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NONLOCAL MICROPOLAR ELASTICITY

MARKUS LAZAR AND HELMUT O. K. KIRCHNER

The Eshelby tensor is formulated for anisotropic linear nonlocal elasticity and
nonlocal micropolar elasticity in a nonhomogeneous medium. The divergence of
this tensor gives the configurational forces on geometric and physical defects in
such a medium. Some examples of the Peach–Koehler force and the Mathison–
Papapetrou force between dislocations and/or disclinations are given.

1. Introduction

We consider anisotropic nonlocal elasticity and anisotropic nonlocal micropolar
elasticity for a medium of arbitrary inhomogeneity. Such nonlocal theories can
predict dispersion relations in the entire Brillouin zone; they suppress nonphysical
singularities: crack tip singularities do not occur, and the stresses of dislocations
are finite [Eringen 2002]. These results are features of linear nonlocal theories
which cannot be obtained in linear elasticity and linear micropolar elasticity. They
agree very well with those predicted by atomistic theories and experiments.

The aim of this paper is to derive the Eshelby tensor [Eshelby 1951;1975] in the
theories of nonlocal elasticity and nonlocal micropolar elasticity. This represents
a vast generalization of this tensor written for local, linear elasticity by [Morse
and Feshbach 1953]. The Eshelby tensor, which is the static energy-momentum
tensor, is of fundamental importance in any field theory, and in particular in the
field theory of generalized elasticity. The divergence of the Eshelby tensor gives
the configurational forces on the sources of the field. Few results are known about
the Peach–Koehler force and conservation laws in nonlocal elasticity [Kovács and
Vörös 1979; Vukobrat and Kuzmanović 1992; Lazar 2005]. This is one motivation
for the investigations in the present paper. We will derive all configurational forces
felt by topological defects (dislocations and disclinations), physical sources (body
force, body moment) and all others due to inhomogeneities in nonlocal elasticity
and nonlocal micropolar elasticity. We calculate the J -integral for these nonlocal
theories, relevant in fracture mechanics of nonlocal materials. In addition, we
will present some examples of interaction forces between dislocations as well as
disclinations in nonlocal theories.
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2. Nonlocal elasticity

The goal of this section is the construction of the Eshelby tensor and the related con-
figurational forces for nonlocal elasticity. In nonlocal elasticity the elastic energy
is given by [Kröner and Datta 1966]

W =
1
2

∫ ∫
Ci jkl(x, x′)βi j (x)βkl(x′) d3x d3x′, (2.1)

where Ci jkl(x, x′) is the tensor of nonlocal elastic constants and βi j (x) denotes the
elastic distortion. For simplicity, we assume a linear relationship. The nonlocal
constitutive law for full anisotropy reads:

ti j (x) =

∫
Ci jkl(x, x′)βkl(x′) d3x′. (2.2)

The tensor of nonlocal elastic constants possesses the symmetry

Ci jkl(x, x′) = Ckli j (x′, x). (2.3)

The equilibrium condition is given by

∂ j ti j (x) + fi (x) = 0, (2.4)

where f (x) denotes the body force in nonlocal elasticity. The incompatibility
condition reads

ε jkl∂kβil(x) = αi j (x). (2.5)

Here αi j is the dislocation density tensor, divergence free in the second index.
The field (2.4) and the incompatibility condition (2.5) have the same form as in
local elasticity; the generalization to nonlocal elasticity occurs through Hooke’s law
(2.2). By multiplying Equation (2.5) with εmnj one finds for the elastic distortion

∂mβin(x) − ∂nβim(x) = εmnjαi j (x). (2.6)

If no dislocations are present, the elastic distortion is just the gradient of a displace-
ment ui (x): βi j (x) = ∂ j ui (x).

Following the procedure of [Kirchner 1999], we construct the Eshelby (or static
energy-momentum) tensor for nonhomogeneous nonlocal elasticity. Let us take an
arbitrary infinitesimal functional derivative δW of the elastic energy density. From
Equation (2.1) we get

δW =
1
2

∫ ∫ {
Ci jkl(x, x′)[δβi j (x)]βkl(x′) + Ci jkl(x, x′)βi j (x)[δβkl(x′)]

+[δCi jkl(x, x′)]βi j (x)βkl(x′)
}

d3x d3x′. (2.7)
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Using the symmetry (2.3) and Hooke’s law (2.2) for nonlocality, there remains

δW =

∫
ti j (x)[δβi j (x)] d3x +

1
2

∫ ∫
βi j (x)[δCi jkl(x, x′)]βkl(x′) d3x d3x′. (2.8)

Since we want to obtain configurational forces, we specify the functional derivative
to be translational:

δ = (δxk)∂k . (2.9)

On the left hand side of Equation (2.7) we write

δW =

∫
δw(x) d3x

=

∫
[∂kw(x)](δxk) d3x

=

∫
∂i [w(x)δik](δxk) d3x, (2.10)

with the energy density

w(x) =
1
2 ti j (x)βi j (x). (2.11)

On the right hand side of Equation (2.7) we obtain with (2.3)

δW =

∫ {
ti j (x)[∂kβi j (x) − ∂ jβik(x)] + ti j (x)[∂ jβik(x)]

}
(δxk) d3x

+
1
2

∫ ∫
βi j (x)[∂kCi jmn(x, x′)]βmn(x′)(δxk) d3x d3x′, (2.12)

where the second and third terms have been subtracted and added. The purpose is
to obtain the square bracket with the meaning of Equation (2.6). The third term
may be written with (2.4) as

ti j (x)[∂ jβik(x)] = ∂ j [ti j (x)βik(x)] − [∂ j ti j (x)]βik(x)

= ∂ j [ti j (x)βik(x)] + fi (x)βik(x). (2.13)

By equating (2.10) and (2.12), using Equations (2.11) and (2.13) we obtain the
expression∫

∂i
(
w(x)δik−tli (x)βlk(x)

)
d3x =

∫ (
εk jl ti j (x)αil(x) + fi (x)βik(x)

+
1
2

∫
βi j (x)[∂kCi jmn(x, x′)]βmn(x′)d3x′

)
d3x

= Jk . (2.14)
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The second integral contains the sources of the elastic fields: the dislocation density,
the body force and the inhomogeneity of the material. The integrand of the first
integral in Equation (2.14) is the divergence of the Eshelby tensor of nonlocal
elasticity

Pki (x) =
[
w(x)δik − tli (x)βlk(x)

]
. (2.15)

It may be transformed into a surface integral

Jk =

∫
Pki (x)ni d2x. (2.16)

Equation (2.16) is the J -integral in nonlocal elasticity. Notice that in terms of
energy, stresses and distortions, it is of the same form as in local elasticity. This is
because the field (2.4) and the incompatibility condition (2.5) have the same form
in local and nonlocal elasticity. The configurational force density is the divergence
of the Eshelby tensor

∂i Pki = Fk (2.17)

with

Fk = εk jl ti j (x)αil(x) + fi (x)βik(x)

+
1
2

∫
βi j (x)[∂kCi jmn(x, x′)]βmn(x′) d3x′. (2.18)

The first term is the configurational force on a dislocation density like the Peach–
Koehler force in local elasticity [Peach and Koehler 1950]. We have obtained the
Peach–Koehler force generalized to nonlocal elasticity. The second term is the con-
figurational force on a body force fi (x) in presence of an elastic distortion βik(x)—
it is the nonlocal generalization of the Cherepanov force [Cherepanov 1981]. The
third term is the material force on the inhomogeneity ∂kCi jmn(x, x′) in nonlocal
elasticity—the nonlocal generalization of the Eshelby force [Eshelby 1951].

For a homogeneous defect-free and source-free material the Eshelby tensor
(2.15) reduces to

Pki (x) =
[
w(x)δik − tli (x)∂kul(x)

]
, (2.19)

which is divergenceless. Then the J -integral (2.16) is zero.
On the other hand, if we use the dislocation density of a single straight disloca-

tion

αi j = b′

i n j δ(x − x ′)δ(y − y′), (2.20)
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we obtain the expression for the Peach–Koehler force in nonlocal elasticity as fol-
lows:

FPK
k = εk jlb′

i nl ti j . (2.21)

Here bi is the Burgers vector and n j the tangent line element of the dislocation,
in agreement with the formula given by [Kovács and Vörös 1979]. These authors
did not use the concept of the Eshelby tensor and configurational force in their
calculation. They gave just a formal derivation of Equation (2.21).

From invariance arguments it follows that in an isotropic nonlocal medium the
tensor of nonlocal elastic moduli must be of the form

Ci jkl(x, x′) =
{
λδi jδkl + µ(δikδ jl + δilδ jk)

}
G(|x − x′

|), (2.22)

where G(|x − x′
|) is called the nonlocal kernel [Eringen 2002].

In the following, we choose the two-dimensional nonlocal kernel (see, for ex-
ample, [Eringen 2002])

G(|x − x′
|) =

1
2πε2 K0

(√
(x − x ′)2 + (y − y′)2

ε

)
, ε ≥ 0, (2.23)

which is the Green function of the two-dimensional Helmholtz-equation and ε is
the parameter of nonlocality. Here Kn denotes the modified Bessel function of the
second kind and n is the order of this function.

With Equation (2.22) we obtain for the Peach–Koehler force of two parallel
screw dislocations (nz = 1)

FPK
r = b′

ztzϕ, (2.24)

where

tzϕ =
µbz

2π

1
r

{1 −
r
ε

K1(r/ε)}, (2.25)

with r =
√

x2 + y2. Due to the nonlocal theory the 1/r -singularity has disappeared.
This force is zero at r = 0. It has an extremum value of 0.399µb′

zbz/[2πε] at
r ' 1.114ε (see Figure 1).

The Peach–Koehler force between two parallel edge dislocations has been found
by [Lazar 2005] in the framework of nonlocal elasticity. Unlike in classical elastic-
ity, both for screw and edge dislocations the Peach–Koehler forces are finite and
nonsingular in nonlocal elasticity.

3. Nonlocal micropolar elasticity

The aim of this section is to derive the Eshelby tensor and the corresponding
configurational forces for nonlocal micropolar elasticity, another generalization of
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Figure 1. Peach–Koehler force FPK
r between two screw disloca-

tions. FPK
r is given in units of µb′

zbz/[2πε]. The dashed curve
represents the classical result.

classical elasticity. For linear anisotropic nonlocal micropolar elasticity, the strain
energy density is given as follows [Eringen 2002]

W =
1
2

∫ ∫ {
γi j (x) Ci jkl(x, x′)γkl(x′) + κi j (x) Ai jkl(x, x′)κkl(x′)

+ 2γi j (x) Bi jkl(x, x′)κkl(x′)
}

d3x d3x′, (3.1)

where γi j (x) and κi j (x) denote the relative distortion tensor and the wryness tensor,
respectively. The nonlocal constitutive moduli possess the symmetries

Ai jkl(x, x′) = Akli j (x′, x), Ci jkl(x, x′) = Ckli j (x′, x). (3.2)

In nonlocal micropolar elasticity, the force stress tensor ti j (x) and the couple stress
tensor mi j (x) are given in integral form by the nonlocal constitutive relations:

ti j (x) =

∫ {
Ci jkl(x, x′)γkl(x′) + Bi jkl(x, x′)κkl(x′)

}
d3x′, (3.3)

mi j (x) =

∫ {
Bkli j (x, x′)γkl(x′) + Ai jkl(x, x′)κkl(x′)

}
d3x′. (3.4)

The force and the moment equilibrium conditions read

∂ j ti j (x) + fi (x) = 0, (3.5)

∂ j mi j (x) − εi jk t jk(x) + li (x) = 0, (3.6)
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where fi (x) and li (x) are the body force and the body couple, respectively. The
incompatibility conditions in micropolar elasticity [Eringen 1999] are the defini-
tions for the dislocation density tensor αi j (x) and the disclination density tensor
2i j (x):

ε jkl [∂kγil(x) + εikmκml(x)] = αi j (x), (3.7)

ε jkl∂kκil(x) = 2i j (x). (3.8)

Again, the form of Equations (3.5)–(3.8) is the same as in local micropolar elastic-
ity. If no dislocations and disclinations are present, the micropolar strain quantities
are of the form: γi j (x) = ∂ j ui (x) + εi jkϕk(x) and κi j (x) = ∂ jϕi (x). Here ϕk(x)

denotes the micro-rotation.
Using the same procedure for the calculation of the Eshelby tensor in nonlocal

micropolar elasticity as in Section 2 for the Eshelby tensor in nonlocal elasticity,
we obtain

Pki (x) =
[
w(x)δik − tli (x)γ̄ lk(x) − mli (x)κlk(x)

]
, (3.9)

where γ̄ lk = γlk − εlkmϕm and

w(x) =
1
2 ti j (x)γi j (x) +

1
2 mi j (x)κi j (x). (3.10)

Equation (3.9) is the Eshelby tensor for nonlocal micropolar elasticity. Using the
Noether theorem, in fact the translational invariance, it is the generalization of
the Eshelby tensor for micropolar elasticity given by [Kluge 1969] to nonlocality
and, on the other hand, it is the generalization of the Eshelby tensor for nonlocal
elasticity derived in Section 2 to micropolarity. With Equation (3.9) we obtain a
surface integral

Jk =

∫
Pki (x)ni d2x. (3.11)

Equation (2.16) is the J -integral in nonlocal micropolar elasticity. The divergence
of the Eshelby tensor (3.9) gives the configurational force density:

Fk(x) = ∂i Pki (x), (3.12)

with

Fk(x) = εk jl ti j (x)αil(x) + εk jlmi j (x)2il(x)

− εk jl t j i (x)κP
li (x) + fi (x)γ̄ ik(x) + li (x)κik(x)

+
1
2

∫ {
γi j (x)[∂kCi jmn(x, x′)]γmn(x′) + κi j (x)[∂k Ai jmn(x, x′)]κmn(x′)

+ 2γi j (x)[∂k Bi jmn(x, x′)]κmn(x′)
}

d3x′. (3.13)
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It can be seen that Equation (3.13) is a sum of several configurational force densities
in nonlocal micropolar elasticity:

(i) the Peach–Koehler force density on a dislocation density αil(x) in the pres-
ence of the force stress ti j (x) [Kluge 1969];

(ii) the force density on a disclination density 2il(x) in the presence of the couple
stress mi j (x), which is called a generalized Mathisson–Papapetrou type force
density [Gairola 1981; Maugin 1993; Hehl et al. 1995];

(iii) a Cherepanov force density on a body force fi (x) in the presence of a distor-
tion γ̄ ik(x);

(iv) a force density on a body couple li (x) in presence of the elastic wryness
κik(x);

(v) a force density on the force stress tj i (x) in presence of the plastic wryness
κP

li (x);

(vi) three force densities on inhomogeneities: ∂kCi jmn(x, x′), ∂k Ai jmn(x, x′) and
∂k Bi jmn(x, x′).

For a homogeneous defect-free and source-free micropolar material, the Eshelby
tensor (3.9) simplifies to

Pki (x) =
[
w(x)δik − tli (x)∂kul(x) − mli (x)∂kϕl(x)

]
, (3.14)

which is divergenceless. Then the J -integral (3.11) is zero. The formula (3.14) is
the nonlocal generalization of the Eshelby tensor for micropolar elasticity given
by [Lubarda and Markenscoff 2003]. The corresponding Eshelby tensor for finite
local polar elasticity has been given by [Maugin 1998].

If we use the dislocation density tensor of a straight dislocation and the discli-
nation density tensor of a straight disclination

αi j = b′

i n j δ(x − x ′)δ(y − y′), (3.15)

2i j = �′

i n j δ(x − x ′)δ(y − y′), (3.16)

we obtain for the Peach–Koehler force and the Mathisson–Papapetrou force, re-
spectively,

FPK
k = εk jlb′

i nl ti j , (3.17)

FMP
k = εk jl�

′

i nlmi j . (3.18)

Here �i denotes the Frank vector (the topological charge of a disclination).
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For isotropic nonlocal micropolar elasticity the nonlocal elastic moduli must be
of the form

Ci jkl(x, x′)=
{
λδi jδkl+µ(δikδ jl+δilδ jk)+µc(δikδ jl − δilδ jk)

}
G(|x−x′

|), (3.19)

Ai jkl(x, x′)=
{
αδi jδkl+β(δikδ jl+δilδ jk)+γ (δikδ jl−δilδ jk)

}
G(|x−x′

|), (3.20)

Bi jkl(x, x′)=0, (3.21)

in terms of six material constants λ, µ, µc, α, β, γ , characteristic for the medium
under consideration. Again, G(|x − x′

|) is the nonlocal kernel. If we use the six
material constants of micropolar elasticity, two characteristic lengths l and h can
be defined by [Nowacki 1986]

l2
=

(µ + µc)(β + γ )

4µ µc
, h2

=
α + 2β

4µc
. (3.22)

In the following, we use the two-dimensional nonlocal kernel (2.23). Then the
Peach–Koehler force for two parallel screw dislocations in a micropolar medium
is

FPK
r = b′

ztzϕ, (3.23)

with [Lazar et al. 2005]

tzϕ =
bz

2π

1
r

{
µ

[
1 −

r
ε

K1(r/ε)
]
+

µc h2

h2 − ε2

[ r
h

K1(r/h) −
r
ε

K1(r/ε)
]}

. (3.24)

The force (3.23) is nonsingular. It is zero at r = 0 and has an extremum value which
depends on the coefficients ε and h (see Figure 2). In addition, it can be seen that
the Peach–Koehler force between two screw dislocations in nonlocal micropolar
elasticity is slightly different from the force in nonlocal elasticity (2.24).

Another interesting situation is the interaction of two parallel wedge disclina-
tions. The Mathisson–Papapetrou force for two parallel wedge disclinations in a
micropolar medium is

FMK
r = �′

zmzϕ, (3.25)

with [Lazar and Maugin 2004]

mzϕ =
(β + µc)�z

2π

1
r

{
1 −

r
ε

K1(r/ε)
}
. (3.26)

It is zero at r = 0 and has an extremum value of 0.399(β + µc)�
′
z�z/[2πε] at

r ' 1.114ε. It is similar in form to the Peach–Koehler force between two screw
dislocations (2.24).
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Figure 2. Peach–Koehler force FPK
r between two screw disloca-

tions in nonlocal micropolar elasticity. Fr is given in units of
µbz/[2πε] with h = 2ε and µ = 3η. The dashed curve represents
the micropolar result.

The Peach–Koehler force between an edge dislocation and the force stress pro-
duced by a wedge disclination is given by

FPK
x = b′

x txy, (3.27)

FPK
y = −b′

x txx , (3.28)

where [Lazar and Maugin 2004]

txx=
µ�z

2π(1−ν)

{
ln r+

y2

r2 +K0(r/ε)+

(
x2

−y2
)
ε2

r4

(
2−

r2

ε2 K2(r/ε)
)}

, (3.29)

txy= −
µ�z

2π(1 − ν)

xy
r2

{
1−

2ε2

r2

(
2−

r2

ε2 K2(r/ε2)
)}

. (3.30)

FPK
x is zero at x = 0 and y = 0 and has extremum values at x = y. On the other

hand FPK
y has a finite extremum at r = 0 (see Figure 3). FPK

x is the glide force
and FPK

y is the climb force for the edge dislocation caused by the stress field of the
wedge disclination.

The Mathisson–Papapetrou force between a wedge disclination and the couple
stress produced by an edge dislocation reads

FMP
x = �′

zmzy, (3.31)

FMP
y = −�′

zmzx , (3.32)
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Figure 3. Peach–Koehler force between an edge dislocation and
a wedge disclination: (a) FPK

x and (b) FPK
y are given in units of

µb′
x�z/[2π(1 − ν)].
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tion and an edge dislocation: (a) FMP

x and (b) FMP
y are given in
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with the couple stress [Lazar and Maugin 2004]

mzx =
(β + γ )bx

2π

{
x2

− y2

r4

(
1 −

1
l2 − ε2

[
lr K1(r/ l) − εr K1(r/ε)

])
−

x2

r2

1
l2 − ε2

[
K0(r/ l) − K0(r/ε)

]}
, (3.33)



336 MARKUS LAZAR AND HELMUT KIRCHNER

mzy =
(β + γ )bx

2π

xy
r4

{
2
(

1 −
1

l2 − ε2

[
lr K1(r/ l) − εr K1(r/ε)

])
−

r2

l2 − ε2

[
K0(r/ l) − K0(r/ε)

]}
. (3.34)

FMP
x is zero at x = 0 and y = 0 and has extremum values at x = y. FMP

y has a
finite extremum at r = 0 (see Figure 4).

The main feature in nonlocal micropolar elasticity is that the Peach–Koehler and
the Mathisson–Papapetrou forces are nonsingular and they have finite extremum
values unlike the results obtained in micropolar elasticity.
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