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WRINKLED MEMBRANES
PART I: EXPERIMENTS

Y. WESLEY WONG AND SERGIO PELLEGRINO

This paper presents a detailed experimental study of the evolution and shape of
reversible corrugations, or wrinkles, in initially flat, linear-elastic and isotropic
thin foils subject to in-plane loads. Two sets of experiments were carried out, on
a rectangular membrane under simple shear and on a square membrane subjected
to two pairs of equal and opposite diagonal forces at the corners. Salient find-
ings are that: the wrinkle profile is generally well approximated by a half sine
wave in the longitudinal direction, with constant or linearly-varying transverse
wavelength; sudden changes in the shape of the membrane, accompanied by
changes in the number of wrinkles, occur in both cases; in the sheared mem-
brane the wrinkle pattern remains essentially unchanged for increasing shear
displacement, whereas in the square membrane a large diagonal wrinkle appears
when the corner load ratio is around 3.

1. Introduction

Thin, prestressed membranes are a key element of the next generation of space-
craft, to provide deployable mirror surfaces, solar collectors, sunshields, solar sails,
etc. While some of these applications demand very smooth surfaces, and hence
membranes that are biaxially prestressed, for several other applications slightly
nonsmooth membranes are acceptable, provided that the size and shape of the de-
viation from the nominal shape are sufficiently small. The realization of wrinkled
or partially wrinkled membrane structures, as opposed to structures with totally
smooth surfaces is often much simpler and cheaper [Jenkins 2001], and therefore,
for those applications in which a slightly wavy surface may be acceptable, engi-
neers are now faced with the task of estimating the extent and amount of waviness.

This paper, the first in a series of three, aims to observe the formation, evolution,
and shape of reversible corrugations, or wrinkles that form in initially flat, linear-
elastic and isotropic thin foils, or membranes, under the action of in-plane loads.
Initial imperfections, arising say from the presence of permanent creases due to pre-
vious folding of the membrane, are not considered. The experimental observations
made in the present paper form the basis for an analytical model that will explain

Keywords: plate buckling, membrane structures, wrinkling.
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and identify the key characteristics of wrinkles and provide simple predictions for
the wavelength and amplitude of the wrinkles; see [Wong and Pellegrino 2006a].
Detailed numerical simulations will appear in [Wong and Pellegrino 2006b].

Previous work on wrinkled membranes has focussed mainly on the load transfer
characteristics of wrinkled membranes and the associated, nonlinear constitutive
relationships. Wrinkled shear webs were first investigated by Wagner [1929] and
later by Reissner [1938] and Mansfield [Mansfield 1968; 1989], and these studies
established wrinkled membranes as a very useful and efficient structural element
for lightweight structures. Stein and Hedgepeth [1961], followed by many others,
investigated the nonlinear load-displacement or moment-rotation relationship of
partially wrinkled membrane structures.

Only recently have the wrinkle details, such as wrinkle pattern, wavelength and
amplitude, been of interest to researchers [Cerda et al. 2002; Wong and Pellegrino
2002; Epstein 2003], so it is appropriate to begin with an experimental character-
ization of the way in which wrinkles form and develop in simple, thin membrane
structures. Particular aims of the present study will be to examine how wrinkles
change in response to the applied loads and also how repeatable any particular
pattern of wrinkles is when the loads are removed and then reapplied, in order to
establish particular features of their behaviour that one needs to be aware of when
setting out to develop appropriate analytical or computational models.

Hence, this paper will present experiments that were carried out first on a rect-
angular membrane whose long edges are sheared uniformly, thus forming a series
of approximately uniform diagonal wrinkles, and secondly on a square membrane
subjected to two pairs of equal and opposite diagonal forces at the corners, where
the ratio between the magnitude of the forces had different values. In each experi-
ment the wrinkle pattern was carefully measured, and the wrinkle wavelength and
amplitude were obtained from the measurements.

The layout of the paper is as follows. Section 2 presents a brief review of previ-
ous experimental work on wrinkled membranes. Section 3 describes the apparatus
for the two sets of experiments. Sections 4 and 5 present the experimental results
obtained from the membrane in shear and from the square membrane, respectively.
Section 6 concludes the paper.

2. Review of previous work

Early experiments on wrinkled membranes mainly focussed on the measurement
of overall response parameters, such as the end rotation of a pressurized cylinder in
pure bending [Stein and Hedgepeth 1961] or the torque-rotation relationship of a
stretched circular membrane attached to a central hub [Stein and Hedgepeth 1961;
Mikulas 1964]. These particular experimental studies were carried out to validate
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wrinkling theories developed specifically to analyse partially wrinkled membranes.
They also intended to confirm that the membrane retained most of its stiffness after
wrinkling had first occurred, although a notable softening was in fact observed with
the growth in the extent of the wrinkled regions.

In another classical study, Mansfield [1968; 1970] determined the orientation
of the wrinkle lines in membranes with different shapes, for different boundary
conditions. Only qualitative correlations between theory and the experimental ob-
servations were attempted.

Performing detailed measurements on thin membranes is not easy, mainly be-
cause high accuracy noncontact measurement apparatus is needed. A set of care-
fully planned experiments, including accurate measurements of wrinkle details by
using a capacitance proximity sensor, were carried out by Jenkins et al. [1998] on
a square Mylar membrane subjected to different combinations of shear and tension
forces. These experiments showed that both the wrinkle amplitude and the number
of wrinkles increase with the applied shear force, but decrease with the tension
force. The reverse relationship was found between the wrinkle wavelength and the
applied forces.

The same measurement technique was later extended by Blandino et al. [2001]
to measure the surface profile of a thin, aluminized 0.5 m square Kaptonr mem-
brane subjected to four corner forces, to include the effects of thermal gradients
within the membrane. Blandino et al. [2001] also produced a complete out-of-plane
displacement contour plot for the membrane using photogrammetry, and compared
the two sets of measurements in the region near a corner of the membrane. Good
agreement was observed, with an accuracy of up to ±0.02 mm on the wrinkle
amplitudes.

The main disadvantage of capacitance sensors is that they need a metallic surface
target and the sensor must be in electrical contact with the membrane. As for
photogrammetry, a large number of target points is required in order to capture
fine wrinkle details and the postprocessing of the images can be time-consuming
[Blandino et al. 2002a]. However, the latest applications of this technique, based
on the commercial software package Photomodeler 4.0 [Blandino et al. 2003], have
shown that this technique is making very rapid advances.

All of the work mentioned above was carried out on initially flat films. The
effect of preexisting creases on the constitutive behaviour of thin foils has been
investigated by Murphey [2000] and Papa and Pellegrino [2005].
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3. Experimental techniques

In the present study we are interested in measuring the out-of-plane displacement/am-
plitude of wrinkles formed in a nominally flat membrane. The particular mem-
brane that was used is a polyimide film made by DuPont, known as Kapton HNr.
This film is already widely used for various spacecraft applications, because of its
optical properties (e.g. excellent adhesion to metal films), electrical and thermal
conductivity, and environmental compatibility and survivability. Some of these
foils were supplied with a mirror surface finish, which made the selection of a
suitable measurement device particularly challenging.

A Charge Coupled Device (CCD) laser displacement sensor, model LK-081
supplied by Keyence, was used for all experiments presented in this paper. Unlike
conventional laser sensors, which use the whole light distribution in the beam spot
and hence tend to be affected by the surface finish of the target surface, this par-
ticular device detects the pixel with the peak light intensity and uses triangulation
to measure the distance from the laser to the reflecting surface. The device is posi-
tioned at a reference distance of 80 mm from the surface and has a measurement
range of ±15 mm, corresponding to a full output of ±5 V (amounting to 3 mm/V),
with a resolution of 3 µm.

The voltage output from the laser was logged to a Schlumberger SI 3531P data
acquisition system set at 2 readings per second, and the position of the laser corre-
sponding to each measurement was worked out by assuming that the laser travels
at a uniform speed.

3.1. Laser scanning frame. The laser was mounted on a supporting unit attached
via two linear guides to an Al-alloy frame; see Figure 1(a). The position of the
supporting unit is controlled by a 10 mm diameter brass threaded rod, held by two
end bearings and driven by a geared DC motor, whose speed is such that the laser
is moved at a rate of 0.5 mm/s. The connection is through a floating nut, to avoid
jamming. Although a small vibration is induced in the frame by the movement of
the laser, it was found that the noise on the laser output was negligible.

The maximum travel of the laser, in the x-direction, defined in Figure 1(b), is
approximately 400 mm.

3.2. Shear test apparatus. An apparatus to subject rectangular membranes to a
state of simple shear was designed and constructed, in order to measure the pro-
file of different sections of the membrane by means of the laser scanning frame
described in Section 3.1.

This shear rig comprises a stiff base plate and two parallel blocks holding the
longer edges of the membrane. One block is fixed and the other, which holds the
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upper edge of the membrane, can be moved along the x-axis, in either sense, to
apply shear displacements. Movement in the y-direction is not allowed.

Four linear bearings support the movable edge of the membrane, whose position
can be precision controlled by means of a threaded rod, and monitored with a digital
displacement gauge with an accuracy of ±0.05 mm.

First, the membrane is attached to the moving edge. Then, before clamping
the fixed edge, a small initial stress is applied in the y-direction by means of a
system of counterweights, connected to the membrane by Kaptonr tabs through
Kevlarr cords running over closely spaced pulleys. The surplus membrane, cords,
counterweights, etc. are removed after tightening the fixed edge clamping strip.
The complete experiment set-up is shown in Figure 1(b).

The overall dimensions of the base plate are 430 mm × 440 mm. The whole
rig was constructed of steel and its parts were sized on the basis that the maximum
deflection should be less than 0.1 mm under a maximum load of 1.7 N/mm from
the membrane (corresponding to the ultimate stress of Kapton HNr, which is
69 N/mm2, and considering 0.025 mm thick membranes [DuPont 2001]). The
maximum normal stress in any test described in this paper will be less than half
this ultimate value, to stay well within the linear range of the material. Wong
[2003] has measured an average Young’s Modulus of 3500 N/mm2 and an average
Poisson’s ratio of 0.31 in Kapton HNr, over a range of three film thicknesses
(0.0125, 0.025, and 0.05 mm) and for strains up to 0.8%.

3.3. Square membrane apparatus. A 650 mm square frame was designed to hold
a 500 mm square membrane and apply point loads at the four corners. This frame
was built by welding four 25 mm × 1.5 mm steel square hollow sections, with
a diagonal bracing member welded at the back. Four 12 mm square bars were
welded across the four corners of the frame. These provide end attachments for
the membrane, through 4 mm holes drilled through each bar.

Corner attachments, able to withstand a maximum tension of 20 N without induc-
ing any plastic deformation of the membrane, were made as follows. The corners
of the membranes were cut at 45◦ to the sides, to a width of 25 mm; 1.5 mm
diameter steel pins were attached to the cut edges, with a 25 mm wide by 40 mm
long strip of Kaptonr adhesive tape doubled back over the membrane (thus, each
pin forms a 25 mm wide spreader bar, which distributes the applied load as surface
tractions on either sides of the membrane, over a patch of 25 mm × 20 mm); a
0.9 mm diameter Kevlarr cord was used to connect the centre of the pin to a strain
gauged turn-buckle. The connection between the turn-buckle and the cord was
designed such that minimum distortions were introduced during tensioning and
the cord length could be adjusted at any stage of the experiment.
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Figure 1. (a) Laser scanning frame, (b) Shear-rig.

The same type of connection was used for all four corners of the membrane.
Thus, the tension force applied at each corner could be varied to produce differ-
ent load ratios, T1/T2. Note that, for equilibrium, only two forces can be varied
independently. Hence, two strain meters were used to monitor the load levels.

The load frame was designed such that the effect of gravity on the wrinkles
formed in the membrane could be compared, for any chosen load condition, by
holding the membrane either vertical or horizontal.
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Figure 2. Square frame experimental set-up, in vertical configuration.

The laser scanning frame described in Section 3.1 was attached to the square
frame through linear bearings running on guide rails at 45◦ to the sides of the
frame. The complete experimental set-up is shown in Figure 2. (An additional
local coordinate system, ξ , η, is defined in this figure.) The use of the linear guides
enables the laser to scan, in the η direction, profiles of the membrane with different
values of ξ . Two pairs of corner tension forces, T1 and T2, are also indicated in the
figure.

4. Membrane in shear

The main purpose of subjecting rectangular membranes to simple shear was to in-
vestigate the variation of the wrinkle parameters — that is, the relationship between
out-of-plane displacement and wavelength — with the magnitude of the applied
shear displacement. The boundary conditions are relatively simple in this case; the
two long edges of the membrane are held at a fixed distance while the two side
edges are unrestrained, and so the wrinkles arrange themselves to form a repeating
pattern. All test results presented in this section were obtained on 380 mm wide
membranes with a height, between the supports, of 128 mm.
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4.1. Wrinkle pattern. The overall wrinkle pattern (see Figure 3) shows that, apart
from two “fan” regions near the short edges of the membrane, the wrinkles are
inclined at an angle of 45◦ to the upper and bottom edges of the shear-rig. They
are also parallel to each other, of course.

As the shear displacement was gradually increased, the wrinkle pattern remained
essentially unchanged, all the wrinkles in the middle being inclined at approxi-
mately 45◦ to the edges, as before, and the two side fans becoming more distorted.
The size of the central wrinkled region, bounded by the two fan regions, remained
almost unchanged, although the number of wrinkles increased when the shear
displacement was increased. Figure 3 shows the wrinkle patterns corresponding
to shear displacements of 0.5 mm, 1.0 mm, 2.0 mm and 3.0 mm (for which the
maximum normal strain is 1.2%, and so Kaptonr begins to behave nonlinearly),
for a 0.025 mm thick film.

Repeating this test on foils of different thickness showed that the number of
wrinkles decreases when the thickness of the membrane is increased, the shear dis-
placement being equal. An extensive set of photographs of these wrinkle patterns
can be found in Wong [2003].

4.2. Wrinkle profile. The wrinkle details were further investigated by scanning
the membranes across the middle (section A-A in Figure 3) with the CCD laser.

The laser measurements provide the out-of-plane displacement of the membrane,
w. Plotting this height vs. the position of the laser is a useful tool for studying the
characteristics of the wrinkles. Figure 4 shows four plots of this kind, based on
measurements taken half-way between the two long edges of the membrane (y =

64 mm) on a 0.025 mm thick Kaptonr film. The four plots, for shear displacements
of δ = 0.5 mm, δ = 1.0 mm, δ = 2.0 mm, and δ = 3.0 mm, which correspond one
by one to the wrinkle patterns shown in Figure 3.

A common feature of the plots shown in Figure 4, see for example Figure 4(b),
is the presence of three distinct regions, as follows. Regions (i) and (iii) consist
of two high peaks each, close to the free edges on the sides of the membrane.
Region (ii), in the middle, is characterised by fairly uniform wrinkles and it will
be shown in Part 2 of this paper series that the key characteristics of the wrinkles
in Region (ii) can be captured with a simple analytical model.

In Figure 4 it can be noticed that the number of wrinkles increases with the
applied shear displacement. More precisely, if each crest in these plots is counted
as a wrinkle, the plots show that there are 15 wrinkles for δ = 0.5 mm, 17 for δ =

1.0 mm, 18 for δ = 2.0 mm, and 19 for δ = 3.0 mm. Also, it was observed during the
experiments that when δ was increased gradually and monotonically, changes in the
numbers of wrinkles occur suddenly. A detailed numerical simulation, described in
the third paper in this series [Wong and Pellegrino 2006b], shows that any change
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Figure 3. Wrinkle patterns for a 0.025 mm thick Kaptonr film
under shear displacements of (a) δ = 0.5 mm, (b) δ = 1.0 mm, (c)
δ = 2.0 mm, and (d) δ = 3.0 mm.
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Figure 4. Section A-A of 0.025 mm thick Kaptonr film for shear
displacements of (a) δ = 0.5 mm, (b) δ = 1.0 mm, (c) δ = 2.0 mm,
and (d) δ = 3.0 mm.

in the number of wrinkles is the effect of an instability (mode jumping) that usually
occurs near the edge of the membrane.

Another important observation that can be made from Figure 4 is that both the
wrinkle amplitudes and the number of wrinkles increase, whereas their correspond-
ing wavelengths decrease when δ is increased.

Figure 5 shows the evolution in the profile of the membrane during an unload–
reload cycle, beginning immediately after the load cycle depicted in Figure 4. It is
interesting to compare the membrane profiles that correspond to the same value of
the shear displacement, but at different stages of the loading cycle. For example, for
δ = 2.0 mm the number of wrinkles is 18 when δ is increasing — see Figure 4(c) —
but it is 19 when δ is decreasing — see Figure 5(b). Similarly, for δ = 0.5 mm their
numbers are 15 and 19, respectively.



WRINKLED MEMBRANES I: EXPERIMENTS 13

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8
D

e
fl
e
c
ti
o
n
 w

 (
m

m
)

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

0 100 200 300

Distance x (mm)

0 100 200 300

Distance x (mm)

D
e
fl
e
c
ti
o
n
 w

 (
m

m
)

D
e
fl
e
c
ti
o
n
 w

 (
m

m
)

δ=2.0 mm δ=1.0 mm

δ=0.5 mm δ=0.75 mm

δ=1.0 mm δ=2.0 mm

(a) (b)

(d)

(e) (f)

(c)

Figure 5. Section A-A of 0.025 mm thick Kaptonr film under
shear, during (a–c) unloading and (d–f) reloading.

After the first unloading small residual imperfections were noted, resulting from
slippage/yielding of the material near the clamped edges. Upon reloading, these
imperfections have the effect of driving the membrane more rapidly towards its
final configuration (with 19 wrinkles) much earlier, compared to the nearly perfect
membrane used in the first loading cycle.
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Figure 6. Three-dimensional view of half-wrinkle in sheared membrane.

4.3. Wrinkle shape. The maximum wrinkle amplitude can be expected to occur
half-way between the two clamped edges of the membrane. In order to verify
this, and to measure the longitudinal shape of a wrinkle, additional profiles of
the membrane were measured at the following distances from the fixed edge, y =

15 mm, y = 30 mm, y = 64 mm, y = 85 mm, y = 105 mm and y = 110 mm, for the
same shear displacement. These profiles, labelled (i) to (vi), are shown in Figure 6.
The central part of this figure shows a three-dimensional reconstruction of the shape
of a particular half-wrinkle, based on corresponding segments of the six profiles.
Then, having defined a new axis y′ at 45◦ to x and y, as shown in Figure 6, the
amplitudes of the six selected crests have been plotted in Figure 7 together with a
half sine wave whose amplitude has been scaled to match the wrinkle amplitude
at point (iv). The shape of the wrinkle can be described quite accurately by this
simple mode-shape.

In addition to obtaining information on the amplitude of a wrinkle, the half-
wavelength of this particular wrinkle — given by the base width of the six crests
in Figure 6 — can be seen to remain approximately constant, except when it ap-
proaches the end supports; see Figure 6(i) and (vi). This particular effect may
be due to localised deformation imposed by the clamping strips; additional small
wrinkles appear in these end regions. Also note that large displacements occur at
the free side edges.
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Figure 7. Comparison of longitudinal wrinkle profile with a sinu-
soidal mode shape, for sheared membrane.

4.4. Discussion. This study has revealed a number of important characteristics of
wrinkles in thin rectangular membranes under simple shear.

It was already observed in [Mansfield 1989], and it has been confirmed, that
the wrinkle pattern comprises a general “parallelogram” of wrinkles in the central
region, containing approximately uniform wrinkles at 45◦, plus two triangular fan
regions which include a small highly stressed corner region and a triangular slack
region, near the side edges. The extent of these fan regions remains approximately
unchanged when the magnitude of the shear displacement δ is varied.

It has been established that in the uniformly wrinkled region the wrinkle ampli-
tude and wavelength vary with δ. More precisely, the wrinkle wavelength decreased
with increasing δ, although the rate of change was found to decrease as δ grew
larger. Conversely, both the amplitude and the number of the wrinkles were found
to initially increase with δ. For δ > 1.5 mm (corresponding to a normal strain of
0.6% along the wrinkles) the wrinkle pattern was found to have become stable:
only one more wrinkle could be formed, and only by increasing δ to almost 3 mm.

The average wrinkle wavelength and average amplitude (taken as the average
wrinkle height in the central region, discarding the higher peaks at the corners) for
Kaptonr membranes of three different thicknesses have been plotted against the
shear displacement in Figure 8.

5. Membrane under corner loads

In the case of the square membrane subject to corner loads, two load cases were
investigated. First, the membrane was subjected to a series of gradually increasing
symmetrical tension loads T (= T1 = T2) at its four corners. Second, one pair of
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Figure 8. Average wrinkle wavelengths measured in the x-
direction (top) and average wrinkle amplitudes (bottom) in
sheared membranes of different thicknesses.

loads, T2, was kept constant while the other pair, T1, was increased, to study the
effects of different load ratios. The associated wrinkle details were measured for
every load case and for different membrane thicknesses. Here we present results
from a set of experiments on a 0.025 mm thick, 500 mm by 500 mm Kaptonr

membrane.

5.1. Symmetric loading (T1 = T2). The membrane was first loaded up to 5 N at all
four corners and the wrinkle profile was scanned with the CCD laser at six different
locations, corresponding to the following values of the coordinate ξ (measured
from a corner of the membrane loaded by one of the forces T1): ξ = 35 mm,
ξ = 53 mm, ξ = 70 mm, ξ = 105 mm, ξ = 141 mm, and ξ = 177 mm. (The
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coordinate system ξ, η is defined in Figure 2.) After all six profiles had been
scanned, one pair of loads, T1, was increased to 10 N and finally to 20 N, and all
scans were repeated.

Wrinkle profiles were produced by plotting the membrane out-of-plane displace-
ment, w, against the distance η across the membrane (measured from the edge of
the membrane) for two load levels, T = T1 = T2 = 5 N and T = T1 = T2 = 20 N. The
results are presented in Figure 9. Note that the membrane slopes down from left
to right, by about 0.5 mm, and this effect needs to be discounted when measuring
the wrinkle amplitudes. Blandino et al. [2002a] carried out an almost identical
experiment, but using triangular tabs at the corners of the membrane.

Examining the plots in Figure 9 shows that for increasing distance from the
corner of the membrane, first the amplitude of the wrinkles increases, reaching
a maximum at ξ ≈ 105 mm, and then starts decreasing. The wrinkles become
vanishingly small when ξ ≈ 180 mm; the central part of the membrane is un-
wrinkled. Also note that, if edge effects are neglected, the wrinkle amplitudes
for symmetrical loading are quite small, and indeed much smaller than will be
observed under asymmetric loading, in the next section.

An interesting observation is that the extent of the wrinkled regions in the
membrane remains essentially the same, despite a four-fold increase in the load
level, and wrinkle amplitude and wavelength are reasonably uniform, apart from
the edges of the membrane. However, the number of wrinkles increased when
the load was increased, as already observed by Blandino et al. [2002b], and did so
suddenly, thus showing mode-jumping as already observed in the shear experiment
presented in Section 4.2. Figure 9(d) shows that the number of wrinkles increased
from four when T = 5 N, to five when T = 20 N. The wrinkle wavelength decreases
correspondingly, and the wrinkle amplitude is also observed to have decreased with
the higher loads.

Figure 9 also shows that the wrinkle profiles at the smaller load, T = 5 N, are
less uniform than at the higher load, T = 20 N. Therefore, rather than considering
individual wrinkles, average values will be used to study general trends.

A photograph showing the overall wrinkle pattern for T = T1 = T2 = 5 N is
shown in Figure 10(a). It can be seen that there are four, symmetric wrinkled
regions, radiating from each corner, plus a large central region which is visibly
free of wrinkles. These visual observations agree with the earlier discussion of the
wrinkle profiles.

5.2. Asymmetric loading. Under symmetric loading the wrinkle amplitudes had
been found to be small. In the second load case, a diagonal wrinkle with larger
features was formed by increasing the load ratio, T1/T2. T2 was kept fixed at 5 N,
and T1 was gradually increased from 5 N to 20 N.
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Figure 9. Wrinkle profiles in 0.025 mm thick, square Kaptonr

membrane, for T = T1 = T2 =5 N (dashed) and T = T1 = T2 =20 N
(solid), at following distances from corner (a) ξ = 35 mm, (b)
ξ = 53 mm, (c) ξ = 70 mm, (d) ξ = 105 mm, (e) ξ = 141 mm and
(f) ξ = 177 mm.
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(a) (b)

(c) (d)

Figure 10. Wrinkle pattern in 0.025 mm thick square Kaptonr

membrane for (a) T1/T2 = 1, (b) T1/T2 = 2, (c) T1/T2 = 3 and (d)
T1/T2 = 4.

Figure 10 shows the overall wrinkle pattern in the membrane, for different load
ratios. The wrinkle pattern was generally unchanged for T1/T2 up to 2, again with
wrinkles radiating from the corners and the central wrinkle-free region gradually
becoming smaller as the load ratio increased. The appearance of the membrane
changed when T1/T2 was increased from 2 to 3; a diagonal wrinkle formed between
the more heavily loaded corners and this diagonal wrinkle became more dominant,
with a larger amplitude and wavelength when the maximum load ratio of T1/T2 = 4
was applied, as shown in Figure 10(d).

To monitor the growth of this diagonal wrinkle the profile of the membrane was
measured at three cross-sections, ξ = 105 mm, ξ = 177 mm and ξ = 355 mm, for
each load ratio. These profiles are plotted in Figure 11.

The most noticeable feature in these figures is a very large central wrinkle at
T1/T2 = 4, with correspondingly large edge displacements, but not in Figure 11(c)
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Figure 11. Wrinkle profiles for 0.025 mm thick, square Kaptonr

membrane at (a) ξ = 105, (b) ξ = 177 and (c) ξ = 355 mm for
different load ratios.
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which corresponds to a section of the membrane containing the other two corners
of the membrane. The figure also shows that there are still no wrinkles beyond
ξ = 177 mm for T1/T2 = 2. But at T1/T2 = 3, a wrinkle has started to form across
the centre of the membrane, at ξ = 355 mm.

Similar experiments were conducted on two more Kaptonr films, one thinner
(0.0125 mm thick) and one thicker (0.05 mm). Both films exhibited the same be-
haviour as that described above for the 0.025 mm thick film. Photographs showing
the wrinkle patterns observed in these films, under different load ratios can be
found in [Wong 2003].

The situation can be summarised as follows. For load ratios up to 2, only corner
wrinkles form in any of these membranes. These wrinkles are more obviously
visible in the thinnest film, where many more wrinkles were observed, and are
hardly noticeable in the thickest film. At T1/T2 = 3 a diagonal wrinkle was noticed
in the central region of all films, and this wrinkle dominates the wrinkle pattern at
the maximum load ratio of 4. In all cases, there were two small wrinkled regions in
the other two corners of the membrane. The magnitudes of these smaller wrinkles
were not measured.

5.3. Discussion. Average wrinkle wavelengths and amplitudes were obtained from
the plots in Figure 9, and also from analogous plots for membranes of two other
thicknesses; they are shown in Figure 12. These average values were computed
over the central portion of the membranes, where “more uniform” wrinkle profiles
are observed, and thus disregarding the side edges. Because the wrinkle profiles
at lower stress levels had been found to be less uniform, the average wavelengths
and amplitudes were computed from the wrinkle profiles measured at the highest
load levels, which were T = 10 N for the 0.0125 mm thick film and T = 20 N for
the 0.025 mm and 0.05 mm thick films.

The wrinkle wavelengths for all three membranes were found to increase approx-
imately linearly with the distance from the corner, see Figure 12. This observation
is consistent with the radial wrinkle pattern pointed out in Figure 10.

Figure 13 shows the longitudinal profile of an average wrinkle, obtained by
plotting the average wrinkle amplitudes versus distance from the corner of the mem-
brane. For the two thinner films these amplitudes first increase and then decrease,
after attaining a maximum value approximately in the middle of the wrinkle profile,
and generally both the wavelength and amplitude increase with the thickness of the
membrane.

However, the thickest membrane did not follow these trends; it attained its max-
imum wrinkle amplitude much closer to the corner, at ξ = 70 mm. This difference
is probably because the load-to-thickness ratio, which was kept constant in the
0.0125 mm and 0.025 mm thick membranes, was halved in the 0.05 mm thick
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Figure 13. Longitudinal profile of corner wrinkles in square mem-
brane, for T1/T2 = 1.

membrane, because the corner attachments could only carry a maximum load of
only 20 N.

Thus, the profiles of the wrinkles in the thinner membranes can, again, be de-
scribed quite accurately by a half sine wave, but this approximation becomes less
accurate for thicker membranes under low stress.

For the asymmetric load case, the cross-sectional plots shown in Figure 11 have
provided insight into the interaction between the large diagonal wrinkle and the
(much smaller) corner wrinkles. Several other interesting details can be noted in
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these plots. For example, the wrinkle profile can be seen to have become (al-
most) anti-symmetric about a central diagonal line. Also, at the highest load ratio,
T1/T2 = 4, both the width and the amplitude of the central diagonal wrinkle were
found to increase with the distance from the corner. A detailed study by Wong
[2003] has confirmed that for all three membrane thicknesses both of these param-
eters reach their maximum magnitude at the centre of the membrane, at ξ = 355 mm.
The wrinkle profiles beyond this point are the mirror image of the profile in the
first half membrane.

6. Conclusion

In addition to the points made in the detailed discussion presented at the end of
each experiment, in Sections 4.4 and 5.3, there are some general features of the
problems studied that should also be noted.

First, the two experiments presented in this paper share a number of common
features, as follows.

• Wrinkle profile; well approximated by a half sine wave in the longitudinal
direction with linearly-varying transverse wavelength in the transverse direc-
tion. Indeed, there is no wavelength variation at all in the sheared membrane
problem.

• Mode jumping, that is, a sudden change in the number of wrinkles, occurs
both in the central, uniformly wrinkled, part of the sheared membrane and in
the corner regions of the square membrane. In both cases, this is due to the
fact that only an integral number of wrinkles is allowed by the boundaries.

Second, on the other hand, some important differences have become apparent,
as follows.

• Wrinkle pattern: its evolution is different in the two cases. Whereas in the
sheared membrane the wrinkle pattern remains essentially unchanged for in-
creasing shear displacement, in the square membrane a large diagonal wrinkle
appears when the corner load ratio is around 3.

• Average stress: due to the presence of stress concentrations at the corners of
the tabs, wrinkles appear in this membrane even though the average stress is
rather low. One effect is that the wrinkle characteristics in the square mem-
brane experiments appear to be more repeatable than in the sheared membrane,
where slippage/yielding is prone to occur along the edges.

Although none of the features noted is particularly surprising, these are useful
points to come back to in the following two papers in this series.
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WRINKLED MEMBRANES
PART II: ANALYTICAL MODELS

Y. WESLEY WONG AND SERGIO PELLEGRINO

We present a general analytical model for determining the location and pattern
of wrinkles in thin membranes and for making preliminary estimates of their
wavelength and amplitude. A rectangular membrane under simple shear and
a square membrane subject to corner loads are analysed. In the first problem,
our model predicts the wavelength and the wrinkle amplitude to be respectively
inversely proportional and directly proportional to the fourth root of the shear
angle. Both values are directly proportional to the square root of the height
and thickness of the membrane, and are independent of the Young’s modulus.
In the second problem two wrinkling regimes are identified. The first regime
is characterised by radial corner wrinkles and occurs for load ratios less than
1/(

√
2−1); the number of wrinkles is proportional to the fourth root of the radius

of the wrinkled region and the magnitude of the corner force, and inversely pro-
portional to the Young’s modulus and thickness cubed. The amplitude of these
wrinkles is inversely proportional to their number, directly proportional to the
square root of the radius of the wrinkled region and the magnitude of the corner
force, and inversely proportional to the square root of the Young’s modulus and
thickness. The second regime occurs for load ratios larger than 1/(

√
2 − 1), and

is characterised by a large diagonal wrinkle, plus small radial wrinkles at all four
corners. Analytical expressions for the variation of the width and amplitude of
the large wrinkle with the load ratio are obtained for this case also. All analytical
predictions are compared with experimental and computational results from the
other two papers in this series.

1. Introduction

This is the second paper in a three-part series that deals with estimating wrinkle
details, i.e. shape, wavelength, and amplitude, in thin, initially flat and stress-free
membranes subject to certain prescribed in-plane load and boundary conditions.

The first paper [Wong and Pellegrino 2006a] presented an experimental study
of two different problems. First, a rectangular membrane whose longer edges are
sheared uniformly, and thus forms a “parallelogram” of approximately uniform
wrinkles at 45◦ to the edges. Second, a square membrane loaded by two pairs

Keywords: complementary strain energy bounds, membrane structures, wrinkling.
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of equal and opposite diagonal forces applied at the corners, which forms fans of
uniform corner wrinkles if the ratio between the larger pair of forces and the smaller
ones is less than about 2.5, but forms a large diagonal wrinkle aligned with the pair
of larger forces if the ratio is higher than 2.5. A particularly interesting feature of
the second problem is the change in the wrinkle pattern in response to changes in
the force ratio. Detailed measurements of the shape of the wrinkles were made,
and trends in the variation of the wavelength and amplitude were observed in each
case.

The present paper presents a simple analytical model for heavily wrinkled mem-
branes. This model is able to explain many features of the behaviour observed in
the experiments and leads to a general method for making approximate estimates of
both the overall wrinkle pattern and the average wrinkle amplitude and wavelength.
This method is then applied to the sheared membrane and the square membrane
problems, and analytical expressions are obtained in each case for the wrinkle
wavelength and amplitude. Finally, the predictions made from these expressions
are compared with the experimental results from [Wong and Pellegrino 2006a]
and computational results from [Wong and Pellegrino 2006b], and are found to be
remarkably accurate.

The layout of the paper is as follows. Section 2 presents a brief review of the
literature on analytical methods for determining the extent of the wrinkle region
and, within it, the direction of the wrinkles. Here the classical assumption is that
the bending stiffness of the membrane is negligible, and hence an infinitely large
number of vanishingly small wrinkles should form. A more detailed review of
the recent literature; in which the bending stiffness of the membrane is no longer
neglected, is then presented. Solutions for uniform, parallel wrinkle amplitudes
have been published. Section 3 outlines the key ideas of our simple analytical
model. Section 4 applies this model to the sheared membrane; here the wrinkles
are known to be at 45◦ to the edges and so the implementation of our analytical
model is rather straightforward. Section 5 implements the model for the square
membrane. Here no analytical characterization of the wrinkle region exists, and so
a range of simple, approximate equilibrium stress fields are proposed; a criterion
for selecting the best approximation (which depends on the ratio of corner loads)
is suggested. The derivation of the wrinkle wavelength and amplitude then follows
along similar lines to Section 4. Section 6 compares the analytical predictions
obtained in Sections 4 and 5 with results from the other two papers in this series.
Section 7 concludes the paper.
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2. Review of previous analytical models

Membrane wrinkling has attracted much interest in the past, starting from the ob-
servation that the web of a thin-walled beam can carry loads well above the initial
buckling value, which prompted the development of tension field theory by Wagner
[1929]. Simpler and yet more general formulations of this theory were proposed
by Reissner [1938] and Mansfield [1968; 1970; 1989].

Reissner explained this theory by considering a thin strip under shear. He noted
that up to a certain intensity of the shear load a uniform state of shear stress is
induced in the sheet. If the load is increased beyond this intensity buckling occurs;
however, if the distance of the longer edges of the sheet is kept constant, the shear
load can be increased without failure to an intensity much greater than that at which
buckling first took place. The out-of-plane deformation of the sheet after wrinkles
are formed has been characterised in the first paper in the present series.

Reissner noted that once wrinkles are formed, the strip is mainly stressed in
tension along the wrinkles, while the compressive stress perpendicular to the wrin-
kles — which is the cause for the wrinkles — is small compared with the tensile
stress. At this point the fundamental assumption of tension field theory is that
this compressive stress, and also the bending stresses induced by the out-of-plane
deformation, are negligible in comparison with the tensile stress. Therefore, the
theory searches for plane stress solutions such that one principal stress is positive
and the other is zero. This is done by considering an elastic, anisotropic material
(whose material directions depend on the stress field) with modulus of elasticity
Eη = 0, where η is the principal stress direction transverse to the wrinkles. Reissner
showed that the line η = constant is straight, and went on to derive expressions for
the rotationally symmetric stress field in a sheet forming a circular annulus whose
edges are sheared.

A generalization of this theory was later proposed by Mansfield [1968; 1970],
who introduced the concept of a tension ray, defined by the trajectories of tensile
principal stress (the wrinkle directions), which again must be straight. He showed
that, given a wrinkled membrane whose boundaries are in part free and in part
subjected to given planar displacements, the direction of the tension rays is such
that the (stretching) strain energy is maximised. This results in a powerful vari-
ational technique with which Mansfield determined the tension rays in, among
others, semi-infinite and finite length rectangular strips clamped to rigid tie rods
(Figure 1). A comprehensive presentation of this work can be found in [Mansfield
1989].

With the same fundamental assumptions of the tension field theory, but allowing
for finite strains, an alternative approach [Pipkin 1986] is to construct a relaxed
strain energy such that if at a point both principal stretches are less than 1 (i.e.
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Figure 1. Tension rays in a semi-infinite membrane under simple
shear, from [Mansfield 1989].

the membrane is slack) the relaxed strain energy is defined to be zero; if one
principal stretch is greater than 1 the relaxed strain is defined on the basis of the
larger stretch, and if both principal stretches are greater than 1 then a standard
strain energy function is used. This formulation implicitly gets rid of compressive
stresses, and has the advantage that it fits within a standard variational formula-
tion. This approach was further developed and formalised by Steigmann [1990]
and implemented numerically by Haseganu and Steigmann [1994] and Ligaro and
Valvo [2000]. A generalization of the relaxed strain energy approach [Epstein and
Forcinito 2001] in terms of a hyperelastic material which saturates when wrinkles
form makes it easier to derive consistent expressions for the strain energy variations
in the wrinkled state. Wu [1978], Wu and Canfield [1981], and Roddeman et al.
[1987] have proposed to deal with wrinkling by modifying the deformation tensor
such that the principal stress directions are either unchanged, in the case of isotropic
membranes, or rotated appropriately in the case of anisotropic membranes.

Stein and Hedgepeth [1961] tackled the analysis of a partially wrinkled mem-
brane, which can be divided into taut regions and wrinkled regions, by introduc-
ing the concept of a variable Poisson’s ratio, which accounts for the geometric
strains induced by wrinkling. These authors were able to obtain analytical solutions
for, e.g., the moment-curvature relationship of a stretched rectangular membrane
loaded by axial forces and bending moments at the ends. Here the wrinkles begin
to form along the tension edge of the membrane, and propagate towards the neutral
axis when the moment is increased.

A premise common to all of the above work is that a membrane is modelled as a
two-dimensional continuum unable to carry compression and with negligible bend-
ing stiffness. Hence, it is implicitly assumed that an infinite number of wrinkles of
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Figure 2. Wrinkles in a hanging “blanket”, from [Rimrott and
Cvercko 1986].

infinitesimally small amplitude would form; it is generally believed that the stress
fields produced by these theories are a good approximation to the stress fields in
real membranes, when they are heavily wrinkled [Steigmann 1990]. Analytical
solutions for the onset of wrinkles in rectangular membranes subject to uniaxial
tension plus simple shear were obtained by Lin and Mote [1996]; these solutions
incorporate, of course, the bending stiffness of the membrane.

The first study of the shape of a heavily wrinkled membrane (as opposed to the
lightly corrugated shape that occurs soon after the onset of wrinkles) which also
took into account the role played by the membrane bending stiffness was the “hang-
ing blanket” solution by Rimrott and Cvercko [1986]. Consider a membrane held
at two corner points at the same height. A number of curved wrinkles form under
the action of gravity (Figure 2). The tension-line field, i.e., the stress distribution
that occurs in the membrane if out-of-plane displacements are neglected and yet
no compressive stress is allowed anywhere in the membrane, had previously been
determined by Mansfield [1981] for the case of a rectangular blanket. Rimrott
and Cvercko [1986] considered a membrane with sinusoidal, instead of straight
boundaries, and for this particular case obtained a solution for the post-wrinkling
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Figure 3. (a) Tension strips in hanging blanket and (b) detail of
third tension strip, showing stress distribution along centre line,
from Rimrott and Cvercko [1986].

tension-line field, where the membrane deforms out of plane while forming a num-
ber of wrinkles.

Rimrott and Cvercko noted that equilibrium of the membrane in the out-of-
plane distorted configuration requires each finite-size wrinkle to carry a uniform
horizontal force component; this horizontal force is equal in each wrinkle. Hence,
having shown that the boundaries of the wrinkle lines (Figure 3) have amplitudes
an, . . . , a0 that form a geometric progression (ai/ai+1 = constant) it follows that
the horizontal stress component, σx , at the centre of the wrinkle is largest in the
more closely spaced wrinkles at the top of the membrane. Associated with σx , there
is a compressive stress σy that vanishes at the edges of each finite-size wrinkle and
reaches a maximum along the centre line of the wrinkle; see Figure 3(b). Rimrott
and Cvercko assumed that the critical value, σcr, of this compressive stress is a
characteristic of the blanket material and showed that for any chosen value of σcr

there is corresponding number of finite-sized tension strips in the membrane.
Instead of Rimrott and Cvercko’s “material constant”, we have used for σcr the

Euler buckling stress of an infinitely long, thin plate of thickness t , Young’s mod-
ulus E , and Poisson’s ratio ν [Wong and Pellegrino 2002]. Hence,

σcr = −
π2 Et2

12(1 − ν2)λ2 , (1)
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where the width of the plate, λ, matches the unknown half-wavelength of the wrin-
kle. We derived expressions for the wrinkle wavelength and amplitude in a long,
rectangular membrane in simple shear. This approach, which forms the basis for
the methodology presented in this paper, was extended in [Wong et al. 2003] to
square membranes loaded by corner forces.

Epstein [2003] set up an approximate strain-energy analysis of a field of uniform,
parallel wrinkles. Having assumed the wrinkles to be of sinusoidal shape longitu-
dinally and to form circular arcs transversally (the same assumption had also been
made by Murphey et al. [2002]), Epstein showed that, given a longitudinal strain
εξ and wrinkling strain (transverse) εη, the wrinkle amplitude is

A =

√
2kL(ξ − ξ

2
), (2)

where k =
√

3ε2
η t2/2εξ (1 − ν2) and ξ = ξ/L is a nondimensional length variable

along the wrinkle (where L is the length of the wrinkle).
For the case of a square membrane of side length H , we have εξ = γ /2 and

εη = γ (ν − 1)/2, and Epstein obtained

A =

√√
3γ

4(1−ν2)
(1 − ν)

√
2Ht
2

. (3)

Energy-based derivations of the amplitude and wavelength of uniform, parallel
wrinkles in a rectangular sheet under tension were obtained by Cerda and Mahade-
van [2003].

The model presented in the next sections unifies our previous solutions [Wong
and Pellegrino 2002; 2003] and can be used to tackle other nonparallel, nonuniform
wrinkle fields.

3. Analytical model: general features

Our analytical approach is in four parts, as follows.
First, we propose a two-dimensional stress field that involves no compression

anywhere in the membrane; the regions where the minor principal stress is zero
are then assumed to be wrinkled and the wrinkles are assumed to be aligned with
the major principal stress directions. Ideally, both equilibrium and compatibility
should be satisfied everywhere by this stress field, but analytical solutions in closed
form (obtained by tension field theory, for example) exist only for simple boundary
conditions. However, we will show in Section 6 that a carefully chosen, simple
stress field that satisfies only equilibrium can provide quick solutions that are useful
for preliminary design. When several such stress fields have been identified, an
estimate of the complementary strain energy associated with each field is used to
select the most accurate one. More accurate stress fields, leading to better estimates
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of the wrinkle details, can be obtained, of course, from a two-dimensional finite
element stress analysis using membrane elements.

Second, we note that the bending stiffness of the membrane is finite, although
small, and hence a compressive stress will exist in the direction perpendicular to the
wrinkles. Because of its comparatively small magnitude, this stress was neglected
in the first part of the analysis. We assume that this compressive stress varies only
with the half-wavelength, λ, of the wrinkles and set it equal to the critical buckling
stress of a thin plate in uniaxial compression. By Euler’s formula applied to a plate
of unit width [Calladine 1983], we have

σcr = −
π2 Et2

12(1 − ν2)λ2 (4)

Thus, the stress across the wrinkles is a known function of the wrinkle wavelength.
Third, in each wrinkled region we describe the out-of-plane displacement of the

membrane, w, in terms of an unknown magnitude, A, and sinusoidal shape func-
tions in a ξ, η coordinate system. The ξ and η-axes are aligned with the principal
curvature directions, i.e. tangent and transverse to the wrinkles, respectively, and
the half-wavelengths of these shape functions correspond to the length and width of
the wrinkles. Thus, w automatically vanishes along the boundaries of the wrinkled
zone.

The equation of equilibrium in the out-of-plane direction for a membrane that
is not subject to any out-of-plane loading can be written in the form

σξκξ + σηκη = 0 (5)

(see [Calladine 1983]), where κξ and κη are the principal curvatures, which can be
obtained by differentiation of w. Since the stress distribution along the wrinkles is
known, from the stress field determined during the first part of the analysis, in the
transverse direction it can be assumed that

ση = σcr (6)

Enforcing Equation (5) at a single point, the midpoint of a wrinkle will be chosen,
provides an equation from which λ can be determined.

Fourth, the wrinkle amplitudes are estimated by considering the total transverse
strain εη as the sum of two components, a material strain (due to Poisson’s ratio
effects) and a wrinkling strain (due to in-plane geometric contraction associated
with out-of-plane displacement). The sum of these two strains must match the
boundary conditions imposed, e.g. by the wrinkle-free regions of the membrane.

Next, this general wrinkle model will be employed to predict the wrinkle details
in two specific examples.
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4. Analysis of membrane in shear

Consider a flat rectangular membrane of length L , height H , and thickness t , with
clamped long edges and short free edges. The upper edge is translated by an amount
δ in the direction of the edge itself, thus subjecting the membrane to a state of
simple shear that causes the formation of a series of wrinkles, as seen in Figure
4. A full explanation of the resulting wrinkle pattern was presented in [Wong and
Pellegrino 2006a], but here we will focus on the uniform wrinkles at 45◦ to the
edges, in the central part of the membrane.

Consider one of these uniform wrinkles in the central, uniformly wrinkled part
of the membrane, depicted in Figure 5.

2λy

x

H

L

δ

 


ξη

Figure 4. Rectangular Kapton sheet under simple shear.
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Figure 5. Perspective view of a single wrinkle.
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Note that the initially flat membrane has deformed into a doubly-curved surface,
alternately above and below the original xy plane of the membrane. This wrinkled
surface intersects the xy plane at a regular spacing λ, defined as the half-wavelength
of the wrinkle; neglecting edge effects, it can be assumed that these intersections
occur along straight lines.

A simple mode-shape describing the wrinkled surface can be readily set up using
the coordinate system ξ, η shown in Figure 5, where ξ is along the said intersection
line, i.e. parallel to the wrinkle direction, and η is perpendicular to it. The boundary
conditions on the out-of-plane displacement w are satisfied if we assume the mode
shape

w = A sin
π(ξ + η)

√
2H

sin
πη

λ
(7)

Nothing is said at this stage about in-plane deflection. Since the wrinkles are long
and narrow, η � ξ apart from a small region near the origin. Hence, the mode
shape can be simplified to

w ≈ A sin
πξ

√
2H

sin
πη

λ
(8)

The stress field consists of tension rays at 45◦ to the edges, and the stress along
the wrinkles, σξ , is much larger than the transverse stress, ση. Hence, neglecting
ση when writing the stress-strain relationship in the ξ -direction, we obtain

σξ = Eεξ (9)

For simple shear
εξ = γ /2 (10)

where γ = δ/H and, substituting into Equation (9) we obtain

σξ = Eγ /2 (11)

Recall that, although ση is relatively small in comparison with σξ , in order for
the wrinkle to have formed, the transverse stress must have reached the critical
buckling stress given in (4).

The principal curvatures that appear in the equilibrium equation (5) can be de-
termined as in [Calladine 1983] by differentiating (8):

κξ = −
∂2w

∂ξ 2 =
π2 A
2H 2 sin

πξ
√

2H
sin

πη

λ
, (12)

κη = −
∂2w

∂η2 =
π2 A
λ2 sin

πξ
√

2H
sin

πη

λ
. (13)

These expressions are only exact where ∂w/∂ξ ≈ 0 and ∂w/∂η ≈ 0, which is
indeed the case at a wrinkle mid point. Substituting Equations (4), (11), (12) and
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(13) into (5), simplifying and rearranging yields for the wrinkle half-wavelength
the expression

λ =

√
π Ht√

3(1 − ν2)γ
. (14)

To find an expression for the amplitude, A, of the wrinkle we note that the
imposed strain εη, given by

εη = −γ /2, (15)

(as can be seen from Mohr’s circle), has to be equal to the sum of the material
strain

εηM = −
ν

E
σξ (16)

with the average geometric strain, εηG, produced by wrinkling. This wrinkling
strain is obtained by taking the difference between the projected width of a wrinkle
and its actual width, and dividing by the actual width. Hence

εηG =

λ −

∫ λ

0

(
1 +

1
2

(
∂w

∂η

)2
)

dη∫ λ

0

(
1 +

1
2

(
∂w

∂η

)2
)

dη

. (17)

Here, assuming the slope ∂w/∂η to be small, the term (∂w/∂ξ)2 in the denominator
can be neglected.

Next, consider the centre line across a wrinkle, and hence substitute ξ = H/
√

2
into (8). Substituting the resulting expression for w into (17) and working out the
in integral gives

εηG = −
π2 A2

4λ2 . (18)

Finally, setting
εη = εηM + εηG (19)

as explained, we obtain

−
γ

2
= −

ν

E
σξ −

π2 A2

4λ2 . (20)

Substituting (11) into (20) and solving for A gives

A =

√
2(1 − ν)γ

π
λ, (21)

from which λ can be eliminated using Equation (14), to find

A =

√
2Ht
π

√
(1−ν)γ

3(1+ν)
. (22)
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It can be readily verified that this expression is equivalent to that obtained by
Epstein [2003], apart from a factor of 0.77. This discrepancy is mainly due to the
fact that Epstein assumed circular arcs as the wrinkle mode shape, instead of a
double sinusoid.

4.1. An energy approach. An alternative approach to find λ for the present, simple
boundary conditions, is to set up an expression for the strain energy in a wrinkled
thin plate, including the second-order strain due to out-of-plane deflection, and to
minimize with respect to λ. The membrane is modelled as a thin plate stretched in
the ξ -direction and wrinkled in the η-direction.

The general expression for the bending strain energy per unit area of an initially
flat plate that is bent into a cylindrical shape of curvature κη is

Ub =
1
2

Et3

12(1 − ν2)
κ2

η . (23)

As κη is not constant — see Equation (13) — the average strain energy per unit
area, U b, is obtained from

U b =
1
2

Et3

12(1 − ν2)

(
1

√
2Hλ

∫ λ

0

∫ √
2H

0
κ2

η dξ dη

)
=

1
2

Et3

12(1 − ν2)

π4 A2

4λ4 . (24)

The stretching strain energy per unit area can be obtained, neglecting stretching
in the η-direction, from

Us =
1
2 Etε2

ξ . (25)

Here, εξ is the sum of the strain due to the in-plane shear, Equation (10), plus that
due to the out-of-plane deflection due to wrinkling:

εξ =
γ

2
+

1
2

(
∂w

∂ξ

)2

. (26)

Thus εξ is also not constant. Hence, consider the average strain energy per unit
area over a wrinkle, U s , given by

U s =
1
2

Et
(

1
√

2Hλ

∫ λ

0

∫ √
2H

0
ε2
ξ dξ dη

)
≈

Et
2

γ 2

4
+

Et
2

π2 A2γ

16H 2 . (27)

The first of these terms is independent of the wrinkle amplitude, A; therefore it
will not be carried through to the next stage of the analysis.

The total mean strain energy per unit area (neglecting the term without A) is
given by

U = U b + U s =
1
2

Et3

12(1 − ν2)

π4 A2

4λ4 +
Et
2

γ 2

4
+

Et
2

π2 A2γ

16H 2 . (28)
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Next, expressing A in terms of λ, Equation (21), we obtain

U =
(1 − ν)Etγ

2

(
π2t2

24(1 − ν2)λ2 +
γ λ2

8H 2

)
. (29)

Differentiating with respect to λ and setting dU/dλ = 0 gives an expression equiv-
alent to Equation (14). This result shows that the simple equilibrium formulation
with an assumed stress ση, presented in Section 4, captures the same effects as the
analytically more elaborate energy formulation.

5. Analysis of membrane under corner loads

The second problem considered in this paper is an initially flat, square membrane
of side length L + 2a and thickness t , subjected to two pairs of equal and opposite
corner forces, T1 and T2, as shown in Figure 6. Note that the actual corners of the
membrane have been removed, and it is assumed that the concentrated loads are
applied to the membrane through rigid beams of length d . We are interested in de-
termining the wrinkle pattern for different values of the ratio T1/T2. This problem
was investigated experimentally in [Wong and Pellegrino 2006a, Section 5].

A key difficulty in extending the approach of Section 3 to the present problem
is that no tension field solution is known for this problem and so an approximate
solution will be sought. We propose four different, no-compression “equilibrium”
stress fields, some of which are only valid if the ratio of the corner forces is in
a particular range. For each stress distribution an upper-bound estimate of the
corner displacements will be obtained, and so, when for a given load ratio and
membrane dimensions there is more than one potential stress distribution, the best

T1, δ1
L

d

T1, δ1T2, δ2

T2, δ2

L

a

a

a a

Figure 6. Square membrane subject to corner loads.
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approximation to the actual stress field in the membrane will be obtained by choos-
ing the particular distribution that produces the lowest upper bound for the corner
deflections.

5.1. Stress fields. Figure 7 shows four possible stress fields, all of which satisfy
equilibrium everywhere and involve no compressive stress at any point. In each
case the membrane has been divided into regions that are either unloaded or subject
to a simple state of stress. The stress field in Figure 7(b) is valid only for T1 = T2,

d

0

0

0

0

T2

T2=T1
(a) (b)

(d)(c)

0

0

0

0

T2

T2

T1
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T1

T2 T1

T1

T1

T2=T1

T1=T2

R1

R2

R2

R1

T1=T2

Figure 7. Equilibrium stress fields: (a) diagonal strip field; (b, c)
wedge fields; (d) variable angle wedge field. A trapezium denotes
a purely radial stress field.
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while the others are more general, although still subject to some restrictions to be
explained later.

Although equilibrium is satisfied, there is no guarantee that the elastic strains
associated with these fields are compatible; indeed obvious compatibility violations
can be easily detected for the simpler fields.

For each stress field it is possible to produce an estimate of the corresponding
corner displacements, δ1 and δ2, defined in Figure 6. These displacements are com-
puted using an upper-bound approach based on the complementary strain energy
in the membrane.

The theorem of minimum complementary energy [Calladine 1983] states that
the total complementary energy in a linear-elastic structure is minimum for the
actual stress distribution. Hence, for an assumed stress field satisfying equilibrium
but not necessarily compatibility, the complementary energy will be higher than
for the actual stress distribution; thus

U 6 U∗, (30)

where U and U∗ are the actual and the estimated complementary energies. Hence,
given a set of stress fields, we will define the “best” to be the stress field that
produces the smallest estimate of U∗.

U∗ can be calculated from

U∗
=

1
2

∫
V
(ε1σ1 + ε2σ2) dV, (31)

where σi and εi denote the principal stresses and strains.
By conservation of energy, U is given for two given sets of corner forces, Ti ,

and corresponding corner displacements δi by

U =
1
2

2∑
i=1

2Tiδi = T1δ1 + T2δ2. (32)

Hence, from Equation (30), the average of the corner displacements, each weighted
by the corresponding applied forces, determined by means of this method, is always
an upper bound to the correct value.

Diagonal strip field. Figure 7(a) shows a simple stress field, consisting of four di-
agonal tension strips of width d , each under uniform uniaxial stress, plus a biaxially
stressed centre region. The remaining parts of the membrane are unstressed.

For the case of symmetric loading, T1 = T2 = T and δ1 = δ2 = δ, the uniaxial
stress in the tension strips is

σt =
T
dt

(33)
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and the complementary energy in each diagonal region is

U∗

1 =
1
2

∫
V

σ 2
t

E
dV =

T 2L

2
√

2d Et
, (34)

whereas the complementary energy in the central biaxially stressed region is

U∗

2 =

∫
V

σ 2
t (1 − ν)

E
dV =

T 2(1 − ν)

Et
. (35)

Hence, considering the four diagonal regions plus the central region, the total
complementary energy for this stress field is

U∗
=

T 2

Et

(√
2L
d

+ (1 − ν)

)
. (36)

Therefore, the corner displacement, δ, can be determined from (30), (32), and (36)
which give

δ 6
T

2Et

(√
2L
d

+ (1 − ν)

)
. (37)

Wedge field. The second stress field, shown in Figure 7(b), is for symmetric load
cases, T1 = T2 = T and δ1 = δ2 = δ. This field is based around four identical wedges
subject to purely radial stress, joined by a central region under uniform biaxial
stress, and with small corner lunes also under uniform biaxial stress. Detailed
views are shown in Figure 8.

The stress distribution in the wedge region, ABCD, is assumed to be purely
radial and inversely proportional to the distance r from the apex O:

σr =
T

√
2r t

, (38)

T

(a) (b)
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σr=√2T/(2a+L)t

A

B

A

B
A

B C

D

C

D F

a

L/2

Figure 8. Components of wedge field: (a) free body diagram of
edge beam; (b) biaxially stressed corner lune; (c) radially stressed
wedge region; (d) one quarter of biaxially stressed centre region.
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where a < r < a + L/2. Hence, the radial stress is uniform on any circular arc and
all other stress components are zero. It can be readily shown that this distribution
satisfies equilibrium, indeed this distribution was inspired from the classical plane-
stress solution for a wedge-shaped thin plate [Timoshenko and Goodier 1970].

The radial stress along the curved edges of this wedge are equilibrated by two
regions of uniform, biaxial stress: the lune AB and the central region defined by
the arc CD and the symmetry lines CF and DF. The stress magnitudes in these two
regions are obtained by substituting r = a and r = a + L/2, respectively, into (38).

The complementary energy for each of these regions can be found by an ap-
proach analogous to that described in Section 5.1, although now the derivation is
much lengthier as the integration of the complementary strain energy has to be
carried out over several regions. Thus we obtain for the corner displacement the
upper bound

δ 6
T

4Et

(
π ln

(
1 +

L
2a

)
+ 2(1 − ν)

)
. (39)

This type of stress field can be extended to asymmetric loading. Starting from
the symmetric case described above, consider increasing T1. For equilibrium to
be still satisfied, the key requirement is that the radial stress along the four arcs
bounding the central region should be uniform. Since now σr in each wedge region
is proportional to Ti/r , we can compensate for the increase in T1 by increasing
correspondingly the outer radius of this wedge, or by decreasing the outer radius
of the wedge corresponding to T2, or both; see Figure 7(c). For the stress along the
edges of the centre region to be uniform, clearly we require that R1/R2 ∝ T1/T2.

This approach is valid until the two arcs of larger radius touch at the centre of
the membrane, which happens when

R1

R2
=

T1

T2
=

1
√

2 − 1
≈ 2.41. (40)

When T1 6= T2 the corner displacements δ1 and δ2 are also different. Hence,
computing the overall complementary energy does not lead to a bound on a par-
ticular corner displacement. A useful estimate of the radial corner displacements
can be obtained by dividing the membrane into two parts, each associated with the
displacements of a pair of opposite corners; the split is illustrated in Figure 9. For
example, the corners loaded by T1 are associated with the larger two wedges, plus
the two areas labelled A1.

The areas labelled A1 and A2 needed for the complementary strain energy cal-
culation are given by

A1 =
(R1 + R2)

2

2
−

π R2
1

4
− R2

2 =
1
2

(
1 −

π

2

)
R2

1 + R1 R2 −
R2

2

2
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Figure 9. Partitioning of membrane for energy calculation.

and

A2 = R2
2 −

π R2
2

4
.

Thus, after computing the complementary strain energy associated with each
corner, we obtain

δ1 6
T1

4Et

(
π ln

R1

a
+

1 − v

R2
1

(4R1 R2 − 2R2
2)

)
, (41)

δ2 6
T2

4Et

(
π ln

R2

a
+ 2(1 − ν)

)
. (42)

Note that, although Equations (41) and (42) are useful tools for design, they are
not rigorous expressions, since their validity is not underpinned by the complemen-
tary energy theorem.

Variable angle wedge field. As stated earlier, the wedge stress field presented in
Section 5.1 is only valid up to T1/T2 ≈ 2.41. At this point the edges of the larger
two wedges come into contact, thus forming a single region (continuous between
the two most heavily loaded corners of the membrane) without tensile stress in the
transverse direction. Note that the limit of 2.41 closely corresponds to the load
ratio at which a diagonal wrinkle was first observed experimentally [Wong and
Pellegrino 2006a].

A more general stress field, which allows us to consider larger values of T1/T2,
has been shown in Figure 7(d). Here, the outer radius of the wedges corresponding
to the larger loads is kept equal to the value at which the wedges meet at the centre
of the membrane

R1 = a + L/
√

2 (43)
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Figure 10. Geometry of variable angle wedge field.

but the angle subtended by these wedges, 2θ1, is allowed to vary, depending on
T1/T2. This has the effect that the outer radius of the remaining two wedges also
varies.

Thus, this stress field consists of: four wedges subject to purely radial stress
(A′B′C′D′, D′FGH, etc.); a central region under uniform biaxial stress (C′D′FI);
and four corner lunes also under biaxial stress. This leaves four triangular edge
regions that are unstressed. The acute angles of these triangles are related to the
wedge half-angles by

αi =
π

4
− θi . (44)

The stress distribution in each of the four wedge regions is given by a general-
ization of (38) to a wedge subtending an angle of 2θi

σr =
Ti

2r t sin θi
. (45)

Hence, the normal stress along the edges of C′D′FI is obtained by substituting
r = R1 and r = R2 into (45), and for the two magnitudes to be equal we require

T1

2R1t sin θ1
=

T2

2R2t sin θ2
. (46)

Rearranging (46) we obtain the general condition

R2 sin θ2

sin θ1
=

R1T2

T1
. (47)

For any given T1 and T2, and since R1 is known, R2, θ1, and θ2 have to satisfy this
condition.
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Two additional conditions on R2, θ1, and θ2 are obtained as follows. For the first
condition, note that

J D′ = O D′ sin α1 = R1 sin
(π

4
− θ1

)
(48)

and also

J D′ = P D′ sin α2 = R2 sin
(π

4
− θ2

)
. (49)

Equating these expressions for J D′ and rearranging

R2 = R1

(
sin

π

4
− θ1

)/(
sin

π

4
− θ2

)
. (50)

For the second condition, apply the sine rule to D′OP to obtain

R1

sin α2
=

2a + L
sin(π − α1 − α2)

(51)

Substituting Equation (44) and grouping all unknowns on the right-hand side gives

cos(θ1 + θ2)

sin
(
π

4
− θ2

) =
2a + L

R1
. (52)

Equations (47), (50), and (52) can be solved for any given value of T1/T2 >

1/(
√

2 − 1) to determine the corresponding parameters of the stress field.
Figure 11 is a plot of the variation with T1/T2 of the angles that determine the

four wedges, θ1 and θ2. Note that, since the wedge angles become smaller as T1/T2

increases, the slack regions along the edges of the membrane, denoted by a “0” in
Figure 7(d), get bigger.

The complementary strain energy associated with each of the corner displace-
ments is then calculated, splitting the central, biaxially stressed region into areas
A1 and A2, which now have the expressions

A1 =
(2a + L)2

2
− R2

1(θ1 + sin α1 cos α1) − R2
2 cos2 α2,

A2 = R2
2(cos2 α2 − θ2 − sin α2 cos α2).

Thus, following the same approach as in Section 5.1, we obtain

δi ≤
Ti

4Et sin2 θi

(
2θi ln

Ri

a
+ (1 − ν)(θi − sin θi cos θi ) +

Ai

R2
i

)
, (53)

where i takes the values 1 or 2, depending on the corner of interest.
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Figure 11. Geometric parameters of variable angle wedge field.

5.2. Wrinkle details. Based on the no-compression stress fields that have been
proposed in Section 5.1, two different kinds of wrinkle patterns can be expected.
Note that the diagonal strip stress field was included only for the sake of explanation
but, as it does not lead to accurate estimates, it will not be used for any further
analysis.

If T1/T2 < 1/(
√

2 − 1), there is a biaxially stressed region at the centre of the
membrane, separating four uniaxially stressed corner regions. Hence, four separate
fans of wrinkles will form near the corners, but they cannot go through the centre.
If T1/T2 ≥ 1/(

√
2 − 1), the two larger uniaxial stress regions join up at the centre

of the membrane. Hence, there is a continuous, narrow diagonal region that is
uniaxially stressed, and so in this case a small number of wrinkles can go all the
way from one highly loaded corner to the other.

In the first case, we will assume each fan to consist of identical, radial wrinkles
that start right at the edge of a biaxially stressed corner lune and extend as far as
an unknown radius, Rw. This analysis can be more easily explained for the case of
symmetric loading. In the second case, although fans of wrinkles will also form,
we will focus on the much larger, diagonal wrinkle parallel to the loads T1.

Corner wrinkles. Figure 12 shows a corner of a symmetrically loaded membrane.
Here, Rw denotes the outer radius of the wrinkled zone, and it is assumed that the
wrinkles start right at the edge of the biaxially stressed lune, AB. Note that in the
region between Rw and R the formation of wrinkles is possible, because the stress
is still uniaxial, but there isn’t enough spare material for the wrinkles to actually
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Figure 12. Region affected by fan of n = 4 half-wrinkles.

show. R denotes the outer radius of the wedge stress field, hence R = a + L/2 for
symmetric loading. However, we will keep the more general notation.

The profile of the membrane in the wrinkled zone is assumed to be given by

w = A sin
π(r − a)

Rw − a
sin 2nθ, (54)

where the angle θ is measured from an edge of the membrane, A is an unknown
amplitude, and n is the total number of half-wrinkles, each subtending an angle of
π/2n. Note that the particular mode shape sketched in Figure 12 and assumed in
Equation (54) sets the out-of-plane displacement of the membrane to zero along
the edges, and assumes an integer number of half-wrinkles, for simplicity.

The value of n can be determined by considering out-of-plane equilibrium in
the middle of a wrinkle. At such a point the principal directions of curvature are r
and θ , and hence the equilibrium equation is

σrκr + σθκθ = 0, (55)

where κr and κθ are the radial and hoop curvatures obtained by differentiation of
Equation (54). Hence,

κr = −
∂2w

∂r2 =
Aπ2

(Rw − a)2 sin
π(r − a)

Rw − a
sin 2nθ,

κθ = −
1
r2

∂2w

∂θ2 =
4An2

r2 sin
π(r − a)

Rw − a
sin 2nθ.
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The centre of a wrinkle is the point where the curvatures are maximum, hence
it is located at

r̃ =
Rw + a

2
(56)

The maximum curvatures are therefore

κ̃r =
Aπ2

(Rw − a)2 , κ̃θ =
16An2

(Rw + a)2 . (57)

The radial stress at the centre of the wrinkle is obtained by substituting Equation
(56) into the general expression for the wedge field, Equation (38). Hence

σr =

√
2T

(Rw + a)t
. (58)

The hoop stress will be set equal to the critical buckling stress, Equation (4), with
λ set equal to the central wrinkle half-wavelength, λ̃. Hence,

λ̃ =
π r̃
2n

=
π(Rw + a)

4n

and so

σθ = −
4Et2n2

3(1 − ν2)(Rw + a)2 . (59)

Substituting Equations (57), (58) and (59) into (55) and simplifying gives
√

2π2T
(Rw + a)(Rw − a)2t

−
64Et2n4

3(1 − ν2)(Rw + a)3 = 0,

from which, solving for n,

n =
4

√
3
√

2π2(1 − ν2)(Rw + a)3

64Et3(Rw − a)2 T . (60)

To find the amplitude, A, we equate the total hoop strain, obtained from the in-
plane displacement field, to the sum of the material strain and the geometric strain
due to the wrinkles.

The displacement field is assumed to be purely radial. Hence, denoting by u(r)

the radial displacement, defined to be positive in the positive r direction, we have

u =

∫ r

R
εr dr =

∫ r

R

σr

E
dr =

T
√

2Et
ln

r
R

,

where it has been assumed that u(R) ≈ 0. The hoop strain at the centre of a wrinkle
is therefore

ε̃θ =
ũ
r̃

=

√
2T

Et (Rw + a)
ln

Rw + a
2R

. (61)
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On the other hand, the material hoop strain and the geometric hoop strain due to
the out-of-plane deformation associated with wrinkling, at the centre of a wrinkle,
are respectively

ε̃θM = −ν
σr

E
= −

ν

E

√
2T

(Rw + a)t
, ε̃θG = −

π2 A2

4λ̃2
= −

4A2n2

(Rw + a)2 . (62)

Hence, substituting Equations (61) and (62) into

ε̃θ = ε̃θM + ε̃θG

and simplifying, we obtain
√

2T
Et

ln
Rw + a

2R
= −

√
2νT
Et

−
4A2n2

Rw + a
.

Solving for A we find

A =
1
n

√
Rw + a

2
√

2Et

(
ln

2R
Rw + a

− ν

)
T (63)

Finally, we can determine the value of the outer radius of the wrinkled region,
Rw, by looking for the value of r at which the material hoop strain is the total hoop
strain, and so εθG = 0. Hence, we substitute r = Rw into general expressions for
εθ and εθM, and then set εθ = εθM to find

T
√

2Et Rw

ln
Rw

R
= −

νT
√

2Et Rw

, (64)

from which, solving for Rw,
Rw = e−ν R. (65)

Asymmetric loading. The analysis presented in the previous section can be gener-
alised to cover the case of nonsymmetric loading with 1 < T1/T2 < 1/(

√
2 − 1),

and can also be used to characterize the fans of corner wrinkles that occur when
T1/T2 > 1/(

√
2 − 1).

In the latter case, though, we are mainly interested in the largest wrinkle, which
runs along the diagonal parallel to the loads T1, as depicted in Figure 13. Inciden-
tally, due to the narrowness of the region of contact between the two larger wedge
stress fields, it is reasonable to assume that only a single large wrinkle will be able
to form.

Consider the coordinate system ξ, η shown in the figure, with axes parallel and
orthogonal to the wrinkle direction, and the simple mode shape

w = A sin
πξ

√
2(L + a)

sin
πη

λ
(66)
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Figure 13. Wrinkle pattern for T1/T2 ≥ 1/(
√

2 − 1).

where λ is the half-wavelength, and A the maximum amplitude. We will follow
the same procedure of Section 5.2 to estimate the wavelength of this wrinkle.

The longitudinal and transverse curvatures, obtained by differentiating Equation
(66), are

κξ = −
∂2w

∂ξ 2 =
Aπ2

2(L + a)2 sin
πξ

√
2(L + a)

sin
πη

λ
,

κη = −
∂2w

∂η2 =
Aπ2

λ2 sin
πξ

√
2(L + a)

sin
πη

λ
,

and the corresponding maximum values, at the centre of the membrane, are

κ̃ξ =
Aπ2

2(L + a)2 , κ̃η =
Aπ2

λ2 . (67)

The longitudinal stress at the centre of the wrinkle is obtained by determining
the wedge angle θ1, as explained in Section 5.1, and then noting that at the centre
of the membrane ξ and r are parallel. Hence,

σξ =
T1

√
2(L + 2a)t sin θ1

. (68)

The transverse stress, ση, at the centre of the wrinkle is given by Equation (4), as
usual. Substituting Equations (67), (68) and (4) into Equation (5), and then solving
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for λ gives

λ =
4

√
π2 Et3(L + 2a)(L + a)2 sin θ1

3
√

2(1 − ν2)T1
. (69)

The calculation of the wrinkle amplitude is different from the earlier case, as
now we are dealing with a localised wrinkle. Hence, instead of working in terms of
strains, we will consider the total extensions along the diagonals of the membrane.

We begin by noting that the variable angle wedge stress field involves slack
regions along all four edges of the membrane. Hence, neglecting the effects of
any out-of-plane deformation, we can think of the edges of the membrane simply
as four rigid links connected by pin-joints, and hence forming a square four-bar
linkage. Therefore, since the corners of the membrane subjected to the loads T1

move outwards, each by δ1 (whose value can be estimated with (53), for i = 1), the
corners subjected to the loads T2 move inwards by δ1. Therefore, the extension of
the diagonal parallel to the loads T2 is −2δ1.

This extension includes a component due to elastic stretching, found by inte-
grating the elastic strains along the diagonal, and hence given by 2δ2. The value
of δ2 can be estimated with Equation (53), for i = 2. It also includes a component
due to the geometric strain induced by the single wrinkle, which can be found by
multiplying the wave-length, 2λ, by the wrinkling strain, Equation (18); this gives
−π2 A2/2λ. Therefore, we obtain

−2δ1 = 2δ2 −
A2π2

2λ

and, solving for A,

A =
2
√

λ(δ1 + δ2)

π
(70)

where λ is given by (69) and δ1, δ2 are given by (53).

6. Validation of analytical results

The analytical predictions of the wrinkle details, developed in Sections 4 and 5.2
will now be compared against a variety of “reference” results obtained experimen-
tally or numerically, on Kapton HNr membranes with measured Young’s modulus
E = 3500 N/mm2 and Poisson ratio ν = 0.31 [Wong and Pellegrino 2006a].

6.1. Membrane in shear. The dimensions of the membranes were H = 128 mm
by L = 380 mm.

To begin with, we consider the average magnitude of the midsurface minor prin-
cipal stress, i.e., the compressive stress across the wrinkles, acting at midheight.
This stress would be difficult to measure experimentally, but can be readily obtained
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Figure 14. Minor principal stress at midheight, for 0.025 mm
thick Kapton membrane in shear.

from a detailed finite-element simulation where the membrane is represented by
thin-shell elements.

Figure 14 compares, for different values of the shear angle, the average stress
obtained in [Wong and Pellegrino 2006b] with analytical predictions obtained by
substituting (14) into (4). The largest discrepancy between the analytical predic-
tions, which do not take into account the fans of wrinkles at either end of the
membrane, and a very detailed finite element simulation is never more than 30%.

Next, we consider the relationships between the wrinkle wavelength, 2λ, and the
amplitude, A, with the angle of shear, γ , provided by (14) and (22), respectively.
Figures 15 and 16 show plots of these relationships, together with a large set of ex-
perimental results obtained from Kapton membranes of three different thicknesses,
and a set of finite-element simulation results, obtained in [Wong and Pellegrino
2006b]. Both sets of results bunch closely along the analytical predictions.

6.2. Membrane under corner loads. The geometrical parameters of the membrane
were L = 472 mm, a = 17 mm, and t = 0.025 mm.

First, we consider the membrane loaded by four equal forces. For this case we
will focus on the corner load-displacement relationship and the details of the corner
wrinkles.

Figure 17 compares the predictions of the corner displacements from Equa-
tions (37) and (39) (both of which are known to provide upper-bound estimates
on the correct displacement) with two sets of reference values, obtained from two
different types of finite element models [Wong and Pellegrino 2006b].
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Figure 17. Relationship between nondimensional corner displace-
ment and load, for symmetric loading of square membrane.

The two sets of finite-element results fit almost exactly on a straight line, and
both analytical predictions are also linear. Equation (39), based on the wedge field,
gives much closer predictions than (37), based on the diagonal strip field. This
suggests that, among these two, the wedge field provides a much more accurate
approximation to the actual stress distribution in the membrane when equal corner
loads are applied.

Table 1 compares the number of corner wrinkles and their maximum amplitude,
predicted using Equations (60) and (63), with direct experimental measurements
[Wong and Pellegrino 2006a] and results from finite-element simulations using a
thin-shell model [Wong and Pellegrino 2006b], for two different load levels, T =

5 N and 20 N.

n A (mm)
Equation (60) Exp. F.E. Equation (63) Exp. F.E.

T = 5 N 11.3 8 8 0.14 0.12 0.12
T = 20 N 16.0 11 9 0.20 0.14 0.16

Table 1. Number of corner wrinkles, n, and their maximum am-
plitude, A, under symmetric loading.
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Figure 18. Relationship between corner displacement and load
ratio, for asymmetric loading of square membrane.

The number of wrinkles predicted by Equation (60) is typically a 40% overes-
timate of the number observed in the experiments, whereas the simulation results
match the experiments much more closely. It is not surprising that the analytically
predicted number of wrinkles should be in excess of the actual number, since we
have assumed a uniform fan of wrinkles whereas in reality there are no wrinkles
along the edges Wong and Pellegrino [2006a, Figure 9].

The predicted wrinkle amplitudes are also overestimates, by 15% to 40%, due to
the fact that in a real membrane a significant amount of out-of-plane displacement
associated with wrinkling takes place along the edges of the region.

Next, we consider the same membrane and, while keeping two of the corner
forces constant at T2 = 5 N, we increase the other two forces, T1, until the ratio
between T1 and T2 becomes 4. For this case we will focus on the relationship
between corner displacement and load ratio, and on the diagonal wrinkle.

Figure 18 shows a plot of Equation (53) for the diagonal displacement of the
most heavily loaded corners vs. the ratio T1/T2, plus two sets of reference results,
obtained from two different finite-element models [Wong and Pellegrino 2006b]
which have given substantially identical results. An alternative, and simpler, pre-
diction, could be obtained from Equation (30), however we have already seen for
the case of symmetric loading that the predictions from this equation are poor.

The main observation from Figure 18 is that the reference response shows an
approximately bilinear variation of δ1, with softening by about 30% at T1/T2 ≈

2.7. This decrease in stiffness coincides with the formation of a large diagonal
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agonal, for T1/T2 = 4.

wrinkle. The response predicted by Equation (53) follows the same general trends
as the reference solution, but the value of T1/T2 at which the slope changes is
underestimated by about 10% and the predicted slopes are over-estimated by about
10% and 60%, respectively before and after the slope transition.

Incidentally, the initial mismatch between the two solutions, at T1/T2 = 1, is
largely due to fact that the finite-element models include the corner tabs that were
used in our experiments [Wong and Pellegrino 2006a].

It is interesting to compare the distribution of the midsurface, major principal
stress along a diagonal, shown in Figure 19. The variation of σ1 derived from the
variable-angle wedge field is a square wave, whereas the finite-element simulations
show an almost triangular wave. The stress increases near the corners; also note
that the assumed stress field underestimates the peak stress by about 60%.

Finally, Table 2 compares our analytical predictions of the diagonal wrinkle
details when T1/T2 = 4, for two different membrane thicknesses, t = 0.025 mm
and t = 0.050 mm. Experimental results from [Wong and Pellegrino 2006a] and
finite-element simulation results from [Wong and Pellegrino 2006b] are provided
for comparison.

Regarding the half-wavelength presented in Table 2, our predictions for the thin-
ner membrane practically coincide with the experimental measurements and the FE
simulations. For the thicker membrane, Equation (69) over-estimates λ by about
15%.

Regarding the wrinkle amplitude, it can be predicted in two different ways. The
most direct method is to follow a fully analytically approach, and hence to estimate



58 Y. WESLEY WONG AND SERGIO PELLEGRINO

λ (mm) A (mm)
t (mm) Eq. (69) Exp. F.E.a Eq. (70)+(53) Eq. (70)+F.E.b Exp. F.E.b

0.025 24.6 25.4 22.3 3.55 2.8 1.89 2.02
0.050 41.3 33.9 35.6 3.25 2.1 1.81 1.63

Table 2. Half-wavelength, λ, and amplitude, A, of diagonal wrin-
kle for T1/T2 = 4. a shell model. b IMP model.

δ1 and δ2 from Equation (53), and substitute their values into Equation (70). Alter-
natively, one can estimate δ1 and δ2 with a finite-element stress analysis that uses
no-compression elements, such as the IMP model used in [Wong and Pellegrino
2006b]. The corresponding results are presented in columns 5 and 6 of Table 2.

The fully analytical estimates are up to 88% higher than the experimental mea-
surements. However, the error decreases, to 48% and 16%, respectively for the
thinner and thicker membranes, when Equation (70) is combined with the finite-
element estimates.

7. Discussion and conclusions

This paper has presented a general analytical framework for thinking about the
location and pattern of wrinkles in thin membranes, and for making preliminary
estimates of their wavelength and amplitude.

The key ideas in the analytical model that has been proposed are as follows.
First, the wrinkled region and the direction of the wrinkles can be determined
from a two-dimensional stress field that admits no compressive stress anywhere,
satisfies equilibrium, and provides a reasonably close (upper) bound to the actual
complementary strain energy of the membrane. Second, the wavelength of the
wrinkles can be estimated by considering a (small) compressive buckling stress in
the direction transverse to the wrinkles, and by ensuring that this stress component
and the longitudinal stress (given by the two-dimensional stress field) are in equi-
librium in the out-of-plane direction, say, at the centre of the wrinkles. Third, the
amplitude of the wrinkles is determined by matching the sum of the material strain
and geometric strain due to wrinkling, in the direction transverse to the wrinkles,
to the boundary conditions imposed by the nonwrinkled region.

This analytical model has been applied to two different problems, a rectangular
membrane under simple shear and a square membrane loaded at the corners.

In the first problem, the wrinkles are essentially uniform and the stress field
is known. Our model predicts the wavelength and the wrinkle amplitude to be
respectively inversely proportional and directly proportional to the fourth root of
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the shear angle; see Equations (14) and (22). Both values are directly proportional
to the square root of the height and thickness of the membrane, and both are inde-
pendent of the Young’s modulus.

In the second problem two wrinkling regimes have been identified. The first is
characterised by relatively uniform, small, radial corner wrinkles and occurs for
load ratios smaller than 1/(

√
2 − 1). The number of radial wrinkles is proportional

to the fourth root of the radius of the wrinkled region and the corner forces; see
Equation (60). The amplitude of these wrinkles is inversely proportional to this
number and directly proportional to the square root of the radius of the wrinkled
region and to the corner force; see Equation (63). Here the radius of the wrinkled
region is proportional to the radius of the uniaxially stressed wedge field (Equation
(65)).

The second regime occurs for load ratios larger than 1/(
√

2 − 1), and is charac-
terised by a large diagonal wrinkle, plus small radial wrinkles at all four corners.
The variation of the width and amplitude of this wrinkle are more complex — see
Equations (69) and (70) — since the geometric parameters of the stress field are
dependent on the load ratio, through Equations (47), (50), and (52).
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WRINKLED MEMBRANES
PART III: NUMERICAL SIMULATIONS

Y. WESLEY WONG AND SERGIO PELLEGRINO

This is the third and final part of a study of wrinkles in thin membrane structures.
High-fidelity, geometrically nonlinear finite element models of membrane struc-
tures, based on thin-shell elements, are used to simulate the onset and growth
of wrinkles. The simulations are carried out with the ABAQUS finite element
package. The accuracy of the results is demonstrated by computing the character-
istics of the wrinkles in two specific membrane structures that were investigated
experimentally and analytically in the first two papers in this series.

1. Introduction

This is the third and final part of a study of wrinkles in thin membrane structures.
High-fidelity, geometrically nonlinear finite element models of membrane struc-
tures, based on thin-shell elements, are used to simulate the formation and growth
of wrinkles.

Previous numerical studies of wrinkled membranes have largely focussed on
determining the region(s) affected by wrinkles and the direction of the wrinkles. It
is now possible to compute the actual shape and size of the wrinkles in structures of
realistic shape and size. Here we present a general procedure for carrying out such
simulations using the commercially available finite element package ABAQUS
[ABAQUS 2001]. The effectiveness of the proposed procedure is demonstrated by
computing the wrinkle details of two particular membrane structures, which we had
investigated in detail, both experimentally and analytically [Wong and Pellegrino
2006a; 2006b]. It is shown that the accuracy of the wrinkles computed in this way
is such that the numerical simulation can now be seen as a replacement for physical
experimentation, although the computer run times are currently still impractically
long for the present procedure to be adopted as a design tool. A significant, im-
mediate benefit of the present work is that one can probe the simulation results
in order to gain additional insights into the characteristics of wrinkles and their
evolution under varying loads or boundary conditions.

Keywords: post-buckling behaviour, mode jumping, thin shell finite elements, membrane structures,
wrinkling.
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The layout of the paper is as follows. The next section presents a brief review of
previous numerical studies of membrane wrinkling, including a few, recent studies
that have adopted shell-based models of the membrane.

Section 3 sets out the proposed finite element procedure. The membrane is
represented with a fine mesh of thin-shell elements; first it is lightly prestressed,
then a buckling analysis is done to determine a number of incipient buckling modes,
which are then seeded as initial imperfections for the main, geometrically nonlin-
ear wrinkling analysis. An alternative model is presented in Section 4. Here the
structure is represented by membrane elements and an essentially two-dimensional
no-compression elastic solution is sought by means of an iterative procedure that
alters the effective Poisson’s ratio in order to eliminate any compressive stresses
(solutions obtained from this membrane model were used as a reference in [Wong
and Pellegrino 2006b], to compare with the analytical solutions presented there).

Section 5 presents a study of a rectangular membrane in simple shear. First, the
sensitivity of the wrinkle details to the magnitude of the seeded imperfections, the
type of finite elements and the mesh density used for the simulation are investigated.
Next, the overall response of the membrane is studied, including the characteristics
of the wrinkles. Finally, the way the wrinkles change with the shear displacement
is investigated, and it is found that the number of wrinkles changes suddenly, both
when decreasing or decreasing the old displacement. The mechanism through
which new wrinkles are created, or wrinkles disappear, is explained.

Section 6 presents a study of a square membrane that is pulled at the corners.
This problem is representative of currently proposed applications of membranes in
future spacecraft structures, and has already been examined from an experimental
and analytical viewpoint in the previous two papers in this series. Here the finite
element simulation is shown to capture both of the wrinkling regimes that had been
observed in the experiments, and details of the corresponding stress distributions
are also obtained.

Section 7 discusses the outcomes of the present study and concludes the paper.

2. Review of previous numerical studies

The vast majority of all previous numerical solutions of wrinkled membranes have
adopted a purely in-plane model of the structure, hence assuming that bending
stresses are negligibly small. This approach will be reviewed first. It can accurately
predict the stress distribution in the membrane, including wrinkled regions, and
also the extent of these regions, but it provides no information on wrinkle details.
An alternative approach is to model the membrane as a thin shell; recent work
along these lines will be reviewed in the latter part of this section.
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2.1. Models using membrane elements. The first finite element solution to in-
corporate wrinkling theory was the Iterative Materials Properties model (IMP)
developed in [Miller and Hedgepeth 1982; Miller et al. 1985]. It is based on
the observation that if during a simulation a membrane element is deemed to be
wrinkled, the geometric strain in the direction perpendicular to the direction of
the wrinkles, due to out-of-plane deformation of the material, can be modelled by
introducing a variable effective Poisson’s ratio for the element.

Hence, instead of using the standard “taut” modulus matrix, based on Hooke’s
law for plane stress and given by

Dt =
E

1 − ν2

 1 ν 0

ν 1 0

0 0 1
2(1−ν)

 .

Miller et al. used the “wrinkled” modulus matrix

Dw =
E
4

 2(1+P) 0 Q

0 2(1−P) Q

Q Q 1

 ,

where P = (εx − εy)/(ε1 − ε2) and Q = γxy/(ε1 − ε2); εx , εy , γxy are the engineer-
ing components of plane strain; ε1, ε2 are the major and minor principal strains
(ε1 ≥ ε2); and the directions 1 and 2 are parallel and perpendicular to the wrinkles,
respectively. For later on, note that σ1, σ2 are the major and minor principal stresses
(σ1 ≥ σ2).

Adler [2000] implemented this model as a user-defined material (UMAT) sub-
routine in the ABAQUS finite element package [ABAQUS 2001]. At any stage of
a standard ABAQUS iteration Adler’s IMP subroutine begins by calculating the
principal strain and stresses at any point using Dt , initially assuming the element
to be taut, and then checks:

• If σ2 ≥ 0, the element is taut and so no change is needed;

• If σ2 < 0 and ε1 ≤ 0, the element is slack and so all stress components are
zero;

• If σ2 < 0 and ε1 > 0, the element is wrinkled, so the stress components are
recomputed using Dw.

This is known as the combined wrinkling criterion, as a combined stress/strain
condition has to be satisfied for a wrinkle to exist. Wrinkling criteria based purely
on stress or strain have potential shortcomings and are less accurate [Kang and Im
1997; Liu et al. 2001].

Successful predictions of the shape and pattern of the wrinkled regions in a
square membrane subjected to point loads, and also in inflated balloons of different
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shapes were obtained by Adler [2000]. The main problem was that the solution
tended to diverge in the presence of many slack regions.

Johnston [2002] used the same approach to analyse the static and dynamic be-
haviour of the sunshield for a space telescope. This sunshield consists of several
reflective foils which wrinkle extensively.

An alternate tension field model was developed by Liu et al. [1998] and incor-
porated into the nonlinear finite element code TENSION6. The main difference
between this method and IMP is that, instead of modifying the material properties
iteratively, the user preselects a so-called penalty tension field parameter to provide
a small amount of stiffness in the direction transverse to the wrinkles. This helps to
overcome the numerical singularities associated with vanishingly small diagonal
terms in the tangent stiffness matrix. Liu et al. [1998] carried out a simulation
of the deployment of a parachute. Modelling issues, including the selection of
the penalty term, influence of the order of integration and local remeshing in the
wrinkled regions are all discussed in this paper.

Liu et al. [2000] combined the approach of their earlier paper with the semian-
alytical determination of the impending buckling mode by Lin and Mote [1996].
The resulting two-level analysis is able to determine both the extent of the wrin-
kled regions, by determining the stress field with TENSION6, and the wrinkle
wavelength and amplitude, by applying Lin and Mote’s eigenvalue analysis to de-
termine the number of wrinkles. The wrinkle amplitude is then determined through
an argument essentially equivalent to that put forward in [Wong and Pellegrino
2006b, Section 4]. It is implicitly assumed that the number of wrinkles will not
vary once the wrinkles have started to form (which is not correct), and that the
wrinkled region can be assumed to behave as a simply supported rectangular plate.
Liu et al. [2000] have shown this approach to provide reasonably accurate results
for a square membrane subjected to a specific combination of tension and shear.

Several iterative schemes that use no-compression material models have been
proposed. In their simplest form, these schemes begin by assuming that the be-
haviour of the membrane is linear elastic. Then, any compressive principal stresses
are set to zero and the associated stiffness matrix coefficients are also set to zero.
The principal stresses are recalculated at every iteration, to avoid history depen-
dency in the results. An early study of airbag inflation based on this approach [Con-
tri and Schrefler 1988] set a sample problem that many others have subsequently
tackled. An analogous approach was attempted by the present authors, using the
*NO COMPRESSION option in ABAQUS, but poor convergence was observed.

Finally, a number of membrane finite elements that incorporate wrinkling within
their formulation have been derived from a continuum mechanics approach. The
methods proposed range from using a modified deformation tensor [Roddeman
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et al. 1987], to a geometrically modified [Nakashino and Natori 2005] or energet-
ically modified [Haseganu and Steigmann 1994; Barsotti and Ligaro 2000] stress-
strain tensor.

2.2. Models using shell elements. Tomita and Shindo [1988] were the first to
make use of a three-dimensional shell description of a wrinkled membrane, in
a study of the residual wrinkles in a thin metallic plate that has been pulled diag-
onally. This paper started with an analysis of the onset of wrinkling, which was
assumed to be the outcome of a bifurcation from plane deformation to out-of-plane
deformation of the plate. The plate was initially represented by a mesh of thin-
plate elements, including the effects of material nonlinearity, but the growth of the
wrinkles was then traced by switching the model to isoparametric shell elements.

The last five years have seen regular use of the ABAQUS package, and recently
also of ANSYS [ANSYS 2000], to simulate the onset of wrinkling in a tensioned
strip [Friedl et al. 2000] and the growth of wrinkles. Three approaches to the
simulation of wrinkle growth have been proposed, differing in the way the out-
of-plane deformation is triggered at the beginning of a geometrically nonlinear
analysis. In [Wong and Pellegrino 2002a] and [Wong et al. 2003] we started by
extracting a set of eigenvalues/eigenvectors of the tangent stiffness matrix of the
structure. Instead, Leifer and Belvin [2003] applied a set of equal and opposite,
small magnitude forces perpendicular to the membrane and with a resultant of
zero. Finally, Tessler et al. [2003; 2004] and Papa and Pellegrino [2005] imposed
randomly distributed, out-of-plane imperfections, of similar magnitudes to those
imposed in [Wong and Pellegrino 2002a].

The choice of finite elements and the type of analysis procedure are essentially
equivalent in the three simulation techniques (the details are explained in Sections
3 and 5), so the key difference between the first approach and the other two is the
additional burden of the initial eigenvalue/eigenvector extraction. In the present
study it was found that this additional computation requires only a small fraction of
the total simulation time, hence this burden is not significant. The three approaches
have been tested on similar problems and found to work equally well for a mem-
brane under shear, where the wrinkles are relatively uniform. For a membrane
under equal corner loads the agreement between experiments and results from
eigenvector-based perturbations, presented in this paper, is better than the latest
results with random imperfections; see Tessler et al. [2005, Figure 5].

3. Three-dimensional finite element models

The bending stiffness of a membrane, although small, plays a key role in determin-
ing the shape and amplitude of the wrinkles. Therefore, it is essential that it should
be included in any models that aim to capture this kind of detail. Two options are
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available, first to model the membrane with thin-plate elements and second to use
thin-shell elements. Since the first option would only work for flat or nearly flat
membranes, the second option has been pursued.

ABAQUS offers several shell elements, and preliminary runs were carried out
with 3-node triangular and 4-node quadrilateral general purpose elements with full
integration (S3, S4); these elements have six degrees of freedom at each node. 4-
node and 9-node reduced integration, thin-shell elements (S4R5, S9R5), with five
degrees of freedom per node, were also investigated. ABAQUS also provides other
shell elements which are mainly suited for thick shell problems. This is a different
class of problem and no detailed investigation of these elements was carried out.

The S3 element uses constant bending curvature and membrane strain approxi-
mations; therefore a very fine mesh is required to capture the bending deformation
due to wrinkling. Note that the fineness of the discretisation that is required is
related to the expected wrinkling wavelength. The formulation of element S4
is similar to S3 for bending, but the in-plane strain field has been enhanced to
eliminate shear locking effects. Both S4R5 and S9R5 are thin shell elements with
three in-plane translations and two in-plane rotation components. They use reduced
integration with hourglass control to avoid shear locking. Both elements can model
thin shells fairly accurately and S4R5 was chosen since it is computationally more
economical. A detailed comparison of the performance of different shell elements
in the analysis of a shear membrane will be presented in Section 5.1.2.

After defining the finite element mesh, type of elements, and material properties,
a wrinkling analysis employing thin shell elements is typically performed in three
stages, as follows.

3.1. Initial conditions. The initial stage of the analysis applies a small uniform
prestress to the membrane, to stabilize it. Several strategies can be used to apply
this initial prestress. One technique is to prescribe a set of edge displacements,
corresponding to the level of prestress required. This technique is particularly
useful for setting up the true stress state of a membrane structure, e.g. to reproduce
the conditions that may exist at the beginning of a test. However, if a uniform stress
state is required instead, e.g. to avoid initial numerical singularities, this simpler
prestress can be obtained more readily by prescribing a set of initial stresses using
the *INITIAL CONDITIONS, TYPE=STRESS parameter in ABAQUS. In the
latter case, only membrane forces, bending moment and twisting moments can be
specified for shell elements.

After applying the initial prestress, a static, geometrically nonlinear equilib-
rium check (*STATIC, NLGEOM) is performed. This check induces a small
re-distribution of the state of prestress, together with small in-plane displacements.
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3.2. Eigenvalue/eigenvector extraction. The next step of the analysis determines
the buckling mode-shapes of a lightly prestressed membrane. These modes are
then used as small, initial imperfections that trigger the formation of wrinkles in
the subsequent, geometrically nonlinear simulation.

An eigenvalue buckling analysis (*BUCKLE) is used to obtain the possible
wrinkling modes of the membrane subjected to its actual boundary conditions and
loading. The loading is typically defined in terms of a set of applied forces or
displacements at the edge of the membrane, and has to represent the loads on the
real structure. It is important that both the initial stresses and displacements from
the previous stage of the analysis, as well as those due to the applied load, should
be included in the calculation of the tangent stiffness matrix; ABAQUS performs
these calculations by default. The eigenvalues and eigenvectors of the tangent
stiffness matrix correspond to the load magnitudes and shapes of the possible wrin-
kling modes of the membrane. Two solvers are available in ABAQUS to extract
the eigenvalues, namely subspace iteration and the Lanczos method. The default,
subspace iteration method is generally quicker when only a few (typically, less
than 20) eigenmodes are needed.

After computing the buckling mode-shapes, a linear combination of all, or some
selected eigenmodes is introduced into the structure as a geometrical imperfection.
In standard buckling analysis of imperfection-sensitive structures, the imperfec-
tions that are seeded in the structure are normally obtained as linear combinations
of the eigenvectors corresponding to the lowest eigenvalues. However, the main
objective of the present study is not finding the lowest eigenvalue, corresponding to
the load which would cause the first wrinkle to form. The first wrinkle forms almost
as soon as the load is applied, but we are interested in following the evolution of
this first wrinkle, leading to the formation of a second one, and so on until a large
number of wrinkles have formed. It is generally best to introduce in the membrane
a rather general kind of imperfection, e.g. one obtained as the combination of many
eigenvectors. In cases where some features of the final wrinkling pattern are known,
introducing in the imperfection mode shape eigenmodes that resemble this pattern,
as well as several other eigenmodes, generally increases the speed of convergence
during the initial stages of the simulation.

Once a set of eigenmodes has been chosen, geometrical imperfections are in-
troduced in the form of out-of-plane deformations of the membrane, using the
*IMPERFECTION directive:

1z = 6iwiφi ,

where wi is the i-th eigenmode and φi is a scaling factor whose magnitude is chosen
as a proportion of the thickness of the membrane. Values between 1% and 100%
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of the thickness have been used, and the sensitivity of the predicted response to
different φi ’s has been determined, see Section 5.1.1.

3.3. Simulation of wrinkle growth. A geometrically nonlinear (*NLGEOM) in-
cremental analysis is carried out under edge displacement incrementation, using
the Newton–Raphson solution method. Since the equilibrium path of a wrinkled
membrane includes many unstable branches, each corresponding to a localised
snap-through due to the formation of an additional wrinkle, the only type of so-
lution algorithm able in theory to compute the full response of the structure is
an arc-length solution. The full response of the structure cannot be computed by
increasing monotonically a single displacement parameter, but all attempts to use
the arc-length solution method in ABAQUS (*RIKS) were unsuccessful, possi-
bly because wrinkling is a highly localised type of instability. Hence, monotonic
displacement incrementation was the only viable option.

A very effective way of addressing the numerical singularities associated with
an instability is to switch from a quasi-static simulation to a transient dynamic
analysis. Thus, one would simulate the actual dynamic response of the structure
as it snaps, in order to compute the first static equilibrium state after snapping has
occurred. This idea can be straightforwardly implemented in ABAQUS using the
STABILIZE function. However, instead of computing the actual dynamics of the
snap, when an instability is detected ABAQUS automatically introduces pseudo-
inertia and pseudo-viscous forces at all nodes, and switches from a solution of the
actual stiffness equations to a solution of a set of pseudo-equations-of-motion.

The default fictitious viscous forces are calculated on the basis of the model’s
response in the first increment of the analysis step, by assuming that the energy
dissipated is a prescribed fraction of the strain energy during the first step. This
fraction is called damping intensity, or stabilise factor, in ABAQUS and has a
default value of 2 × 10−4. To achieve good accuracy, it is generally desirable to
set this parameter to the lowest possible value for which convergence can still be
achieved.

The flowchart in Figure 1 summarises the complete simulation procedure.

4. Two-dimensional finite-element models

In addition to the model presented in the previous section, that has been used very
extensively for the work presented in this paper, a number of comparative two-
dimensional analyses were also carried out. In these analyses the structure was
modelled with a mesh of membrane finite elements, typically 3-node triangular
or 4-node quadrilateral full/reduced integration general purpose elements (M3D3,
M3D4, M3D4R). As well as the standard linear-elastic material model, a wrinkled
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Figure 1. Flowchart for wrinkling analysis using thin shell model.

material definition was implemented through the user-defined material subroutine
(UMAT) developed by Adler [2000].

The analysis procedure for the membrane model was similar to that presented
in Section 3 for the shell model, but there is no eigenvalue/eigenvector extrac-
tion. After setting up the FE model of the structure, using membrane elements,
an additional parameter is provided after the *MATERIAL, ELASTIC option
USER=IMP.

The model was set up either in two dimensions, by constraining all out-of-plane
degrees of freedom, in which case no initial prestress was needed, or in three di-
mensions, and in this case a small initial prestress was used to numerically stabilise
the model, as for the thin-shell model.
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Figure 2. Finite element mesh for membrane in shear.

5. Membrane in simple shear

This section presents a study of the formation and growth of wrinkles in an initially
flat and stress-free, linear-elastic rectangular membrane subject to simple shear.
The dimensions of the membrane are shown in Figure 2, and the material properties
are listed in Table 1.

Figure 2 shows the finite element mesh used for a preliminary analysis that was
carried out. It consists of 3960 four-noded quadrilateral S4R5 thin-shell elements;
each element has an aspect ratio of approximately one. The analysis started with
a relatively fine mesh, in order to properly resolve the wrinkles. The element
size was initially set to be smaller than the wrinkle half-wavelength, which in the
present problem can be estimated from [Wong and Pellegrino 2006b, Eq. (14)].
Also shown in the figure is the final horizontal shear displacement, δ = 3 mm, of
the upper edge of the membrane.

Using the *BOUNDARY, ENCASTRE option, The bottom edge of the mem-
brane was fully constrained. This was the only boundary condition assigned in the
model history definition, and so it remained active through all analysis steps. The
other boundary conditions were modified during the analysis, as explained in the
next section.

Thickness, t (µm) 25
Young’s Modulus, E (N/mm2) 3500
Poisson’s ratio, ν 0.31
Density, ρ (kg/mm3) 1.5 × 10−6

Table 1. Kaptonr membrane properties
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The upper edge of the membrane was connected to a series of B21 beam ele-
ments, with a 15 mm wide by 30 mm deep rectangular section, E = 215000 N/mm2

and ν = 0.35, modelling the sliding element of the experimental rig used in [Wong
and Pellegrino 2006a]. The beam elements were connected to the nodes along the
upper edge of the membrane using the multi-point constraint option *MPC, TIE.

5.1. Simulation details. Each simulation consisted of three steps, as follows.
The first step consisted in pretensioning the membrane by moving the upper edge

by 0.5 mm, in the y-direction. Then, a geometrically nonlinear equilibrium check
was performed. The geometric stiffness provided by the prestress has the effect of
increasing the out-of-plane stiffness of the thin membrane. Only translation in the
y-direction was allowed for the two side edges, and all six degrees of freedom of
the bottom edge were completely constrained.

In the second step, an eigenvalue buckling analysis was carried out with a pre-
scribed horizontal displacement of 3 mm at the upper edge. The model boundary
conditions were modified by using the *BOUNDARY, OP=MOD option. This
has the effect of moving the upper edge nodes in the horizontal x-direction by the
prescribed displacement. All degrees of freedom of the nodes along the two side
edges were completely free, to simulate the actual situation in the experimental
model.

Earlier analyses had shown that the eigenmodes corresponding to eigenvalues
smaller than 0.2 correspond to local deformation modes of the membrane (note
that this particular value of the smallest eigenvalue depends on the initial prestress
applied in the first step), and hence are of limited interest for the wrinkling analysis.
Therefore, the Lanczos solver in ABAQUS was set to produce only eigenmodes
whose eigenvalues are greater than 0.2. The first four symmetric modes are pre-
sented in Figure 3. Note that all of these modes closely resemble the expected wrin-
kled pattern, i.e., the parallelogram of wrinkles observed experimentally in [Wong
and Pellegrino 2006a] and also predicted analytically in [Wong and Pellegrino
2006b]. Also note that all four modes have approximately the same wavelength.
The chosen geometrical imperfections were then seeded onto the pristine mesh
using the *IMPERFECTION command.

The third and final step consisted of two substeps. First, the initial pretensioning
step was repeated, as described earlier, but this time with the upper edge only
displaced by 0.05 mm to give an initial prestress of approximately 1.5 N/mm2.
Note that, although in the first step a much higher prestress had been used, in order
to avoid the presence of many localised modes in the eigenvalue buckling analysis
step, here a smaller prestress is sufficient to provide a small, initial out-of-plane
stiffness to the membrane, but without affecting the final results. Then, in the
second substep the upper edge was moved horizontally by 3 mm while all other
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Figure 3. First four eigenmodes with eigenvalue > 0.2, for mem-
brane is shear.
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degrees of freedom were constrained. All translational degrees of freedom of the
side edges were left free, but the rotations were constrained to aid convergence.

The STABILIZE function was activated for this substep. The parameter that
controls the amount of numerical damping has the default value 2 × 10−4. This
parameter was adjusted almost continuously, according to the level of difficulty of
converging to a solution, by using the *RESTART option. This approach allows
the numerical damping to be made very small, to minimise the deviation between
the computed equilibrium path and the actual path, and to be increased only when
necessary. The smallest factor used in the rectangular membrane simulations was
1 × 10−8 (*STABILIZE, FACTOR =1E-8) .

5.1.1. Initial imperfections. Many different combinations of eigenmodes and scal-
ing factors were considered to test the sensitivity of the results of the detailed
wrinkling analysis. For each set, a complete wrinkling simulation was carried out
and the maximum and minimum out-of-plane displacements, wmax and wmin, were
computed. A set of sample results are shown in Table 2.

Note that the maximum displacements remain practically unchanged when the
magnitude of the imperfections is increased by a factor of 10. Also note that the
particular displacements listed in the table correspond to the largest two wrinkles,
on either side of the membrane, but the smaller wrinkles between these large ones
were also found to have the same amplitude and wavelength, regardless of the size
of imperfection.

It was thus concluded that the particular magnitude of the chosen imperfection
is not critical. It was decided to use a “standard” imperfection consisting of the
first four eigenmodes corresponding to eigenvalues greater than 0.2, normalised to
a unit length by ABAQUS, each multiplied by a scaling factor φi = 0.125t .

5.1.2. Comparison of different elements. After selecting a standard set of imper-
fections on the basis of a mesh of S4R5 thin shell elements, as described in Section
5.1.1, a detailed study of the performance of different elements was carried out.

Table 3 lists the number of wrinkles n (see Section 5.3), the wrinkle wavelength
2λ, the amplitude A, and the total simulation time for each type of element.

φ1, . . . , φ4 wmax (mm) wmin (mm)
0.025t 1.12 −1.49
0.125t 1.09 −1.49
0.250t 1.14 −1.51

Table 2. Sensitivity of membrane in shear to imperfection magnitudes
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Element S3 S4 S4R5 S9R5 M3D4
n 13 11 16 16 9
2λ (mm) 28.6 33.9 21.2 23.0 42.3
A (mm) 0.651 0.999 0.432 0.453 0.83
CPU (s) 31869 5714 10192 79419 791

Table 3. Number of wrinkles, wavelength, amplitude and total
simulation time for different element types, for membrane in
shear.

The most important parameter is the total number of wrinkles, since it can
be readily compared to the experimental observations. In [Wong and Pellegrino
2006a] we observed 19 wrinkles when a 3 mm displacement was imposed on a
25 mm Kaptonr film.

Here, elements S3 and S4 predicted 13 and 11 wrinkles, whereas S4R5 and
S9R5 both predicted 16 wrinkles. Note that S3 failed to converge with the specified
stabilize factor of 1 × 10−8; the results presented in Table 3 were obtained by
specifying a damping factor of 5 × 10−3. The membrane element M3D4, with a
standard linear-elastic material model, predicted only 9 wrinkles.

Hence, elements S4R5 and S9R5 match the experimental results most closely.
Since S4R5 is superior in terms of computational efficiency and economy, it was
adopted for all the following analyses.

5.1.3. Sensitivity to mesh density. The initial mesh, shown in Figure 2, predicted
a smaller number of wrinkles than that observed in the experiment. Therefore, two
additional mesh sizes were used to investigate the effect of mesh density on the
final wrinkled shape.

The two meshes consisted of 6950 and 13134 elements, approximately double
and four times the number in the initial mesh. Both of the denser meshes predicted
the same number of wrinkles as in the experiment (Table 4), which suggests that
the solution becomes mesh-independent after a particular level of refinement.

No. elements Total dof No. wrinkles
3960 19800 17
6950 34750 19

13134 65670 19

Table 4. Dependence of number of wrinkles on mesh density.
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Figure 4. Shear force-displacement relationship, for membrane in shear.

Since the computational time increases roughly proportionally to the number of
elements, the mesh with 6950 S4R5 elements was selected. The results presented
and discussed from now on are all based on this model.

5.2. Global behaviour of wrinkled membrane. The overall relationship between
the total shear force applied to the membrane and the shear displacement, δ, has
been computed using three different models; the results are shown in Figure 4.
Both the shell model and the IMP membrane model predict an initial in-plane shear
stiffness of 101 N/mm, which quickly decreases by about a third as the wrinkles
begin to form. Afterwards, the response is essentially linear. The membrane model
with standard, linear-elastic material does not capture the softening associated with
the formation of wrinkles (although a certain amount of waviness is created as a
result of the initial imperfections).

A vector plot of the midsurface stress distribution (obtained from the shell
model) corresponding to the final displacement δ = 3 mm is shown in Figure 5.
For each element, the directions and magnitude of the two principal stresses have
been plotted, but the major stress, σ1, is so much larger than the minor stress,
σ2, that only one vector can be seen. The direction of the major principal stress
corresponds to the direction of the wrinkles, which are clearly uniform and inclined
at 45◦ in the central part of the membrane. There are two lightly stressed triangular
regions near the side edges, and the top right and bottom left corners act as stress
risers, with stress concentrations of up to 2.5 times the average stress.

Figure 6 shows the overall, final wrinkle pattern in the membrane. The wrinkles
in the central region are at 45◦ to the edges, but near the pair of corners that move
closer together the wrinkles are “pinned” and hence form a kind of fan region.
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A deeper understanding of the stress distribution in the wrinkled membrane can
be obtained by considering the principal stresses across the midheight section, at
y = 64 mm, defined by the section line A-A in Figure 6. Figure 7 shows plots of the
major and minor principal stresses through the midplane of the membrane for two
values of the shear displacement. The plots show that σ1 increases rapidly, starting
from zero at the edges, to an approximately uniform, positive value, whereas σ2

remains very small. Close inspection shows this value to be always negative and
roughly uniform across most of the section.

5.3. A closer look. The linearity of the overall load-deflection response computed
in Section 5.2 hides some interesting instabilities, which become apparent on closer
inspection. When the shear displacement is gradually and monotonically increased,
the existing set of wrinkles grow in amplitude, then become unstable and give
rise to an extra wrinkle, and hence all of the wrinkles suddenly have a smaller
wavelength and amplitude, and then the cycle repeats.

50 N/mm2

Figure 5. Plot of principal stress directions and magnitudes, for
membrane in shear, showing that the major principal stress is (i)
uniformly at 45◦ in the centre region and (ii) about three times
larger near the top right and bottom left corners.

x

y
z

A A

Figure 6. Perspective view of wrinkle pattern, for membrane in
shear with δ = 3 mm.
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A complete history of how the wrinkle pattern grows is shown in Figure 8. This
figure is a plot of δ versus the position of the points of maximum and minimum
out-of-plane displacement, i.e. the crests and troughs of the wrinkles, across the
midheight section of the membrane.
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Note that the solid lines on the two sides of the plot are practically straight and
vertical, indicating that the edge wrinkles do not move. Looking further towards the
centre of the plot, the first dotted line and the second solid line are continuous, but
gently curved outwards. Many other lines contain one or more bifurcation points,
which indicate that additional wrinkles are created. The first five bifurcations occur
very quickly, at the start of the simulation; afterwards the values of δ associated
with each jump can be clearly identified, and are labelled (6)–(10) on the right-hand
side of the figure. As the number of wrinkles increases, the membrane becomes
more stable and hence a greater increase of δ is required for the next bifurcation
to occur.

Because the wrinkles can most easily reorganise themselves in the middle of the
membrane, new wrinkles tend to appear close to the edges. The large wrinkles on
the sides do not move; they are “pinned” at the corners, as already noted.

Figure 9 shows the different shapes of the midheight section of the membrane,
for increasing δ’s. The particular shapes shown here were obtained immediately
after the bifurcations labelled (2), (4), (6), (7), (9) and (10) in Figure 8. The number
of wrinkles, n, defined as the number of crests in each plot, is 9, 11, 13, 14, 16
and 17 respectively. The outermost crest at each side is not counted. Note that
the wrinkle amplitude in the central region increases from 0.13 mm to 0.33 mm in
these plots, while the wavelength decreases visibly.

5.4. Mode jumping. The sudden transitions from one wrinkled shape to another,
noted in the previous section, were observed experimentally in [Wong and Pel-
legrino 2006a]. Each change in the number of wrinkles is a mode jump in the
post-buckling response of the membrane.

Mode jumping in stiffened panels under compression has been studied in depth
by Stein [1959b; 1959a]. A key difference is that, whereas in Stein’s work mode-
jumping clearly showed in the load-shortening curves for the panels, here the load-
deflection curve is linear, as seen in Figure 4. The reason is that each mode-jump is
associated with a change of compressive stresses in the membrane, but their mag-
nitude is negligibly small in comparison with the tensile stresses in the membrane.

Mode jumps have been explained in terms of the interaction of the branches of
a set of bifurcation points adjacent to the critical load [Riks 1998]. For the present
study, the sequence of jumps is seen most clearly in a plot of the minor principal
stress, σ2, versus the shear displacement at a representative point of the membrane.
For example, Figure 10 shows the stresses at three points near the centre of the
membrane. Which particular point is chosen is not significant, but jumps that are
associated with an instability that is distant from the chosen point might not show,
therefore we have monitored the stress at several points and chosen three after
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Figure 9. Mid-height cross-sections for different δ’s.

completing the analysis. Note that σ2 is always compressive, and far smaller in
magnitude than the tensile stresses plotted in Figure 7.

The stress jumps numbered (1)–(10) in Figure 10 are the same that were inves-
tigated in Section 5.3. Jump (1) occurred almost immediately after beginning to
increase δ. This jump was facilitated by the initial geometric imperfections. Due
to these imperfections, the first jump is directly into a configuration with n = 7
wrinkles. This jump is followed in rapid sequence by jumps (2)–(5); and then
the membrane settles in a relatively stable configuration. It is interesting to note
that, as the membrane becomes more stable, σ2 remains almost constant between
consecutive jumps.

Next, we discuss jump (6) in more detail. Figure 11 shows a sequence of cross-
sections of the membrane, corresponding to the 8 points labelled (a-h) on the en-
larged part of Figure 7. Figure 11(a-b) shows a 13-wrinkle shape that remains stable
until σ2 has almost reached a peak, at point (c). Here a small asymmetry begins
to appear in the cross-sectional plot, which rapidly grows into a new wrinkle (d-e).
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Thus, the transition from 13 to 14 wrinkles occurs over a very small increment of
δ. Then the new mode becomes stable and the magnitude of σ2 starts to decrease.

It is also interesting to simulate a loading-unloading cycle. Figure 12 is a plot
of the variation of the number of wrinkles when δ is increased from 0 to 3 mm,
and then decreased to 0, and finally increased again to 3 mm. Note that during
unloading the wrinkles tend to stay on, thus the final number of wrinkles does not
start decreasing until the shear displacement has been reduced to δ = 0.8 mm. At
this point the number of wrinkles suddenly decreases from 17 to 14. Thus, the
behaviour upon unloading is different from that upon loading.

During reloading the membrane generally follows the same path as during the
initial loading, however the final configuration with 17 wrinkles is achieved slightly
earlier this time. This difference may be due to the effect of the geometrical im-
perfections left in the membrane at the end of the first load cycle, which may have
facilitated the formation of the “correct” pattern of wrinkles. Also note that the
stabilise factor was continuously adjusted during each simulation, and also during
load reversal; it is difficult to quantify the effect of this variation.

6. Square membrane under corner loads

This section presents a study of wrinkles in an initially stress free and perfectly
flat square membrane, pulled at the four corners by two diagonal pairs of equal
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and opposite forces, T1 and T2. Its dimensions are defined in Figure 13 and the
material properties are given in Table 1.
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Figure 13. One quarter of the finite element mesh square membrane.

The corners of the square are truncated, to model the actual corners of the ex-
periment in [Wong and Pellegrino 2006a]. They have a width of 25 mm, as shown
in Figure 13.

6.1. Simulation details. The membrane and corner tabs were modelled using S4R5
thin shell elements of different thicknesses. The corner beams were modelled using
beam elements with the Circ general beam section. The *MPC, TIE function was
used to connect each beam node to the corresponding shell element node. The
membrane was constrained in both x and y-directions at the centre node; all four
side edges were left free; the z-translations and all rotational degrees of freedom
of the corner beam nodes were restrained. The corner loads were distributed uni-
formly over the nodes of the beams (with only half of the forces applied at the end
nodes).

The analysis procedure was essentially identical for all of the simulations. First,
a uniform prestress of 0.5 N/mm2 was applied to provide some initial out-of-plane
stiffness to the membrane. This was achieved by using the *INITIAL CONDI-
TION, TYPE=STRESS parameter in ABAQUS. A nonlinear geometry analysis
was then carried out, with the *NLGEOM option activated, to check the equilib-
rium of the system with this initial prestress.

Second, an eigenvalue/eigenvector extraction was carried out. Many global
mode-shapes were selected, and were then superposed — each multiplied by the
scaling factor φi = 0.025t — and introduced as an initial geometrical imperfection



WRINKLED MEMBRANES III: NUMERICAL SIMULATIONS 85

at the start of the final analysis step. A smaller value of φi was chosen for the
square membrane than for the rectangular membrane, because it had been found
that this configuration is more sensitive to the magnitude of the initial imperfection,
particularly at lower stress levels.

Third, an automatically stabilised nonlinear simulation of wrinkle growth was
performed. Because the wrinkle amplitude is initially very small, the increment
step was set equal to 0.001 of the total load. The stabilize factor was set to 10−12,
to minimize the effect of numerical damping on the final solution; this value was
found to be sufficient for convergence. Despite the initial symmetry of the perfect
structure, note that the imperfections are not symmetric and so the whole structure
was analysed.

The loading of the membrane was applied in two steps. The first step involved a
symmetric loading, T1 = T2 = 5 N, applied at all corners. Then, T2 was maintained
constant at 5 N while T1 was increased up to 20 N, corresponding to a final load
ratio of T1/T2 = 4. The second load step was carried out as a follow-on to the
first step. Without changing the boundary conditions, T1 was increased to 20 N by
using the *LOAD, OP=MOD command while keeping T2 constant at 5 N.

No separate eigenvalue extraction was carried out for the second load case, as
it was found that the out-of-plane deformation at the end of the first load step
naturally develops into the wrinkled profile for the second step. Also note that the
same stabilize factor used in the symmetric case was employed. However, it was
found that a higher value was required when thinner membranes were analysed.

6.2. Wrinkle details. Figure 14 shows the deformed shape of the membrane sub-
jected to T1 = T2 = 5 N. The wrinkle pattern is symmetrical, like the loading, and
the wrinkle amplitudes were found to be very small in this case. In the figure, the
out-of-plane deformation, in the z-direction, has been magnified 100 times for the
wrinkle details to show clearly.

Three asymmetric load cases were then considered: T1 = 10, 15, 20 N, with T2 =

5 N. The shape under the final loading is shown in Figure 15, and it is significantly
different from that in Figure 14; a continuous, large diagonal wrinkle goes between
the two more heavily loaded corners. In addition to this diagonal wrinkle, fans
of small wrinkles can still be seen near the other two corners. The out-of-plane
displacements in this plot have been amplified 10 times, for clarity.

The transition from the wrinkled shape shown in Figure 14 to that of Figure 15
is gradual, as can be seen from the contour plots of the out-of-plane displacements
for increasing T1/T2, shown in Figure 16.

The initial pattern, shown in Figure 16 (top), is almost perfectly symmetric. It
consists of four, practically identical fans of 9 wrinkles, one at each corner. Within
each fan, each wrinkle subtends approximately the same angle, but the central
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wrinkles have greater amplitude than the edge ones. Note that the wrinkle heights
above and below the membrane are approximately equal.

When T1 is increased to 10 N, the fans of wrinkles at the top left and bottom
right corners become longer and deeper (see second panel in Figure 16), but the
number of wrinkles in each fan is still 9. The wrinkle heights above and below
the membrane continue to be approximately equal. The wrinkles at the other two
corners become smaller in both amplitude and number.

When T1 is increased to 15 N, the top left and bottom right fans merge and three
diagonal wrinkles (down-up-down) go through the middle of the membrane. Note
that the maximum wrinkle height above the membrane is now +0.4 mm, but below
the membrane it is now −0.25 mm.

x

y
z

Figure 14. Wrinkled shape for T1 = T2 = 5 N (amplified 100 times).

x

yz A

A

B

B

C

C

O

Figure 15. Wrinkled shape for T1 = 20 N and T2 = 5 N (amplified
10 times).
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Figure 16. Contours of out-of-plane displacement for T2 = 5 N
and (from top to bottom) T1 = 5 N, 10 N, 15 N, 20 N.
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Finally, when T1 is increased to 20 N (bottom panel in Figure 16), the diagonal
wrinkles increase in amplitude, approximately five times, while maintaining the
down-up-down profile. The wrinkles in the other corners increase in amplitude.

To analyse the final shape of the membrane in more detail, the out-of-plane
displacements at three cross-sections (A-A, B-B and C-C in Figure 15) have been
plotted in Figure 17. In addition to the three cross-sectional deformation plots
obtained from the simulation, the figure shows also the experimental measurements
from [Wong and Pellegrino 2006a].

Experiments and simulations match closely in the central region, and particularly
the wrinkle wavelengths have been captured accurately. Gravity was included in
the numerical simulations, to better capture the deformation of the edges; however,
Figure 17(a-b) shows that the simulation still underpredicts the displacements of
the edges of the membrane.

6.3. Effects of load magnitude on wrinkles. This section considers the variation
of the wrinkle details with the magnitude of the applied loads. Figure 18(a) compares
the cross-section at a distance of 105 mm from point O, which is roughly where
the maximum displacements occur, for the case T1 = T2 = 5 N with the case
T1 = T2 = 20 N. As can be seen, the wrinkle amplitudes increase, but the wavelength
does not change.

Figure 18(b) compares the central cross-section, at a distance of 355 mm from
point O, for the case T1 = 20 N, T2 = 5 N with the case T1 = 40 N, T2 = 10 N.
Note that the wrinkle wavelength decreases when the applied load is increased.
Also note that the small downwards wrinkle almost disappears, leaving an almost
antisymmetric down-up wrinkle.

6.4. Stress distribution. Figure 19 shows the distribution of major midplane prin-
cipal stresses in the membrane, for the four load ratios. The stress limits were set at
6.0 and 0 N/mm2 in order to better visualize the stress variation. The general trend
is that the stress decreases as one moves away from the corners of the membrane.
For T1/T2 = 1 — see Figure 19(a) — the higher stresses are localized near the four
corners, but for increasing T1/T2 the larger major principal stresses tend to spread
along the main diagonal.

Because wrinkling is associated with the existence of (small) compressive stres-
ses, it is instructive to consider also the distribution of the minor principal stresses,
shown in Figure 20. The thin-shell model allows these stresses to become negative.
For ease of comparison, the maximum and minimum stress limits were set at 1.0
and -2.0 N/mm2. The key things to note are: (i) for T1/T2 = 1 — see Figure
20(a) — there are four identical regions of negative stress; (ii) two of these regions
become smaller for T1/T2 = 2 and 3, while the other two regions grow bigger and



WRINKLED MEMBRANES III: NUMERICAL SIMULATIONS 89

0 200 400 600

Distance from edge (mm)

Experiment 

ABAQUS     
-1

0

1

2

3

0 100 200 300 400

-1

0

1

2

0 50 100 150 200

D
e
fl
e
c
ti
o
n
 w

 (
m

m
)

-0.5

0

0.5

1

(a)

(b)

(c)

Distance from edge (mm)

D
e
fl
e
c
ti
o
n
 w

 (
m

m
)

Distance from edge (mm)

Experiment 

ABAQUS     

Experiment 

ABAQUS     

D
e
fl
e
c
ti
o
n
 w

 (
m

m
)

Figure 17. Experimental measurements with ABAQUS results
for cross-sections at distances (a) 105 mm, (b) 177 mm,
(c) 355 mm from the corner, for T1 = 20 N and T1 = 5 N.
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coalesce in Figure 20(c); (iii) for T1/T2 = 4 the regions of compressive stress near
the corners with the smaller loads have grown bigger.

7. Discussion and conclusion

A finite element simulation of wrinkled foils has been carried out with the commer-
cial package ABAQUS, and the accuracy of the resulting wrinkle patterns has been
demonstrated for two different problems. A key feature of the present approach is
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that the geometrical imperfections that are seeded in the initially flat foil were ob-
tained by computing the initial buckling modes of a perfectly flat foil that is lightly
prestressed, to avoid highly localised buckling modes. This approach follows es-
tablished, standard practice for the simulation of the post-buckling behaviour of
imperfection-sensitive structures, and it has been shown that the experimentally
observed behaviour of the foil is accurately captured.

The reduced integration shell elements available in ABAQUS have been found
best suited to handle the combination of in-plane and bending behaviour associated
with wrinkling, and element S4R5 was selected for speed of computation and accu-
racy. A mesh density of about 6 elements over a complete wrinkle wave, of length
2λ, was found sufficient to obtain accurate results. Further details on the analysis
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Figure 19. Contours of major midplane principal stress (in
N/mm2) obtained from thin-shell model for (a) T1 = T2 = 5 N;
(b) T1 = 10 N, T2 = 5 N; (c) T1 = 15 N, T2 = 5 N; (d) T1 = 20 N,
T2 = 5 N.
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presented in this paper, including a sample ABAQUS input file, are available in
Wong [2003].

In cases where a preliminary analytical estimate of the smallest value of λ is
available, this estimate can be used to design a suitable finite element mesh. In other
cases, the mesh density has to be refined iteratively until the resulting distribution
of wrinkles has converged.

Our predictions are very accurate for the internal region of the foil, but it has
been noted that the free edges tend to move about 50% more than predicted by
the simulations. This may be due to the initial curling of the edges of Kaptonr

foil (due to residual stresses resulting from manufacturing), compounded by the
fact that the free edges are practically unstressed, and hence “slack”. Out-of-plane
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displacements of slack membranes are notoriously ill-conditioned, and computing
accurately the shape of a curled free edge would be even more extreme. An analysis
specifically focussed on these effects, accompanied by additional experiments, will
be required to shed more definitive light on this issue. From a practical standpoint,
though, we have noted that edge deformations are often reduced very significantly
if the free edges of a foil are cut on a slightly concave curve, instead of straight.

The sudden appearance or disappearance of new wrinkles, accompanied by
the rearrangement (and change of wavelength) of the existing wrinkles — which
were observed experimentally in [Wong and Pellegrino 2006a] — have been re-
produced by our simulations. This behaviour has been understood as a form of
mode-jumping, whose suddenness had been established in previous work by Stein
[1959b] and Riks [1998]. Our simulations of load-cycling, in Figure 12, have
shown that corresponding forward and reverse mode jumps occur at different dis-
placements. This behaviour could be explained in terms of the shape of the equilib-
rium path of the structure, however, because the present displacement-controlled
simulations were not able to trace unstable parts of the equilibrium path, at this
stage it cannot be excluded that the behaviour in Figure 12 is an artefact of the
type of solution procedure used in the present study.

Finally, it is noted that the present simulations have confirmed the existence of
a small, compressive midsurface stress in a wrinkled foil. This was a fundamen-
tal assumption for the simple analytical model proposed in [Wong and Pellegrino
2006b].
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METAL SANDWICH PLATES WITH POLYMER FOAM-FILLED
CORES

A. VAZIRI, Z. XUE AND J. W. HUTCHINSON

The role of low-density structural polymeric foams filling the interstices of the
cores of metal sandwich plates is studied to ascertain the strengthening of the
cores and the enhancement of plate performance under crushing and impulsive
loads. Square honeycomb and folded plate steel cores filled with two densities
of structural foams are studied. The foam makes direct contributions to core
strength and stiffness, but its main contribution is in supplying lateral support to
core members thereby enhancing the buckling strength of these members. Perfor-
mance is assessed at fixed total weight of the sandwich plate such that the weight
of the foam is traded against that of the metal. The outcome of the comparative
study suggests that plates with foam-filled cores can perform as well, or nearly
as well, as plates of the same weight with unfilled cores. The decision on use of
foams in the cores is therefore likely to rest on multifunctional advantages such
as acoustic and thermal insulation or environmental isolation of core interstices.

1. Introduction

Polymeric foams offer unique structural, thermal and acoustic properties, which
make them an excellent choice for many engineering applications [Gibson and
Ashby 1997]. Here, we explore another possible application of structural foams: as
a filler of the interstices of the cores of metal sandwich plates designed to withstand
intense pressure pulses. The main purpose of the filler would be to stabilize core
members against buckling, increasing the effective strength of the core. To assess
whether structural foam is effective in this application, behaviors of sandwich plates
with and without filler, but constrained to have the same total weight, are compared
for localized three-point bending loads and for clamped plates subject to uniformly
distributed pressure pulses. Attention is directed to two classes of cores: square
honeycombs and folded plates (Figure 1).

The background to the present study is the recent discovery that metal sandwich
plates can be designed to sustain smaller deflections than monolithic solid plates
of the same weight when subject to intense pressure pulses, particularly when the

Keywords: polymeric foams, sandwich plates, honeycomb cores, folded plate cores, impulsive
loads.
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(a) square honeycomb sandwich plate

(b) folded sandwich plate

Figure 1: Schematic diagram of sandwich plate core configuration and correspond-
ing computation model of sandwich panel (the polymeric foam components are
not shown)
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pulse is transmitted through water [Xue and Hutchinson 2003; Xue and Hutchinson
2004a; Xue and Hutchinson 2004b; Hutchinson and Xue 2005]. The core plays
a critical role in the performance of the sandwich plate: typically, it must be able
to absorb more than one half of the initial kinetic energy imparted to the plate by
crushing in the early stages of deformation prior to significant overall bending and
stretching without unduly reducing the separation between the face sheets. High
crushing strength and energy absorption per unit mass of the core is therefore impor-
tant. Square honeycomb cores have been shown to be especially effective [Xue and
Hutchinson 2004a], and this is one of the core-types considered here. Folded plate
cores are more susceptible to buckling under crushing than square honeycombs but
are nevertheless effective, and they have manufacturing advantages. In this paper,
enhancement of the buckling resistance of the core webs due to lateral support
of the foam will be investigated. The tradeoff against such enhancement is the
inevitable loss in bending and/or stretching strength accompanying the reduction
in metal required to pay for the weight of the foam. The net gain or loss to the
overall performance of the plate by incorporating the foam is by no means obvious
when the total mass of the plate is constrained to be constant.

The paper begins with the specification of the sandwich plate geometries and
material properties in Section 2. The material comprising the sandwich plate core
and face sheet is stainless steel (#304). The foam material is a closed-cell PVC
foam material with the commercial name Divinycell. Two commercially available
densities of this polymeric foam are considered, H100 and H200. Details of the
continuum constitutive model of the polymeric foam materials are described in
Section 2.1. The finite element modeling is described in Section 2.2. A limited
investigation of the response of the core to three basic stressing histories (crushing,
shear and stretching) is conducted in Section 3 to provide insight into the effect of
filling the core interstices with foam. Section 4 presents comparative results, with
and without the foam, for wide sandwich plates clamped along opposite edges
and subject to a quasi-static load applied by an indenter. Corresponding results
for clamped plates subject to a uniformly distributed intense impulse are given
in Section 5. Limited results for the plastic energy dissipation history of each
component of the empty and foam-filled sandwich plates under impulsive load are
presented in Section 6. Conclusions are drawn in Section 7, where topics for further
research will also be noted.

2. Specification of sandwich plates and material properties

2.1. Sandwich plates. Infinite sandwich plates of width 2L that are clamped along
their edges are considered. Figure 1 shows the periodic units employed in the finite
element models of the sandwich plate (the foam is not depicted). Both types of
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sandwich plates have core height H , core web thickness t , and face sheet thick-
ness h. The square honeycomb core has web spacing B. The folded plate core has
an inclination angle α.

Denote the densities of the steel and foam by ρs and ρ f , respectively. The
average density of the core, ρ̄c, is

ρ̄c = υsρs + ρ f (1 − υs) (1)

where υs is the volume fraction of the core occupied by steel. Full-scale metal
sandwich plates designed to be effective against impulsive loads have cores with a
low volume fraction of material, typically with υs less than 0.05 [Xue and Hutchin-
son 2004a]. The mass per area of the sandwich plate, M , including the mass of the
foam, is given by

M = (2ρsh + ρ̄c H) (2)

For the square honeycomb core:

υs = 2
t
B

−

(
t
B

)2
∼= 2

t
B

(3)

With L , M , ρs and ρ f specified, the geometry of the square honey plate is fully
determined by the three independent parameters υs , H/L and B/L . The trade-off
of steel against foam due to filling the interstices of the core with foam when the
mass of the core is held fixed can be seen in Figure 2. In that plot, Hs ≡ ρ̄c H/ρs is
the thickness of a solid steel sheet with the same mass/area as the core. The volume
fraction of steel in the core as a function of H/Hs , υs = (H/Hs − ρ f /ρs)/(1 −

ρ f /ρs), is shown for the empty core (ρ f = 0) and for the density ratios considered
in this paper: H100 (ρ f /ρs = 0.0125) and H200 (ρ f /ρs = 0.025). For the full-scale
plates considered in this paper, typically, H/Hs ∼= 25 such that the empty core has
υs ∼= 0.04, while the equal weight core filled with H200 foam has only about half
the amount of steel. Of course, steel can be traded from the face sheets as well as
from the core.

For the folded sandwich core:

υs =
t/H

t/H + cos α
(4)

In this case, with L , M , ρs and ρ f specified, the three independent variables em-
ployed to determine the geometry of the folded sandwich plate are: υs , H/L and
α.

2.2. Material specifications. The core and face sheets of the sandwich plates are
taken to be 304 stainless steel with density ρs = 8000 kg/m3. A piecewise function
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Figure 2: Volume fraction of steel versus normalized core thickness

has been fit to the true stress-log strain tensile behavior of the material giving

σ =

{
Esε ε ≤ σY s/Es

σY s(Esε/σY s)
N ε > σY s/Es

(5)

with Young’s modulus Es = 200 GPa; Poisson’s ratio ν = 0.3; tensile yield strength
σY s = 205 MPa; strain hardening exponent N = 0.17 [Boyer and Gall 1985]. The
shear modulus and initial shear strength are Gs = Es/[2(1 + ν)] = 76.92 GPa
and τY s = σY s/

√
3 = 118.35 MPa. Strain-rate sensitivity of the steel is not taken

into account. Classical flow theory based on the Mises yield surface and isotropic
hardening is employed in the simulations. The steel is assumed sufficiently ductile
to sustain large strains without fracture.

The constitutive model adopted for the foams is that developed for polymeric
foams by [Zhang et al. 1997; Zhang et al. 1998] and available as a constitutive
option in ABAQUS [ABAQUS 2001]. The model is an isotropic, dilatational plas-
ticity relation. The specific form employed here models the inelastic deformation
as perfectly plastic with three inputs: the yield stress in uniaxial compression, σ 0

c ,
the yield stress in hydrostatic compression, p0

c , and the yield stress in hydrostatic
tension, p0

t . An ellipsoidal yield surface (see Figure 3) is specified by

σ̂ = σ 0
c (6)
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Figure 3: Initial yield surface for the continuum constitutive model of polymeric
foam material

with σ̂ as the equivalent stress, defined by

σ̂ ≡ χ +

[
χ2

− 6σmχ +
α2σ 2

m + σ 2
e

1 + (α/3)2

]1/2

(7)

Here, σe =
√

3si j si j/2 is the conventional effective stress with si j as the stress
deviator, σm = σkk/3 is the mean stress,

χ ≡
α2

6
[
1 + (α/3)2

](σ 0
c − σ 0

t ) (8)

and the yield surface shape factor is

α ≡
3σ 0

c /p0
c√

(3p0
t /p0

c + σ 0
c /p0

c )(3 − σ 0
c /p0

c )

(9)

Non-associative flow is assumed such that ε̇
p
i j ∝ ∂G/∂σi j with flow potential

[Zhang et al. 1997; Zhang et al. 1998],

G = (σ 2
e + 9σ 2

m/2)
1/2

(10)

Under uniaxial stressing, the model predicts that transverse plastic strains vanish,
in approximate agreement with experimental findings of [Deshpande and Fleck
2001].

The formulation can incorporate strain hardening and, in particular, the substan-
tial increase in flow stress associated with densification at large plastic compaction
can be included. However, in the present application the strains are never large
enough to cause significant strengthening due to densification, and the assumption
of elastic-perfectly plastic behavior realistically captures the plateau-like response
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Table 1: Mechanical properties of PVC polymeric foam

Foam Young’s
modu-

lus, E f

(MPa)

Poisson’s
ratio

Initial uniaxial
compressive
yield stress,
σ 0

c (MPa)

Initial
hydrostatic

compressive
yield stress, p0

c
(MPa)

Hydrostatic
tensile yield

stress, p0
t

(MPa)

H100 105 0.2 1.1 1.0 1.8
H200 293 0.33 3.0 2.8 4.0

of the foam in the intermediate strain range. The formulation can also incorpo-
rate strain-rate dependence of the foam. Tests [Deshpande and Fleck 2001] in the
range of strain-rates from 10−3 s−1 to 10 s−1 reveal only a moderately weak rate
dependence, which will be neglected in this first study.

Compression tests on the foam reveal some anisotropy with the yield strength
typically about 20% higher in the rise direction of the foam than in transverse
directions [Abot et al. 2002; Fleck and Sridhar 2002]. The isotropic model used
here neglects this anisotropy; the uniaxial yield stress, σ 0

c , is associated with the
direction perpendicular to the rise direction. The parameters characterizing the
foam are presented in Table 1. The values for σ 0

c and Young’s modulus in Table 1
are taken from data in [Deshpande and Fleck 2001] and [Fleck and Sridhar 2002]
and are lower than the values suggested by the manufacturer of the polymeric foams
[DIAB 2005].

2.3. Finite element model and specification of the plates. The finite element mod-
els were developed using ABAQUS/CAE software. All components (face sheets,
core webs and polymeric foam components) were fully meshed with three-dimen-
sional elements. Eight-node brick elements were employed with reduced integra-
tion. The loading was taken to be independent of the coordinate in the long di-
rection, and thus it was possible to analyze the three-dimensional unit of the plate
that repeats periodically along its length as shown in Figure 1. Periodic boundary
conditions were applied at each end of the repeating unit in the long direction,
symmetry about the centerline was invoked, and clamped conditions were imposed
along the two sides, corresponding to face sheets welded to rigid walls. Core webs
were taken as welded to the face sheets. The commercial code, ABAQUS Explicit
[ABAQUS 2001], was utilized to perform most of the calculations, both dynamic
and quasi-static.

Full-scale plates are considered in this paper whose half-width, L , is on the order
of a meter. Steel sandwich plates with empty, square honeycomb cores optimized
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against intense impulsive loads to have the minimum weight typically have a nor-
malized core thickness H/L ∼= 0.3 [Hutchinson and Xue 2005]. However, plates
with H/L = 0.1 perform almost as well as the thicker optimal plates, and, because
thinner cores are preferable in many applications, all the examples considered in
this paper have H/L = 0.1. These optimal and near-optimal full-scale plates typi-
cally have between 1/5 and 1/3 of the their total mass in the core, corresponding
to a volume fraction of core material in the range 0.02 < υs < 0.05. Several sets
of calculations will be performed to explore the role of filling the core interstices
with foam: (i) basic core responses to crush, shear and stretch; (ii) plate response
to quasi-static load; and (iii) plate response to impulsive load.

3. Responses of empty and foam-filled cores subject to basic loading histories

The unit cells corresponding to core geometries of square honeycomb and folded
plates are given in Figs. 4a and 4b, respectively, along with the coordinate sys-
tem. To reveal the effect of filling the core interstices with foam, overall stress-
strain curves of the core are computed using for three basic loading histories: core
compression, in-plane tension and out-of-plane shear. These are the three most
important loading histories for many applications.

The unit cells of Figure 4 are used in these finite element computations. In the
compression and shear loadings, rigid plates are bonded to top and bottom surfaces
of the unit cell to simulate the behavior of the core attached to the face sheets. The
bottom plate is fixed and the top face is displaced. Periodicity is exploited, and
periodic boundary conditions are imposed on the unit cell consistent with each
loading. Thus, for example, in core compression of the square honeycomb the
shear tractions on the web edges in Figure 4a are zero while the in-plane edge dis-
placement parallel to the web is constrained to be zero, simulating overall uniaxial
straining as constrained by the faces. For shear loading, there is no net force in
the direction perpendicular to the faces. For the folded plate cell in Figure 4b, the
length, `, of the unit is a parameter that must be varied to determine the critical
buckling mode. The loading referred to as in-plane tension is in reality overall
tension subject to zero in-plane straining in the transverse direction consistent with
stretching of the infinitely long plate clamped on its sides. For this loading, the
edges of the web aligned with the direction of loading are displaced relative to
one another uniformly while the edges of the transverse webs are constrained so
they undergo no in-plane displacement parallel to the web. Shear tractions vanish
on all the edges, and zero traction on the top and bottom edges is enforced in the
direction perpendicular to the faces. Further details are described for the analogous
calculations for empty cores in [Xue and Hutchinson 2004b]. In the finite element
models of foam-filled cores, the displacements of the steel core and polymeric
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(a) Square honeycomb core geometry

(b) Folded core geometry

Figure 4: Finite element model of a unit core cell
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foam coincide at nodal points on shared interfaces. When analyzed with implicit
methods, the problems addressed in this paper have very low rates of convergence,
because of the complexity of the geometry and the extreme variation of the mate-
rial behavior. For this reason, ABAQUS Explicit [ABAQUS 2001] is utilized to
simulate each simple stress history of empty and foam-filled cores. The analyses
are performed under a sufficiently low rate of loading such that inertial effects are
very small and the response is essentially quasi-static. Further discussion on this
topic is presented in Section 4. The detailed analysis of the “micro” behavior of the
core accounts for finite rotations and large plastic strains and it captures features
such as plastic buckling and local necking of the core webs (square honeycomb)
or core plate (folded sandwich).

3.1. Square honeycomb core. The overall stress-strain responses for the three ba-
sic loading histories are shown (Fig. 5) for a square honeycomb core with H/B = 1
and t/B = 0.02, corresponding to a volume fraction of steel, υs = 0.04, whether
empty or filled. The foam constitutes additional mass in this plot. The dimensions
of the core are such that yielding occurs prior to elastic buckling, and plastic buck-
ling is the source of nonlinear deformation for crushing and shearing. The stresses
are defined as true stresses. The overall stresses, σ̄i j , are normalized by their initial
yield values for the empty core given later. Because of its relevance to core crush,
the compression history is determined to larger strains than in-plane tension and
out-of-plane shear. Representative web buckling deflections are included in Figure
5 for compression and shear.

Estimates of the elastic stiffness and initial yield strength of the core based on
simple strength of materials formulas are informative as to the role of the foam.
For the square honeycomb, estimates of the overall elastic moduli associated with
uniaxial stressing in the three directions of orthotropy and out-of-plane shearing
are

E22 ≈ υs Es + (1 − υs)E f

E11 = E33 ≈
1
2
υs Es + (1 −

1
2
υs)E f

G12 = G23 ≈
1
2
υs Gs + (1 −

1
2
υs)G f

(11)

with no accounting for constraint from the faces. The associated average density
of the core, ρ̄c, is given by (1). For a typical core with υs = 0.04, filling with H100
foam increases ρ̄c by 30%, E22 by 1%, and E22 and G12 by 2%. The corresponding
increases for H200 foam are roughly 60%, 3% and 6%. Obviously, the purpose of
filling the core with foam is not to increase the overall elastic stiffness—employing
the additional mass, as steel would be far more effective.

The effect of filling the core with foam on plastic yielding of the core in the
absence of buckling is more significant than its effect on elastic stiffness. Two
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(a) Normalized true stress-true plastic strain relationships for each of the three basic histories for the
square honeycomb core with H/B = 1 and t/B = 0.02 corresponding to υs = 0.04 (ε p

i j is the true
plastic strain associated with the loading).

(b) Deformed configuration of the mesh
showing compressive buckling of the web for
empty square honeycomb core

(c) Deformed configuration of the mesh
showing shear buckling of the web for empty
square honeycomb core

Figure 5
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sets of estimates are given of the overall yield stress for uniaxial stressing in the
directions of orthotropy (again with no constraint of the faces) and out-of-plane
shearing: (i) the average stress at the strain when the steel yields and (ii) the average
stress at the strain when the foam yields1. In uniaxial stressing, the steel yields at
a strain of 0.1%, while the foams yield at a strain of about 1%. At the strain the
steel yields:

σ̄22(0) ≈ υsσY s + (1 − υs)(σY s/Es)E f

σ̄11(0) = σ̄33(0) ≈
1
2
υsσY s + (1 −

1
2
υs)(σY s/Es)E f

σ̄12(0) = σ̄23(0) ≈
1
2
υsτY s + (1 −

1
2
υs)(τY s/Gs)G f

(12)

Adding foam only increases the initial yield stresses by a few percent. The effect
of the foam on the stress at the strain that the foam yields is more significant:

σ̄22 ≈ υsσY s + (1 − υs)σY f

σ̄11 = σ̄33 ≈
1
2
υsσY s + (1 −

1
2
υs)σY f

σ̄12 = σ̄23 ≈
1
2
υsτY s + (1 −

1
2
υs)τY f

(13)

where the yield stresses of the foam are given in Table 1. Strictly, σY s and τY s

should be identified with the corresponding yield strains of the foam, but the in-
crease in stress in the steel above its initial yield due strain hardening at strains
on the order of 1% is not large. The elevation in σ̄22 due to the H100 foam is
almost 15% while that for the H200 foam is almost 40%. These increases are still
only about half what would be achieved if extra mass were used to increase the
steel in the webs. However, for in-plane stressing and out-of-plane shearing, H100
foam gives rise to an 30% increase in the overall yield stresses, while H200 foam
increases them by about 80%. These increases are comparable to what would be
achieved by increasing the steel in the webs rather filling with foam.

The effects noted above are clearly evident in the overall stress-strain curves
in Figure 5. In these plots, each overall stress is normalized by the associated
initial yield stress of empty core, σ̄i j (0)empty, given by (12). First, consider in-
plane tension in Figure 5. The overall strain range plotted is too small for necking
to begin in the webs. The foam has almost no effect on first yield as expected
from the results quoted above. However, the overall stress increases sharply for

1As in the case of overall elastic stiffness, these are based on elementary estimates from the
strength of materials. They ignore, for example, lateral stresses that develop in uniaxial stressing
due to difference in the Poisson ratios of the steel and the foam. Nevertheless, the simplicity of the
formulas nicely reveals the role of the foam, and the formulas are sufficiently accurate for present
purposes.
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strains less than about 1% due to the fact that the foam is still elastic. The abrupt
change in slope at a strain of about 1% denotes the point where the foam yields;
the associated stress is given approximately by (13). For even larger strains, the
increases in stress are due to strain hardening of the steel. The behavior in out-of-
plane shear in Figure 5 is similar to that described for in-plane tension prior to web
buckling which causes the drop in overall stress. Addition of the foam significantly
delays the strain at which shear buckling occurs due to its constraint on the lateral
deflection of the webs. The consequent effect is the significant increase in the
overall flow strength of the core in shear. The foam also delays buckling of the
webs in the compressive loading in Figure 5, although buckling occurs at much
smaller plastic strains in compression. (The dimensions of the empty core are such
that plastic yielding and elastic buckling are almost coincident in compression.)
In the post-buckling range, foam helps to stabilize the webs resulting in higher
overall stress. It remains to be seen in Section 4, whether the strengthening by the
foam observed in Figure 5 will persist when foam is added with a corresponding
reduction in steel.

3.2. Folded plate core. The folded plate core has full orthotropic anisotropy. In
particular, the in-plane stretching stiffness and strength of the empty core are sub-
stantial in the 1-direction but negligible in the 3-direction. The core plate has core
height H , core plate thickness t , and core inclination angle α. The width of the
unit cell (Fig. 1b) is

B = t/ sin α + H/ tan α. (14)

The volume fraction of the core occupied by steel, υs , and the relative density of
the core, ρ̄c, can be obtained from (4) and (1), respectively.

In the calculations, two core geometries are considered: (a) α = 45◦ with t/H =

0.0144, corresponding to B/H ≈ 1.021 and υs = 0.02, and (b) α = 45◦ with
t/H = 0.0295, corresponding to B/H ≈ 1.042 and υs = 0.04. In out-of-plane
compression with no foam, core (a) buckles elastically prior to yielding, while
core (b) yields plastically prior to buckling.

Simple estimates for the overall elastic moduli are

E11 ≈ υs Es + (1 − υs)E f

E22 = υs Es sin4 α + (1 − υs)E f

E33 = (1 − υs)E f

G12 ≈ υs Gs sin2 α + (1 − υs)G f

G23 ≈
1
4
υs Es sin2 2α + (1 − υs)G f

G13 ≈
1
2
υs Gs sin 2α + (1 − υs)G f

(15)
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Terms of relative order tc/Hc have been neglected. The overall stresses at which
the steel yields (assuming no buckling of the webs) are,

σ̄11(0) ≈ σY s
[
υs + (1 − υs)E f /Es

]
σ̄22(0) = σY s

[
υs sin2 α + (1 − υs)E f /Es

]
σ̄12(0) = τY s

[
υs sin α + (1 − υs)G f /Gs

]
σ̄23(0) = τY s

[
υs sin 2α/2 + (1 − υs)G f /Gs

]
σ̄13(0) = τY s

[
υs cos α + (1 − υs)G f /Gs

]
(16)

The corresponding results for the overall stresses at the strain when the foam yields
are

σ̄11 ≈ υsσY s + (1 − υs)σY f

σ̄22 = υs sin2 α σY s + (1 − υs)σY f

σ̄12 = υs sin α τY s + (1 − υs)τY f

σ̄23 = υs sin 2α τY s/2 + (1 − υs)τY f

σ̄13 = υs cos α τY s + (1 − υs)τY f

σ̄33 = (1 − υs)σY f

(17)

The basic stress histories for the folded plate core were computed by imposing
periodicity conditions on the segment ends. The overall stress-strain curves for the
three basic histories, each normalized by the associated initial yield stress of empty
core, σ̄i j (0)empty, are plotted in Figure 6 for the cores with υs = 0.02 and in Figure
7 for υs = 0.04. The response for shear, σ̄12, subsequent to buckling depends on
the length of the segment, `; the curves presented in Figs. 6 and 7 have `/H = 1;
this choice ensures that the overall shear at the onset of buckling is only slightly
above the critical value.

The webs of the folded plate core with υs = 0.02 in Figure 6 are sufficiently thin
such that elastic buckling occurs prior the plastic yielding of the empty steel core
under compression σ̄22; plastic yielding then occurs immediately after the onset
of buckling causing the overall stress to fall dramatically. The role of the foam
is substantially increasing the core strength at strains less than about 1%, prior
to foam yield, is similar to that described for the square honeycomb core. The
effect of the foam on the compressive behavior, σ̄22, of the core with more steel
(υs = 0.04) in Figure 7 is qualitatively similar in most details. As expected, the
strengthening of the foam-filled core relative to the empty core is greatest for the
core with the lesser amount of steel.

The effect of the foam on the behaviors under in-plane tension and out-of-plane
shear is in accord with the behavior of the square honeycomb cores. In the two
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Figure 6: Normalized true stress-true plastic strain relationships for each of the
three basic histories for the folded core with α = 45◦, t/H = 0.0144, corresponding
to υs = 0.02.

examples in Figs. 6 and 7, the foam effectively suppresses buckling in shear over
the range of shear strain shown.

4. Empty and foam-filled sandwich plates under quasi-static loads

The objective of this section is to provide examples illustrating the influence of fill-
ing the core interstices on the structural performance of the two types of sandwich
plates under conditions when the loading is quasi-static. Infinitely long plates of
width 2L , clamped along both sides, are subject to normal loads that are indepen-
dent of the coordinate parallel to the sides. Both punch loads (see Figs. 8 and 9)
and uniform pressure loads have been considered. However, because the findings
related to the influence of the foam are similar for the two loading cases, only
results for the punch load will be presented. Periodicity of the solution in the
coordinate parallel to the edges permits analysis of sections of the plates shown in
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Figure 7: Normalized true stress-true plastic strain relationships for each of the
three basic histories for the folded core with α = 45◦, t/H = 0.0295, corresponding
to υs = 0.04.

Figs. 8 and 9. Boundary conditions on the sections are imposed consistent with
periodicity and symmetry. The three plates in each of these figures (empty core,
core filled with H100, and core filled with H200) all have the same total mass. The
amount of steel in the core is also the same for each of these plates; thus, the face
sheets of the foam-filled plates have been thinned to offset the mass of the foam.
(Alternative accommodation of foam mass by reducing the steel in the core will be
considered in another example discussed later.)

For the finite element computations, the sections shown in Figs. 8 and 9 are
fully meshed using the same types of three-dimensional elements described in
Section 3. The computations are again carried out using ABAQUS Explicit with
loads increased at a sufficiently low rate such that the response is effectively quasi-
static. For the empty square honeycomb sandwich, the response of the sandwich
plate so computed is compared with the result of computations performed using
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(a) The responses of clamped empty and foam-filled square honeycomb
sandwich plates subject to quasi-static punch load

Figure 8
(continued on next page)

ABAQUS Standard [ABAQUS 2001], and good agreement between the two sets of
results is revealed. The load/length, P , in Figs. 8 and 9 is normalized by the limit
load/length, Pc, for a perfectly plastic empty sandwich plate having limit bending
moment/length, 4σY shface H (based only on contributions from the faces), i.e.

Pc = 4σY shface H/L (18)

The main conclusion that emerges from the results in Figs. 8 and 9 is that there
is remarkably little difference between the overall load-deflection behaviors of the
sandwich plates with empty cores and that of the plates whose cores are filled
with foam. However, there are differences in the details of the deformation. In
particular, it can be noted from the deformed configurations shown in the lower
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(b) Deformed configuration of the empty and foam-filled square honey-
comb sandwich plate at δpunch/L = 0.25 (the polymeric foam compo-
nents are not shown)

Figure 8 (cont.): The rigid punch is infinite in the direction perpendicular to the
cross-section shown and has normalized half-width of apunch/L = 0.127 and nor-
malized edge radius of Rpunch/apunch = 0.5. All sandwich plates have M̄/(ρs L) =

0.02, H/L = 0.1 and B/H = 1 and υs = 0.04.

portion of Figs. 8 and 9 that the foam noticeably reduces the buckling deflection
of the core webs beneath the indenter.

At low loads, bending dominates the behavior of the plate such that in-plane
compressive stresses exist in the top face sheet and in-plane tensile stresses in the
bottom face sheet. Plastic yielding begins at δPunch/L ∼= 0.01. Then, as deformation
proceeds, the stresses on the top face sheet gradually change from compression to
tension signaling the transition to stretching dominated behavior. For the sandwich
plate configurations studied here, stretching takes over when δPunch/L exceeds 0.1.
The foam enhances the core crushing strength by providing lateral support of the
core webs, and, in this way, it influences the local response of the plate under
the punch load. The energy absorbed by plastic deformation by the steel core
beneath the indenter is significantly lower for the case of foam-filled sandwich
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(a) The responses of clamped empty and foam-filled folded sandwich plates subject to
quasi-static punch load

Figure 9
(continued on next page)

plates than for the empty core plates because the crushing is much less. In addition,
by spreading the deformation more uniformly in the vicinity of the indenter, the
foam-filled core may help reduce the tensile strains in the upper face sheet thereby
suppressing, or delaying, necking.

5. Empty and foam-filled sandwich plates under impulsive loads

To simulate the response of the plates subject to a uniform air blast, a uniform
impulse/area, I (Ns/m2), is applied to the face sheet towards the blast at time
t = 0 as a uniform initial velocity, v = I/ρshface. The rationale for replacing the
pressure pulse by an initial impulse is based on the fact that the response time
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(b) Deformed configuration of the empty and foam-filled sandwich plate at δpunch/L = 0.25
(the polymeric foam components are not shown).

Figure 9 (cont.): The rigid punch is infinite in the direction perpendicular to the
cross-section shown and has normalized half-width of apunch/L = 0.127 and nor-
malized edge radius of Rpunch/apunch = 0.5. All sandwich plates have M̄/(ρs L) =

0.02, α = 45◦, H/L = 0.1 and υs = 0.04.

associated with the overall deflection of the plate is large compared to the period
of the pulse [Xue and Hutchinson 2003; Xue and Hutchinson 2004a; Fleck and
Deshpande 2004]. For a full-scale plate, the dominant action of the pulse ceases
before the face toward the blast has moved only several centimeters.

In this section, the responses of foam-filled square honeycomb and folded plate
core sandwich plates under impulsive loads are compared to the corresponding
responses of plates with unfilled cores. The plates are similar to those consid-
ered in the previous section: infinitely long, of width 2L , and clamped along their
edges. Results for both the deflection of the face sheet toward the blast and the core
crushing strain are presented, as are selected results on energy dissipation within
the sandwich plate. Define the average crushing strain of the core at the center
of the plate by ε̄c = 1H/H , where 1H is the reduction in core height. Denote
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the final deflection at the center of the top face sheet by plate by δ. For the plate
with the empty square honeycomb core, δ/L and ε̄c depend on the following set of
dimensionless parameters [Xue and Hutchinson 2004a]:

I
M

√
σY s/ρs

,
M

ρs L
, υs,

H
L

,
B
H

plus N and σY s/E . For plates with unfilled folded plate cores, normalized max-
imum deflection and the crushing strain at the center depend on the same list of
dimensionless variables with the exception that B/H is replaced by α. In addition,
dimensionless time variable governing the time-dependence is t

/(
L/

√
σY s/ρs

)
.

The computations were carried out using ABAQUS Explicit with the same periodic
sections and three-dimensional meshes introduced for the quasi-static loadings.

The effect of the momentum impulse imparted to the top face sheet of the
sandwich plates, I

/(
M

√
σY s/ρs

)
, on δ/L and ε̄c are presented in Figs. 10 and

11. Results for empty cores and foam-filled cores are shown. The plates in these
figures all have the same total mass; foam mass is offset by thinning the face
sheets, not the core webs. All the sandwich plates have M/ρs L = 0.02, υs = 0.04,
H/L = 0.1. For plates with honeycomb cores in Figure 10, B/H = 1, while for
plates with folded plate cores in Figure 11, α = 45◦. The range of normalized
impulse plotted covers the full range of realistic deflections. As was the case noted
for the quasi-static loadings, there is remarkably little difference in the maximum
top face deflection of the two classes of plates between the filled and unfilled cores.
Foam reduces the crushing strain of the folded plate core (Figure 11), but this does
not translate into a decrease in the overall deflection relative to the plate with the
empty core. Inserting foam has little effect on the maximum crushing strain of
plates with the square honeycomb cores. This is primarily due to the fact that the
webs of the core are stabilized against buckling by their lateral inertia at the high
crushing velocities considered here [Vaughn et al. 2005].

In studying the comparative advantages of equal weight filled and unfilled plates,
one would obviously want to know whether it is best to offset the weight of the
foam by thinning the face sheets or by thinning the core webs, or some combination
of the two. We have not carried out a thorough optimization addressing this issue,
but we will present one set of computations for the sandwich plates with the square
honeycomb cores that provides some insight into the question. The dimensions of
the unfilled sandwich plate in Figure 10 were established to be nearly optimal at
a normalized impulse level of I

/(
M

√
σY s/ρs

)
= 0.25 by [Xue and Hutchinson

2004a]. In particular, the ratio of steel in the core to the total steel in the plate
(20%) was found to minimize δ/L at that impulse level for all plates with the same
total mass with B/H = 1 and H/L = 0.1. Moreover, the dependence on B/H and
H/L was found to be relatively weak.
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(a) The normalized maximum deflection of the top face sheet δ/L

(b) The maximum nominal compressive strain in the core, ε̄c, of empty
and foam-filled square honeycomb sandwich plates versus normalized
momentum impulse, I

/(
M

√
σY s/ρs

)
.

Figure 10: All sandwich plates have M̄/(ρs L) = 0.02, H/L = 0.1 and B/H = 1
and υs = 0.04.
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(a) The normalized maximum deflection of the top face sheet δ/L

(b) The maximum nominal compressive strain in the core, ε̄c, of empty
and foam-filled sandwich plates versus normalized momentum impulse,
I
/(

M
√

σY s/ρs
)
.

Figure 11: All sandwich plates have M̄/(ρs L) = 0.02, α = 45◦, H/L = 0.1 and
υs = 0.04.
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For the sandwich plates with the square honeycomb cores subject to an impulse,
I
/(

M
√

σY s/ρs
)

= 0.25, Figure 12 displays the dependence of the normalized
maximum deflection, δ/L and the maximum core crushing strain on the volume
fraction of steel in the core, υs , for unfilled cores and for cores filled with the two
densities of foam. The total mass/area of each plate is the same with M/ρs L = 0.02;
the deflection of the solid plate with the same mass/area and subject to the same
impulse is included on the abscissa. Reducing νs increases the thickness of the
faces and vise versa, because the mass of foam in the core varies only slightly
over the range plotted of νs for each of the two foam-filled sandwiches. Thus,
Figure 12 displays the tradeoff between core mass and face sheet mass. While the
unfilled sandwich plate has the minimum deflection for cores with steel webs with
relative density υs = 0.04, the best performance from plates with foam-filled cores
is achieved with lower relative density of steel—about 0.03 for the H200 foam. For
plates with υs ≥ 0.02, the crushing strain is essentially the same for the filled and
unfilled plates at the level of impulse imposed, and, moreover, it is less than 20%.

Figure 13 presents the final deformed configuration of the foam-filled square
honeycomb sandwich plates (H200 Foam) for three volume fractions of the core
occupied by steel, υs , under impulse, I

/(
M̄

√
σY s/ρs

)
= 0.25. As in the previous

plots, all plates have M̄/(ρs L) = 0.02, H/L = 0.1 and B/H = 1. For a low
relative density of steel in the core (υs = 0.01), local plastic buckling of the steel
core clearly compromises the performance of the plate such that the crushing strain
is almost 30%. For plates with excess steel in the core (υs = 0.08) and therefore
overly thinned face sheets, the top face undergoes extensive plastic bending into the
core while the core webs undergo very little deformation. The intermediate case
(υs = 0.04) displays modest amounts of core deformation and face sheet bending.
Note that for both υs = 0.04 and υs = 0.08, there is very little evidence of core
web buckling, even though the core has been crushed to average strains of about
12% and 7%, respectively. These crushing strains are far in excess of the strain at
plastic yield (a small fraction of 1%) and, also, well above the quasi-static plastic
buckling strain of the webs. The suppression of buckling is due in part to the lateral
support of the webs by the foam and the inertial stabilization of the webs under the
impulsive loading.

A limited study on the effect of foam densification on the structural performance
of square honeycomb sandwich plates filled with polymeric foam H200 under blast
load is conducted by fitting a multi-linear line to the response of this material under
uniaxial compressive load (see Section 2.2 for more detail). The sandwich plates
having M̄/(ρs L) = 0.02, H/L = 0.1 and B/H = 1 with various volume fractions
of the core occupied by steel, 0 ≤ υs ≤ 0.04, are analyzed under the initial momen-
tum I

/(
M̄

√
σY s/ρs

)
= 0.25. The result shows that the deformation mechanism

of the foam-filled square honeycomb sandwich plates is not significantly affected
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(a) The normalized maximum deflection of the top face sheet δ/L

(b) The maximum nominal compressive strain in the core, ε̄c, of empty
and foam-filled square honeycomb sandwich plates versus the volume
fraction of the core occupied by steel, υs

Figure 12: All sandwich plates have M̄/(ρs L) = 0.02, H/L = 0.1 and B/H = 1
and subjected to I

/(
M

√
σY s/ρs

)
= 0.25.
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Figure 13: Deformed configurations of the foam-filled square honeycomb sand-
wich plates (H200 Polymeric Foam) for various volume fraction of the core occu-
pied by steel, υs under the normalized momentum impulse I

/(
M

√
σY s/ρs

)
= 0.25,

at t
/(√

σY s/ρs
)
= 1. All sandwich plates have M/(ρs L) = 0.02, H/L = 0.1 and

B/H = 1 (the polymeric foam components are not shown).
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by considering the foam densification behavior under uniaxial compression. The
maximum effect of accounting for foam densification on the maximum displace-
ment of the top face sheet and maximum nominal compressive strain in the core
are ≈ 1.1% and ≈ 6.5%, respectively.

6. Plastic energy absorption in foam-filled honeycomb sandwich plates

Insight into the role of the polymer foam is gained by examining the contributions
to plastic energy dissipation of each component of the empty and foam-filled (H200
foam) sandwich plates under impulsive load. Figure 14 displays the time history
of the plastic dissipation in the core and face sheets along with the total plastic
dissipation for the two plates, each of which has M/ρs L = 0.02, υs = 0.04, H/L =

0.1, B/H = 1 and subject to I
/(

M̄
√

σY s/ρs
)
= 0.25. The results are plotted in

dimensionless form as UP/K E0, where K E0 is the initial kinetic energy imparted
to the plate and UP is the energy dissipated in plastic deformation in the component
indicated at time t

/(
L/

√
σY s/ρs

)
. The total dissipation is also shown.

For a prescribed initial momentum impulse applied to the top face sheet, I , the
initial kinetic energies imparted to the plate is K E0 = I 2/(2ρshface). Thus, the
foam-filled plate has to absorb more energy than the unfilled plate since in the
example in Figure 14 the face sheets of the filled plate are thinner than those of
the unfilled plate (the total mass and the mass of steel in each core is the same for
the two plates). The results in Figure 14 show that for both sandwich plates, the
earliest stage of deformation with t

/(
L/

√
σY s/ρs

)
< 0.05 (Stage II, [Fleck and

Deshpande 2004]) consists of the top face sheet flying into, and crushing the core.
In this stage, the motion away from the clamped supports is one-dimensional, the
bottom face sheet is almost stationary, and very little plastic dissipation occurs in
the bottom face sheets. By the end of this stage, the two face sheets are moving
with nearly the same velocity. In this stage, the foam contributes significantly to the
plastic energy dissipation of the foam-filled sandwich plate core layer by absorbing
around 10% of the initial kinetic energy. As a consequence, the energy dissipated
in the steel core of the foam-filled sandwich plate is around 10% smaller than that
the empty sandwich one. The total plastic energy dissipated in the sandwich plate
in stage II is almost the same for both cases (≈ 60%), in close agreement with the
simple analysis based on the conservation of momentum between the beginning
and end of stage II [Fleck and Deshpande 2004].

Subsequent to stage II, there is essentially no further core compression and the
entire sandwich plate undergoes bending followed by in-plane stretching (stage III
of [Fleck and Deshpande 2004]. In this stage, the kinetic energy not absorbed in
core crush must be absorbed in overall bending and stretching. For both plates,
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Figure 14: The time history of plastic dissipation in empty and foam-filled square
honeycomb sandwich plates (H200 Polymeric Foam) with M/(ρs L) = 0.02, υs =

0.04, H/L = 0.1 and B/H = 1 and subjected to I
/(

M
√

σY s/ρs
)
= 0.25.

almost all the plastic dissipation has occurred by t
/(

L/
√

σY s/ρs
)
≈ 0.8. Subse-

quently, the plate undergoes elastic vibration, although this is not evident in the plot
of plastic energy dissipation. The total plastic energy dissipated in the empty and
foam-filled sandwich plates is between 90% and 95% of the initial kinetic energy.
The initial kinetic energy is never fully dissipated plastically because of residual
elastic stress (the main contribution) and continuing elastic vibratory motion.

The influence of the relative density of the steel in the core, υs , on the energy
dissipation in sandwich plate components for foam-filled (H200 foam) plates is
seen in Figure 15. These plates all have the same total mass (M̄/(ρs L) = 0.02,
Hc/L = 0.1, B/Hc = 0.1), and thus increases in steel in the core is traded against
steel in the faces in the same manner as the examples in Figure 12. The plates
are all subject to I

/(
M̄

√
σY s/ρs

)
= 0.25. The maximum plastic energy dissipated

corresponds to υs = 0.03, which is the configuration that experiences the mini-
mum deflection (Figure 12). For the foam-filled plates with υs ≥ 0.03, the steel
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Figure 15: The plastic dissipation in foam-filled square honeycomb sandwich
plates (H200 Polymeric Foam) versus the volume fraction of the core occupied
by steel, υs , at t

/(
L/

√
σY s/ρs

)
= 1. All sandwich plates have M/(ρs L) = 0.02,

H/L = 0.1, B/H = 1 and subjected to I
/(

M
√

σY s/ρs
)
= 0.25.

core can withstand the blast load without undergoing a significant plastic buckling
(cf. Figure 13). For these sandwich plates, energy dissipation in the core occurs as
compressive yielding of the steel core and polymeric foam. However, for smaller
volume fractions of the core occupied by steel, υs < 0.03, the steel webs undergo
significant buckling and are unable to absorb energy as effectively as when they
do not buckle.

7. Concluding remarks

The examples presented in this paper indicate that sandwich plates with foam-filled
square honeycomb cores and folded plate cores exhibit comparable structural per-
formance in resisting deformation to sandwich plates of equal mass with unfilled
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cores under representative quasi-static and impulsive loads. In other words, while
there appears to be no clear advantage to filling the core with foam for structural
purposes, there is no evident disadvantage either. Thus, if other compelling reasons
to fill core interstices with foam exist, such as environmental protection or sound-
proofing, the examples here suggest that it should be possible to do this without
structural penalty. These conclusions are drawn from the examples in the present
study that have been limited to cores with thickness fixed relative to the half-width
of the plate at H/L = 0.1. Earlier work has shown that this core thickness is
associated with plates with near-optimal structural performance against uniformly
distributed air and water blasts, although thicker cores can be somewhat more ef-
fective. Sandwich plates with foam-filled, thicker cores will have larger fraction
of their total mass in foam, and it is not obvious that they will retain the structural
performance of their unfilled counter parts. Thus, we emphasize that further study
is required if sandwich plates have thickness significantly larger than H/L = 0.1.
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A SEMIANALYTICAL SOLUTION FOR FREE VIBRATION
ANALYSIS OF STIFFENED CYLINDRICAL SHELLS

GUANGHUI QING, ZHENYU FENG, YANHONG LIU AND JIAUJUN QIU

Based on a semianalytical solution of the state-vector equations, we propose a
novel mathematical model for the free vibration analysis of cylindrical shells
with stiffeners and for cylindrical panels with discontinuities in thickness and/or
with cutouts. The shell and stiffeners are regarded as three-dimensional elastic
bodies, but the same quadrilateral element is used to discretize the shell and
stiffeners. The method accounts for the compatibility of displacements and
stresses on the interface between layers of the laminated shell and stiffeners, for
transverse shear deformation, and of course for the rotational inertia of the shell
and stiffeners. To demonstrate the model’s excellent predictive abilities, several
examples are analyzed numerically.

The model can be easily modified to solve problems of stiffened piezolami-
nated plates and shells, or plates and shells with patches made of a piezoelectric
material.

1. Introduction

A sheet-stiffener combination provides the maximum strength-to-weight ratio for
any structure and hence becomes the obvious choice in advanced structures such
as pressure vessels, airplanes, submarine hells and missiles. These structures are
subject to external dynamic loads. Therefore, prediction of dynamic responses is
of considerable interest for engineers.

Stiffened shells or plates can be analyzed by considering equivalent orthotropic
systems. This method is mainly applicable only when large numbers of stiffeners
are closely and evenly spaced. Another method, treating separately the shell/plate
and stiffeners, is more general as it can accommodate any stiffener distribution.

For ring-stiffened or string-stiffened circular cylindrical shells there have been
many investigations involving free vibration analysis or dynamic response analysis.
Al-Najafi and Warburton [1970], using the finite element method, investigated the

Keywords: free vibration, stiffened cylindrical shells, laminated cylindrical shells, semianalytical
solution, state-vector equation.
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natural frequencies and mode shapes of thin circular cylindrical shells with stiffen-
ing rings. Wilken and Soedel [1976] employed the receptance method to determine
the natural frequencies and mode shapes of circular cylindrical shells stiffened
by rings. Stanley and Ganessan [1997] used circular cylindrical shell elements
and studied the natural frequencies of stiffened cylindrical shells for short and
long shells with clamped-clamped boundary condition. Zhao, Liew, and Ng [Zhao
et al. 2002], using an energy approach, investigated the free vibration of stiffened
simply supported rotating cross-ply laminated cylindrical shells. Gong and Lam
[1998], using layered shell elements for both plate and stiffener in MSC/Patran and
LS-DYNA3D, carried out a transient response analysis of a stiffened composite
submersible hull. Rikards, Chate, and Ozolinsh [Rikards et al. 2001] developed a
triangular finite element method for the study of the free vibrations of stiffened
laminated composite shells. Yang and Zhou [1995] used the transfer function
method to analyze the free vibration of a ring-stiffened shell. Wang, Swaddi-
wudhipong and Tian [Wang et al. 1997] investigated the free vibration problem
for isotropic cylindrical shells with varying ring-stiffener distribution, using the
extended Ritz method. Kim and Lee [2002] analyzed the effects of ring stiffeners
on vibration characteristics and transient responses for ring-stiffened composite
cylindrical shells subject to step pulse loading. Srinivasan and Krishnan [1989]
studied the dynamic response analysis of stiffened conical shell panels. Sinha and
Mukhopadhyay [1995] investigated the dynamic response of stiffened plates and
shells by the finite element method employing a high-precision arbitrary-shaped
triangular shell element in which stiffeners may lie in arbitrary directions within
the element. Liao and R. [1994] studied the dynamic stability of laminated com-
posite stiffened or nonstiffened plates and shells due to periodic in-plane forces at
boundaries using the finite element method.

The semianalytical method is an important approach in the analysis of multilay-
ered structures with complicated boundary conditions [Zou and Tang 1995b; 1995a;
Sheng and Ye 2002b; 2002a; 2003]. The main theory used in these references is
state-vector equation theory. Based on the mixed formulation of solid mechanics,
we use the finite element approach in the plane and once the transfer matrix of a
single layer is obtained, we introduce interface continuity conditions to assemble a
global matrix of structures. The advantages of this semianalytical solution method
are:

1. The order of the global matrix does not depend on the number of layers,
since the matrix is obtained by the multiplication of the transfer matrix of each
layer via an interface continuity condition. Hence the three-dimensional problem
is transformed into a two-dimensional one.

2. “The varying material and geometric properties along the independent spatial
variable are allowed” [Steele and Kim 1992].
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3. Anisotropic layered materials can be simply handled [Steele and Kim 1992].

In this paper, a general, novel semianalytical solution for the free vibration
analysis of cylindrical shells with different stiffeners and cylindrical panels with
discontinuity in the thickness or/and with cutouts is achieved through the separate
consideration of the shell and stiffeners. On the basis of the state-vector equation
theory, the quadrilateral elemental equation is written in a matrix differential equa-
tion of the first order, and the global algebraic equation of the shell and stiffeners
are established separately. Transverse shear deformation and rotational inertia are
also considered in the model. In Section 3 several numerical examples are analyzed,
and the convergence of some of examples is tested.

2. The formulas of the thin shells and stiffened laminated shell

Some typical stiffened circular cylindrical shells are shown in Figures 1–4.
The shells shown in Figures 1 and 2 are commonly called stiffened shells with

ring or/and string stiffeners. Those in Figures 3 and 4 are generally called shells
with discontinuity in thickness. In fact, all can be regarded as shells with different
stiffeners. For example, a laminated shell with discontinuity in thickness, like that
of Figure 3, is made up of a laminated circular cylindrical shell and a laminated
stiffener, as shown in Figure 5.

(a) (b) (c) (d) (e)

Section A-A

Figure 1. A laminated shell with ring stiffeners: (a) external type
2; (b) internal type 1; (c) external type 1; (d) internal type 2; and
(e) concentric type 1.
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Figure 2. A laminated shell with three rings and eight string stiffeners.

Figure 3. A laminated shell with discontinuity in thickness (one
ring stiffener).

Figure 4. A circular cylindrical shell with a cutout and disconti-
nuity in thickness.

Our laminated shells are considered as n-layered shells (see Figure 1 for the
coordinate system). Assuming the material of an arbitrary layer has orthotropic



FREE VIBRATION ANALYSIS OF STIFFENED CYLINDRICAL SHELLS 133

Figure 5. Decomposition of a shell with discontinuity in thickness.

symmetry with respect to the coordinate planes, the stress-displacement relation-
ships can be stated as

σx

σθ

σr

τθr

τxr

τxθ


=



C11 C12 C13 0 0 0
C22 C23 0 0 0

C33 0 0 0
C44 0 0

(symm.) C55 0
C66





αu
βv/r + w/r

∂w/∂r
βw/r + ∂v/∂r − v/r

αw + ∂u/∂r
βu/r + αv


where σx , σθ , σr , τθr , tauxr , and τxθ are the stress components, the Ci j (i, j =

1, 2, . . . , 6) denote the elasticity coefficient of the material, α = ∂/∂x , β = ∂/∂θ ,
and u, v, w are the displacements in the x , θ and r directions, respectively.

The modified mixed H-R variational principle [Zou and Tang 1995b; 1995a;
Steele and Kim 1992] can be expressed as

δ
∏

= δ

(∫ ∫ ∫
V

( pT
· q̇ − H) r dx dθ dr

−

∫ ∫
Sσ

qT
· (T − T ) dsσ −

∫ ∫
Su

T T
· (q − q̄) dsu

)
, (1)

where q = [u v w]
T , p = [τxr τθr σr ]

T , q̇ = ∂q/∂r , T = [Tx Tθ Tr ]
T ,

T = [T x T θ T r ]
T represents the stresses acting on the stress boundaries Sσ , and

q̄ = [ū v̄ w̄]
T represents the displacements on the displacement boundaries Su .

The Hamiltonian H can be written (neglecting the body force) as

−H =
(
C3αu +C4(r−1βv+r−1w)−C5σr

)
(r−1βv+r−1w)

+
(
C2αu +C3(r−1βv+r−1w)−C1σr

)
αu +C6(r−1αv+r−1u)(αv+r−1βu)

+τθr (r−1βw−r−1v)+τxrαw−2−1ηTSη−2−1ρ(ω2u2
+ω2v2

+ω2w2),
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Figure 6. The local coordinate system of a quadrilateral element.

where

η =

 C2αu + C3(r−1βv + r−1w) − C1σr

C3αu + C4(r−1βv + r−1w) − C5σr

σr τθr τxr C6(αv + r−1βu)

 ,

ρ is the mass density, ω is the natural frequency, and

C1 = −C13/C33,

C2 = C11 − C2
13/C33,

C3 = C12 − C13C23/C33,

C4 = C22 − C2
23/C33,

C5 = −C23/C33,

C6 = C66,

C7 = 1/C33,

C8 = 1/C55,

C9 = 1/C44.

Using a quadrilateral element with local coordinate system as in Figure 6, the field
functions and the shape functions assume the form

u = [N(x, θ)]
(
u(r)

)
,

τθr = [N(x, θ)]
(
τθr (r)

)
,

v = [N(x, θ)]
(
v(r)

)
,

τxr = [N(x, θ)]
(
τxr (r)

)
,

N i (ξ, η) =
1
4(1 + ξiξ)(1 + ηiη) for i = 1, 2, 3, 4,

w = [N(x, θ)]
(
w(r)

)
,

σr = [N(x, θ)]
(
σr (r)

)
, (2)

The x-θ curved surface of a layer is discretized as shown in Figure 7.

Figure 7. The element meshes of an arbitrary layer of a laminated shell.
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Assume the stress boundaries are satisfied (T = T ), and the displacement bound-
aries of arbitrary layer are satisfied (q = q̄). Substituting Equations (2) into (1) and
using δ

∏
= 0 we obtain the element state-vector equation

Ce d He(r)

dr
= K e He(r). (3)

The detailed forms of Ce, K e and He(r) in (3) can be found in the Appendix.
The detailed treatments on the various boundary conditions can be found in

[Sheng and Ye 2002b].
The standard finite element assemblage process is used. The global state-vector

equation for m-th layer takes the form

Cm
d Hm(r)

dr
= K m Hm(r), (4)

with general solution

Hm(ri,m) = T m(hm)Hm(ro,m), (5)

where T m(hm) = eCm K m ·(hm), hm is the thickness of m-th layer and hm = ri,m −ro,m

is the difference between the inside and outside radii of the m-th layer. When we
compute eCm K m ·hm , the r of each layer in K m is replaced by r = (ro,m − ri,m)/2.

The exponential of a matrix can be computed in many ways (approximation
theory, differential equations, eigenvalues, characteristic polynomial, and so on).
In practice, considerations of stability, efficiency and accuracy make some meth-
ods preferable to others, but none is completely satisfactory [Moler and Van Loan
1978]. Hence, the precise integration method [Zhong and Zhu 1996; Zhong 2001]
for Equation (4) is employed for the calculations in this paper.

Equation (5) must be satisfied at every layer of our n-layered shell. Based on the
compatibility conditions for the displacements and stresses at the interface between
two layers, we obtain the recursive formulation

Hn(ri,n) =

( n∏
m=1

T m

)
H1(ro,1), (6)

in which ri,n , ro,1 are the inner and outer radii of the n-layered shell.
Equation (6) expresses the relationship between the physical quantities for the

external and internal surface of an n-layered shell. It amounts to a set of linear
algebraic equations in terms of node displacements and stresses. In matrix form,
this can be written as (

qn(r
s
i,n)

pn(r
s
i,n)

)
=

[
T s

11 T s
12

T s
21 T s

22

] (
q1(r

s
o,1)

p1(r
s
o,1)

)
(7)

where the superscript s denotes the laminated shell.



136 GUANGHUI QING, ZHENYU FENG, YANHONG LIU AND JIAUJUN QIU

A laminated stiffener is also considered as an l-layered shell, and the element
mesh in every layer is assumed to be the same (shaded part of Figure 7). The
procedure above for the external and internal stiffeners is repeated, and yields the
equations (

ql(r
es
i,l )

pl(r
es
i,l )

)
=

[
T es

11 T es
12

T es
21 T es

22

] (
q1(r

es
o,1)

p1(r
es
o,1)

)
(8)

(
ql(r

is
i,l)

pl(r
is
i,l)

)
=

[
T is

11 T is
12

T is
21 T is

22

] (
q1(r

is
o,1)

p1(r
is
o,1)

)
(9)

where superscript es and is denote the external and internal stiffeners, and r es
i,l , r is

i,l ,
r es

o,1, r is
o,1 are the inside and outer radius of the external and internal stiffeners.

Noted that the dimensionality of (8) and (9) differs from that of (7).
The displacements and stresses on the interface between shell and stiffeners

must be continuous. Uniting (7), (8) and (9) yields(
q(ri )

p(ri )

)
=

[
T 11 T 12

T 21 T 22

] (
q(ro)

p(ro)

)
. (10)

We can see that the node number of a layer of a laminated shell determines the
number of variables in (10); thus this number of variables has no relationship to
the thickness of the shell or the height and number of stiffeners.

Because we are studying natural frequencies, so the external surface and internal
surface are traction-free (the stress column vector p(ri ) and p(ro) are zero), we
deduce from (10) that

T 21q(ro) = 0.

For this to have nontrivial solutions, the determinant of the characteristic matrix
must be zero:

|T 21| = 0.

The natural frequencies ω can be obtained from the characteristic polynomial of
this last equation through the use of the bisection method [Johnston 1982]. To sim-
plify the analysis and improve the accuracy of the results, dimensionless versions
of u, v, w, τxr , τθr , and σr need to be used in the computer program.

3. Numerical examples and discussions

Example 1. As a first test of our method we discuss an example studied experimen-
tally and theoretically by Al-Najafi and Warburton [1970], consisting of a stiffened
external steel shell with five identical ring stiffeners (Figure 1). The dimensions
of the shell are: inside diameter d = 0.2158 m; length l = 0.4572 m; thickness
t = 0.00386 m; breadth of rings br = 0.00635 m; height of rings hr = 0.00635 m,
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0.01778m , 0.0254 m. There are six bays of equal length. Material properties:
Young’s modulus E = 204.0 GPa; shear modulus G = 79.0 GPa; density ρ =

7840 kg m−3.
Because compatible finite elements in the x-θ plane are used, the natural fre-

quencies should converge the the values of the mathematical model monotonically
as the number of elements in the discretization is increased. The results, listed in
Table 1, show that reasonable convergence has been achieved with relatively small

Mesh : layers Mode number
(k × m : n) F-F (Free ends) S-S (Simply supported ends)

Shell Stiffeners 1 2 3 4 1 2 3 4

hr = 0.00635 m

23×36:1 1×36:1 322.2 338.3 889.5 948.2 840.5 1103.2 1734.7 1808.5
35×45:1 1×45:1 317.2 333.5 867.2 925.5 834.2 1089.6 1719.0 1789.8
47×60:1 2×60:2 314.6 331.9 859.1 920.0 831.8 1074.3 1697.0 1780.7
58×72:1 2×72:2 313.2

(2,2)
330.8
(2,1)

856.4
(3,2)

918.4
(3,1)

831.1
(2,1)

1069.7
(3,1)

1694.9
(3,2)

1776.3
(0,1)

Experimental 323 342 865 928 809 1065 1658 /
Finite element 317 340 861 926 834 1065 1699 /

hr = 0.01778 m

23×36:1 1×36:2 636.6 752.9 1506.3 1533.3 1030.9 1640.2 2096.5 2340.7
35×45:1 1×45:3 621.7 733.4 1474.0 1502.9 1017.1 1625.4 2073.4 2313.3
47×60:1 2×60:4 618.9 726.1 1450.5 1480.7 1012.2 1608.9 2040.2 2292.1
58×72:1 2×72:4 618.5

(2,2)
723.4
(2,1)

1443.0
(3,2)

1464.1
(3,1)

1011.4
(2,1)

1602.9
(0,1)

2055.3
(3,1)

2284.2
(2,2)

Experimental 626 743 1437 1468 996 / 2017 2277
Finite element 626 746 1438 1465 1031 / 2060 2390

hr = 0.0254 m

23×36:1 1×36:3 830.9 1002.7 1705.0 1703.2 1214.2 1491.4 2296.6 2601.8
35×45:1 1×45:4 815.5 974.7 1677.1 1672.7 1193.1 1485.4 2273.6 2582.7
47×60:1 2×60:5 806.4 963.6 1640.8 1645.4 1191.2 1482.3 2264.2 2564.5
58×72:1 2×72:5 803.5

(2,2)
971.0
(2,1)

1634.9
(3,1)

1639.2
(3,2)

1189.5
(2,1)

1481.3
(0,1)

2259.4
(2,2)

2546.7
(3,1)

Experimental 814 982 1627 1632 1187 / 2082 2522
Finite element 822 997 1629 1636 1223 / 2279 2607

Table 1. Convergence of natural frequencies (Hz) for steel exter-
nal shell with 5 ring stiffeners (Example 1). Rows “Experimental”
and “Finite element” are from [Al-Najafi and Warburton 1970].
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decrements in the four frequencies, never as much as 1%, between corresponding
values for the 47 × 60 and 58 × 72 meshes (both one layer).

Figure 8 gives the four mode shapes for Example 1 with simply supported ends.
We see that the effect of the stiffening rings on the mode shape increases as hr

increases.

Example 2. In this example (Figure 9) the shell has two identical face layers with
thicknesses te and ti , and a core layer of thickness tc. All three layers have the
material properties corresponding to aragonite crystals, which have stiffness ratios

C22/C11 = 0.543103,

C23/C11 = 0.098276,

C33/C11 = 0.530172,

C13/C11 = 0.010776,

C12/C11 = 0.23319,

C44/C11 = 0.26681,

C55/C11 = 0.159914,

C66/C11 = 0.262931.

We assume C11 = 150 GPa and ρ = 1600 kg/m3 for the two face layers and C11 =

75 GPa and ρ = 800 kg/m3 for the core layer of the laminated shell. We take the
material properties of stiffeners to be the same as those of the face layers. The
convergence of the first four natural frequencies is listed in Table 2.

Figure 8. Four mode shapes for Example 1. Clockwise from top
left: (2, 1), (3, 1), (0, 1), (2, 2).
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Figure 9. Dimensions of stiffened laminated shell with ring and
string stiffeners (Example 2).

Mesh : layers (k × m : n) Mode number

Shell Rings Strings 1 2 3 4

hr = 0.002 m

19×32:4 1×32:4 19×1:4 1075.8 1286.6 1856.5 1965.4
29×40:4 1×40:4 29×1:4 1059.5 1282.3 1826.9 1936.1
38×56:4 2×56:4 38×2:4 1050.0 1281.5 1815.6 1924.9
48×72:4 2×72:4 48×2:4 1046.2 1277.4 1808.9 1912.9
58×80:4 2×80:4 58×2:4 1045.1

(2,1)
1276.1
(0,1)

1805.5
(2,2)

1901.7
(3,1)

hr = 0.004 m

19×32:4 1×32:8 19×1:8 1156.9 1251.7 1650.8 2072.7
29×40:4 1×40:8 29×1:8 1148.5 1240.7 1638.5 2034.2
38×56:4 2×56:8 38×2:8 1144.7 1231.7 1632.1 2015.3
48×72:4 2×72:8 48×2:8 1143.2 1224.9 1630.3 2005.0
58×80:4 2×80:8 58×2:8 1142.5

(0,1)
1222.8
(2,1)

1629.5
torsion motion

2001.5
(2,2)

hr = 0.006 m

19×32:4 1×32:12 19×1:12 1155.4 1483.2 2132.8 2242.7
29×40:4 1×40:12 29×1:12 1146.5 1463.4 2117.6 2216.8
38×56:4 2×56:12 38×2:12 1141.6 1445.8 2104.0 2191.4
48×72:4 2×72:12 48×2:12 1139.8 1438.3 2099.1 2180.6
58×80:4 2×80:12 58×2:12 1138.8

(0,1)
1435.9
(2,1)

2097.2
(0,2)

2176.6
(2,2)

Table 2. Convergence of natural frequencies (Hz) for a laminated
stiffened shell with ring and string stiffeners (Example 2).
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Example 3. Strictly speaking, to apply the theory in this paper, we must require
the cross-section of the string to be a partial annulus (Figure 10, left). If the cross-
section of the string is a rectangle, we can transform the rectangular cross-section
of the string into a partial annulus (Figure 10, right). The following example,
taken from [Stanley and Ganessan 1997], proves the method feasible. The shell
has inside diameter d = 0.2 m, thickness t = 0.002 m and length l = 0.4 m; the
strings have breadth bs = 0.004 m and height hs = 0.004 m. The numerical results
and comparison are listed in Table 3.

Replacing the rectangular cross-section of the string by a partial annulus, as in
the figure, increases the distance between the center of the cross-section and the
coordinate origin. Hence, the results obtained by the present method are larger
than those of the reference data [Stanley and Ganessan 1997]. It can be seen in
Table 3 that the error increases with the mode order; this may be because the effect
of distance on the natural frequencies is more prominent for higher modes.

Figure 10. Cross-section of string (Example 3): left, partial annu-
lus; right, switching from a rectangle to a partial annulus.

Mesh : layers Mode number

Shell Strings 1 2 3 4 5 6

4 strings

58×72:1 58×2:2 915.8
(4,1)

947.6
(3,1)

1227.9
(5,1)

1446.3
(2,1)

1563.5
(4,2)

1591.5
(5,2)

Experimental 914.1 944.9 1214 1432 1547 1571
Relative error 0.19% 0.50% 1.14% 1.00% 1.07% 1.30%

12 strings

58×72:1 58×2:2 884.6
(4,1)

918.6
(3,1)

1179.5
(5,1)

1397.1
(2,1)

1511.2
(4,2)

1550.4
(5,2)

Experimental 881.7 913.6 1167 1380 1501 1529
Relative error 0.56% 0.55% 1.07% 1.24% 0.68% 1.40%

Table 3. Comparison of natural frequencies (Hz) for steel shell
stiffened with strings and clamped at the edges (Example 3). “Ex-
perimental” refers to values from [Stanley and Ganessan 1997].
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Example 4. Consider a 90◦ cylindrical panel with discontinuity in the thickness
and one cutout (Figure 11). The material parameters for the external layer (ring
stiffener) and the shell are the same as for the core layer and external layer, respec-
tively, in Example 1. Two transversal cross-sections are shown; the method applies
directly to the first, consisting only of partial annuli, but the idea of Example 3 is
suitable here, allowing us to reduce the case of second cross-section to that of the
first. The first six natural frequencies are given in Table 4.

Section A-A

Section B-B (radial)

Section B-B (rectangular)

Figure 11. A 90◦ cylindrical panel with a cutout and discontinuity
in thickness (Example 4).

Mesh : layers Mode number

Shell Ring 1 2 3 4 5 6

4 strings

12×12:1 10×12:2 1387.5 1630.7 2046.4 2071.0 2315.5 2375.1
24×24:1 20×24:2 1305.3 1519.7 1928.1 1943.4 2135.4 2192.7
36×36:1 30×36:2 1301.0 1515.5 1921.8 1936.1 2111.4 2175.3
48×48:1 40×48:2 1285.0 1497.6 1901.0 1909.1 2085.2 2154.5
60×60:1 50×60:2 1281.6 1489.7 1889.1 1904.1 2070.3 2139.7
72×72:1 50×60:2 1280.8 1488.8 1887.4 1902.2 2067.4 2136.2

Table 4. Natural frequencies (Hz) for cylindrical panel with dis-
continuity in thickness and clamped at all edges (Example 4).
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Figure 12. Type 2 stiffener.

In each of these examples, we have considered type 1 stiffeners and the material
was the same over the cross-section of the stiffener. However, even if there are two
or more materials in the cross-section of the stiffener, the method is also suitable
without additional equations. This is because Equation (8) is used to handle the
laminated shell that the material of every layer can be different.

If we are dealing with a type 2 stiffener (Figure 2), we can regard it as a layered
shell (Figure 12), but there may be two or more materials in a layer. This situation
is similar to the type 1 stiffener; the major difference is that we must pay attention
to the interfaces of different materials when we discretize each layer of the stiffener.
One element cannot include more than one material.

4. Conclusions

This paper introduces a general, novel mathematical model for the free vibration
analysis of some stiffened cylindrical shells. In this model the shell and the stiff-
eners are discretized by the same quadrilateral element. The linear algebraic equa-
tions of the shell and stiffeners are established separately. The compatibility of
displacements and stresses on the interface between the shell and the stiffeners
is maintained. Numerical examples show that the current approach has excellent
predictive ability. Some specific features of the model are:

(1) The three-dimensional free vibration problem of stiffened laminated shells is
transformed into a two-dimensional one.

(2) The number of variables included in the global linear equation of the stiffened
shell has no relationship with the number of layers of the shell and stiffeners.
Hence, the number of variables is greatly reduced.

(3) Transverse shear deformation and rotational inertia are taken into account.
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If a similar modified H-R mixed variational principle for piezoelectric materials and
the corresponding discrete state-vector equation are established, the dynamic be-
havior of piezoelectric plates with piezoelectric patches [Lee and Saravanos 1997;
Lin et al. 1996] and of cylindrical shells with piezoelectric rings or/and strings can
be analyzed directly using the present approach.
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Appendix: Expressions for Ce, K e, H e in Equation (3)

We have Ce
=

(∫∫
NT N r̄ |J | dξ dη

)
I , where I is the 6 × 6 unit matrix, r̄ is the

average of the inside radius ri and the outside radius ro of an element, and

J =


4∑

i=1

∂ N i

∂ξ
xi

4∑
i=1

∂ N i

∂ξ
θi

4∑
i=1

∂ N i

∂η
xi

4∑
i=1

∂ N i

∂η
θi

 .

Further,
He(r) =

[
ue(r) ve(r) we(r) τ e

xr (r) τ e
θr (r) σ e

r (r)
]T

and

K e
=

∫ ∫ [
Ae Be

Ce De

]
r̄ |J | dξ dη,

where, setting ν = NT N , λ = NT αN and µ = NTβN , the matrix entries are

Ae
=

 0 0 −λ

0 r−1ν −r−1µ

C1αν C5r−1βν C5r−1ν

 ,

Be
=

C8ν 0 0
0 C9ν 0
0 0 C7ν

 ,

Ce
=

−ρω2ν+C2αλ+C6r−2βµ C3r−1αµ+C6r−1βλ C3r−1αν

C3r−1βλ+C6r−1αµ −ρω2ν+αλ+C6r−2βµ C4r−2βν

C3r−1λ C4r−2µ −ρω2ν+C4r−2µ

,

De
=

−r−1ν 0 −C1λ

0 −2r−1ν −C5r−1µ

αν r−1βν − (C5+1) r−1ν

 .
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APPROXIMATE ANALYSIS OF INTERACTION OF
CLOSELY SPACED CRACKS

LI YIN-PING AND YANG CHUN-HE

An approximate method of stress analysis in elastic solids with multiple cracks is
proposed to improve the accuracy of the Kachanov method in analyzing closely
spaced cracks. Classical Kachanov method assumed that traction in each crack
can be represented as the sum of a uniform component and a nonuniform one,
and that the interaction among the cracks is only due to the uniform components.
The assumptions simplify considerably the mathematics. However, they may
not be valid when the cracks are very close and overlap along the direction of
load, because each crack may be embedded in the stress-amplifying region as
well as the stress-shielding region of the other cracks at this time. To improve
the accuracy of the Kachanov method, a new asymptotic method, in which the
influence on a crack of the quadratic parabola pseudotractions (QPPTs) rather
than the average ones on the other crack are taken into account, is proposed. Ap-
plications to the problem of three collinear cracks and two offset parallel closely
spaced cracks are considered to validate the accuracy of the new method.

1. Introduction

As one of the key factors in determining the component life of a structure, the inter-
action effect among cracks has received significant attention in recent years. Vari-
ous methods [Sneddon and Lowengrub 1969; Erdogan 1983; Chen 1984a; 1984b,
Horii and Nemat-Nasser 1985b; Chudnovsky et al. 1987a; 1987b; Kachanov 1987;
Lam and Phua 1991; Kachanov 1992; Chen 1995; Basista and Gross 2000; Gor-
batikh and Kachanov 2000; Wang et al. 2000; Li et al. 2003] have been developed
for the analyses. As the boundary conditions can be more readily defined for
traction free cracks, crack interaction problems were formulated in terms of the
interaction tractions rather than in terms of the displacement discontinuities. Based
on the stress superposition technique, Kachanov [1987] proposed a simple method
for calculation of stress intensity factors (SIFs) and effective elastic properties of
solids with multiple cracks. The solution can also be used to construct the stress
and displacement fields in the solid [Kachanov 1987; Gorbatikh and Kachanov

Keywords: crack interaction, stress intensity factor, multiple cracks, quadratic parabola
pseudotraction.
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2000]. Combining the Kachanov method with the sliding crack model of brittle
deformation, Basista and Gross [2000] extended the method to two-dimensional
crack interaction problems under overall compression.

In Kachanov’s stress superposition method, the key assumption is that the trac-
tion in a crack is composed of a uniform and a nonuniform component. The magni-
tude of each component is computed under the assumed condition that the resultant
force of the nonuniform component is zero. The influence of the nonuniform com-
ponent on crack interaction is ignored. Therefore, the accuracy of the Kachanov
method depends on the configuration of crack distribution, and especially on crack
spacing [Kachanov 1992; Wang et al. 2000; Kachanov 2003; Li et al. 2003].

To avoid the limitation of the Kachanov method in analyzing closely spaced
cracks, Li et al. [2003] proposed a new approximate method for the analysis of
cracked solids. The linearly varying component of traction rather than the uniform
one is taken into account. It is shown that the accuracy of the modified method is
better than Kachanov’s. Recently, Kachanov [2003] gave a short overview of vari-
ous approaches to crack interaction problems in which solutions for closely spaced
cracks were discussed. It’s pointed out that in 2-D problems of closely spaced
cracks the accuracy of Kachanov’s method — and even the method of [Li et al.
2003] — may not be sufficient. For example, the problem of two closely spaced
cracks overlapping along the direction of load can not be accurately analyzed using
such methods. This problem is of great interest because of its relevance to propa-
gation and coalescence of two close cracks [Horii and Nemat-Nasser 1985a; Wang
et al. 1996; Li et al. 2003].

One of the original objectives of the Kachanov method is to analyze the meso-
damage of solids with multiple cracks first, and then to compute the macro response
of the solids. The propagation and coalescence of cracks are not considered. But
the accuracy of the Kachanov method and even the linear approximate method
are not satisfactory for closely spaced and overlapping cracks in solids, such as
the cracks in rock-like materials under compression, in which the propagation and
coalescence of cracks have to be taken into account. To improve the accuracy, a
new approximate method, in which the influence of the quadratic parabola pseudo-
tractions (DPPTs) of cracks on other cracks, is proposed in this paper. It’s shown
that DPPTs are able to describe adequately the interaction among closely spaced
cracks. Numerical examples of the interactions of three collinear cracks and a pair
of offset parallel cracks are analyzed in detail to assess the accuracy of the proposed
method.
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2. The generalised Kachanov method

Consider an infinite xy-plane containing N cracks (Figure 1) under remote stresses
σ∞. It is equivalent to the problem of N cracks with tractions

−ni · σ∞ (i = 1, 2, . . ., N ).

The equivalent one can be further decomposed to N sub-problems with only one
crack each, on which the tractions ti = {pni pti }

T are acting, where pni and pti are
the normal and tangential components of the tractions ti . The tractions ti are the
summation of the initial tractions −ni · σ∞ and the additional interaction tractions
induced by other cracks. We also have

ti = −ni · σ∞
+

∑
j 6=i

1t j i , (1)

where 1t j i is the additional traction on the i-th crack due to the presence of the j -th
crack. The key point is how to solve the unknown additional tractions adequately.
The Kachanov method [1987] decomposes the unknown tractions into two parts, an
average traction and a higher-order one, and only the influence of the average one
is considered, while that of the higher-order one is ignored. In the modified method
[Li et al. 2003], the linearly varying traction, instead of a uniform one, is used in
an effort to improve the accuracy. However, both methods may be erroneous when
applied to a problem where cracks are closely spaced and overlapping. Therefore,
a modified method considering the influence of QPPTs is carried out in the next
section.

3. The quadratic parabola pseudotraction method

First, one only considers the contribution to the other cracks of the tractions

t (0)
i =

{
p(0)

ni p(0)
ti

}
= −ni · σ∞

(the subscript ‘n’ denotes ‘normal to crack line’ and ‘t’ means ‘tangential to crack
line’) without regard to the additional tractions:

t(1)
i =

{
p(1)

ni p(1)
ti

}T
= −ni · σ∞

+

N∑
j=1, j 6=i

1t (1)
j i (i = 1, 2, . . ., N ), (2)

where
1t(1)

j i (i, j = 1, 2, . . . , N )

is the additional traction acting on the i-th crack due to the traction

t(0)
j = −n j · σ∞
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Figure 1. An infinite plane containing N cracks

on the j-th crack. This additional traction can be obtained from the elemental
solutions of elastic mechanics [Sneddon and Lowengrub 1969]:

t (1)
i =

{
p(1)

ni

p(1)
ti

}
=

{
p(0)

ni

p(0)
ti

}
+

N∑
j=1, j 6=i

[
f nn

ji f tn
ji

f nt
ji f t t

j i

] {
p(0)

nj

p(0)
t j

}
(3)

(i = 1, 2, . . . , N ), where f rs
ji (i, j = 1, 2, . . . , N ; j 6= i ; r, s = n, t) are those

solutions. The explicit forms for f rs
ji are given in the Appendix. In fact, the

solutions above are only first-order approximations because the contributions of
the additional items are ignored.

When considering further the influences of quadratic parabola pseudotractions
(QPPTs), it is assumed that the unknown tractions t (2)

i = {pni (2) p(2)
ti }

T can be
decomposed into

t(2)
i = t̃(2)

i + 1t(2)
i = −ni · σ∞

+

N∑
j=1, j 6=i

1t(2)
j i (i = 1, 2, . . . , N ), (4)

where t̃(2)
i are QPPTs. Its normal and tangential components are respectively

t̃(2)
i =

{
p̃(2)

ni

p̃(2)
ti

}
=

{ 〈
p(2)

ni

〉(
1 + Tni1ξi + Tni2(ξ

2
i −

1
3 l2

i )
)〈

p(2)
ti

〉(
1 + Tti1ξi + Tti2(ξ

2
i −

1
3 l2

i )
) }

(5)

(i = 1, 2, . . . , N ). In these equations, ξi ∈ (−li li ) denotes the coordinate of a
point in the i-th crack line with half-length li , and Tni1, Tni2, Tti1 and Tti2 are the
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dimensionless coefficients of tractions distributions. In (4), the item 1t (2)
j i is the

additional tractions on the i-th crack due to the tractions t (2)
j of the j-th crack, and

1t (2)
i denotes the higher-order items of tractions. Averaging (4) and (5) along the

crack line, one can know the averages of the higher-order tractions are zero, that
is 〈

t(2)
i

〉
=

〈
t̃(2)
i

〉
=

{ 〈
p(2)

ni

〉〈
p(2)

ti

〉 }
=

{ 〈
p̃(2)

ni

〉〈
p̃(2)

ti

〉 } 〈
1t(2)

i

〉
= 0, (6)

(i = 1, 2, . . . , N ).
Assume that the additional tractions

1t (2)
j i

of the i-th crack are contributed by the tractions t̃ (2)
j of the j-th crack, while the

higher-order tractions
1t (2)

i

are ignored. Clearly, if the tractions t̃ (2)
i were known, the

1t (2)
j i

could be determined. However, the average tractions as well as the dimensionless
coefficients Tni1, Tni2, Tti1 and Tti2 are unknown so far. So, it is reasonable to
assume that these coefficients can be estimated by the known tractions

t (1)
i =

{
p(1)

ni p(1)
ti

}T

to be

Tni1 =
p(1)

ni (li ) − p(1)
ni (−li )

2li 〈p(1)
ni 〉

,

Tni2 =
p(1)

ni (li ) + p(1)
ni (−li ) − 2p(1)

ni (0)

2l2
i 〈p(1)

ni 〉

(i = 1, 2, . . . , N ), (7)

where the
〈
p(1)

ni

〉
are the average normal tractions, which can be obtained by inte-

gration: 〈
p(1)

ni

〉
=

1
2li

∫ li

−li
p(1)

ni (ξi ) dξi , (8)

(i = 1, 2, . . . , N ). The tangential coefficients Tti1 and Tti2 and the average tangen-
tial tractions 〈

p(1)
ti

〉
can be obtained by replacing the subscript n by t in (7) and (8).
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Now the expressions of the additional tractions 1t (2)
i of the i-th crack due to

QPPTs on the other cracks can be given as

t (2)
i =

{
p(2)

ni

p(2)
ti

}
=

{
p(0)

ni

p(0)
ti

}
+

N∑
j=1, j 6=i

[
f̂ nn

ji f̂ tn
ji

f̂ nt
ji f̂ t t

j i

] {
p(2)

nj

p(2)
t j

}
(i = 1, 2, . . . , N ).

(9)
In (9), the coefficients

f̂ rs
ji (i, j = 1, 2, ..., N ; j 6= i; r, s = n, t)

denote the interaction coefficients. For example, f̂ tn
ji is the normal (n) traction of

the i-th crack contributed by the tangential (t) QPPT((
1 + Tt j1ξi + Tt j2(ξ

2
j −

1
3 l2

j )
))

of the j-th crack. The QPPT has a unit mean value along the crack line.
Averaging (9) along the i-th crack line, one gets{ 〈

p(2)
ni

〉〈
p(2)

ti

〉 }
=

{ 〈
p(0)

ni

〉〈
p(0)

ti

〉 }
+

N∑
j=1, j 6=i

[
3nn

ji 3tn
ji

3nt
ji 3t t

j i

] { 〈
p(2)

nj

〉〈
p(2)

t j

〉 }
(10)

(i = 1, 2, . . . , N ).
In these equations, the coefficients

3rs
ji (i, j = 1, 2, . . . , N ; j 6= i; r, s = n, t)

denote the interaction coefficients. For example, 3tn
ji is the average normal traction

of the i-th crack contributed by the tangential QPPT of the j -th crack. The explicit
forms for f̂ rs

ji in (9) and 3rs
ji in (10) are listed in the Appendix.

For each crack, one can establish a set of (10). Therefore, there will be 2N
equations with 2N unknown average tractions〈

p(2)
ni

〉
and

〈
p(2)

ti

〉
(i = 1, 2, . . . , N ).

By solving these equations, one can determine the average tractions.
Once the average tractions are determined, one can then obtain the QPPTs

t̃ (2)
i

acting on these cracks and calculate the tractions t (2)
i in (4) by the elemental so-

lutions of elastic mechanics. The SIFs of each crack can be computed as follows:

K I (±li )

K II (±li )

}
= −

1
√

πli

∫ li

−li

√
li ± ξi

li ∓ ξi

{
p(2)

ni (ξi )

p(2)
ti (ξi )

}
dξi . (11)
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In fact, it can be seen from (5) that, if the coefficients Tni2 and Tti2 are zero,
the present formulation is similar to that of the linear approximate method [Li
et al. 2003] except that the way to estimate the coefficients Tni1 and Tti1 is slightly
different. Furthermore, if all of the coefficients are assumed to be zero, the present
formulation is then identical to the original Kachanov method, in which only the
average tractions are considered.

4. Example: three collinear cracks

To evaluate the accuracy of the present method, the problem of three collinear
cracks in an infinite medium under a uniform tensile stress normal to the crack line
as shown in Figure 2 is taken as a test case here. The present results are compared
with those available from the literature [Sih 1965] and those obtained by using
the original Kachanov method [1987] and the linear approximate method [Li et al.
2003]. The errors are also listed in the table. It can be seen from Table 1 that
very good agreement has been achieved between the present method and the exact
solutions. On the other hand, the errors of the Kachanov results at the inner tip are
significant when three cracks are closely spaced. In addition, the discrepancies of
the SIFs of the outer tips are not as obvious as those of the inner tips.

Though the computational time required to obtain the solutions by the present
method is slightly more than with Kachanov’s method, the much improved accu-
racy makes it attractive for the analysis of interaction cracks, especially when those
cracks are closely spaced.

It is interesting also to compare the improvement in accuracy of the two modi-
fied methods. This comparison will be done in Section 6 after another numerical
example for two overlapping cracks is given.

5. A pair of offset parallel cracks

In this section, the same approach is used to analyse a pair of offset parallel cracks.
In this case, it is slightly more complicated than in the case of collinear cracks,
but one can still obtain the interaction factors by integrating the equations given
in the Appendix. Having 3rs

i j determined, one can obtain the Kachanov tractions
and the improved tractions accordingly. To investigate the influence of the distance
between the two overlapping cracks, two parameters are employed: h/a and a/b,
as shown in Figures 3 and 4.

The exact solutions, the present solutions and the Kachanov solutions are given
together in Figures 3 and 4. Note that K0 is the stress intensity factor for an isolated
crack under normal remote stress and is given by K0 = σ

√
πa. It is obvious that

the results of the proposed method are in good agreement with those of Rooke and
Cartwright [1976] even when the two cracks overlap (0.5 < h/a < 1.0). When
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Figure 2. Three collinear cracks.

the two cracks are remotely spaced (e.g., h/a = 1.0) or not overlapping (a/b <

0.5), the Kachanov solutions are good approximations. However, the Kachanov
solutions become increasingly more erroneous as the two cracks get closer (e. g.,
h/a = 0.5, 0.1) and overlapping (0.5 < h/a < 1.0) along the load direction. In
addition, the discrepancies of the SIFs of the inner tips are more remarkable than
those of the outer tips.

So far, there are three Kachanov-type methods for interaction of multiple cracks.
An interesting question is when and why it is worth using the present method
instead of the linear one [Li et al. 2003] and Kachanov’s. Therefore, comparison
of this QPPTs method with the other two Kachanov-type methods and also other
polynomial approximation techniques is given in next section.

6. Comparison with other techniques

First, we compare the original Kachanov method with its two modifications. The
essential difference among the three lies in that they use approximate polynomial
functions of different orders — p = 0, 1, and 2.

The results of the three methods in Table 1 indicate that the linear method (p =

1) and the present quadratic method (p = 2) yield smaller errors than does the
Kachanov method (p = 0). One can conclude that a higher-degree method gives
better results than a lower one, though the present method does not generate as
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K A
I /K0

K A
II /K0

Figure 3. A pair of offset parallel cracks, Tip A. Code: solid line,
Rooke and Cartwright [1976]; ∗, present method with h/a = 0.1,
0.5, 1.0; 4, Kachanov method with h/a = 0.1; ♦, Kachanov
method with h/a = 0.5; �, Kachanov method with h/a = 1.0.
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K B
I /K0

K B
II /K0

Figure 4. A pair of offset parallel cracks, Tip B. Code: solid line,
Rooke and Cartwright [1976]; ∗, present method with h/a = 0.1,
0.5, 1.0; 4, Kachanov method with h/a = 0.1; ♦, Kachanov
method with h/a = 0.5; �, Kachanov method with h/a = 1.0.
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K I /K0

d/a → 1.0 0.5 0.2 0.1 0.05

Tip A

Exact* 1.1674 1.3214 1.6542 2.0325 2.5537

Kachanov
method

1.1669
0.04%

1.3179
0.26%

1.6309
1.4%

1.9601
3.6%

2.3657
7.4%

Linear
method

1.1672
0.02%

1.3210
0.03%

1.6649
0.65%

2.0591
1.3%

2.6252
2.8%

Present
method

1.1673
0.01%

1.3211
0.02%

1.6604
0.37%

2.0453
0.6%

2.5825
1.1%

Tip B

Exact 1.1387 1.2836 1.6119 1.9923 2.5185

Kachanov
method

1.1382
0.04%

1.2797
0.30%

1.5877
1.5%

1.9086
4.2%

2.3095
8.3%

Linear
method

1.1384
0.03%

1.2833
0.02%

1.6202
0.51%

2.0262
1.7%

2.5941
3.0%

Present
method

1.1385
0.02%

1.2834
0.02%

1.6201
0.50%

2.0093
0.8%

2.5563
1.5%

Tip C

Exact 1.0687 1.1103 1.1714 1.2167 1.2587

Kachanov
method

1.0686
0.00%

1.1081
0.20%

1.1667
0.40%

1.2094
0.60%

1.2486
0.80%

Linear
method

1.0686
0.00%

1.1101
0.02%

1.1741
0.23%

1.2224
0.47%

1.2637
0.40%

Present
method

1.0686
0.00%

1.1102
0.01%

1.1728
0.12%

1.2195
0.23%

1.2617
0.24%

Table 1. Results for three collinear cracks (after Sih [1965]).

much of an improvement over the linear one as the latter does over the original.
For example, comparing the results for the closest cracks (d/a = 0.05) at crack
Tip B, the errors are 8.3% for the Kachanov method, 3.0% for the linear method
and 1.5% for the present method.

One can compare in succession the results of the three methods for the offset
cracks case. In fact, to avoid confusion, the results from [Li et al. 2003] for the same
example are not shown in Figures 3 and 4. Therefore, here, the SIFs of the inner
tips for the closer case (h/a = 0.2) not shown in the figures are listed in Table 2 for
comparison of the results of the three methods. From Table 2 and Figures 3 and 4,
one can see that the discrepancies of the Kachanov solutions become increasingly
more serious as the two cracks get closer and overlap along the loading direction.
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Figure 5. Stress-amplifying region and stress-shielding region of
a crack.

The maximal error reaches 30%. By comparison with the Kachanov method, the
linear method generates better results with errors below 14.5%. For the same case,
the present method yields practically imperceptible errors of only 4% or less. The
accuracy of the results is adequate for the analysis of propagation and coalescence
of several cracks (see Section 1).

One can examine this phenomenon as illustrated in Figure 5. For the problem
of closely spaced cracks overlapping along the loading direction, each crack is
embedded in the stress-amplifying region as well as in the stress-shielding region
of the other one. The pseudotractions acting on cracks may vary intensely, in which
case the use of constant or linearly varying approximation for the tractions would
result in significant errors in the SIFs. Then it is reasonable that a higher-order
approximation would yield a remarkable improvement in accuracy.

Therefore, we suggest that: for the problems of remotely-spaced cracks, the
three Kachanov-type methods all can generate satisfactory results for SIFs; the
most simple Kachanov method is preferred; for the problems of cracks closely
spaced but not overlapping each other, the linear method is adequate for analysis;
for the problem of cracks closely spaced and overlapping each other, the present
method instead of the other two methods should be chosen.

These Kachanov-type methods can be considered as further developments of the
ideas from [Chen 1984a; Horii and Nemat-Nasser 1985b; Chudnovsky et al. 1987a;
1987b], where tractions on individual cracks were interrelated by self-consistence
conditions. Kachanov [1987] compared his method with previous works in detail,
so only some statements are repeated here. In [Horii and Nemat-Nasser 1985b;
Chudnovsky et al. 1987a; 1987b], Taylor or Chebyshev polynomials centered at
the crack center were applied to the configuration “crack-microcrack array” and to
the general 2-D crack array. Horii and Nemat-Nasser [1985b] considered the test
problem of two collinear cracks. They found that the degree of the approximating
polynomials increases rapidly as the spacing between cracks becomes smaller. The
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a/b → 0.1 0.2 0.4 0.48 0.54 0.60 0.70 0.80 0.90

Exact* 1.0017 1.0093 1.1611 1.6988 1.0805 0.5791 0.3023 0.2987 0.4312

Kachanov
method

1.0011
0.00%

1.0085
0.10%

1.1260
3.0%

1.4640
13.8%

1.0663
1.3%

0.6438
11.2%

0.3641
20.4%

0.3890
30.0%

0.5502
27.6%

Linear
method

1.0016
0.01%

1.0090
0.03%

1.1499
0.97%

1.6049
5.5%

1.0743
0.58%

0.6024
4.0%

0.3295
9.0%

0.3420
14.5%

0.4883
13.3%

Present
method

1.0016
0.01%

1.0091
0.02%

1.1558
0.45%

1.6612
2.2%

1.0770
0.33%

0.5895
1.8%

0.3116
3.1%

0.3104
3.9%

0.4479
3.9%

Table 2. K A
I /K0 for two offset parallel cracks h/a = 0.2 (after

Rooke and Cartwright [1976]).

closest distance considered is 1/4 of the crack length (1/10 otherwise in the present
work); at this distance the polynomials’ degree is 28. At distances one order of
magnitude smaller than the crack length, the polynomial’s degree in their method
can be expected to be several times higher. Kachanov [1987] also pointed out that
in the Chebyshev polynomial technique, as with the Taylor polynomial technique,
convergence gets increasingly difficult as the spacings between cracks become
smaller. At a close distance (1/10 of the crack length), Chebyshev polynomials
of the sixth degree yield a 10.7% error in SIFs, while the Kachanov method yields
only a 1.5% error.

Note also that the technique of polynomial approximation [Chen 1984a] is based
on complex variable representations and is not, therefore, easily extensible to 3-D
configurations. The main drawback of the polynomial technique — a large number
of polynomial coefficients (rapidly increasing as spacings between cracks become
smaller) — will, however, become much more severe in the 3-D problems.

The key idea of Kachanov-type methods — to neglect the impact on a given
crack of higher-order traction nonuniformities — is reminiscent of Saint-Venant’s
principle of elasticity and may be interpreted as a Saint-Venant-type principle for
solids with cracks. Moreover, since the SIFs are given by integrals of tractions,
the effect of higher-order nonuniformities is neglected not in the pointwise sense
but in a milder, integral sense. This may explain why further refinements of the
original Kachanov method work well for closely spaced cracks.

7. Conclusions

To improve the accuracy of the Kachanov method in analyzing closely spaced
and overlapping cracks, a QPPT method for the analysis of solids with multiple
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crack j

crack i

y′

x ′

Figure 6. Cracks i and j .

cracks is proposed. The pseudotraction in a crack is decomposed into a quadratic-
varying component and a higher-order one. The higher-order component has a
zero average. It is further assumed that the interaction effects among the cracks
are only due to the quadratic-varying component. Mathematical relations for the
tractions in the cracks are derived and the solutions are obtained for various cases.
It is shown through two numerical examples that the results of the method are in
close agreement with the exact solutions, even when closely spaced cracks overlap
along the direction of loading.

Appendix: The interaction coefficients

Consider two cracks i and j as shown in Figure 6; the interaction coefficients in
Equations (3), (9) and (10) can be obtained thus [Chen 1984a; Cheung et al. 1992]:

f nn
i j − i f tn

i j =

∫ l j

−l j

( f̄ nn
i j − i f̄ tn

i j ) dξ j ,

f tn
i j − i f t t

i j =

∫ l j

−l j

( f̄ tn
i j − i f̄ t t

i j ) dξ j ,

f̂ nn
i j − i f̂ tn

i j =

∫ l j

−l j

( f̄ nn
i j − i f̄ tn

i j )
(
1 + Tnj1ξ j + Tnj2(ξ

2
j −

1
3 l2

j )
)

dξ j ,

f̂ tn
i j − i f̂ t t

i j =

∫ l j

−l j

( f̄ tn
i j − i f̄ t t

i j )
(
1 + Tt j1ξ j + Tt j2(ξ

2
j −

1
3 l2

j )
)

dξ j ,

3rs
i j =

1
2ai

∫ ai

−ai

f rs
i j dξi (r, s = n, t),
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where

f̄ nn
i j − i f̄ tn

i j =

√
l2

j − ξ 2
j

2π

(
G(z) + G(z) + e−2iαi (z − z̄)G ′(z)

)
,

f̄ tn
i j − i f̄ t t

i j = −

√
l2

j − ξ 2
j

2π i

(
G(z)(1 − 2e−2iαi ) − G(z) + e−2iαi (z − z̄)G ′(z)

)
;

here z = z(ξi ) is the complex coordinate in the xy coordinate system of the point
(ξi , 0) in crack i and

G(z) =
1

(z − ξ j )
√

z2
− l2

j

, G ′(z) =
l2

j + ξ j z − 2z2

(z − ξ j )2
(√

z2
− l2

j

)3 .
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THE DETERMINATION OF FREQUENCIES OF LAMINATED
CONICAL SHELLS VIA THE DISCRETE SINGULAR

CONVOLUTION METHOD

ÖMER CIVALEK

The discrete singular convolution (DSC) algorithm for determining the frequen-
cies of the free vibration of laminated conical shells is developed by using a
numerical solution of the governing differential equations of motion based on
Love’s first approximation thin shell theory. By applying the discrete singular
convolution method, the free vibration equations of motion of the composite lam-
inated conical shell are transformed to a set of algebraic equations. Convergence
and comparison studies are carried out to check the validity and accuracy of the
DSC method.

1. Introduction

Because of the practical importance of the free vibration analysis of the composite
laminated conical shell in structural, aerospace, nuclear, petrochemical, submarine
hulls, and mechanical applications, a few investigators have made efforts to deal
with free vibration analysis of this type of structures. Unsymmetric free vibra-
tions of orthotropic sandwich shells of revolution has been made by Bacon and
Bert [1967]. Siu and Bert [1970] analyzed the free vibration of isotropic and or-
thotropic conical shells by using the Rayleigh–Ritz technique. Irie et al. [1982;
1984] developed a transfer-matrix approach for free vibration of conical shells
with constant and variable thickness. Using the finite element method, Sivadas
and Ganesan [1992] analyzed the free vibration of conical shells with uniform
thickness. Yang [1974] adopted the integration method in the vibration analysis
of orthotropic conical shells. Tong [1993b; 1993a], and Tong and Wang [1992]
examined the vibration and buckling analysis of isotropic, orthotropic and lami-
nated conical shells by the power series expansion method. More recent papers
[Shu 1996b; 1996a; Hua 2000; Hua and Lam 2000; Lam and Hua 1997] have
used the differential quadrature method to study the free vibration of orthotropic
and laminated rotating conical shells. Liew et al. [1995] also studied the effects
of initial twist and thickness variation on the vibration behavior of shallow conical
shells. Lim and Kitipornchai [1999] have investigated the effects of subtended and

Keywords: conical shells, discrete singular convolution, laminated composite, frequencies.
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vertex angles on the free vibration of open conical shell. Some selected works
in this topic includes [Liew et al. 2005; Liew and Lim 1994; Lim et al. 1997;
1998; Lim and Liew 1995; Leissa 1973; Soedel 1996; Civalek 1998; 2004; 2005;
Civalek and Ülker 2005]. More detailed information can be found in [Chang 1981]
and [Kapania 1989].

The focus in this work is on the application of the DSC method to the differential
equation, which governs the free vibration analysis of laminated conical shells.
The governing differential equations of vibration of the shell are formulated using
Love’s first approximation classical thin shell theory [Love 1888]. In this study,
the DSC method was used for spatial discretization of the differential equations
governing the problem. In the author’s knowledge, it is the first time the discrete
singular convolution algorithm has been successfully applied to laminated conical
shell problem for vibration analysis.

2. Governing equations

A typical laminated conical shell is given as shown in Figure 1. The cone semiver-
tex angle, thickness of the shell, and cone length are denoted by α, h and L . R1

and R2 are the radii of the cone at its small and large edges. The conical shell is

 

Eθ

E x  

R(x) 

α 

z , w 

x , u 

z , w 

L  
R1 

θ , v 

θ 

R2 

Figure 1. Geometry and notation of laminated conical shell.
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referred to a coordinate system (x, θ, z) as shown in Figure 1. The components of
the deformation of the conical shell with references to this given coordinate system
are denoted by u, v, w in the x , θ and z directions, respectively. Ex and Eθ denote
the elastic moduli respectively in the meridional x and circumferential θ directons.
The equilibrium equation of motion in terms of the force and moment resultants
can be written as in [Tong 1993b]:

∂ Nx

∂x
+

1
R(x)

∂ Nxθ

∂θ
+

sin α

R(x)
(Nx − Nθ ) = ρh

∂2u
∂t2 , (1)

∂ Nxθ

∂x
+

1
R(x)

∂ Nθ

∂θ
+

cos α

R(x)

∂ Mxθ

∂x
+

cos2 α

R2(x)

∂ Mθ

∂θ
+ 2

sin α

R(x)
Nxθ = ρh

∂2v

∂t2 , (2)

∂2 Mx

∂x2 +
2

R(x)

∂2 Mxθ

∂θ∂x
+

1
R2(x)

∂2 Mθ

∂θ2 +
2 sin α

R(x)

∂ Mx

∂x

−
1

R(x)

(
sin α

∂ Mθ

∂x
+ cos αNθ

)
= ρh

∂2w

∂t2 , (3)

where
R(x) = R1 + x sin α, (4)

ρa(x, θ) =
1
h

∫ h/2

−h/2
ρ(x, θ, z) dz. (5)

Here ρ is the density and ρa the linear density. The moment resultants and in-
surface force are

N = (Nx , Nθ , Nxθ )
T

=

∫ h/2

−h/2
(σx , σθ , σxθ )

T dz, (6)

M = (Mx ,Mθ ,Mxθ )
T

=

∫ h/2

−h/2
(σx , σθ , σxθ )

T z dz, (7)

where (σ )T
= {σx , σθ , σxθ } is the stress vector. The stress vector of the k-th layer

for laminated composite conical shells in which each layer is orthotropic is

{σk} = [Q∗

i j ]{ε
∗

k }, (8)

where {ε∗

k }
T

= {εx , εθ , εxθ } is the strain vector. Based on Love’s first approximation
theory, the strain components of this vector are defined as linear functions of the
normal (thickness) coordinate z:

εx = ε1 + zκ1, εθ = ε2 + zκ2, εxθ = γ + 2zτ (9)
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where {ε}T
={ε1, ε2, γ } and {κ}

T
={κ1, κ2, 2τ } are the strain and curvature vectors

of the reference surface. They are defined by

ε1 =
∂u
∂x

, ε2 =
1

R(x)

∂v

∂θ
+

u sin α

R(x)
+

w cos α

R(x)
, γ =

1
R(x)

∂u
∂θ

+
∂v

∂x
−

v sin α

R(x)

κ1 = −
∂2w

∂x2 , κ2 = −
1

R2(x)

∂2w

∂θ2 +
cos α

R2(x)

∂v

∂θ
−

sin α

R(x)

∂w

∂x
,

τ = −
1

R(x)

∂2w

∂x∂θ
+

sin α

R2(x)

∂w

∂θ
+

cos α

R(x)

∂v

∂x
−

v sin α cos α

R2(x)
. (10)

For a thin and generally orthotropic layer, the stresses defined in Equation (8) are
given by 

σx

σθ

σxθ

 =

Q∗

11 Q∗

12 Q∗

16
Q∗

12 Q∗

22 Q∗

26
Q∗

16 Q∗

26 Q∗

66

 
εx

εθ

εθx

 , (11)

where the transformed reduced stiffness matrix of the k-th layer is defined by

[Q∗

k ] = [T ][Qk][T ]
−1 (12)

and where

[T ] =

 cos2 ϕ sin2ϕ 2 sin ϕ cos ϕ

sin2 ϕ cos2ϕ −2 sin ϕ cos ϕ

− sin ϕ cos ϕ sin ϕ cos ϕ cos2 ϕ − sin2 ϕ

 (13)

in which [T ] is the transformation matrix between the material principal coordi-
nate of the k-th layer and the geometric coordinate of the laminated composite
conical shell; ϕ is the angle between these two coordinate directions. The force
and moment resultants are given in terms of displacements u, v and w by



Nx

Nθ

Nxθ

Mx

Mθ

Mxθ


=



c11 c12 c13

c21 c22 c23

c31 c32 c33

c41 c42 c43

c51 c52 c53

c61 c62 c63




u
v

w

 , (14)
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where

ci1 = Ai1
∂

∂x
+ Ai2

sin α

R(x)
, ci2 =

Ai2

R(x)

∂

∂θ
,

ci3 = −Ai2
cos α

R(x)
− B1i

∂2

∂x2 − Bi2
sin α

R(x)

∂

∂x
−

Bi2

R2(x)

∂2

∂θ2 ,

c31 =
A66

R(x)

∂

∂θ
, c32 = A66

(
∂

∂x
−

sin α

R(x)

)
, c33 = −B66

∂

∂x

(
1

R(x)

∂

∂θ

)
c j i = B1i

∂

∂x
+

Bi2 sin α

R(x)
, c j2 =

Bi2

R(x)

∂

∂θ
,

c j3 = −D1i
∂2

∂x2 − Di2
sin α

R(x)

∂

∂x
−

Di2

R2(x)

∂2

∂θ2 − Bi2
cos α

R(x)
,

c61 =
B66

R(x)

∂

∂θ
, c62 = B66

(
∂

∂x
−

sin α

R(x)

)
, c63 = −2D66

∂

∂x

(
1

R(x)

∂

∂θ

)
.

(15)

Here i = 1, 2 and j = 3 + i . the tensors Ai j , Bi j and Di j represent the extensional,
coupling and bending stiffnesses and are calculated from the equations

(Ai j , Bi j , Di j ) =

∫ h/2

−h/2
Q∗

i j (1, z, z2) dz. (16)

For an arbitrarily laminated composite shell, these stiffnesses can be given as

(Ai j ) =

NL∑
k=1

Q(k)
i j (hk − hk−1), (Bi j ) =

1
2

NL∑
k=1

Q(k)
i j (h2

k − h2
k−1),

(Di j ) =
1
3

NL∑
k=1

Q(k)
i j (h3

k − h3
k−1),

(17)

where NL is the number of total layers of the laminated conical shell, Q(k)
i j is

the element of the transformed reduced stiffness matrix for the k-th layer, and hk

and hk−1 denote distances from the shell reference surface to the outer and inner
surfaces of the k-th layer. Substituting Equation (14) into Equations (1)–(3), we
obtain the governing equations for the linear free vibration analysis of composite
laminated conical shells:

L11u + L12v + L13w = ρh
∂2u
∂t2 , (18a)

L21u + L22v + L23w = ρh
∂2v

∂t2 , (18b)

L31u + L32v + L33w = ρh
∂2w

∂t2 , (18c)
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where

L11 = A11
∂2

∂x2 + A11
sin α

R(x)

∂

∂x
− A22

sin2 α

R2(x)
+

A66

R2(x)

∂2

∂θ2 , (19)

L12 =
(A12 + A66)

R(x)

∂2

∂x∂θ
−

(A22 + A66) sin α

R2(x)

∂

∂θ

+
(B12 + 2B66) cos α

R2(x)

∂2

∂x∂θ
+

(B12 + B22 + 2B66) sin α cos α

R(x)

∂

∂θ
, (20)

L13 = A12
cos α

R(x)

∂

∂x
− A22

sin α cos α

R2(x)
− B11

∂3

∂x3 −
(B12+2B66) cos α

R2(x)

∂3

∂x∂θ2

− B11
sin α

R(x)

∂2

∂x2 +
(B12 + B22 + 2B66) sin α

R2(x)

∂2

∂θ2 + B22
sin2 α

R2(x)

∂

∂x
, (21)

L21 =
(A12 + A66)

R(x)

∂2

∂x∂θ
+

(A22 + A66) sin α

R2(x)

∂

∂θ
+

+
(B12 + B66) cos α

R2(x)

∂2

∂x∂θ
+

(B22 − B66) sin α cos α

R3(x)

∂

∂θ
, (22)

L22 = A66

(
∂2

∂x2 +
sin α

R(x)

∂

∂x
−

sin2 α

R2(x)

)
+

(
A22

R2(x)
+2B22

cos α

R3(x)
+

D22 cos2 α

R4(x)

)
∂2

∂θ2

+ 2
D66 cos2 α

R2(x)

(
∂2

∂x2 −
2 sin α

R(x)

∂

∂x
+

2 sin2 α

R2(x)

)
+

B66 cos α

R(x)

(
3

∂2

∂x2 −
sin α

R(x)

∂

∂x
+

sin2 α

R2(x)

)
, (23)

L23 =

(
A22 cos α

R2(x)
+

B22 cos α

R3(x)
−

4D66 cos α sin2 α

R4(x)

)
∂

∂θ

−

(
B22

R3(x)
+

D22 cos α

R4(x)

)
∂3

∂θ3 −

(
B22

R2(x)
+

(D22 − 4D66) sin α cos α

R3(x)

)
∂2

∂x∂θ

−

(
(B12 + 2B66)

R(x)
+

(D12 + 2D66) cos α

R2(x)

)
∂3

∂x2∂θ
, (24)

L31 = −A12
cos α

R(x)

∂

∂x
− A22

sin α cos α

R2(x)
+ B11

∂3

∂x3 +
(B12 + 2B66)

R2(x)

∂3

∂x∂θ2

−
2B11 sin α

R(x)

∂2

∂x2 +
B22 sin2 α

R2(x)

∂

∂x
+

(B22 − 2B66) sin α

R3(x)

∂2

∂θ2 +
B22 sin3 α

R3(x)
, (25)
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L32 = −

(
A22

cos α

R2(x)
−

B22 cos2 α − (B22 + 2B66) sin2 α

R3(x)

)
∂

∂θ

+

(
−

(2D12+2D22+8D66) cos α sin2 α

R4(x)

)
∂

∂θ
+

(
B22

R3(x)
+

D22 cos α

R4(x)

)
∂3

∂θ3

+

(
(B12+2B66)

R(x)
+

(D12+4D66) cos α

R2(x)

)
∂3

∂x2∂θ

+

(
(B22 + 2B66) sin α

R2(x)
+

(D22 + 2D12 + 8D66) sin α cos α

R3(x)

)
∂2

∂x∂θ
, (26)

L33 = −A22
cos2 α

R2(x)
−

2B12 cos α

R(x)

∂2

∂x2 +
2B22 cos α

R3(x)

∂2

∂θ2 +
B22 cos α sin2 α

R3(x)

+ D11
∂4

∂x4 −
2(D12 + 2D66)

R2(x)

∂4

∂x2∂θ2 −
D22

R4(x)

∂4

∂θ4

−
2D11 sin α

R(x)

∂3

∂x3 +
2(D12 + 4D66) sin α

R3(x)

∂3

∂x∂θ2 +
D22 sin2 α

R2(x)

∂2

∂x2

−
2(D12 + D22 + 4D66) sin2 α

R4(x)

∂2

∂θ2 −
D22 sin3 α

R3(x)

∂

∂x
. (27)

The displacement terms are

u = U (x) cos(nθ) cos(ωt), v = V (x) sin(nθ) cos(ωt),

w = W (x) cos(nθ) cos(ωt).
(28)

Substituting these equations into (18), we can write the governing equations as

G111U + G112
∂U
∂x

+ G113
∂2U
∂x2 + G121V + G122

∂V
∂x

+ G131W + G132
∂W
∂x

+ G133
∂2W
∂x2 + G134

∂3W
∂x3 = −ρhω2U, (29)

G211U + G212
∂U
∂x

+ G221V + G222
∂V
∂x

+ G223
∂2V
∂x2

+ G231W + G232
∂W
∂x

= −ρhω2V, (30)

G311U + G312
∂U
∂x

+ G313
∂2U
∂x2 + G314

∂3U
∂x3 + G321V + G322

∂V
∂x

+ G323
∂2V
∂x2

+ G331W + G332
∂W
∂x

+ G333
∂2W
∂x2 + G334

∂3W
∂x3 +G335

∂4W
∂x4 = −ρhω2W, (31)
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where Gi jk are the related coefficients, found in [Tong 1993b; Shu 1996b]. In this
study, the following two type main boundary conditions are considered. These are
defined as follows:

Simply supported edge (S):

V = 0, W = 0, Nx = 0, Mx = 0 (32a)
Clamped edge (C):

U = 0, V = 0, W = 0 and ∂W/∂x = 0 (32b)

3. Discrete singular convolution (DSC)

The discrete singular convolution (DSC) algorithm was introduced by Wei [1999].
He and coworkers [Wei 1999; 2001a; 2001b; Wei et al. 2002a; 2002b] first applied
the DSC algorithm to solve solid and fluid mechanics problems. Zhao et al. [2002]
analyzed the high frequency vibration of plates and plate vibration under irregular
internal support using the DSC algorithm. Numerical solution of unsteady incom-
pressible flows using DSC is given in [Wan et al. 2002]. More recently, Lim et al.
[2005a; 2005b] presented the DSC–Ritz method for the free vibration analysis of
Kirchhoff and Mindlin plates and thick shallow shells.

These studies indicates that the DSC algorithm work very well for the vibration
analysis of plates, especially for high-frequency analysis of rectangular plates. It
also suggests that the DSC algorithm has the accuracy of global methods and the
flexibility of local methods for solving differential equations in applied mechanics.
The mathematical foundation of the DSC algorithm is the theory of distributions
and wavelet analysis. Consider a distribution T and let η(t) be an element of the
space of test functions. A singular convolution can be defined by

F(t) = (T ∗ η)(t) =

∫
∞

−∞

T (t − x)η(x) dx, (33)

where T (t − x) is a singular kernel. The DSC algorithm can be realized using many
approximation kernels. It has been shown that for many problems, the regularized
Shannon kernel (RSK) is very efficient. This kernel is given by

δ1,σ (x − xk) =
sin

(
(π/1)(x − xk)

)
(π/1)(x − xk)

exp
(

−
(x − xk)

2

2σ 2

)
; σ > 0 (34)

(see [Wei 1999]), where 1 = π/(N −1) is the grid spacing and N is the number of
grid points. The parameter σ determines the width of the Gaussian envelope and
often varies in association with the grid spacing, i.e., σ = rh. Here r is a parameter
chosen in computation. It is also known that the truncation error is very small due to
the use of the Gaussian regularizer. The formulation in (34) is practical and has an
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essentially compact support for numerical interpolation. With a sufficiently smooth
approximation, it is more effective to consider a discrete singular convolution

Fα(t) =

∑
k

Tα(t − xk) f (xk) (35)

where Fα(t) is an approximation to F(t) and {xk} is an appropriate set of discrete
points on which the DSC of (33) is well defined. Note that the original test func-
tion η(x) has been replaced by f (x). This new discrete expression is suitable for
computer realization. The mathematical property or requirement of f (x) is deter-
mined by the approximate kernel Tα. In the DSC method, the function f (x) and
its derivatives with respect to the x coordinate at a grid point xi are approximated
by a linear sum of discrete values f (xk) in a narrow bandwidth [x−xM , x+xM ].
This can be expressed as

dn f (x)

dxn

∣∣∣∣
x=xi

= f (n)(x) ≈

M∑
k=−M

δ
(n)
1,σ (xi − xk) f (xk); (n = 0, 1, 2, . . .), (36)

where superscript n denotes the n-th derivative with respect to x . The xk is a set of
discrete sampling points centred around the point x , σ is a regularization parameter,
1 is the grid spacing, and 2M +1 is the computational bandwidth, which is usually
smaller than the size of the computational domain. The higher-order derivative
terms δ

(n)
1,σ (x − xk) in (34) are given by

δ
(n)
1,σ (x − xk) =

(
d

dx

)n [
δ1,σ (x − xk)

]
, (37)

where the differentiation can be carried out analytically. For example, the second
derivative at x = xi of the DSC kernel is

δ
(2)
1,σ (x − x j ) =

d2

dx2

[
δ1,σ (x − x j )

]∣∣∣∣
x=xi

(38)

The discretized form of (6) can then be expressed as

f (2)(x) =
d2 f
dx2

∣∣∣∣
x=xi

≈

M∑
k=−M

δ
(2)
1,σ (k1xN ) fi+k, j (39)

When the regularized Shannon’s delta kernel (RSDK) is used, the detailed expres-
sions for δ1,σ (x), δ

(1)
1,σ (x), δ

(2)
1,σ (x), δ

(3)
1,σ (x) and δ

(4)
1,σ (x) can be easily obtained

for x 6= xk ; they are listed in the Appendix. Note that the differentiation matrix in
(39) is in general banded. This is a great advantage in large scale computations.
Consider a one dimensional, n-th order DSC kernel of delta type:

δ
(n)
σ,1(x − xk), n = 0, 1, 2, . . . . (40)
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Here δ
(0)
σ,1(x − xk) = δσ,1(x − xk) is the DSC kernel of (36). These derivatives

can be regarded as high pass filters. The filters corresponding to the derivatives
of Shannon’s kernel decay slowly as x increases, whereas the regularized filters
are Schwarz class functions and have controlled residual amplitudes at large x
values. In the Fourier representation, the derivatives of Shannon’s kernel are dis-
continuous at certain points. In contrast, the derivatives of regularized kernels
are all continuous and can be made very close to those of Shannon’s if desired.
The differential part of the operator on the coordinate grid is then represented by
functional derivatives

D =

∑
n=1

dn(x)
dn

dxn →

∑
n=1

dn(xm)δ(n)
α,σ (xm − xk) (41)

(see [Wei et al. 2002a]), where dn(x) is a coefficient and δ
(n)
α,σ (xm −xk) is analytically

given by

δ(n)
α,σ (xm − xk) =

(
d

dx

)n

δα,σ (xm − xk)

∣∣∣∣
x=xm

. (42)

Therefore, the discretized forms of Equations (29)–(31) can be expressed as

G111Ui, j + G112

M∑
k=−M

δ
(1)
1,σ (k1x)Ui+k, j + G113

M∑
k=−M

δ
(2)
1,σ (k1x)Ui+k, j

+ G121Vi, j + G122

M∑
k=−M

δ
(1)
1,σ (k1x)Vi, j+k

+ G131Wi, j + G132

M∑
k=−M

δ
(1)
1,σ (k1x)Wi, j+k = −ρhω2Ui, j , (43a)

G211Ui, j + G212

M∑
k=−M

δ
(1)
1,σ (k1x)Ui+k, j

+ G221Vi, j + G122

M∑
k=−M

δ
(1)
1,σ (k1x)Vi, j+k + G223

M∑
k=−M

δ
(2)
1,σ (k1x)Vi+k, j

+ G231Wi, j + G232

M∑
k=−M

δ
(1)
1,σ (k1x)Wi, j+k + G233

M∑
k=−M

δ
(2)
1,σ (k1x)Wi+k, j

= −ρhω2Vi, j , (43b)
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G311Ui, j + G312

M∑
k=−M

δ
(1)
1,σ (k1x)Ui+k, j

+ G321Vi, j + G322

M∑
k=−M

δ
(1)
1,σ (k1x)Vi, j+k + G323

M∑
k=−M

δ
(2)
1,σ (k1x)Vi+k, j

+ G331Wi, j + G332

M∑
k=−M

δ
(1)
1,σ (k1x)Wi, j+k + G333

M∑
k=−M

δ
(2)
1,σ (k1x)Wi+k, j

+ G334

M∑
k=−M

δ
(3)
1,σ (k1x)Wi+k, j + G335

M∑
k=−M

δ
(4)
1,σ (k1x)Wi+k, j

= −ρhω2Wi, j , (43c)

where the δ
(n)
α,σ are the coefficients of the regularized Shannon kernel, listed in the

Appendix. Thus, the governing equations are spatialy discretized by using the DSC
algorithm. The DSC form of the boundary conditions can be easily written. For
the clamped edge, for example, given as

Ui, j = 0, Vi, j = 0, Wi, j = 0 and
M∑

k=−M

δ
(1)
1,σ (k1x)Wi+k, j = 0. (44)

Wei et al. [2002a] proposed a practical method to treatment of the boundary con-
ditions for DSC. Zhao and Wei [2002] proposed a practical method to incorporate
the boundary conditions. More recently, the iteratively matched boundary method
has been applied [Zhao et al. 2005; Zhou et al. 2006] to impose the free boundary
condiitions for the solid mechanic problem.

By the DSC rule, the governing equations and the corresponding boundary con-
dions can be replaced by a system of simultaneously linear algebraic equations in
terms of the displacements at all the sampling points. It is noted that for a well-
posed problem the number of equations should be identical to the the number of
unknowns. A treatment commonly used in the literature [Shu 1996b; Wu and Wu
2000; Civalek 2004] is applied in this study. The first two governing equations
in (43) are applied at interior points (k = 2, 3, · · · , M − 1) and third governing
equation is applied at the interior points (k = 3, 4, · · · , M − 2). By rearranging the
DSC form of the governing equations, one has the assembled form of the resulting
equations as

[
[Gdd ] [Gdb]

] {
{Ud}

{Ub}

}
− �

[
[Bdd ] [Bdb]

] {
{Ud}

{Ub}

}
{0} (45)
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where {Ub} represents the unknown boundary grid points values, whereas {Ud}

represent the domain grid point unknowns. The subscript b represents the degree
of freedom on the boundary and subscript d represents the degree of freedom on
the domain. Substitung the DSC rule into the boundary conditions at the sampling
points at two boundary points leads to[

[Gbd ] [Gbb]
] {

{Ud}

{Ub}

}
= {0} (46)

After rewriting this as Ub = −G−1
bb GbdUd and then substituting the resulting equa-

tion into (45), we obtain
GU = �BU (47)

where G = Gdd −GdbG−1
bb Gbd , B = Bdd − BdbG−1

bb Gbd , and U is the displacement
vector on the domain. In the above eigenvalue equation, � is the nondimensional
frequency parameter. In (47), G and B are the matrices derived from the governing
equations described by (43) and the boundary conditions considered in (44).

4. Numerical applications

This section presents some numerical results for the free vibration analysis of lami-
nated conical shells. The utility and robustness of the proposed method is illustrated
by a number of numerical examples in this section. In order to simplify the pre-
sentation, S and C represent simply supported, and clamped supports, respectively.
Firstly, the convergence of DSC results is studied. To check whether the purposed
formulation and programming are correct, an isotropic conical shell is analysed
first. The numerical results are given by the dimensionless frequency parameter �,
defined by

� = R2

√
ρh
A11

ω

where ω is referred to as the frequency parameter. The obtained results by DSC
are listed in Table 1. This table shows the convergence of computed frequency
parameters � for an isotropic conical shell with θ = 60◦, L sin θ/R2 = 0.75 and
circumferential wave number n = 0. The table also shows results given in [Irie
et al. 1984; Tong 1993a; Shu 1996a]. To examine the influence of bandwidth on
the accuracy, we choose five values of N (8, 11, 16, 21, 32), with corresponding
regularization parameters σ/1 = 1.73, 2.15, 2.46, 2.8 and 3.2, and set M = N with
r optimally selected. From Table 1, it is seen that the convergence of DSC results
is very good. In comparison with the results in [Irie et al. 1984], DSC results using
16 uniform grid points are very accurate. When the number of grid points is larger
than 16, the DSC results are grid-independent. The fundamental frequency param-
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L sin α/R2 = 0.25

α = 15◦ α = 30◦ α = 45◦ α = 60◦ α = 75◦

N = 8 0.8983 0.9058 0.8204 0.7704 0.6629
N = 11 0.8355 0.8901 0.8151 0.7556 0.6447
N = 16 0.7851 0.8935 0.8043 0.7357 0.6228
N = 21 0.7856 0.8941 0.8047 0.7361 0.6234
N = 32 0.7856 0.8941 0.8047 0.7361 0.6234

[Irie et al. 1984] — 0.8938 0.8041 0.7353 —
[Tong 1993b] — 0.8938 0.8041 0.7353 —

[Shu and Du 1997] — — — 0.7366 —

Table 1. Frequency parameters of C-S conical shells; ν = 0.3,
h/R2 = 0.01, n = 0.

eters � for an antisymmetric cross-ply laminated circular cylindrical shell with the
S-C boundary condition are shown in Table 2. This table shows the fundamental
frequency parameters based on classical shell theory (CST) [Shu and Du 1997] and
the present DSC formulation. The results in Wu and Lee [2001], obtianed using the
differential quadrature method (DQM), are also listed for comparison. Note that

Present CST DQM
h/R L/R DST results [Shu and Du 1997] [Wu and Lee 2001]

for N = 11
max.cplg no cplg max.cplg no cplg max.cplg no cplg
NL = 2 NL = ∞ NL = 2 NL = ∞ NL = 2 NL = ∞

1 0.6585 0.7729 0.6440 0.8044 0.6725 0.8003
2 0.3802 0.4463 0.3750 0.4545 0.3742 0.4534

0.01 5 0.1849 0.2186 0.1858 0.2193 0.1852 0.2187
10 0.1014 0.1195 0.1030 0.1223 0.1027 0.1217
20 0.0477 0.0628 0.0496 0.0641 0.0494 0.0639

1 1.1406 1.4803 1.3201 1.8327 1.2820 1.6531
2 0.6228 0.7474 0.6518 0.8146 0.6432 0.7975

0.05 5 0.2785 0.3502 0.2886 0.3615 0.2876 0.3562
10 0.1663 0.1956 0.1745 0.2021 0.1733 0.2015
20 0.0771 0.0787 0.0875 0.0886 0.0870 0.0881

Table 2. Fundamental frequency parameters of an antisymmetric
cross-ply laminated circular cylindrical shell with the S-C bound-
ary condition (ν = 0.3, h/R2 = 0.01).
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Figure 2. Effect of s = Ex/Eθ ratio on frequency with the
S-S boundary condition for cone angle 15◦ (L sin α/R2 = 0.25;
h/R2 = 0.01.)

N = 11 is sufficient to obtain accurate results. The present numerical solutions are
in close agreement with the DQM and CST solutions available in the literature. We
also see from Table 2 that the results of two layers (NL = 2) are always less than
that of infinite layers (NL = ∞). This suggests that the fundamental frequency
parameters decrease as the coupling rigidity terms increase.

Figure 2 shows the frequency parameters of clamped and simply supported or-
thotropic conical shells for µxφ = 0.3, s = Ex/Eθ , Ex = 2.1 × 106 and Gxθ =

807692. The effects of the ratio s on the values of � for α = 15◦ are displayed.
Note that the values of � decrease when the ratio s increases. The variation is
marginal for larger values of s, irrespective of cone angles. In general, � increases
considerably with circumferential wave number for larger values of s (s > 10).

To examine the influence of h/R2 on the frequency characteristics for S-S bound-
ary conditions, we plot in Figure 3 the dependence for three different cone angles
α (30◦, 45◦, 60◦). With the increase of ratio h/R2, the frequency parameter � in-
creases rapidly. Generally, decreasing the cone angle also decreases the frequency
parameter �.

Figure 4 shows the effect of h/R2 on the frequency, and suggests that the fre-
quency parameter increases uniformly with the ratio h/R2. The C-C conical shell
has the highest frequency parameter, followed by C-S and S-C. The S-S conical
shell has the lowest frequency parameter.

For the ratio L/R2 = 0.5, Figure 5 highlights the influence of the geometric
ratio h/R2 on the frequency parameter �, for four different cone angles α. We see
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Figure 3. Variation of frequency � with geometric ratio h/R2 for
S-S conical shell, for various values of α.

that this influence is significant, that increasing α always increases �, and that the
influence of the boundary condition on � with h/R2 is significant.

Figure 6 shows the frequency parameters of (0/90/0) laminated conical shells
with S-S boundary conditions for the ratio L/R1 = 5. The layer material properties
are ν12 = 0.25, ν22 = 0.25, E11/E22 = 25, G12/E22 = 0.5, G22/E22 = 0.2. These
figures show the effects of the ratio h/R1 on the values of � for two types of cone
angles, α = 30◦ and α = 60◦. The variation is only marginal for larger values of
n, irrespective of cone angles. For the cases under consideration, axisymmetric
frequencies (n = 0) are not the lowest frequencies. The lowest frequencies occur
for a higher value of n.
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Figure 4. Variation of frequency � with geometric ratio h/R2 for
various conical shells (α = 30◦, L sin α/R2 = 0.25).

5. Conclusions

In conjunction with the method of DSC, the free vibration of orthotropic lami-
nated conical shells is presented. Convergence tests are performed to validate the
proposed approach for handling various combinations of two types of boundary
conditions. A number of numerical examples are considered to explore the use-
fulness and test the accuracy of the present method. Accurate solutions have been
presented for the frequencies of orthotropic laminated conical shells. The cone
angle α and the L sin α/R2 ratio has been found to have significant influence on
the frequency parameters of the conical shell. The approach has been validated by
convergence studies and comparisons with existing results in the literature.
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Figure 5. Variation of frequency � with geometric ratio h/R2 for
various cone angles of S-S conical shell (L/R2 = 0.5; h/R2 = 0.01;
ν = 0.3).
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Figure 6. Variation of frequency � with value of n for 0/90/0
laminated conical shells with S-S boundary conditions (L/R1 = 5).
Left: α = 30◦. Right: α = 60◦.



180 ÖMER CIVALEK

Appendix: The derivatives δ
(n)
1,σ

Here are the first four derivatives of the function δ1,σ (x), needed in Equations (43).
For brevity, we set ξ := x − xk , s = sin(π/1), c = cos(π/1).

δ
(1)
π/1,σ (xm − xk) = e−ξ2/2σ 2

(
c −

1

π
s
( 1

ξ
+

ξ

σ 2

))
,

δ
(2)
π/1,σ (xm − xk) = e−ξ2/2σ 2

(
−

π

1
s −

(2
ξ

+
2ξ

σ 2

)
c +

1

π

( 2
ξ 2 +

1
σ 2 +

ξ 2

σ 4

)
s
)

,

δ
(3)
π/1,σ (xm − xk) = e−ξ2/2σ 2

(
−

π2

12 c +
π

1

( 3
ξ

+
3ξ

σ 2

)
s +

( 6
ξ 2 +

3
σ 2 +

3ξ 2

σ 4

)
c

−
1

π

( 6
ξ 3 +

3
ξσ 2 +

ξ 3

σ 4

)
s
)

,

δ
(4)
π/1,σ (xm − xk) = e−ξ2/2σ 2

(
π3

13 s +
π2

12

( 4
ξ

+
4ξ

σ 2

)
c −

π

1

( 12
ξ 2 +

6
σ 2 +

6ξ 2

σ 4

)
s

−

(24
ξ 3 +

12
ξσ 2 +

4ξ 3

σ 6

)
c +

1

π

( 24
ξ 4 +

12
ξ 2σ 2 +

3
σ 4 −

2ξ 2

σ 6 +
ξ 4

σ 8

)
s
)

.
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Turkiye

http://dx.doi.org/10.1016/0020-7403(93)90064-2
http://dx.doi.org/10.1016/0020-7225(93)90120-J
http://dx.doi.org/10.1016/0020-7403(92)90076-S
http://dx.doi.org/10.1016/0020-7403(92)90076-S
http://dx.doi.org/10.1002/fld.253
http://dx.doi.org/10.1002/fld.253
http://dx.doi.org/10.1063/1.478812
http://dx.doi.org/10.1063/1.478812
http://dx.doi.org/10.1016/S0045-7825(00)00219-X
http://dx.doi.org/10.1006/jsvi.2000.3507
http://dx.doi.org/10.1002/nme.526
http://dx.doi.org/10.1002/nme.526
http://dx.doi.org/10.1006/jsvi.2002.5055
http://dx.doi.org/10.1006/jsvi.2002.5055
http://dx.doi.org/10.1016/S0020-7403(01)00010-8
http://dx.doi.org/10.1016/S0020-7403(01)00010-8
http://dx.doi.org/10.1007/s004660050482
http://dx.doi.org/10.1007/s004660050482
http://dx.doi.org/10.1006/jsvi.2001.4150
http://dx.doi.org/10.1006/jsvi.2001.4150
http://dx.doi.org/10.1016/S0020-7683(01)00183-4
http://dx.doi.org/10.1016/S0020-7683(01)00183-4
http://dx.doi.org/10.1016/j.jsv.2004.08.037
http://dx.doi.org/10.1016/j.jsv.2004.08.037
http://dx.doi.org/10.1016/j.jcp.2005.07.022
http://dx.doi.org/10.1016/j.jcp.2005.07.022
mailto:civalek@yahoo.com


JOURNAL OF MECHANICS OF MATERIALS AND STRUCTURES
Vol. 1, No. 1, 2006

YIELD FUNCTIONS AND PLASTIC POTENTIALS FOR BCC
METALS AND POSSIBLY OTHER MATERIALS

RICHARD M. CHRISTENSEN

Yield functions and plastic potentials are expressed in terms of the invariants of
the stress tensor for polycrystalline metals and other isotropic materials. The
plastic volume change data of Richmond is used to evaluate the embedded ma-
terials properties for some bcc metals and one polymer. A general form for the
plastic potential is found that is intended to represent and cover a wide range of
materials types.

1. Introduction

The present work is concerned with the yield functions describing the departure
from ideal, linear elastic conditions, and with the plastic potentials which are used
to describe the ensuing plastic flow which occurs after the yield functions have
been traversed. The definitive theoretical work in this area was formalized by Hill
in his early and insightful book [1950] and his many later contributions such as
[Hill 1959; 1968a; 1968b; Hill and Rice 1972]. The definitive experimental work
was given by Richmond and colleagues (to be cited later), based mainly upon
body centered cubic (bcc) metals. The present work follows the lead of these
two valuable sources. In the intervening time, most efforts to use yield functions
and plastic potentials have proceeded by taking whatever forms were expedient
for the particular application of immediate interest. A main objective here is to
deduce general representations for yield functions and plastic potentials that have
a minimum number of embedded parameters (properties) in order to have the most
reasonably useful forms for application to a wide range of full density materials.
The resulting forms will be evaluated for various materials types. We begin with
the consideration of very ductile metals.

Face centered cubic (fcc) metals provide the backbone of ideal elastic-plastic
behavior. Such metals as copper, nickel, aluminum, silver, gold and lead constitute
the basis for ideal plastic flow, whether that flow be described at the dislocation
level or the continuum level using so-called J2 plasticity theory. The first significant
evidence for the nonideal behavior not adequately described by J2 theory is the
class of bcc metals: chromium, molybdenum, tantalum, tungsten, vanadium, iron

Keywords: yield functions, plastic potentials, BCC Metals.
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and most steels. These bcc metals provide the perfect test bed for studying the
inception of nonideal plastic effects, with the ultimate aim of generalizing beyond
this class to much broader classes of materials such as polymers and ceramics.

The present work is at the macroscopic level, but it is helpful to rationalize con-
trolling effects at a more basic level. There are at least two possible sources for the
departure of most bcc metals from the ideal behavior exhibited by most fcc metals.
One is the far-from-ideal form of grain boundaries on the atomic scale. This state
of disorder quite naturally implies a state of nonuniformity and heterogeneity in
the strength properties of grain boundaries. The other possible source of nonideal
behavior for bcc metals is the fact that the core structure of dislocations spreads
over many atomic layers of glide planes [Hirsch 1960; Christian 1983; Vitek 1975].
This fact greatly decreases the mobility of the dislocations, and results in a greater
sensitivity to temperature (and pressure) dependent behavior. Other explanations
are certainly possible for the nonideal behavior of bcc metals; dislocation dynamics
studies related to these matters are rapidly evolving and likely will ultimately pro-
vide new insights. Until that time, however, only the two sources just mentioned
will be further considered here.

The nonuniformity of strength of grain boundaries in fcc materials is of little
importance because the great mobility of the dislocation structures implies that the
loads on the grain boundaries are insufficient to cause any disruption of the grain
boundary. However, in bcc metals the grain boundaries are much more highly
stressed than in fcc metals. Our interest here is with initially isotropic materials,
so only polycrystalline aggregates of bcc crystals will be considered. The actual
behavior on the grain scale involves variability from grain to grain, and progressive
and accumulating degrees of irreversible damage. Because of this variability, the
slip on the grain boundaries and the slip systems within the grains may coordinate
and interact in some grains. A macroscopic description is necessarily an average
over all grains. Probably the grain boundary behavior is much more variable than
that of the grain-to-grain form.

The grain failure itself and the grain boundary failure are not necessarily inde-
pendent and competing physical events. They can be interactive with the grain
boundaries, operating to some extent as slip systems in conjunction with those
within the crystal. In the macroscopic view, sufficiently general descriptors must
be used to cover these possibilities. Even if only shear stresses are needed for the in-
dividual crystals, both shear and normal stresses are needed for the grain boundary
failure. Macroscopically this then requires both shear and normal stresses.

The behavior of the polycrystalline aggregate thus depends not only upon the
shear stress on the slip planes in the individual grains, but also upon normal stresses
acting within the grains and upon the grain boundaries. The corresponding macro-
scopic characteristics involved are the shear stresses and the mean normal stress.
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For the failure of isotropic materials, we will then use the invariants that involve
the shear stresses and the mean normal stress.

The formal statement of the yield function is given by

f (σi j ) ≤ 1.

The plastic potential G(σi j ) describes the plastic flow through the standard flow
form

ε̇
p
i j = λ

∂G
∂σi j

, (1)

where the strain is decomposed into elastic and plastic components. The associative
form of (1) is that which occurs when the yield function and plastic potential are
taken to be identical:

G(σi j ) = f (σi j ).

As is well known, this ideal associative form occurs only in the extremely ductile
limit for application to most fcc metals.

Some of the complications to be considered in the following work will include
the following effects. All materials except the ideal case, show an asymmetry in
the uniaxial tensile and compressive yield values, T 6= C . Also, all except ideal
materials show a pressure dependency. Is one of these effects a fundamental effect
and the other a following consequence? An answer to this question will be sought.
Since the materials are initially isotropic, most approaches utilize the invariants of
the stress tensor, I1, J2 and J3. The first two, I1 and J2, are commonly used, but
the third invariant, J3, is sometimes also argued to be important. The present work
will seek to clarify the significance or lack thereof of J3 for use in yield functions
and plastic potentials. We also will look for a unifying method by which to treat
plastic potentials for materials other than bcc metals. In the present context, the
term yield is interpreted to mean the stress value at the point of major deviation
from the preceding linear elastic region, not at some hypothetical, initial deviation
point, which can be extremely difficult to identify. We begin by considering the
three standard invariants.

2. Invariants

Consider the eigenvalue problem used to find the principal values of the stress
tensor. The notation will follow that of [Wilson 2002]. The invariants I1, I2 and
I3 follow from the characteristic equation

λ3
− I1λ

2
+ I2λ − I3 = 0,
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where
I1 = σ11 + σ22 + σ33,

I2 = σ11σ22 + σ22σ33 + σ33σ11,

I3 = σ11σ22σ33.

Alternatively, the deviatoric stress is taken as

si j = σi j −
δi j

3
σkk, (2)

and the invariants for si j are given through

λ3
+ J1λ

2
− J2λ − J3 = 0,

where
J1 = 0,

J2 =
1
6

(
(σ11 − σ22)

2
+ (σ22 − σ33)

2
+ (σ33 − σ11)

2),
J3 = (σ11 − σm)(σ22 − σm)(σ33 − σm),

σm =
1
3 I1.

(3)

The invariants for σi j and si j are related through

J2 =
1
3 I 2

1 − I2,

J3 =
2

27 I 3
1 −

1
3 I1 I2 + I3 = −

1
27 I 3

1 +
1
3 I1 J2 + I3.

(4)

Using the identities (4) it is completely equivalent to take the three independent
invariants as either the grouping I1, I2 and I3 or I1, J2 and J3. It is advantageous
to use the latter combination since the two invariants J2 and J3 are independent of
mean normal stress, which then comes in only through I1. These invariants will be
taken to be those that will be used to specify yield functions for isotropic materials.

Begin by considering yield functions for isotropic materials. The two widely
recognized features of nonideal yield behavior are, first, the asymmetry in the
uniaxial tensile and compressive yield values T and C , thus T ≤ C . The other
feature is the dependence of the yield function upon mean normal stress, in all
cases except the ductile limit described by the Mises form. Consider cases where
these two effects are taken to be independent of each other. In particular take cases
having T 6= C but no dependence upon mean normal stress.

Consider a possible yield function of the form

a J2 + bJ3 ≤ 1, (5)

which, because of independence of I1, has no mean normal stress dependence. The
yield stress asymmetry T 6= C can however be accommodated by (5). Evaluate a
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and b in (5) to give the uniaxial yield values T and C . The form that (5) then takes
is

3
(

1 + (C/T )3

1 + C/T

)
J2

C2 +
27
2

(
−1 + (C/T )2

1 + T/C

)
J3

C3 ≤ 1. (6)

Now specialize (6) to a biaxial stress state with only principal stresses σ1 and σ2

but σ3 = 0. Then
J2 =

1
3(σ 2

1 − σ1σ2 + σ 2
2 )

and
J3 =

1
27(2σ1 − σ2)(σ1 − 2σ2)(σ1 + σ2). (7)

Take the particular case of T/C = 1/2, which is well within the range of possi-
bility. Then the yield function (6) becomes

J2

C2 + 3
J3

C3 ≤
1
9
. (8)

It can be shown analytically that the yield envelopes in the equation of (8) with (7)
are the linear (line) segments as shown in Figure 1, going through the tensile and
compressive values along the axes.

As seen from Figure 1 the yield function at T/C = 1/2 has a strongly nonconvex
character. In the limit of T/C = 1, the yield function is the Mises form with a

−1 1

−1

1

σ1

C

σ2

C
T
C

=
1
2

Figure 1. J2-J3 yield criterion, Equation (6).
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completely convex character. But as the value of T/C diminishes, a nonconvex
form develops, becoming that of Figure 1 at T/C = 1/2. The yield form shown in
Figure 1 is also physically unrealistic in other respects. It predicts unlimited yield
strength in a state of equibiaxial tension, as well as other nonrealistic features.

Continuing the examination of yield forms which have the strength asymmetry
characteristic but no dependence upon mean normal stress leads to forms such as

a J 1/2
2 + bJ 1/3

3 ≤ 1, a J2 + bJ 1/3
3 ≤ 1, a J 3/2

2 + bJ3 ≤ 1.

All of these cases were been examined (together with Dr. A. Arsenlis) and were
found to reveal the emergence of a nonconvex character somewhere in the range
1/2 ≤ T/C < 1. The nonconvex character results as the direct consequence of the
third invariant J3.

Now consider the opposite situation, namely, yield functions which have no
strength asymmetry but do have a dependence upon mean normal stress. For ex-
ample, the yield form

aI 2
1 + bJ2 (9)

does have a dependence on mean normal stress through I 2
1 but it does not allow

T 6= C . However, the form (9) must be excluded from consideration because it is
independent of whether the mean normal stress is tensile or compressive, which is
a known and strong physical effect.

The conclusion from examining these yield function cases, which are somewhat
arbitrarily tailored to reflect a particular physical effect, is that this is an unproduc-
tive approach. In the next section, in connection with bcc metals data, a more orga-
nized approach to yield functions (and plastic potentials) will be taken, one which
assures convexity of the related forms, and interrelates the tension-compression
asymmetry and the pressure dependence.

3. Polynomial expansion for BCC Metals, 0 ≤ α ≤ 1

Both yield functions f (σi j ) and plastic potentials G(σi j ) for isotropic materials
will now be considered. For either of these, perform a polynomial expansion in the
invariants. Take an expansion in the invariants of the stress tensor, giving

F(σi j ) = a1 I1 + a2 I 2
1 + a3 J2 + a4 I 3

1 + a5 I1 J2 + a6 J3 + · · · , (10)

where F( ) represents either f ( ) or G( ).
Rewrite this form explicitly designating the different possible levels of trunca-

tion through third degree terms

F = a1 I1
∣∣∣∣
1st degree

+ a2 I 2
1 + a3 J2

∣∣∣∣
2nd degree

+ a4 I 3
1 + a5 I1 J2 + a6 J3

∣∣∣∣
3rd degree

. (11)
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At the first-degree level there is one parameter to be evaluated, at the second-degree
level there are three parameters and at the third degree level there are six parameters.
Obviously the first-degree level cannot give the operative physical effects; this
leaves either the second degree level or the third-degree level to be examined. It
is convenient to rewrite (11) normalized by the modulus E so that the coefficients
are in preferred nondimensional form. This gives

F = b1
I1

E
+ b2

I 2
1

E2 + b3
J2

E2 + b4
I 3
1

E3 + b5
I1 J2

E3 + b6
J3

E3 . (12)

Whatever the level of truncation, the form (12) gives a rationale for neglecting the
terms of higher order beyond that level. Obviously the lowest degree level that
can adequately reflect the physical effects of interest must be used. The second-
degree level will be considered in this work. If it does not successfully capture the
requisite physical effects, then the third degree level with six parameters must be
considered.

Using the form (11) rather than (12) for convenience, the second degree form is

F = a1 I1 + a2 I 2
1 + a3 J2. (13)

In application to yield functions and plastic potentials, if it is assumed that there
can be no plastic response under a state of purely hydrostatic compressive stresses
then it can be shown that the coefficient a2 in (13) must vanish. This condition will
be used in this work, leaving (13) as

F = a1 I1 + a3 J2. (14)

The form (14) has a considerable history, described in [Christensen 2004].
The form (14) thus excludes the third invariant from participation in the process.

It is quite logical that the third invariant not be involved with yielding and plastic
flow even though it is involved in the eigenvalue problem of principal stresses.
Stress is a 3 × 3 matrix and the characteristic equation necessarily involves the
third invariant. In the present approach, there are only two relevant stress states
for isotropic materials. These are dilatation and shear, and it is these that are
directly involved with the first and second invariants. The third invariant cannot
be visualized as a specific and independent stress state having I1 = J2 = 0. For
these reasons the polynomial expansion is truncated at terms of 2nd degree, not
bringing in J3. It may also be noted that the form (14) always produces a convex
surface. Finally, since the expansion directly involves the mean normal stress, I1,
it is concluded that the dependence upon mean normal stress is a primary effect,
and that the tension compression asymmetry is merely a consequence of that.
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As shown in [Christensen 2004] the form (14) as a yield function can be written
as

ασ̂kk +
3
2(1 + α)ŝi j ŝi j ≤ 1, (15)

where the stress is nondimensionalized by the uniaxial compressive yield strength
as

σ̂i j =
σi j

κ
,

where
κ = C

and

α =
C
T

− 1.

It is advantageous to use the nondimensional parameter α, and in this section it will
be restricted to cover the range 0 ≤ α ≤ 1 which does cover most bcc metals. Either
of the two properties groupings T and C or α and κ will be used, as appropriate.

Now, using the representation (14) for the plastic potential, G, in flow form (1)
gives

G = βκσkk +
3
2 si j si j . (16)

The 3/2 factor in (16) could be absorbed into λ (1) but it is retained here for scaling
convenience, and parameter β remains to be determined from data. Comparing (15)
and (16) it is seen that the associative form of the plastic potential is given by

β =
α

1 + α
, (associative).

The deviatoric term in the yield function can be written in terms of stress compo-
nents as

ŝi j ŝi j =
1
3

(
(σ̂11 − σ̂22)

2
+ (σ̂22 − σ̂33)

2
+ (σ̂33 − σ̂11)

2)
+ 2(σ̂ 2

12 + σ̂ 2
23 + σ̂ 2

31). (17)

The plastic potential is

G = κβ(σ11 + σ22 + σ33) +
1
2

(
(σ11 − σ22)

2
+ (σ22 − σ33)

2
+ (σ33 − σ11)

2)
+ 3(σ 2

12 + σ 2
23 + σ 2

31). (18)

Using the flow rule (1) with (18) gives the plastic strain increments as

ε̇
p
11

λ
= κβ + 2σ11 − σ22 − σ33,

ε̇
p
33

λ
= κβ − σ11 − σ22 + 2σ33

ε̇
p
22

λ
= κβ − σ11 + 2σ22 − σ33

ε̇
p
i j

λ
= 6σi j for i 6= j.

(19)
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The plastic volume change is then given by

ε̇
p
kk = 3λκβ. (20)

The volume change in states of uniaxial tension and compression will be used to
evaluate the parameter β in the plastic potential (18). From the yield function (15)
and (17) it is found that for uniaxial tension

σ̂ T
11 =

1
1 + α

, (21)

and for uniaxial compression
σ̂C

11 = −1. (22)

Using (21) and (22) in the plastic strain expressions (19) and using the volume
change form (20) gives the plastic volume change normalized by the plastic strain
increment in the stress direction as

ε̇
p
kk

ε̇
p
11

=
3

1 +
2

β(1 + α)

(tension) (23)

and
ε̇

p
kk

|ε̇
p
11|

=
3

1 − 2/β
(compression). (24)

At this point, data can be used to evaluate the parameter β. The carefully prepared
and evaluated data of Spitzig, Sober and Richmond [Spitzig et al. 1975] on two
formulations of steel will be used. The two materials types give the same results,
to within experimental accuracy. Spitzig et. al. expressed the T/C asymmetry
through a factor defined as the strength differential (SD). The relation between
their strength differential and parameter α defined above is given by

α =
SD

1 − SD/2
. (25)

For the two quenched and tempered (4310 and 4330) steels, the strength differential
was determined to be in the range

SD = 0.045 – 0.065.

The strength differential of SD = 0.05 will be used giving an α value of

α = 0.051.

This means that the tensile yield value T was about 5% less than the compressive
value C . The experimental value for the plastic volume change normalized by the
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plastic strain was
ε̇

p
kk

ε̇
p
11

= 0.005,

with the same values for both the tension and compression cases. This very small
plastic volume increase is likely due to the generation of vacancies as dislocation
lines cross each other [Hull and Bacon 2001].

Using the α value and the above plastic volume change value in either (23) or
(24) gives β as

β = 0.0032.

The associative value for β, β = α/(1 + α), would be given by

β = 0.049 (associative).

Thus the actual material parameter β in (16) is an order of magnitude less than the
associative value for it would be in the case of these bcc metals.

The fact that the tensile and compressive plastic volume changes were indistin-
guishable experimentally is a form of partial verification for the results (23) and
(24) in this range of α and β values. [Spitzig et al. 1976] tested several more steel
formulations and in all cases but one found results compatible with those just used
for these first cases. Their main conclusions were that the associative flow rule
is in error by about an order of magnitude for these materials. Their results are
also compatible with the general forms of yield functions and plastic potentials
considered here, namely (15) and (16). It can be said that these forms appear
adequately to describe the plastic behavior for these bcc metals.

The situation as it stands at this point is that the yield function (15) is completely
specified by measurements of the uniaxial tensile and compressive yield strengths
for each material of interest. The plastic potential is completely specified by the
evaluation of the parameter β in (16) for each material of interest. In the next
section we consider a more general approach for specifying the plastic potential,
possibly applicable to a much broader class of materials than just bcc metals.

4. General materials, 0 ≤ α ≤ ∞

With no certainty of success, we now look for a more general and unifying approach
than that of determining parameter β in the plastic potential (16) for each separate
material of interest. First some recent results need to be assembled to approach
this problem.

Write the yield function (15) in a slightly different form as

α

1 + α
σ̂kk +

3
2

ŝi j ŝi j ≤
1

1 + α
, (26)
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−1 1
log α

1

α

1 + α

Figure 2. Dilatational term coefficient, Equation (26).

with α now having the full range

α =
C
T

− 1, 0 ≤ α ≤ ∞.

The value α = 0 is that of the perfectly ductile Mises material. The other limit
α → ∞ is the brittle limit, wherein the tensile yield strength is negligible compared
with the compressive yield strength. This limiting case still has material integrity
as opposed to that of a granular material. Free flowing granular materials as well
as porous materials are separate and distinct classes from the macroscopically ho-
mogeneous materials considered here.

The coefficient α/(1 + α) in (26) has an interesting behavior. It is shown in
Figure 2 with a log scale. The log scale is natural to use because α varies from
0 to ∞ and, as with spectra, this properties variation is best viewed through log
scales. Note that at log α = 0, α = 1 the coefficient shown in Figure 2 undergoes a
transition (transition of material type) defined by the point of maximum slope (rate
of change) with respect to log α. Thus, the coefficient α/(1+α) in (26) determines
the relative weights of the dilatational and distortional terms. Over the range of
α, this goes from no dilatational contribution to the yield function up to a fully
interactive dilatational contribution. Then there is the transition between these two
extremes at α = 1 for this contribution of the dilatational term.

Christensen [2004] has examined this yield/failure behavior described above and
found that at the transition value of α = 1, a Rankine type fracture criterion must
come into effect. Thus the yield function (26) must be augmented by the explicit
fracture criterion

σ1 ≤ T if α ≥ 1, (27)
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where σ1 is the largest principal stress. The fracture criterion has no effect di-
rectly at α = 1, but as α is incrementally increased beyond that value, the fracture
criterion (27) gains a gradually increasing effect, more limiting than the yield cri-
terion (26) under some conditions. For large values of α the fracture criterion can
be very limiting in effect. See [Christensen 2005] for an elaboration.

With the above background, we can now proceed with the plastic potential
problem. For the plastic potential form given in (16) the coefficient β controls
the relative weight of the dilatational and distortional terms. Take β = β(α) and
note that it is required that

(i) β = 0 at α = 0,

in order to be consistent with Mises behavior at that limit. Now, assume two more
conditions on β(α) in (16) and its applicability over the full range of α. Take

(ii) β → A as α → ∞,

where A is some nonzero constant, unknown at this point. Finally require that β(α)

have a transition (point of maximum slope versus log α) at the same value as for
the yield function, namely at log α = 0, α = 1. Thus

(iii) β(α) has transition at α = 1.

This requirement ensures compatibility between the transition locations in the yield
function and the plastic potential.

A standard form for β(α) in the plastic potential (16) would be as an expansion
of the type

β =

∞∑
n=1

An

(
α

1 + α

)n

.

The first term will be explicitly considered here, as a form that directly satisfies
conditions (i), (ii) and (iii),

β =
Aα

1 + α
, (28)

where A is a constant with respect to α and to be determined. Parameter α is
considered to be known from the yield function. Substituting (28) into (16) gives
the plastic potential as

G = A
(

α

1 + α

)
σ̂kk +

3
2

ŝi j ŝi j .

Form (28) for the plastic potential in (16) is intimately related to the yield form,
being directly proportional to the corresponding coefficient in (26) over the full
range of α. The limits on A are

0 ≤ A ≤ 1,
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where

A =

{
0 for a purely distortional plastic potential,

1 for an associative plastic potential.

The constant A is unlikely to be universal, but the form (28) could possibly be
useful as an approximation. If so, the form (28) would have considerable utility
since β would not have to be re-determined for each different material of interest.
The possible validity and usefulness of (28) will now be examined.

With the form (28), the results (23) and (24) on uniaxial tension and compression
volume change for the plastic response become

ε̇
p
kk

ε̇
p
11

=
3Aα

2 + Aα
(tension) (29)

and

ε̇
p
kk

|ε̇
p
11|

=
3Aα

2(1 + α) − Aα
(compression). (30)

The steel testing data of [Spitzig et al. 1975] given in the previous section just after
Equation (25) with the values for β and α inserted into (28) give constant A as

A = 0.065 = 1/15 (steel). (31)

This result means that the dilatational contribution to the plastic potential is 1/15
the size of the dilatational contribution to the yield function at the same value of α.

Next, a very different type of material will be considered. Spitzig and Richmond
[1979] performed tests on polyethylene, similar to those described for steel. The
strength differential was determined to be

SD = 0.085,

giving α as
α = 0.089.

The plastic volume change was measured in uniaxial compression and tension and
was found to be

ε̇
p
kk

ε̇
p
11

= 0.011.

Using these data to evaluate β and A gives

β = 0.0067,

A = 0.083 = 1/12 (polyethylene).

Other testing data on polycarbonate by Spitzig and Richmond [1979] were incon-
clusive.
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Compare the β values for steel and polyethylene of 0.0032 and 0.0067, respec-
tively. These differ by more than a factor of two. However, the corresponding A
values of 1/15 and 1/12 are much closer together. The β values difference show
the two materials to have strongly different behaviors, but the much smaller A
value differences shows the form (28) for β(α) to have a unifying effect.

The previous two materials examples are of a very ductile type; now an example
far removed from this condition will be given, that of cast iron. For grey cast iron
the yield values in [Grassi and Cornet 1949; Coffin 1950] give

T
C

=
1
3
, α = 2.

Using this value of α in the uniaxial compression result (30) gives

ε̇
p
kk

|ε̇
p
11|

=
3A

3 − A
(compression). (32)

The corresponding result for uniaxial tension is not relevant because it is excluded
by the fracture criterion (27) for this value of α. The same situation applies for
simple shear stress, at large values of α plastic flow is subsumed by the fracture
criterion (27) and brittle behavior.

Unfortunately, there does not appear to be data for the plastic volume change
in compression of cast iron of the quality of that of the previous two examples.
An alternative approach using plastic Poisson’s ratio will be given instead. Plastic
Poisson’s ratio is defined in the usual way as

υ p
= −

ε̇
p
22

ε̇
p
11

.

With ε̇
p
22 = ε̇

p
33, this then gives

ε̇
p
kk

|ε̇
p
11|

= 1 − 2υ p. (33)

Note that υ p > 1/2 must occur to have positive plastic volume change in uniaxial
compression. The elastic restrictions on Poisson’s ratio do not apply here.

Equating the forms in (32) and (33) gives

υ p
=

1
2

(
3 + 2A
3 − A

)
, α = 2. (34)

The limits of A give the values for υ p as

A =

{
0, υ p

= 1/2,

1, υ p
= 5/4.
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The extremely large value of υ p at the associative value A = 1 is completely un-
realistic, again specifying extremely large plastic volume change. The value of A
must be small, A � 1, to avoid this unrealistic behavior.

Poisson’s ratio is difficult to measure accurately unless very precise volumetric
measurements are done. As a first approximation, it is widely taken that the de-
formation is plastically not expandable, υ p

= 1/2, which we will loosely refer to
as incompressible, since that is common terminology. The error or difference for
the plastic deformation to be taken as incompressible, when in fact it is slightly
expandable, is given by ε as

ε =
υ p

− 1/2
υ p , (35)

where υ p is the actual value. For example, for υ p
= 0.55 the error in assuming

plastic incompressibility is 9.1%. By this method, taking realistic errors in assum-
ing an incompressible plastic Poisson’s ratio to be in the range of 5–10% can then
be used to give the value of υ p from (35). With the υ p value, the corresponding
constant A value follows from (34). The results, for this case of α = 2, are

Error 6% 8% 10%
A = 1/16.0 1/11.8 1/9.3.

These values of A are in the same range as those found for steels and the one
polymer. The corresponding β values are found from (28). For example for A =

1/14 and at the value α = 2, β = 0.047. This is over an order of magnitude larger
than the value found for steel of β = 0.0032. Thus the form (28) for β involving A
does appear to be reasonable and realistic in going from the extremely small value
of α in the ductile range to an order of magnitude larger value of α = 2 for cast
iron.

Finally, consider the limiting case α → ∞. From (30) it follows that

ε̇
p
kk

|ε̇
p
11|

= −
3A

2 − A
. (36)

Equating (36) and (33) then gives

υ p
=

1 + A
2 − A

, α → ∞. (37)

The associative case with A = 1 gives υ p
= 2, a wholly unrealistic condition. Again,

constant A must be small. Following the method just outlined, for a 10% error in
assuming υ p to be incompressible compared with its actual value, (35) and (37),
give the corresponding A value as

A =
1

14.0
, α → ∞. (38)
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The plastic potential in (16) has the A value in (28) to be in the general range of
an order of magnitude less than one. This then is consistent with bcc behavior
and polymer behavior at the ductile end of the α scale and also consistent with
the above reasoning for behavior in the brittle range at α = 2 and the brittle limit
α → ∞.

5. Conclusions

The consequence of this assessment is that the dilatational contribution to the plas-
tic potential (16) is found to be much less influential than the dilatational contri-
bution to the yield function (26) over the full range of each. At first it might be
surprising that the dilatational contribution to the plastic potential seems so small,
by comparison. The present work suggests, however, that the inverse situation
is more understandable; that is, the small dilatational contribution to the plastic
potential can be reasoned, but the much stronger dilatational contribution to the
yield function is the somewhat surprising effect. The plastic flow, as accessed
through the plastic potential, seems quite naturally to be highly influenced by the
physical effects of shearing (distortional) motion, indeed, that is the essence of
ductile behavior. However, the yield function shows a strong departure from dis-
tortionally dominated effects for larger values of α. The source for this effect is the
emerging importance of fracture as α increases. In the present context, the yield
function (26) undergoes rather drastic changes of shape as α increases — changes
necessary to ensure compatibility with the fracture criterion (27), as evidenced by
their union at α = 1. This emergence of fracture modes greatly cuts down the size
of the domain for plastic flow, as α increases.

For the examples considered, the values of constant A in the plastic potential
(16) and (28) were found to be in the general range of 1/10 to 1/20. We now
inquire as to whether there is any special significance to this magnitude of A in
the plastic potential. The coefficient Aα/(1 +α) controls the size and effect of the
dilatational term in the plastic potential. This coefficient at the full extent of its
range, α → ∞, just becomes coefficient A itself, which is about 1/14, to take a
specific value from the examples considered earlier. Thus at the limit α → ∞ the
plastic volume change, (36), at A = 1/14 becomes

ε̇
p
kk =

1
9 |ε̇

p
11| = 0.111|ε̇

p
11|.

The plastic volume change is about 11% of the size of the imposed strain for uni-
axial compressive stress, at this limit. This size for the plastic volume change is
in the proper range for the effect of dilatancy in highly damaged materials. The
dilatancy is most likely due to the nucleation of voids in general and void space
at grain boundaries in particular materials of that type. The dilatancy is still a
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significant and recognizable effect at this size, but it is not at the unrealistically
large size predicted by the associative form. Alternatively, if the constant A were
yet another order of magnitude smaller than the above value, the predicted dilatancy
effect would be much too small to be recognizable or significant. Thus the constant
A being about an order of magnitude less than one recovers the proper result for
bcc metals approaching the extreme ductile range, α → 0, and it also recovers the
proper dilatancy behavior approaching the opposite limit, α → ∞. If a single value
for A were to be taken for general applications, the present work suggests it would
be about 1/15 as supported by the data of Richmond and colleagues.

The plastic potential apparently would be of purely distortional form were it not
for the proclivity of homogeneous materials to generate voids, requiring the small
correction found here. In the very ductile range, such as with most bcc metals, the
combination of a small value of α and small A in (28) means that it is justified, and
perhaps obvious, to approximate the plastic potential as being purely distortional,
even though the yield function may not be taken to be so. For materials with values
of α that are not small, the smallness of constant A still provides assurance that
the dilatational term in the plastic potential can be neglected in many situations.
According to the preceding examples the resulting error would be of the order
of constant A. Thus the present work indicates that for most homogeneous and
isotropic materials (not just ductile metals) in stress states allowing plastic flow
rather than brittle behavior, the plastic potential is quite well represented by the
simple distortional form of (16) having β ∼= 0, and as coordinated with the yield
function (15) or (26) having interacting distortional and dilatational effects. The
competitive fracture mode of failure is controlled by criterion (27). All of these
forms are fully specified by two properties: the uniaxial tensile yield (or fracture)
strength and the uniaxial compressive yield strength.
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