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Conformal mappings provide an elegant formulation for planar elastostatic prob-
lems. Here, the mapping function coefficients are used in a new manner as design
variables in the genetic-algorithm (GA) approach to find a piecewise smooth
optimal shape of a single traction-free hole in an elastic plate that minimizes
the local stresses under remote shear. This scheme is sufficiently fast and accu-
rate to numerically show that the sought-for shape generates tangential stress of
constant absolute value, equal to 30% less than the stress concentration factor
(SCF) for the commonly used circular hole. The shape has four symmetrically
located corners, and the stress changes sign while remaining finite as it rounds
each corner. This is the same shape as the energy-minimizing contour identified
in 1986 by the author and Cherkaev for the same load. Other nontrivial exam-
ples are given to demonstrate the potential of the approach. Methodologically,
this article continues the optimization study first conducted by the author and
Cherkaev (J. Appl. Math. Mech. 50:3 (1986), 401–404) and subsequently by
Cherkaev et al. (Internat. J. Solids Structures (35):33, 4391–4410).

1. Introduction

Designing elastic structures to diminish the stresses around construction holes in
flat plates remains an actual problem in spite of intensive studies carried out in the
area over the last decades. Various stress-reducing technologies, such as auxiliary
unloading holes, reinforcement rings and others are known so far, each posing
its own elastostatic problem. In most applications, the hole area matters much
more than its shape, which thus permits a certain freedom in design. Prompted
by this, our concern here is with optimization of the hole shapes to minimize the
stress concentration factor (SCF), denoted by K, and defined as the maximum
modulus of the tangential stress along the holes, at unit remote load. The lesser
the factor, the stronger the hole-weakened construction will be. Technologically,
only piecewise smooth holes with a finite number of corner points may be used as
stress-minimizers. This is assumed in what follows.

Keywords: plane elasticity problem, Kolosov–Muskhelishvili potentials, shape optimization,
effective energy, extremal elastic structures, genetic algorithm.
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The SCF, though local in nature, is obtainable only from full-scale elastic stress
solutions, which are rarely known in a closed form. A nontrivial example is a
uniform stress distribution

σττ = Const (1)

occurring at specifically shaped interfaces [Cherepanov 1974]. Here τ stands for
the contour unit tangent. These equistress shapes do exist in an infinite plane in any
number and mutual arrangement, provided the remote deviatoric load is relatively
small, as stated accurately in the next section. In particular, pure bulk gives K = 2
independently of the geometry of the hole set. The equistress condition not only
prevents the stress concentration at the hole but also provides the global minimum
of K over all shapes at given bulk-type loading [Vigdergauz 1976].

In the opposite case of pure shear, the K-optimal shapes are yet unknown, even
for the simplest configuration of a single traction-free hole. To make progress
in this stubborn problem, we replaced the local criterion K in [Vigdergauz and
Cherkayev 1986] by the less severe global criterion of minimizing the hole-induced
energy perturbation δW , taken at unit load and related to the hole area. In the ef-
fective medium theory, a minimum in δW corresponds to maximum shear rigidity
of a dilute planar composite when the holes are far apart and have little influence
on each other (see [Torquato 2002], for instance). Derived variationally, this op-
timality condition then implies constancy of the absolute value of the tangential
stresses along the sought-for contour

|σττ | = Const. (2)

In contrast to the equistress condition (1), the less restrictive identity (2) may be
compatible with remote shear load, provided the stresses change sign across a
finite number of angular points. Using this assumption, the resultant near-square
hole shape is found numerically [Vigdergauz and Cherkayev 1986] with δW =

3.714 . . . .
Conversely, (2) is an immediate result of (1); hence equistress K-optimal shapes,

when they exist, also minimize the energy perturbation δW under a fixed load.
Though similar, identities (1) and (2) work differently. The second one is used as

a prerequisite in directly finding the energy-minimizing shapes at any far load (see
details in [Cherkaev et al. 1998]), while K-optimality of the equistress condition
(1) is revealed only a posteriori [Vigdergauz 1976]. The proof is based on the
maximum module principle, which is not applicable to the shear-type stress field
associated with (2). This brings up the following inverse problem:

Among all possible continuous curves, find the shape of a single hole in an
elastic plate so as to minimize the factor K under pure shear at infinity.
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The challenge is very interesting mathematically, and its practical importance is
in providing the theoretical bound of material behavior. The latter is significant to
the designer, who can determine how far the actual structure is from the theoretical
optimum. As excellent sources on the direct problem of finding K for various
shapes, we refer to the classical monograph [Savin 1961] and the recently reprinted
[Pilkey 1997].

In the absence of the K-optimal precondition, semianalytical and numerical
global optimization are the methods of choice in solving the problem. The purpose
of this paper is twofold: to present a new numerical optimization scheme, and to
produce new optimal solutions not available in the literature.

Computationally, any optimization process involves two main ingredients: the
solution of a given direct boundary value problem, which has to be repeated many
times, and a minimization scheme. As the first ingredient, we choose the Kolosov–
Muskhelishvili potentials ϕ(z) and ψ(z) [Muskhelishvili 1963], together with the
conformal mapping of the sought-for contour onto a circle. Thanks to the power
of complex variable techniques, this combination provides an effective numerical
solver of the direct problem. Especially relevant here is the scheme by Kalandiya
[1975], in which the contour stresses are solved from an infinite system of linear
algebraic system with easy-to-compute coefficients. In practice, the system size
and the Laurent series expansion of the mapping function are both truncated at dif-
ferent finite orders. We have substantially improved the algorithmic performance
of the scheme in the following two aspects. First, we show that a finite mapping ex-
pansion generates exactly a finite-size system, thus allowing to avoid the additional
truncation error. Second, the analytical manipulations over σττ are performed to
the maximum extent resulting in a simple rational expression. The latter provide
evaluation of the local-type function K with sufficient accuracy to be incorporated
into the genetic algorithm (GA) optimization process rapidly gaining use in elas-
ticity. For design variables we choose coefficients of the mapping function instead
of the contour nodal points, used in [Vigdergauz 2001b; 2001a; 2002]. This dras-
tically reduces the number of design variables and allows the analytic calculation
of all the integrals that occur. On this basis, the energy-minimizing shapes (2) are
numerically shown to remain K-optimal under pure shear as in the equistress case
(1) under bulk load. We also calculate the energy-maximizing holes for a small
number of mapping coefficients, to illustrate the “worst” possible situation.

In Section 2 we recall basic facts of complex variable theory applied to plane
elasticity. Section 3 states the optimization problem and details the mixed GA/con-
formal mapping solving technique. Section 4 details the novel scheme of eval-
uating tangential stresses along the hole shape. Numerical comparison with the
less accurate approach of Cherkaev et al. [1998] is performed in Section 5. Some
analytical consequences are deduced in Section 6. They serve as a benchmark
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for GA testing and calibration (Section 7). The numerical results are given and
discussed in Section 8. Section 9 contains some final remarks.

2. The Kolosov–Muskhelishvili approach in plane elasticity

Consider the setup in Figure 1. Let an infinite elastic plane E be weakened by a
hole with a piecewise smooth boundary L enclosing the origin of xy-plane. The
curve L divides the plane in the hole region S1 of finite area f1 and the outside
region S2 = E \ S1, filled with a linearly elastic phase. Let the plate be remotely
loaded by uniform nontangential stresses

σ 0
xx = P, σ 0

yy = Q, σ 0
xy = 0. (3)

Let S2 be conformally mapped onto the exterior 62 of the unit circle 61 with the
boundary l in the auxiliary plane F = 61 ∪62 of the complex variable ζ . Up to
a scaling factor, the mapping function ω(ζ ) : S2 + L →62 + l is represented as a

x

y

Q Q

P

P

S1

S2

L

Figure 1. An infinite plate with a traction-free hole under uniform
stresses. The cases P = Q and P = −Q correspond to remote
bulk and shear, respectively. The piecewise smooth boundary of
the hole has a certain rotational symmetry and possibly a finite
number of corners.
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Laurent series

ω(ζ )= ζ +

∞∑
k=1

dkζ
−k, (4)

with

f1 = π

(
1 −

∞∑
k=1

k|dk |
2
)
. (5)

(See [Ahlfors 1978] for this and subsequent background facts from complex func-
tion theory.) Since the map ω(ζ ) must be one-to-one, its coefficients fall in the
intervals

−
1

√
m

≤ dm ≤
1

√
m
, m = 1, 2, . . . . (6)

The Airy stress function remains biharmonic under the map and hence is expressed
through the Kolosov–Muskhelishvili (KM) potentials 80(ζ ),90(ζ ), analytic in 62

[Muskhelishvili 1963], with far field asymptotics governed by (3):

80(ζ )= B +8(ζ), 90(ζ )= 0+9(ζ); ζ ∈62, 8(ζ ), 9(ζ )= O
(
|ζ |−2) ,

(7a)

4B = Q + P, 20 = Q − P, Im B = Im0 = 0. (7b)

As in (4), they also have convergent series expansions (the summation begins with
n = 2 to match the asymptotics (7a)):

8(ζ)=

∞∑
k=2

akζ
−k, 9(ζ )=

∞∑
k=2

bkζ
−k

; ζ ∈62 + l, (8)

with (see for instance Vigdergauz [2001b])

δW = 2π f −1
1

(
20a2 + Bb2

)
. (9)

For simplicity, suppose that the hole boundary is traction-free. Then the stresses
σ%%(ξ) and σ%θ (ξ) vanish along it: ξ = exp iθ , % = 1 in the plane F , thus forming
the boundary condition for the KM potentials

−
2
ξ 2ω

′(ξ)Re80(ξ)+ω(ξ)80
′(ξ)+ω′(ξ)90(ξ)= 0; ξ ∈ l. (10)

The nonzero stress component σττ (t (ξ)) ≡ σθθ (ξ) along l possesses the form
[Muskhelishvili 1963]

σθθ (ξ)= 4Re80(ξ)= 4B + 4
∞∑

k=2

ak cos(kθ); ξ ∈ l. (11)

Of course, the stresses and strains at any point inside 62 are also expressed in
80(ζ ),90(ζ ) [Muskhelishvili 1963]. We omit the formulas here to save room.
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Identities (7) and (10) form the boundary value problem in the KM potentials.
This problem is uniquely solvable [Muskhelishvili 1963], at least for any piecewise
smooth inclusion shape L , which is therefore the only factor defining the problem’s
solving complexity. Specifically, the equistress principle (1) yields σ%θ (ξ)= 4B,
and hence (see [Cherepanov 1974])

80(ζ )= B, ω(ζ )= ζ − κζ−1, ω′(ζ )90(ζ )= −B
κζ 2

+ 1
ζ 2 + κ

; κ ≡
0

2B
.

The equistress shape appears to be an ellipse that exists if and only if

|κ| ≡ |d1|< 1,

or equivalently, thanks to (3) and (7b),

σ 0
xxσ

0
yy ≥ 0.

3. Problem reformulation, design variables and basic GA scheme

In contrast, under the shear-dominated far field (3) when σ 0
xx , σ

0
yy are of opposite

signs, the K-optimal hole shape cannot be found in a closed form. Thus, numerical
methods are called for. In computational practice, the expansion (4) is necessarily
truncated at a finite number N of first terms. With this in view, our optimization
problem is reformulated as follows:

At a given finite number N of mapping coefficients and pure shear field B = 0,
find the K-optimal hole shape on which

K ≡ max
t∈L N

|σττ (t)| ≡ max
ξ∈l

|σθθ (ξ)| −−−−−−−→
{L N }

min, (12)

where {L N } denotes the set of all curves mapped onto the unit circle by ω(ζ ) with
any admissible finite set {dm, m = 1, . . . , N }, and dm = 0,m > N .

In our opinion, the N -parametric nonlinear optimization problem (12) with the
linear restrictions (6) is well suited to be solved by the genetic algorithm advanced
in [Holland 1975]. This heuristic method performs a nongradient stochastic search
for the global optimum by mimicking the Darwinian principal of survival of the
fittest through blind mutation and natural selection over successive generations;
see [Gen and Cheng 1997] for a state-of-the-art review and many references. GA
specifics, as applied to shape optimization in planar elasticity, are illustrated in
[Vigdergauz 2001b; 2001a; 2002] where the radii of nodal points equally spaced
along the sought-for contour are directly taken as the GA design variables without a
conformal premapping. This scheme helps find the δW -optimal hole shapes, but is
not sufficiently accurate to handle the local criterion K. For this reason, optimized
contours are represented here through a set of mapping coefficients rather than
through nodal points. This not only dramatically reduces the number of required
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design variables but also allows the development of an efficient fitness evaluation
scheme (see the next sections) which is easily included into a standard GA config-
uration.

On the other hand, in contrast to the nodal-based shape encoding, a mapped
contour may have self-intersections even assuming inequalities (6) on the mapping
coefficients. Other uniqueness conditions imply that all the roots of the polynomial
PN+1(ζ )= ζ N+1ω′(ζ ) lie strictly inside the unit circle (see [Ahlfors 1978]):

PN+1(ζ )= ζ N+1
−

N∑
m=1

mdmζ
N−m

=

N+1∏
m=1

(ζ − λm);

|λm |< 1, m = 1, . . . , N + 1. (13)

Though more restrictive than (6) these bounds are also only necessary but not
sufficient to avoid self-intersections. Mathematically, this is because for N > 1,
such inequalities provide a one-to-one mapping only locally rather than globally,
as exemplified in Figure 2, where the mapping terms are strictly inside the intervals
(6).

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0 x

y

Figure 2. Two-term conformal mapping of the unit circle onto
a self-crossing line with square symmetry: d3 ≈ 0.24451093,
d7 ≈ 0.15696709, the largest root modulus is approximately
1.47730100 is outside the circle (the solid line), and d3 ≈

−0.54182861, d7 ≈ −0.09122962, with all the roots inside the
circle (the dotted line). The loop areas enter identity (5) with a
negative sign.
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To exclude self-intersections, we use the geometric fact that a closed curve

ω(ξ)= ρ(ξ) exp iϑ(ξ), ξ = exp iθ ∈ l, (14)

with p-fold rotational symmetry is intersection-free if and only if ϑ(ξ) is an increas-
ing function of θ in the interval 0 < θ < π/p. Though seemingly cumbersome,
this condition is quickly checked over a discrete set of points along the irreducible
part of mapped curves with penalizing their fitness to the extent by which (14) is
violated at the first point so detected.

(We note in passing that the nonmonotony of finite-term mappings produces
a closed loop of a negative area. This formally results in zero-area curves with
self-intersections rather than in physically reasonable zero-area slits. The trivial
exception is the case p = 1, when the function ω(ζ )= ζ + ζ−1 maps the unit circle
to a rectilinear slit

L : −2 ≤ t ≤ 2

at the x-axis of the physical plane E . In Section 8 this note is used to explain the
numerically found behavior of the energy-maximizing hole shapes.)

Another difficulty of the proposed scheme is that a relatively small number N
of mapping coefficients smoothes the shape corners and hence may yield too con-
servative an optimum. However, it is physically clear that the stresses should be
bounded at the “true” corners of the optimal shape, which makes only an infinitely
small contribution to the minimized criterion value. Earlier work [Vigdergauz and
Cherkayev 1986] and our current results show that this is the case.

4. Fast stress-evaluation scheme

We now refer back to the direct boundary problem (7), (10), the solution of which
gives the value of K for an arbitrarily shaped hole. Our concern here is to maximally
extend the analytical transformations before resorting to numerical calculations. To
this end, we rework the boundary condition (10) with (7a) as

−
2B
ξ 2 ω

′(ξ)+0ω′(ξ)−
2
ξ 2ω

′(ξ)Re8(ξ)+ω(ξ)8′(ξ)= −ω′(ξ)9(ξ); ξ ∈ l.

(15)
The left-hand side of (15) is the boundary value of an 62-holomorphic function
tending to zero at infinity. In turn, this means that its series expansion involves no
nonnegative powers in ζ . Substituting (4) and (8) in (15) and zeroing the resulting
coefficients of ζ n , n ≥ 0, gives an infinite linear algebraic system in ak , k ≥ 2:

am+2 −

m∑
k=1

(m − k + 1)d̄m−k+1ak − (m + 1)
∞∑

k=1

d̄m+k+1āk = Am; m = 0, 1, . . . ,
(16a)

A0 = 2B −0, A1 = 0, Am = −2B(m + 1)d̄m+1, m ≥ 2. (16b)
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The first sum is omitted in (16a) when m = 0, 1.
Remarkably, the second potential 9(ζ) remains outside the system, thus allow-

ing us to separate out the coefficients ak , which are only needed to compute the
boundary stresses σθθ (ξ) via (11). In numerical practice, the mapping expansion
(4) and the system size are truncated to finite numbers.

This scheme was proposed by Kalandiya [1975] three decades ago and since
then, to the author’s best knowledge, it has not yet been studied analytically. Our
aim now is to prove that the double truncation is unnecessary, because by taking
only the N first items in the mapping expansion (4) the actual system size already
shrinks to the same finite value of N .

To make the algebra simpler, assume that the unit far field is only shear (B = 0,
0 = 1) and that the hole shape L is symmetric about the x-axis. Then the coeffi-
cients {ak, bk, dk} are real and hence

δW = πa2 f −1
1 . (17)

Independently of these assumptions, we further note that with dn = 0, n > N the
second sum disappears in all equations (16a) from m = N − 1 on. Beginning with
m = N they form an infinite linear system of finite differences

am+2 −

N∑
k=1

kdkam−k+1 = 0; m = N , N + 1, . . . , (18)

with constant coefficients 1, 0,−d1,−2d2, . . . ,−NdN which define the finite Lau-
rent expansion of ω′(ζ ). For this reason, the characteristic roots of (18) coincide
with the set of roots {λk} of (13); see [Levy and Lessman 1958]. This is the key
point for further analysis.

Suppose first that all the roots of PN+1(z) are different. Then the general solution
to the homogeneous system (18) takes the form

am = D1λ
m
1 + D2λ

m
2 + . . .+ DN+1λ

m
N+1, m = 1, 2, . . . , (19)

where the arbitrary constants D1, . . . , DN+1 are to be found by plugging (19) into
(16). Substitution of (19) into (8) results in infinite geometrical progressions in ζ ,
which converge by virtue of inequalities (13). Summing them we get, in view of
(13),

8(ζ)=

N+1∑
m=1

Dmλ
2
m

ζ(ζ − λm)
. (20)

In order to avoid the polynomial roots calculation, we exclude them by performing
summation in (20) over m:

8(ζ)=
RN (ζ )

ζω′(ζ )
. (21)
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Here RN (ζ ) is a new polynomial of degree N in ζ ,

RN (ζ )= rN ζ
N

+ rN−1zN−1
+ . . .+ r0. (22)

It is easy to see that the coefficients rm , m = 0, . . . , N are specified by

rm = (−1)m
N+1∑
j=1

D jλ j p j
m, (23)

where p j
m stands for all the possible products of m different roots λk excluding λ j

and p j
0 ≡ 1.

Writing out p j
m through the coefficients (13) of the polynomial PN+1(ζ ) and

making use of (19) we obtain finally

r0 = a1 = 0, r1 = a2,

rm = am+1 +

m−1∑
j=1

(−1)m− j (m − j + 1)dm− j+1a j ; m ≥ 2.
(24)

Therefore, the net expression (21) for the potential 8(ζ) does not explicitly contain
the roots λm . Lastly, the second potential 9(ζ) is algebraically found from (15).

For the multiple roots λm , analogous manipulations lead to the same formulas,
(21) and (24). Note that the s-repeated root λm enters expression (19) for am as

D1
kλk + k D2

kλ
2
k + . . .+ Ds−1

k λs
k; (25)

see [Levy and Lessman 1958]. Substitution of (25) into (8) results in convergent
sums of the type

Sm =

m∑
i=1

im x i , |x |< 1,

which are found recurrently. Indeed, it is evident that S0 = x(1 − x)−1, while for
m ≥ 1,

Sm =
x

1 − x

(
1 +

m−1∑
j=1

(m
j

)
S j

)
,

as follows from the chain of identities

Sm =

m∑
i=1

im x i
= x +

m∑
i=1

(i + 1)m x i+1
= x + x

m∑
j=1

(m
j

)
S j .

Further simplification is made by assuming a possible stress field symmetry
which permits the unknowns to be partially eliminated. Say, for a square-symmetric
hole (dk = 0 when k 6= 4 j − 3) and pure shear, only a4k−2, k = 1, 2, . . . , differ
from zero.
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5. Comparison with the truncated expansion solution

For clarity, we repeat the basic steps of the proposed evaluation scheme.
First, the map function (4) is assumed to contain only a finite number N of

terms.
Next, the linear algebraic system of the first N equations from (16) is solved to

find the N lowest coefficients of 8(ζ). We remark again that the higher coefficients
do not enter the system, which hence is exact with no truncation needed. The first
term a2 so found gives the energy increment δW via (9). The more general energy-
related Pólya–Szegő matrices are derived in [Movchan and Serkov 1997] exactly
in this way.

The final and novel component is finding the function 8(ζ) or, equivalently, the
tangential stress distribution σθθ (ξ) along the hole shape by the exact summation
of the infinite tail in expansion (8). This is not done in [Cherkaev et al. 1998],
where the truncated series

8(ζ)=

N∑
k=2

akζ
−k (26)

is used instead. This brings up the question of assessing the resultant truncation
error in the local stresses in dependence on N . To this end we borrow the δW -
optimal mapping terms for n = 3, 7, 11, 15 found in [Cherkaev et al. 1998] for
square symmetry and use (22)–(24) and (26) to compute the exact and truncated K.
At a given {dk} (Table 1), the discrepancy between the values (Table 2) is entirely
due to the system truncation. The relative error 1K is seen to decrease rather
slowly with increasing N . In addition, the truncation leads to spurious oscillations
as exemplified in Figure 3 for N = 23. This validates the proposed K-evaluation
scheme against (26).

N d3 d7 d11 d15 d19 δWmin

3 −0.13807 3.72792
7 −0.14251 0.01575 3.71725

11 −0.14372 0.01652 −0.00513 3.71532
15 −0.14420 0.01683 −0.00539 0.00239 3.71473
19 −0.14445 0.01699 −0.00521 0.00251 −0.00134 3.71449

Table 1. A single square-symmetric hole under remote shear: the
optimal mapping coefficients and the global criterion δWmin for
different values of N , taken from [Cherkaev et al. 1998].
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Exact Summation Truncation
N value angle value angle 1K(%)

3 3.29603 31.5 3.51472 0.0 6.63
7 3.26002 37.3 3.32372 22.9 1.95

11 3.25179 39.6 3.29671 30.3 1.38
15 3.24801 40.9 3.28945 34.0 1.27
19 3.24623 41.6 3.28690 36.3 1.25

Table 2. Values of K and angular locations along the δW -optimal
hole shape, under exact summation (Eqs. (22)–(24)) and under
truncation (Eq. (26)). See Table 1 for the mapping coefficients.
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Figure 3. The tangential stress distribution along the δW -optimal
hole shape (A) at N = 23: Exact summation (the solid line) versus
truncation (the dotted line)

6. Analytical consequences of the main formula

In principle, the first N equations (16) with ease-to-compose coefficients can be
solved analytically even for rather large N but we consider here only the simplest
cases of one- and two-term mappings under pure shear (B = 0, 0 = 1).
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One-term mapping. Let a hole with (p+1)-fold rotational symmetry (p ≥ 1) be
mapped by the function ω(ζ ) = ζ + dpζ

−p. At N = p, the resolving N × N
system (16) reduces to one or two equations, with RN (ζ ) becoming a monomial
or binomial, respectively. Indeed, with (18), (24) and (11), a little algebra applied
to (16) yields the following formulas:

Two- and three-fold symmetry (p = 1, 2):

a2 = 1, δW2 =
4

(1 − pd2
p)

: min
dp
δWp = 4, d(min)

p = 0, (27a)

σθθ (ξ)= 4
cos 2θ − pdp cos(p−1)θ

1 − 2pdp cos(p+1)θ + p2d2
p
. (27b)

Square symmetry (p = 3):

a2 =
1

1 − d3
, δW3 =

4
(1 − d3)(1 − 3d2

3 )
: min

d3
δW3 =

9
√

2 + 1
, d(min)

3 =
1 −

√
2

3
,

σθθ (ξ)=
4(1 − 3d3) cos 2θ

(1 − d3)(1 − 6d3 cos 4θ + 9d2
3 ).

Higher symmetry (p ≥ 4):

a2 =
1

1 − (p − 2)d2
p
, ap−1 =

dp(p − 2)
1 − (p − 2)d2

p
, δWp =

4
(1 − (p − 2)d2

p)(1 − pd2
p)
,

min
dp
δWp = 4, d(min)

p = 0,

σθθ (ξ)= 4
a2(cos 2θ − pdp cos(p−1)θ)+ ap−1(cos(p + 2)θ − pdp cos 2θ)

1 − 2pdp cos(p+1)θ + p2d2
p

.

Excepting the square-symmetric case p = 3, the energy minimizing hole under
remote shear appears to be a circle with K

(
d(min)

p
)
= 4. Most likely, this is true not

only for the one-term approximation but in general too. For triangular (p = 2) and
hexagonal (p = 5) symmetry this fact was conjectured by Torquato et al. [1998]
and is verified in Section 8, where the physical reasons behind the specifics of the
square-symmetric optimal hole are also discussed.

Next, the value p = 3 yields

K
(
d(min)

3

)
= max

θ

∣∣σθθ(ξ, d(min)
3

)∣∣
= σθθ

(
θ0, d(min)

3

)
=

4α(1 − 3d(min)
3 )(

1 − d(min)
3

)(
(1 + 3d(min)

3 )2 − 12α2d(min)
3

) ;

α =

√
1
2(

√
2 − 1), θ0 =

1
2 arccosα.

(28)
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Analytical optimization of K(dp) over the mapping term dp, though routine, is too
lengthy. Numerical GA optimization is performed instead (see Section 8).

Further we note that for any p, the energy maximum invariably occurs on the
map univalency bound (13)

max
dp

d(max)
p =

1
p
; ωp(ζ )= ζ+

1
pζ−p ; δWp =


8, p = 2,

9, p = 3,
4p3

(p2−p+2)(p−1)
, p ≥ 4.

(29)

Therefore, the “worst” (shear energy maximizing) single hole as mapped by one-
term function (29) is the (p+1)-cusped hypocycloid shown in Section 8. It has
(p+1) entrant angles where the tangential stress σθθ (ξ) goes to infinity.

The multi-term worst shapes reveal more complex behavior, which is analyzed
numerically and displayed graphically in Section 8.

Two-term mapping. Here, we focus only on the square-symmetric case with p = 3,
when

ω(ζ )= ζ + d3ζ
−3

+ d7ζ
−7.

Solving the 2 × 2 system of the first nontrivial equations (16) yields

a2 =
1

1 − d3 − 3d3d7 − 5d2
7
, a6 =

3d3 + 5d7

1 − d3 − 3d3d7 − 5d2
7
,

δW3 =
4

(1 − d3 − 3d3d7 − 5d2
7 )(1 − 3d2

3 − 7d2
7 )
.

The routinely obtained δW3-minimum conditions take the form

3d3(3d3 + 10d7)= 7d7(1 + 3d7), (30a)

6d3(5d2
7 + 3d3d7 + d3 − 1)= (1 + 3d3)(1 − 3d2

3 − 7d2
7 ). (30b)

Together with more explicit analytics like (28) and (29), they serve as a benchmark
to configure the GA scheme.

7. Testing and calibration of the optimization scheme

The numerical accuracy of the proposed algorithm has been verified by reproduc-
ing the δW -related results. They fully coincide with those obtained differently
in [Cherkaev et al. 1998] (Table 1). The corresponding evolution of the optimal
square-like shape with N is not shown here; see the same reference.

We mention that the design variables dm , m = 1, . . . , N , are encoded using
a discrete n-bit procedure when each coefficient dm is approximated in view of
(6) only by 2n separate values in the continuous search space [−1/

√
m; 1/

√
m].
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These values are decoded from a randomly generated integer P ∈ [−2n−1
; 2n−1

]

as dk P = P/(2n−1√m). The genes for different coefficients are concatenated
into a binary string of length Nn, or chromosome, which encodes the shape to
be evaluated. The constant-size chromosome group so formed is then randomly
subject to bitwise crossover and mutations that lead the initial population to the
global optimum.

In this context it is of interest to evaluate the GA accuracy in dependence on
the number of bits n by comparing with the analytical relations (27a), (29), (30).
The results are collected in Table 3. This validates the approach and allows us
to calibrate the heuristic GA parameters involved, such as population size and
mutation rate. Typical GA settings chosen for the further K-optimizations are given
in Table 4.

Relation Two bytes (16 bits) Four bytes (32 bits)

(27a) < 2.1 × 10−11 < 4.4 × 10−18

(29), p = 3 < 7.4 × 10−8 < 2.0 × 10−14

(29), p = 5 < 3.8 × 10−9 < 4.8 × 10−15

(30a) < 4.1 × 10−6 < 5.7 × 10−9

(30b) < 5.8 × 10−5 < 1.6 × 10−8

Table 3. Absolute error produced by GA optimization in cases of
known analytical identities: two-byte versus four-bytes encoding.

Gene Integer ∈ [−231, 231
] Individual Interface shape

Population size 800 Number of genes 6
Initial population Random Selection format Tournament
Elitism Four best individuals Termination 1200 iterations
Crossover 1-point with rate 0.90
Creep mutation Randomly change a bit with rate 0.35
Jump mutation Add random integer ±64 with rate 0.35

Table 4. Typical GA setup used in our K-optimizations.

8. Numerical results

We now present numerical results of the proposed method for a more complicated
K-optimization. Figures 4 and 5 exhibit the N -related evolution of the optimal hole
shape and associated stress distributions, respectively. Table 5 shows the optimal
parameters in dependence on increasing N . Comparison with the corresponding
columns in Tables 1 and 2 indicates that δW - and K-optimizations give rather simi-
lar values of the energy increment, while the maximum stresses differ significantly
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Figure 4. A quarter of the K-optimal hole: evolution with increas-
ing N (N = 3, 11, 22). The δW -optimal shape for N = 23 is added
for comparison (dotted line).
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Figure 5. Tangential stress distribution along K- and δW -optimal
holes (solid and dotted lines, respectively) for N = 3, 11, 23.
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N d3 d7 d11 d15 d19 d23 Kmin δW

3 –0.09000 3.07165 3.76112
7 –0.11162 0.00751 2.90563 3.73211

11 –0.12182 0.01044 –0.00200 2.84110 3.72304
15 –0.12732 0.01210 –0.00293 0.00076 2.80824 3.71959
19 –0.13049 0.01293 –0.00340 0.00112 –0.00032 2.78843 3.71773
23 –0.13059 0.01292 –0.00338 0.00116 –0.00041 0.00010 2.77936 3.71770

Table 5. A single square-symmetric hole under remote shear: the
conformal mapping coefficients and the local criterion Kmin re-
sulted from the GA optimization process for different values of N .
The corresponding global criterion δW is also shown to compare
with its optimal values in Table 1.

(the relative discrepancies being respectively 0.086% and 16.8% at N = 23). How-
ever, close inspection of the stress distribution along optimal shapes of both types
in Figure 5 shows that the discrepancy is concentrated near the forming angular
point at θ = π/4. In either case the stresses tend to obey the same identity (2).
The different nature of the criteria defines the different convergence behavior of
the optimal solutions: δW forms the angular point more rapidly, whereas the local
K-criterion allows no high-frequency peaks. This is clearly seen in Figure 4. With
some caution, we conclude that both optimal solutions are the same, though an
analytical proof would be very desirable. This is beyond our scope at the moment.

For triangular and hexagonal symmetry, similar computations lead to an inter-
esting conclusion:

Under remote shear, the δW - and K-optimal hole shape is a circle with δWmin = 4
and Kmin = 4.

In the absence of angular points, this has been verified with to extremely high
accuracy.

The stress distribution along a circle is readily expressed as

80(ζ )=8(ζ)= ζ−2
: σθθ (ξ)= 4 cos 2θ, ξ = exp iθ ∈ l,

(see [Muskhelishvili 1963]) with the sign-changing points lying on the bisectors
of the quadrants

θ =
π(2 j − 1)

4
, j = 1, . . . , 4,

as in the square-symmetric case.
Geometrically, it is clear that other points location compatible with the remote

shear antisymmetry may exist only for (8p − 4)-symmetric shapes, p = 2, 3, . . . ,
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with an odd number of the points in a quadrant. However, GA optimization spe-
cially performed for p = 2 (dodecagonal symmetry) and p = 3 (icosagonal sym-
metry) bring us back to a circle.

Therefore, the prescribed square symmetry gives the only nontrivial example of
the optimal shape where the angular points substantially reduce the values of both
considered criteria as compared to a circle. The bottom row in Table 5 shows that
1(K)= 1 − 2.77936/4.0 = 30.5% and 1(δW )= 1 − 3.71449/4.0 = 7.1%.

Finally, the energy-maximization results are presented in Table 6 and Figure 6.
At the first glance on the shapes it seems that the energy increment δW increases
rapidly witn N due to the distinctive corner points which make finite contribution
to the coefficient a2 in (17). However, the most effective strategy really performed
here by the GA is to minimize the hole area entering in (17) as a denominator.
Indeed, as noted in the end of Section 3, finite-term mapping may not give a zero-
area curve for p ≥ 2. Therefore, as the only possible compromise between the
finite number N of mapping terms and prohibited self-intersections the algorithm
identifies the limiting case of the optimal shapes containing entrant angles that are
of pure geometrical nature with no optimization resort. It is supported by the fact
that the coefficient a2 in Table 6 does not diminish with increasing N .

When N tends to infinity, the optimal mapping should then approximate a cross-
like cut with (p+1) equal arms as exemplified in Figure 6 for p = 3. This is the
analitically known case [Ahlfors 1978] with

ω(ζ )= ζ
(
1+ζ−n)2/n

= ζ+

∞∑
k=1

q(q−1) . . . (q−k+1)ζ−(p+1)k+1

k!
;

q =
1

(p+1)
. (31)

N d3 d7 d11 d15 d19 a2 f1/π δW

1 0.33333 1.50000 0.66667 9.00000
2 0.42857 –0.14286 1.53139 0.30615 20.00833
3 0.43301 –0.14193 0.0631 1.56067 0.25450 24.52922
4 0.45091 –0.11683 0.0738 –0.0470 1.60610 0.20225 31.76542
5 0.46864 –0.11875 0.05391 –0.04401 0.02510 1.61902 0.16943 38.22265
∞ 0.5 –0.125 0.0625 –0.03906 0.02734 0.0 ∞

Table 6. A single square-symmetric hole under remote shear: the
maximal mapping coefficients, the global criterion δWmax and its
components a2, f1 found by the GA approach. The first row
emerges analytically from (29) at p = 3. The last row contains
the limiting data of the cross-like slit (31).
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Figure 6. The energy-maximizing hole under square symmetry
and remote shear: evolution to the limiting cross-like slit with
increasing N . For N = 3 we have a four-cusped hypocycloid (29).

This reasoning is justified by the additional calculations in which the hole area was
optimized instead of the energy. The resultant mapping terms practically coincide
with those in Table 6. In turn, the latter converge, though slowly, to the cross-like
limit (31).

9. Concluding remarks

The main goal of this work was to try a new GA scheme of shape optimization
in plane elasticity when the conformal mapping is used instead of the direct nodal
representation. In combination with the advanced fitness evaluation the proposed
approach has enabled us to obtain new and significant results. This encoding
may be also effective in other optimization problems governed by the conformal-
invariant Laplace equation such as those in electrostatics. On the other hand, the
current results are confined to the particular model with a single inhomogeneity.
It is still unknown how this GA configuration will work in in the more realistic
situation of multiple inclusions whose interaction hampers both the analytical and
numerical manipulations. We hope to pursue this problem in further publications.
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