and T1 = 5 N.
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coalesce in Figure 20(c); (iii) for T1/T2 = 4 the regions of compressive stress near
the corners with the smaller loads have grown bigger.

7. Discussion and conclusion

A finite element simulation of wrinkled foils has been carried out with the commer-
cial package ABAQUS, and the accuracy of the resulting wrinkle patterns has been
demonstrated for two different problems. A key feature of the present approach is
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105 mm from corner, for symmetric loads; (b) section at 355 mm
from corner, for asymmetric loads with a ratio of 4.
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that the geometrical imperfections that are seeded in the initially flat foil were ob-
tained by computing the initial buckling modes of a perfectly flat foil that is lightly
prestressed, to avoid highly localised buckling modes. This approach follows es-
tablished, standard practice for the simulation of the post-buckling behaviour of
imperfection-sensitive structures, and it has been shown that the experimentally
observed behaviour of the foil is accurately captured.

The reduced integration shell elements available in ABAQUS have been found
best suited to handle the combination of in-plane and bending behaviour associated
with wrinkling, and element S4R5 was selected for speed of computation and accu-
racy. A mesh density of about 6 elements over a complete wrinkle wave, of length
2λ, was found sufficient to obtain accurate results. Further details on the analysis
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Figure 19. Contours of major midplane principal stress (in
N/mm2) obtained from thin-shell model for (a) T1 = T2 = 5 N;
(b) T1 = 10 N, T2 = 5 N; (c) T1 = 15 N, T2 = 5 N; (d) T1 = 20 N,
T2 = 5 N.
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presented in this paper, including a sample ABAQUS input file, are available in
Wong [2003].

In cases where a preliminary analytical estimate of the smallest value of λ is
available, this estimate can be used to design a suitable finite element mesh. In other
cases, the mesh density has to be refined iteratively until the resulting distribution
of wrinkles has converged.

Our predictions are very accurate for the internal region of the foil, but it has
been noted that the free edges tend to move about 50% more than predicted by
the simulations. This may be due to the initial curling of the edges of Kaptonr

foil (due to residual stresses resulting from manufacturing), compounded by the
fact that the free edges are practically unstressed, and hence “slack”. Out-of-plane
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Figure 20. Contours of minor midplane principal stress (in
N/mm2) obtained from thin-shell model for (a) T1 = T2 = 5 N;
(b) T1 = 10 N, T2 = 5 N; (c) T1 = 15 N, T2 = 5 N; (d) T1 = 20 N,
T2 = 5 N.
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displacements of slack membranes are notoriously ill-conditioned, and computing
accurately the shape of a curled free edge would be even more extreme. An analysis
specifically focussed on these effects, accompanied by additional experiments, will
be required to shed more definitive light on this issue. From a practical standpoint,
though, we have noted that edge deformations are often reduced very significantly
if the free edges of a foil are cut on a slightly concave curve, instead of straight.

The sudden appearance or disappearance of new wrinkles, accompanied by
the rearrangement (and change of wavelength) of the existing wrinkles — which
were observed experimentally in [Wong and Pellegrino 2006a] — have been re-
produced by our simulations. This behaviour has been understood as a form of
mode-jumping, whose suddenness had been established in previous work by Stein
[1959b] and Riks [1998]. Our simulations of load-cycling, in Figure 12, have
shown that corresponding forward and reverse mode jumps occur at different dis-
placements. This behaviour could be explained in terms of the shape of the equilib-
rium path of the structure, however, because the present displacement-controlled
simulations were not able to trace unstable parts of the equilibrium path, at this
stage it cannot be excluded that the behaviour in Figure 12 is an artefact of the
type of solution procedure used in the present study.

Finally, it is noted that the present simulations have confirmed the existence of
a small, compressive midsurface stress in a wrinkled foil. This was a fundamen-
tal assumption for the simple analytical model proposed in [Wong and Pellegrino
2006b].
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