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AN OFF-RESONANCE SYNCHRONOUS VIBRATION BASED
METHOD FOR ROTOR SYSTEM DAMAGE DETECTION

HUAGENG LUO, HECTOR RODRIGUEZ AND DARREN HALLMAN

This paper presents a methodology for detecting rotor imbalances, such as mass
imbalance and crack-induced imbalance, using shaft synchronous vibrations. A
vibration detection algorithm is derived based on the first order synchronous
vibration response. A detection system was integrated by using state-of-the-art
commercial analysis equipment. A laboratory rotor test rig with controlled mass
imbalances was used to verify the integrated system. The system was then de-
ployed to an engine subassembly test setup. Four specimens were used in the
subassembly test and the test results are reported in the final section.

1. Introduction

1.1. Mass imbalance in rotors. The physics of the mass imbalance induced vi-
bration response in rotors can be explained using a simplified shaft-disk assembly.
As shown in Figure 1, a simple Jeffcott rotor is represented by a spring-mass sys-
tem restricted to vibrations along the vertical y-axis. In this model, the disk is
represented by its mass m, and the stiffness of the shaft is represented by ks . This
simplified representation of a rotor is typically used to model the response of single-
disk rotor assemblies under relatively rigid bearings (for example, ball bearings)
at relatively low speeds (that is, near or below the first bending critical speed).
The response at a sensor with respect to a reference, such as a synchrophaser or a
tachometer, can be represented by the response from a single-degree-of-freedom
system. The amplitude of a displacement sensor response Y , at the center of the
disk due to mass imbalance, is given as [Thomson and Dahleh 1998]

Y ( jω)=
Umω

2

m(ω2
0−ω

2+ 2 jξ0ω0ω)
, (1)

where

Y is the Laplace transform of time response y(t). Y ( jω)= L[y(t)]
∣∣
s= jω;

j is the complex symbol, j =
√
−1;

Keywords: off-resonance, synchronous vibration, damage detection, rotor system, mass imbalance,
crack induced imbalance.
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ω
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Figure 1. Jeffcott model of rotor assembly.

m is the mass of the system;

Um is the mass imbalance in frequency domain;

ω0 =
√

ks/m is the natural frequency of the system;

ξ0 = c/2ω0m is the damping ratio of the system.

Equation (1) shows that at speeds below the critical speed (that is, ω/ω0� 1.0),
the vibration response due to mass imbalance is proportional to ω2.

1.2. Crack-induced imbalance. Cracks in rotor disks have been identified as the
cause of a distinct behavior in the vibration response of rotor assemblies [Imam and
DeLorenzi 1988; Sonnichsen 2000]. Radial-axial cracks induce a unique vibration
response as they open due to tensile hoop stresses caused by centrifugal loading.
The crack, which opens as a function of the square of the rotor speed, forces a re-
distribution of the disk mass. This redistribution results in an additional imbalance
that is also proportional to the square of the speed, and hence the resulting crack-
induced imbalance force is proportional to the fourth power of the shaft speed. This
unique imbalance force characteristic contrasts with the force due to standard mass
imbalance, which is related to the square of the shaft speed.
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Figure 2. Jeffcott rotor showing “removed” mass concept.

In the case of a radial-axial crack with length a in a disk rotating at speed ω, the
induced imbalance can be expressed as

Uc(a, ω)= mc(a, ω)ec, (2)

where the effective change in mass distribution due to the crack opening mc(a, ω)
is a function of the crack size and speed, and ec is the effective radius of rotation
of mc(a, ω). The hoop stress in a rotating disk is a function of the square of the
shaft speed ω. Therefore, the effective change in mass distribution due to the
crack opening is also a function of the square of the shaft speed. The response
of a Jeffcott type rotor with a radial-axial crack can be obtained after substituting
Uc(a, ω) for Um in Equation (1). Due to the dependence of Uc(a, ω) on ω2, the
resulting displacement response in the low-speed regime (that is, below the critical
speed) will be proportional to the fourth power of the speed.

An approximate expression for Equation (2) can be obtained if the effective
change in mass distribution due to the crack opening is represented as a “removed”
mass while ec is the radial distance to the crack tip as shown in Figure 2. In the
case of a radial-axial crack, the removed mass is proportional to the opening of the
crack δ as a function of speed. The opening of a small crack in a large-diameter
disk can be approximated using the analogy of an edge crack in a plate strip, for
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which a closed-form solution exists. The opening of the crack due to tensile hoop
stress level in the neighborhood of the crack is given as [Tada et al. 1985]

δ =
4σha

E
V
( a

D

)
, (3)

where the empirical function V ( a
D ) is given as [Tada et al. 1985]

V
( a

D

)
=

1.46+ 3.42×
(
1− cos( πa

2D )
)(

cos( πa
2D )

)2 , (4)

where the disk diameter is used instead of the plates width, as considered in the
reference. As we see in Equation (4), V ( a

D ) approaches the constant value of 1.46
for small ratios of a

D .
The hoop stress in a constant thickness disk at a distance ec is given as [NASA

1975]

σh =
ρD2ω2(3+µ)

32g

(
1−

(1+ 3µ)
3+µ

×

(2ec

D

)2
)
, (5)

where g is the gravity constant. Finally, the removed mass can be approximated as

mc =
δatρ
2g

. (6)

Therefore, the crack-induced imbalance is given as [Rodriguez et al. 2001]

Uc = Kρ2a2t D2ω2ec = KCω
2, (7)

where

KC =
(3+µ)
16g2 E

[
1−

(1+ 3µ)
3+µ

×

(2ec

D

)2
]

V
( a

D

)
ρ2a2t D2ec. (8)

In the case of values of a
D less than 0.05, Equation (8) becomes KC∼0.5/E .

Equation (7) clearly establishes the dependence of the crack-induced imbalance
on the physical parameters of the disk and the rotational speed. As shown in the
equation, the crack-induced imbalance is proportional to the second power of the
speed, the weight density, the crack length, and the disk diameter, respectively. In
addition, for the case of relatively small cracks, ec approximates D/2, introducing
a stronger dependence of the imbalance on the disk diameter. Refer to references
[Butz and Rodriguez 1999] and [Rodriguez et al. 2001] for more numerical simu-
lations and analyses.

1.3. Multi-DOF modeling. It has been well established that the mass-induced syn-
chronous vibration is proportional to the square of the rotational speed, that is,
ω2, in the region where ω� ω0, where ω0 is the first resonant frequency of the
machinery system. The radial-axial cracks in the rotating disk or shaft can cause
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a synchronous vibration that is proportional to ω4, under the same assumption of
ω� ω0. Several groups have developed detection systems based on these assump-
tions [Imam and DeLorenzi 1988; Sonnichsen 2000]. However, in reality, there
are several major difficulties in implementing the traditional algorithms:

(i) It is difficult to satisfy the ω� ω0 condition without significantly reducing
the signal to noise ratio, because the first natural frequency in many rotational
machinery systems is usually low. Especially in soft-mounted rotor systems,
where the first natural frequency can be so low that it prevents such monitoring
systems from getting meaningful results.

(ii) It is difficult to simplify real rotor machinery into a single degree of free-
dom (SDOF) system. On top of the bearing DOFs, the vibration sensors
are usually mounted on the bearing case or engine case, so that additional
structural resonances, besides rotor-shaft resonances, may be picked up, thus
destroying the polynomial relationship established for low frequency region.

(iii) The operational frequency range is not always below first resonance fre-
quency of the rotor machinery system.

In the next section, a nonresonant synchronous vibration based detection al-
gorithm is developed for any operational speed region between two consecutive
natural frequencies of a machinery system. The development is based on multi-
degree of freedom (MDOF) rotor machinery assumptions.

2. Nonresonant synchronous vibration based approach

In the simplest possible model for rotor vibration analysis, the system is described
by a spring-mass-damper single-degree-of-freedom (SDOF) system as shown in
Figure 1. If there are both mass and crack-induced imbalances, by combining
Equation (1) and (7), we have

Y ( jω)=
Umω

2

m(ω2
0−ω

2+ 2 jξ0 ω0 ω)
+

KCω
4

m(ω2
0−ω

2+ 2 jξ0 ω0 ω)
. (9)

In the region where ω� ω0, Equation (9) can be simplified as

Y ( jω)=
Umω

2

mω2
0
+

KCω
4

mω2
0
= C2ω

2
+C3ω

4, (10)

where

C2 =
Um

mω2
0

and C3 =
KC

mω2
0

(11)

are the imbalance and system parameter related complex constants.
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In many cases, the rotor system response has to be modified into a multi-degree-
of-freedom (MDOF) system, assuming the system has distinct natural frequencies
for simplicity, as

Y ( jω)=
∞∑

i=1

Umiω
2

mi (ω
2
i −ω

2+ 2 jξiωiω)
+

∞∑
i=1

KCiω
4

mi (ω
2
i −ω

2+ 2 jξiωiω)
, (12)

where Umi is the i-th modal response coefficient due to mass imbalance; KCi is the
i-th modal response coefficient due to the crack induced imbalace; mi is the i-th
modal mass; ξi is the i-th modal damping ratio, and

ω1 < ω2 < · · ·< ωk−1 < ωk < · · · (13)

are natural frequencies of the machinery system.
In the frequency region of ωk−1 < ω < ωk , the variables

ωi

ω
, i = 1, 2, . . . , k− 1 and

ω

ωi
, i = k, k+ 1, . . . (14)

are less than 1. If these quantities are much less than unity, Equation (12) can be
approximated as

Y ( jω)=
k−1∑
i=1

Umiω
2

mi

1

ω2
[(

ωi
ω

)2
−1+2 jξi

(
ωi
ω

)] + ∞∑
i=k

Umiω
2

mi

1

ω2
i

[
1−
(
ω
ωi

)2
+2 jξi

(
ω
ωi

)]
+

k−1∑
i=1

KCi ω
4

mi

1

ω2
[(

ωi
ω

)2
−1+2 jξi

(
ωi
ω

)] + ∞∑
i=k

KCi ω
4

mi

1

ω2
i

[
1−
(
ω
ωi

)2
+2 jξi

(
ω
ωi

)] . (15)

Using the Taylor series expansion and retaining up to the second order of small
terms, we have

Y ( jω)=
k−1∑
i=1

−
Umi

mi

[
1+ 2 jξi

(ωi

ω

)
+ (1− 4ξ 2

i )
(ωi

ω

)2
+ O

(ωi

ω

)3
]

+

∞∑
i=k

Umi

mi

[( ω
ωi

)2
+ O

( ω
ωi

)3
]

+

k−1∑
i=1

−
KCiω

2

mi

[
1+ 2 jξi

(ωi

ω

)
+ (1− 4ξ 2

i )
(ωi

ω

)2
+ O

(ωi

ω

)3
]

+

∞∑
i=k

KCiω
2

mi

[( ω
ωi

)2
+ O

( ω
ωi

)3
]
.

(16)
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2.1. Zero order approximation. By omitting the first and higher orders of small
terms in Equation (16), we get a zero order approximation as

Y ( jω)=−
k−1∑
i=1

Umi

mi
−

k−1∑
i=1

KCiω
2

mi
. (17)

In the case of k = 2, which means the operation speed range is between the first
and second resonant frequencies, Equation (17) is further simplified as

Y ( jω)=−
Um1

m1
−

KC1ω
2

m1
. (18)

Keep in mind that in Equation (18), Um1 and KC1 are complex variables. Their
amplitudes reflect the imbalance amounts while the phases reflect the circumferen-
tial locations. The negative signs in Equation (18) reflect the 180◦ phase shift after
the first resonance.

2.2. First order approximation. By omitting the second and higher orders of small
terms in Equation (16), we get a first order approximation as

Y ( jω)=
k−1∑
i=1

−
Umi

mi

[
1+ 2 jξi

(ωi

ω

)]
+

k−1∑
i=1

−
KCiω

2

mi

[
1+ 2 jξi

(ωi

ω

)]
. (19)

In a lightly damped case, ξi is small, thus Equation (19) can be further reduced
to Equation (17), that is, the zero order case. Therefore, in a lightly damped case,
zero order and first order approximations have the same formula.

2.3. Higher order approximation. Using the Taylor series expansion, any higher-
order approximation can be derived. For example, by omitting the third and higher
order of small terms, we have the second order approximation:

Y ( jω)=
k−1∑
i=1
−

Umi
mi

[
1+ 2 jξi

(
ωi
ω

)
+ (1− 4ξ 2

i )
(
ωi
ω

)2
]
+

∞∑
i=k

Umi
mi

(
ω
ωi

)2

+

k−1∑
i=1
−

KCi ω
2

mi

[
1+ 2 jξi

(
ωi
ω

)
+ (1− 4ξ 2

i )
(
ωi
ω

)2
]
+

∞∑
i=k

KCi ω
2

mi

(
ω
ωi

)2
.

(20)

In a lightly damped case, Equation (20) can be further reduced to

Y ( jω)=
k−1∑
i=1
−

Umi
mi

[
1+ 2 jξi

(
ωi
ω

)
+
(
ωi
ω

)2
]
+

∞∑
i=k

Umi
mi

(
ω
ωi

)2

+

k−1∑
i=1
−

KCi ω
2

mi

[
1+ 2 jξi

(
ωi
ω

)
+
(
ωi
ω

)2
]
+

∞∑
i=k

KCi ω
2

mi

(
ω
ωi

)2
.

(21)
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Rearranging Equation (21), we have

Y ( jω)=− 1
ω2

k−1∑
i=1

Umi
mi
ω2

i −
1
ω

k−1∑
i=1

Umi
mi

2 jξiωi −

(
k−1∑
i=1

Umi
mi
+

k−1∑
i=1

KCi
mi
ω2

i

)
−ω

k−1∑
i=1

KCi
mi

2 jξiωi +ω
2
(
∞∑

i=k

Umi
miω

2
i
−

k−1∑
i=1

KCi
mi

)
+ω4

∞∑
i=k

KCi
miω

2
i

=
C−2

ω2 +
C−1

ω
+C0+C1ω+C2ω

2
+C4ω

4,

(22)

where 

C−2 =−
k−1∑
i=1

Umi
mi
ω2

i ,

C−1 =−
k−1∑
i=1

Umi
mi

2 jξiωi ,

C0 =−

(
k−1∑
i=1

Umi
mi
+

k−1∑
i=1

KCi
mi
ω2

i

)
,

C1 =−
k−1∑
i=1

KCi
mi

2 jξiωi ,

C2 =

(
∞∑

i=k

Umi
miω

2
i
−

k−1∑
i=1

KCi
mi

)
,

C4 =
∞∑

i=k

KCi
miω

2
i
,

(23)

are the imbalance and system parameter related complex constants.

3. System integration

The proposed algorithm was integrated into an accelerated engine test system. In
the accelerated test, it was designed to simulate an engine cycle, which consists
of speed-up, dwell, and coast-down segments simulating aircraft taking-off, cruise,
and landing, in a short time. For example, the speed-up process in our accelerated
test was only 15 seconds. Thus, it is very important to have a system that can
handle data acquisition, pre- and post-processing, and data management in a short
time. In addition, the signal from such tests is usually noisy, thus it is also critical
to have a processing technique to improve the signal to noise ratio.

After a careful market search, the Pulse system by B&K was selected as the
hardware platform, the Production Test Advisor (PTA) by Signalysis, Inc. was se-
lected as the database management system, and a MATLAB-based post-processing
system was developed in-house and integrated into the system for real-time health
monitoring.
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Figure 3. System diagram.

A brief system diagram is shown in Figure 3. In system integration, any vibra-
tion sensors, such as accelerometers, velocity sensors, or displacement probes, can
be used to pick up vibration signals for the system. Appropriate signal conditioners
are needed for the sensors. A once-per-revolution (1/rev) signal from the rotating
shaft is also required for order analysis and extraction.

The B&K Pulse system was used as a data acquisition and signal processing
system. The Order Analyzer of the Pulse system was activated for our integrations.
In order to improve the signal-to-noise ratio, a synchronous averaging technique
was also employed.

Data management for the system was carried out by the PTA, which is a special
version of SigQC developed by Signalysis Inc. The SigQC was originally designed
for manufacturer quality assurance. It is a production line test that responds to
the demand among manufacturers to automate a process for accepting or rejecting
units on the assembly line based on measured noise and vibration data. The SigQC
provides basic statistics, criteria, strategies and pass/fail methods. The major func-
tions of the PTA include Database Management (Database tree) and Production
Line Interface (traffic control).
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Motor-Driving
Rotor

Proximity
Probes

Signal
Conditioners

1/rev
Synchrophaser

Signal
Conditioners

PTA/PULSE Data Acquisition
MATLAB Post-processing

Figure 4. Small rotor rig test diagram.

Though the PTA provides basic statistics, criteria, strategies and pass/fail meth-
ods, it is very difficult, if not infeasible, to use these basic functions in constructing
a diagnostic algorithm for our crack detection applications. Thus, MATLAB codes
for mass and crack imbalance detection functions were developed according to
equations in Section 2 for nonresonant synchronous vibrations. The codes were
incorporated into the crack detection system by utilizing the interface between
PTA and MATLAB.

4. Small rotor test

To verify the crack detection system integration and algorithms, a Bently Nevada
RK 4 rotor kit was used as a test bench.

4.1. Setup. The test rig diagram and instrument setup are shown in Figure 4 and
Figure 5, respectively. A single rotor disk with two bearings was used. The rotor
disk has a weight of 810 g. The balance slots was located at radius of 30.5 mm with
22.5◦ resolution in circumference (refer to Figure 6). The rotor shaft has a diameter
of 10 mm. The bearing span is 400 mm with additional 200 mm overhang. With
such setup, the fundamental frequency of the system is at 2000 rpm. Modal test
indicates that the second bending resonance is above 167 Hz, or over 10,000 rpm.

Proximity probes were used as the signal pick-up. Sensor #1 (vib1) is in the
vertical direction, while sensor #2 (vib2) is in the horizontal direction. Typical
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Figure 5. BN RK 4 rotor kit.

Figure 6. Rotor kit disk with balance slots.
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Figure 7. Typical synchronous response, vertical.

synchronous responses of the system are shown in Figure 7 and Figure 8, respec-
tively.

Nylon (instead of steel) set screws were used as imbalance weights to improve
the imbalance resolution. As a result, the smallest imbalance unit is 3.416 g-mm.

The disk 0◦ position was aligned with the center of the notch on the rotor shaft.
A mechanical 1/rev signal (shaft notch detected by proximity probe) was used as
the trigger. The rising edge of the signal was used as the trigger for data acquisition,
which turned out to be the trailing edge of the shaft notch. Later, a laser calibration
indicated that the actual triggering point corresponded to approximately the 30◦

rotor disk circumferential position.

4.2. Tests. The initial system was balanced first using the influence coefficient
method. To verify the system integration and algorithms, imbalances were added
at two circumferential positions: nominal 0◦ and 90◦ on the rotor disk. The 1/rev
signal came from a notch at the shaft near the 0◦ mark. The actual notch was a
filing-off of the shaft, which covered approximately 60◦ of the shaft circumference.
According to the calibration, the nominal 0◦ and 90◦ circumferential positions cor-
responded to approximately 30◦ and 120◦ with respect to the 1/rev trigger. At
each circumferential location, 4 different imbalance amounts were added: 1, 2, 3,
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Figure 8. Typical synchronous response, horizontal.

and 4 set screws, which correspond to 3.416, 6.832, 10.248, and 13.664 g-mm
imbalances.

The motor speed was controlled between 350 rpm to 8050 rpm, and 25 baseline
runs were recorded. For each imbalance case, 5 repeated runs were recorded for
further analysis. After that, the tests were repeated for 10 baseline conditions and
5 imbalanced runs for each imbalance case for the purpose of verification.

4.3. Data reduction. For nonresonant based analysis, the data in the speed range
of 4000 to 4500 rpm were used. With this speed range, the variables in Equation
(14) satisfy

ω1

ω
≤ 0.5 and

ω

ω2
< 0.5.

Equation (19) (the first order approximation) was used in the data processing. Be-
fore curve fitting, the baseline response was subtracted from a real-time measure-
ment in the complex domain. The difference was then used in the complex domain
curve fitting for extracting the mass imbalance coefficient and the crack-induced
imbalance coefficient.

The magnitudes of the typical real time measurement, the baseline, and the
difference are shown in Figure 9. As can be seen from the figure, in the difference
signal, the “slow roll” effect introduced by the shaft geometric imperfection has
been removed after complex domain baseline subtraction. The curve fitting was
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Figure 11. Nonresonance-based analysis, vertical sensor.

carried out in the complex domain with least-square minimization of the difference
between the raw data and the fitting curve in the specified RPM range. A typical
example of the curve fitting results is shown in Figure 10, where the solid line is
the curve fitting results and the dots are the test data.

The result from the vertical sensor is shown in Figure 11, where C0 is the mass
imbalance indicator and C2 is the crack-induced imbalance indicator. This test had
115 speed-up runs. The first 25 runs are the baseline runs. The mean of these 25
runs are the reference of the rotor health condition. The next 20 runs were the
nominal 0◦ unbalanced runs. 1, 2, 3 and 4 nylon set crews were added to the 0◦

mark on the rotor. For each unbalanced case, five runs were repeated.
The next 20 runs were the nominal 90◦ unbalanced runs. In this case, the im-

balance masses were removed from the 0◦ location. 1, 2, 3 and 4 nylon set crews
were added to the 90◦ mark on the rotor. For each unbalanced case, five runs were
repeated.
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Figure 12. Identified imbalances normalized w.r.t. baseline.

To double-check the test, the procedure was repeated with 10 baseline runs,
20 nominal 0◦ unbalanced runs, and 20 nominal 90◦ unbalanced runs at different
imbalance levels.

In Figure 11, the top half of the figure displays the mass imbalance parameter
C0 and the bottom half is the crack-induced imbalance parameter C2. We see that
that the mass imbalance indicator C0 is proportional to the imbalance added, while
the crack-induced imbalance indicator C2 does not have obvious trend. The slight
upward trend is probably due to test and curve-fitting numerical variations.

In Figure 12, the normalized C0 and C2 are shown for comparison. In the figure,
C0 is normalized with respect to the mean of the C0 in the first 25 baseline runs,
while C2 is normalized with respect to the mean of the C2 in the first 25 baseline
runs. Again, the normalized C0 is also clearly proportional to the mass imbalance
added. The crack-induced imbalance indicator C2 is small. In theory, C2 should
be a small constant. The slight increase could be due to fitting errors.
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Vertical Sensor Horizontal Sensor
Ref. 0◦ 90◦ 0◦ 90◦

3.4 3.416 3.14 (−8.2%) 3.69 (+8.2%) 3.60 (+5.3%) 3.23 (−5.3%)
6.8 6.832 6.49 (−5.0%) 7.18 (+5.1%) 6.99 (+2.2%) 6.60 (−3.4%)

10.2 10.248 9.77 (−4.7%) 10.31 (+0.6%) 10.12 (−1.3%) 9.72 (−5.1%)
13.7 13.664 13.17 (−4.6%) 13.50 (−1.2%) 13.43 (−1.7%) 12.85 (−5.9%)

Table 1. Normalized mass imbalance identification. All values
in g mm; percentages in parentheses indicate error relative to the
reference value (second column).

To figure out the exact imbalance amount from C0, the exact modal parameters,
such as modal mass and mode shape, are required from the rotating system. For
a quick examination, the imbalance amount can be normalized at the smallest im-
balance at 0◦ and 90◦ positions. The normalized mass imbalance identification is
shown in Table 1, where it can be seen that the identification error is less than 9%
(for the horizontal sensor, less than 6%).

Similar data processing was carried out on the horizontal sensor. The results are
shown in Table 1 and Figures 13 and 14. In this sensor, the fitting error is less
than 6%. In this case, the C2 upward trend is much less.

5. Engine subassembly spin-pit tests

The engine subassembly tests were set up at the Naval Air Warfare Center in Mary-
land. Tests included four F404 HPT disk subassemblies. Each disk was implanted
with single/multiple flaws at known/unknown locations. Each cycle included a
run-up from 1500 RPM to 18000 RPM, a dwell at high speed 18000 RPM, and
a coast-down from 18000 RPM to 1500 RPM. In our system, only the speed-up
synchronous data was collected and analyzed. The data acquisition diagram is
shown in Figure 15. A light probe was used to pick up the 1/rev signal for syn-
chronous data reduction. Two proximity probes were used as vibration sensors.
Data acquisition and signal processing were carried out at the control room near
the test laboratory. The operations were monitored through remote accesses.

The test #1 results are shown in Figure 16. The full cycle history of the mass
imbalance coefficient and crack-induced imbalance coefficient are shown in Figure
16(a). In this test, the cooling plate crack was developed during the cycles. It
ended up with a small piece being liberated at the cooling plate (see Figure 17).
The last cycles of the mass imbalance and crack-induced imbalance coefficient are
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Figure 13. Nonresonance-based analysis, horizontal sensor.

shown in Figure 16(b), where both C0 and C2 coefficients increased significantly
at the end of cycles.

The Test #2 results are shown in Figure 18. Similar to the Test #1, the test ended
after a piece of mass being liberated from the cooling plate. Again, both mass
imbalance and crack-induced imbalance coefficients are significantly increased at
the end of the cycle history.

The Test #3 and Test #4 results are shown in Figure 19 and Figure 20, respec-
tively. In both tests, the disk crack propagated. The disks were burst at the end due
to crack propagation. As seen in Figure 19 and Figure 20, the mass imbalance co-
efficients are relatively quiet in the last cycles, while the crack-induced imbalance
coefficient increased gradually.
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Figure 16. Test #1 results (a) all cycles and (b) last cycles.



SYNCHRONOUS VIBRATION METHOD FOR ROTOR DAMAGE DETECTION 427

Figure 17. Crack and mass deliberation at the cooling plate.
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Figure 18. Test #2 results.

6. Conclusion

In this paper, an imbalance detection algorithm was derived based on rotor syn-
chronous vibrations. Instead of an SDOF model, the multi-DOF model was used
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Figure 19. Test #3 results.

in the derivations. Thus, the algorithm was valid in a frequency region between
any two critical speeds. The MDOF model reflected the more realistic conditions
in many rotor operations. The algorithm was integrated into an automatic data
collection and analysis system. The integrated system has been validated through
a small rotor laboratory test rig with controlled mass imbalance and an engine
subassembly with embedded disk cracks. Laboratory rig test results indicated
that a good agreement between the embedded and identified imbalances can be
achieved. An engine subassembly test also indicated the feasibility of trending the
mass imbalance and crack-induced imbalance from the engine cycle history. Initial
test results indicated that it is promising to use vibration diagnostic techniques for
the online detection of engine rotor disk cracks and other anomalies. However, the
sensitivity of the system needs to be improved. The precision of the 1/rev signal
is also a key to the success of the algorithm.
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A HIGHER-ORDER THEORY FOR CRACK GROWTH
IN FIBER-METAL LAMINATES UNDER GENERALIZED

PLANE-STRESS CONDITIONS

XIJIA WU, ZHONG ZHANG AND J. LALIBERTÉ

Fiber-metal laminates (FML) are hybrid materials that consist of alternating lay-
ers of metal and fiber-reinforced prepreg. The classical plane-stress theory has
difficulty in dealing with the fatigue fracture of such materials where the crack
only grows in the metal layers, while the prepreg layers remain intact. In this
paper, a new theoretical treatment is given to FML under generalized plane-stress
conditions. The new theory introduces a harmonic anti-plane-stress potential p
to describe the interlaminar stresses near the crack tips and the “bridging” effect
of the unbroken fibers along the crack wakes. An analytical solution is derived
for GLARE-3 (3/2) containing collinear cracks with length 2a0 (the initial crack
length) in the prepreg and length 2a in the aluminum layer. The effective stress
intensity factor is obtained in a closed form, and the theoretical prediction is
compared with the experimental behavior obtained from fatigue crack growth
testing of center-notched specimens.

1. Introduction

Fiber-metal laminates (FML) consisting of alternating layers of aluminum and
fiber-reinforced prepreg are being considered as a potential alternative to replace
traditional aluminum alloys for more light-weight and damage tolerant aerospace
structural applications [Gunnink et al. 1982]. FML have excellent fatigue crack
growth resistance plus improved impact and corrosion resistances because the fiber
reinforcement plays a role in crack bridging and also insulates the inner metal from
any corrosive species. It has been recognized that the damage tolerance character-
istics of FML are largely attributed to the load transfer mechanism via interfacial
shear stresses from the cracked aluminum layers to fiber-reinforced (unbroken)
prepregs [Gunnink et al. 1982; Roebroeks 1994]. Regarding the fiber-bridging
effect, Marissen [1988] assumed that a constant “bridging stress” exists in the fibers
along the crack wake. Guo and Wu [1999] offered a numerical method to derive the

Keywords: fiber-metal laminate, stress intensity factor.
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“bridging stress” based on the displacement condition at the boundary of delamina-
tion. Their treatment rests on two assumptions: (i) each fiber within the delamina-
tion region is individually under uniform tension, and (ii) the displacement profile
at the delamination boundary is equal to the crack opening displacement along the
crack wake. The error associated with the assumed displacement condition would
be proportional to the size of delamination (that is, 1v ∝ ε f (x), where f (x) is the
delamination boundary away from the crack line y = 0), if a constant strain existed
across the region. The aforementioned theoretical treatments attempted to patch the
shortcomings of the classical crack mechanics for monolithic materials, but they
were not derived from the stress equilibrium and compatibility equations of elas-
ticity. For laminated materials, the existence of parallel cracks of different length
in different layers poses a significant challenge to the classical two-dimensional
theories dealing with plates and laminates, and the general solution has not been
found.

Traditionally, composite materials are considered as homogeneous and aniso-
tropic materials and hence are solved with the classical theory [Tsai and Hahn
1980; Whitney 1987; Ashbee 1993], where the anti-plane shear stresses are ab-
sent because of the simplification. Except for some 3D or quasi-3D numerical
methods—such as the finite element method, the hybrid and displacement super-
position method [Pagano 1978; Iarve and Pagano 2001]—that could be used to
describe cracks in FML where layer-to-layer interaction cannot be ignored, there
is no analytical theory to formulate stresses in cracked FML. It is the intention of
this paper to present such a theory.

A higher-order theory has been developed for generalized plane-stress states in
isotropic materials with the introduction of two conjugated harmonic stress poten-
tials for anti-plane stresses by the requirement of 3D strain compatibility [Wu and
Cheng 1999]. This theory is now extended to FML whereby the interlaminar stress
interaction is reduced to equivalent body forces. As an example, the boundary-
value problem of fatigue crack growth in GLARE-3 (3/2) is solved, using the
complex variable method. The effective stress intensity factor of a crack in FML,
propagating only in the aluminum layers, is obtained in a closed form and the
prediction is then compared with the experimental behavior observed from fatigue
crack growth testing of center-notched specimens.

2. The theory of FML

Consider a typical fiber-metal laminate, which consists of alternating metal (iso-
tropic) and prepreg (orthotropic) layers. The configuration of GLARE-3 (3/2) is
shown in Figure 1. The reference coordinate system is also given in 1 by way of
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Figure 1. Schematic configuration of GLARE-3 (3/2) consisting
of three layers of 2024-T3 aluminum alloy and two layers of glass
fiber-epoxy prepreg.

describing the problem. For the panel, the thickness of the laminate is small com-
pared to the planar dimensions. The body forces are ignored and the stress normal
to the laminate, σz , is zero. In the following, we shall derive the stress formulation
for metal and prepreg layers separately and then consider their interactions by the
requirement of displacement continuity across the interface.

2.1. The metal layer. Under the generalized plane stress condition, the stress equi-
librium in the metal layer can be expressed as

∂σx

∂x
+
∂τxy

∂y
+
∂τxz

∂z
= 0, (1a)

∂τxy

∂x
+
∂σy

∂y
+
∂τyz

∂z
= 0, (1b)

∂τxz

∂x
+
∂τyz

∂y
= 0. (1c)

It has been shown that the three-dimensional stress equilibrium and strain com-
patibility conditions can be all met when the in-plane and anti-plane shear stresses
are expressed as [Wu and Cheng 1999]

σx =
∂29

∂y2 + p, σy =
∂29

∂x2 + p, τxy =−
∂29

∂x ∂y
, (2)

τxz =−z
∂p
∂x
=−z

∂q
∂y
, τyz =−z

∂p
∂y
= z

∂q
∂x
, (3)
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where 9 is a bi-harmonic function (∇49 = 0), p and q are conjugated harmonic
functions (∇2 p = 0 and ∇2q = 0, satisfying the Cauchy–Riemann condition).

For each individual layer, the neutral plane (z= 0) is set at either the free surface,
for a surface metal layer, or the median plane for a middle layer. Therefore, the
free surface is truly free of any anti-plane shear traction. Alternatively, the laminate
can also be viewed as a portion of periodical stacking of the constituent lamina, in
which the surface layer becomes an inner layer with twice the thickness. When the
lay-up is symmetrical, as in GLARE 3, the net anti-plane shear stress across the
laminate is zero, and the laminate is under the generalized plane-stress condition.
When the lay-up is asymmetrical, a coupled bending is induced, because the net
anti-plane shear is not always zero. Here we consider only the former case. For that,
the inter-laminar shear stresses at the interfaces of metal/prepreg can be obtained
from Equation (3) as

τ i
xz =∓

hi

2
∂pi

∂x
, τ i

yz =∓
hi

2
∂pi

∂y
, i = 1, 3, 5, . . . , (4)

where hi is the thickness of the i-th layer. The detailed lay-up is shown in Figure
2 and the sign convention is observed accordingly.

2.2. The prepreg layer. For a prepreg layer between metal layers (i = 2, 4, 6, . . . ),
the action of the inter-laminar shear stresses would produce an effect equivalent to
that of the in-plane body forces, as defined by

X i =−
τ i+1

xz − τ
i−1
xz

hi
=−

1
2hi

∂

∂x

(
hi+1 pi+1+ hi−1 pi−1

)
=−

∂U
∂x
, (5a)

Yi =−
τ i+1

yz − τ
i−1
yz

hi
=−

1
2hi

∂

∂y

(
hi+1 pi+1+ hi−1 pi−1

)
=−

∂U
∂y
, (5b)

where U is defined as the equivalent body-force potential:

U =
1

2hi

(
hi+1 pi+1+ hi−1 pi−1

)
. (5c)

Therefore, the equilibrium equations for the prepreg reduce to

∂σx

∂x
+
∂τxy

∂y
+ X i = 0, (6a)

∂τxy

∂x
+
∂σy

∂y
+ Yi = 0. (6b)
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Figure 2. Schematic of inter-laminar shear stress distribution
through the thickness of an FML.

By satisfying the equilibrium conditions, the in-plane stresses in a prepreg can
be obtained as

σx =
∂2 F
∂y2 +U, σy =

∂2 F
∂x2 +U, τxy =−

∂2 F
∂x ∂y

, (7)

where F is the stress potential of the prepreg and should satisfy the compatibility
condition for an orthotropic material [Lekhnitskiı̆ 1981]:

a22
∂4 F
∂x4 + (a66+ 2a12)

∂4 F
∂x2 ∂y2 + a11

∂4 F
∂y4

=−(a22+ a12)
∂2U
∂x2 − (a11+ a12)

∂2U
∂y2 , (8)

where ai j are the compliance coefficients of the prepreg.
For FML of symmetrical layout, the anti-plane shear stresses counteract each

other across the entire thickness of the laminate such that the net result is zero.
Thus, the stress-state of FML, as defined by the stress functions 9, F , U , p and q ,
falls into the category of the generalized plane stress.
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In summary, the stresses in a metal (isotropic) layer can be obtained from the
stress function 9 and either of the conjugated harmonic functions p and q; the
stresses in a prepreg (orthotropic) layer can be obtained from the stress functions
F and U . The inter-laminar stresses can be calculated using Equation (4). These
stress potentials, when satisfying the necessary compatibility conditions, should
lead to a complete description of the stresses in the laminate. By the theorem of
unique solution of elasticity, the stress potentials should represent the true stress-
state of the laminate under a given generalized plane-stress condition. The problem,
then, reduces to finding stress functions (or potentials) that meet the boundary-
value conditions of the particular loading configuration. The mathematical ap-
proach to seeking such solutions is discussed along with the presentation of solving
a practical case of fatigue crack growth in GLARE-3 (3/2) in the section below.

3. The complex variable solution for GLARE-3 containing a crack

Consider a GLARE-3 (3/2) panel containing central collinear cracks of length 2a
in the aluminum and 2a0in the prepreg. The panel is remotely subjected to uniform
tension, as shown schematically in Figure 3. The crack in the prepreg represents

σ 

2a0

2a

y

x

σ 

Figure 3. Schematic of a FML panel containing a center-located
crack: a0 is the half-length of the initial through-the-thickness
crack; a is the half-length of the crack in the metal layer.
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the initial notch, the ones in the metal layers extend to the current length a due to
fatigue crack growth. As such, the crack wakes in the region [a0,a] are bridged with
unbroken fibers. The aluminum layers are 2024-T3 sheets, which are considered to
be isotropic materials. The prepreg layers in GLARE-3 have equal volume fraction
of 0◦/90◦ cross-ply glass fibers, and therefore are also treated as a quasi- isotropic
material, for simplicity. This greatly reduces the complexity of the problem and al-
lows one set of stress potential functions to be used for both aluminum and prepreg
in GLARE-3, as detailed below. For other FML with anisotropic prepregs, the
solution has to be obtained by solving Equation (8).

First, the Westergaard function is adopted as the in-plane stress potential ψ , as
defined by

ψ = Re
≈

Z(ξ)+ y Im
∼

Z(ξ), (9)

where ξ = x + iy is the complex coordinate variable and

∼

Z =

∫
Z(ξ) dξ,

≈

Z =

∫
∼

Z (ξ) dξ =
∫∫

Z(ξ) dξ dξ.

(10)

Then, a new analytic function χ(ξ) is introduced to express the anti-plane shear
stress potential p as

2p = χ(ξ)+ χ̄(ξ̄ )= ϕ′(ξ)+ ϕ̄′(ξ̄ ), (11)

where ξ̄ denotes the conjugate of ξ , and the same meaning also applies to complex
functions.

Hence, according to Equations (2) and (3), the stress components can be ob-
tained as

σx + σy = 2 Re
[
Z(ξ)+χ(ξ)

]
,

σy − σx + i2τxy =−i2y Z ′(ξ),

τxz + iτyz =∓
h
2
χ̄ ′
(
ξ̄
)
.

(12)

The displacements (at z = 0) can be obtained as

2G(u+ iv)=
2

1+µ
∼

Z(ξ)−Re
∼

Z(ξ)− iy Z̄(ξ̄ )+
1−µ
1+µ

ϕ(ξ). (13)
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Because of symmetry, the solution for the half plane x > 0 can be tentatively
represented by the following functions:

Z(ξ)=
Aξ√
ξ 2− a2

,

χ(ξ)=
B

√
ξ − a

,

(14)

where A and B are constants to be determined by the stress boundary conditions
and displacement compatibility conditions.

Substituting Equation (14) into Equations (12) and (13), we obtain the in-plane
stresses as

σx =
∂2ψ

∂y2 + p = Re
[
Z(ξ)+χ(ξ)

]
− y Im Z ′(ξ),

σy =
∂2ψ

∂x2 + p = Re
[
Z(ξ)+χ(ξ)

]
+ y Im Z ′(ξ),

τxy =−y Re Z ′(ξ),

(15)

and the displacements as

u =
1

2G

(
1−µ
1+µ

Re
[∼
Z(ξ)+ϕ(ξ)

]
− y Im Z(ξ)

)
, (16a)

v =
1

2G

(
2

1+µ
Im

∼

Z(ξ)− y Re Z(ξ)+
1−µ
1+µ

Imϕ(ξ)

)
. (16b)

It is easy to verify that the crack surface condition, that is, τxy = σy = 0, at
y = 0, |x |< a, is satisfied and the displacement v along the line of (x > a, y = 0)
is zero. To satisfy the remote stress condition, A = σ∞. These stress/displacement
formulations will be used to deal with two cracks in an FML: one crack of length
2a0 in the prepreg and one of length 2a in the aluminum.

For displacement continuity, it is assumed that the crack opening displacements
at the center of both cracks in metal and prepreg are equal, due to the perfect
bonding condition. Mathematically, this condition can be expressed as: v(1) = v(2)

at the point (x = 0, y = 0). In the rest of the plane of the interface, displacement
discontinuities or sliding may occur, particularly around the crack tips. The as-
sumed condition is a simplification for the convenience of deriving a closed-form
solution as shown in the following, yet it adheres to the fact that delamination does
not occur at the center point. The above description is only a two-dimensional
simplification of the delamination problem in a real case, a complete description
of which would have to be based on a 3D theory.
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From Equation (16b), the crack-center opening displacements in the metal (with
a crack of half-length a) and prepreg (with a crack of half-length a0) can be ob-
tained, respectively, as

v(1) =
1

G1

(
A(1)a
1+µ

+
(1−µ)B(1)

√
a

1+µ

)
,

v(2) =
1

G2

(
A(2)a0

1+µ
+
(1−µ)B(2)

√
a0

1+µ

)
,

(17)

where v(1) and v(2) are the displacements in the y direction for the metal and prepreg
layers. A(1), B(1) and A(2), B(2) are constants for metal and prepreg layers, respec-
tively. Since both layers are subjected to remote uniform tension, A(1) = σ (1) and
A(2) = σ (2), where σ (1) and σ (2) are the remote stresses in the metal and prepreg
layer, respectively. Then, only the constants B(1) and B(2) need to be determined
to complete the solution.

There are two stress singularity points in the FML containing a fiber-bridged
crack—one at x = a0 and the other at x = a—which may cause local delamination
due to incompatibility. This has indeed been observed in numerous experiments.
At remote locations, however, it is believed that the bonding between the prepreg
and the metal layers should remain intact such that the antiplane shear stresses are
continuous across the interface. Thus, at the interface between the surface metal
layer and an immediate inner prepreg layer, it should hold that

−h1χ̄1
′(ξ̄ )=

h2

2
χ̄2
′(ξ̄ ), (ξ →∞), (18)

where h1 and h2 are the thickness of the surface metal layer and the immediate
prepreg layer, respectively. Equation (18) will hold true when r = |ξ | � a0 and a,
only if

2h1 B(1) =−h2 B(2). (19)

Then, by solving the displacement continuity condition at the crack center, that is,
v(1) = v(2) (at x = 0, y = 0), with the substitution of Equation (19) into Equation
(17), we obtain

B(1) =
1

1−µ

A(2)a0−
G2
G1

A(1)a
G2
G1

√
a+ 2 h1

h2

√
a0
=−

h2

2h1
B(2). (20)

We note here that the displacement continuity condition imposed at the crack-
center is obviously an approximation of the more complicated interfacial continu-
ity/discontinuity conditions around the crack in the real laminates. However, the
major mechanical characteristics of the simplified condition agree with the real
case, as elucidated in a later section.
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From stress expression, Equation (15), the stress intensity factor in the metal
layer can be obtained as:

Keff = lim
x1→0
y=0

√
2πx1σ

(1)
y = K (1)

∞
−

√
2

1−µ

K (1)
∞ −

G1
G2

√
a0
a K (2)
∞

1+ 2 G1h1
G2h2

√
a0
a

, (21)

where, x1 = x − a, and

K (1)
∞
= A(1)

√
πa = σ (1)

∞

√
πa, K (2)

∞
= A(2)

√
πa0 = σ

(2)
∞

√
πa0.

σ
(1)
∞ and σ (2)∞ are the remote stresses in the metal layer and prepreg layer.

4. Experiment

GLARE-3 3/2 specimens, which consist of three sheets of 2024-T3 aluminum
alloy (0.3 mm thick) and two layers of glass/epoxy prepreg (0.25 mm thick) with
a stacking sequence of (0◦/90◦), were machined (water-jet cut) in the form of
center-crack tension specimen (CCT) configuration. The specimen has a length
of 300 mm in the loading direction, a width of 100 mm and it contains a 24 mm
long central notch with a notch root radius of 0.2 mm. The total thickness of the
specimen is 1.4 mm. Fatigue crack growth rate testing was performed according to
the ASTM-E647 standard. The testing was conducted at room temperature using
a computer-controlled MTS servohydraulic testing machine under constant ampli-
tude sinusoid loading with a frequency of 5 Hz and stress ratio R = 0.1. The crack
length was measured using a traveling microscope (±0.01 mm). Fatigue testing
was automatically stopped at a predetermined cycle interval to take measurements
of the half-crack length on both sides of the specimen. An a-N curve is shown in
Figure 4 (a). Details of the testing program were reported elsewhere [Zhang et al.
2002].

5. Discussion

Fatigue crack growth in FML has been investigated by many researchers, using
semi-empirical approaches [Marissen 1988], experimental methods [Ritchie et al.
1989] and numerical methods [Guo and Wu 1998]. All these treatments used the
concept of bridging stress to account for the reduction of stress intensity factor in
FML, but it is empirically introduced. According to the present higher-order theory,
it is the interlaminar shear stress that provides the bridging effect, as opposed to the
in-plane “bridging stress” acting along the crack wake. The existence of these anti-
plane shear stresses modifies the in-plane stresses through the interaction of stress
potentials, as expressed in Equations (2) and (3). As a result, the stress intensity
factor of the crack in the metal layer is changed, as shown in Equation (21), in
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comparison with the solution for monolithic materials. Apparently, (21) can be
broken into two parts, as

Keff = Km − Kbr , (22)

where Km is the apparent stress intensity factor as if in the monolithic metal, and
Kbr is the stress intensity reduction due to fiber-bridging, as defined by

Kbr =

√
2

1−µ

K (1)
∞ −

G1
G2

√
a0
a K (2)
∞

1+ 2 G1h1
G2h2

√
a0
a

. (23)

Equation (22) bears a physical meaning similar to that perceived by other researchers,
but only Kbr is derived from anti-plane stresses and is explicitly expressed in Equa-
tion (23).

From the a-N curve, Figure 4 (a), fatigue crack growth rates can be evaluated.
The effective stress intensity factors in the FML are thus found as compared with
the metal fatigue crack growth behavior, that is, from the da/d N versus 1K rela-
tionship, assuming that the fatigue crack, propagating in the aluminum alloy layer
of an FML, experiences the same stress intensity at the same growth rate as it would
were it propagating in the monolithic alloy alone. For the finite panel specimen
configuration, a correction was made to Equation (21), replacing K (1)

∞ with

K (1)
∞

√
sec

πa
W
,

where W is the width of the specimen, to account for the effect of finite width.
In matching (21) with the real case, the value of a0 has to be adjusted to account

for the effect of bluntness of the initial machine notch in the specimen. Note that
fatigue precracking in this case would only sharpen the metal crack but not the
prepreg crack (notch). The comparison of (21) with the evaluated 1K is shown
in Figure 4 (b). The elastic properties of the FML, as input to the calculation, are:
G1 = 27.7 GPa, h1 = 0.3 mm, for aluminum; and G2 = 5.6 GPa, h2 = 0.25 mm, for
prepreg. The stress intensity factor of a crack in an infinite monolithic aluminum
sheet is also shown in the figure for comparison purposes. It may be seen that a
crack without fiber-bridging exhibits very high stress intensities as the crack grows,
while the one in the FML tends to level off to a fairly constant value until the very
end of the panel. Excellent agreement between the theoretical and experimental
values can be found for the FML over 90% of crack growth range, except in the
initial stage where the crack is perhaps under the influence of the notch plasticity.

To check the compatibility conditions at the interface, the difference between the
displacements in the aluminum and the prepreg, v1− v2, is calculated and mapped
onto the panel plane (the x-y plane), as shown in Figure 5. We see that there is a
discernible region of discontinuity, with a maximum occurring at x = a0 (the tip of
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Figure 5. A map of displacement discontinuity at the interface
between metal and prepreg layers. X −Y represent the panel plane
and Z represents the absolute value of v1− v2.

the prepreg crack). This displacement discontinuity region actually corresponds to
the shape of the delamination region rather well, as observed in the FML specimens
both in our testing program and in others [Guo and Wu 1998]. It should be under-
stood that the delamination problem in the present context within the framework of
2D elasticity is depicted as interfacial sliding, that is, relative in-plane displacement,
as shown in Figure 5. Therefore, the criterion of delamination may be defined by
how much the delta sliding can be accommodated by the gluing agent, which is
determined by the physical properties of the interface. Such properties can be
called the interfacial delamination resistance. Beyond that, interfacial breaking
may occur, and thus physical delamination occurs. However, descriptions of the
physical delamination process are beyond the scope of the theory of elasticity.

In summary, a higher-order laminate plate theory has been developed for fiber-
metal laminates that consist of alternating metal and fiber-reinforced prepreg layers.
The theory is an extension of the previous higher-order theory for generalized plane-
stress problems of isotropic materials, which employs two harmonic anti-plane
stress potentials, p and q, in addition to the bi-harmonic plane stress potential.
When the displacement compatibility condition is set at the interlaminar interface,
these anti-plane stress potentials play the role of load transfer between adjacent
layers, particularly when one of them contains a crack. By taking advantage of
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the complex variable method that has been developed and matured for monolithic
isotropic materials [Muskhelishvili 1953; Lekhnitskiı̆ 1981], one can easily ex-
tend the complex variable treatment, with the inclusion of an additional analytical
function for the anti-plane stress potential to multi-layered bodies, as shown in
the previous section. As an example, one mathematical solution is presented in
this paper for GLARE-3 containing a fatigue crack, to show the application of the
theory to practical problems.

6. Conclusion

1. A higher-order lamination theory has been developed for the plane-stress elastic-
ity of fiber-metal laminates. The new theory employs anti-plane stress potentials
to take into consideration possible interlaminar interactions, particularly when
defects exist in certain layers, which tend to break the compatibility with the
adjacent lamina. In this case, the anti-plane stress potentials produce an ad-
ditional in-plane stress component that modifies the original (by the classical
theory) stress state to re-establish the strain/displacement compatibility.

2. The complex variable representation of the plane-stress problem is modified to
include the anti-plane shear stress function and a solution is derived for GLARE-
3 (3/2) containing a fiber-bridged fatigue crack.

3. An effective stress intensity factor for GLARE-3 (3/2) is derived in closed form,
which agrees with the test results, provided that the initial notch effect for the
specimen is appropriately corrected.
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THE NONLOCAL THEORY SOLUTION OF A MODE-I CRACK
IN FUNCTIONALLY GRADED MATERIALS SUBJECTED TO

HARMONIC STRESS WAVES

ZHEN-GONG ZHOU, JUN LIANG AND LIN-ZHI WU

In this paper, the dynamic behavior of a finite crack in functionally graded ma-
terials subjected to harmonic stress waves is investigated by means of nonlocal
theory. The traditional concepts of nonlocal theory are extended to solve the
dynamic fracture problem of functionally graded materials. To overcome math-
ematical difficulties, a one-dimensional nonlocal kernel is used instead of a two-
dimensional one for the dynamic problem to obtain the stress fields near the
crack tips. To make the analysis tractable, it is assumed that the shear modulus
and the material density vary exponentially and vertically with respect to the
crack. Using the Fourier transform and defining the jumps of the displacements
across the crack surfaces as the unknown functions, two pairs of dual integral
equations are derived. To solve the dual integral equations, the jumps of the dis-
placements across the crack surfaces are expanded in a series of Jacobi polyno-
mials. Unlike classical elasticity solutions, it is found that no stress singularities
are present near crack tips. Numerical examples are provided to show the effects
of the crack length, the parameter describing the functionally graded materials,
the frequency of the incident waves, the lattice parameter of the materials and
the material constants upon the dynamic stress fields near crack tips.

1. Introduction

A new class of engineered materials, functionally gradient materials (FGMs), has
been developed primarily for use in high temperature applications [Koizumi 1993].
The composition of these FGMs, prepared using techniques like power metallurgy,
chemical vapor deposition, centrifugal casting, etc., is graded along the thickness.
The spatial variation of the material composition results in a medium with vary-
ing elastic and physical properties and calls for investigation into the fracture of
FGMs under different loading conditions. In particular, the use of the graded ma-
terial as interlayers in bonded media is one of the highly effective and promising
applications to eliminate various shortcomings resulting from stepwise property

Keywords: crack, harmonic stress waves, functionally graded materials, nonlocal theory, dual
integral equations.
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mismatch inherent in piecewise homogeneous composite media [Lee and Erdogan
1994; Suresh and Mortensen 1977; Choi 2001].

From the viewpoint of fracture mechanics, the presence of a graded interlayer
would play an important role in determining crack driving forces and fracture resis-
tance parameters. In an attempt to address the issues pertaining to fracture analysis
of bonded media with such transitional interfacial properties, a series of solutions
to certain crack problems was obtained by Erdogan and his associates [Delae and
Erdogan 1988; Ozturk and Erdogan 1996].

The dynamic crack problem for non-homogeneous composite materials was con-
sidered in [Wang et al. 2000] but they considered the FGM layer as a multi-layered
homogeneous medium. The crack problem in FGM layers under thermal stresses
was studied by Erdogan and Wu [1996]. They considered an unconstrained elastic
layer under statically self-equilibrating thermal or residual stresses. More recently,
the scattering of harmonic stress waves by a Mode-I crack in functionally graded
materials was investigated by use of the Schmidt method in [Zhou et al. 2004].
However, it is found that all the solutions in [Koizumi 1993; Lee and Erdogan
1994; Suresh and Mortensen 1977; Choi 2001; Delae and Erdogan 1988; Ozturk
and Erdogan 1996; Wang et al. 2000; Erdogan and Wu 1996; Zhou et al. 2004]
contain stress singularities at the crack tips, which is not reasonable according to
physical nature. As a result of this, beginning with Griffith, all fracture criteria in
use today are based on other considerations, for example, energy, the J -integral
[Rice 1968], and strain gradient theory [Xia and Hutchinson 1996].

To overcome the stress singularity in classical elastic fracture theory, Eringen
[1977; 1978; 1979] used nonlocal theory to study the stress near tips of a sharp
line crack in an isotropic elastic plate subject to uniform tension, shear, and anti-
plane shear, and the resulting solutions did not contain any stress singularities.
This allows us to use maximum stress as a fracture criterion. Modern nonlocal
continuum mechanics has originated and developed in the last four decades as an
alternative to these local approaches of zero-range internal interactions. Edelen
[1976] contributed some mathematical formalism while Green and Rivlin [1965]
simply enunciated some postulates for nonlocal theory. On the other hand, Eringen
[1976] contributed not only the complete physics and mathematics of nonlocal
theory but also shaped the theory into concrete form, making it viable for practical
applications to boundary value problems.

According to nonlocal theory, the stress at a point X in a body depends not only
on the strain at point X but also on that at all other points of the body. This is
contrary to the classical theory that the stress at a point X in a body depends only
on the strain at point X . In [Pan and Takeda 1998], the basic theory of nonlocal
elasticity was stated with emphasis on the difference between nonlocal theory and
classical continuum mechanics. The basic idea of nonlocal elasticity is to build a
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relationship between macroscopic mechanical quantities and microscopic physical
quantities within the framework of continuum mechanics.

The constitutive theory of nonlocal elasticity has been developed in [Edelen
1976], in which the elastic modulus is influenced by the microstructure of the ma-
terial. Other results have been given by the application of nonlocal elasticity to the
fields such as a dislocation near a crack [Pan 1992;1994] and fracture mechanics
problems [Pan 1995; Pan and Fang 1993]. The literature on the fundamental as-
pects of nonlocal continuum mechanics is extensive. The results of those concrete
problems that have been solved display a remarkable agreement with experimental
evidence. This can be used to predict cohesive stress for various materials and the
results are close to those obtained in atomic lattice dynamics [Eringen and Kim
1974;1977].

Likewise, a nonlocal study of the secondary flow of viscous fluid in a pipe
furnishes a streamlined pattern similar to that obtained experimentally by Eringen
[Eringen 1977]. Other examples of the effectiveness of the nonlocal approach
are: (i) prediction of the dispersive character of elastic waves demonstrated ex-
perimentally (and lacking in classical theory) [Eringen 1972] and (ii) calculation
of the velocity of short Love waves whose nonlocal estimates agree better with
seismological observations than the local ones [Nowinski 1984b].

Several nonlocal theories have been formulated to address strain-gradient and
size effects [Nowinski 1984b]. Recently, some fracture problems [Zhou et al.
1999b; 2002; Zhou and Wang 2002a] in an isotropic elastic material and piezoelec-
tric material have been studied by use of nonlocal theory with a somewhat different
method. The traditional concepts of nonlocal theory are extended to solve the frac-
ture problem of piezoelectric materials [Zhou et al. 1999b; 2002; 2002a]. More
recently, the traditional concepts of nonlocal theory have also been extended to
solve the anti-plane shear fracture problem of functionally graded materials [Zhou
and Wang 2006], and the results of the solution in [Zhou and Wang 2006] did not
contain any stress singularity. However, to our knowledge, the effect of the lattice
parameter on the dynamic stress field near the Mode-I crack tips has not been
studied by use of nonlocal theory in functionally graded materials, in which the
shear modulus and material density vary exponentially and vertically with respect
to the crack. The present work is an attempt to fill this gap in research. Here, we
attempt to give a theoretical solution for this problem.

In the present paper, the effect of the lattice parameter of functionally graded
materials on dynamic stress fields near Mode-I crack tips is investigated using
nonlocal theory in functionally graded materials with the Schmidt method [Morse
and Feshbach 1958; Yau 1967]. When the lattice parameter of materials tends to
zero, the present problem will revert to the same problem as in [Zhou et al. 2004].
To make the analysis tractable, it is assumed that the shear modulus and the material
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density vary exponentially and vertically with respect to the crack. To overcome
the mathematical difficulties, a one-dimensional nonlocal kernel is used instead of
a two-dimensional one for the dynamic problem of obtaining the stress fields near
the crack tips.

The traditional concepts of nonlocal theory are extended to solve the dynamic
fracture problem of functionally graded materials. The Fourier transform is ap-
plied and a mixed boundary value problem is reduced to two pairs of dual integral
equations. To solve the dual integral equations, the jumps of displacements across
crack surfaces are expanded in a series of Jacobi polynomials. Numerical solutions
are obtained for the stress fields near the crack tips. Contrary to previous results, it
is found that the solution does not contain any stress singularities at the crack tips.

2. Formulation of the problem

We assume that there is a crack of length 2` along the x-axis in a functionally
graded material plane, as shown in Figure 1. In this paper, the harmonic elastic
stress wave is vertically incident. Let ω be the circular frequency of the incident
wave, τ0 a magnitude of the incident wave, and

u( j)
0 (x, y, t) and v

( j)
0 (x, y, t)

are components of the displacement vectors. τ ( j)
ik0(x, y, t), (i, k = x, y) are com-

ponents of stress fields. Note that the superscript j = 1, 2 corresponds to the half-
planes y ≤ 0 and y ≥ 0 throughout this paper and as shown in Figure 1. Because
the incident wave is an harmonic stress wave, all field quantities of

u( j)
0 (x, y, t), v

( j)
0 (x, y, t) and τ

( j)
ik0(x, y, t)

can be assumed to be of the following forms:

[u( j)
0 (x, y, t), v( j)

0 (x, y, t), τ ( j)
ik0(x, y, t)]

= [u( j)(x, y), v( j)(x, y), τ ( j)
ik (x, y)]e−iωt . (1)

In what follows, the time dependence of e−iωt will be suppressed but understood.
Here, the standard superposition technique was used. As discussed in [Eringen
et al. 1977] and [Srivastava et al. 1983], the boundary conditions can be written as
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Figure 1. Geometry of a finite crack in the functionally graded materials.

follows. (In this paper, we consider just the perturbation fields.)

τ (1)yy (x, 0)= τ (2)yy (x, 0)=−τ0, τ
(1)
xy (x, 0)= τ (2)xy (x, 0)= 0, |x | ≤ ` (2)

τ (1)yy (x, 0)= τ (2)yy (x, 0), τ (1)xy (x, 0)= τ (2)xy (x, 0), |x |> ` (3)

u(1)(x, 0)= u(2)(x, 0), v(1)(x, 0)= v(2)(x, 0), |x |> ` (4)

u( j)(x, y)= 0, v( j)(x, y)= 0, ( j = 1, 2) for
√

x2+ y2→∞ (5)

3. Basic equations of nonlocal functionally graded materials

The basic equations of a plane of linear, non-homogeneous, isotropic, nonlocal
functionally graded materials with variable shear modulus, variable material den-
sity and vanishing body force are given by Equations (6) and (7) [Suresh and
Mortensen 1977; Nowinski 1984b]. (We assume here that the shear modulus and
density function vary exponentially and vertically with respect to the crack.)

∂τ
( j)
xx (x, y)
∂x

+
∂τ

( j)
xy (x, y)
∂y

=−ρ(y)ω2u( j)(x, y), ( j = 1, 2) (6)

∂τ
( j)
xy (x, y)
∂x

+
∂τ

( j)
yy (x, y)
∂y

=−ρ(y)ω2v( j)(x, y). ( j = 1, 2) (7)



452 ZHEN-GONG ZHOU, JUN LIANG AND LIN-ZHI WU

The following relationships were used in Equations (6)–(7)

− ρ(y)ω2u( j)(x, y)e−iωt
= ρ(y) ∂

2u( j)
0 (x,y,t)
∂t2 = ρ(y) ∂

2(u( j)(x,y)e−iωt )

∂t2 , (8)

−ρ(y)ω2v( j)(x, y)e−iωt
= ρ(y) ∂

2v
( j)
0 (x,y,t)
∂t2 = ρ(y) ∂

2(v( j)(x,y)e−iωt )

∂t2 , (9)



τ
( j)
xx (x, y)=

∫
∞

−∞

∫
∞

−∞
µ∗(|x ′− x |, |y′− y|)[

1+k
k−1

∂u( j)(x ′,y′)
∂x ′ +

3−k
k−1

∂v( j)(x ′,y′)
∂y′

]
dx ′dy′,

τ
( j)
yy (x, y)=

∫
∞

−∞

∫
∞

−∞
µ∗(|x ′−x |, |y′−y|)[

1+k
k−1

∂v( j)(x ′,y′)
∂y′ +

3−k
k−1

∂u( j)(x ′,y′)
∂x ′

]
dx ′dy′,

τ
( j)
xy (x, y)=

∫
∞

−∞

∫
∞

−∞
µ∗(|x ′− x |, |y′−y|)[

∂v( j)(x ′,y′)
∂x ′ +

∂u( j)(x ′,y′)
∂y′

]
dx ′dy′,

( j = 1, 2), (10)

where k= 3−4η for the plane strain state and k= (3−η)/(1+η) for the generalized
plane stress state. µ∗(|x ′− x |, |y′− y|) is the shear modulus, ρ(y) is the material
density. In this paper, we consider only the plane strain problem. η is the Poisson’s
ratio, and is taken to be a constant, owing to the fact that its variation within a
practical range has a rather insignificant influence on the stress fields near the crack
tips.

In the constitutive Equations (10), the only difference from classical elastic the-
ory is that the stress

τ
( j)
ik (x, y)(i, k = x, y)

at a point (x, y) depends on

u( j)
,k (x, y) and v

( j)
k (x, y)

at all points of the body. As discussed in [Eringen and Kim 1974; 1977; Eringen
1977], it can be assumed in the form for which the dispersion curves of plane elastic
waves coincide with those known in lattice dynamics. Among several possible
curves the following has been found to be very useful.

µ∗(|x ′− x |, |y′− y|)= µ(y′)α(|x ′− x |, |y′− y|), (11)

where α(|x ′− x |, |y′− y|) is known as the influence function.
Crack problems in functionally graded materials do not appear to be analytically

tractable for arbitrary variations of material properties. Usually one tries to gener-
ate forms of non-homogeneity for which the problem becomes tractable. As with
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the treatment of the crack problem for isotropic non-homogeneous materials in
[Koizumi 1993; Lee and Erdogan 1994; Suresh and Mortensen 1977; Choi 2001;
Delae and Erdogan 1988; Ozturk and Erdogan 1996], we assume that the shear
modulus and the material density are described by

µ(y)= µ0 eγ y, ρ(y)= ρ0 eγ y, (12)

where γ is a constant that describes the functionally graded materials; µ0 and ρ0

are the shear modulus and the material density along y = 0, respectively; and
γ 6= 0 is the case for the functionally graded materials. When γ = 0, it returns to
the homogeneous material case.

Substituting Equations (10) for Equations (6)–(7) and using Equations (11)–(12)
and the Green–Gauss theorem leads to

µ0

∫
∞

−∞

∫
∞

−∞

α|x ′− x |, |y′− y|) eγ y′

[
(1+k)

∂2u( j)

∂x ′2
+ (k−1)

∂2u( j)

∂y′2
+ 2

∂2v( j)

∂x ′∂y′
+ (k−1)γ

(
∂u( j)

∂y′
+
∂v( j)

∂x ′

)]
dx ′dy′

−

∫ `

−`

α|x ′− x |, |0|)[[[σ ( j)
xy (x

′, 0)]]]dx ′ = −ρ(y)ω2u( j)(x, y) (13)

µ0

∫
∞

−∞

∫
∞

−∞

α|x ′− x |, |y′− y|) eγ y′

{
(1+k)

∂2v( j)

∂y′2
+(k−1)

∂2v( j)

∂x ′2
+2

∂2u( j)

∂x ′∂y′
+ γ

[
(1+k)

∂v( j)

∂y′
+(3−k)

∂u( j)

∂x ′

]}
dx ′dy′

−

∫ `

−`

α|x ′− x |, |0|) [[[σ ( j)
yy (x

′, 0)]]]dx ′ =−ρ(y)ω2v( j)(x, y), (14)

where

σ ( j)
yy (x, y)= µ0eγ y

[
1+ k
k− 1

∂v( j)(x, y)
∂y

+
3− k
k− 1

∂u( j)(x, y)
∂x

]
(15)

and

σ ( j)
xy (x, y)= µ0eγ y

[
∂v( j)(x, y)

∂x
+
∂u( j)(x, y)

∂y

]
. (16)

The bold brackets in Equations (13)–(14) indicate a jump at the crack line, that is,

[[[σ ( j)
xy (x, 0)]]] = σ (2)xy (x, 0+)− σ (1)xy (x, 0−), (17)

[[[σ ( j)
yy (x, 0)]]] = σ (2)yy (x, 0+)− σ (1)yy (x, 0−); (18)
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Expressions (15)–(16) are the classical constitutive equations. Here the surface
integral may be dropped since the displacement field vanishes at infinity as shown
in Equations (13)–(14).

4. The dual integral equations

As discussed in [Eringen et al. 1977], we see that

[[[σ ( j)
xy (x, 0)]]] = 0 , [[[σ ( j)

yy (x, 0)]]] = 0. (19)

What remains now is to solve the integrodifferential equations (13)–(14) for func-
tions u( j)(x, y) and v( j)(x, y), ( j = 1, 2). It is impossible to obtain a rigorous solu-
tion at the present stage. It seems obvious that in the solution of such a problem we
encounter serious, if not insurmountable, mathematical difficulties and must resort
to an approximation procedure. In the given problem, as discussed in [Nowinski
1984b; 1984a; Zhou and Wang 2002b], we assume that the nonlocal interaction in
the y direction is ignored. This is purely an assumption for mathematical tractabil-
ity. In view of our assumptions, we can state that{

α|x ′− x |, |y′− y|)= α0(|x ′− x |)δ(y′− y),

α0(|x ′− x |)= 1
√
π
(βα exp[−(β/α2(x ′− x)2],

(20)

where β is a constant and can be determined by experiment, and where a is the
characteristic length. The characteristic length may be selected according to the
range and sensitivity of the physical phenomena. For instance, for a perfect crys-
tal, a may be taken as the lattice parameter. For a granular material, a may be
considered to be the average granular distance and, for a fiber composite, the fiber
distance, etc. In the present paper, a is taken to be the lattice parameter. From
Equations (13)–(14), we have

∫
∞

−∞

α0(|x ′− x |)eγ y
[
(1+k)

∂2u( j)

∂x ′2
+ (k−1)

∂2u( j)

∂y2 + 2
∂2v( j)

∂x ′∂y

+(k−1)γ
(
∂u( j)

∂y
+
∂v( j)

∂x ′

)]
dx ′ =−

ρ0

µ0
ω2u( j), (21)

∫
∞

−∞

α0(|x ′− x |)eγ y
{
(1+k)

∂2v( j)

∂y2 + (k−1)
∂2v( j)

∂x ′2
+ 2

∂2u( j)

∂x ′∂y

+ γ

[
(1+k)

∂v( j)

∂y
+ (3−k)

∂u( j)

∂x ′

]}
dx ′ =−

ρ0

µ0
ω2v( j). (22)
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To solve the problem, the Fourier transform of Equations (21)–(22) with x can be
given as follows:

− s2(1+k)ū( j)
+ (k−1)

∂2ū( j)

∂y2 − 2s
∂v̄( j)

∂y

+ (k−1)γ
(
∂ ū( j)

∂y
− sv̄( j)

)
=−

ρ0

µ0ᾱ0
ω2ū( j), (23)

(1+k)
∂2v̄( j)

∂y2 − s2(k−1)v̄+ 2s
∂ ū( j)

∂y

+ γ

[
(1+k)

∂v̄( j)

∂y
+ s(3−k)ū

]
= −

ρ0

µ0ᾱ0
ω2v̄( j). (24)

Throughout the paper a superposed bar indicates the Fourier transform.
Because of the symmetry, it suffices to consider the problem for x ≥ 0, |y|<∞.

The above systems governing Equations (23)–(24) are solved using the Fourier in-
tegral transform to obtain the general expressions for the displacement components
as u(1)(x, y) = 2

π

∫
∞

0
∑2

i=1 Ai (s) e−λi+2 y sin(sx) ds,

v(1)(x, y) = 2
π

∫
∞

0
∑2

i=1 mi+2(s)Ai (s) e−λi+2 y cos(sx) ds ,
(y ≥ 0) (25)

u(2)(x, y) = 2
π

∫
∞

0
∑2

i=1 Bi (s) e−λi y sin(sx) ds,

v(2)(x, y) = 2
π

∫
∞

0
∑2

i=1 mi (s)Bi (s) e−λi y cos(sx) ds,
(y ≥ 0) (26)

and from Equations (15) and (16), the stress components are obtained as


σ
(1)
yy (x, y)= 2µ0eγ y

π(k−1)

∫
∞

0
∑2

i=1[−(k+1)mi+2(s)λi+2],

+s(3−k)]Ai (s) e−λi+2 y cos(sx) ds,

σ
(1)
xy (x, y)= 2µ0eγ y

π

∫
∞

0
∑2

i=1[−λi+2−mi+2(s)s]Ai (s)e−λi+2 y sin(sx) ds,

(y ≤ 0) (27)


σ
(2)
yy (x, y)= 2µ0eγ y

π(k−1)

∫
∞

0
∑2

i=1[−(k+1)mi (s)λi ,

+s(3−k)]Bi (s) e−λi y cos(sx) ds,

σ
(2)
xy (x, y)= 2µ0eγ y

π

∫
∞

0
∑2

i=1[−λi −mi (s)s]Bi (s)e−λi y sin(sx) ds,

(y ≥ 0) (28)
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where s is the transform variable. A1, A2, B1 and B2 are arbitrary unknowns, and
λi (s) (i = 1, 2, 3, 4) are the roots of the characteristic equation

λ4
− 2λ3γ + (γ 2

− 2s2)λ2
+ 2γ s2λ+ s4

+
3−k
k+1

γ 2s2

+
2kρ0ω

2

(k+1)µ0α0(s)
(−s2
+ λ2
− γ λ)+

k−1
k+1

(
ρ0ω

2

µ0α0(s)

)2

= 0, (29)

and mi (s) (i = 1, 2, 3, 4) is expressed for each root λi (s) as

mi (s)=
−(k+1)s2

+ (k−1)λ2
i − γ (k−1)λi

−2sλi + sγ (k−1)
. (30)

Equation (29) can be rewritten in the following form

(λ2
− λγ − s2)2+

3−k
k+1

γ 2s2
+

2kc2
1(λ

2
− γ λ− s2)

k+ 1
+

c4
1(k− 1)
k+ 1

= 0, (31)

where

c2
1 =

c2

α0(s)
and c2

=
ρ0ω

2

µ0
.

The roots may be obtained as

λ1 =
1
2

(
γ +

√√√√
γ 2− 4

(
kc2

1

k+1
− s2−

√
c4

1

(k+1)2
−

s2γ 2(3−k)
k+ 1

) )
, (32)

λ2 =
1
2

(
γ +

√√√√
γ 2− 4

(
kc2

1

k+1
− s2+

√
c4

1

(k+1)2
−

s2γ 2(3−k)
k+ 1

) )
, (33)

λ3 =
1
2

(
γ −

√√√√
γ 2− 4

(
kc2

1

k+1
− s2−

√
c4

1

(k+1)2
−

s2γ 2(3−k)
k+ 1

) )
, (34)

λ4 =
1
2

(
γ −

√√√√
γ 2− 4

(
kc2

1

k+1
− s2+

√
c4

1

(k+1)2
−

s2γ 2(3−k)
k+ 1

) )
. (35)

From Equations (25)–(28), we can see that there are four unknown constants (in
Fourier space they are functions of s), that is, A1, A2, B1, and B2, which can be
obtained from the boundary conditions (2)–(4). To solve the present problem, the
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jumps of the displacements across the crack surfaces can be defined as follows:

f1(x)− u(2)(x, 0)− u(1)(x, 0), (36)

f2(x)− v(2)(x, 0)− v(1)(x, 0), (37)

where f1(x) is an odd function and f2(x) an even one.
Applying the Fourier transforms and the boundary conditions (2)–(4), we obtain

[X1]

[
B1(s)
B2(s)

]
− [X2]

[
A1(s)
A2(s)

]
=

[
f̄1(s)
f̄2(s)

]
, (38)

[X3]

[
B1(s)
B2(s)

]
= [X4]

[
A1(s)
A2(s)

]
, (39)

where the matrices [X i ] (i = 1, 2, 3, 4) can be seen in the Appendix.
From Equations (10), and using Equations (20), we have

τ (2)yy (x, y)=
∫
∞

−∞

α0(|x ′− x |)σ (2)yy (x
′, y) dx ′, (40)

τ (2)xy (x, y)=
∫
∞

−∞

α0(|x ′− x |)σ (2)xy (x
′, y) dx ′. (41)

Using the relations as follows [Gradshteyn and Ryzhik 1980]

I1=

∫
∞

−∞

exp (−px ′2)
{

sin ξ(x ′+x)
cos ξ(x ′+x)

}
dx ′=(π/p)

1
2 exp

(
−ξ 2

4p

){
sin(ξ x)
cos(ξ x)

}
, (42)

we have

τ (2)yy (x, y)=

2µ0eγ y

π(k− 1)

∫
∞

0e−
s2
4p

[
2∑

i=1

gi (s)Bi (s)+
2∑

i=1

gi+2(s)Ai (s)

]
cos(sx) ds, (43)

τ (2)xy (x, y)=

2µ0eγ y

π

∫
∞

0
e−

s2
4p

[
2∑

i=1

hi (s)Bi (s)+
2∑

i=1

hi+2(s)Ai (s)

]
sin(sx) ds, (44)

where

gi (s)=−(k+ 1)mi (s)λi + s(3− k) and hi (s)=−λi −mi (s)s,

with (i = 1, 2, 3, 4), p =
(
β

a

)2.
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By solving the four expressions in Equations (38)–(39) with four unknown func-
tions A1, A2, B1 and B2, substituting those solutions for Equations (43)–(44), and
applying the boundary conditions (2)–(4) to the results, we have

τ (1)yy (x, 0)= τ (2)yy (x, 0)

=
2µ0

π(k− 1)

∫
∞

0
e−

s2
4p [d1(s) f̄1(s)+ d2(s) f̄2(s)] cos(sx) ds

=−τ0, 0≤ x ≤ `, (45)

τ (1)xy (x, 0)= τ (2)xy (x, 0)

=
2µ0

π

∫
∞

0
e−

s2
4p [d3(s) f̄1(s)+ d4(s) f̄2(s)] sin(sx) ds

= 0, 0≤ x ≤ `, (46)

∫
∞

0
f̄1(s) sin(sx)ds = 0, x > `, (47)∫

∞

0
f̄2(s) cos(sx)ds = 0, x > `, (48)

where

d1(s)= g1(s)e11(s)+ g2(s)e21(s)+ g3(s)c11(s)+ g4(s)c21(s),

d2(s)= g1(s)e12(s)+ g2(s)e22(s)+ g3(s)c12(s)+ g4(s)c22(s),

d3(s)= h1(s)e11(s)+ h2(s)e21(s)+ h3(s)c11(s)+ h4(s)c21(s),

d4(s)= h1(s)e12(s)+ h2(s)e22(s)+ h3(s)c12(s)+ h4(s)c22(s),

and where ei j (s) and ci j (s) (i = 1, 2, j = 1, 2) are non-zero constants, as can
be seen in the Appendix. To determine the unknown functions f̄1(s) and f̄2(s),
the dual integral equations in (45)–(48) must be solved. For the lattice parameter
a→ 0, then

d1(s)e
−

s2
4p , (i = 1, 2, 3, 4)

is equal to a non-zero constant and Equations (45)–(48) reduce to two pairs of
dual integral equations for the same problem in the classical functionally graded
materials case.
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5. Solution of the dual integral equations

The only difference between the classical and nonlocal equations is in the influence
functions di (s) (i = 1, 2, 3, 4). It is logical to utilize the classical solution to convert
the system of equations in (45)–(48) to two pairs of integral equations of the second
kind, since the latter is generally better behaved. For the lattice parameter a→ 0,
then

d1(s)e
−

s2
4p , (i = 1, 2, 3, 4)

is equal to a non-zero constant and Equations (45)–(48) reduce to two pairs of
dual integral equations for the same problem in classical elasticity. In the case of
(a→ 0), the present problem is the same as that discussed in [Zhou et al. 2004].
As we find in [Eringen et al. 1977], the dual integral equations (48)–(51) cannot
be transformed into a Fredholm integral equation of the second kind, because

d1(s)e
−

s2
4p /s, (i = 1, 2, 3, 4)

does not tend to a constant C (C 6= 0) for s → ∞. Of course, the dual equa-
tions (45)–(48) can be considered to be a single integral equation of the first kind
with discontinuous kernel. It is well known in the literature that integral equations
of the first kind are generally ill-posed in the sense of Hadamard, that is, small
perturbations of the data can yield arbitrarily large changes in the solution. This
makes the numerical solution of such equations quite difficult. To overcome this
difficulty, the Schmidt method [Morse and Feshbach 1958; Yau 1967] is used to
solve the dual integral equations (45)–(48).

From the nature of the displacement along the crack line, it can be shown that
the jumps of the displacements across the crack surface are finite, differentiable,
and continuum functions. Hence, the jumps of the displacements across the crack
surface can be expanded by the following series:

f1(x)=
∞∑

n=0

an P
( 1

2 ,
1
2 )

2n+1

( x
`

) (
1−

x2

`2

) 1
2

, for 0≤ x ≤ `, (49)

f1(x)= 0, for x > `, (50)

f2(x)=
∞∑

n=0

bn P
( 1

2 ,
1
2 )

2n

( x
`

) (
1−

x2

`2

) 1
2

, for 0≤ x ≤ `, (51)

f2(x)= 0, for x > `, (52)

where an and bn are unknown coefficients and

P
( 1

2 ,
1
2 )

n (x)
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is a Jacobi polynomial [Gradshteyn and Ryzhik 1980].
The Fourier transforms of Equations (49)–(52) are [Erdelyi 1954]

f̄1(s)=
∞∑

n=0

anG(1)
n

1
s

J2n+2(s`) , G(1)
n =
√
π (−1)n

0(2n+2+ 1
2)

(2n+ 1)!
, (53)

f̄2(s)=
∞∑

n=0

bnG(2)
n

1
s

J2n+1(s`) , G(2)
n =
√
π (−1)n

0(2n+1+ 1
2)

(2n)!
, (54)

where 0(x) and Jn(x) are the Gamma and Bessel functions, respectively.
Substituting Equations (53)–(54) for Equations (45)–(48), it can be shown that

Equations (47)–(48) are automatically satisfied. Equations (45)–(46) reduce to

2µ0

π(k− 1)

∞∑
n=0

∫
∞

0

1
s

e−
s2
4p [d1(s)anG(1)

n J2n+2(sl)

+ d2(s)bnG(2)
n J2n+2(sl)] cos(sx)ds =−τ0, 0≤ x ≤ `, (55)

∞∑
n=0

∫
∞

0

1
s

e−
s2
4p [d3(s)anG(1)

n J2n+2(sl)

+ d4(s)bnG(2)
n J2n+1(sl)] sin(sx)ds = 0 , 0≤ x ≤ `. (56)

The multi-valued functions λ1, λ2, λ3 and λ4 have branch points. We choose the
branches such that <(λ1) ≥ 0, <(λ2) ≥ 0, <(λ3) ≤ 0 and <(λ4) ≤ 0 are on the
path of integration. For large s, the integrands of Equations (55)–(56) almost all
decrease exponentially. So the semi-infinite integral in Equations (55)–(56) can be
evaluated numerically by Filon’s method. Equations (55)–(56) can now be solved
for the coefficients an and bn by the Schmidt method [Morse and Feshbach 1958;
Yau 1967]. Briefly, Equations (55)–(56) can be rewritten as

∞∑
n=0

an E∗n(x)+
∞∑

n=0

bn F∗n (x)=U0(x) , 0≤ x ≤ `, (57)

∞∑
n=0

anG∗n(x)+
∞∑

n=0

bn H∗n (x)= 0 , 0≤ x ≤ `, (58)

where E∗n(x), F∗n (x), G∗n(x) and H∗n (x) and U0(x) are known functions, and an

and bn are unknown coefficients.
From Equation (58), we obtain

∞∑
n=0

bn H∗n (x) = −
∞∑

n=0

anG∗n(x) . (59)
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This can now be solved for coefficients bn by the Schmidt method. Here, the form
−
∑
∞

n=0 anG∗n(x) will be considered temporarily as a known function. A set of
functions Pn(x), which satisfies the orthogonality condition∫ `

0
Pm(x)Pn(x)dx = Nnδmn , Nn =

∫ `

0
P2

n (x) dx, (60)

can be constructed from the function, H∗n (x), such that

Pn(x)=
n∑

i=0

Min

Mmn
, H∗i (x), (61)

where Mi j is the cofactor of the element di j of Dn , which is defined as

Dn =



d00, d01, d02, . . . , d0n

d10, d11, d12, . . . , d1n

d20, d21, d22, . . . , d2n

. . .

. . .

. . .

dn0, dn1, dn2, . . . , dnn


, di j =

∫ `

0
H∗i (x)H

∗

j (x) dx . (62)

Using Equations (59)–(62), we obtain

bn =

∞∑
j=n

Mnj

M j j
with q j =−

∞∑
i=0

ai
1

N j

∫ `

0
G∗i (x)Pj (x) dx . (63)

This can be rewritten as

bn =

∞∑
i=0

ai K ∗in , K ∗in =−

∞∑
j=n

q j
Mnj

N j M j j

∫ `

0
G∗i (x)Pj (x)dx . (64)

Substituting Equation (64) for Equation (57), we obtain
∞∑

n=0

anY ∗n (x)=U0(x) , Y ∗n (x)= E∗n(x)+
∞∑

i=0

K ∗ni F∗i (x) . (65)

This can now be solved for the coefficients an by the Schmidt method, again as
mentioned above. With the aid of Equation (64), the coefficients bn can be ob-
tained.

6. Numerical calculations and discussion

The coefficients an and bn are known, so that the entire stress field can be obtained.
In the case of the present study, τ (1)yy (x, y) and τ (1)xy (x, y) along the crack line can
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Figure 2. The stress along the crack line versus x/ l for l = 1.0,
wl/c = 0.2, γ l = 0.4, η = 0.23 and a/βl = 0.003.

be expressed as

τyy = τ
(1)
yy (x, 0)=

2µ0

π(k− 1)

∞∑
n=0

∫
∞

0

1
s

e−
s2
4p (66)

[d1(s)anG(1)
n J2n+2(s`)+ d2(s)bnG(2)

n J2n+2(s`)] cos(sx) ds,

τxy = τ
(1)
xy (x, 0)=

2µ0

π

∞∑
n=0

∫
∞

0

1
s

e−
s2
4p (67)

[d3(s)anG(1)
n J2n+2(s`)+ d4(s)bnG(2)

n J2n+2(s`)] sin(sx) ds.

When the lattice parameter a 6= 0, the semi-infinite integration and the series in
Equations (66)–(67) are convergent for any variable x , and they give finite stresses
along y = 0, so there are no stress singularities at crack tips. For −` < x < `,
τ
(1)
yy (x, 0)/τ0 is very close to negative unity. Hence, the solution of this paper can

also be proved to satisfy the boundary conditions (2). For x > `, τ (1)yy (x, 0)/τ0 pos-
sesses finite values diminishing from a finite value at x = ` to zero at x =∞. Since
a/β` > 1/100 represents a crack length of less than 100 atomic distances [Eringen
et al. 1977; Eringen 1978; 1979], and, for such submicroscopic sizes, other serious
questions arise regarding the interatomic arrangements and force laws, we do not
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Figure 3. The locally enlarged graph of Figure 2 near the crack tip.

pursue valid solutions at such small crack sizes. The semi-infinite integrals that
occur are easily evaluated because of the rapid diminution of the integrands. From
[Itou 1978; Zhou et al. 1999a], it can be seen that the Schmidt method is performed
satisfactorily if the first ten terms of the infinite series in Equations (57)–(58) are
retained. The results of this paper are shown in Figures 2–8. From the results, the
following observations are very significant:

(i) Nonlocal theory can be used to solve dynamic fracture problems in function-
ally graded materials subjected to harmonic stress waves. The traditional
concepts of nonlocal theory can be extended to solve the fracture problem
of functionally graded materials. When the lattice parameter, a → 0 the
present problem will revert to the same problem as discussed in [Zhou et al.
2004]. The dynamic stress fields can be directly obtained in the present paper.
However, the dynamic stress fields cannot be directly obtained in [Zhou et al.
2004]; only the stress intensity factors are given there.

(ii For a/β` 6= 0, it can be proved that the semi-infinite integration in Equa-
tions (66)–(67) and the series in Equations (66)–(67) are convergent for any
variable x . So the stresses give finite values all along the crack line, as shown
in Figures 2 and 3. Contrary to the classical theory solution, we find that no
stress singularities are present at the crack tips, and also that the present results
converge to the classical ones when far away from the crack tips. The nonlocal
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Figure 4. The stress at the crack tip versus γ l for a/βl = 0.003,
wl/c = 0.2, η = 0.23 and l = 1.0.

elastic solutions yield a finite hoop stress at the crack tips, thus allowing us
to use the maximum stress as a fracture criterion. The maximum stress does
not occur at the crack tips, but slightly away from it, as shown in Figure 3.
This phenomenon has been thoroughly substantiated in [Eringen 1983]. The
distance between the crack tip and the maximum stress point is very small, and
it depends on the crack length, the lattice parameter, the parameter describing
the functionally graded materials, and the frequency of the incident waves. As
shown in Figures 2 and 3, it can be seen that the shear stress τ (1)xy is equal to
zero for |x |< `. However, the shear stress τ (1)xy is not equal to zero for x ≥ `.
This inequality is caused by the shear modulus and mass density not being
symmetric with respect to the cracked plane. The shear stress is smaller than
the normal stress along the crack line.

(iii) Stresses at the crack tips become infinite as the lattice parameter a→ 0. This
is the classical continuum limit of square root singularity. This can be shown
from Equations (45)–(48). For a→ 0,

e−
s2
4p = 1,

Equations (45)–(48) will reduce to the dual integral equations for the same
problem in the classical functionally graded materials [Zhou et al. 2004].
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Figure 5. The stress at the crack tip versus η for γ l = 0.4, a/βl =
0.003, wl/c = 0.3, and l = 1.0.

These dual integral equations can be solved by using the singular integral
equation for the same problem in the local functionally graded materials case.
However, that stress singularities are present at the crack tips in the local
functionally graded materials problem is well known.

(iv) The stress fields τ (1)yy at crack tips are symmetric about the line γ ` = 0, as
shown in Figure 4. The stress fields τ (1)yy at the crack tips decrease with an in-
crease in the gradient parameter for γ ` <−1.0, and increase with the gradient
parameter reaching a peak near γ `=−0.5. They then decrease in magnitude
for γ ` < 0, as shown in Figure 4. In the case of γ ` > 0, the stress fields τ (1)yy

at the crack tips are symmetric, as in the case of γ ` < 0. This means that
by adjusting the gradient parameter of FGMs, dynamic stress fields near the
crack tips can be reduced. However, the shear stress fields τ (1)xy at the crack
tips increase almost linearly with an increase in the gradient parameter for all
γ `. In this case, the shear stress τ (1)xy is smaller than the normal stress τ (1)yy .

(v) The stress fields at the crack tips decrease with an increase in Poisson’s ratio
η, as shown in Figure 5. However, the changing ranges are small—that is, the
variation of Poisson’s ratio η within a practical range has a rather insignificant
influence on the stress value near crack tips as discussed in [Delae and Erdogan
1988; Ozturk and Erdogan 1996].
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Figure 6. The stress at the crack tip versus l for a/β = 0.003,
γ = 0.4, η = 0.23 and w/c = 0.2.

(vi) The stress fields at the crack tips increase non-linearly with an increase in
crack length, as shown in Figure 6. This is similar to results of classical frac-
ture theory. For classical fracture theory, the stress intensity factors increase
with an increase in crack length.

(vii) The dynamic stresses of τ (1)yy and τ (1)xy at the crack tips in functionally graded
materials tend to increase, with the frequency reaching a peak, and then de-
crease in magnitude, as shown in Figure 7. We can see that this conclusion is
the same as that of the fracture problem in isotropic homogeneous materials.

(viii) The effect of the lattice parameter of functionally graded materials on the
stress fields near the crack tips decreases with an increase in the lattice param-
eter, as shown in Figure 8. This phenomenon is discussed in [Eringen et al.
1977; 1978; 1979].
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Appendix

X1 =

[
1 1

m1(s) m2(s)

]
,

X1 =

[
1 1

m3(s) m4(s)

]
,

X3 =

[
g1(s) g2(s)
h1(s) h2(s)

]
,

X4 =

[
g3(s) g4(s)
h3(s) h4(s)

]
,

[X5] = [X1] − [X2][X4]
−1
[X3],[

e11(s) e12(s)
e21(s) e22(s)

]
= [X5]

−1,

[X6] = [X4]
−1
[X3][X5]

−1
=

[
c11(s) c12(s)
c21(s) c22(s)

]
.
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SEMI-ANALYTICAL SOLUTION FOR A VISCOELASTIC
PLANE CONTAINING MULTIPLE CIRCULAR HOLES

YUN HUANG, SOFIA G. MOGILEVSKAYA AND STEVEN L. CROUCH

The paper considers the problem of an infinite, homogeneous, isotropic vis-
coelastic plane containing multiple circular holes. Constant or time-dependent
loading is applied at infinity or on the boundaries of the holes. The sizes and
locations of the holes are arbitrary provided they do not overlap. The solution
of the problem is based on the use of the correspondence principle, and the
governing equation in the Laplace domain is a complex hypersingular boundary
integral equation written in terms of the unknown transformed displacements at
the boundaries of the holes. The main feature of this equation is that the material
parameters are only involved as multipliers for the terms other than the integrals
of transformed displacements. The unknown transformed displacements are ap-
proximated by truncated complex Fourier series with coefficients dependent on
the transform parameter. A system of linear algebraic equations is formulated
using Taylor series expansion for determining these coefficients. The viscoelas-
tic stresses and displacements are calculated through the viscoelastic analogs of
Kolosov–Muskhelishvili potentials, and an inverse Laplace transform is used to
provide the time domain solution. All the operations (space integration, Laplace
transform and its inversion) are performed analytically. The method described
in the paper enables the consideration of a variety of viscoelastic models. For
the sake of illustration, examples are given for the cases where the viscoelastic
solid responds as (i) a Boltzmann model in shear and elastically in dilatation,
(ii) a Boltzmann model in both shear and dilatation, and (iii) a Burgers model in
shear and elastically in dilatation. The accuracy and efficiency of the approach
are demonstrated by comparing selected results with the solutions obtained by
the finite element method (ANSYS) and the time stepping boundary element
approach.

1. Introduction

Circular cavities are frequently present in various engineering applications. Time-
independent problems involving multiple circular cavities have been extensively
studied. A comprehensive review of the literature related to elastic problems can
be found in [Crouch and Mogilevskaya 2003]. The solutions of various harmonic

Keywords: viscoelasticity, correspondence principle, boundary integral method, Laplace transform.
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and biharmonic problems have been obtained in [Bird and Steele 1991; 1992; Bird
1992]. More recently, [Chen et al. 2006c; 2006a; 2006b] described a null-field
integral equation approach for plane, anti-plane shear and torsion problems.

Efficient solutions of time-dependent problems involving a large number of cir-
cular cavities have not yet been published. The present paper aims to present such
a solution for linear viscoelastic problems.

Traditional methods of solving problems in linear viscoelasticity fall into three
categories. Methods in the first category are based on the use of the correspondence
principle. For these methods, the reformulated problem in Laplace space is solved
analytically or numerically (for example, using finite element or boundary element
methods), and the results are inverted into the time domain using numerical Laplace
transform inversion [Schapery 1962; Rizzo and Shippy 1971; Kusama and Mitsui
1982; Wang and Crouch 1982; Sun and Hsiao 1985; Carini and Gioda 1986; Lee et
al. 1994]. The accuracy of these methods depends on the choice of the appropriate
values for the transform parameters [Lee and Kim 1995], which changes with each
problem under consideration. This disadvantage limits the application of these
methods.

In the second category, a temporal integral equation is formulated using the
time-dependent Green’s functions, and the time history is divided into a number
of discrete steps. By approximating time-dependent unknowns by some functions
(for example, polynomials) at each time step and integrating them numerically or
analytically, the time convolution is replaced by a sum of integrals for all steps. In
general, the computation for one time step requires knowledge of the results from
all the previous steps [Lee and Kim 1995; Sim and Kwak 1988]. The amount of
computation therefore increases with time. If a linear or constant time interpolation
function is used, the influence from all previous steps can be stored in a time-
dependent function and updated after each step. In such cases, the computational
expense can be decreased to some extent [Shinokawa et al. 1985].

In the third category of solution procedures for problems in linear viscoelasticity,
a boundary integral equation involving time derivatives of the principal unknown
variables (for example, the displacements) is obtained using the differential con-
stitutive equation for a particular viscoelastic model and a weighted residual tech-
nique. A finite difference scheme is adopted to approximate the time derivatives,
which results in a time stepping algorithm, and the space integrals are carried out
using the boundary element method [Mesquita and Coda 2001; 2002b; 2003]. For
the special case in which all of the geometric features are circular, we suggested
a time stepping boundary integral method based on a truncated Fourier series ap-
proximation for the boundary variables [Huang et al. 2005c; 2005b; 2005a]. All
the space integrals can be evaluated analytically in this method. However, such
methods are based on the assumption of a constant viscoelastic Poisson’s ratio,
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which is physically unrealistic for practical materials. A volume integral must
be included in the analysis if one wishes to consider a time-dependent Poisson’s
ratio, and this requires the adoption of a finite element type approach, as done for
example in [Mesquita and Coda 2002a].

To overcome the disadvantages noted above for traditional methods of solution,
a new approach is desired. As an attempt in this direction, we describe here a
semi-analytical solution for the problem of an infinite viscoelastic plane containing
multiple holes. The time-independent analog of this approach has been presented
earlier in the series of papers [Mogilevskaya and Crouch 2001; 2002; Crouch and
Mogilevskaya 2003; Wang et al. 2003a; 2003b; Mogilevskaya and Crouch 2004;
Legros et al. 2004]. The technique presented in those papers was based on the use
of complex or real versions of the two-dimensional Somigliana’s formula. The
unknown variables on the circular boundaries were approximated by truncated
Fourier series. All the space integrals involved were evaluated analytically. In fact,
infinite Fourier series provide the analytical solution for this class of problems;
apart from round-off error, the only errors introduced in the numerical model are
due to truncation of the series.

In the present paper, we extend this technique to the area of linear viscoelasticity.
The solution presented in this paper is based on the correspondence principle and
the analytical Laplace transform and its inversion, rather than the time stepping
scheme used in our previous work [Huang et al. 2005c; 2005b; 2005a]. The gov-
erning equation for the problem in the Laplace domain is a complex hypersingular
boundary integral equation written in terms of the unknown transformed displace-
ments at the boundaries of the holes. A significant feature of this equation is that
the space integrals involving the unknown variables (the transformed boundary
displacements) do not include the material properties; the material parameters only
appear as multipliers for the terms involving transformed far-field stress and pore
pressures. The unknown transformed displacements on the circular boundary are
approximated by truncated complex Fourier series with the coefficients dependent
on the transform parameters. A system of linear algebraic equations is formed and
solved for these Fourier coefficients. The solution for stresses and displacements
anywhere in the viscoelastic plane is obtained in both the Laplace and time domains.
No specific physical model is involved in the governing complex variable hyper-
singular integral equation, which means that the method is capable of handling a
variety of viscoelastic models.

Several computational examples are given. In these examples, the viscoelas-
tic solid responds as a Boltzmann model in shear and elastically in dilatation; a
Boltzmann model in both shear and dilatation; and a Burgers model in shear and
elastically in dilatation. Three loading cases are considered:

(i) the viscoelastic plane is subjected to constant far-field stresses;
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(ii) the holes are subjected to constant pressure; and

(iii) the holes are subjected to time-dependent pressure.

The accuracy and efficiency of the method are examined by comparison to the
numerical solution obtained by commercial finite element software (ANSYS) or
by a time stepping boundary element approach [Huang et al. 2005b].

2. Problem formulation

Consider an infinite, isotropic, viscoelastic plane containing an arbitrary number
of nonoverlapping circular holes, as shown in Figure 1. A plane strain condition
is assumed. The holes are assumed to be either traction-free or subjected to time-
dependent uniform normal traction. The viscoelastic plane is subjected to time-
dependent far-field stress σ∞(t). Let R j , z j and L j denote the radius, center, and
boundary of the j th hole, and let p j (t) denote the time-dependent uniform normal
traction acting on L j (p j < 0 for compression). Any point of the plane is identified
by the complex coordinate z = x + iy. The global and local Cartesian coordinate
systems are shown in Figure 1. The direction of travel is clockwise for all the
boundaries L j . The unit tangent q points in the direction of travel and the unit
outward normal n points to the right of this direction, away from the viscoelastic
solid. The evolution of displacements and stresses in the perforated viscoelastic
solid is to be determined.
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Figure 1. An infinite viscoelastic plane with multiple circular
holes.
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3. Correspondence principle

The correspondence principle allows the time domain solution for a linear vis-
coelastic problem to be obtained from the solution of a corresponding elastic prob-
lem by employing the following procedure. By using the Laplace transform, the
time-dependent parameters for the original viscoelastic problem are removed by
replacing them by s-varying analogs of these parameters. The resulting problem is
formally equivalent to a linear elastic problem. However, the ‘elastic constants’ are
functions of the transform parameter s, as are the transformed boundary conditions
for the problem. By solving the corresponding elastic problem and taking the
inverse Laplace transform, the time-dependent solution is found [Lee 1955; Findly
et al. 1989].

The Laplace transform of a function f (t) and its inversion are defined as [Haber-
man 1998]

f ∗(s)≡ 0[ f (t)] =
∫
∞

0
f (t)e−st dt (Re s = ς ≥ 0),

f (t)≡ 0−1
[ f ∗(s)] =

1
2π i

∫ ς+i∞

ς−i∞
f ∗(s)est ds (t ≥ 0, ς ≥ 0),

(1)

where s is the transform parameter and ς is a vertical contour in the complex plane
chosen in such a way that all singularities of f ∗(s) are located to the left of it.

The general way to obtain the s-varying analog of the Young’s modulus E∗(s)
and Poisson’s ratio ν∗(s) from the constitutive equations of a viscoelastic model
is explained elsewhere (for example, [Wang and Crouch 1982]). Using the re-
lations among elastic constants, one can easily obtain the s-varying shear modu-
lus G∗(s), bulk modulus K ∗(s) and s-varying Kolosov–Muskhelishvili parameter
κ∗(s) (which equals 3−4ν∗(s) in plane strain and (3−ν∗(s))/(1+ν∗(s)) in plane
stress). In Section 6, G∗(s) and κ∗(s) are given for three different viscoelastic
models.

4. Basic equations

4.1. Basic hypersingular integral equation in the Laplace domain. The govern-
ing equation for the problem of a viscoelastic plane with holes (Figure 1) in the
Laplace domain is an analog of the complex hypersingular integral equation for the
corresponding elastic problems [Linkov and Mogilevskaya 1994; Mogilevskaya
and Linkov 1998; Linkov and Mogilevskaya 1998; Linkov 2002]. To state the
equation, let N be the number of holes; let i denote

√
−1 and z̄ the complex

conjugate of z; let u∗j (τ ; s)= u∗j,x(τ ; s)+ iu∗j,y(τ ; s) be the result of the Laplace
transform applied to the complex-valued displacement u(τ )= u j,x(τ )+ iu y(τ ) in
the global coordinate system on the boundary of the j-th hole; let σ∞,∗i j (s) (with i ,
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j representing x or y) be the components of far-field stress in the Laplace domain.
The problem is then described by the N equations (k = 1, 2, . . . , N )

1
2π i

N∑
j=1

(
2
∫

L j

u∗j (τ ; s)

(τ − ζ )2
dτ −

∫
L j

u∗j (τ ; s)
∂2

∂τ∂ζ
K1(τ, ζ ) dτ

−

∫
L j

u∗j (τ ; s)
∂2

∂τ̄ ∂ζ
K2(τ, ζ ) d τ̄

+
p∗j

2G∗

(
(1− κ∗)

∫
L j

dτ
τ − ζ

− κ∗
∫

L j

∂

∂ζ
K1(τ, ζ ) dτ +

∫
L j

∂

∂ζ
K2(τ, ζ ) d τ̄

))

=
κ∗+ 1
4G∗

(
p∗k −

(
σ∞,∗xx + σ

∞,∗
yy

)
−

d ζ̄
dζ

(
σ∞,∗yy − σ

∞,∗
xx − 2iσ∞,∗xy

))
, (2)

where G∗ stands for G∗(s) and likewise p∗j , p∗k , κ
∗, and the σ∞,∗i j ; d ζ̄ /dζ =

exp(−2iβ), where β is the angle between the axis Ox and the tangent at the point
ζ ; τ ∈ L j and ζ ∈ Lk for k = 1, 2, . . . , N ; and the kernels K1 and K2 are

K1(τ, ζ )= ln
τ − ζ

τ̄ − ζ̄
, K2(τ, ζ )=

τ − ζ

τ̄ − ζ̄
. (3)

4.2. The viscoelastic analog of the Kolosov–Muskhelishvili potentials. In the La-
place domain the displacements and stresses at any point of the viscoelastic plane
can be calculated using the viscoelastic analogs of the Kolosov–Muskhelishvili
potentials [Muskhelishvili 1963]

2G∗(s)u∗(z;s)= κ∗(s)ϕ∗(z;s)− z(∂/∂z)ϕ∗(z;s)−ψ∗(z;s), (4)

σ ∗xx(z;s)+ σ
∗

yy(z;s)= 4Re(∂/∂z)ϕ∗(z;s), (5)

σ ∗yy(z;s)− σ
∗

xx(z;s)+ 2iσ ∗xy(z;s)= 2
(
z̄(∂2/∂z2)ϕ∗(z;s)+ (∂/∂z)ψ∗(z;s)

)
, (6)

where, as in [Wang et al. 2003a],

ϕ∗(z; s)=
G∗(s)

π i(κ∗(s)+ 1)

N∑
j=1

∫
L j

u∗j (τ ; s)

τ − z
dτ +ϕ∞,∗(z; s) (7)

and

ψ∗(z; s)

=
G∗(s)

π i(κ∗(s)+ 1)

N∑
j=1

(
p∗j (s)

2G∗(s)

(∫
L j

τ̄ dτ
τ − z

+ κ∗(s)
∫

L j

ln(τ − z) d τ̄
)

+

∫
L j

u∗j (τ ; s)

τ − z
dτ −

∫
L j

u∗j (τ ; s)

τ − z
d τ̄ +

∫
L j

u∗j (τ ; s)τ̄

(τ − z)2
dτ
)
+ψ∞,∗(z; s), (8)
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with

ϕ∞,∗(z; s)=
σ∞,∗xx (s)+ σ∞,∗yy (s)

4
z, (9)

ψ∞,∗(z; s)=
σ∞,∗yy (s)− σ∞,∗xx (s)+ 2iσ∞,∗xy (s)

2
z.

After the displacements u∗j (τ ; s) on boundary L j ( j = 1, . . . , N ) have been ob-
tained from the solution of Equation (2), the displacements and stresses in the
Laplace domain at point z can be calculated using (4)–(6) and (7)–(9), provided
that the integrals involved in (7) and (8) can be evaluated.

5. Numerical solution

The Laplace domain equation (2) is similar to the corresponding equation for elas-
ticity (for example, equation (1) in [Wang et al. 2003a]). Thus, Equation (2) can
be solved in the same way as its elastic counterpart [Wang et al. 2003a]. The main
steps of the solution are outlined below.

5.1. Approximation of the boundary variables. The unknown displacement on
the boundary L j ( j = 1, . . . , N ) in the Laplace domain is approximated by a
truncated complex Fourier series as

u∗j (τ ; s)=
M j∑

m=1

D∗
−m, j (s)g

m
j (τ )+

M j∑
m=0

D∗m, j (s)g
−m
j (τ ), (10)

where the function g j (τ ) is defined as

g j (τ )=
R j

τ − z j
.

The unknown complex Fourier coefficients D∗
±m, j (s) (m = 1, . . . ,M j ) in (10)

are functions of the Laplace transform parameter s. In the following discussion,
we will omit the argument s in the expressions for the Fourier coefficients for
notational convenience.

With the substitution of the Fourier series representation (10) into Equation (2),
the unknown coefficients can be moved outside of the space integrals. The kernel
space integrals are the same as those for the elastic problem [Wang et al. 2003a].
Thus, we can use the results of the space integrals provided in that article. In this
way we obtain the following system of N complex algebraic equations, one for
each hole:
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Mk∑
m=1

m D∗
−m,k gm+1

k (ζ )+
(
D∗1,k + D∗1,k

)
+

Mk∑
m=2

m D∗m,k g1−m
k (ζ )

+

N∑
j=1
j 6=k

Rk

R j

( M j∑
m=1

m D∗
−m, j g

m+1
j (ζ )+

(
D∗1, j + D∗1, j

)
g2

k (ζ )g
2
j (ζ )

+

M j∑
m=2

m D∗m, j g
2
k (ζ )g

m+1
j (ζ )

+

M j∑
m=1

m D∗
−m, j

(
gm+1

j (ζ )− (m+ 2)g2
k (ζ )g

m+3
j (ζ )

+(m+ 1)
( Rk

R j
gk(ζ )+

g2
k (ζ )

g j (zk)

)
gm+2

j (ζ )

))

=
κ∗(s)+ 1
4G∗(s)

Rk
(
σ∞,∗xx + σ

∞,∗
yy − g2

k (ζ )(σ
∞,∗
yy − σ

∞,∗
xx − 2iσ∞,∗xy )

)
−

p∗k
G∗(s)

Rk −
1− κ∗(s)
2G∗(s)

Rk g2
k (ζ )

N∑
j=1
j 6=k

p∗j g2
j (ζ ) (11)

Similarly, with the substitution of Fourier series approximation (10) into (7) and
(8), and using the results of the space integrals provided in [Wang et al. 2003a],
the viscoelastic analogs of the Kolosov–Muskhelishvili potentials ϕ∗(z; s) and
ψ∗(z; s) are expressed as

ϕ∗(z; s)=
2G∗(s)
κ∗(s)+ 1

N∑
j=1

M j∑
m=1

D∗
−m, j g

m
j (z)+

σ∞,∗xx (s)+ σ∞,∗yy (s)

4
z, (12)

ψ∗(z; s)=
2G∗(s)
κ∗(s)+ 1

N∑
j=1

((
g2

j (z)+
z j

z− z j

) M j∑
m=1

m D∗
−m, j g

m
j (z) (13)

−
(
D∗1, j + D∗1, j

)
g j (z)−

M j∑
m=2

D∗m, j g
m
j (z)

)

−
1− κ∗(s)
1+ κ∗(s)

N∑
j=1

p∗j (s)R j g j (z)+
σ∞,∗yy (s)− σ∞,∗xx (s)+ 2iσ∞,∗xy (s)

2
z.

5.2. Reduction to a linear algebraic system. To find the unknown coefficients
D∗
−m, j (m = 1, . . . ,M j ) and D∗m, j (m = 1, . . . ,M j ) for j = 1, . . . , N , we need to

reduce the system (11) to a linear algebraic system. We showed in a previous paper



SEMI-ANALYTICAL SOLUTION FOR A VISCOELASTIC PLANE 479

[Wang et al. 2003a] that, excluding collocation, there are two equivalent methods to
obtain the linear algebraic system: (i) the Galerkin weighted residual method and
(ii) the Taylor series expansion method. Using a Taylor series expansion technique
[Wang et al. 2003a] a linear algebraic equation system is obtained as follows:

Mk∑
m=2

m D∗m,k g1−m
k (ζ )+

∞∑
n=1

N∑
j=1
j 6=k

Rk

R j

gn
k (z j )

gn
k (ζ )

M j∑
m=1

m
(m+n

n

)
D∗
−m, j g

m+1
j (zk)

+ 2 Re(D∗1,k)+
N∑

j=1
j 6=k

Rk

R j

M j∑
m=1

m
(

D∗
−m, j g

m+1
j (zk)+ D∗

−m, j g
m+1
j (zk)

)

+

Mk∑
m=1

m D∗
−m,k gm+1

k (ζ )

+

∞∑
n=1

N∑
j=1
j 6=k

Rk

R j
gn

k (z j )gn
k (ζ )

M j∑
m=1

m
(m+n

n

)
D∗
−m, j g

m+1
j (zk)

+

∞∑
n=0

N∑
j=1
j 6=k

Rk

R j
gn

k (z j )

(
gn+2

k (ζ )

(
2(n+ 1)Re(D∗1, j )g

2
j (zk)

+

M j∑
m=2

m
(m+n

n

)
D∗m, j g

m+1
j (zk)

−

M j∑
m=1

m(m+ 2)
(m+n+2

n

)
D∗
−m, j g

m+3
j (zk)

+

M j∑
m=1

m(m+ 1)
(m+n+1

n

)
D∗
−m, j

gm+2
j (zk)

g j (zk)

)

−gn+1
k (ζ )

M j∑
m=1

m(m+ 1)
(m+n+1

n

)
D∗
−m, j g

m+1
j (zk)gk(z j )

)

=
κ∗(s)+ 1
4G∗(s)

Rk
(
σ∞,∗xx + σ

∞,∗
yy

)
−

p∗k
G∗(s)

Rk

−
κ∗(s)+ 1
4G∗(s)

Rk g2
k (ζ )

(
(σ∞,∗yy − σ

∞,∗
xx − 2iσ∞,∗xy )

)
−

1− κ∗(s)
2G∗(s)

Rk

∞∑
n=0

(n+ 1)gn+2
k (ζ )

N∑
j=1
j 6=k

p∗j g2
j (zk)gn

k (z j ). (14)
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By equating the coefficients of the positive powers gl+1
k (t) ( 1 ≤ l ≤ Mk), the

constant terms, and the negative powers g1−l
k (t) ( 2 ≤ l ≤ Mk) in (14), we obtain

a system of 2Mk ( k = 1, . . . , N ) linear complex algebraic equations for all the
Fourier coefficients. To simplify the notation, we set

RHS1(s)=−
κ∗(s)+ 1
4G∗(s)

Rk(σ
∞,∗
yy (s)−σ∞,∗xx (s)− 2iσ∞,∗xy (s))

−
1− κ∗(s)
2G∗(s)

Rk

N∑
j=1
j 6=k

p∗j (s)g
2
j (zk)

and, for l = 2, . . . ,Mk ,

RHSl(s)=−
1− κ∗(s)
2G∗(s)

Rk

N∑
j=1
j 6=k

p∗j (s)g
2
j (zk)gl−1

k (z j ).

The desired system is

D∗
−l,k −

N∑
j=1
j 6=k

gl
k(z j )

( M j∑
m=1

(l + 1)
(m+l

l+1

)
D∗
−m, j g

m
j (zk)

×

(
g j (zk)

g j (zk)
−

m+ l + 1
l + 1

g2
k (z j )−

m+ l + 1
m+ 1

g2
j (zk)

)

+ 2 Re(D∗1, j )g j (zk)+

M j∑
m=2

(m+l−1
l

)
D∗m, j g

m
j (zk)

)
= RHSl(s), (15)

Re D∗1,k +
1
2

N∑
j=1
j 6=k

Rk

R j

M j∑
m=1

m
(
D∗
−m, j g

m+1
j (zk)+ D∗

−m, j g
m+1
j (zk)

)
=
κ∗(s)+ 1
8G∗(s)

Rk
(
σ∞,∗xx (s)+ σ∞,∗yy (s)

)
−

p∗k (s)
2G∗(s)

Rk, (16)

D∗l,k −
N∑

j=1
j 6=k

gl
k(z j )

M j∑
m=1

(m+l−1
l

)
D∗
−m, j g

m
j (zk)= 0 (l = 2, . . . ,Mk). (17)

The system (15)–(17) can be written in compact form as

AD = B. (18)

The matrix A is s-independent and can be inverted directly and stored in computer
memory. The unknown vector D is s-dependent and is defined as

D =
[

D∗1(s) . . . D∗N (s)
]T
,
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where each subvector, such as D∗j (s), is a vector of unknown Fourier coefficients
for one hole, given by

D∗j (s)=
[

D∗
−M j , j (s) . . . D∗

−1, j (s) Re(D∗1, j (s)) D∗2, j (s) . . . D∗M j , j (s)
]T
.

The vector B on the right is composed of loading terms multiplied by certain
constants involving the transformed material parameters. The three constants are(
κ∗(s)+ 1

)
/
(
4G∗(s)

)
,
(
1− κ∗(s)

)
/
(
2G∗(s)

)
, and 1/

(
2G∗(s)

)
. We decompose B

into three parts, each containing only one constant:

B = B(1)+ B(2)+ B(3),

where, for k = 1, . . . , N , we have set

B(1)l,k =


−
κ∗(s)+ 1
4G∗(s)

Rk
(
σ∞,∗yy (s)− σ∞,∗xx (s)− 2iσ∞,∗xy

)
(s) (l =−1),

κ∗(s)+ 1
4G∗(s)

Rk
σ∞,∗xx (s)+ σ∞,∗yy (s)

2
(l = 1),

0 (l =±2, . . . ,±Mk),

(19)

B(2)l,k =


−

1− κ∗(s)
2G∗(s)

Rk

∑N
j=1
j 6=k

p∗j (s)g
2
j (zk) (l =−1),

−
1− κ∗(s)
2G∗(s)

Rk

∑N
j=1
j 6=k

p∗j (s)g
2
j (zk)g−l−1

k (z j ) (l =−Mk, . . . ,−2),

0 (l = 1, . . . ,Mk),

(20)

B(3)l,k =


1

2G∗(s)

(
−p∗k (s)Rk

)
(l = 1),

0 (l =−1,±2, . . . ,±Mk).

(21)

Assume for simplicity that all components of the far-field stress vary in the same
time-dependent manner; for example,

σ∞i j (t)= σ̃
∞

i j · f∞(t),

where i, j represent x, y. Thus, in the Laplace domain the far-field stress is ex-
pressed by

σ
∞,∗
i j (s)= σ̃∞i j · f ∗

∞
(s), (22)

where the s-dependent function f ∗
∞
(s) is given as

f ∗
∞
(s)= 0

[
f∞(t)

]
=

∫
∞

0
f∞(t)e−st dt.
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Similarly we assume that the tractions on the boundaries of the holes vary as

p j (t)= p̃ j · f p(t), j = 1, . . . , N .

Thus, in the Laplace domain the boundary tractions are expressed by

p∗j (s)= p̃ j · f ∗p (s).

Substituting this and (22) into (19)–(21) and separating the s-dependent terms, we
get

B(1) =
κ∗(s)+ 1
4G∗(s)

〈
B(1)

〉
f ∗
∞
(s),

B(2) =
1− κ∗(s)
2G∗(s)

〈
B(2)

〉
f ∗p (s),

B(3) =
1

2G∗(s)

〈
B(3)

〉
f ∗p (s),

where

〈
B(1)l,k

〉
=


−Rk

(
σ̃∞yy − σ̃

∞
xx − 2i σ̃∞xy

)
(l =−1),

1
2 Rk(σ̃

∞
xx + σ̃

∞
yy ) (l = 1),

0 (l =±2, . . . ,±Mk),

〈
B(2)l,k

〉
=


−Rk

∑N
j=1
j 6=k

p̃ j g2
j (zk) (l =−1),

−Rk

∑N
j=1
j 6=k

p̃ j g2
j (zk)g−l−1

k (z j ), (l =−Mk, . . . ,−2),

0 (l = 1, . . . ,Mk),

〈
B(3)l,k

〉
=

− p̃k Rk (l = 1),

0 (l =−1,±2, . . . ,±Mk).

Thus, the solution of equation system (18) can be written compactly as

D =
κ∗(s)+ 1
4G∗(s)

〈
D(1)〉 f ∗

∞
(s)+

1− κ∗(s)
2G∗(s)

〈
D(2)〉 f ∗p (s)+ 1

2G∗(s)

〈
D(3)〉 f ∗p (s), (23)

where the s-independent vectors
〈
D( j)

〉
( j = 1, . . . , 3) are the solution of the fol-

lowing equation systems 〈
D( j)〉

= A−1 〈B( j)〉 . (24)

We emphasize that A−1 is computed only once. The system (24) can also be solved
(after separating the real and imaginary parts) using standard numerical methods
(Gauss elimination, Gauss–Seidel iteration, etc.).
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5.3. Solution in the Laplace domain. With the substitution of the solution for
Fourier coefficients (23) into the expressions for the potentials (12), followed by
substitution of those potentials and their derivatives into (4)–(6), one obtains the
solution for the displacements and stresses at any point z in the Laplace domain:

ux(z; s)+iu y(z; s)=
3∑

k=1

(
f ∗k (s)8k−z f ∗k+3(s)8

′

k− f ∗k+3(s)9k
)
+ f ∗5 (s)9(p)

+ f ∗7 (s)
σ̃∞xx + σ̃

∞
yy

2
z− f ∗4 (s)

(
σ̃∞yy − σ̃

∞

xx − 2i σ̃∞xy
)
z̄, (25)

σxx(z; s)+ σyy(z; s)= 4 Re
( 1

2 f ∗
∞
(s)8′1+ f ∗8 (s)8

′

2+ f ∗9 (s)8
′

3
)

+
(
σ̃∞xx + σ̃

∞

yy
)

f ∗
∞
(s), (26)

σyy(z; s)− σxx(z; s)+ 2iσxy(z; s)

= 2
(

z̄
(1

2 f ∗
∞
(s)8′′1 + f ∗8 (s)8

′′

2 + f ∗9 (s)8
′′

3
)

+
( 1

2 f ∗
∞
(s)9 ′1+ f ∗8 (s)9

′

2+ f ∗9 (s)9
′

3
)
+ f ∗8 (s)s

−19(p)′
)

+
(
σ̃∞yy − σ̃

∞

xx + 2i σ̃∞xy
)

f ∗
∞
(s), (27)

where 8(k), 9(k) (k = 1, . . . , 3) and 9(p) are given by

8(k) =

N∑
j=1

M j∑
m=1

〈
D(k)
−m, j

〉
gm

j (z),

9(k)
=

N∑
j=1

((
g2

j (z)+
z j

z− z j

) M j∑
m=1

m
〈
D(k)
−m, j

〉
gm

j (z)

−
( 〈

D(k)
1, j

〉
+
〈
D(k)

1, j

〉 )
g j (z)−

M j∑
m=2

〈
D(k)

m, j

〉
gm

j (z)
)
,

9(p)
=

N∑
j=1

p̃ j R j g j (z).

Note that 8(k), 9(k) and 9(p) are independent of the transform parameter s.
In these equations the s-independent Fourier coefficients

〈
D(k)

m, j

〉
, for m = ±1,

. . . , ±M j , are the components of the vectors
〈
D(k)

〉
(k = 1, . . . , 3) obtained from

the equation systems (24).
The s-dependent functions involved in Equations (25)–(27) are written as

f ∗1 (s)=
κ∗(s)

4G∗(s)
f ∗
∞
(s), f ∗2 (s)=

1
2G∗(s)

κ∗(s)
(
1− κ∗(s)

)
κ∗(s)+ 1

f ∗p (s),
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f ∗3 (s)=
1

2G∗(s)
κ∗(s)

κ∗(s)+ 1
f ∗p (s), f ∗4 (s)=

1
4G∗(s)

f ∗
∞
(s),

f ∗5 (s)=
1

2G∗(s)
1− κ∗(s)
κ∗(s)+ 1

f ∗p (s), f ∗6 (s)=
1

2G∗(s)
1

κ∗(s)+ 1
f ∗p (s),

f ∗7 (s)=
κ∗(s)− 1
4G∗(s)

f ∗
∞
(s), f ∗8 (s)=

1− κ∗(s)
κ∗(s)+ 1

f ∗p (s),

f ∗9 (s)=
1

κ∗(s)+ 1
f ∗p (s).

Note again that the space functions 8(k), 9(k) (k = 1, 2, 3) and 9(p) are indepen-
dent of the viscoelastic model and the time-dependent behavior for the loadings:
f∞(t) and f p(t). Thus the procedure is universal for any viscoelastic model and
any loading situation.

5.4. Solution in the time domain. Upon application of the analytical inverse La-
place transform, equations (25)–(27) become

ux(z; t)+ iu y(z; t)=
3∑

k=1

(
fk(t)8k− z fk+3(t)8′k− fk+3(t)9k

)
+ f5(t)9(p)

+ f7(t)
σ̃∞xx + σ̃

∞
yy

2
z− f4(t)

(
σ̃∞yy − σ̃

∞

xx − 2i σ̃∞xy
)
z̄, (28)

σxx(z; t)+ σyy(z; t)= 4 Re
( 1

2 f∞(t)8′1+ f8(t)8′2+ f9(t)8′3
)

+ σ∞xx (t)+ σ
∞

yy (t), (29)
σyy(z; t)− σxx(z; t)+ 2iσxy(z; t)

= 2
(

z̄
(1

2 f∞(t)8′′1 + f8(t)8′′2 + f9(t)8′′3
)

+
( 1

2 f∞(t)9 ′1+ f8(t)9 ′2+ f9(t)9 ′3
)
+ f8(t)s−19(p)′

)
+ σ∞yy (t)− σ

∞

xx (t)+ 2iσ∞xy (t), (30)

where f j (t) ( j = 1, . . . , 9) are the analytical inverse Laplace transforms (1) of the
s-functions, that is,

f j (t)= 0−1[ f ∗j (s)
]
. (31)

It is observed from Equations (28) and (30) that to compute the displacements
and stresses at multiple time instants, one need compute the potentials 8(k), 9(k),
9(p) and their derivatives only once (following the procedure described in Sec-
tions 5.1–5.3), and then successively multiply them by the time functions f j (t)
( j = 1, . . . , 9) for each time instant. This procedure dramatically reduces the com-
putational costs, as compared with time stepping approaches that use a nonconstant
time step size.
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Since the time dependence of the solutions is simply determined by the time
functions f j (t) ( j = 1, . . . , 9), the present approach provides the capability to
adopt a variety of physical models and loading conditions. It is more flexible than
the traditional time-stepping approach, in which the constitutive equation for the
physical model is involved in the governing equations; see [Huang et al. 2005c;
2005b; 2005a].

In the solution procedure, the Fourier coefficients are not computed explicitly.
The accuracy of the solution is nevertheless still dependent on the number of
Fourier terms, as can be seen from the expressions of the potentials (12). We
will perform the computation for given values Mk (k = 1 to N ), and then increase
the values of Mk until a specified degree of accuracy is achieved. Details about
determining the number of terms in the Fourier expansion and the error estimation
are given by [Mogilevskaya and Crouch 2001].

6. Examples

It is well known that for the class of problems considered in this paper the vis-
coelastic stresses are time-independent and are exactly same as the stresses in the
corresponding elastic problems [Timoshenko and Goodier 1970]. In our approach,
this conclusion can be rigorously proved for the case of one hole. For the case of
multiple holes it has been verified numerically for all the examples in this paper.
This fact provides the means to verify the solution for the stresses obtained with our
approach. To do so we performed the computation and compared the results for the
stresses to those for the elastic problems given in [Wang et al. 2003a] (the latter
results have been verified with the benchmark results obtained earlier by [Ling
1948] and [Haddon 1967]). We achieved the same accuracy as reported in [Wang
et al. 2003a].

Thus, below we only present the results for displacements. To demonstrate the
versatility of our approach we present the examples for three different viscoelastic
models.

6.1. Examples for viscoelastic model I. In this series of examples we assume that
the viscoelastic material responds as a Boltzmann model in shear and elastically in
dilatation (Figure 2). The constitutive equations for shear and dilatation are

G1+G2

G1
si j +

η

G1
ṡi j = 2G2εi j + 2ηε̇i j , σkk = 3K εkk,

where the meanings of the elastic and viscous parameters G1, G2 and η are ex-
plained in Figure 2. The numbers si j (σkk) and εi j (εkk) are the deviatoric (volu-
metric) components of the stress and strain tensors σi j and εi j :

σi j = si j +
1
3δi jσkk, εi j = εi j +

1
3δi jεkk .
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G1

G2

Figure 2. Boltzmann model.

Following the procedure described in [Wang and Crouch 1982], one can find the
s-varying constants for this model as follows:

G∗(s)=
G1(G2+ ηs)
G1+G2+ ηs

,

κ∗(s)= 1+
6G1(G2+ ηs)

G1(G2+ ηs)+ 3(G1+G2+ ηs)K
.

(32)

Assume that the stresses at infinity and the tractions on the boundaries of the
holes are suddenly applied at t = 0 and remain constant. Thus,

f∞(t)= 1 and f p(t)= 1.

By Laplace transformation, this yields

f ∗
∞
(s)=

1
s

and f ∗p (s)=
1
s
.

With the substitution of these equations and (32) into the expressions for f ∗i (see
pages 483–484), and after an analytic inverse Laplace transformation, one obtains
for the time functions the expressions

f1(t)= 1
4χ1(t), f2(t)=− 1

2χ1(t)+χ2(t)−χ3(t),

f3(t)= 1
2

(
χ2(t)−χ3(t)

)
, f4(t)= 1

4χ2(t),

f5(t)=− 1
2χ2(t)+χ3(t), f6(t)= 1

2χ3(t),

f7(t)= 1
4

(
χ1(t)−χ2(t)

)
f8(t)=−1+ 2χ4(t),

f9(t)= χ4(t),

(33)
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with

χ1(t)=
(G1+G2)(C2+ 3G1G2)

G1G2C1
−

1
G2

e−αt
−

6G2
1e−βt

(3K +G1)C1
,

χ2(t)=
1

G1
+

1− e−αt

G2
,

χ3(t)=
(G1+G2)C1

2G1G2C2
−

1
2G2

e−αt
+

6G2
1e−γ t

(3K + 4G1)C2
,

χ4(t)=
1
2
−

3G1G2

2C2
−

9K G2
1e−γ t

2(3K + 4G1)C2
,

where the following abbreviations have been introduced:

α =
G2

η
, (34)

β =
1
η

( 3K G1

3K +G1
+G2

)
,

C1 = 3K G2+G1(3K +G2),

γ =
1
η

( 3K G1

3K + 4G1
+G2

)
,

C2 = 3K G2+G1(3K + 4G2).

6.1.1. An example with constant far-field stresses. Consider two traction-free cir-
cular holes of different sizes in an infinite plane subjected to far-field stresses σ∞xx ,
σ∞yy and σ∞xy . As shown in Figure 3, two holes L1 and L2 with radii R1 and R2 are
aligned with the x- axis and separated by a distance d .

yy

A xx

B

 L2
xx

yy

 y 

 x  O 

d

 R2

 R1

 L1

 B 

A

Figure 3. Two circular holes in an infinite plane.
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The elastic problem with the same geometrical configuration under three loading
conditions (longitudinal tension: σ∞xx = σ0, σ

∞
yy = σ

∞
xy = 0; transverse tension:

σ∞yy = σ0, σ∞xx = σ
∞
xy = 0; and pure shear: σ∞xy = σ0, σ∞xx = σ

∞
yy = 0) was considered

in [Wang et al. 2003a]. By using the method described in the present paper, we
obtained the results for the corresponding viscoelastic problems. The parameters
were adopted for the viscoelastic material were

G1 = 8× 103σ0, G2 = 2× 103σ0, η = 5× 103σ0 · sec, K = 17333.3σ0,

To obtain the dimensionless time we used the viscosity coefficient γ = η/G2 = 2.5
second.

To examine the numerical results for displacements, the relative elongations of
the diameters of hole L1 in the x and y directions

δx =
ux(A)− ux(A′)

2R1
and δy =

u y(B)− u y(B ′)
2R1

(35)

are computed for the case R1/R2 = 5; d/R2 = 1 and σ∞xx = σ0, σ
∞
yy = 0.5σ0, σ∞xy =

0 and the results were compared with those obtained with the commercial finite
element software-ANSYS. Since ANSYS cannot directly model an infinite area,
the infinite viscoelastic plane was modeled as a large plate (200R2×200R2). Prony
series were adopted to approximate the relaxation functions of the shear and bulk
moduli and a time stepping algorithm was used to obtain the time domain solution
in ANSYS. With ANSYS, 4839 finite elements were used and the computation
took 2 hours 16 minutes on an IBM SP workstation (500 time steps). With the
present approach, only 36 terms in the Fourier series were used to represent the
boundary displacements for the two holes and the computation just took 19 seconds
with a 900 MHz PC (500 time instants). It is seen from Figure 4 that the results
given by the two approaches match very well.

6.1.2. An example with constant pressure. Consider the case of three holes shown
in Figure 5. The boundaries of two smaller holes with the radii R2 = R3 = R
are assumed to be traction-free. The central hole with the radius R1 (R1/R = 5)
is subjected to constant pressure p1 = −σ0. The three holes are separated by a
distance d = R. The material properties for the viscoelastic plane are the same as
those in the previous example.

The relative elongations of the diameters of the central hole L1 in the x and y
directions, given by (35), are computed and compared with the results provided by
ANSYS. It is seen from Figure 6 that the results given by the two approaches agree
very well. Due to the existence of holes L2 and L3 along the x axis, the change of
diameter of the central hole in the x direction is larger than that in the y direction.
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Figure 4. Change of diameter of the hole L1 due to far-field stresses.
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Figure 5. Three holes in an infinite plane with the central hole
subjected to constant pore pressure.

6.2. Examples for viscoelastic model II. In this series of examples we assume
that the viscoelastic material responds as a Boltzmann model in both shear and
dilatation, and the Poisson’s ratio ν is constant. As the result of these assumptions
the viscoelastic properties of the material can be represented by the constants G1,
G2, η (Figure 2) and ν.

Following the procedure described in [Wang and Crouch 1982], one can find
the s-varying constants for this model using the equations

G∗(s)=
G1 (G2+ ηs)
G1+G2+ ηs

, κ∗(s)= 3− 4ν.
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Figure 6. Change of diameter of the central hole due to a constant pressure.

In case that the stresses at infinity and the tractions on the boundaries of the holes
are kept constant, the time functions f j (t) ( j = 1, . . . , 9) can again be expressed
by Equations (33) with the functions χk(t) (k = 1, . . . , 4) given by

χ1(t)= (3− 4ν)
(

1
G1
+

1− e−αt

G2

)
, χ2(t)=

1
G1
+

1− e−αt

G2
,

χ3(t)=
1

4− 4ν

(
1

G1
+

1− e−αt

G2

)
, χ4(t)=

1
4− 4ν

,

where α is defined in Equation (34).

6.2.1. An example with constant far-field stresses. The geometry of this example
is the same as that depicted in Figure 5. The boundaries of all three holes are
assumed to be traction-free and the infinite plane is subjected to biaxial far-field
stresses σ∞xx = σ0 and σ∞yy = 0.5σ0. The material properties adopted in computation
were

G1 = 8× 103σ0, G2 = 2× 103σ0, η = 5× 103σ0 · sec, ν = 0.25.

The viscosity coefficient γ = η/G2 = 2.5 second was again employed. The
relative elongations of the diameters of the central hole L1 in the x and y directions,
given by Equation (35), are computed and compared with the results provided by
the time stepping approach described in [Huang et al. 2005b]. It is seen from
Figure 7 that the results given by the two approaches are practically identical. To
accomplish the computation of the same number (500) of time instants (or steps)
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Figure 7. Change of diameter of the central hole due to constant
far-field stresses.

and reach the same accuracy, the present approach used 35 terms of the Fourier se-
ries for each of the three circular holes and the computation took 42 seconds, while
the time stepping approach used 45 terms of the Fourier series for the central hole
and 12 terms of the Fourier series for the two smaller holes and the computation
took about twice as long, 1 minute 38 seconds. The difference can be explained as
follows: with the current approach, the algebraic equation systems are formulated
and solved only once and the same potentials (and their derivatives) are used for
the computation at every time instant; only the time functions f j (t) ( j = 1, . . . , 9)
need to be recomputed to obtain the stresses and displacements at different time
instants. In the time stepping approach, since the solution for a typical time step
relies on the results for the previous step, the system of algebraic equations needs
to be solved for each time step [Huang et al. 2005b].

6.2.2. An example with time-dependent pressure. Now we modify the loading con-
ditions in the previous example (Section 6.2.1) and assume that σ∞xx =σ

∞
yy = σ

∞
xy = 0

and the central hole is subjected to time-dependent pressure given in sinusoidal
form as

p1(t)=−σ0 (1+ c sinωt).

The boundaries of the other two holes are traction-free.
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Figure 8. Change of diameter of the central hole due to a time-
dependent pressure.

The time functions f j (t) ( j = 1, . . . , 7, 9) can again be expressed by the corre-
sponding equations in (33), with the functions χk(t) (k = 1, . . . , 4) given by

χ1(t)=
3− 4ν

G1G2(η2ω2+G2
2)

(
−G1(η

2ω2
− cηωG2+G2

2)e
−(G2/η)t

(1+ c sinωt)G2(η
2ω2
+G2

2+G1G2)+G1ηω(ηω− c cosωtG2)
)
,

χ2(t)=
1

3−4ν
χ1(t), χ3(t)=

1
(3−4ν)(4−4ν)

χ1(t), χ4(t)=
1

4−4ν
(1+c sinωt),

while

f8(t)=−(1+ c sinωt)+ 2χ4(t).

The material properties for this example are the same as those in the previous
subsection. In the computation, the following values for the pressure are adopted:
c = 0.5 and ω = 1 sec−1. The relative elongations of the diameters of the cen-
tral hole L1 in the x and y directions, given by Equation (35), are computed and
compared with the results provided by the time stepping approach in Figure 8. It
is seen that the results given by the two approaches are practically identical. The
behaviors of δx and δy are characterized by the combination of exponential and
sinusoidal functions.
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Figure 9. Burgers model.

6.3. Examples for viscoelastic model III. Here we take

s̈i j +

(G1

η1
+

G1

η2
+

G2

η2

)
ṡi j +

G1G2

η1η2
si j = 2G1ε̈i j + 2

G1G2

η2
ε̇i j , σkk = 3K εkk,

where the meanings of the elastic and viscous parameters G1, G2, η1 and η2 are
explained in Figure 9.

Following the procedure described in [Wang and Crouch 1982], one can find
the s-varying constants using the equations

G∗(s)=
G1s2

+
G1G2
η2

s

s2
+

(G1
η1
+

G1
η2
+

G2
η2

)
s+ G1G2

η1η2

,

κ∗(s)= 1+
6G1s2

+ 6 G1G2
η2

s

G1s2
+

G1G2
η2

s+ 3
(

s2
+

(G1
η1
+

G1
η2
+

G2
η2

)
s+ G1G2

η1η2

)
K
.

If the far-field stresses and the tractions on the boundaries of holes are both
constant, one can obtain the time functions f j (t) ( j = 1, . . . , 9) expressed by (33),
with the functions χk(t) (k = 1, . . . , 4) given as

χ1(t)=
1

K G1

(
K −

G2
1

3K+G1
e−αt(1+eβt)+G1

(
2+ K

G2
(1− e−%t)+

K
η1

t
)

+
e−αt(−1+eβt)G2

1

(
(3K G1−(3K+G1)G2)η1+3K G1η2

)
(3K+G1)C3

)
,

χ2(t)=
1

G1
+

1−e−%t

G2
+

1
η1

t,
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χ3(t)=
1

2K G1

(
K +

G2
1

3K+4G1
e−α

′t(1+ eβ
′t)+G1

(
−1+ K

G2
(1− e−%t)+

K
η1

t
)

−
2e−α

′t(−1+eβ
′t)G2

1

(
−3K G2η1+G1((3K−4G2)η1+3Kη2)

)
(3K+4G1)C ′3

)
,

χ4(t)=
1
2
−

3G1
4(3K+4G1)C ′3

(
eα
′t
(

3K G2η1+G1
(
(−3K+4G2)η1−3Kη2

)
+C ′3

)
+ e−α

′′t(
−3K G2η1+G1((3K−4G2)η1+ 3Kη2)+C ′3

))
,

where the constants that occur are

C1 = (3K +G1)η1η2,

C2 = 3K G2η1+G1
(
(3K +G2)η1+ 3Kη2

)
,

C3 =

√
−12K G1G2C1+C2

2 ,

C ′1 = (3K + 4G1)η1η2,

C ′2 = 3K G2η1+G1
(
(3K + 4G2)η1+ 3Kη2

)
,

C ′3 =
√
−12K G1G2C ′1+C ′22 ,

α =
C2+C3

2C1
, β =

C3

C1
, % =

G2

η2
, α′ =

−C ′2+C ′3
2C ′1

, α′′ =
C ′2+C ′3

2C ′1
.

6.3.1. An example with constant far-field stresses. Consider the same example de-
scribed in Section 6.1.1 (Figure 3). The geometric parameters are taken as follows:
R1/R2 = 5, d/R2 = 1. The holes are traction-free and the stresses at infinity
are given as σ∞xx = σ0, σ∞xx = σ

∞
xy = 0. The material properties adopted for the

computations are

G1 = 8× 103σ0, G2 = 2× 103σ0, η1 = 8× 103σ0 · sec,

η2 = 5× 103σ0 · sec, K = 17333.3σ0,

In this example the displacement ux along the straight line between the two points
(5R2, 0) and (6R2, 0) is computed for three time instants: t = 0 sec, t = 1 sec, and
t = 10 sec (Figure 10). The left end point (5R2, 0) is fixed. It can be observed that
the deformation keeps increasing with time. This can be explained by the linear
term in t in the time-dependent expressions for χ1, χ2, χ3, χ4 starting at the bottom
of the previous page.
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Figure 10. ux along the line between the two holes.

6.3.2. An example with constant far-field stresses and pressure. In this example,
we demonstrate the use of our method for solving problems involving multiple
randomly distributed holes. The same material properties are adopted as in the pre-
vious subsection. The viscoelastic plane is subjected to constant far-field stresses
σ∞xx = σ0, σ∞xx = σ

∞
xy = 0, and constant uniform pressure p =−σ0 is applied to one

of the holes. Figures 11–13 show contours of ux in the plane at three time instants:
t = 0 sec, t = 0.5 sec and t = 10 sec. It is shown that the plane is stretched and
that the displacements are increasing with time. The solution to this problem took
approximately 26 minutes on a 900 MHz PC.

Even though this problem only involves 12 holes, our approach can be used to
solve more complicated problems involving a larger number of holes of arbitrary
sizes and locations as long as none of the holes overlap, and with more complicated
loading conditions.

6.4. Special case of one hole. For the particular case of a single hole in an elastic
plane, the displacements on the boundary of the hole are exactly represented by a
two-term complex Fourier series [Muskhelishvili 1963]. This fact is retained for
the viscoelastic plane and the only nonzero ‘coefficients’ are〈

D(1)
−1

〉
=−R(σ̃∞yy − σ̃

∞

xx − 2i σ̃∞xy ), (36)〈
D(1)

1

〉
=

1
2 R(σ̃∞,∗xx + σ̃

∞

yy ),〈
D(3)

1

〉
=− p̃R.
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Figure 11. Contour of ux at t = 0 sec.

-40 -30 -20 -10 0 10 20 30 40
-30

-20

-10

0

10

20

30

p

Figure 12. Contour of ux at t = 0.5 sec.
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Figure 13. Contour of ux at t = 10 sec.

The time functions f j (t) ( j = 1, . . . , 9) can be obtained for the specific viscoelastic
model and loading condition, as explained in the examples above. Using (36) and
the time functions f j (t) and performing some algebraic manipulations one can
obtain the analytical solution for the special case of a single circular hole within
an infinite viscoelastic plane.

7. Concluding remarks

A complex variable boundary integral method combined with analytical Laplace
transform and its inversion is presented to obtain a semi-analytical solution for
the problem of an infinite viscoelastic plane containing multiple circular holes.
The method is based on the use of the correspondence principle and a complex
variable hypersingular integral equation for a corresponding elastic problem. A
significant feature of the governing integral equation is that the transformed mate-
rial parameters are not involved in the integral terms for the transformed boundary
displacements.

The main features of the solution for an analogous elastic problem are preserved
in the current method [Wang et al. 2003a]. The unknown displacements on the
circular boundaries of the holes in Laplace domain are approximated by truncated
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complex Fourier series with the coefficients dependent on the transform parame-
ter. A system of linear algebraic equations is formed by using the Taylor series
expansion. Solutions of stresses and displacements in Laplace domain are written
in terms of viscoelastic analogs of Kolosov–Muskhelishvili potentials, which are
defined through integrals of displacements on the boundaries of the holes. The time
domain solution for stresses and displacements are obtained using the analytical
inverse Laplace transform.

The present method has the following advantages:

(1) The time dependence of the viscoelastic solution is expressed through several
simple time functions. Thus, the method can easily incorporate a variety of
physical models and loading conditions.

(2) All the mathematical operations (space integration, direct and inverse Laplace
transforms) are performed analytically. The accuracy of the problem is only
dependent on the number of terms in the complex Fourier series and the only
error (apart from round-off) comes from the truncation of the Fourier series.
This method provides an analytical solution for the problem involving only
one hole, where the boundary displacements can be exactly expressed through
finite terms in the Fourier series.

(3) The matrix of the resulting system of linear algebraic equations is inverted
only once and the results are used for the calculation of the viscoelastic re-
sponses at any time instants. Thus, the method produces significant compu-
tational savings as compared with the numerical methods based on time step-
ping. The latter methods permit the use of a one-time inversion of the matrix
only if the time step size is constant. Our method has no such limitation.

(4) The number of degrees of freedom is much less than in finite element-based
methods.

The present approach allows a straightforward extension to the case where the
displacements are prescribed on the boundaries of the holes if the Poisson’s ratio
of the viscoelastic matrix is constant. The case with a time-dependent Poisson’s
ratio for the matrix and the displacements prescribed at the boundaries is more
complicated and needs more investigation.

Future developments of the approach might include the extension to problems
of multiple circular holes within a finite circular viscoelastic domain as well as the
extension to problems involving a half-plane containing multiple holes (by using
the viscoelastic analog of the equation (21) in [Mogilevskaya 2000]). Another pos-
sibility is to extend the approach to problems of multiple holes of arbitrary shape.
The governing Equation (2) remains valid for this case. Thus, the problem can be
solved using the boundary element technique where the boundary of each hole is
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divided into elements and the unknowns on each of the elements are approximated
by piecewise polynomials with time-dependent coefficients. Problems involving
multiple curvilinear cracks could be also considered. This class of problems is
governed by Equation (2), with unknown displacement discontinuities rather than
displacements [Linkov and Mogilevskaya 1994].
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A NEW CLASS OF EQUILIBRATED STRESS FIELDS FOR
NO-TENSION BODIES

MASSIMILIANO LUCCHESI, MIROSLAV ŠILHAVÝ AND NICOLA ZANI

We study the equilibrium problem for bodies made of a no-tension material,
subjected to distributed or concentrated loads on their boundary. Admissible
and equilibrated stress fields are interpreted as tensor-valued measures with dis-
tributional divergence represented by a vector-valued measure, as outlined in
two 2005 papers by Lucchesi et al. Such stress fields are generalizations of
ordinary functions, which allows us to consider stress concentrations on surfaces
and lines. The general framework for this approach is presented first and then
illustrated on examples of two-dimensional panels under different loads. In the
general framework we determine weak divergences and the surface tractions of
several stress field measures via the (surface) divergence theorem. Combinations
of these stress fields are shown to give the solutions for the panels, which we
assume to be clamped at the bottom, and subjected to various loads on the top
and possibly on the sides of the panel. The shapes of the singular lines and
stresses are explicitly determined in these cases.

1. Introduction

In studying the equilibrium problem of bodies made of a no-tension (or masonry-
like) material [Del Piero 1989; Di Pasquale 1984], it is very hard to find an explicit
solution of the corresponding boundary value problem [Lucchesi and Zani 2003a].
Therefore, in applications we often limit ourselves to looking for stress fields that
are equilibrated with the applied loads and compatible with the incapability of the
material to withstand traction. These admissible equilibrium stress fields can be
used in the context of limit analysis [Del Piero 1998] to determine the collapse load,
or at least some of its lower bounds. The solution to this problem is considerably
simplified by allowing the stress to be singular in some regions of the body. In [Luc-
chesi and Zani 2002; 2003b], solutions for two-dimensional panels are examined
which are regular except on a finite number of singularity curves where the stress
field is unbounded. The method of solving the equilibrium equations is based on
the fact that if horizontal and vertical loads are distributed only on the panel’s top
and the stress determinant is null, the equilibrium equations constitute a system of

Keywords: masonry panels, equilibrium, divergence measures.
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conservation laws, formally identical to the nonlinear system ruling the dynamics
of the one-dimensional isentropic flow of a pressureless compressible gas. Under
appropriate hypotheses, this system is equivalent to a single scalar conservation law
[Brenier and Grenier 1998; Bouchut and James 1999]. Then the singularity curves
are determined by means of the Rankine–Hugoniot jump condition corresponding
to this scalar equation. This method is not directly applicable if distributed loads
are present on the lateral sides of the panel or if the determinant of the stress does
not vanish.

Following [Lucchesi et al. 2004; 2005a], the present paper uses tensor-valued
measures to describe the stress fields in no-tension bodies. On the common range
of applicability, the language of measures is essentially equivalent to the method
of the conservation law mentioned above. However, the approach via measures
is conceptually more direct in accounting for the singularities of the stress field
and in the way the balance of forces is taken into account. The former means that
we consider generally measures that are not absolutely continuous with respect to
the Lebesgue measure (= volume); the latter means that the balance of forces is
interpreted in the weak sense. This in turn means that the distributional divergence
of the stress measure is equal to the body force in the interior of the body, and that
the boundary trace of the measure equals the external boundary loads, given by a
prescribed measure.

Using the divergence theorem, we first calculate the weak divergence and the
trace of some elementary stress fields:

(i) those distributed over volumes or concentrated on surfaces and lines, and

(ii) stress fields given by some specific expression (see Equation (3–8)) that is
encountered in some solutions for panels given below.

The stress fields encountered in the applications to panels are linear combinations
of the elementary stress fields in items (i) and (ii) of Proposition 1. We then con-
sider briefly the general balance equation, and show, among other things, that for
the stress field consisting of the bulk stress and of the stress concentrated on a
surface, one obtains the classical form of the balance equations.

The rest of the paper illustrates the general notions on the rectangular panels
made of a no-tension material. We assume that the panel is free from body forces,
clamped at its bottom and subjected to loads prescribed on the boundary; appli-
cations to three-dimensional bodies under gravity will be treated in a future work.
The stress field in our solutions is plane and negative semidefinite and characterized
by the presence of one or more curves of concentrated stress. This feature, which
is allowed by supposing the material to have infinite compressive strength, seems
to be paradoxical at first sight. On the other hand, this simplifying hypothesis is
frequently used in the study of masonry structures, at least when the collapse is
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believed to take place for small values of the compressive stress [Heyman 1966].
Moreover, these singular equilibrated stress fields look like a formalization of the
rough idea that a masonry building is ‘safe’ if its interior contains an equilibrated
(and compressed) structure, an idea that was probably already in the mind of
Leonardo da Vinci [Benvenuto 1991].

Even though the present paper makes no mention of the displacement fields, our
use of measures to describe the stresses raises the question of the appropriate dual-
ity between the stresses and strains. We are especially interested in the expression

T · ε(u) (1–1)

for the virtual work of the stress field T against the virtual displacement u with the
small strain tensor ε(u)= 1

2(∇u+∇uT). Generally, the ‘wilder’ T is, the smoother
u must be, and vice versa. The issues are well understood in Hencky’s plasticity,
where u is generally a vector field with bounded deformation. The papers [Témam
and Strang 1980; 1980; Anzellotti 1983] and [Kohn and Témam 1983] provide a va-
riety of results pertaining to that case. Roughly, T must be a Lebesgue measurable
function with divergence measure and with some natural integrability properties.
Thus no concentrations in T are allowed. Our situation is the opposite: the stress
has concentrations and the strain must be ‘tamer.’ The results of Whitney’s theory
of flat chains [Whitney 1957; Federer 1969] apply here (see [Šilhavý 2005c]). For
symmetric tensor-valued stress measures T with divergence measure, the expres-
sion in Equation (1–1) is a well defined measure provided the displacement u is
Lipschitz continuous (for stress measures with additional properties the class of
displacements may be wider). The result is not immediate because ε(u) may be
undefined on the surface of concentration of T; a substantial use has been made of
the fact that the divergence of T is a measure. We will return to these issues in a
separate paper.

2. Vector-valued measures

This section introduces measures with values in a finite-dimensional inner product
space V . Such measures can be identified with an m-tuple of (scalar-valued) signed
measures where m := dim V is the dimension of V . We refer to [Rudin 1974,
Chapters 1 and 6] for the details of scalar-valued signed measures. The notation
in Equations (2–2) and (2–3), below, will be used systematically throughout the
paper.

Throughout the paper, Lin denotes the space of all linear transformations from
Rn into Rn with the scalar product A · B = tr(ABT), A, B ∈ Lin, and Sym is
a subspace of Lin consisting of all symmetric transformations. We interpret Lin
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as the space of all second order tensors, and use vector and tensor notations and
conventions from [Gurtin 1981] and [Šilhavý 1997].

If V is a finite-dimensional real inner product space then a function µ, defined
on the system of all Borel subsets of Rn , is said to be a V -valued measure on Rn

if

µ
( ∞⋃

i=1

Ai

)
=

∞∑
i=1

µ(Ai ), (2–1)

for every pairwise disjoint sequence Ai of Borel sets. We recall that the system
of all Borel sets is the smallest σ algebra of subsets of Rn that contains all open
subsets of Rn . The application of Equation (2–1) to the sequence Ai =∅, i = 1, . . . ,
gives µ(∅) = 0. If U ⊂ Rn is a Borel set, we say that a V -valued measure µ is
supported on U if µ(B)= 0 for every Borel set B ⊂ Rn such that U ∩ B =∅. We
denote by M(U, V ) the set of all V -valued measures supported on U . We call the
elements of M(U,R) signed measures on U and the elements of M(U,Lin) tensor
measures. In the special case V = Rm one has

µ(A)= (µ1(A), . . . , µm(A)),

for each Borel set A ⊂ Rn where µi , 1 ≤ i ≤ m, are signed measures. A similar
reduction of µ applies to any V equipped with a basis.

If µ is a V -valued measure, we say that a Borel set A ⊂ Rn is a µ null set if
µ(B)= 0 for each Borel set B ⊂ A. We say that a map f is defined as µ almost
everywhere (a.e.) on a set M if the set of all x ∈ M for which f (x) is not defined
forms a µ null set. Similarly, we say that a given property holds a.e. on M if the
set of all x for which the property is violated forms a µ null set.

If α :U → V is a bounded Borel function and ν ∈M(U, V ), then∫
U

α · dν

is a well defined number. If a ∈U , we denote by δa ∈M(U,R) the Dirac measure
at a, defined by

δa(B) =

{
1 if a ∈ B,

0 if a /∈ B,

for any Borel set B ⊂Rn , and note that if f :U→R is a (bounded) Borel function
then ∫

U
f dδa = f (a).

We denote by Ln the Lebesgue measure in Rn [Federer 1969, Subsection 2.6.5]
and if k is an integer, 0 ≤ k ≤ n, we denote by Hk the k-dimensional Hausdorff
measure in Rn [Federer 1969, Subsections 2.10.2–2.10.6]; recall that Hn

= Ln . If
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A is a Borel set, we denote by Hk A the restriction of Hk to A, which is the
measure defined by

(Hk A)(B)=Hk(A∩ B), (2–2)

for each Borel set B ⊂ Rn . If A ⊂U is a Borel set and f is a V -valued Borel map
defined a.e. on A, integrable with respect to Hk on A, then f Hk A denotes the
V -valued measure on Rn defined by

( f Hk A)(B)=
∫

A∩B
f dHk, (2–3)

for each Borel set B ⊂ Rn . The definitions (2–2) and (2–3) also apply to k = n,
that is, to Ln

≡Hn , resulting in Ln A and f Ln A. If α : A→ V is a bounded
Borel function then ∫

A
α · d( f Hk A)=

∫
A

α · f dHk .

The construction (2–3) will be used to introduce stresses concentrated on sur-
faces. In that case A≡ S is a k-dimensional surface with boundary (see the Appen-
dix for the summary of differential-geometric notions), f ≡ Ts is a Hk integrable
map on S with values in Lin and

Ts := Ts Hk S (2–4)

is a stress field concentrated on S. Similarly, if A =U is an open subset of Rn and
Tr is an Ln integrable map on U with values in Lin then

Tr := Tr Ln U (2–5)

is a distributed stress field on U . Only combinations of measures of type (2–4) and
(2–5) are of real use in Sections 5–7. The corresponding equilibrium equations are
considered in Sections 3 and 4.

3. Divergence measure tensor fields

If V is a finite-dimensional real inner product space and if U is an open subset of
Rn , we denote by C∞0 (U, V ) the set of all infinitely differentiable functions

α : Rn
→ V

whose support spt α is contained in U . We say that a tensor-valued measure

T ∈M(U,Lin)

is a divergence measure tensor field if there exists a measure

div T ∈M(U,Rn),
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called the divergence of T, such that∫
U
∇v · dT=−

∫
U

v · d div T, (3–1)

for each v ∈ C∞0 (U,Rn). We note that vector-valued measures with divergence
measure have been introduced in [Chen and Frid 2001; 2003]; vector or tensor-
valued functions with divergence measure have been considered in [Anzellotti
1983; Kohn and Témam 1983; Chen and Frid 1999; Degiovanni et al. 1999; Mar-
zocchi and Musesti 2001; Šilhavý 2005a; Chen and Torres 2005]. (For the applica-
tion of divergence measure tensor fields to masonry structures, see [Lucchesi et al.
2005a].) A measure T ∈ M(U,Lin) is said to be an equilibrated tensor field if
there exist measures b ∈M(U,Rn) and t ∈M(∂U,Rn) such that∫

U
∇v · dT=

∫
U

v · db+
∫
∂U

v · dt, (3–2)

for each v ∈ C∞0 (R
n,Rn) [Podio-Guidugli 2005; Šilhavý 2005a; 2005b; 2005c].

Here ∂U denotes the topological boundary of U . Since the measures b and t are
supported on the disjoint sets U and ∂U , respectively, they are uniquely determined
(provided they exist). We call the pair (b, t) the load corresponding to T and the
measure t the normal trace of T; we use the notation N(T) := t for the normal
trace. Equation (3–2) then reads∫

U
∇v · dT=−

∫
U

v · d div T+
∫
∂U

v · dN(T), (3–3)

for each v ∈ C∞0 (R
n,Rn). Clearly, any equilibrated tensor field T is a divergence

measure tensor field, and if (b, t) is the load, then divT=−b. There are divergence
measure tensor fields that are not equilibrated [Šilhavý 2005b, Chapter 9; Šilhavý
2005c, Example 9.1], that is, for which the measure t does not exist.

The integration by parts shows that if T : U → Lin is a continuously differ-
entiable tensor field with integrable gradient on an open set U ⊂ Rn , then the
tensor-valued measure

T= TLn U

is a divergence measure tensor field and

div T= div TLn U.

Here div is the classical divergence given by the usual differential expression; a
particular case of the surface divergence introduced in the Appendix, while div
denotes the divergence as a measure, defined above. The reader is also referred to
the Appendix for the differential-geometric concepts employed in the subsequent
discussion. If, additionally, U is an open region with Lipschitz boundary, and T
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has a continuous extension to the closure cl U of U , again denoted by T , that is
Hn−1 integrable on ∂U , then the divergence theorem shows that T is an equilibrated
tensor field and

N(T)= T m Hn−1 ∂U,

where m is the outer normal to U . This justifies the term ‘normal trace’ for N(T).
The following proposition generalizes the above considerations to singular ten-

sor fields concentrated on k-dimensional surfaces, 1 ≤ k ≤ n. If T : S→ Lin
is a tensor field on a k-dimensional surface S with boundary, we say that T is
superficial [Gurtin 2000, p. 94] if T (x)v = 0 for every x ∈ S and every v ∈ Rn

perpendicular to Tx(S). This is equivalent to each of the following two statements:

(a) Tx(S)
⊥
⊂ ker T (x) for every x ∈ S;

(b) ran TT(x)⊂ Tx(S).

Here ker and ran denote the kernel and range of a linear transformation.

Proposition 1. Let U be an open subset of Rn , let k ≥ 1 be an integer, let S be a
compact orientable k-dimensional surface with boundary such that int S⊂U , let
T : S→ Lin be a continuous map with a continuous and Hk integrable derivative
in int S, and put

T := THk S.

Then

(i) T is equilibrated⇔ T is a divergence measure tensor field⇔ T is superficial;

(ii) if T is superficial then

div T= div THk (S∩U )− T mHk−1 (∂S∩U ) (3–4)

and

N(T)= T m Hk−1 (∂S∩ ∂U ), (3–5)

where m is the outer normal to S.

Item (1) says that a measure concentrated on a k-dimensional surface is a diver-
gence measure tensor field only if it is superficial. If this is the case then the
divergence of T consists of the (surface) divergence of T concentrated on S∩U
and of the normal component of T concentrated on ∂S ∩ U while the normal
trace of T is the remaining part of the normal component of T , that is, the part
concentrated on ∂S∩ ∂U . We emphasize that k ≥ 1 is arbitrary. If k = 1, that is, if
S is a curve, then the measure

T m Hk−1 (∂S∩U )



510 MASSIMILIANO LUCCHESI, MIROSLAV ŠILHAVÝ AND NICOLA ZANI

reduces to ∑
a∈∂S∩U

T (a)m(a)δa,

where the set ∂S∩U is the set of all endpoints of S in U and m(a) are outward
tangents to S at the endpoints. A similar interpretation applies to the right side of
Equation (3–5). We note that the argument used below to prove Item (i) can also
be applied to show that there are no nontrivial divergence measure tensor fields
concentrated at points, that is, surfaces of dimension 0.

Proof. (ii): Assume that T is superficial and prove Equations (3–4) and (3–5). Let
v ∈ C∞0 (R

n,Rn); since T is superficial, TTv is tangential and thus the surface
divergence theorem 1, the identity (A–7), and the hypothesis int S⊂U give∫

S∩U
(v · div T + T · ∇v) dHk

=

∫
∂S

T m · v dHk−1.

Rearranging, we obtain∫
S∩U

T · ∇v dHk
=−

∫
S∩U

v · div T dHk

+

∫
∂S∩U

T m · v dHk−1
+

∫
∂S∩∂U

T m · v dHk−1
;

comparing this with Equation (3–3) and invoking the uniqueness of div T and
N(T) we see that Equation (3–4) and Equation (3–5) hold.

(i): We shall prove the cycle of implications: T is equilibrated ⇒ T is a di-
vergence measure tensor field⇒ T is superficial⇒ T is equilibrated. The first
of these implications is automatic, as mentioned above, while the last implication
has been proved in (ii). Thus it remains to be proved that if T is a divergence
measure tensor field then T is superficial. Let T be a divergence measure tensor
field, let x ∈ S ∩U and assume first additionally that x /∈ ∂S. Let Z and ω be
as in Condition (ii) of Subsection A.1, and assume, as we can, that Z ⊂ U . Let
λ ∈ C∞0 (R

n,R) be such that spt λ ⊂ Z . Let b ∈ Rn−k and a ∈ Rn . If ε > 0 then
there exists h ∈ C∞(Rn−k,R) such that

h(0)= 0, ∇h(0)= b (3–6)

and |h|∞<ε. Here |·|∞ is the maximum norm; that is, if M is a set and f :M→ V
then

| f |∞ := sup{| f (x)| : x ∈ M}.

Let v ∈ C∞0 (U,Rn) be defined by

v =

{
aλ (h ◦ω) on Z ,

0 on Rn
\ Z .

(3–7)
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Using |h ◦ω|∞ = |h|∞ < ε one finds that |v|∞ ≤ |a||λ|∞ ε. Applying the product
rule to calculate ∇v from Equation (3–7), using Equation (3–6), and noting that
h ◦ω = 0 on S, one finds that

∇v =

{
λa⊗∇ωTb on S∩ Z ,

0 on S \ Z .

Equation (3–1) thus reads∫
S∩Z

λ∇ω TTa · b dHk
=−

∫
U

v · ddiv T.

Denoting by M(µ) the total variation of a vector-valued measure µ ∈M(U, V ),

M(µ) := sup{
∫

U
α · dµ : α ∈ C∞0 (U, V ), |α|∞ ≤ 1},

we note that the inequality |v|∞ ≤ |a||λ|∞ε gives∣∣∫
U

v · d div T
∣∣≤M( div T)|a||λ|∞ε,

and hence ∣∣∫
S∩Z

λ∇ω TTa · b dHk
∣∣≤M(div T)|a||λ|∞ε.

As ε > 0 is arbitrary, we have∫
S∩Z

λ∇ω TTa · b dHk
= 0.

As this must hold for any λ, a, b subject to the conditions above, we have

∇ω TT
= 0

on S∩ Z , and since ker∇ω(x)=Tx(S), we deduce that ran TT(x)⊂Tx(S). Thus
the restriction of T to S∩ (U \ ∂S) is superficial. Since the closure of the last set
is S, the continuity of T implies that T is superficial on S. �

A subset C of Rn is said to be a cone if rv ∈ C for every r > 0 and v ∈ C . For
each x ∈Rn and r > 0, let B(x, r) denote the open ball in Rn of center x and radius
r , and let Sn−1 denote the unit sphere in Rn .

Proposition 2. Let U ⊂ Rn be an open region with Lipschitz boundary containing
the origin, and let C be an open cone such that ∂C \ {0} is an (n−1)-dimensional
surface. Let α : cl C ∩Sn−1

→ R be a continuous function which is continuously
differentiable in C ∩Sn−1, and let T : (U ∩ cl C) \ {0} → Lin be given by

T (x)= |x|−n−1α
( x
|x|

)
x⊗ x, x ∈ (U ∩ cl C) \ {0}. (3–8)
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Then T is continuous in (U ∩ cl C) \ {0} and continuously differentiable in C ∩U
and we have

div T = 0 in C ∩U. (3–9)

Moreover, if we put
T= TLn (C ∩U ),

then T is an equilibrated tensor field and

div T= c δ0, (3–10)

N(T)= T m Hn−1 (∂U ∩C), (3–11)

where

c=
∫

C∩Sn−1
α(e)e dHn−1(e), (3–12)

and m is the outer normal to ∂U ∩C.

For n = 2, the stress field T as in Equation (3–8) falls within the class studied
in [Podio-Guidugli 2005, Section 4], from where also (3–9) can be deduced. In
(3–12) we denote by e ∈ C ∩Sn−1 the integration variable. Using the divergence
theorem and (3–9) as in the proof below, one also finds that

c=
∫

C∩∂U
T m dHn−1. (3–13)

Proof. The continuity and differentiability of T follows directly from the assump-
tions on α and (3–9) is a straightforward calculation which we omit. To prove
(3–10) and (3–11), we denote by Br the closed ball with center 0 and radius r > 0
and consider the set (C \ Br )∩U . This is an open set and if r > 0 is small enough
to satisfy Br ⊂U (recall that 0 ∈U ), then

∂[(C \ Br )∩U ] = (C ∩ ∂U )∪ (C ∩ ∂Br )∪ [(∂C \ Br )∩U ] ∪ T (3–14)

to within a set of Hn−1 measure 0 where

T := {x ∈ (∂C \ {0})∩ ∂U : n∂C\{0}(x)= m(x)}, (3–15)

where n∂C\{0} is the outer normal to C\{0} and m is the outer normal to U . Equation
(3–14) can be deduced from the general formula in [Marzocchi and Musesti 2001,
Proposition 2.2]. We note that (C \ Br ) ∩ U is an open region with Lipschitz
boundary with the outer normal given by

n(x)=


m(x) if x ∈ C ∩ ∂U ,

−x/r if x ∈ C ∩ ∂Br ,

n∂C\{0}(x) if x ∈ [(∂C \ Br )∩U ] ∪ T ,

(3–16)
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to within a change on a Hn−1 null set. Furthermore, we note that

T n∂C\{0} = 0 on ∂C \ {0} (3–17)

because x · n∂C\{0} = 0 since C is a cone with vertex 0. If v ∈ C∞0 (R
n,Rn) is a

vector field, then∫
U
∇v · dT=

∫
C
∇v · T dLn

= lim
r→0

∫
C\Br

∇v · T dLn.

Theorem 1 and formula (A–7) yield∫
C\Br

∇v · T dLn
=−

∫
C\Br

v · div T dLn
+

∫
∂[(C\Br )∩U ]

v · T n dHn−1.

Combining with Equations (3–14)–(3–16) we obtain∫
C\Br

∇v · T dLn
=−

∫
C\Br

v · div T dLn

−

∫
C∩∂Br

v(x) · T (x)
x
r

dHn−1(x)

+

∫
C∩∂U

v · T m dHn−1, (3–18)

where we have used ∫
[(∂C\Br )∩U ]∪T

v · T n∂C\{0} dHn−1
= 0,

which follows from Equation (3–17). A combination of (3–18) with (3–9) provides

∫
U
∇v · dT=− lim

r→0

∫
C∩∂Br

v(x) · T (x)
x
r

dHn−1(x)+
∫

C∩∂U
v · T m dHn−1.

(3–19)
Moreover, the continuity of v gives

lim
r→0

∫
C∩∂Br

v(x) · T (x)
x
r

dHn−1(x)= v(0) · lim
r→0

∫
C∩∂Br

T (x)
x
r

dHn−1(x),

(3–20)
provided the limit on the right side exists. On the other hand, we have∫

C∩∂Br

T (x)
x
r

dHn−1(x)=
∫

C∩Sn−1
α(e)e dHn−1(e), (3–21)
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for scaling reasons, because C is a cone. Therefore, in view of Equations (3–19),
(3–20), (3–21) and (3–12),∫

U
∇v · dT=−v(0) · c+

∫
C∩∂U

v · T m dHn−1.

A comparison with Equation (3–2) gives (3–10) and (3–11). �

4. Balance equations

If an equilibrated tensor field T ∈M(U,Lin) is interpreted as the stress field in a
continuous body under the action of a body force given by a prescribed measure
b0 ∈M(U,Rn) and the boundary traction given by a prescribed measure

t0 ∈M(∂U,Rn),

then the equations of equilibrium read

div T+b0 = 0, (4–1)

N(T)= t0. In particular, if b0 is absolutely continuous with respect to the Lebesgue
measure (e.g., the gravity), that is,

b0 = b0Ln U, (4–2)

where b0 : U → Rn is an Ln integrable function, then div T must be absolutely
continuous with respect to Ln as well.

We now illustrate these balance equations on various linear combinations of the
fields described in Propositions 1 and 2. Let U ⊂ Rn be an open set.

(i) Let K+ and K− be two regions with Lipschitz boundary contained in cl U ,
which are complementary in the sense that the following relations hold:

int K+ ∩ int K− =∅, K+ ∪ K− = cl U, ∂K± ∩U = K+ ∩ K− ∩U.

Let furthermore T± : K±→ Lin be continuous maps which have a contin-
uous and Ln integrable derivative in int K±. Denoting by I := ∂K± ∩U
the common interface in U we see that the exterior normals n± to K± satisfy
n+=−n− on I and we denote this common value by n :I→Sn−1. Denoting
further by T : int K+ ∪ int K−→ Lin the field given by T± on int K± and
noting that T is defined Ln a.e. on U , we define the measure T by

T= TLn U.

Applying Proposition 1 to T ≡ T±,S≡ K±, we see that T±Ln K± is an
equilibrated tensor field and

div(T±Ln K±)= div T±Ln K±− T±n±Hn−1 I,
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N(T±Ln K±)= T±m Hn−1 (∂K± ∩ ∂U ),

where m is the outer normal to U . Adding the results, we conclude that T is
an equilibrated tensor field and

div T= div TLn U − [T ]nHn−1 I,

N(T)= T mHn−1 ∂U,

where div T is the divergence of T on U \I and for every x ∈ I,

[T ](x) := T+(x)− T−(x)

is the jump of T across I. Any map T which arises in the above way is
called a piecewise smooth tensor field. If T is a stress field under the action
of the body force as in Equation (4–2), then the equilibrium equation (4–1) is
equivalent to the following two equations:

div T + b0 = 0 in U \I, [T ]n= 0 on I.

(ii) If Tr is a piecewise smooth tensor field with the interface I as in (i) above
and Ts : I→ Lin is a superficial tensor field satisfying the hypothesis of
Proposition 1 (ii) with k = n− 1 and S := I, then the tensor field

T := Tr Ln U + Ts Hn−1 I

is equilibrated and

div T= div Tr Ln U +
(
div Ts − [Tr ]n

)
Hn−1 I,

N(T)= Tr mHn−1 ∂U + Ts pHn−2 (∂U ∩ ∂I),

where p is the outer normal to I. With the body force as in Equation (4–2)
the equilibrium equation (4–1) is equivalent to the pair of standard equations

div Tr + b0 = 0 in U \I, [Tr ]n− div Ts = 0 on I; (4–3)

see, for example, [Gurtin and Murdoch 1975; Podio-Guidugli and Caffarelli
1990; Gurtin 2000].

(iii) Let Sj , j = 1, . . . , p, be curves with endpoints such that int Sj ⊂U . Assume
that int Si ∩ int Sj =∅, ∂Si ∩∂Sj = {a} for all i 6= j and some a ∈U , and that
∂Si ∩ ∂U 6=∅ for all i . Let the measure T be defined by

T :=
p∑

j=1

T j H
1 Sj ,
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where T j is a superficial tensor field on S which satisfies the hypotheses of
Proposition 1. Then T is an equilibrated tensor field and

div T=
p∑

j=1

div T j H
1 Sj +

[ p∑
j=1

T j (a)m j (a)
]
δa,

N(T)=
[ p∑

j=1

T j (a j )m j (a j )
]
δa j ,

where the points a j are defined by ∂Sj ∩ ∂U = {a j } and for any b ∈ ∂Si the
symbol mi (b) denotes the outer tangent to Si at b. If n ≥ 2, the equilibrium
equation (4–1) with b0 as in (4–2) reads

div T j = 0 on Sj for j = 1, . . . , p,
p∑

j=1

T j (a)m j (a)= 0, (4–4)

while if n= 1 then the first equation of (4–4) must be replaced by div T j+b0=

0.

(iv) Let Tr : (U ∩ cl C) \ {0} → Lin be a tensor field of the form described in
Proposition 2, let S be a curve with endpoints such that one endpoint is in ∂U
and another coincides with 0, and let Ts : S→ Lin be a continuous superficial
tensor field that is continuously differentiable in int S. Let T be given by

T= Tr Ln (C ∩U )+ Ts H1 S;

then T is an equilibrated tensor field and

div T= div Ts H1 S+ [c+ Ts (0)m(0)]δ0,

N(T)= Ts (a)m(a)δa+ Tr n Hn−1 (C ∩ ∂U ),

where c is given by Equation (3–12), a is defined by ∂U ∩ ∂S = {a}, the
symbols m(0),m(a) denote the outer tangents to S at 0, a, respectively, and
n is the outer normal to U . If n ≥ 2, the equilibrium equation (4–1) with b0

as in (4–2) can be satisfied only if b0 = 0 (see (3–9)) and if this is the case, it
is equivalent to the following pair of equations:

div Ts = 0, c+ Ts (0)m(0)= 0.

5. Dimension two

Let U ⊂R2 be an open set and S⊂ cl U be a smooth curve, let s be the natural (arc)
parameter of S and let t(s), n(s), and κ(s) be the unit tangent, the unit normal, and
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the curvature, respectively. If Ts : S→ Lin is a symmetric tensor field on S then
Ts is superficial if and only if we have

Ts (s)= σ(s) t(s)⊗ t(s), (5–1)

with σ a scalar field on S. Then

div Ts =
d
ds
(σ t)=

dσ
ds

t + κσn, (5–2)

where the first equality follows from Equation (A–9) by noting that the natural
parameterization of S has unit Jacobian, and the second equality follows from
Frenet’s formula. Alternatively, if we suppose that the curve S is the graph of a
function y = ω(x), with x ∈ [x0, x1], that is, S = {(x, ω(x)) ∈ U : x ∈ [x0, x1]},
then

div Ts = J−1 d
dx

(σ
J

e1+
σ

J
ω′e2

)
, (5–3)

where the prime denotes the differentiation with respect to x ,

J =
ds
dx
=

√
1+ (ω′)2, (5–4)

and e1, e2 is the standard basis of R2. This follows from the application of Equation
(A–9) to φ : (x0, x1)→ R2 given by φ(x) = (x, ω(x)). Note also that the unit
tangent t and the unit normal n of S are given by

t = J−1(e1+ω
′e2), n= J−1(−ω′e1+ e2). (5–5)

Remark 1. Let [Tr ]n be the jump of the normal component of Tr across S. Equa-
tions (5–2) and (4–3) yield

[Tr ]n−
dσ
ds

t − κσn= 0. (5–6)

If we multiply this relation by t and n and put t · [Tr ]n=−q and n · [Tr ]n=−p,
we obtain, respectively,

dσ
ds
+ q = 0, κσ + p = 0.

These equations coincide with the equilibrium equations of a planar curved beam
when the bending moment and the shear force are null, if we interpret q and p as
the tangential and normal component of the load, respectively, and σ t = Ts t as the
axial force [Love 1944].

From (5–1) and the first equation in (5–5) we get

Ts = σ J−2{e1⊗ e1+ 2ω′e1� e2+ (ω
′)2e2⊗ e2

}
, (5–7)
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where
e1� e2 =

1
2(e1⊗ e2+ e2⊗ e1).

Defining δ11, δ12, δ22 by

[Tr ] = δ11e1⊗ e1+ 2δ12e1� e2+ δ22 e2⊗ e2, (5–8)

we obtain from the second equation in (5–5)

[Tr ]n= J−1{(δ12−ω
′δ11)e1+ (δ22−ω

′δ12)e2
}
. (5–9)

With
β :=

σ

J
, (5–10)

we deduce from Equations (4–3), (5–9) and (5–3) the system of ordinary differen-
tial equations

β ′+ω′δ11− δ12 = 0, (5–11)

(βω′)′+ω′δ12− δ22 = 0, (5–12)

some applications of which are illustrated in the following sections. We observe
that, in view of Equations (5–1), the first equation in (5–5) and (5–10), we have

β = σ(t · e1) and βω′ = σ(t · e2), (5–13)

which are the horizontal and vertical components of the axial force, respectively.

6. Panels: vertical top loads

In the rest of the paper we apply the considerations of Sections 3–5 to study the
statics of rectangular panels in two dimensions made of a no-tension material, with
infinite compressive strength [Del Piero 1989]. The panel is free from body forces,
clamped at its bottom and subjected to loads prescribed on the boundary. The stress
is supposed to be symmetric, plane and negative semidefinite, with singularities
along a finite number of curves in the interior U ⊂ R2 of the panel; we use equili-
brated tensor fields to describe the stress. If S is the union of these curves, the stress
field T is the sum of a measure absolutely continuous with respect to Lebesgue’s
measure with a smooth density Tr in U \ S, and a measure concentrated on S,
whose density is a smooth superficial tensor field Ts . The equilibrium requires
that Tr has null divergence outside S, and that the surface divergence of Ts be
balanced by the jump of the normal component of Tr across S, as required by
Equation (4–3). In the examples presented in this paper, the form of the singularity
curves and the superficial stress field Ts are obtained by means of this relation,
once Tr has been determined.
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Figure 1. The panel under general load conditions.

We shall deal with either solid rectangular panels or rectangular panels with an
opening. In all cases we place the origin of the coordinate system (x, y) in the
upper right corner of the panel, with the axis x along the upper side of the panel
pointing to left and the y axis along the right side pointing downwards, see Figure
1.

Consider first a solid rectangular panel of width b and height h, clamped at its
base y = h and subjected to a vertical load, p, distributed on its top, y = 0, a
horizontal load, q, distributed along its right side, x = 0, and a force,

f = f1e1+ f2e2,

concentrated at the upper right corner (Figure 1). Denoting by U the inner part of
the panel,

U = {(x, y) ∈ R2
: 0< x < b, 0< y < h},

we aim to determine a curve S in U

y = ω(x), with ω(0)= 0, (6–1)

and a continuously differentiable, negative-semidefinite superficial stress field Ts

on S, such that the tensor field T, defined by

T := Tr L2 U + Ts H1 S,



520 MASSIMILIANO LUCCHESI, MIROSLAV ŠILHAVÝ AND NICOLA ZANI

is balanced and in equilibrium with the external loads, where Tr is given by

Tr =

{
−p(x)e2⊗ e2, in U+,

−q(y)e1⊗ e1 in U−,
(6–2)

with U−= {(x, y)∈U : 0< x <ω−1(y)} and U+= {(x, y)∈U : ω−1(y) < x < b}
denoting the two regions into which U is divided by S. Since, according to (6–2),
Tr is equilibrated with the distributed loads p and q and satisfies the first equation
in (4–3), it is sufficient to determine S and Ts to satisfy the second equation in
(4–3) and the equilibrium boundary condition

Ts (0)t(0)=− f . (6–3)

To this end, note that in this case Equations (5–8) and (6–2) give

δ11 = q(ω(x)), δ22 =−p(x), δ12 = 0

and therefore from Equations (5–11) and (5–12) we deduce

β ′+ q(ω(x))ω′ = 0 (6–4)

and
(βω′)′+ p(x)= 0. (6–5)

Denoting by P and Q the respective primitives of p and q with P(0) = 0 and
Q(0)= 0, we get

β(x)= β(0)− Q(ω(x)), (6–6)

β(x)ω′(x)= β(0)ω′(0)− P(x). (6–7)

With the help of (6–6), (6–7) becomes

(Q(ω(x))−β(0)) ω′(x)= P(x)−β(0)ω′(0), (6–8)

and, in view of Equation (5–13), the equilibrium boundary condition (6–3) be-
comes

β(0)=− f1, β(0)ω′(0)=− f2. (6–9)

Then, (6–8) implies

(Q(ω(x))+ f1) ω
′(x)= P(x)+ f2, (6–10)

which can be integrated under the boundary condition in the second equation of
(6–1). This is equivalent to the requirement for equilibrium of all rectangular re-
gions, like the one shaded in Figure 1, with respect to the rotation about the point
a [Lucchesi and Zani 2002]. Since Ts is negative-semidefinite, we can see that
σ(0) ≤ 0 in view of Equation (5–1), and from Equations (5–4) and (5–10) we



A NEW CLASS OF EQUILIBRATED STRESS FIELDS FOR NO-TENSION BODIES 521
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Figure 2. Load-distribution laws on the boundary of the panel;
Example 1.

obtain β ≤ 0. Moreover, since the curve S (except for its ends) is wholly contained
within U , we have ω′(0) ≥ 0. From Equation (6–9), it follows that both f1 and
f2 must be non-negative, that is to say, the force f must be directed towards the
inside of the panel [Di Pasquale 1984].

Example 1. In this example, we suppose that the vertical distributed load is uni-
form, the horizontal one is linear and the concentrated force is zero (Figure 2), that
is,

p(x)= p0, q(y)= q0

(
1−

y
h

)
, f = 0.

Under such conditions

Q(ω)= q0ω
(

1−
ω

2h

)
, P(x)= p0x (6–11)

and from Equations (6–10) and the second equation in (6–1) we obtain for S the
implicit equation

q0ω
2
(

1−
ω

3h

)
= p0x2. (6–12)

It can be seen that S intersects the panel base at

x = h

√
2q0

3p0
.
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In order for such a solution to be valid, the intersection point must be within the
panel’s base, that is to say,

b ≥ h

√
2q0

3p0
,

and this requires that q0 does not exceed the value

qm =
3
2

p0

(
b
h

)2

.

The attainment of this value would cause the panel to overturn around the corner
at coordinates x = b, y = h. From (6–12) we deduce

x = ω
√

q0

p0

(
1−

ω

3h

)
,

and then

ω′ =

(
2h

2h−ω

)√
p0

q0

(
1−

ω

3h

)
by Equations (6–10) and (6–11). The expression for σ can be obtained from Equa-
tions (5–10), (6–6), the first equation of (6–11), and (5–4), and it is easy to verify
that σ is an increasing function of x . In particular, at the panel bottom we have
ω = h and therefore, taking Equations (5–4) and (6–6) into account, we obtain

ω′ = 2

√
2p0

3q0
, J =

√
1+

8p0

3q0
, β =−

1
2

q0h,

from which we obtain the reaction Ts t = σ t at the end of S of magnitude

1
2

q0h

√
1+

8p0

3q0

by Equations (6–4) and (6–9).

Example 2. In this example, we again suppose that the vertical load is uniform,
while the horizontal one is zero. Moreover, we assume a concentrated force to be
acting (Figure 3),

p = p0, q = 0, f = f1e1+ f2e2,

so that P(x)= p0x and Q(ω)= 0. Therefore, we assume Tr as in Equation (6–2)
with p(x)= p0 and q(x)= 0, and from Equations (6–10) and the second equation
in (6–1) we deduce

ω(x)=
p0x2

2 f1
+ νx, (6–13)
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p0
f

U+

U−

S

Figure 3. Load-distribution laws on the boundary of the panel;
Example 2.

with ν = f2/ f1. Thus, in view of Equations (5–4), (6–6), the first equation in (6–9)
and (5–10) we obtain

J =

√
1+

(
p0x
f1
+ ν

)2

, β =− f1, σ =− f1

√
1+

(
p0x
f1
+ ν

)2

, (6–14)

from which we can determine Ts with the help of Equation (5–7).

From (6–13), for x = b, ω = h and ν < h/b, we get the maximum magnitude of
force f compatible with the equilibrium,∣∣ f m

∣∣= p0b2

2(h− νb)

√
1+ ν2.

Moreover, in view of Equations (6–13) and the third equation in (6–14) the intensity
of the concentrated reaction at the panel’s base is

f1

√
1+

2p0h
f1
+ ν2.

This result can be generalized to the situation where, besides the vertical load
p0, there are two forces, f and g, applied to the panel’s corners. For simplicity,
we limit ourselves to the case in which f and g are horizontal, as shown in Figure
4. Let us suppose f ≤ g. Proceeding as in the previous case it can be verified that,
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S1 S2

U1

U2 U3

g f

p0

b

S1S2

S3

U1

U2 U3

h

g f

p

p0

b

Figure 4. Stress states.

for √
f +
√

g ≤
1
2

b

√
2p0

h
,

the panel is subdivided into three regions, U1, U2 and U3, by parabolas S1 and S2

with equations

ω1(x)=
p0x2

2 f
with σ1 =− f

√
1+

(
p0x

f

)2

(6–15)

and

ω2(x)=
p0(b− x)2

2g
with σ2 =−g

√
1+

(
p0(b− x)

g

)2

, (6–16)

and, moreover,

Tr =

{
−p0e2⊗ e2 in U1

in U2 ∪U3.
(6–17)

For √
f +
√

g >
1
2

b

√
2p0

h
and

g− f ≤
p0b2

2h
,

the curves S1 and S2 intersect at a point p in the interior of U . In this case, an
equilibrated tensor field is determined by supposing that the the panel is further
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subdivided by the curve S3 (Figure 4 (b)). For Tr defined by Equation (6–17),
we have [Tr ] = 0 across S3 and, in view of (5–6), this implies the vanishing of
both the curvature κ and dσ/ds. Thus, S3 is a straight line whose equation can be
determined with the help of (6–15) and (6–16), by observing that at the point p we
have

σ1 t1+ σ2 t2− σ3 t3 = 0,
in view of the second equation in Equation (4–4), which expresses the “equilibrium
of the node p”. Finally, we obtain

ω3(x)=
p0b(b− 2x)

2(g− f )
with σ3 =−(g− f )

√
1+

(
p0b

g− f

)2

.

For

g− f =
p0b2

2h
,

the panel is free to rotate around the point with coordinates (0, h).

Example 3. Consider the case in which the panel is subjected only to the sole action
of the uniform distributed vertical load p = p0. Using the results of the previous
example, we wish to verify that, beyond the regular stress state, T =−p0e2⊗ e2,
defined throughout U , it is possible to determine infinitely many equilibrated and
compatible stress fields, each of which characterized by

(i) a superficial stress Ts defined on a curve S with equation y = ω(x) that is
symmetric with respect to the axis x = b/2 (Figure 5), which intersects this
axis for y = λ, (0 ≤ λ < h) and that also intersects the panel bottom for
|x − b/2| = µ, (0< µ≤ b/2),

ω(b/2)= λ, ω(b/2±µ)= h, ω′(b/2)= 0; (6–18)

(ii) a stress field

Tr =

{
−p0e2⊗ e2, in U+,

in U−,
(6–19)

where U− = {(x, y) ∈U : |x − b/2|< µ, ω(x) < y < h} is the region below
S and U+ is the interior of its complement in U .

In fact, using Equations (6–4) and (6–5) with p = p0, q = 0, and combining with
(6–18), we see that S is a parabola given by

ω(x)= λ+
h− λ
µ2 (x − b/2)2 (6–20)

and that β is given by

β =−
p0µ

2

2(h− λ)
,
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U+

U−

S

λ

p0

µ µ

Figure 5. Stress field; Example 3.

from which we can calculate J , σ and Ts by Equations (5–4), (5–10) and (5–7).
It can be seen that the interaction between the two parts of the panel, separated by
the symmetry axis, x = b/2, consists solely of a horizontal force concentrated at
the apex of S, whose intensity −β is an increasing function of λ which becomes
unbounded when λ tends to h.

Example 4 (panels with openings). Let us consider a rectangular panel with base
b = b1+ 2b2 and height h = h1+ h2, with a symmetric opening with dimensions
b1 and h1 (Figure 6), clamped at its base and subjected to a vertical load p0, uni-
formly distributed on its top. Clearly, the stress field from the preceding example
is appropriate here also provided that the parabola in Equation (6–20) is entirely
contained inside the panel. It is easy to see that the most favorable situation is
attained when the apex of the parabola belongs to the top of the panel (Figure 6).
Then Tr is as in (6–19), where regions U− and U+ are divided by parabola S

ω(x)=
p0(b/2− x)2

2g
,

with

σ =−g

√
1+

(
p0(b/2− x)

g

)2

,

where
g =−β
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U+ U− U+

h1

h2

p0

b1b2 b2

Figure 6. Panel with a symmetric opening.

is the interaction between the two parts of the panel across the symmetry axis.
For g = p0b2

1/(8h2) the parabola S contains the points (b2, h2) and (b1+ b2, h2),
whereas for g= p0b2/(8h), S meets the corners of the panel with coordinates (0, h)
and (b, h); hence the equilibrium is possible only for p0b2/(8h)≥ p0b2

1/(8h2), that
is, for

ζ ≤ 4ξ(ξ + 1), (6–21)

with ξ = b2/b1 and ζ = h1/h2. We observe that when the equality holds in Equa-
tion (6–21), S meets the four points (0, h), (b2, h2), (b1+ b2, h2), and (b, h) and
thus, apart from the value of p0, the panel can be considered to be a kinematically
indeterminate structure, made of four hinged bodies.

Assuming that ζ < 4ξ(ξ + 1), we now want to determine an equilibrated stress
field when the panel is subjected to a horizontal force f applied to the upper right
corner 0 in addition to the vertical load p0. First, let us consider the case in which
parabola S1 with equation ω(x) = p0x2/(2 f ) is contained inside the panel as
shown in Figure 7 (see also Example 2). For this, f has to satisfy the inequality

p0(b1+ b2)
2

2h2
≤ f ≤

p0b2

2h
, (6–22)

because for
f = p0(b1+ b2)

2/(2h2),

ω meets the point b, whereas for

f = p0b2/(2h),
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U+ U−

h1

h2

p0

b1b2 b2

f

b

Figure 7. Stress field with a horizontal force f , for ζ ≤ ξ(3ξ+2)
(ξ+1)2 .

ω meets the point c. Inequalities (6–22) are verified only if

p0b2/(2h)≥ p0(b1+ b2)
2/(2h2),

that is, if

ζ ≤
ξ(3ξ + 2)
(ξ + 1)2

. (6–23)

When Equations (6–23) and (6–22) are satisfied, we can assume that Tr and Ts are
given in the same way as in the first part of Example 2 and then we see that the
maximum value of f compatible with the equilibrium is

fm =
p0b2

2h
. (6–24)

Let us now consider the case
ξ(3ξ + 2)
(ξ + 1)2

< ζ < 4ξ(ξ + 1). (6–25)

In view of the previous discussion (see the second part of Example 2 and Figure 4
(b), the equilibrated tensor field can be obtained with the following three singularity
curves:

(i) an arc of parabola S1, with equation

ω1(x)=
p0(x − a)2

2g
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U+ U+U−

U−

U−

U−

S1
S1S1 S1

h2 h2

h1 h1

p0 p0

b2 b1 b2 b2 b1 b2

f f

b

dc

a

Figure 8. Stress field in the panel. (a) Apex of S1 on the symmetry
axis. (b) The collapse state.

and apex in a ≡ (a, 0) with a ∈ (b/2, 0);

(ii) an arc of parabola S2 with the equation

ω2(x)=
p0x2

2 f
,

and apex in (0, 0);

(iii) a line S3, starting from the intersection point of S1 and S2 (Figure 8).

These curves subdivide the panel into three regions, where Tr is defined as in
(6–17).

With the aim to obtain the maximum admissible intensity of f , we first deter-
mine the values of g and a so that the parabola S1 meet the points b≡ (b1+b2, h2)

and c≡ (b, h) (Figure 8 (b)); this is always possible in view of Equation (6–25).
In this way we obtain

g=
p0b2

1ξ
2
(
2+ ζ + 2

√
1+ ζ

)
2ζ 2h2

, a= b1

(
1+

ξ

ζ

(
ζ − 1−

√
1+ ζ

))
. (6–26)

Once g and a are determined, we impose the requirement that the segment S3

meets the point d ≡ (b2, h) and then we get

fm =
p0b2

1

2h2
·

2ξ (ξ + 1)
√
ζ + 1+ 2ξ 2 (ζ + 1)+ 2ξ − ζ

ζ(ζ + 1)
. (6–27)

When this value of f is reached, the panel behaves as a kinematically indeterminate
structure made of three bodies, hinged at points a, b, c and d.

We observe that a, as given by the second equation in (6–26), is positive in view
of the first inequality of (6–25), and vanishes for

ζ =
ξ(3ξ + 2)
(ξ + 1)2

.
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U3
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d
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h

d/ϕ

Figure 9. Load-distribution laws on the top of the rectangular
panel and corresponding stress field.

In this particular circumstance, the value of fm given by (6–27) coincides with the
value of fm given by (6–24) and with the value of g given by the first equation in
(6–26).

7. Panels: oblique top loads

Let us consider a rectangular panel of width b and height h, clamped at its bottom
and subjected to horizontal and vertical loads distributed on the top of the panel.
Assume that the vertical load p0 is uniform, whereas the horizontal load q has a
linear distribution (Figure 9),

p(x)= p0, 0≤ x ≤ b;

q(x)=

{
ϕp0(d−x)

d , 0≤ x ≤ d,

0, d ≤ x ≤ b.

Let U be the interior of the panel. As proved in [Lucchesi and Zani 2003a], the
stress field T 0 in the region 0≤ x ≤ d and 0≤ y ≤ d/ϕ is given by

T 0 =

 p0ϕ
2d(x − d)2
(ϕy−d)3 e1⊗ e1+

2p0ϕd(x−d)
(ϕy−d)2 e1� e2+

p0d
ϕy−d e2⊗ e2 in U1

in U2,
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where U1, U2 are cones, both with vertex p= (d, dϕ), given by

U1 = {(x, y) ∈U : 0≤ x ≤ d, 0≤ ϕy ≤ x},

U2 = {(x, y) ∈U : 0≤ x ≤ d, x ≤ ϕy ≤ d}.

The stress field T 0 is discontinuous along the line x = ϕy but it is an easy matter
to verify that the jump of the normal component of T 0 across the discontinuity
line is zero. Therefore x = ϕy differs from the singularity curves considered in the
previous examples in that its corresponding superficial stress field vanishes.

In the coordinate system with origin in p, X = d − x , Y = d/ϕ− y, shown in
Figure 9, with corresponding unit normal base ê1 =−e1 and ê2 =−e2, we have

T 0(x)=

{
−

p0d
ϕ
(x · ê2)

−3 x⊗ x in U1,

0 in U2,

where we put x = (X, Y ). Recalling Proposition 2, we note that in U1 we have

T 0(x)= |x|−3 α

(
x
|x|

)
x⊗ x,

with the function α given by

α(e)=−
p0d
ϕ
(e · ê2)

−3, (7–1)

e ∈ S1. Therefore, writing e = ê1 cos θ + ê2 sin θ and ψ = tan−1(1/ϕ), from
Equation (7–1) we obtain the following value of the vector constant c as in (3–12):

c=−
p0d
ϕ

∫ π/2

ψ

(e · ê2)
−3 e dH1(e),

=−
p0d
ϕ

∫ π/2

ψ

(sin θ)−3(ê1 cos θ + ê2 sin θ) dθ,

=−p0d(ϕ ê1/2+ ê2),

= p0d(ϕe1/2+ e2),

(7–2)

which equals the resultant of the load applied to the top of the panel on the interval
[0, d]; see Equation (3–13).

To determine the stress field in the remaining parts of the panel, we assume the
existence of a singularity curve S with equation y = ω(x), starting from the point
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p, and we proceed as in Example 2, assuming

Tr =


T 0 in U1 ∪U2,

−p0e2⊗ e2 in U3,

0 in U4.

The form of the curve y = ω(x) is obtained similarly to that in Equation (6–13):
one identifies f = c and hence f1 = p0dϕ/2 and ν = 2/ϕ [see (7–2)] to obtain

ω(x)=
(x − d)2

ϕd
+

2(x − d)
ϕ

+
d
ϕ
=

x2

ϕd
.

The maximun value of ϕ compatible with equilibrium is b2/(hd) and is attained
when S meets the corner (b, h) of the panel.

8. Conclusions

The divergence measure tensor fields presented above constitute a new class of sin-
gular stress fields equilibrated with the loads and compatible with the incapability
of the material to withstand traction. They appear to be a powerful tool that can be
helpful in many applications to assess the safe magnitude of the applied load.

Although the examples presented in this work deal only with the plane problem
in the absence of the body forces, the general part of this paper is meant to be
applicable to more general situations [Lucchesi et al. 2004; 2005b].

Appendix A. Appendix: surfaces and surface divergence theorem

This appendix gathers the differential geometric notions used above. These are
mainly the k-dimensional surfaces in Rn , which we denote generically by U, the k-
dimensional surfaces with boundary, which we denote by S, the surface divergence
of vector fields and tensor fields on U or S, and the surface divergence theorem
1. Most of the notions discussed below can be used in their intuitive sense but we
prefer to give explicit definitions to avoid misunderstandings.

We start with the notion of surface. We give a definition that is convenient for
the proof of Proposition 1. We refer to [Federer 1969, Subsection 3.1.19] for the
discussion of surfaces without boundary of arbitrary class C s and to [Lee 2003]
for manifolds with boundary of class C∞.

A.1. Surfaces. If U is a subset of Rn , k an integer with 0≤ k ≤ n, and s a positive
integer, then the following conditions are equivalent [Federer 1969, Subsection
3.1.19]:

(i) for each x ∈ U there exists a neighborhood Z of x in Rn and a class C s

injective map φ from an open set in Rk into Rn with continuous inverse such
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that

U∩ Z = ran φ, rank∇φ( p)= k whenever p ∈ dom φ;

(ii) for each x ∈U there exists a neighborhood Z of x in Rn and a class C s map
ω : Z→ Rn−k such that

U∩ Z = ω−1(0), rank∇ω( y)= n− k whenever y ∈ Z .

If these equivalent conditions are satisfied, we say that U is a k-dimensional surface
of class C s . It is not assumed that surfaces are connected. We shall always assume
that s ≥ 2, and omit the qualification “of class C2” in our terminology. It is easy
to see that U is an n-dimensional surface in Rn if and only if U is an open subset
of Rn and U is a 0-dimensional surface if and only if U is a set of isolated points.
We call one-dimensional surfaces curves. We shall encounter zero-dimensional
surfaces as boundaries of curves.

If x ∈U we denote by Tx(U)⊂ Rn the tangent space to U at x, defined by

Tx(U)= ran∇φ(φ−1(x))= ker∇ω(x), (A–1)

where φ and ω are as in (i) and (ii) above; we note that the two expressions in
(A–1) are independent of the choices of these two objects. Clearly, Tx(U) is a
k-dimensional subspace of Rn .

Next we discuss surfaces with boundary. These occur in the surface divergence
theorem, below, and are defined as closed parts S of surfaces U without boundary
such that the boundary ∂S is regular enough to have a well defined tangent space
for Hk−1 a.e. point.

A.2. Surfaces with boundary. We say that a subset S of Rn is a k-dimensional
surface with boundary if the following three conditions are satisfied:

(i) S is closed;

(ii) there exists a k-dimensional surface U such that S⊂U;

(iii) for every x in the relative boundary ∂S of S in U there exist a set Z and
a map φ as in Item 1 of Section A.1, an ε > 0, and a Lipschitz function
f : dom f → R on an open subset of Rk−1 such that

φ(D−)⊂ Z ∩ (S \ ∂S), φ(D+)⊂ Z ∩ (U \S),

where D± are the “± ε layers along the graph of f,” given by

D± = {( y, a) ∈ Rk
: y ∈ dom f, a = f ( y)± t, where 0< t < ε}.

We set int S := S \ ∂S and note that int S is a surface (without boundary) as
defined in Section A.1. If x ∈ S, we define the tangent space Tx(S) to S at x
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by Tx(S)= Tx(U); this definition is independent of the choice of U. Note that if
x, Z ,φ, and f are as in Item (iii) above then

Z ∩ ∂S= φ(graph f ),

that is, φ carries the graph of f into ∂S; in particular x = φ( y, f ( y)) for some
y ∈ dom f . Motivated by this, we define the tangent space Tx(∂S) of ∂S at x for
Hk−1 a.e. x ∈ ∂S as the image of the tangent space T at ( y, f ( y)) to graph f under
∇φ whenever T exists. By definition, T exists if and only if f is differentiable at
y; we then set

T := span
{
∇i h( y) : i = 1, . . . , k− 1

}
,

where h : dom f → Rk is defined by h(z)= (z, f (z)), z ∈ dom f , and

∇i , i ≤ i ≤ k− 1,

denotes the partial differentiation in Rk−1. We then set

Tx(∂S) := span{∇φ( y, f ( y))∇i h( y) : i = 1, . . . , k− 1}

where y is defined by x = φ( y, f ( y)). Since f is differentiable at Lk−1 a.e. point
of dom f by Rademacher’s theorem, Tx(∂S) is defined for Hk−1 a.e. x ∈ ∂S.

The tangent space to ∂S is now used to define an exterior normal to ∂S as
follows. If S is a k-dimensional surface with boundary then there exists a function
m, defined on Hk−1 almost all of ∂S and with values in Sn−1, which we write
m : ∂S→ Sn−1, such that we have the following conditions satisfied for Hk−1 a.e.
x ∈ ∂S:

(i) m(x) ∈ Tx(S);

(ii) m(x) is perpendicular to Tx(∂S);

(iii) m points out of S in the sense that there exists a continuously differentiable
map S : (−1, 1)→Rn with S((−1, 0])⊂S, S(0)= x and dS/dt (0)=m(x).

Any two functions satisfying (i)–(iii) differ at most on a set of Hk−1 measure 0; we
call any such an m the exterior normal of S, and refer to [Lee 2003, Proposition
13.26] for the proof in the case of C∞ manifolds with C∞ boundary. If S is a curve
with endpoints and hence ∂S is a collection of the initial and final endpoints (see
below for the definition), then the outer normal coincides with the outer tangents
to S at the endpoints.

In the special case k= n, we call the n-dimensional surfaces with boundary in Rn

regions with Lipschitz boundary; recall that, contrary to the common terminology,
we assume that S is closed; since in this case ∂S coincides with the topological
boundary of S, it follows that int S is a region with Lipschitz boundary in the
standard sense [Nečas 1967], which we call open regions with Lipschitz boundary.
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For the special case k = 1 we call surfaces of dimension 1 with boundary curves
with endpoints.

Referring to [Lee 2003, Chapter 13] for the standard notion of an orientation of a
vector space, we say that a k-dimensional surface in Rn with boundary is orientable
if there exists a continuous map on S giving the orientation of each tangent space
of S. Each such a map is called an orientation of the surface. An oriented k-
dimensional surface with boundary is a surface S with boundary together with an
orientation of S.

A.3. Fields on surfaces, surface gradient and surface divergence. With the aim
to define the surface divergence of a vector or tensor field defined on a surface,
we first introduce a surface derivative via ‘theoretical’ formulas (A–2) and (A–3),
below, and give ‘practical’ formulas (A–4) and (A–5).

If S is a k-dimensional surface with boundary, S ⊂ S, f : S → V where V
is a finite-dimensional inner product space, and x ∈ S \ ∂S, we say that f is
differentiable at x if N ∩S⊂ S for some neighborhood N of x in Rn and if there
exists a linear transformation ∇ f (x) from Rn to V , called the surface derivative
of f at x, such that

∇ f (x)P =∇ f (x) (A–2)

and
lim
y→x

y∈S, y 6=x

| f ( y)− f (x)−∇ f (x)( y− x)|/| y− x| = 0, (A–3)

where P is the orthogonal projection from Rn onto Tx(S). Note that for k = n
this coincides with the usual definition of the (Fréchet) derivative interpreted as a
linear transformation [Dieudonné 1960, Chapter VIII]; for k = n− 1 this reduces
to the surface gradient defined in [Gurtin and Murdoch 1975; Gurtin 2000]. For
a general k, we interpret ∇ f (x) as a linear transformation from Rn to V and not
as a linear transformation from Tx(S) to V . However Equation (A–2) shows that
∇ f (x) = 0 on the orthogonal complement Tx(S)

⊥. If V = R, we identify the
linear transformation ∇ f (x) from Rn to R with a vector in Rn , equally denoted,
via ∇ f (x)a = ∇ f (x) · a for any a ∈ Rn . It is easy to see that if φ is as in Section
A.1 (i) then f is differentiable at x if and only if f ◦ φ is differentiable in the
classical sense at p := φ−1(x) and then

∇ f (x)=∇( f ◦φ)( p)[∇φ( p)]−1 P, (A–4)

where [∇φ( p)]−1
: Tx(S)→ Rk is the inverse of ∇φ( p) : Rk

→ Tx(S). Also,
if N is a neighborhood of x in Rn and g : N → V is an extension of f that is
differentiable in the classical sense at x then

∇ f (x)=∇g(x)P, (A–5)
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where ∇g(x) is the derivative of g at x in the classical sense. If T ⊂ S, we say
that f : S→ V is continuously differentiable on T if ∇ f (x) exists for every x ∈ T
and the mapping ∇ f is continuous on T .

If q : S → Rn is differentiable at x ∈ S, we define the surface divergence
div q(x) ∈ R of q at x by

div q(x) := tr[∇q(x)].

For k = n this coincides with the standard divergence, while for k = n− 1 this re-
duces to the surface divergence defined in [Gurtin and Murdoch 1975] and [Gurtin
2000].

If S⊂S and q : S→Rn , we say that q is tangential [Gurtin 2000] if q(x)∈Tx(S)

for every x ∈ S. If T : S→ Lin is differentiable at x ∈ S, we define the surface
divergence div T (x) ∈ Rn of T at x to be the unique element of Rn such that

a · div T (x)= div[TTa](x), (A–6)

for every a ∈ Rn
; see [Gurtin and Murdoch 1975] and [Gurtin 2000]. We note the

following standard identity for a smooth tensor field T and a smooth vector field
v on an open subset of a surface:

div(TTv)=∇v · T + v · div T . (A–7)

To give formulas for the surface divergence, we assume that U⊂ Rn is a surface
of dimension k, that φ : P → U is a local parameterization of U on an open
set P ⊂ Rk of class C2, (that is, φ satisfies Item (i) of Section A.1), and that
q : ran φ→Rn is a continuously differentiable tangential vector field on ran φ ⊂U.
We write

q ◦φ =
k∑

i=1

q i gi ,

where gi : P→ Rn are the coordinate vectors of φ, given by gi = ∇φ ei , where
ei , i = 1, . . . , k, is the standard basis in Rk . Then q i are continuously differentiable
functions on P and one has

(div q) ◦φ = Jφ−1

k∑
i=1

∇i (Jφq i ), (A–8)

where Jφ:P→(0,∞) is the Jacobian of φ, defined by

Jφ2 = det(∇φT
∇φ),

and ∇i denotes the partial differentiation in Rk . This can be deduced from [Lee
2003, Problem 14-11 (a)] in the case of class C∞ objects and the generalization to
the above smoothness assumptions is straightforward; nevertheless we note that φ
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must be of class C2 to make the right side of Equation (A–8) meaningful. One finds
similarly that a continuously differentiable symmetric tensor field T : ran φ→ Lin
is superficial if and only if it can be written in the form

T ◦φ =
k∑

i, j=1

T i j gi ⊗ g j ,

where T i j are continuously differentiable functions on P . From Equations (A–6)
and (A–8) we can deduce that

(div T ) ◦φ = Jφ−1

k∑
i, j=1

∇ j (JφT i j gi ). (A–9)

Theorem 1 (Surface divergence theorem). If S is an oriented k-dimensional sur-
face with boundary and if q : S→ Lin is a continuous tangential vector field with
compact support and with a continuous and Hk integrable derivative in int S then∫

S
div q dHk

=

∫
∂S

q ·m dHk−1 (A–10)

where m is the exterior normal to S.

We refer to [Lee 2003, Theorem 14.23] for the proof for C∞ objects. The proof
under the present generality follows by noting that the maps φ as in Section A.2
item (iii) carry (parts) of S into (parts) of regions with Lipschitz boundary in Rk for
which the divergence theorem is known to hold [Nečas 1967] for functions from
the Sobolev class W 1,1. In the proof one invokes Equation (A–8) to transform the
surface integral of the surface divergence into the volume integral of the ‘volume’
divergence, invoking the divergence theorem and transforming the resulting inte-
gral to the right side of Equation (A–10). The proof is then completed with the
help of a partition of unity, see [Šilhavý 2005b, Chapter 5] for details. The use of
formula (A–8) requires a class C2 smoothness of S.
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The research of M. Šilhavý has been supported by a MIUR grant, “Variational
theory of microstructure, semiconvexity, and complex materials.” The support is
gratefully acknowledged.

References

[Anzellotti 1983] G. Anzellotti, “Pairings between measures and bounded functions and compen-
sated compactness”, Ann. Mat. Pur. Appl. 135:1 (1983), 293–318.

[Benvenuto 1991] E. Benvenuto, An introduction to the history of structural mechanics, II: Vaulted
structures and elastic systems, Springer, Berlin, 1991.



538 MASSIMILIANO LUCCHESI, MIROSLAV ŠILHAVÝ AND NICOLA ZANI

[Bouchut and James 1999] F. Bouchut and F. James, “Duality solutions for pressureless gases, mono-
tone scalar conservation laws, and uniqueness”, Commun. Part. Diff. Eq. 24 (1999), 2173–2190.

[Brenier and Grenier 1998] Y. Brenier and E. Grenier, “Sticky particles and scalar conservation
laws”, SIAM J. Numer. Anal. 35:6 (1998), 2317–2328.

[Chen and Frid 1999] G.-Q. Chen and H. Frid, “Divergence-measure fields and hyperbolic conser-
vation laws”, Arch. Ration. Mech. An. 147:2 (1999), 89–118.

[Chen and Frid 2001] G.-Q. Chen and H. Frid, “On the theory of divergence-measure fields and its
applications”, Bol. Soc. Bras. Mat. 32 (2001), 1–33.

[Chen and Frid 2003] G.-Q. Chen and H. Frid, “Extended divergence-measure fields and the Euler
equations for gas dynamics”, Commun. Math. Phys. 236:2 (2003), 251–280.

[Chen and Torres 2005] G.-Q. Chen and M. Torres, “Divergence-measure fields, sets of finite perime-
ter, and conservation laws”, Arch. Ration. Mech. An. 175:2 (2005), 245–267.

[Degiovanni et al. 1999] M. Degiovanni, A. Marzocchi, and A. Musesti, “Cauchy fluxes associated
with tensor fields having divergence measure”, Arch. Ration. Mech. An. 147:3 (1999), 197–223.

[Del Piero 1989] G. Del Piero, “Constitutive equation and compatibility of the external loads for
linear elastic masonry-like materials”, Meccanica 24:3 (1989), 150–162.

[Del Piero 1998] G. Del Piero, “Limit analysis and no-tension materials”, Int. J. Plasticity 14:1-3
(1998), 259–271.

[Di Pasquale 1984] S. Di Pasquale, “Statica dei solidi murari teorie ed esperienze”, Pubblicazione 27,
Dipartimento di Costruzioni, Università di Firenze, 1984.

[Dieudonné 1960] J. Dieudonné, Foundations of modern analysis, Academic Press, New York and
London, 1960.

[Federer 1969] H. Federer, Geometric measure theory, Springer, New York, 1969.

[Gurtin 1981] M. E. Gurtin, An introduction to continuum mechanics, Academic Press, Boston,
1981.

[Gurtin 2000] M. E. Gurtin, Configurational forces as basic concepts of continuum physics, Springer,
New York, 2000.

[Gurtin and Murdoch 1975] M. E. Gurtin and A. I. Murdoch, “A continuum theory of elastic material
surfaces”, Arch. Ration. Mech. An. 57:4 (1975), 291–323.

[Heyman 1966] J. Heyman, “The stone skeleton”, Int. J. Solids Struct. 2:2 (1966), 249–256.

[Kohn and Témam 1983] R. Kohn and R. Témam, “Dual spaces of stresses and strains, with appli-
cations to Hencky plasticity”, Appl. Math. Opt. 10:1 (1983), 1–35.

[Lee 2003] J. M. Lee, Introduction to smooth manifolds, Springer, New York, 2003.

[Love 1944] A. E. H. Love, A treatise on the mathematical theory of elasticity, Dover, New York,
1944.

[Lucchesi and Zani 2002] M. Lucchesi and N. Zani, “On the collapse of masonry panel”, in Proceed-
ings of 7th International Seminar on Structural Masonry for Developing Countries, Belo Horizonte,
Brazil, 2002, 2002.

[Lucchesi and Zani 2003a] M. Lucchesi and N. Zani, “Some explicit solutions to plane equilibrium
problem for no-tension bodies”, Struct. Eng. Mech. 16:3 (2003), 295–316.

[Lucchesi and Zani 2003b] M. Lucchesi and N. Zani, “Stati di sforzo per pannelli costituiti da mate-
riale non resistente a trazione”, in Proceedings of XVI AIMETA Congress, Ferrara, 2003.

[Lucchesi et al. 2004] M. Lucchesi, M. Šilhavý, and N. Zani, “Stress state for heavy masonry pan-
els”, Paper presented at the Colloquium Lagrangianum, Venice, 2004.



A NEW CLASS OF EQUILIBRATED STRESS FIELDS FOR NO-TENSION BODIES 539

[Lucchesi et al. 2005a] M. Lucchesi, M. Šilhavý, and N. Zani, “Singular equilibrated stress fields
for no-tension panels”, pp. 255–265 in Mechanical modelling and computational issues in civil en-
gineering, edited by M. Frémond and F. Maceri, Lecture Notes Appl. Comput. Mech. 23, Springer,
2005.

[Lucchesi et al. 2005b] M. Lucchesi, M. Šilhavý, and N. Zani, “Stress fields for axisymmetric no-
tension bodies”, in Proceedings of XVII AIMETA Congress, Florence, 2005.

[Marzocchi and Musesti 2001] A. Marzocchi and A. Musesti, “Decomposition and integral repre-
sentation of Cauchy interactions associated with measures”, Continuum Mech. Therm. 13:3 (2001),
149–169.
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ELASTIC INDENTATION PROBLEMS IN THIN FILMS ON
SUBSTRATE SYSTEMS

ROBERTA SBURLATI

In this paper an analytical solution of an elastic isotropic thin-film on an elastic
substrate under an axisymmetric loading on the plane surface is presented. The
analysis is intended to model the micronanoindentation tests to evaluate some of
the relevant properties of thin films and provide information about the influence
of interface conditions between the film and the substrate.

The theoretical solution of the equations of three-dimensional elasticity is
obtained by using Dini and Fourier–Bessel expansions for the displacement field.
To describe the elastic mechanical interaction between the indenter and the film
for low load, we make use of the pressure distribution for contact between
two homogeneous bodies, and the corresponding displacement field is solved
in explicit form. The contact law is obtained with two different ideal interface
conditions between the film and the substrate: perfectly bonded and frictionless
contact.

This form of the elastic solution may be utilized for different axisymmetric
pressure distributions performed to model the interaction between the indenter
and the film, thus obtaining an analytical framework for comparing experimental
and numerical results.

1. Introduction

The growing importance of nanomicroscale materials has recently rekindled the
interest in thin-film technology and the mechanical properties of a thin solid film
deposited on a substrate. The interaction between a rigid indenter and an elastic
half-space is a classical problem of contact mechanics that was studied by Sned-
don [1966] by using the integral transforms technique. When a solid thin film is
deposited over the substrate, the problem becomes more complex and the elastic
response of the film subjected to indentation can be categorized according to the
film/substrate material properties. In the first case, the film is soft in comparison
with the substrate stiffness (soft-film); in the second case, the elastic properties of
the film and the substrate are comparable; and in the third case the thin film is stiffer
(hard film). For the first case, some investigators assume a mathematical artifice
that simplifies the analysis: the substrate is approximated as rigid [Matthewson

Keywords: elasticity, contact mechanics, thin film, nanoindentation.
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1981]. However, for the other cases, a correct evaluation of the mechanical behav-
ior of the indentation problem requires knowledge of the effects of elastic properties
of both the film and the substrate.

Experimental indentation tests are frequently used to measure the elastic prop-
erties of materials and to investigate the role of adhesion forces. In order to exper-
imentally measure “film-only” properties, a commonly used rule of thumb for the
substrate influences is to limit the indentation depth to less than 10% of the film
thickness. Actually, some studies have shown that the critical parameter to take into
account in the experimental indentation tests is the ratio between the thickness of
the film and the contact area radius a; also in this case, it is proposed that the limit
is less than 10% in order to use the monolithic theory. While using this rule is
experimentally feasible for films that are greater than about a micrometer in thick-
ness, this approach cannot be used for very thin films. Hence these assumptions,
frequently accepted in the experimental tests for a large class of materials, are not
applicable at the nanoscale [VanLandingham 2003; Fischer-Cripps 2004].

Intense studies have taken into account the adhesion forces which arise between
the indenter and the film and on the interface film/substrate, and which give rise to
an increasing of the contact area with respect to the contact without adhesion case
[Maugis 1999].

In this work, we consider an isotropic film coating an isotropic elastic substrate
subjected to an axisymmetric loading condition which simulates the presence of
an indenter of assigned form in a quasi-static indentation test. We make two main
assumptions. First, in view of the local character of the indentation problem, we
introduce a suitable parameter b representing the radius in which the contact phe-
nomenon is contained. In such a way, we write the components of the displacement
field by means of Dini and Fourier–Bessel expansions, so avoiding the use of the
Hankel integral transforms and, consequently, the problem of their inversions [Yu
et al. 1990]. We shall subsequently show that, under suitable conditions, the spe-
cific value assumed for the parameter b is not relevant. Second, since the original
mixed boundary value indentation problem leads to dual integral equations that,
due to their complexity, can only be solved numerically by means of the Fred-
holm integral technique, we have changed the boundary conditions by assuming
a preassigned distribution of traction on the free surface; this assumption is also
introduced in the paper of Li and Chou [1997] within the framework of the Hankel
integral transform technique.

In so doing, we solve the elastic problem of a thin film coating/substrate system
under a prescribed axisymmetric load by using a Dini and a Fourier–Bessel expan-
sion for the radial and the vertical component of the displacement field respectively.
The elastic response of the film is analyzed with two different interface conditions
between the substrate and the film to bound the real case: frictionless contact
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and perfectly bonded. We also analyze the case in which the elastic properties
of the film are very different from the substrate ones (soft-film/hard substrate).
We get an explicit analytical form for the displacement and stress fields in terms
of Fourier–Bessel expansions depending on some coefficients related to the form
of the indenter and to the preassigned pressure distribution suitable to model the
interaction film-indenter.

Although we do not assume specific restrictions on the thickness of the film,
we consider the film “thin” for two reasons: first, because of its experimental rel-
evance in micro and nanoindentation tests; and second, because we are interested
in evaluating substrate effects that are not relevant for thick films (see the classical
half-space theory [Sneddon 1966]).

Finally, we remark that the indentation test involves plastic deformation; indeed
if we consider the loading of an initially flat specimen with a spherical indenter,
after an initial elastic response at low loads, there is an elastic-plastic deformation.
However, the elastic three-dimensional solution presented in this paper may be
used to describe the low load elastic film response when the classical half-space
solution is no longer true due to the presence of the film thickness.

The elastic solution may also be used to describe the unloading curve by adopt-
ing the Oliver and Pharr method; of course, one has to take into account the residual
depth at complete unload [Oliver and Pharr 1992; Field and Swain 1993].

2. Problem formulation

In this section we study the indentation problem of a rigid, frictionless axisymmet-
ric indenter on a circular thin-film/substrate system of radius b. The film is assumed
to be either in frictionless contact or perfectly bonded to an elastic substrate. The
thickness of the finite film overlaying the substrate is denoted as h. We choose a
cylindrical coordinate system (0, r, ϑ, z) such that z is parallel to the generator of
the indenter and the origin 0 is placed at the first contact point between the indenter
and the film.

Due to the local character of the effect, we limit our study to the volume of
a cylinder of radius b (the centre is the origin); by assuming that b is sufficiently
large with respect to the radius a of the contact area, we can suppose that, for r ≥ b,
the vertical displacement does not change in the presence of the indenter; in other
words, we assume w(b, z)= 0.

By considering an axisymmetric loading condition on the plane surface, we limit
our attention to the radial and the transversal displacement fields u(i) = u(i)(r, z)
and w(i) = w(i)(r, z) for the film and the substrate respectively (with i = f, s);
by using a Dini expansion in r for u(i)(r, z) and a Fourier–Bessel expansion in r
for w(i)(r, z) (see [Watson 1944], p. 576–577, equation (5) with ν = 1, H = 1 in
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equation (1), respectively), we write

u( f )(r, z)=−
∞∑
j=1

g( f )
j (z)φ j J1(φ jr), w( f )(r, z)=

∞∑
j=1

f ( f )
j (z)J0(φ jr), (1)

u(s)(r, z)=−
∞∑
j=1

g(s)j (z)φ j J1(φ jr), w(s)(r, z)=
∞∑
j=1

f (s)j (z)J0(φ jr). (2)

The functions g(s)j (z) and f (s)j (z) denote the variations of the displacements
through the thickness of the film and of the substrate; we have put

φ j =
Z (0)j

b
,

where Z (0)j denote, for j = 1, 2, 3, . . ., the positive zeros of the zero-order Bessel
function J0(r).

In this paper we assume that the film and the substrate are both isotropic; the
linear elasticity equations therefore assume the form

(λi+2µi )

(
∂2

∂r2 u(i)+
1
r
∂

∂r
u(i)−

1
r2 u(i)+

∂2

∂z∂r
w(i)

)
+µi

(
∂2

∂z2 u(i)−
∂2

∂z∂r
w(i)

)
= 0,

(λi+2µi )

(
∂2

∂z2w
(i)
+

1
r
∂

∂z
u(i)+

∂2

∂z∂r
u(i)

)
+µi

(
∂2

∂r2w
(i)
−

∂2

∂z∂r
u(i)

)
−µi

1
r

(
∂

∂z
u(i)−

∂

∂r
w(i)

)
= 0,

where λi and µi are the Lamé moduli.
By substituting the displacement field (1), (2) into these equations, we get the

differential equations

(λi + 2µi )
d2

dz2 f (i)j +φ
2
j

(
(λi +µi )

d
dz

g(i)j −µi f (i)j

)
= 0, (3)

µi
d2

dz2 g(i)j − (λi +µi )
d
dz

f (i)j −φ
2
j (2µi + λi )g

(i)
j = 0, (4)

whose solution has the form

f ( f )
j (z)= C ( j)

1 cosh(φ j z)+C ( j)
2 sinh(φ j z)+C ( j)

3 z cosh(φ j z)+C ( j)
4 z sinh(φ j z),

g( f )
j (z)=−

1
φ j

C ( j)
1 sinh(φ j z)−

1
φ j

C ( j)
2 cosh(φ j z)
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−
1
φ j

C ( j)
3

(
1
φ j

λ f + 3µ f

λ f +µ f
cosh(φ j z)+ z sinh(φ j z)

)
−

1
φ j

C ( j)
4

(
1
φ j

λ f + 3µ f

λ f +µ f
sinh(φ j z)+ z cosh(φ j z)

)
,

f (s)j (z)= Q( j)
1 cosh(φ j z)+ Q( j)

2 sinh(φ j z)+ Q( j)
3 z cosh(φ j z)+ Q( j)

4 z sinh(φ j z),

g(s)j (z)=−
1
φ j

Q( j)
1 sinh(φ j z)−

1
φ j

Q( j)
2 cosh(φ j z)

−
1
φ j

Q( j)
3

(
1
φ j

λs + 3µs

λs +µs
cosh(φ j z)+ z sinh(φ j z)

)
−

1
φ j

Q( j)
4

(
1
φ j

λs + 3µs

λs +µs
sinh(φ j z)+ z cosh(φ j z)

)
.

in the film and in the substrate, respectively. The coefficients C ( j)
1 ,C ( j)

2 ,C ( j)
3 ,C ( j)

4

and Q( j)
1 , Q( j)

2 , Q( j)
3 , Q( j)

4 will be uniquely determined by imposing the boundary
and interface conditions that will be introduced in the next section.

The displacement field is obtained by considering the sum over all values of j ;
thus

u( f )(r, z)=
∞∑
j=1

(
C ( j)

1 sinh(φ j z)+C ( j)
2 cosh(φ j z)

+C ( j)
3

( 1
φ j

λ f + 3µ f

λ f +µ f
cosh(φ j z)+ z sinh(φ j z)

)
+C ( j)

4

( 1
φ j

λ f + 3µ f

λ f +µ f
sinh(φ j z)+ z cosh(φ j z)

))
J1(φ jr), (5)

w( f )(r, z)=
∞∑
j=1

(
C ( j)

1 cosh(φ j z)+C ( j)
2 sinh(φ j z)

+C ( j)
3 z cosh(φ j z)+C ( j)

4 z sinh(φ j z)
)

J0(φ jr). (6)

u(s)(r, z)=
∞∑
j=1

(
Q( j)

1 sinh(φ j z)+ Q( j)
2 cosh(φ j z)

+ Q( j)
3

( 1
φ j

λs + 3µs

λs +µs
cosh(φ j z)+ z sinh(φ j z)

)
+ Q( j)

4

( 1
φ j

λs + 3µs

λs +µs
sinh(φ j z)+ z cosh(φ j z)

))
J1(φ jr), (7)
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w(s)(r, z)=
∞∑
j=1

(
Q( j)

1 cosh(φ j z)+ Q( j)
2 sinh(φ j z)

+ Q( j)
3 z cosh(φ j z)+ Q( j)

4 z sinh(φ j z)
)
J0(φ jr). (8)

3. Boundary and interface conditions

In order to explicitly find the form of the elastic solution (5)–(8), we investi-
gate the boundary condition on the free surface of the film and on the interface
film/substrate.

Due to the complexity of the indentation problem, an axisymmetric normal pres-
sure and vanishing shear stress components are assumed on the free surface, in
z = 0, as follows

σ ( f )
zz (r, 0)= p(r) and σ ( f )

r z (r, 0)= 0. (9)

It is convenient to write the normal pressure distribution p(r) with a Fourier–
Bessel expansion in the form

p(r)=
∞∑
j=1

A j J0(φ jr), where A j =
2
∫ a

0 r p(r)J0(φ jr)dr
b2 J1(bφ j )2

. (10)

A detailed discussion on the expansion convergence can be found in [Watson
1944]. On the other hand, in the substrate, for large z, we assume

lim
z→∞

u(s)(r, z)= 0 and lim
z→∞

w(s)(r, z)= 0. (11)

These conditions give the following equations: Q( j)
1 =−Q( j)

2 and Q( j)
3 =−Q( j)

4 .
Now we introduce two different conditions in the interface zone; the film is as-

sumed to be in frictionless contact or perfectly bonded to a substrate. The solutions
obtained for both these ideal cases are introduced to bound the real cases where
the contact between the film and the substrate is neither frictionless nor perfectly
bonded.

3.1. Perfectly bonded case. On the interface surface z = h, we require the conti-
nuity of displacement and traction components as follow

[w(r, h)] = 0, [u(r, h)] = 0, (12)

[σzz(r, h)] = 0, [σr z(r, h)] = 0. (13)

The conditions in (12), (13) together with (9) allow us to get the explicit form of
the remaining unknown coefficients C ( j)

α , α = 1, . . . , 4 and Q( j)
α , α = 2, in terms

of the A j coefficients.



ELASTIC INDENTATION PROBLEMS IN THIN FILMS ON SUBSTRATE SYSTEMS 547

In the case of a rigid substrate, by putting λ( f )
= λ and µ( f )

= µ, the interface
conditions

w(r, h)= 0 and u(r, h)= 0 (14)

give rise to the following simplified forms for the coefficients:

C ( j)
1 =−

(λ+ 2µ)
(
(λ+ 3µ) sinh(2φ j h)− 2φ j h(λ+µ)

)
4µφ j

(
(λ+µ)(λ+ 3µ) sinh2(φ j h)+φ2

j h2(λ+µ)2+ (2µ+ λ)2
) A j ,

C ( j)
2 =

(λ+ 2µ)(λ+ 3µ) cosh(2φ j h)+ 2φ2
j h

2(λ+µ)2+ (λ+ 2µ)(λ+ 3µ)

4µφ j
(
(λ+µ)(λ+ 3µ) sinh2(φ j h)+φ2

j h2(λ+µ)2+ (2µ+ λ)2
) A j ,

C ( j)
3 =−

(λ+µ)
(
(λ+ 3µ) cosh(2φ j h)+ (λ+µ)

)
4µ
(
(λ+µ)(λ+ 3µ) sinh2(φ j h)+φ2

j h2(λ+µ)2+ (2µ+ λ)2
) A j ,

C ( j)
4 =

(λ+µ)
(
(λ+ 3µ) sinh(2φ j h)− 2hφ j (λ+µ)

2
)

4µ
(
(λ+µ)(λ+ 3µ) sinh2(φ j h)+φ2

j h2(λ+µ)2+ (2µ+ λ)2
) A j .

The coefficients A j can be found by using the expression in (10) for the pressure
on the free film surface.

3.2. Frictionless contact. On the interface surface z = h, we require the continu-
ity of transversal displacement components, traction components, and null shear
traction, as follows:

[w(r, h)] = 0, σ (i)r z (r, h)= 0,

[σzz(r, h)] = 0, [σr z(r, h)] = 0.

Together with (9), these conditions allow us to get the coefficients C ( j)
α , α =

1, . . . , 4 and Q( j)
α , α = 2, 3, in terms of the A j .

For a rigid substrate the coefficient expressions assume the simplified form

C ( j)
1 =−

(λ+ 2µ)(cosh(2φ j h)− 1)
2µφ j (λ+µ)(sinh(2φ j h)+ 2φ j h)

A j ,

C ( j)
2 =

(λ+ 2µ) sinh(2φ j h)+ (λ+µ)2φ j h
2µφ j (λ+µ)(sinh(2φ j h)+ 2φ j h)

A j ,

C ( j)
3 =−

sinh(2φ j h)
2µ(sinh(2φ j h)+ 2φ j h)

A j ,

C ( j)
4 =

cosh(2φ j h)− 1
2µ(sinh(2φ j h)+ 2φ j h)

A j .
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The displacement field is obtained in explicit form from Equations (5)–(8), by
taking into account the coefficients expression A j for detailed preassigned pressure
form (10) and the coefficients C ( j)

α , α = 1, . . . , 4 and Q( j)
α , α = 2, for different

interface conditions (Sections 3.1, 3.2).
Now we specify the form of the indenter since it is related to the pressure field

on the free surface. Specifically, in the following we assume that the pressure
distribution is given by the classical solutions for the indentation on an elastic half-
space.

We remark that it is also possible to introduce different pressure distributions
to simulate different effects between the indenter and the film (adhesion forces,
approximate pressure distribution taking into account the thickness of the films;
see [Yang 2003; Chadwick 2002]).

3.2.1. Rigid flat-ended cylindrical punch. We consider the case in which the film
is deformed by a flat-ended rigid cylinder with radius a. In this case the pressure
distribution for the homogeneous half-space is:

p(r)=−p0

(
1−

r2

a2

)− 1
2

, p0 =
P

2πa2 ,

where P is the resultant applied load. By using equation (10) the coefficients A j

assume the following form

A j =
2ap0 sin(aφ j )

b2φ j J1(bφ j )2
.

3.2.2. Rigid spherical punch with shallow indentation. We consider a spherical
punch by assuming that the radius a of the contact area is much smaller than the
radius R of the sphere, that is, a� R. The pressure distribution, for r < a, has the
form

p(r)=−p0

(
1−

r2

a2

) 1
2

with p0 =
3P

2πa2 and a3
=

3P R(1− ν2)

4E
.

In this case the coefficients A j are

A j =
2p0

(
sin(aφ j )− aφ j cos(aφ j )

)
ab2φ3

j J1(bφ j )2
.

3.2.3. Rigid conical punch. We consider a right circular cone with semi-vertical
angle α whose axis coincides with the z-axis and the vertex points downward into
the interior of the layer. The pressure distribution under the punch is

p(r)=−p0 cosh−1
(

a
r

)
with p0 =

P
πa2 , a2

=
2P(1− ν2)

πE tanβ
with β =

π

2
−α.
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The j-th coefficient has the form

A j =
p0a2

(
1− 1

12a2φ2
j +

1
360a4φ4

j − · · ·
)

b2 J1(bφ j )2
.

This expression was obtained by using an expansion of the J0(r) Bessel function.

4. Contact law and stress distribution in thin film

The contact law is obtained by using the explicit form of the transversal displace-
ment (6) in z = 0 and r = 0 and can be written in the following compact form

δfilm =

∞∑
j=1

K j A j (15)

Now, by using the explicit form of the coefficients C ( j)
α , α = 1, . . . , 4 and

Q( j)
α , α = 2, we get the terms K j in which we take into account the interface

conditions; the pressure distribution form allows us to determine the terms A j .
In the case of a thin film on a rigid substrate, the terms K j are

K bonded
j =

(ν2
− 1)

(
(4ν− 3) sinh(2φ j h)+ 2φ j h

)
Eφ j

(
(4ν− 3) cosh(φ j h)2− (2ν− 1)2−φ2

j h2
) ,

K contact
j =

2(ν2
− 1)(cosh(2φ j h)− 1)

Eφ j (sinh(2φ j h)+ 2φ j h)
,

where ν is the Poisson’s ratio and E the Young’s modulus.
The knowledge of the stress field is relevant for the understanding of the failure

mechanism of the coating/substrate system. The j -th term of the stress components
for the case of a rigid substrate can be written as follows:

σ ( j)
zz = 2µJ0(φ jr)

(
C ( j)

1 φ j sinh(φ j z)+C ( j)
2 φ j cosh(φ j z)

+C ( j)
3

( µ

λ+µ
cosh(φ j z)+φ j z sinh(φ j z)

)
+C ( j)

4

( µ

λ+µ
sinh(φ j z)+φ j z cosh(φ j z)

))
,
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σ ( j)
r z = 2µJ1(φ jr)

(
C ( j)

1 φ j cosh(φ j z)+C ( j)
2 φ j sinh(φ j z)

+C ( j)
3

(
λ+ 2µ
λ+µ

sinh(φ j z)+φ j z cosh(φ j z)
)

+C ( j)
4

(λ+ 2µ
λ+µ

cosh(φ j z)+φ j z cosh(φ j z)
))
,

σ ( j)
rr =

2µ
r

(
C ( j)

1 sinh(φ j z)+C ( j)
2 cosh(φ j z)

)(
−φ jr J0(φ jr)+ J1(φ jr)

)
+

2µC ( j)
3

rφ j

((λ+ 3µ
λ+µ

cosh(φ j z)+φ j z sinh(φ j z)
)

J1(φ jr)

−

(
φ jr

2λ+ 3µ
λ+µ

cosh(φ j z)+φ2
j r z sinh(φ j z)

)
J0(φ jr)

)
+

2µC ( j)
4

rφ j

((λ+ 3µ
λ+µ

sinh(φ j z)+φ j z cosh(φ j z)
)

J1(φ jr)

−

(
φ jr

2λ+ 3µ
λ+µ

sinh(φ j z)+φ2
j r z cosh(φ j z)

)
J0(φ jr)

)
,

σ
( j)
ϑϑ =−

2µ
r

(
C ( j)

1 sinh(φ j z)J1(φ jr)+C ( j)
2 cosh(φ j z)J0(φ jr)

)
−

2µC ( j)
3

rφ j

((λ+ 3µ
λ+µ

cosh(φ j z)+φ j z sinh(φ j z)
)

J1(φ jr)

+φ jr
λ

λ+µ
cosh(φ j z)J0(φ jr)

)
−

2µC ( j)
4

rφ j

((λ+ 3µ
λ+µ

sinh(φ j z)+φ j z cosh(φ j z)
)

J1(φ jr)

+φ jr
λ

λ+µ
sinh(φ j z)J0(φ jr)

)
.

The explicit expressions for the case in which the film and the substrate are both
elastic are obtained in an analogous way.

5. Numerical results

In this section we present two numerical examples useful to analyze the behavior
of the contact law and the stress distribution in terms of the film thickness and the
elastic properties of the substrate and the film.

Consider therefore a thin isotropic film (E = 2 MPa and ν = 0.25) coated on a
rigid substrate and in contact with a rigid sphere of radius R = 10µm. In Figure 1
we show the contact law, for different thickness of the film (h = 5µm and 10µm),
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obtained by using the solutions presented in Section 4 with Hertzian pressure dis-
tributions.

We remark that, when the thickness of the film is very large with respect to the
contact area radius a (i.e. h� a), we obtain numerical results in agreement with
the theory of an elastic half-space with the properties of the film. On the other
hand, when the thickness of the film is within the range between a and 10a, the
elastic response of the film changes for the presence of the rigid substrate [Yu et al.
1990; Li and Chou 1997]. Moreover, when the contact area radius is very large
with respect to the film thickness (i.e. h� a), or in the case of a very soft material,
the pressure distribution on the free surface of the film, and therefore the terms
A j of the expansion (10), must be assigned by using models suitable to take into
account the adhesion forces or the different pressure distribution [Maugis 1999].

Figure 2 shows the radial displacement in two ideal interface cases when the
film thickness is h = 5µm. The radial displacement, near the edge of the contact
area, has a change of sign in the thickness; in particular, for r = a and z = 0 the
radial displacement is negative (for both the interface cases) while it is positive in
the interface for the frictionless case and zero for the perfectly bonded case.

Figures 3 and 4 show the normal, radial and tangential stress components for
P = 2µN; the maximum value of the normal compression stress is present on the

P (µN)

δ (µm)

h = 10µm

h = 5µm
Hertzian contact law

Frictionless contact

Perfectly bonded interface

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

Figure 1. Contact laws for different film thicknesses.
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Figure 2. Radial displacement along the z-axis (P = 2µN, r = a).
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Figure 3. Radial and normal stress along the z-axis (P = 2µN,
r = 0).
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−40

−30

−20

−10

0
1 2 3 4 5

Figure 4. Shear stress along the z-axis (P = 2µN, r = a).

free surface and it is equal, for r = 0, to the value of load pressure distribution po

(see Section 3.2.2). An analysis for different film thickness values shows that the
component stress σzz in the interface zone increases as the thickness of the film
decreases.

The second example deals with different films on an elastic substrate. We have
considered thin films (oxide SiO2 and tungsten W) coated on a silicon substrate
(E = 165 GPa and ν = 0.27) and we have compared the numerical analytical results
with the experimental data obtained in Chudoba et al. [2000].

Figure 5 shows the results for the oxide film (E = 72 GPa and ν = 0.17) with
different thicknesses; the analytical model with Hertzian pressure distributions is
suitable to describe the load-displacement behavior for elastic indentations with a
spherical indenter for small values of the contact area radius a. In a first range,
the contact law is in agreement with the elastic homogeneous half-space solution
for oxide bulk material; in a second range, the contact law is different from the
Hertzian contact law due to the substrate effects. Finally, for large contact area
radius, the analytical results underestimate the experimental results to the order
of 20%; the reason for this fact is that the present analysis is limited to the ide-
alized static problem in which other effects encountered in indentation problems
are neglected (the different pressure distribution taking into account the substrate,
adhesion forces, large deformation, and dynamic effects). In this case the Hertzian
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Figure 5. Contact law for SiO2 films on Si for different interface conditions.

contact law for a half-space with the film constitutive properties overestimate the
experimental results.

The results for a tungsten film (E = 409 GPa and ν = 0.28) are shown in Figure
6; the analytical model with a Hertzian pressure is suitable to describe the load-
displacement behaviour for small values of the contact area radius; for large values
of a, the results obtained overestimate the experimental results since the Hertzian
pressure distribution of the half-space is inaccurate to simulate the action of the
indenter on the film for the soft substrate effect and a more appropriate pressure
distribution needs to be assigned [Yang 2003; Chadwick 2002]. In this case the
Hertzian contact law underestimates the experimental results.

More explicitly, the analytical results obtained for large a show that the Hertzian
overestimation for soft films on hard substrates and the underestimation for hard
films on soft substrates are significant when the indentation depth is less than one-
tenth of the film thickness. This behaviour of over and underestimation by the
Hertzian theory for soft and rigid films is in agreement with the results recently
obtained by Wang et al. [2004], where a finite element analysis devoted to finding
substrate effects at the nanoscale is presented.

Finally we remark that, for the cases discussed in this paper, we have numer-
ically checked that, for value of b greater than 10a, the values obtained become
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Figure 6. Contact law for tungsten film (W) on Si for different
interface conditions.

numerically stable (by further increasing b) and so the specific choice assumed for
b becomes irrelevant. On the other hand, assuming a large b requires considering
Fourier–Bessel and Dini expansions up to very high terms, whose evaluation is
unfruitful and very time-consuming. In our examples we assumed b = 10a and we
truncated the series when the data stabilized: typically with about 300 terms.

6. Conclusions

An elastic analysis has been performed to determine the displacement and the stress
fields of thin-film coating/substrate system subjected to an axisymmetrical contact
loading. The contact law presented in Section 4 approaches the half-space one
when the film thickness is sufficiently large with respect to the contact area ra-
dius. If the film thickness is not large compared to the contact radius area, the
response of the film is different because of the influence of the substrate. On the
other hand, if the film thickness is very small compared to the contact radius, the
classical pressure distribution in the half-space simulates inaccurately the action
of the indenter on the film and a more appropriate pressure distribution has to be
preassigned. Not only the classical pressure distributions under the indenter are



556 ROBERTA SBURLATI

potentially inaccurate, but so are the classical relations between contact area and
load.

The solutions presented in Section 3, for different indenter shapes, furnish good
suggestions for the study of the effect of adhesive forces that become more relevant
when the coating bodies are small or compliant in nature. Finally, we remark that it
is possible to extend the analysis of [Johnson and Sridhar 2001] adhesion theory for
a thin elastic film on an elastic substrate by using the solution obtained in Section 4
[Maugis 1999].
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MICROCRACK INITIATION
AT THE TIP OF A FINITE RIGID CONDUCTING LINE

IN PIEZOELECTRIC MEDIA

ZHONGMIN XIAO, HONGXIA ZHANG AND BINGJIN CHEN

In this paper is proposed a dislocation emission mechanism for microcrack initi-
ation at the tip of a finite rigid conducting line in a piezoelectric solid. When a
finite rigid conducting line is embedded in a piezoelectric matrix, because of the
highly concentrated stress and electric displacement fields at its tips, dislocations
of one sign are driven away from the tip, while the stationary dislocations of the
opposite sign are left behind. As a result, a micro Zener–Stroh crack is initiated
at each tip for the in-plane case, and two microcracks at each tip for the anti-
plane case. We obtain analytical solutions of both in-plane and anti-plane exten-
sion forces for microcracks initiated at the tip of a finite rigid conducting line.
By obtaining the stress and electric displacement fields at the tip under nonzero
net Burgers vectors, we observe two critical crack lengths. We find that the in-
plane and anti-plane critical extension forces for a finite rigid conducting line are
related to those for a conventional crack in the same piezoelectric materials.

1. Introduction

Because of the intrinsic electromechanical coupling behavior, piezoelectric ceram-
ics are used as actuators in adaptive structures. However, piezoelectric ceramics
are very brittle and susceptible to fracture. The propagation of defects such as
dislocations, cracks and inclusions would degenerate the performance of devices.
It is important to understand the fracture behavior of piezoelectric ceramics.

There have been some efforts in establishing the fracture criterion for piezoelec-
tric materials in the presence of cracks. The J integral, equal to the total potential
energy release rate, has been proposed as a fracture criterion by; for example, Suo,
Kuo, Barnett and Willis [Suo et al. 1992], while Pak [1990; 1992] used it to predict
Mode III and Mode I fracture. However, so far there is no experimental support for
this criterion. Park [1993; 1995] proposed using mechanical strain energy release

Keywords: Zener–Stroh crack, rigid line, mechanical strain energy release rate, stress and electric
displacement (SED) intensity factors, piezoelectric material.
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rate — the mechanical part of the total potential energy release rate — as the frac-
ture criterion, and found that this criterion agrees qualitatively with the existing
experimental observations.

Rigid line inclusions (or, for brevity, rigid lines) have been used to model certain
materials or flat defects, such as metal precipitates in a piezoelectric solid. For the
past decades, many researchers addressed rigid lines by solving the whole field
solutions for various configurations; see, for example, [Wang et al. 1985, 1986;
Li and Ting 1989; Ballarini 1990; Fan and Keer 1993; Asundi and Deng 1995].
Recently, rigid lines embedded in piezoelectric solids have been studied in [Shi
1997; Deng and Meguid 1998; Gao and Fan 2001]. All that the research work
has identified is a square root singularity at the rigid line tip, and led to a stress
intensity factor similar to that for a crack.

Based on those analyses, Xiao and Fan [1990] proposed a mechanism for Mode
I microcrack initiation at the tip of a semi-infinite rigid line in a purely elastic solid.
As a result, the fracture toughness for a rigid line was related to that for a crack in
the same solid. Xiao et al. [2003] proposed a model of two Mode III microcrack
initiations at the tip of a semi-infinite rigid line in a piezoelectric solid, and found
the relation between the fracture toughness for a rigid line and that for a crack in
the same solid. Here, the criteria of microcrack initiation at the tip of a finite rigid
line in a piezoelectric solid, both for in-plane and anti-plane cases, are formally
set, in analogy to crack propagation, as

G∗
+
= G∗

+cr and G∗
−
= G∗

−cr, (1-1)

respectively, where G denotes the mechanical strain energy release rate when the
rigid line extends, and is termed as “the rigid line extension force”; the superscript
∗ is used for a rigid line in order to distinguish it from the crack extension force;
and the subscripts + and − represent in-plane and anti-plane cases, respectively.
The two critical values G∗

+cr and G∗
−cr at the right-hand sides of Equations (1-1) are

deemed to be material constants that can be determined from tests. Based on the
authors’ knowledge, however, there are no such experimental results in the open
literature so far. It is our conjecture that the two critical values for a rigid line
can be correspondingly related to those for a crack in the same solid, since both
cases associate with the square root singularity in terms of the stress and electric
displacement (SED) intensity factors.

We denote by G+cr and G−cr the mechanical strain energy release rates of a
Mode I and Mode III crack in the same piezoelectric material, respectively. Our
research objective is to search for possible relations between G∗

+cr and G+cr, as
well as between G∗

−cr and G−cr; for example

G∗
+cr = C1 G+cr and G∗

−cr = C2 G−cr, (1-2)
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in which C1 and C2 are constants to be determined. To perform our investigation,
models of microcrack initiation at a rigid line tip proposed by Xiao [1990; 2003]
are extended to the current problems.

For the anti-plane case, a finite rigid conducting line is loaded around its two
tips with the SED intensity fields K∗

−
=
{

K ∗III K ∗D2

}
T , where K ∗III and K ∗D2 are the

anti-plane shear stress and electric displacement intensity factors; see Figure 1.
For the in-plane case, a finite rigid conducting line of length 2a, perpendic-

ular to the poling axis, is loaded at the tips by the SED intensity fields K∗
+
={

K ∗II K ∗I K ∗D1

}
T , where K ∗II , K ∗I and K ∗D1 are the in-plane shear stress, tensile

stress and electric displacement intensity factors; see Figure 2.
Based on the dislocation emission mechanism at the rigid line tip proposed in

[Xiao and Fan 1990; Xiao et al. 2003], dislocations of one sign are driven away
from the tip of the rigid conducting line because of the concentrated fields along
certain slip planes, while the dislocations with the opposite sign pile up at the tip
of the rigid conducting line. As a result, Zener–Stroh cracks are initiated at both
tips, as shown in Figure 3 for the anti-plane and in Figure 4 for the in-plane case.

x2

x1

2a

D∞1 , σ
∞

31

Figure 1. A finite conducting rigid line loaded around its tip with
the anti-plane concentrated fields.

σ∞

x2 poling axis

x1
2a

D∞2

Figure 2. A finite conducting rigid line loaded around its tip with
the in-plane concentrated fields.



562 ZHONGMIN XIAO, HONGXIA ZHANG AND BINGJIN CHEN

This microcrack initiation mechanism is considered as a possible way to release the
high strain energy. It is worth mentioning that this mechanism was first observed in
[Kikuchi et al. 1981] and that the resulting crack was named an “anti-Zener–Stroh
crack” in [Weertman 1986].

2. Formulation

2.1. Anti-plane case. In this case, because of the concentrated SED fields [Shi
1997], a pair of microcracks is initiated (see Figure 3) at both tips of the finite
rigid conducting line loaded with the anti-plane SED fields K∗

−
(see Figure 1). We

assume that the microcracks are still loaded with the tip SED fields K∗
−

. The pair
of microcracks at one tip has the same field variables as those at the other tip, and
the deformations of the two microcracks at each tip are anti-symmetric in the x3

direction.
Here, we will analyze only the upper-right crack. The SED distributions near

the right tip are approximated by K∗
−
/
√

2πy, with y > 0. We will study how a
microcrack of length 2c is affected by the tip SED fields K∗

−
and by the net Burgers

vectors of dislocations dT inside the microcrack.

x2

x1

2a

D∞1 , σ
∞

31

2c

2c

2c

2c

Figure 3. Microcracks initiated at the tip for the anti-plane case.

σ∞

x2 poling axis

x1
2a

D∞2

2c 2c

Figure 4. Microcrack initiated at the tip for the in-plane case.
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The interaction between the rigid conducting line and the dislocations at both
the upper and lower half-planes causes the SED fields at the upper half-plane. We
first consider the two dislocations with Burgers vector d̃, one located at the point
(a, ζ ) and another at (a,−ζ ), ζ > 0. The SED fields induced at the point (a, y),
y > 0, by the two dislocations interacting with the rigid conducting line [Chen et al.
2005b] take the form{
σ13(y, ζ ) D1(y, ζ )

}T
∣∣
x=a =

1
4π

C
(
−

1
y− ζ

−
1

y− ζ

√
ζ

y
h1(y, ζ, a) + h5(y, ζ, a)

)
d̃(ζ ),

where h1(y, ζ, a) and h5(y, ζ, a) are given in Appendix B, and where the material
property matrix C is

C=
[

c44 e15

e15 −ε11

]
,

with c44, e15 and ε11 being the elastic, piezoelectric and dielectric constants.
Because of a continuous distribution of dislocations, the SED fields along the

upper-right crack line are given by{
σ13(a, y) D1(a, y)

}T
=

1
4π

C
∫ 2c

0

(
−

1
y− ζ

−
1

y− ζ

√
ζ

y
h1(y, ζ, a) + h5(y, ζ, a)

)
D̃(ζ ) dζ,

where the density vector of the charged screw dislocations along the crack line is
D̃(ζ )=

{
D̃3(ζ ) D̃4(ζ )

}
T, with D̃4(ζ )= D̃ϕ(ζ ).

With the assumption that the microcrack faces are free from surface traction and
charge, we have

{
σ13(a, y) D1(a, y)

}T
= −

K∗
−

√
2πy

, 0≤ y ≤ 2c. (2-1)

Moreover, the charged screw dislocation densities along the crack line must
satisfy ∫ 2c

0
D̃i (ζ ) dζ = dT

xi
, i = 3, 4, (2-2)

with the net Burgers vector inside the microcrack dT =
{
dT

x3
dT

x4

}
T and dT

x4
= dT

ϕ .
Introduce the substitutions

u =
y
c
− 1, r =

ζ

c
− 1.
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Equations (2-1) and (2-2) are then rewritten as

1
4π

4∑
j=3

C(i−2)( j−2)

∫ 1

−1
D̃ j (r)

(
−

1
u−r
−

1
u−r

h̃1

(
u, r, c

a

)
+ h̃5

(
u, r, c

a

))
dr

=−
K̂ ∗i
√

2πc

1
√

u+ 1
, −1≤ u, r ≤ 1, i = 3, 4, (2-3)

and ∫ 1

−1
D̃i (r) dr =

dT
xi

c
; i = 3, 4, (2-4)

where h̃1(u, r, c/a) and h̃5(u, r, c/a) are given in Appendix B, and

K̂ ∗3 = K ∗III , K̂ ∗4 = K ∗D2.

2.2. In-plane case. The physical problem that we examine is shown in Figure 2:
a finite rigid conducting line of length 2a, loaded with the in-plane SED fields K∗

+

in a piezoelectric solid. As discussed in Section 1, because of the concentrated
SED fields that we mentioned and were obtained by Deng and Meguid [1998],
dislocations of one sign move away from the rigid line tips, and the left-behind
dislocations form a microcrack at each tip, as shown in Figure 4. We assume
that the microcracks are still controlled by the tip fields K∗

+
. Since the physical

properties of the two microcracks are the same, we only study the one on the right.
The SED distributions near the right tip are approximated by K∗

+
/
√

2π(x − a),
with x > a. We study how a microcrack of length 2c is affected by the tip fields
K∗
+

and the net Burgers vectors of the dislocations bT inside the microcrack.
Based on [Chen et al. 2005a], the SED fields, arising along the crack line because

of the interaction between a single charged edge dislocation located at the point
(2a+ ξ, 0) with the Burgers vector b̃ and with the finite rigid conducting line, are
given by

II2(x, ξ)|y=0 =
1

4π
b̃(ξ)
x − ξ

(
_

W −
^

W
√
ξ 2
−a2

x2−a2

)
−

1
4π

^

W b̃(ξ)
√

x2− a2
,

where II2 =
{
σ21 σ22 D2

}
T . The real 3× 3 matrices

_

W and
^

W are given by

_

W = H̃−1
− H̃−1S̃2

+ L̃,
^

W = H̃−1
− H̃−1S̃2

− L̃,

while the real 3×3 matrices H̃, S̃, L̃ can be obtained by removing the third column
and the third row of the real 4× 4 matrices H, S, L (see Appendix A). Because of
a continuous distribution of dislocations along the crack line, the SED fields are
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given by

II2(x, 0) =

1
4π

(∫ a+2c

a

B̃(ξ)
x − ξ

(
_

W −
^

W
√
ξ 2
−a2

x2−a2

)
dξ −

∫ a+2c

a

^

W B̃(ξ)
√

x2− a2
dξ

)
, (2-5)

where the density vector of the charged edge dislocations along the microcrack line
is B̃(ξ)=

{
Bx1(ξ) Bx2(ξ) Bϕ(ξ)

}
T , with Bx3(ξ)= Bϕ(ξ).

The boundary conditions on the crack faces in piezoelectric solids are assumed
to be free of surface traction and charge [Deeg 1980; Pak 1990]. Therefore, one
has

II2(x, 0) = −
K∗
+

√
2π(x − a)

, a ≤ x ≤ a+ 2c. (2-6)

The charged edge dislocation densities must satisfy∫ a+2c

a
B̃(ξ) dξ = bT , (2-7)

where the net Burgers vector inside the crack are bT =
{
bT

x1
bT

x2
bT
ϕ

}
T , with bT

x3
=

bT
ϕ .

The integral over [a, a+ 2c] is normalized to [−1, 1] by the substitutions

t =
x − a

c
− 1, s =

ξ − a
c
− 1.

Equations (2-6) and (2-7) now read

3∑
i=1

(
_

W mi

∫ 1

−1

B̃xi (s)
t − s

ds

−
^

W mi

∫ 1

−1

G1(t, c/a) B̃xi (s)
G3(s, c/a) (t − s)

ds−
^

W mi

∫ 1

−1
G1(t, c/a) B̃xi (s) ds

)
=−

√
8π
c

G2(t) K̃ ∗m, −1≤ s, t ≤ 1, m = 1, 2, 3 (2-8)

and ∫ 1

−1
B̃xi (s) ds =

bT
xi

c
, i = 1, 2, 3, (2-9)

where
K̃ ∗1 = K ∗II , K̃ ∗2 = K ∗I , K̃ ∗3 = K ∗D1,

G1(t, c/a)=
1

√
1+ t
√

1+ t + 2a/c
,
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G2(t)=
1

√
1+ t

, G3(s, c/a)=
1

√
1+ s
√

1+ s+ 2a/c
.

3. Numerical Procedure

Let 9(s) and 4(r) be bounded functions in [−1, 1], and the charged edge and
screw dislocation density vectors can be written as

B̃(s) = 9(s) (1+ s)α(1− s)β,

D̃(r) = 4(r) (1+ r)λ(1− r)γ ,
with

9(s) =
{
91(s) 92(s) 9ϕ(s)

}T , 93(s)=9ϕ(s),

4(r) =
{
43(r) 44(r)

}T , 44(r)=4ϕ(r).

3.1. Anti-plane case. The discretized forms of Equations (2-3) and (2-4) are writ-
ten

1
4π

n∑
j=1

W̃ j (r j )

4∑
k=3

C(r−2)(k−2)4k(r j )

(
−

1+ h̃1(ui , r j , c/a)
ui − r j

+ h̃5(ui , r j , c/a)
)

= −
K̂ ∗r
√

2πc

1
√

1+ ui
, −1≤ u, r ≤ 1, r = 3, 4, (3-1)

and
n∑

j=1

W̃ j (r j )4r (r j ) =
dT

xr

c
, r = 3, 4, (3-2)

where r j and ui are the roots of the Jacobi polynomials,

P (λ,γ )n (r j )= 0, P (−γ,−λ)n+λ+γ (ui )= 0, j = 1, . . . , n, i = 1, . . . , n− 1, (3-3)

and W̃ j (r j ) can be obtained from the right-hand side of Equation (3-15) by replac-
ing sr , α, β with r j , λ, γ , respectively.

Equations (3-1) and (3-2) provide a system of 2n linear algebraic equations to
solve the 2n unknowns 4i (r j ), i = 3, 4, j = 1, 2, . . . , n. If 4(1)i (r) and 4(2)i (r) are
the solutions of the system

n∑
j=1

W̃ j (r j )4
(γ )
m (r j )

(
−

1+h̃1(ui , r j , c/a)
ui−r j

+ h̃5(ui , r j , c/a)
)
=

1
√

1+ ui
δ1γ

n∑
j=1

W̃ j (r j )4
(γ )
m (r j ) = δ2γ , m = 3, 4
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we obtain

4
(1)
3 (r) = 4

(1)
4 (r) and 4

(2)
3 (r) = 4

(2)
4 (r), (3-4)

43(r) = −

√
8π
c
ε11K ∗III + e15K ∗D2

c44ε11 + e2
15

4
(1)
3 (r) +

dT
x3

c
4
(2)
3 (r), (3-5)

44(r) = −

√
8π
c

e15K ∗III − c44K ∗D2

c44ε11 + e2
15

4
(1)
4 (r) +

dT
ϕ

c
4
(2)
4 (r). (3-6)

Since there is a square root singularity at the upper tip of the upper-right micro-
crack, we take γ = −1/2. As the deformations of the rigid line tip at the upper
and lower half-planes are antisymmetric along the x3 axis, we take λ=−1/2. The
effect of this approximation on the upper tip is reasonably negligible [He et al.
1991].

The anti-plane SED intensity factors K− =
{

KIII KD2
}

T at the upper tip of the
upper-right microcrack are obtained as

K− = lim
y→2c+

√
2π(y− 2c)

{
σ13(y) D1(y)

}T
=−

√
πc
4

C 4(1), (3-7)

where KIII and KD2 are the anti-plane shear stress and electric displacement inten-
sity factors. Combining (3-7) with (3-4), (3-5), and (3-6) leads to

KIII =
√

2π 4(1)3 (1) K ∗III −
√
π

2
√

c

(
c444

(2)
3 (1) dT

x3
+ e154

(2)
4 (1) dT

ϕ

)
, (3-8)

KD2 =
√

2π 4(1)4 (1) K ∗D2 −

√
π

2
√

c

(
e154

(2)
3 (1) dT

x3
− ε114

(2)
4 (1) dT

ϕ

)
. (3-9)

According to [Park and Sun 1995], the anti-plane crack extension force can be
defined as

G M− = lim
δ→0

1
δ

∫ δ

0
σ13(y) u3(δ− y) dy.

Thus, the anti-plane microcrack extension force is obtained, in terms of the SED
intensity factors, as

G M− =
ε11
(
KIII

)2
+ e15KIII KD2

2
(
c44ε11 + e2

15

) . (3-10)

The anti-plane extension force for the finite rigid conducting line loaded with the
SED intensity fields K∗

−
, is obtained as

G∗M− = −
ε11
(
K ∗III

)2
+ e15K ∗III K ∗D2

2
(
c44ε11 + e2

15

) . (3-11)



568 ZHONGMIN XIAO, HONGXIA ZHANG AND BINGJIN CHEN

Combined with (3-8), (3-9), and (3-11), Equation (3-10) is rewritten as

G M− = −

(√
2π 4(1)3 (1)

)2
G∗M−

−
π
√
π

√
2c

4
(1)
3 (1)4

(2)
3 (1)

(
K ∗III dT

x3
+

(
c44 dT

x3
+ e15 dT

ϕ

) (
ε11K ∗III + e15K ∗D2

)
2
(
c44ε11+ e2

15

) )

+

π
(
4
(2)
3 (1)

)2

8c

(
c44

(
dT

x3

)2
+ e15dT

x3
dT
ϕ

)
. (3-12)

Note that 4(u)j (1) ≈ 4
(u)
j (r1) for large n. In our calculation, we took n = 100.

It is observed from Equation (3-4) that the coefficients 4(1)3 (1), 4
(1)
4 (1), 4

(2)
3 (1)

and 4(2)4 (1) depend on the ratio of the microcrack’s length of 2c to the rigid line’s
length of 2a, but are independent of the material’s property constants. This makes it
possible to find the constant C2 from Equation (3-12) that exhibits the relationship
among the microcrack extension force G M−, the rigid line extension force G∗M−,
the SED intensity factors K∗

−
, the net Burgers vectors dT , and the microcrack length

2c. Here are the anti-plane coefficients corresponding to the ratio c/a = 10−4:

4
(1)
3 (1)=4

(1)
4 (1)= 0.117764,

4
(2)
3 (1)=4

(2)
4 (1)= 0.415922.

Since these coefficients depend on the ratio c/a, the constant C2 could be a function
of it.

3.2. In-plane case. Following the method in [Erdogan et al. 1973], we write the
discretized forms of Equations (2-8) and (2-9) as

1
4π

n∑
r=1

3∑
i=1

W̃r (sr )

( _

W mi

tu − sr
−

^

W mi

tu − sr

G1(tu, c/a)
G3(sr , c/a)

−
^

W mi G1(tu, c/a)
)
9i (sr )

= −
K̃ ∗m
√

2πc
G2(tu), −1≤ s, t ≤ 1, m = 1, 2, 3, (3-13)

and
n∑

r=1

W̃r (sr )9i (sr ) =
bT

xi

c
, i = 1, 2, 3, (3-14)

where sr and tu are the roots of the Jacobi polynomials,

P (α,β)n (sr )= 0, P (−β,−α)n+α+β (tu)= 0, r = 1, . . . , n, u = 1, . . . , n− 1,
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and

W̃r (sr )=

−
(2n+α+β + 2) 0(n+α+ 1) 0(n+β + 1)
(n+ 1)! (n+α+β + 1) 0(n+α+β + 1)

2α+β

P ′(α,β)n (sr ) P (α,β)n+1 (sr )
, (3-15)

with 0(z) being the well known Gamma function.
Equations (3-13) and (3-14) provide a system of 3n linear algebraic equations in

the 3n unknowns 9i (sr ) with i = 1, 2, 3 and r = 1, 2, . . . , n. Denote by 9(γ )
m (sr )

the solutions of the set of system

n∑
r=1

3∑
i=1

W̃r (sr )

( _

W mi G1(sr , c/a)−
^

W mi G1(tu, c/a)
(tu − sr )G3(sr , c/a)

−
^

W mi G1

(
tu,

c
a

))
9
(γ )

i (sr )

= −G2(tu) δmγ
n∑

r=1

W̃r (sr )9
(γ )
m (sr ) = δ(m+4)γ ,

(3-16)

where m = 1, 2, 3 and γ = 1, 2, . . . , 6, while δi j is Kronecker’s delta.
We have

91(s)=

√
8π
c

K ∗II 9
(1)
1 (s) +

bT
x1

c
9
(4)
1 (s), (3-17)

92(s)=

√
8π
c

(
K ∗I 9

(2)
2 (s)+ K ∗D19

(3)
2 (s)

)
+

bT
x2

c
9
(5)
2 (s) +

bT
ϕ

c
9
(6)
2 (s), (3-18)

93(s)=

√
8π
c

(
K ∗I 9

(2)
3 (s)+ K ∗D19

(3)
3 (s)

)
+

bT
x2

c
9
(5)
3 (s) +

bT
ϕ

c
9
(6)
3 (s). (3-19)

Since a square root singularity exists at the right tip of the right microcrack, we
take β = −1/2. An oscillatory singularity at the left tip can be induced because
of the incompatibility of the piezoelectric material and the rigid line. Since the
oscillatory singularity leads to the penetration of the crack surfaces, it is physically
unfeasible. Fortunately, a pure square root singularity is restored by allowing crack
surfaces to have contact, as in [Comninou 1977]. Therefore we can take α =−1/2
in our calculations. This assumption may cause some approximation at the left tip,
but the effect on the right tip is negligible [He et al. 1991]. After all, the result
from the right tip is responsible for the crack propagation.

The in-plane SED intensity factors at the right tip of the microcrack are

K+ =
{

KII KI KD1
}T
= lim

x→a+2c+

√
2π(x − 2a− c) II2(x, 0), (3-20)

where KII , KI , and KD1 are the in-plane shear stress, the tensile stress and the
electric displacement intensity factors. Substituting (2-5) into (3-20) and following
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c11 c12 c13 c33 c44 e31 e33 e15 ε11 ε33

GPa GPa GPa GPa GPa C/m2 C/m2 C/m2 nC/V·m nC/V·m

PZT-5H 126 55 53 117 35.3 −6.5 23.3 17 15.1 13.0
PZT-5 121 75.4 75.2 111 21.1 −5.4 15.8 12.3 8.11 7.35
PZT-4 139 77.8 74.3 115 25.6 −5.2 15.1 12.7 6.46 5.62
PZT-7A 148 76.8 74.2 131 25.4 −2.1 9.5 12.7 4.07 2.08

Table 1. Material properties for piezoelectric ceramics (the poling
direction is along the x3 axis).

the procedure in [Muskhelishvili 1977], one obtains

K+ =
√
πc
4
(

_

W −
^

W)9(1). (3-21)

Substituting (3-17)–(3-19) into (3-21), one finds

KII =
√

2π f11 K ∗II +
√
π

2
√

c
f12 bT

x1
, (3-22)

KI =
√

2π f21 K ∗I +
√

2π f22 K ∗D1 +

√
π

2
√

c

(
f23 bT

x2
+ f24 bT

ϕ

)
, (3-23)

KD1 =
√

2π f31 K ∗I +
√

2π f32 K ∗D1 +

√
π

2
√

c

(
f33 bT

x2
+ f34 bT

ϕ

)
, (3-24)

where

f1i = L̃119
(i2)
1 (1), i = 1, 2,

fki = L̃k29
(i+1)
2 (1) + L̃k39

(i+1)
3 (1), k = 2, 3, i = 1, 2,

fki = L̃k29
(i+2)
2 (1) + L̃k39

(i+2)
3 (1), k = 2, 3, i = 3, 4.

The coefficients f1i , f2i and f3i can be determined, since 9(k)
i (1) ≈ 9

(k)
i (s1)

exists for large n. Also, it is observed from Equations (3-16)–(3-19) that these
coefficients depend on the ratio of the microcrack length of 2c to the rigid line
length of 2a. We take n = 100 in the following calculations, and select PZT-5H,
PZT-5, PZT-4 and PZT-7A ceramics for our numerical examples, with the material
constants listed in Table 1, taken from [Dunn and Taya 1994; Pak 1992].

According to [Park and Sun 1993], the crack extension force can then be cal-
culated as the mechanical strain energy released when propagating the crack an
infinitesimal distance, that is,

G M+ = lim
δ→0

1
δ

∫ δ

0
σ2i (x) ui (δ− x) dx, i = 1, 2,
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where δ is the assumed crack extension. Thus, the extension force for the micro-
crack, in terms of the SED intensity factors, is G M+ =

1
2(K+)

T L′ K+, where
the real 2× 3 matrix L′ is obtained by removing the third row of the inverse of L̃.
Substituting into this equation the values given by (3-22)–(3-24), we get

G M+ =
1
2

2π2 (K∗
+
)T X K∗

+
+
π
√
π

√
2c

(K∗
+
)T YbT +

π

8c
(bT)

T ZbT, (3-25)

where X, Y and Z are the 3× 3 matrices from Appendix C.
The extension force for the rigid conducting line loaded with the tip SED inten-

sity fields K∗
+

is obtained as

G∗M+ = −
1
2 (k
∗)T H′ k∗,

where k∗ =
{
k∗1 k∗2 k∗3

}
T is the tip strain intensity factors and K∗

+
= S̃T H̃−1 k∗.

Equation (3-25) can be rewritten in terms of G∗M+ as

G M+ =−
2π2 sT X̃ s

H′11
G∗M++π

2 X11
(
K ∗II
)2
+
π
√
π

√
2c

(
K∗
+

)T YbT

+
π

8c
(bT)

T ZbT, (3-26)

where the 2×2 matrix X̃ is obtained by removing the first row and the first column
of the matrix X, and we have sT

=
{
Ŝ21 Ŝ31

}
T with Ŝ= S̃T H̃−1.

Equation (3-26) gives the relationship among the microcrack extension force
G M+, the rigid line extension force G∗M+, the tip SED intensity factors K∗

+
, the

net Burgers vectors of dislocations bT inside the microcrack, and the microcrack
length 2c. The elements of X, Y and Z for the ratio c/a = 10−4 are listed in
Table 2.

4. Discussion

4.1. Critical crack length.

Anti-plane case. Equation (3-12) suggests that the upper-right microcrack tends to
reach its critical value at

G
−cr = −

(√
2π 4(1)3 (1)

)2
G∗M−

−
π
√
π

√
2ccr

4
(1)
3 (1)4

(2)
3 (1)

(
K ∗III dT

x3
+

(
c44dT

x3
+e15dT

ϕ

) (
ε11K ∗III+e15K ∗D2

)
2
(
c44ε11+e2

15

) )

+

π
(
4
(2)
3 (1)

)2

8ccr

(
c44

(
dT

x3

)2
+ e15 dT

x3
dT
ϕ

)
. (4-1)
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PZT-5H PZT-5 PZT-4 PZT-7A

X11 1.448×10−12 1.931×10−12 1.586×10−12 1.514×10−12

X22 1.256×10−12 1.667×10−12 1.405×10−12 1.352×10−12

X23(X32) 5.511×10−4 9.200×10−4 9.570×10−4 1.145×10−3

X33 2.172×104 2.313×104 3.753×104 8.592×104

Y11 0.182 0.172 0.174 0.174
Y22 0.169 0.161 0.161 0.169
Y23 2.730×10−11 2.589×10−11 2.189×10−11 1.278×10−11

Y32 6.608×107 7.593×107 9.368×107 1.287×108

Y33 0.020 0.024 0.024 0.017
Z11 2.275×1010 1.540×1010 1.901×1010 2.006×1010

Z22 2.246×1010 1.516×1010 1.805×1010 2.078×1010

Z23(Z32) 3.955 2.747 20757 1.698
Z33 3.323×10−10 2.156×10−10 1.940×10−10 7.054×10−11

Table 2. Matrices X, Y and Z under the ratio c/a = 10−4.

The two critical crack lengths can be obtained from (4-1). The anti-plane tip SED
fields K∗

−
and the net Burgers vector dT determine the two critical crack lengths.

In the absence of the electric field K ∗D2, of the electric displacement loading dT
ϕ ,

and of the piezoelectric constant e15, Equation (4-1) can be reduced to that for
isotropic elastic media, as

G
−cr|iso = −

(√
2π 4(1)3 (1)

)2
G∗
−|iso

−
π
√
π 4

(1)
3 (1)4

(2)
3 (1)

√
2ccr

K ∗III dT
x3
+

π
(
4
(2)
3 (1)

)2

8ccr
µ
(
dT

x3

)2
, (4-2)

where G∗
−|iso = −

(
K ∗III

)2
/(2µ).

In-plane case. Equation (3-26) suggests that the right microcrack tends to reach
its critical value at

Gcr = −
2π2 sT X̃ s

H′
11

G∗M+ + π2 X11
(
K ∗II
)2

+
π
√
π

√
2ccr

(
K∗
+

)T YbT +
π

8ccr
(bT)

T ZbT. (4-3)

For a general Zener–Stroh crack, loaded with external stress and nonzero net
dislocations, there are two critical crack lengths: one is stable, the other unstable
[Fan 1994]. This particular physical phenomenon is also seen in Equation (4-3).
The smaller critical crack length is a stable one under the Zener–Stroh mechanism.
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The crack propagates until it reaches its second critical crack length, which is under
the Griffith crack mechanism. Obviously, the applied SED fields K∗

+
at the tip and

the net Burgers vectors bT inside the microcrack determine the two critical crack
lengths.

The shear stress intensity factor K ∗II does not exist at the tip of the rigid line
embedded in isotropic elastic materials subjected to remote loading. By using the
solutions from [Wang et al. 1985; Li and Ting 1989], combined with the matrices
S, L and H for isotropic elastic materials given in [Li and Ting 1989], we can
reduce (4-3) to

G
+cr|iso = −

(√
2π F1(1)

)2 (1− 2υ)2

3− 4υ
G∗
+|iso+

π
√
π

√
2ccr

F1(1)9
(5)
2 (1) K ∗I bT

x2

+
π

8ccr

µ

1− υ

(
9
(5)
2 (1)

)2
(bT

x2
)2,

where
F1(1) = 9

(2)
2 (1)

µ

1− υ
,

G∗
+|iso = −

1− υ
2µ

3− 4υ
(1− 2υ)2

(K ∗I )
2, 1< 3− 4υ < 3.

Here are the numerical values of F1(1) for different values of Poisson’s υ, showing
that effect of υ on F1(1) is quite small.

υ F1(1) 9
(5)
2 (1)

1/4 0.140453 0.337617
1/3 0.141730 0.328747
1/2 0.143271 0.318310

4.2. Connection constants. Consider a very brittle piezoelectric material, and as-
sume that no dislocations are emitted from the rigid line tip and electric dislocations
can be negligible, so that bT

x2
= bT

x1
= bT

ϕ = 0 for the in-plane case and dT
x3
= dT

ϕ = 0
for the anti-plane case.

Anti-plane case. Equations (4-1) and (4-2) can be reduced to G∗
−cr = C2 G−cr,

with

C2 = −
1(√

2π 4(1)3 (1)
)2 . (4-4)

Equation (4-4) partially confirmed our initial conjecture in the second equation
in (1-2), both for brittle piezoelectric and for purely elastic materials. Since the
coefficient 4(1)3 (1) is a result of the ratio c/a, the coefficient C2 is a function of
the ratio c/a. The numerical values of the coefficient C2 for different ratio c/a are
listed in Table 3. It shows that the absolute value of the coefficient C2 decreases
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with the increasing c/a, or with the microcrack propagation. It is observed that
the C2 value is almost constant when the microcrack is at the very initial stage
(c/a < 10−3). The variation of C2 value for different ratio c/a is so small that we
can consider the coefficient C2 a constant. The C2 value also indicated that the
crack initiation will be catastrophic.

c/a C1 C2

10−8
−5.93064 −3.653

10−7
−5.93064 −3.653

10−6
−5.93064 −3.653

10−5
−5.93064 −3.653

10−4
−5.93064 −3.65299

5 · 10−4
−5.93064 −3.65295

10−3
−5.93065 −3.6529

5 · 10−3
−5.93068 −3.65247

10−2
−5.93073 −3.65193

5 · 10−2
−5.93108 −3.64749

10−1
−5.9315 −3.64158

5 · 10−1
−5.93443 −3.58969

1 −5.93721 −3.56074

Table 3. The connection constants C1 for PZT-5H and C2.

For ductile piezoelectric solids, the net Burgers vector bT inside the mixed
mode microcrack and the net Burgers vector dT inside the Mode III microcrack are
nonzero. In this case, G∗

+cr relies on the net Burgers vectors of shear dislocations
bT

x1
, on the net Burgers vectors of climbing dislocations bT

x2
, and on the net Burgers

vectors of electric dislocations bT
ϕ inside the microcrack as shown in (4-3); while

G∗
−cr relies on the net Burgers vectors of shear dislocations dT

x3
and on the net Burg-

ers vectors of electric dislocations dT
ϕ inside the microcrack as shown in Equation

(4-1). We would like to assume that bT
x1

, bT
x2

, bT
ϕ , dT

x3
and dT

ϕ are material-dependent
constants, which measure the magnitudes of the ductility and dielectricity of the
matrix material. Also, it is very likely that after a microcrack is initiated, no more
dislocations enter the crack, because the concentrated stress ahead of the rigid line
tip has been released. Nonetheless, all these assumptions and conjectures need
experimental support before pursuing further theoretical investigations.

In-plane case. If the rigid line isn’t loaded with the tip shear stress field K ∗II , Equa-
tion (4-3) is reduced to

G∗
+cr = C1 G+cr,



MICROCRACK INITIATION AT THE TIP OF A FINITE RIGID CONDUCTING LINE 575

with

C1 = −
1

2π2

H′
11

sT X̃ s
. (4-5)

Equation (4-5) partially confirmed our initial conjecture in the first equation in
(1-2), though only for very brittle materials under tensile stress and electric dis-
placement fields. The numerical values of the coefficient C1 for PZT-5H, PZT-4,
PZT-5 and PZT-7A ceramics under the ratio c/a = 10−4 are as follows:

PZT-5H PZT-5 PZT-4 PZT-7A
5.931 17.651 12.158 10.355

The numerical values of the coefficient C1 for PZT-5H for the ratio c/a are listed
in Table 3. It is observed that, when the micro crack is at the very initial stage
(c/a < 10−3), the coefficient C1 is constant. When the micro crack propagates
further, the absolute value of the coefficient C1 increases so slightly that we can
still consider it a constant in the same solid. The C1 value also indicates that the
microcrack initiation is catastrophic.

For isotropic elastic materials, one finds

G∗
+cr|iso = C1|iso G+cr|iso,

in which

C1|iso = −
3− 4υ(√

2πF1(1)
)2
(1− 2υ)2

.

It is worth mentioning that for the incompressible solid, υ = 0.5, the numeri-
cal value of C1|iso approaches infinity, which indicates that the crack initiation is
catastrophic.

It is noted that microcrack initiation at other angles may occur at the rigid line
tip under some mixed loadings for the anti-plane and in-plane cases. The current
approach can also be employed to analyze such cases, if the rigid line extension
force is calculated as the mechanical strain energy released per infinitesimal trans-
lation in the inclined direction. However, the constants C1 and C2 may be different
and need to be further investigated for different angles.

Appendix A

In a Cartesian coordinate system (x1, x2, x3), for a linear piezoelectric medium
without body forces and with free charges at constant temperature, the constitutive
and equilibrium equations given in [Tieresten 1969] are

σi j = ci jkl uk,l + ek ji φ,k, Di = eikl uk,l − εik φ,k, i, j,k,l = 1, 2, 3, (A-1)

σi j, j = 0, Di,i = 0, i, j = 1, 2, 3, (A-2)
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where σi j , Di , ui , φ are the mechanical stress, electric displacement, elastic dis-
placement and electric potential, while ci jkl , eki j , εi j are the elastic, piezoelectric
and dielectric constants.

For a two-dimensional problem in which the variables depend on x1, x2 only, a
general solution to Equation (A-2), given in [Barnett and Lothe 1975], is

u= a f (z), z = x1+ px2. (A-3)

Here f is an arbitrary function of z, while p and a are determined by inserting
(A-3) into (A-2). We have[

Q + p(R+RT )+ p2T
]

a = 0, (A-4)

where the matrices Q, R and T are

Q=
[

ci1k1 e1i1

eT
1k1 −ε11

]
, R=

[
ci1k2 e2i1

eT
1k2 −ε12

]
, T=

[
ci2k2 e2i2

eT
2k2 −ε22

]
.

The generalized stresses obtained by substituting (A-3) into (A-1) can be written
in terms of the stress function 8 as{

σ1 j D1
}T
= −8,2,

{
σ2 j D2

}T
= −8,1,

in which

8 = b f (z), b = (RT
+ pR) a = −p−1(Q+ pR) a.

From (A-4) we see that eight eigenvalues p consist of four pairs of complex
conjugates. If pα, aa are the eigenvalues and the associated eigenvectors, we let

Im(pα) > 0, pα+4 = p̄α,

aα+4 = āα, bα+4 = b̄α, α = 1, 2, 3, 4,

where Im stands for the imaginary part and the overbar denotes complex conjuga-
tion.

Assuming that pα are distinct, the general solutions are obtained by

u = 2 Re
( 4∑
α=1

aα fα(zα)
)
, 8 = 2 Re

( 4∑
α=1

bα fα(zα)
)
,

where Re stands for the real part, and

fα+4 = f̄α.

The 4× 4 complex matrices A and B defined by

A=
[
a1 a2 a3 a4

]
, B=

[
b1 b2 b3 b4

]
,
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satisfy, when properly normalized, the orthogonality relation[
BT AT

B̄T ĀT

] [
A Ā
B B̄

]
=

[
I O
O I

]
.

The matrices H, L and S defined by

H = i2 AAT ,

L = i2 BBT ,

S = i
(
ABT
− I
)

can be shown to be real. The matrices H and L are symmetric.

Appendix B

h1(y, ζ, a) =
√

1
y2+4a2

√
ζ y+4a2

2
+

1
2

P(y, ζ, a)

h2(y, ζ, a) = −
√

1
y2+4a2

√
ζ y−4a2

2
+

1
2

P(y, ζ, a)

h3(y, ζ, a) =
√

ζ

y+ζ

√
1

(y+ζ )2+4a2 ·

√
ζ(y+ζ )+4a2

2
+

1
2

Q(y, ζ, a)

h4(y, ζ, a) = −
√

ζ

y+ζ

√
1

(y+ζ )2+4a2 ·

√
ζ(y+ζ )−4a2

2
+

1
2

Q(y, ζ, a)

P(y, ζ, a) =
√

16a4 + ζ 2 y2 + 4a2(y2+ ζ 2)

Q(y, ζ, a) =
√

16a4 + ζ 2(y+ ζ )2 + 4a2(y2+ 2ζ 2+ 2yζ )

h5(y, ζ, a) = − 1
y
(1 − h3(y, ζ, a))− 1

y+ζ

(
1−

√
ζ

y
h2(y, ζ, a)

)
−

1
y+2ζ

(
1 + h4(y, ζ, a)

)
h̃1(u, r, c/a) =

√
r+1
u+1

h1(u+ 1, r + 1, a/c)

h̃5(u, r, c/a) = 1
c

h5(u+ 1, r + 1, a/c).
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Appendix C

X11 = L′
11( f11)

2

X22 = L′
22( f21)

2
+ L′

23 f21 f31

X23 = X32 = L′
22 f21 f22 +

1
2 L′

23
(

f22 f31 + f21 f32
)

X33 = L′
22( f22)

2
+ L′

23 f22 f32

Y11 = L′
11 f11 f12

Y22 = L′
22 f21 f23 +

1
2 L′

23
(

f21 f33 + f31 f23
)

Y23 = L′
22 f21 f24 +

1
2 L′

23
(

f21 f34 + f31 f24
)

Y32 = L′
22 f22 f23 +

1
2 L′

23
(

f22 f33 + f32 f23
)

Y33 = L′
22 f22 f24 +

1
2 L′

23
(

f22 f34 + f32 f24
)

Z11 = L′
11( f12)

2

Z22 = L′
22( f23)

2
+ L′

23 f23 f33

Z23 = Z32 = L′
22 f23 f24 +

1
2 L′

23
(

f23 f34 + f24 f33
)

Z33 = L′
22( f24)

2
+
(
L̃−1)

33( f34)
2
+ L′

23 f24 f34.
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QUASI-STATIC PUNCH INDENTATION OF A HONEYCOMB
SANDWICH PLATE: EXPERIMENTS AND MODELLING

DIRK MOHR, ZHENYU XUE AND ASHKAN VAZIRI

Punching experiments on wide honeycomb sandwich beams were performed to
evaluate the predictive capabilities of a newly developed constitutive model in
structural applications. The employed constitutive model for plastically com-
pressible orthotropic materials accounts for both non-uniform hardening and
softening associated with stressing in different directions. This feature is vital
when assessing the structural performance of metal sandwich plates with low
density cellular cores. Pure shear and uniaxial compression tests have been car-
ried out to identify the input stress-strain data for the constitutive model. The
sandwich beam has been modeled with shell/beam elements for the face sheets
and only one continuum element through-the-thickness for the honeycomb core
material. Comparison of the numerical results with experimental observations
validates the capability of the proposed approach based on continuum modeling
of the core in capturing the main features of sandwich beam response under
punch loading.

1. Introduction

Metallic sandwich structures have been used for decades in lightweight aerospace
vehicles due to their high flexural stiffness-to-weight ratio. More recently, sand-
wich constructions are also considered in naval architecture. The general idea
is to enhance the structural performance of ships under high intensity pressure
loading through the use of outer hulls made in sandwich construction. Hutchinson
and Xue [2005] have demonstrated that optimized all-metal sandwich plates may
have distinct structural advantages over comparable weight monolithic plates under
high intensity pulse. The virtual design of large-scale sandwich structures requires
reliable computational models capable of predicting the mechanical response of
sandwich structures for a wide spectrum of loading scenarios and geometries. The
core layer of all-metal sandwich structures may consist of either random or peri-
odic shell, plate and beam assemblies. Prominent examples are metallic foams,

Keywords: sandwich structures, finite element modeling, constitutive modeling, metallic
honeycomb, plasticity.
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honeycombs and truss lattice structures [Gibson and Ashby 1997]. Using state-
of-the art finite element software, the exact geometry of both the core layer and
the face sheets may be modeled in detail and estimates of the overall structural
behavior may be obtained with great accuracy [Mohr and Doyoyo 2004a; Xue
and Hutchinson 2004a; Vaziri et al. 2006]. However, it is recognized that the
computational costs associated with detailed models comprised of millions of fi-
nite elements are too high for use in an industrial environment. As an alterna-
tive to detailed modeling, various researchers have dealt with the development
of constitutive models which describe the so-called macroscopic behavior of the
sandwich core layer [Deshpande and Fleck 2000; Mohr and Doyoyo 2004c; Xue
and Hutchinson 2004b; Rabczuk et al. 2004; Xue et al. 2005; Mohr 2005; Zok
et al. 2005]. In other words, the discrete core layer structure is considered as a
homogenous solid which allows for its discretization with solid elements, thereby
drastically reducing the computational costs of simulating the response of large
scale sandwich structures.

We emphasize here that this macroscopic modeling approach is of great value
for practical engineers, even though it may not be satisfactory from a mathemati-
cal point of view. With respect to rigorous homogenization (for example, [Ponte
Castañeda and Suquet 1998]), there are two important conditions which are fre-
quently violated when developing macroscopic constitutive models for sandwich
core materials. First, the condition of separation of length scales is seldom satisfied.
This may lead to scale effects due to the dominance of boundary effects. Further-
more, the constitutive model predictions will be poor under the presence of large
macroscopic stress and strain gradients. Second, the deformation in conventional
sandwich core materials usually localizes at the macroscopic length scale when
subject to compression (crushing), which rules out the applicability of established
homogenization procedures.

The aim of this work is to assess the accuracy of a newly developed macroscopic
model [Xue et al. 2005] in predicting the response of a wide honeycomb sandwich
beam subject to punch loading. The model by Xue et al. [2005] invokes an ellip-
soidal anisotropic yield surface in the six-dimensional stress space, an associated
flow rule and a fully-coupled differential hardening/softening model. This specific
model has been chosen since it can also account for strain-rate dependency, an
important feature which is expected to become relevant in future studies on the blast
resistance of sandwich structures. Here, we will evaluate the model performance
for quasi-static loading. The experimental results of Mohr and Doyoyo [2004b],
Wang and McDowell [2005] and Hong et al. [2006] have shown that the initial out-
of-plane yield surface of honeycombs is of elliptical shape (Figure 1). This impor-
tant feature has been incorporated into the constitutive model of Xue et al. [2005],
thereby improving the poor performance of frequently used heuristic constitutive
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Figure 1. Initial yield surface of a metallic honeycomb core under
combined compression and out-of-plane shear (σT T ,τT W ). The
open dots represent experimental data points [Mohr and Doyoyo
2004b]. The solid line corresponds to the prediction from the el-
lipsoidal surface invoked in the present constitutive model of [Xue
et al. 2005] when all the plastic Poisson ratios are zero. The dashed
curve presents the ‘rectangular yield surface’ of the heuristic hon-
eycomb models in LS-DYNA [LSTC 2000] and PamCrash [ESI
1999].

models for honeycombs [LSTC 2000; ESI 1999]. Observe from Figure 1 that
the elliptical yield surface closely follows the experimental points while simple
uncoupled models cannot represent the interaction of shear and normal stresses.

In this work, wide sandwich beams with hexagonal aluminum honeycomb core
have been manufactured and subjected to punch loading. A newly developed two-
actuator system is used to perform pure shear tests on a 1.8% relative density
aluminum honeycomb in order to identify the associated input stress-strain data.
Subsequently, the constitutive model of Xue et al. [2005] is calibrated and used
to simulate the punch tests. From the comparison of experiments and simulations,
we find that this computationally-efficient macroscopic model provides accurate
predictions of the overall response for a rather complex loading scenario which
includes both local and global deformation.
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Figure 2. True stress versus logarithmic strain curve for the stain-
less steel 304 face sheets as obtained from uniaxial tensile testing
of flat dogbone specimens.

2. Material

A custom-made sandwich material is used in this study. It is composed of an alu-
minum honeycomb core which is adhesively bonded to stainless steel face sheets.
This lightweight core layer is C = 15.9 mm thick and contributes about 20% to
the mass of the sandwich cross-section. The face sheets on the other hand have
the thickness of t f = 0.2 mm, which makes up for the remaining 80% of the cross-
sectional mass. The weight contribution of the 0.1 mm thick adhesive layers (Lord
310A/B, Lord Corporation, Cary, NC) may be neglected.

2.1. Mechanical properties of the face sheets. The mechanical behavior of the
stainless steel face sheets (Type 304, AlvestaPolarit, Sweden) has been determined
from standard uniaxial tensile tests on dogbone-shaped specimens. The measured
stress-strain curve, in terms of true stresses and logarithmic plastic strains, is shown
in Figure 2. The face sheet material has the Young’s modulus of E = 200 GPa and
the initial yield strength of about σ f = 250 MPa; it exhibits a pronounced strain
hardening before the specimens fail at a strain of about ε f = 0.5.

2.2. Honeycomb core. The honeycomb core material manufactured by Hexcel
(Dublin, CA) is made from t = 34µm thick aluminum 5056 foil; the single- and
double-thickness cell walls of the hexagonal cells are respectively about l = 3.1 mm
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(a)

(b)

Figure 3. (a) Schematic of the hexagonal honeycomb core geom-
etry; (b) photograph of the 1.8% relative density aluminum honey-
comb.



586 DIRK MOHR, ZHENYU XUE AND ASHKAN VAZIRI

in-plane out-of-plane
EW W EL L GW L ET T GT W GT L

[MPa] [MPa] [MPa] [MPa] [MPa] [MPa]
0.11 0.27 0.02 1252.76 155.77 315.19

Table 1. Elastic constants of the 1.8% relative density hexagonal honeycomb.

and h = 2.4 mm wide (Figure 3). The relative core density ρ? of the honeycomb
core can be obtained from

ρ? =
1+ h

l

cos θ(sin θ + h
t )
, (1)

where θ is the cell wall opening angle, Figure 3 (a). This leads to the core density
of ρ? ∼= 1.8% for the honeycomb core material study (θ = 40◦). Table 1 sum-
marizes the corresponding elastic constants of the honeycomb core. These have
been evaluated from the classical formulas summarized in the textbook by Gibson
and Ashby [1997] for a base material of Es = 72 GPa. We note that the core
material is highly orthotropic with a very small stiffness and strength in the W L-
plane, where W and L denote the so-called in-plane directions of the honeycomb
microstructure as shown in Figure 3. Conversely, the material is strong in the
T-direction. Figure 4 shows a representative macroscopic stress-strain curve as
obtained from uniaxial compression tests in the T-direction [Mohr and Doyoyo
2004b]. It is a well known characteristic of metallic honeycombs that the response
curve for out-of-plane loading exhibits an initial peak stress which is significantly
higher than the stress level in the so-called crushing regime. Densification starts at
a logarithmic strain of about εd

T T
∼=−1.0. In addition to the uniaxial compression

tests, we designed a new experiment to determine the material response under pure
shear loading in the W T -plane, which will be described in the following section.

3. Pure shear experiments

Sandwich structures are designed such that face sheets carry the bending and in-
plane loads. The core layer on the other hand must sustain the shear loads. The
shear lap test proposed in ASTM C273 may be suitable to determine the elastic
shear modulus and the strength of brittle honeycombs, but it yields inconclusive
results in the large deformation regime of low-density metallic honeycombs. This is
due to the localization of deformation within the honeycomb microstructure which
may cause the rotation of the grip plates. Consequently, the macroscopic strain
field becomes non-uniform as well. Doyoyo and Mohr [2003] proposed a modified
Arcan apparatus to overcome this problem, but their equipment has been limited to
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Figure 4. Experimental true stress-logarithmic strain relation-
ships for the hexagonal aluminum honeycomb core under uniaxial
compression along the T-direction.

relatively small butterfly specimens. Here, we make use of a hydraulic two-actuator
system (custom made by Instron, Canton, MA) to characterize the macroscopic
stress-strain curve for pure shear loading in the T W-plane. (Here, the term ‘pure
shear’ is used to emphasize that the stress state is free from normal stresses which
would be present in the case of ‘simple shear’.)

3.1. Experimental procedure. Figures 5 (a) and 5 (b) display a schematic and a
photograph of the experimental setup, respectively. The specimen (part 8 as labeled
in Figure 5 (b) is composed of a 17 mm thick honeycomb core layer sandwiched
between two 8 mm thick aluminum plates. A relatively thick adhesive layer is
applied which imposes locally clamped boundary conditions on the honeycomb
cell walls. This sandwich specimen is clamped between two nonrotating grip plates
(parts 6 and 7). The top grip plate (part 7) is rigidly connected to the vertical
actuator (part 1), which can only move along the vertical direction. The bottom
grip plate (part 6) is attached to the horizontal actuator system (part 4). The same
grip is mounted on a low friction slide table (part 5), which allows for the horizontal
motion while preventing rotations. Since the rotation of both the top and the bottom
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Figure 5. The experimental setup used for pure shear testing. (a)
Schematic of the mechanical system. (b) Photograph of the biaxial
testing system: (1) piston of the vertical actuator; (2) and (3) verti-
cal load cells; (4) horizontal piston with load cell; (5) low friction
slide table; (6) bottom grip plate; (7) top grip plate; (8) specimen.



QUASI-STATIC PUNCH INDENTATION OF A HONEYCOMB SANDWICH PLATE 589

grips are suppressed by the system, a bending moment builds up when a horizontal
force is applied to the specimen. Thus, two parallel uniaxial load cells (parts 2 and
3) are used to measure the vertical force.

The experiments are performed in a combined load- and displacement-controlled
mode. Unlike the simple shear test in which the vertical displacement must be
kept constant (uV = 0), the pure shear experiments must be performed under force
control in order to keep the vertical force zero, that is, FV = 0 while uV 6= 0 (Figure
5 (a)). Using the hydraulic system control software (Fast Track, Instron, Canton,
MA), the sum of the two vertical force measurements is defined as single virtual
channel and consequently used to control the vertical actuator such that FV = 0.
The horizontal actuator has been controlled by the built-in LVDT for the horizontal
position measurement.

The sandwich specimens are l = 80mm long (along the W -direction) and C =
17 mm thick (in the T-direction) which corresponds to a length-to-thickness ratio
of about 4.7. The specimen width in the L-direction is w = 50 mm. Based on
measurements of the horizontal force and the horizontal and vertical displacements,
we define the engineering shear stress as

ST W =
FH

wl
, (2)

and the engineering shear and normal strains as

ET W =
u H

C
and ET T =

uV

C
, (3)

respectively. All tests have been carried out at a constant horizontal velocity of
3 mm/min.

3.2. The core response to pure shear loading. The measured shear stress versus
shear strain curves are shown in Figure 6 (a). Selected photographs taken through-
out the experiment are depicted in Figure 7. The material response is linear up
to a shear stress of about 0.5 MPa. Beyond this point, the slope of this curve de-
creases slightly as shear buckles become visible within the honeycomb microstruc-
ture (Figure 7 (b)). The shear stress-strain curve reaches its maximum at about
τmax = 0.7 MPa (point of shear failure) before it approaches a considerably lower
plateau stress level of about 0.45 MPa. The stress level drops further as the honey-
comb cell walls fracture at a shear strain of about 0.9. It is noteworthy that the high
frequency fluctuations in the stress-strain curve are due to the immediate response
of the two-actuator control system as macroscopic softening occurs throughout the
combined vertical force/ horizontal displacement controlled experiments.

Both the photographs and the plot of the normal strain history (Figure 6 (b))
show the shear-induced compaction of the honeycomb material. In order to meet
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Figure 6. Experiments and model calibration for pure shear: (a)
engineering stress-strain curve; (b) shear-induced compaction.
The model assumptions of associated plastic flow and zero plas-
tic Poisson ratios are suitable for predicting the behavior at small
strains, whereas nonassociated flow dominates for large shear
strains.
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(a) (b)

(c) (d)

Figure 7. Deformed configuration of the honeycomb core spec-
imen throughout pure shear testing at various stages of deforma-
tion: (a) ET W = 0, (b) ET W = 0.04, (c) ET W = 0.21, and (d)
ET W = 0.58.

the pure shear condition of FV = 0, the sandwich specimen reduces its thickness,
that is, the strain increment is d ET T < 0. The shear-induced normal strains are
very small for shear strains below 0.1. However, for shear strains above 0.1, the
deformation in the T-direction becomes considerable. For large shear strains, the
shear compaction factor is approximately constant,

d ET T

d ET W

∼=−β, (4)

where β = 0.88 for the current experiment (Figure 6 (b)).
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Figure 8. (a) Schematic of the experimental setup of the punch
test. All dimensions are given in mm. (b) Photograph of the fixture
with the custom made honeycomb sandwich beam. The width of
all tested sandwich beams was W=45.7 mm.

4. Punching experiments

4.1. Experimental setup. Figure 8 shows a photograph and schematic of the ex-
perimental setup. A special fixture has been designed to clamp the W = 45.7 mm
wide sandwich beams. The maximum unsupported length of the sandwich beam
is L = 260.4 mm. The 15.9 mm thick sandwich core of the 16.3 mm thick sand-
wich plate has been replaced by equally thick aluminum blocks in the clamping
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area. Four M6-12.8 cap screws are used at each end of the specimen to apply the
clamping pressure to the 9.5 mm thick aluminum plates (Figure 8 (a)). The entire
fixture is mounted on the base table of a screw-driven universal testing machine.
Two punches of different sizes are used: a small punch of width 37.4 mm (Figure
8) and a large punch of 84 mm width. All corner radii of the punch and fixture
are 6.35 mm. The punches are connected to a 200kN load cell which measures the
vertical reaction force, P , exerted to the punch. Since the sandwich beam structure
is considerably more compliant than the testing frame and fixture, we assume that
the cross-head and punch displacement, u p, are identical. The experiments are
carried out at constant cross-head velocity of 5 mm/min.

4.2. The sandwich response to quasistatic punch indentation. A series of pho-
tographs is shown in the left column of Figures 9 and 10 for the small and large
punch experiments, respectively. The measured force-displacement curves are
shown by solid lines in Figure 11 (a). Figure 11 (b) shows the same curves again
with an abscissa axis shift of 10 mm for punch displacements smaller than the
sandwich beam thickness, u p ≤ 16.3 mm. Both force-displacement curves exhibit
a peak at about Ps ∼= 1150 N followed by a drop of about 200 N. Subsequently,
the force-displacement curve increases in a nonlinear manner before it becomes
approximately linear for punch displacements that are considerably larger than
the sandwich beam thickness. In this regime, face sheet stretching dominates the
response of the sandwich beam; the force-displacement curve for the small punch
has a slope of 132 N/mm, whereas the slope of the large punch curve is about
157 N/mm. It may be seen from the photographs taken at a cross-head position
of about 3 mm (Figures 9 (a) and 10 (a)) that the initial nonlinear response of the
sandwich beam is dominated by the shear deformation of the core material. As for
the pure shear tests (Figure 7), shear buckles become visible in the honeycomb cell
walls of the unsupported beam cross-section. It appears that the initial peak of the
force-displacement curve is due to the shear failure of the core material. Recall
that the shear stress-strain curves exhibited a similar peak. This argument may be
supported by the observation that this peak is approximately the same irrespective
of the punch width. Denoting the maximum shear resistance of the core material
by τmax , the punch force Ps associated with the initial shear failure of the sandwich
beam can be obtained using a simple beam analysis:

Ps = 2τmaxCW. (5)

According to the pure shear tests, we have

τmax = 0.75 MPa,
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(a) u P = 3.1 mm

(b) u P = 17.5 mm

(c) u P = 41.5 mm

Figure 9. Comparison of the experiments and simulations for the
small punch (width=37.4 mm). The left column shows the pho-
tographs taken throughout the experiment and the right column de-
picts the corresponding deformed configurations of the sandwich
beams as predicted from simulations.
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(a) u P = 2.8 mm

(b) u P = 16.5 mm

(c) u P = 58.5 mm

Figure 10. Comparison of the experiments and simulations for
the large punch. The left column show the photographs taken
throughout experiments while the right column depicts the corre-
sponding configurations as predicted from simulations.
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resulting in Ps = 1090 N, which is in a good agreement with our experimental
observations. After the shear failure of the core material, the small punch locally
indents the sandwich beam (Figure 9 (b)). Local indentation is also observed in
the vicinity of the clamped beam boundary. The pressure under the wide punch is
smaller and it can be seen from Figure 10 (b) that the core material underneath the
punch remains intact for displacements smaller than 16.5 mm. For large deflections,
the shear deformation of the core material increases only slightly. Instead, both the
top and bottom face sheets are substantially stretched which leads to a stiffening
response. Since the distance between the punch and the support is smaller for the
wide punch, the stretching of the face sheet is more intense for the same punch dis-
placement, which explains the larger slope of the large punch force-displacement
curve at large deflections.

5. Modeling

5.1. Constitutive modeling of the honeycomb core layer. A special version of
the constitutive model proposed by Xue et al. [2005] for plastically compressible
orthotropic materials is employed in this study to represent the core layer. Denoting
the six independent components of the Cauchy stress tensor by the vector

σ = (σ1, σ2, σ3, σ4, σ5, σ6)
T
≡ (σT T , σW W , σL L , σT L , σW L , σT W )

T

(where the initial coordinate frame is aligned with the orthotropy axes of the hon-
eycomb core), the characteristic ellipsoidal yield surface is written in the form

f (σ , s)=
6∑

i=1

(
σi

si

)2

− 1= 0, (6)

where s denotes the corresponding vector of deformation resistances. (In the pro-
posed constitutive model, an ellipsoidal yield surface is invoked that generalizes
Hill’s surface for orthotropic plastically incompressible materials. The general
formulation of this constitutive model is able to incorporate nonconstant plastic
Poisson ratios in the axes of anisotropy—that is, the plastic Poisson ratios can be a
function of plastic strains. However, for the current study the plastic deformation
of the core is approximated by taking all plastic Poisson ratios as zero.) Within the
framework of associated incremental plasticity, strain hardening/softening is taken
into account by the evolution of the deformation resistance. More specifically, we
take the independent hardening/softening approach where the evolution of individ-
ual components of the vector of deformation resistance, si , depends only on the
corresponding true plastic strain components, εP

i , where

εP
= (εP

1 , ε
P
2 , ε

P
3 , ε

P
4 , ε

P
5 , ε

P
6 )

T
≡ (εP

T T , ε
P
W W , ε

P
L L , 2εP

T L , 2εP
W L , 2εP

T W )
T .
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In other words, we have si = si (ε
P
i ).

In the present punching experiment, the core material is predominantly loaded
in the T W-plane. Therefore, the strain hardening/softening functions for uniax-
ial loading along the T-axis, sT T (ε

P
T T ), and for shear loading in the T W-plane,

sT W (2εP
T W ), must be calibrated with fidelity. The in-plane functions sW W (ε

P
W W )

and sL L(ε
P
L L) are also important from a theoretical point of view, but due to the

strong orthotropy of the hexagonal aluminum honeycomb, the contribution of the
in-plane stresses to the overall response of the sandwich beam may be neglected.
Table 1 shows a summary of the elastic constants as evaluated for the 1.8% relative
density hexagonal aluminum honeycomb. Recall that these have been estimated for
all loading directions according to the analytical expressions given in the textbook
by Gibson and Ashby [1997].

As far as the determination of sT T (ε
P
T T ) and sT W (2εP

T W ) is concerned, it is
noteworthy that the cell walls of the aluminum honeycomb buckle elastically before
yielding plastically. It is reasonable to assume that macroscopic yield initiates as
the stress level reaches the characteristic initial peak of the stress-strain curves
[Mohr and Doyoyo 2004a]. Upon evaluation of the experimental results, we obtain
the initial yield stresses sT T (ε

P
T T = 0)= 1.95 MPa and sT W (2εP

T W = 0)= 0.69 MPa
for crushing and shearing, respectively. The experimental curves from Figures
4 and 6 (a) have been converted into the functions sT T (ε

P
T T ) and sT W (ε

P
T W ) by

assuming nonevolving elastic moduli, that is,

εP
T T = εT T −

sT T

ET T
and 2εP

T W
∼= ET W −

sT W

GT W
. (7)

The approximation sign is used in the latter equation since it does not account
for the rotation of the principal axes of the stretch tensor in the shear test. The
validity of this approximation is examined by simulating the pure shear test using
the constitutive model. The comparison of the solid and dotted curves in Figure
6 (a) confirms the validity of this simplification. Note from Figure 6 (b) that the
shear-induced compaction of the core material may not be captured by the present
model. The model response to uniaxial loading along the T-direction is identical
to the experimental curve shown in Figure 4.

5.2. Modeling of the wide sandwich beam. In the development of the macro-
scopic constitutive model, it is assumed by the definition of the macroscopic strains
(see Equation (3)) that the displacement field is linear along the core thickness (T-
direction). Therefore, the core is discretized using only one row of elements with
linear shape functions along the thickness direction. Using a single linear element
along the thickness implies the assumption that initially flat cross-sections remain
flat throughout bending. However, it is important to note that commonly used
numerical integration schemes may not be accurate enough to capture substantial
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variations in the stress field along the thickness direction. Therefore, the present
modeling approach is only recommended when the contribution of the core material
to the overall bending resistance of the sandwich sheet is negligible.

In the case of sandwich structures with curved mid-planes, the element edges
must be aligned with the thickness direction of the core layer. The number of
elements along the sandwich mid-axis on the other hand shall be chosen such that
the continuum boundary value problem is solved with satisfactory accuracy. In
the constitutive model, the honeycomb core is considered as a so-called simple
material body. The model calibration experiments are almost stress gradient free
(for example, δσT T /δXW ∼= 0). However, from a physical point of view, it may be
expected that large macroscopic stress gradients affect the material response due
to the discreteness of the cellular core structure along W - and L-directions, which
indicates the need for enriched Cosserat type of theories [Onck 2002]. Therefore, it
is emphasized that the present model predictions may not be satisfactory in regions
where the continuum solution indicates large gradients in either the stress or strain
field.

Another consideration in modeling sandwich structures as a three layer shell-
solid-shell assembly is the continuity of the displacement field which is enforced
at the common nodes of the face sheets and the core layer. These nodes are posi-
tioned in the face sheet mid-plane whereas in reality, the displacement continuity
is enforced at the contact surfaces between the core and face sheets. There are
basically three modeling options: (1) using the exact core thickness while the face
sheet separation in the model is smaller than in reality; (2) using the exact face
sheet separation, while artificially increasing the core thickness; (3) programming
a user-defined sandwich element with enhanced kinematics to take this effect into
account. With respect to sandwich sheet failure, two key mechanical quantities
depend directly on either the face sheet separation C + t f or the core height C : the
overall plastic bending moment, Mpl , and the shear strength, Fs , may be respec-
tively approximated as

Mpl = σ f t f (C + t f )W and Fs = τmaxCW. (8)

Both quantities show a linear dependence which demonstrates that the error
associated with the model assumptions (1) or (2) is small if t f /C � 1. In the
present problem, we have t f /C ∼= 1%.

5.3. Modeling of the punching experiments. The punching of the wide beam is
treated as a two-dimensional problem. We hypothesized that the deformation of the
core material in the L-direction can be neglected. Consequently, four-node plane
strain elements with reduced integration (element CPE4R in [Abaqus 2005]) are
employed for the honeycomb core layer. The thin face sheets are discretized by a
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two-node Timoshenko beam element (element B21 in [Abaqus 2005]). Each beam
element has a rectangular cross section of height t f = 0.2 mm and a unit width.

Only one half of the whole system is analyzed due to the symmetry of the
structure and the loading conditions. Symmetry boundary conditions are applied
to the center cross section of the wide beam. The horizontal displacements of
all nodes along each edge of the sandwich beam are restricted to be zero. The
punch and all support structures are modeled by rigid elements with frictionless
contact between each pair of contact surfaces. The support structures are fixed,
while the punch loads is applied at a constant vertical velocity. The calculations
are performed using ABAQUS/explicit. In comparison with the standard implicit
algorithm, the explicit scheme is chosen due to its advantages in handling sliding
contact conditions and the overall softening behavior of the honeycomb core due
to the presence of stabilizing inertia. Oscillations due to this dynamic stabilization
have been found to be negligibly small as compared to the static force level.

Note that the propagation velocities of uniaxial waves in the sandwich material
are about 5000 m/s for both longitudinal waves along the face sheets and waves
through the thickness of the honeycomb material. In order to ensure quasistatic
loading conditions, the characteristic durations for elastic waves traveling from
the punch center to the clamping support of the sandwich plate (about 30µs) and
through the thickness of the sandwich sheet (about 3µs) must be several orders
of magnitudes smaller than the total duration of the punching simulations. Here,
the numerical simulations are carried out for a constant punch velocity of 1 mm/s,
which corresponds to a total duration of 60 s. Regarding the computational effi-
ciency of the simulations, it is worth noting that the stable time step is mostly
governed by the wave propagation in the face sheets. Stability of the explicit time
integration scheme requires the time step to be smaller than the duration of a wave
propagating between two opposite sides of the element, that is, 1t < le/c (in a
nonrigorous sense), where le and c denote the characteristic element side length
and wave speed, respectively. According to the continuum model of the core, the
in-plane wave propagation speed in the present honeycomb core is extremely small
(about 100 times slower than the out-of-plane wave). Thus, if the sandwich core
height is larger than the element length along the sandwich mid-axis, the elements
of the face sheets will control the critical time step.

5.4. Comparison of the results from experiments and simulations. The punching
simulations are carried out for three different mesh densities along the sandwich
mid-axis by employing 32, 64 and 128 elements along the sandwich mid-axis. No
remarkable difference is observed between the force-displacement curves obtained
using the three mesh densities. Even coarser meshes may be suitable for modeling
the sandwich sheet, but the contact algorithm is likely to fail when the model no
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Figure 11. Comparison of the experimental results of the honey-
comb core sandwich beam subject to quasistatic punch indentation
(solid line) with the predictions from the numerical simulations
based on the continuum modeling of the core. (a) Punch force-
displacement curve for displacements of up to 60 mm; (b) detail
of that curve for small displacements (u P ≤ C = 16.3 mm). The
origin of the curve for the small punch has been shifted by 10 mm.
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longer captures important details of the face sheet deformation near the rigid punch
and support structures. The direct comparison of the experimental and computa-
tional force-displacement curves is shown in Figure 11 (a). The experimental and
numerical curves are considerably close for small and large displacements. Both
the initial slope in the elastic regime and the following peak load are accurately
predicted by the numerical model (Figure 11 (b)). Similarly, excellent agreement is
observed for large displacements, where the sandwich response is mostly governed
by the stretching of the face sheets.

In order to compare the predicted displacement fields, we plotted the deformed
FE-meshes next to selected photographs taken during the experiments at the same
vertical displacements. Again, we observe good overall agreement of experiments
and simulations. In particular, the development of two separate regions of shear-
dominated and compression-dominated core deformation seems to be captured in
close analogy with the experiment.

6. Discussion

The main result of this study is that this rather simple computational model can
predict the response of a wide sandwich subject to punch loading with considerable
fidelity. Due to the high orthotropy of the core material and the strength disparity
between the core and face sheets, the sandwich core layer could be successfully
modeled with only one element over the thickness. It is important to calibrate
the plastic part of the core constitutive model from both uniaxial and pure shear
test data. Recall that the punch force-displacement curve is governed by the shear
behavior of the core material at the early stage of deformation.

Recent findings in cellular plasticity indicate that modeling of the fold propa-
gation in honeycombs may require enriched constitutive theories [Mohr and Doy-
oyo 2003]. At the microscale, the through-the-thickness response of honeycomb
sandwich sheets is characterized by the localization of deformation which may
result in mesh dependency. This challenge has been successfully overcome by
the present modeling approach through the use of only one element through the
core thickness. This approach is suitable in sandwich applications when the stress
and strain gradients along the in-plane directions are small. In the present study,
this requirement is violated near the corners of the punch, but the comparison of
experiments and simulations reveals that such local violations are still acceptable
in a larger system. Another important outcome of preceding experimental studies
on aluminum honeycombs is the observation of nonassociated plastic flow at large
strains [Mohr and Doyoyo 2004c; Hong et al. 2006]. The present model assumes
associated plastic flow which appears to be a suitable assumption for small de-
formations (Figure 6 (b)). Initially, the measured normal strains are almost zero,
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which corresponds to associated flow with respect to the ellipsoidal yield surface,
while for large shear strains substantial normal strain arises as described by the
finite-strain constitutive model of Mohr and Doyoyo [2004c]. In the present ex-
periments, the shear strains do not exceed 0.2, which explains the applicability of
the present model. Furthermore, there is no difference between the nonassociated
and associated flow models for uniaxial compression within the large deformation
zone directly underneath the punch.

7. Conclusion

A detailed study has been performed to evaluate the predictive capabilities of a
newly developed constitutive model for sandwich core materials [Xue et al. 2005].
A new pure shear test for cellular solids has been presented and used to obtain
the material model parameters for a thin-walled hexagonal aluminum honeycomb.
All-metal sandwich beams have been constructed by bonding a 16 mm thick slice
of this honeycomb to a pair of 0.2 mm thick stainless steel face sheets. Using
a special clamping fixture, these wide sandwich beams have been loaded under
quasistatic loading conditions with punches of different widths. The response of
sandwich beams to punch loading has been analyzed in detail and predicted from
finite element simulations by employing a continuum constitutive model for the
sandwich core. The computational model exploits a single linear solid element for
the core material in conjunction with two beam elements for the face sheets, which
leads to a significant reduction of the computational time as compared to detailed
modeling of the cellular core structure. The comparison of the numerical and
experimental results demonstrates the good predictive capabilities of this simple
computational model for studying the structural performance of metal sandwich
beams.
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