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MASSIMILIANO LUCCHESI, MIROSLAV ŠILHAVÝ AND NICOLA ZANI

We study the equilibrium problem for bodies made of a no-tension material,
subjected to distributed or concentrated loads on their boundary. Admissible
and equilibrated stress fields are interpreted as tensor-valued measures with dis-
tributional divergence represented by a vector-valued measure, as outlined in
two 2005 papers by Lucchesi et al. Such stress fields are generalizations of
ordinary functions, which allows us to consider stress concentrations on surfaces
and lines. The general framework for this approach is presented first and then
illustrated on examples of two-dimensional panels under different loads. In the
general framework we determine weak divergences and the surface tractions of
several stress field measures via the (surface) divergence theorem. Combinations
of these stress fields are shown to give the solutions for the panels, which we
assume to be clamped at the bottom, and subjected to various loads on the top
and possibly on the sides of the panel. The shapes of the singular lines and
stresses are explicitly determined in these cases.

1. Introduction

In studying the equilibrium problem of bodies made of a no-tension (or masonry-
like) material [Del Piero 1989; Di Pasquale 1984], it is very hard to find an explicit
solution of the corresponding boundary value problem [Lucchesi and Zani 2003a].
Therefore, in applications we often limit ourselves to looking for stress fields that
are equilibrated with the applied loads and compatible with the incapability of the
material to withstand traction. These admissible equilibrium stress fields can be
used in the context of limit analysis [Del Piero 1998] to determine the collapse load,
or at least some of its lower bounds. The solution to this problem is considerably
simplified by allowing the stress to be singular in some regions of the body. In [Luc-
chesi and Zani 2002; 2003b], solutions for two-dimensional panels are examined
which are regular except on a finite number of singularity curves where the stress
field is unbounded. The method of solving the equilibrium equations is based on
the fact that if horizontal and vertical loads are distributed only on the panel’s top
and the stress determinant is null, the equilibrium equations constitute a system of
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conservation laws, formally identical to the nonlinear system ruling the dynamics
of the one-dimensional isentropic flow of a pressureless compressible gas. Under
appropriate hypotheses, this system is equivalent to a single scalar conservation law
[Brenier and Grenier 1998; Bouchut and James 1999]. Then the singularity curves
are determined by means of the Rankine–Hugoniot jump condition corresponding
to this scalar equation. This method is not directly applicable if distributed loads
are present on the lateral sides of the panel or if the determinant of the stress does
not vanish.

Following [Lucchesi et al. 2004; 2005a], the present paper uses tensor-valued
measures to describe the stress fields in no-tension bodies. On the common range
of applicability, the language of measures is essentially equivalent to the method
of the conservation law mentioned above. However, the approach via measures
is conceptually more direct in accounting for the singularities of the stress field
and in the way the balance of forces is taken into account. The former means that
we consider generally measures that are not absolutely continuous with respect to
the Lebesgue measure (= volume); the latter means that the balance of forces is
interpreted in the weak sense. This in turn means that the distributional divergence
of the stress measure is equal to the body force in the interior of the body, and that
the boundary trace of the measure equals the external boundary loads, given by a
prescribed measure.

Using the divergence theorem, we first calculate the weak divergence and the
trace of some elementary stress fields:

(i) those distributed over volumes or concentrated on surfaces and lines, and

(ii) stress fields given by some specific expression (see Equation (3–8)) that is
encountered in some solutions for panels given below.

The stress fields encountered in the applications to panels are linear combinations
of the elementary stress fields in items (i) and (ii) of Proposition 1. We then con-
sider briefly the general balance equation, and show, among other things, that for
the stress field consisting of the bulk stress and of the stress concentrated on a
surface, one obtains the classical form of the balance equations.

The rest of the paper illustrates the general notions on the rectangular panels
made of a no-tension material. We assume that the panel is free from body forces,
clamped at its bottom and subjected to loads prescribed on the boundary; appli-
cations to three-dimensional bodies under gravity will be treated in a future work.
The stress field in our solutions is plane and negative semidefinite and characterized
by the presence of one or more curves of concentrated stress. This feature, which
is allowed by supposing the material to have infinite compressive strength, seems
to be paradoxical at first sight. On the other hand, this simplifying hypothesis is
frequently used in the study of masonry structures, at least when the collapse is
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believed to take place for small values of the compressive stress [Heyman 1966].
Moreover, these singular equilibrated stress fields look like a formalization of the
rough idea that a masonry building is ‘safe’ if its interior contains an equilibrated
(and compressed) structure, an idea that was probably already in the mind of
Leonardo da Vinci [Benvenuto 1991].

Even though the present paper makes no mention of the displacement fields, our
use of measures to describe the stresses raises the question of the appropriate dual-
ity between the stresses and strains. We are especially interested in the expression

T · ε(u) (1–1)

for the virtual work of the stress field T against the virtual displacement u with the
small strain tensor ε(u)= 1

2(∇u+∇uT). Generally, the ‘wilder’ T is, the smoother
u must be, and vice versa. The issues are well understood in Hencky’s plasticity,
where u is generally a vector field with bounded deformation. The papers [Témam
and Strang 1980; 1980; Anzellotti 1983] and [Kohn and Témam 1983] provide a va-
riety of results pertaining to that case. Roughly, T must be a Lebesgue measurable
function with divergence measure and with some natural integrability properties.
Thus no concentrations in T are allowed. Our situation is the opposite: the stress
has concentrations and the strain must be ‘tamer.’ The results of Whitney’s theory
of flat chains [Whitney 1957; Federer 1969] apply here (see [Šilhavý 2005c]). For
symmetric tensor-valued stress measures T with divergence measure, the expres-
sion in Equation (1–1) is a well defined measure provided the displacement u is
Lipschitz continuous (for stress measures with additional properties the class of
displacements may be wider). The result is not immediate because ε(u) may be
undefined on the surface of concentration of T; a substantial use has been made of
the fact that the divergence of T is a measure. We will return to these issues in a
separate paper.

2. Vector-valued measures

This section introduces measures with values in a finite-dimensional inner product
space V . Such measures can be identified with an m-tuple of (scalar-valued) signed
measures where m := dim V is the dimension of V . We refer to [Rudin 1974,
Chapters 1 and 6] for the details of scalar-valued signed measures. The notation
in Equations (2–2) and (2–3), below, will be used systematically throughout the
paper.

Throughout the paper, Lin denotes the space of all linear transformations from
Rn into Rn with the scalar product A · B = tr(ABT), A, B ∈ Lin, and Sym is
a subspace of Lin consisting of all symmetric transformations. We interpret Lin
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as the space of all second order tensors, and use vector and tensor notations and
conventions from [Gurtin 1981] and [Šilhavý 1997].

If V is a finite-dimensional real inner product space then a function µ, defined
on the system of all Borel subsets of Rn , is said to be a V -valued measure on Rn

if

µ
( ∞⋃

i=1

Ai

)
=

∞∑
i=1

µ(Ai ), (2–1)

for every pairwise disjoint sequence Ai of Borel sets. We recall that the system
of all Borel sets is the smallest σ algebra of subsets of Rn that contains all open
subsets of Rn . The application of Equation (2–1) to the sequence Ai = ∅, i = 1, . . . ,
gives µ(∅) = 0. If U ⊂ Rn is a Borel set, we say that a V -valued measure µ is
supported on U if µ(B)= 0 for every Borel set B ⊂ Rn such that U ∩ B = ∅. We
denote by M(U, V ) the set of all V -valued measures supported on U . We call the
elements of M(U,R) signed measures on U and the elements of M(U,Lin) tensor
measures. In the special case V = Rm one has

µ(A)= (µ1(A), . . . , µm(A)),

for each Borel set A ⊂ Rn where µi , 1 ≤ i ≤ m, are signed measures. A similar
reduction of µ applies to any V equipped with a basis.

If µ is a V -valued measure, we say that a Borel set A ⊂ Rn is a µ null set if
µ(B)= 0 for each Borel set B ⊂ A. We say that a map f is defined as µ almost
everywhere (a.e.) on a set M if the set of all x ∈ M for which f (x) is not defined
forms a µ null set. Similarly, we say that a given property holds a.e. on M if the
set of all x for which the property is violated forms a µ null set.

If α : U → V is a bounded Borel function and ν ∈ M(U, V ), then∫
U

α · dν

is a well defined number. If a ∈ U , we denote by δa ∈ M(U,R) the Dirac measure
at a, defined by

δa(B) =

{
1 if a ∈ B,

0 if a /∈ B,

for any Borel set B ⊂ Rn , and note that if f : U → R is a (bounded) Borel function
then ∫

U
f dδa = f (a).

We denote by Ln the Lebesgue measure in Rn [Federer 1969, Subsection 2.6.5]
and if k is an integer, 0 ≤ k ≤ n, we denote by Hk the k-dimensional Hausdorff
measure in Rn [Federer 1969, Subsections 2.10.2–2.10.6]; recall that Hn

= Ln . If
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A is a Borel set, we denote by Hk A the restriction of Hk to A, which is the
measure defined by

(Hk A)(B)= Hk(A ∩ B), (2–2)

for each Borel set B ⊂ Rn . If A ⊂ U is a Borel set and f is a V -valued Borel map
defined a.e. on A, integrable with respect to Hk on A, then f Hk A denotes the
V -valued measure on Rn defined by

( f Hk A)(B)=

∫
A∩B

f dHk, (2–3)

for each Borel set B ⊂ Rn . The definitions (2–2) and (2–3) also apply to k = n,
that is, to Ln

≡ Hn , resulting in Ln A and f Ln A. If α : A → V is a bounded
Borel function then ∫

A
α · d( f Hk A)=

∫
A

α · f dHk .

The construction (2–3) will be used to introduce stresses concentrated on sur-
faces. In that case A ≡ S is a k-dimensional surface with boundary (see the Appen-
dix for the summary of differential-geometric notions), f ≡ Ts is a Hk integrable
map on S with values in Lin and

Ts := Ts Hk S (2–4)

is a stress field concentrated on S. Similarly, if A = U is an open subset of Rn and
Tr is an Ln integrable map on U with values in Lin then

Tr := Tr Ln U (2–5)

is a distributed stress field on U . Only combinations of measures of type (2–4) and
(2–5) are of real use in Sections 5–7. The corresponding equilibrium equations are
considered in Sections 3 and 4.

3. Divergence measure tensor fields

If V is a finite-dimensional real inner product space and if U is an open subset of
Rn , we denote by C∞

0 (U, V ) the set of all infinitely differentiable functions

α : Rn
→ V

whose support spt α is contained in U . We say that a tensor-valued measure

T ∈ M(U,Lin)

is a divergence measure tensor field if there exists a measure

div T ∈ M(U,Rn),
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called the divergence of T, such that∫
U

∇v · dT = −

∫
U

v · d div T, (3–1)

for each v ∈ C∞

0 (U,Rn). We note that vector-valued measures with divergence
measure have been introduced in [Chen and Frid 2001; 2003]; vector or tensor-
valued functions with divergence measure have been considered in [Anzellotti
1983; Kohn and Témam 1983; Chen and Frid 1999; Degiovanni et al. 1999; Mar-
zocchi and Musesti 2001; Šilhavý 2005a; Chen and Torres 2005]. (For the applica-
tion of divergence measure tensor fields to masonry structures, see [Lucchesi et al.
2005a].) A measure T ∈ M(U,Lin) is said to be an equilibrated tensor field if
there exist measures b ∈ M(U,Rn) and t ∈ M(∂U,Rn) such that∫

U
∇v · dT =

∫
U

v · db +

∫
∂U

v · dt, (3–2)

for each v ∈ C∞

0 (R
n,Rn) [Podio-Guidugli 2005; Šilhavý 2005a; 2005b; 2005c].

Here ∂U denotes the topological boundary of U . Since the measures b and t are
supported on the disjoint sets U and ∂U , respectively, they are uniquely determined
(provided they exist). We call the pair (b, t) the load corresponding to T and the
measure t the normal trace of T; we use the notation N(T) := t for the normal
trace. Equation (3–2) then reads∫

U
∇v · dT = −

∫
U

v · d div T +

∫
∂U

v · dN(T), (3–3)

for each v ∈ C∞

0 (R
n,Rn). Clearly, any equilibrated tensor field T is a divergence

measure tensor field, and if (b, t) is the load, then divT =−b. There are divergence
measure tensor fields that are not equilibrated [Šilhavý 2005b, Chapter 9; Šilhavý
2005c, Example 9.1], that is, for which the measure t does not exist.

The integration by parts shows that if T : U → Lin is a continuously differ-
entiable tensor field with integrable gradient on an open set U ⊂ Rn , then the
tensor-valued measure

T = TLn U

is a divergence measure tensor field and

div T = div TLn U.

Here div is the classical divergence given by the usual differential expression; a
particular case of the surface divergence introduced in the Appendix, while div
denotes the divergence as a measure, defined above. The reader is also referred to
the Appendix for the differential-geometric concepts employed in the subsequent
discussion. If, additionally, U is an open region with Lipschitz boundary, and T
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has a continuous extension to the closure cl U of U , again denoted by T , that is
Hn−1 integrable on ∂U , then the divergence theorem shows that T is an equilibrated
tensor field and

N(T)= T m Hn−1 ∂U,

where m is the outer normal to U . This justifies the term ‘normal trace’ for N(T).
The following proposition generalizes the above considerations to singular ten-

sor fields concentrated on k-dimensional surfaces, 1 ≤ k ≤ n. If T : S → Lin
is a tensor field on a k-dimensional surface S with boundary, we say that T is
superficial [Gurtin 2000, p. 94] if T (x)v = 0 for every x ∈ S and every v ∈ Rn

perpendicular to Tx(S). This is equivalent to each of the following two statements:

(a) Tx(S)
⊥

⊂ ker T (x) for every x ∈ S;

(b) ran TT(x)⊂ Tx(S).

Here ker and ran denote the kernel and range of a linear transformation.

Proposition 1. Let U be an open subset of Rn , let k ≥ 1 be an integer, let S be a
compact orientable k-dimensional surface with boundary such that int S ⊂ U , let
T : S → Lin be a continuous map with a continuous and Hk integrable derivative
in int S, and put

T := THk S.

Then

(i) T is equilibrated ⇔ T is a divergence measure tensor field ⇔ T is superficial;

(ii) if T is superficial then

div T = div THk (S ∩ U )− T mHk−1 (∂S ∩ U ) (3–4)

and

N(T)= T m Hk−1 (∂S ∩ ∂U ), (3–5)

where m is the outer normal to S.

Item (1) says that a measure concentrated on a k-dimensional surface is a diver-
gence measure tensor field only if it is superficial. If this is the case then the
divergence of T consists of the (surface) divergence of T concentrated on S ∩ U
and of the normal component of T concentrated on ∂S ∩ U while the normal
trace of T is the remaining part of the normal component of T , that is, the part
concentrated on ∂S ∩ ∂U . We emphasize that k ≥ 1 is arbitrary. If k = 1, that is, if
S is a curve, then the measure

T m Hk−1 (∂S ∩ U )
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reduces to ∑
a∈∂S∩U

T (a)m(a)δa,

where the set ∂S ∩ U is the set of all endpoints of S in U and m(a) are outward
tangents to S at the endpoints. A similar interpretation applies to the right side of
Equation (3–5). We note that the argument used below to prove Item (i) can also
be applied to show that there are no nontrivial divergence measure tensor fields
concentrated at points, that is, surfaces of dimension 0.

Proof. (ii): Assume that T is superficial and prove Equations (3–4) and (3–5). Let
v ∈ C∞

0 (R
n,Rn); since T is superficial, TTv is tangential and thus the surface

divergence theorem 1, the identity (A–7), and the hypothesis int S ⊂ U give∫
S∩U

(v · div T + T · ∇v) dHk
=

∫
∂S

T m · v dHk−1.

Rearranging, we obtain∫
S∩U

T · ∇v dHk
= −

∫
S∩U

v · div T dHk

+

∫
∂S∩U

T m · v dHk−1
+

∫
∂S∩∂U

T m · v dHk−1
;

comparing this with Equation (3–3) and invoking the uniqueness of div T and
N(T) we see that Equation (3–4) and Equation (3–5) hold.

(i): We shall prove the cycle of implications: T is equilibrated ⇒ T is a di-
vergence measure tensor field ⇒ T is superficial ⇒ T is equilibrated. The first
of these implications is automatic, as mentioned above, while the last implication
has been proved in (ii). Thus it remains to be proved that if T is a divergence
measure tensor field then T is superficial. Let T be a divergence measure tensor
field, let x ∈ S ∩ U and assume first additionally that x /∈ ∂S. Let Z and ω be
as in Condition (ii) of Subsection A.1, and assume, as we can, that Z ⊂ U . Let
λ ∈ C∞

0 (R
n,R) be such that spt λ ⊂ Z . Let b ∈ Rn−k and a ∈ Rn . If ε > 0 then

there exists h ∈ C∞(Rn−k,R) such that

h(0)= 0, ∇h(0)= b (3–6)

and |h|∞<ε. Here |·|∞ is the maximum norm; that is, if M is a set and f : M → V
then

| f |∞ := sup{| f (x)| : x ∈ M}.

Let v ∈ C∞

0 (U,Rn) be defined by

v =

{
aλ (h ◦ ω) on Z ,

0 on Rn
\ Z .

(3–7)
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Using |h ◦ ω|∞ = |h|∞ < ε one finds that |v|∞ ≤ |a||λ|∞ ε. Applying the product
rule to calculate ∇v from Equation (3–7), using Equation (3–6), and noting that
h ◦ ω = 0 on S, one finds that

∇v =

{
λa ⊗ ∇ωTb on S ∩ Z ,

0 on S \ Z .

Equation (3–1) thus reads∫
S∩Z

λ∇ω TTa · b dHk
= −

∫
U

v · ddiv T.

Denoting by M(µ) the total variation of a vector-valued measure µ ∈ M(U, V ),

M(µ) := sup{

∫
U

α · dµ : α ∈ C∞

0 (U, V ), |α|∞ ≤ 1},

we note that the inequality |v|∞ ≤ |a||λ|∞ε gives∣∣∫
U

v · d div T
∣∣ ≤ M( div T)|a||λ|∞ε,

and hence ∣∣∫
S∩Z

λ∇ω TTa · b dHk
∣∣ ≤ M(div T)|a||λ|∞ε.

As ε > 0 is arbitrary, we have∫
S∩Z

λ∇ω TTa · b dHk
= 0.

As this must hold for any λ, a, b subject to the conditions above, we have

∇ω TT
= 0

on S∩ Z , and since ker ∇ω(x)= Tx(S), we deduce that ran TT(x)⊂ Tx(S). Thus
the restriction of T to S ∩ (U \ ∂S) is superficial. Since the closure of the last set
is S, the continuity of T implies that T is superficial on S. �

A subset C of Rn is said to be a cone if rv ∈ C for every r > 0 and v ∈ C . For
each x ∈ Rn and r > 0, let B(x, r) denote the open ball in Rn of center x and radius
r , and let Sn−1 denote the unit sphere in Rn .

Proposition 2. Let U ⊂ Rn be an open region with Lipschitz boundary containing
the origin, and let C be an open cone such that ∂C \ {0} is an (n−1)-dimensional
surface. Let α : cl C ∩ Sn−1

→ R be a continuous function which is continuously
differentiable in C ∩ Sn−1, and let T : (U ∩ cl C) \ {0} → Lin be given by

T (x)= |x|
−n−1α

( x
|x|

)
x ⊗ x, x ∈ (U ∩ cl C) \ {0}. (3–8)
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Then T is continuous in (U ∩ cl C) \ {0} and continuously differentiable in C ∩ U
and we have

div T = 0 in C ∩ U. (3–9)

Moreover, if we put
T = TLn (C ∩ U ),

then T is an equilibrated tensor field and

div T = c δ0, (3–10)

N(T)= T m Hn−1 (∂U ∩ C), (3–11)

where

c =

∫
C∩Sn−1

α(e)e dHn−1(e), (3–12)

and m is the outer normal to ∂U ∩ C.

For n = 2, the stress field T as in Equation (3–8) falls within the class studied
in [Podio-Guidugli 2005, Section 4], from where also (3–9) can be deduced. In
(3–12) we denote by e ∈ C ∩ Sn−1 the integration variable. Using the divergence
theorem and (3–9) as in the proof below, one also finds that

c =

∫
C∩∂U

T m dHn−1. (3–13)

Proof. The continuity and differentiability of T follows directly from the assump-
tions on α and (3–9) is a straightforward calculation which we omit. To prove
(3–10) and (3–11), we denote by Br the closed ball with center 0 and radius r > 0
and consider the set (C \ Br )∩ U . This is an open set and if r > 0 is small enough
to satisfy Br ⊂ U (recall that 0 ∈ U ), then

∂[(C \ Br )∩ U ] = (C ∩ ∂U )∪ (C ∩ ∂Br )∪ [(∂C \ Br )∩ U ] ∪ T (3–14)

to within a set of Hn−1 measure 0 where

T := {x ∈ (∂C \ {0})∩ ∂U : n∂C\{0}(x)= m(x)}, (3–15)

where n∂C\{0} is the outer normal to C\{0} and m is the outer normal to U . Equation
(3–14) can be deduced from the general formula in [Marzocchi and Musesti 2001,
Proposition 2.2]. We note that (C \ Br ) ∩ U is an open region with Lipschitz
boundary with the outer normal given by

n(x)=


m(x) if x ∈ C ∩ ∂U ,

−x/r if x ∈ C ∩ ∂Br ,

n∂C\{0}(x) if x ∈ [(∂C \ Br )∩ U ] ∪ T ,

(3–16)
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to within a change on a Hn−1 null set. Furthermore, we note that

T n∂C\{0} = 0 on ∂C \ {0} (3–17)

because x · n∂C\{0} = 0 since C is a cone with vertex 0. If v ∈ C∞

0 (R
n,Rn) is a

vector field, then∫
U

∇v · dT =

∫
C

∇v · T dLn
= lim

r→0

∫
C\Br

∇v · T dLn.

Theorem 1 and formula (A–7) yield∫
C\Br

∇v · T dLn
= −

∫
C\Br

v · div T dLn
+

∫
∂[(C\Br )∩U ]

v · T n dHn−1.

Combining with Equations (3–14)–(3–16) we obtain∫
C\Br

∇v · T dLn
= −

∫
C\Br

v · div T dLn

−

∫
C∩∂Br

v(x) · T (x)
x
r

dHn−1(x)

+

∫
C∩∂U

v · T m dHn−1, (3–18)

where we have used ∫
[(∂C\Br )∩U ]∪T

v · T n∂C\{0} dHn−1
= 0,

which follows from Equation (3–17). A combination of (3–18) with (3–9) provides

∫
U

∇v · dT = − lim
r→0

∫
C∩∂Br

v(x) · T (x)
x
r

dHn−1(x)+
∫

C∩∂U
v · T m dHn−1.

(3–19)
Moreover, the continuity of v gives

lim
r→0

∫
C∩∂Br

v(x) · T (x)
x
r

dHn−1(x)= v(0) · lim
r→0

∫
C∩∂Br

T (x)
x
r

dHn−1(x),

(3–20)
provided the limit on the right side exists. On the other hand, we have∫

C∩∂Br

T (x)
x
r

dHn−1(x)=

∫
C∩Sn−1

α(e)e dHn−1(e), (3–21)
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for scaling reasons, because C is a cone. Therefore, in view of Equations (3–19),
(3–20), (3–21) and (3–12),∫

U
∇v · dT = −v(0) · c +

∫
C∩∂U

v · T m dHn−1.

A comparison with Equation (3–2) gives (3–10) and (3–11). �

4. Balance equations

If an equilibrated tensor field T ∈ M(U,Lin) is interpreted as the stress field in a
continuous body under the action of a body force given by a prescribed measure
b0 ∈ M(U,Rn) and the boundary traction given by a prescribed measure

t0 ∈ M(∂U,Rn),

then the equations of equilibrium read

div T + b0 = 0, (4–1)

N(T)= t0. In particular, if b0 is absolutely continuous with respect to the Lebesgue
measure (e.g., the gravity), that is,

b0 = b0Ln U, (4–2)

where b0 : U → Rn is an Ln integrable function, then div T must be absolutely
continuous with respect to Ln as well.

We now illustrate these balance equations on various linear combinations of the
fields described in Propositions 1 and 2. Let U ⊂ Rn be an open set.

(i) Let K + and K − be two regions with Lipschitz boundary contained in cl U ,
which are complementary in the sense that the following relations hold:

int K +
∩ int K −

= ∅, K +
∪ K −

= cl U, ∂K ±
∩ U = K +

∩ K −
∩ U.

Let furthermore T±
: K ±

→ Lin be continuous maps which have a contin-
uous and Ln integrable derivative in int K ±. Denoting by I := ∂K ±

∩ U
the common interface in U we see that the exterior normals n± to K ± satisfy
n+

= −n− on I and we denote this common value by n : I → Sn−1. Denoting
further by T : int K +

∪ int K −
→ Lin the field given by T± on int K ± and

noting that T is defined Ln a.e. on U , we define the measure T by

T = TLn U.

Applying Proposition 1 to T ≡ T±,S ≡ K ±, we see that T±Ln K ± is an
equilibrated tensor field and

div(T±Ln K ±)= div T±Ln K ±
− T±n± Hn−1 I,
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N(T±Ln K ±)= T±m Hn−1 (∂K ±
∩ ∂U ),

where m is the outer normal to U . Adding the results, we conclude that T is
an equilibrated tensor field and

div T = div TLn U − [T ]nHn−1 I,

N(T)= T mHn−1 ∂U,

where div T is the divergence of T on U \ I and for every x ∈ I,

[T ](x) := T+(x)− T−(x)

is the jump of T across I. Any map T which arises in the above way is
called a piecewise smooth tensor field. If T is a stress field under the action
of the body force as in Equation (4–2), then the equilibrium equation (4–1) is
equivalent to the following two equations:

div T + b0 = 0 in U \ I, [T ]n = 0 on I.

(ii) If Tr is a piecewise smooth tensor field with the interface I as in (i) above
and Ts : I → Lin is a superficial tensor field satisfying the hypothesis of
Proposition 1 (ii) with k = n − 1 and S := I, then the tensor field

T := Tr Ln U + Ts Hn−1 I

is equilibrated and

div T = div Tr Ln U +
(
div Ts − [Tr ]n

)
Hn−1 I,

N(T)= Tr mHn−1 ∂U + Ts pHn−2 (∂U ∩ ∂I),

where p is the outer normal to I. With the body force as in Equation (4–2)
the equilibrium equation (4–1) is equivalent to the pair of standard equations

div Tr + b0 = 0 in U \ I, [Tr ]n − div Ts = 0 on I; (4–3)

see, for example, [Gurtin and Murdoch 1975; Podio-Guidugli and Caffarelli
1990; Gurtin 2000].

(iii) Let Sj , j = 1, . . . , p, be curves with endpoints such that int Sj ⊂ U . Assume
that int Si ∩ int Sj = ∅, ∂Si ∩∂Sj = {a} for all i 6= j and some a ∈ U , and that
∂Si ∩ ∂U 6= ∅ for all i . Let the measure T be defined by

T :=

p∑
j=1

T j H
1 Sj ,
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where T j is a superficial tensor field on S which satisfies the hypotheses of
Proposition 1. Then T is an equilibrated tensor field and

div T =

p∑
j=1

div T j H
1 Sj +

[ p∑
j=1

T j (a)m j (a)
]
δa,

N(T)=

[ p∑
j=1

T j (a j )m j (a j )
]
δa j ,

where the points a j are defined by ∂Sj ∩ ∂U = {a j } and for any b ∈ ∂Si the
symbol mi (b) denotes the outer tangent to Si at b. If n ≥ 2, the equilibrium
equation (4–1) with b0 as in (4–2) reads

div T j = 0 on Sj for j = 1, . . . , p,
p∑

j=1

T j (a)m j (a)= 0, (4–4)

while if n = 1 then the first equation of (4–4) must be replaced by div T j +b0 =

0.

(iv) Let Tr : (U ∩ cl C) \ {0} → Lin be a tensor field of the form described in
Proposition 2, let S be a curve with endpoints such that one endpoint is in ∂U
and another coincides with 0, and let Ts : S → Lin be a continuous superficial
tensor field that is continuously differentiable in int S. Let T be given by

T = Tr Ln (C ∩ U )+ Ts H1 S;

then T is an equilibrated tensor field and

div T = div Ts H1 S + [c + Ts (0)m(0)]δ0,

N(T)= Ts (a)m(a)δa + Tr n Hn−1 (C ∩ ∂U ),

where c is given by Equation (3–12), a is defined by ∂U ∩ ∂S = {a}, the
symbols m(0),m(a) denote the outer tangents to S at 0, a, respectively, and
n is the outer normal to U . If n ≥ 2, the equilibrium equation (4–1) with b0

as in (4–2) can be satisfied only if b0 = 0 (see (3–9)) and if this is the case, it
is equivalent to the following pair of equations:

div Ts = 0, c + Ts (0)m(0)= 0.

5. Dimension two

Let U ⊂ R2 be an open set and S ⊂ cl U be a smooth curve, let s be the natural (arc)
parameter of S and let t(s), n(s), and κ(s) be the unit tangent, the unit normal, and
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the curvature, respectively. If Ts : S → Lin is a symmetric tensor field on S then
Ts is superficial if and only if we have

Ts (s)= σ(s) t(s)⊗ t(s), (5–1)

with σ a scalar field on S. Then

div Ts =
d
ds
(σ t)=

dσ
ds

t + κσn, (5–2)

where the first equality follows from Equation (A–9) by noting that the natural
parameterization of S has unit Jacobian, and the second equality follows from
Frenet’s formula. Alternatively, if we suppose that the curve S is the graph of a
function y = ω(x), with x ∈ [x0, x1], that is, S = {(x, ω(x)) ∈ U : x ∈ [x0, x1]},
then

div Ts = J−1 d
dx

(σ
J

e1 +
σ

J
ω′e2

)
, (5–3)

where the prime denotes the differentiation with respect to x ,

J =
ds
dx

=

√
1 + (ω′)2, (5–4)

and e1, e2 is the standard basis of R2. This follows from the application of Equation
(A–9) to φ : (x0, x1) → R2 given by φ(x) = (x, ω(x)). Note also that the unit
tangent t and the unit normal n of S are given by

t = J−1(e1 +ω′e2), n = J−1(−ω′e1 + e2). (5–5)

Remark 1. Let [Tr ]n be the jump of the normal component of Tr across S. Equa-
tions (5–2) and (4–3) yield

[Tr ]n −
dσ
ds

t − κσn = 0. (5–6)

If we multiply this relation by t and n and put t · [Tr ]n = −q and n · [Tr ]n = −p,
we obtain, respectively,

dσ
ds

+ q = 0, κσ + p = 0.

These equations coincide with the equilibrium equations of a planar curved beam
when the bending moment and the shear force are null, if we interpret q and p as
the tangential and normal component of the load, respectively, and σ t = Ts t as the
axial force [Love 1944].

From (5–1) and the first equation in (5–5) we get

Ts = σ J−2{e1 ⊗ e1 + 2ω′e1 � e2 + (ω′)2e2 ⊗ e2
}
, (5–7)



518 MASSIMILIANO LUCCHESI, MIROSLAV ŠILHAVÝ AND NICOLA ZANI

where
e1 � e2 =

1
2(e1 ⊗ e2 + e2 ⊗ e1).

Defining δ11, δ12, δ22 by

[Tr ] = δ11e1 ⊗ e1 + 2δ12e1 � e2 + δ22 e2 ⊗ e2, (5–8)

we obtain from the second equation in (5–5)

[Tr ]n = J−1{(δ12 −ω′δ11)e1 + (δ22 −ω′δ12)e2
}
. (5–9)

With
β :=

σ

J
, (5–10)

we deduce from Equations (4–3), (5–9) and (5–3) the system of ordinary differen-
tial equations

β ′
+ω′δ11 − δ12 = 0, (5–11)

(βω′)′ +ω′δ12 − δ22 = 0, (5–12)

some applications of which are illustrated in the following sections. We observe
that, in view of Equations (5–1), the first equation in (5–5) and (5–10), we have

β = σ(t · e1) and βω′
= σ(t · e2), (5–13)

which are the horizontal and vertical components of the axial force, respectively.

6. Panels: vertical top loads

In the rest of the paper we apply the considerations of Sections 3–5 to study the
statics of rectangular panels in two dimensions made of a no-tension material, with
infinite compressive strength [Del Piero 1989]. The panel is free from body forces,
clamped at its bottom and subjected to loads prescribed on the boundary. The stress
is supposed to be symmetric, plane and negative semidefinite, with singularities
along a finite number of curves in the interior U ⊂ R2 of the panel; we use equili-
brated tensor fields to describe the stress. If S is the union of these curves, the stress
field T is the sum of a measure absolutely continuous with respect to Lebesgue’s
measure with a smooth density Tr in U \ S, and a measure concentrated on S,
whose density is a smooth superficial tensor field Ts . The equilibrium requires
that Tr has null divergence outside S, and that the surface divergence of Ts be
balanced by the jump of the normal component of Tr across S, as required by
Equation (4–3). In the examples presented in this paper, the form of the singularity
curves and the superficial stress field Ts are obtained by means of this relation,
once Tr has been determined.
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Figure 1. The panel under general load conditions.

We shall deal with either solid rectangular panels or rectangular panels with an
opening. In all cases we place the origin of the coordinate system (x, y) in the
upper right corner of the panel, with the axis x along the upper side of the panel
pointing to left and the y axis along the right side pointing downwards, see Figure
1.

Consider first a solid rectangular panel of width b and height h, clamped at its
base y = h and subjected to a vertical load, p, distributed on its top, y = 0, a
horizontal load, q, distributed along its right side, x = 0, and a force,

f = f1e1 + f2e2,

concentrated at the upper right corner (Figure 1). Denoting by U the inner part of
the panel,

U = {(x, y) ∈ R2
: 0< x < b, 0< y < h},

we aim to determine a curve S in U

y = ω(x), with ω(0)= 0, (6–1)

and a continuously differentiable, negative-semidefinite superficial stress field Ts

on S, such that the tensor field T, defined by

T := Tr L2 U + Ts H1 S,
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is balanced and in equilibrium with the external loads, where Tr is given by

Tr =

{
−p(x)e2 ⊗ e2, in U+,

−q(y)e1 ⊗ e1 in U−,
(6–2)

with U−
= {(x, y)∈ U : 0< x <ω−1(y)} and U+

= {(x, y)∈ U : ω−1(y) < x < b}

denoting the two regions into which U is divided by S. Since, according to (6–2),
Tr is equilibrated with the distributed loads p and q and satisfies the first equation
in (4–3), it is sufficient to determine S and Ts to satisfy the second equation in
(4–3) and the equilibrium boundary condition

Ts (0)t(0)= − f . (6–3)

To this end, note that in this case Equations (5–8) and (6–2) give

δ11 = q(ω(x)), δ22 = −p(x), δ12 = 0

and therefore from Equations (5–11) and (5–12) we deduce

β ′
+ q(ω(x))ω′

= 0 (6–4)

and
(βω′)′ + p(x)= 0. (6–5)

Denoting by P and Q the respective primitives of p and q with P(0) = 0 and
Q(0)= 0, we get

β(x)= β(0)− Q(ω(x)), (6–6)

β(x)ω′(x)= β(0)ω′(0)− P(x). (6–7)

With the help of (6–6), (6–7) becomes

(Q(ω(x))−β(0)) ω′(x)= P(x)−β(0)ω′(0), (6–8)

and, in view of Equation (5–13), the equilibrium boundary condition (6–3) be-
comes

β(0)= − f1, β(0)ω′(0)= − f2. (6–9)

Then, (6–8) implies

(Q(ω(x))+ f1) ω
′(x)= P(x)+ f2, (6–10)

which can be integrated under the boundary condition in the second equation of
(6–1). This is equivalent to the requirement for equilibrium of all rectangular re-
gions, like the one shaded in Figure 1, with respect to the rotation about the point
a [Lucchesi and Zani 2002]. Since Ts is negative-semidefinite, we can see that
σ(0) ≤ 0 in view of Equation (5–1), and from Equations (5–4) and (5–10) we
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p0

q0

U+

U−

S

Figure 2. Load-distribution laws on the boundary of the panel;
Example 1.

obtain β ≤ 0. Moreover, since the curve S (except for its ends) is wholly contained
within U , we have ω′(0) ≥ 0. From Equation (6–9), it follows that both f1 and
f2 must be non-negative, that is to say, the force f must be directed towards the
inside of the panel [Di Pasquale 1984].

Example 1. In this example, we suppose that the vertical distributed load is uni-
form, the horizontal one is linear and the concentrated force is zero (Figure 2), that
is,

p(x)= p0, q(y)= q0

(
1 −

y
h

)
, f = 0.

Under such conditions

Q(ω)= q0ω
(

1 −
ω

2h

)
, P(x)= p0x (6–11)

and from Equations (6–10) and the second equation in (6–1) we obtain for S the
implicit equation

q0ω
2
(

1 −
ω

3h

)
= p0x2. (6–12)

It can be seen that S intersects the panel base at

x = h

√
2q0

3p0
.
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In order for such a solution to be valid, the intersection point must be within the
panel’s base, that is to say,

b ≥ h

√
2q0

3p0
,

and this requires that q0 does not exceed the value

qm =
3
2

p0

(
b
h

)2

.

The attainment of this value would cause the panel to overturn around the corner
at coordinates x = b, y = h. From (6–12) we deduce

x = ω

√
q0

p0

(
1 −

ω

3h

)
,

and then

ω′
=

(
2h

2h −ω

) √
p0

q0

(
1 −

ω

3h

)
by Equations (6–10) and (6–11). The expression for σ can be obtained from Equa-
tions (5–10), (6–6), the first equation of (6–11), and (5–4), and it is easy to verify
that σ is an increasing function of x . In particular, at the panel bottom we have
ω = h and therefore, taking Equations (5–4) and (6–6) into account, we obtain

ω′
= 2

√
2p0

3q0
, J =

√
1 +

8p0

3q0
, β = −

1
2

q0h,

from which we obtain the reaction Ts t = σ t at the end of S of magnitude

1
2

q0h

√
1 +

8p0

3q0

by Equations (6–4) and (6–9).

Example 2. In this example, we again suppose that the vertical load is uniform,
while the horizontal one is zero. Moreover, we assume a concentrated force to be
acting (Figure 3),

p = p0, q = 0, f = f1e1 + f2e2,

so that P(x)= p0x and Q(ω)= 0. Therefore, we assume Tr as in Equation (6–2)
with p(x)= p0 and q(x)= 0, and from Equations (6–10) and the second equation
in (6–1) we deduce

ω(x)=
p0x2

2 f1
+ νx, (6–13)
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p0
f

U+

U−

S

Figure 3. Load-distribution laws on the boundary of the panel;
Example 2.

with ν = f2/ f1. Thus, in view of Equations (5–4), (6–6), the first equation in (6–9)
and (5–10) we obtain

J =

√
1 +

(
p0x
f1

+ ν

)2

, β = − f1, σ = − f1

√
1 +

(
p0x
f1

+ ν

)2

, (6–14)

from which we can determine Ts with the help of Equation (5–7).

From (6–13), for x = b, ω = h and ν < h/b, we get the maximum magnitude of
force f compatible with the equilibrium,∣∣ f m

∣∣ =
p0b2

2(h − νb)

√
1 + ν2.

Moreover, in view of Equations (6–13) and the third equation in (6–14) the intensity
of the concentrated reaction at the panel’s base is

f1

√
1 +

2p0h
f1

+ ν2.

This result can be generalized to the situation where, besides the vertical load
p0, there are two forces, f and g, applied to the panel’s corners. For simplicity,
we limit ourselves to the case in which f and g are horizontal, as shown in Figure
4. Let us suppose f ≤ g. Proceeding as in the previous case it can be verified that,
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Figure 4. Stress states.

for √
f +

√
g ≤

1
2

b

√
2p0

h
,

the panel is subdivided into three regions, U1, U2 and U3, by parabolas S1 and S2

with equations

ω1(x)=
p0x2

2 f
with σ1 = − f

√
1 +

(
p0x

f

)2

(6–15)

and

ω2(x)=
p0(b − x)2

2g
with σ2 = −g

√
1 +

(
p0(b − x)

g

)2

, (6–16)

and, moreover,

Tr =

{
−p0e2 ⊗ e2 in U1

in U2 ∪ U3.
(6–17)

For √
f +

√
g >

1
2

b

√
2p0

h
and

g − f ≤
p0b2

2h
,

the curves S1 and S2 intersect at a point p in the interior of U . In this case, an
equilibrated tensor field is determined by supposing that the the panel is further
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subdivided by the curve S3 (Figure 4 (b)). For Tr defined by Equation (6–17),
we have [Tr ] = 0 across S3 and, in view of (5–6), this implies the vanishing of
both the curvature κ and dσ/ds. Thus, S3 is a straight line whose equation can be
determined with the help of (6–15) and (6–16), by observing that at the point p we
have

σ1 t1 + σ2 t2 − σ3 t3 = 0,
in view of the second equation in Equation (4–4), which expresses the “equilibrium
of the node p”. Finally, we obtain

ω3(x)=
p0b(b − 2x)

2(g − f )
with σ3 = −(g − f )

√
1 +

(
p0b

g − f

)2

.

For

g − f =
p0b2

2h
,

the panel is free to rotate around the point with coordinates (0, h).

Example 3. Consider the case in which the panel is subjected only to the sole action
of the uniform distributed vertical load p = p0. Using the results of the previous
example, we wish to verify that, beyond the regular stress state, T = −p0e2 ⊗ e2,
defined throughout U , it is possible to determine infinitely many equilibrated and
compatible stress fields, each of which characterized by

(i) a superficial stress Ts defined on a curve S with equation y = ω(x) that is
symmetric with respect to the axis x = b/2 (Figure 5), which intersects this
axis for y = λ, (0 ≤ λ < h) and that also intersects the panel bottom for
|x − b/2| = µ, (0< µ≤ b/2),

ω(b/2)= λ, ω(b/2 ±µ)= h, ω′(b/2)= 0; (6–18)

(ii) a stress field

Tr =

{
−p0e2 ⊗ e2, in U+,

in U−,
(6–19)

where U−
= {(x, y) ∈ U : |x − b/2|< µ, ω(x) < y < h} is the region below

S and U+ is the interior of its complement in U .

In fact, using Equations (6–4) and (6–5) with p = p0, q = 0, and combining with
(6–18), we see that S is a parabola given by

ω(x)= λ+
h − λ

µ2 (x − b/2)2 (6–20)

and that β is given by

β = −
p0µ

2

2(h − λ)
,
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Figure 5. Stress field; Example 3.

from which we can calculate J , σ and Ts by Equations (5–4), (5–10) and (5–7).
It can be seen that the interaction between the two parts of the panel, separated by
the symmetry axis, x = b/2, consists solely of a horizontal force concentrated at
the apex of S, whose intensity −β is an increasing function of λ which becomes
unbounded when λ tends to h.

Example 4 (panels with openings). Let us consider a rectangular panel with base
b = b1 + 2b2 and height h = h1 + h2, with a symmetric opening with dimensions
b1 and h1 (Figure 6), clamped at its base and subjected to a vertical load p0, uni-
formly distributed on its top. Clearly, the stress field from the preceding example
is appropriate here also provided that the parabola in Equation (6–20) is entirely
contained inside the panel. It is easy to see that the most favorable situation is
attained when the apex of the parabola belongs to the top of the panel (Figure 6).
Then Tr is as in (6–19), where regions U− and U+ are divided by parabola S

ω(x)=
p0(b/2 − x)2

2g
,

with

σ = −g

√
1 +

(
p0(b/2 − x)

g

)2

,

where
g = −β
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U+ U− U+

h1

h2

p0

b1b2 b2

Figure 6. Panel with a symmetric opening.

is the interaction between the two parts of the panel across the symmetry axis.
For g = p0b2

1/(8h2) the parabola S contains the points (b2, h2) and (b1 + b2, h2),
whereas for g = p0b2/(8h), S meets the corners of the panel with coordinates (0, h)
and (b, h); hence the equilibrium is possible only for p0b2/(8h)≥ p0b2

1/(8h2), that
is, for

ζ ≤ 4ξ(ξ + 1), (6–21)

with ξ = b2/b1 and ζ = h1/h2. We observe that when the equality holds in Equa-
tion (6–21), S meets the four points (0, h), (b2, h2), (b1 + b2, h2), and (b, h) and
thus, apart from the value of p0, the panel can be considered to be a kinematically
indeterminate structure, made of four hinged bodies.

Assuming that ζ < 4ξ(ξ + 1), we now want to determine an equilibrated stress
field when the panel is subjected to a horizontal force f applied to the upper right
corner 0 in addition to the vertical load p0. First, let us consider the case in which
parabola S1 with equation ω(x) = p0x2/(2 f ) is contained inside the panel as
shown in Figure 7 (see also Example 2). For this, f has to satisfy the inequality

p0(b1 + b2)
2

2h2
≤ f ≤

p0b2

2h
, (6–22)

because for
f = p0(b1 + b2)

2/(2h2),

ω meets the point b, whereas for

f = p0b2/(2h),
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U+ U−
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h2
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b1b2 b2

f

b

Figure 7. Stress field with a horizontal force f , for ζ ≤
ξ(3ξ+2)
(ξ+1)2 .

ω meets the point c. Inequalities (6–22) are verified only if

p0b2/(2h)≥ p0(b1 + b2)
2/(2h2),

that is, if

ζ ≤
ξ(3ξ + 2)
(ξ + 1)2

. (6–23)

When Equations (6–23) and (6–22) are satisfied, we can assume that Tr and Ts are
given in the same way as in the first part of Example 2 and then we see that the
maximum value of f compatible with the equilibrium is

fm =
p0b2

2h
. (6–24)

Let us now consider the case
ξ(3ξ + 2)
(ξ + 1)2

< ζ < 4ξ(ξ + 1). (6–25)

In view of the previous discussion (see the second part of Example 2 and Figure 4
(b), the equilibrated tensor field can be obtained with the following three singularity
curves:

(i) an arc of parabola S1, with equation

ω1(x)=
p0(x − a)2

2g
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S1
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h2 h2

h1 h1

p0 p0

b2 b1 b2 b2 b1 b2

f f

b

dc

a

Figure 8. Stress field in the panel. (a) Apex of S1 on the symmetry
axis. (b) The collapse state.

and apex in a ≡ (a, 0) with a ∈ (b/2, 0);

(ii) an arc of parabola S2 with the equation

ω2(x)=
p0x2

2 f
,

and apex in (0, 0);

(iii) a line S3, starting from the intersection point of S1 and S2 (Figure 8).

These curves subdivide the panel into three regions, where Tr is defined as in
(6–17).

With the aim to obtain the maximum admissible intensity of f , we first deter-
mine the values of g and a so that the parabola S1 meet the points b ≡ (b1 +b2, h2)

and c ≡ (b, h) (Figure 8 (b)); this is always possible in view of Equation (6–25).
In this way we obtain

g =
p0b2

1ξ
2
(
2 + ζ + 2

√
1 + ζ

)
2ζ 2h2

, a = b1

(
1 +

ξ

ζ

(
ζ − 1 −

√
1 + ζ

))
. (6–26)

Once g and a are determined, we impose the requirement that the segment S3

meets the point d ≡ (b2, h) and then we get

fm =
p0b2

1

2h2
·

2ξ (ξ + 1)
√
ζ + 1 + 2ξ 2 (ζ + 1)+ 2ξ − ζ

ζ(ζ + 1)
. (6–27)

When this value of f is reached, the panel behaves as a kinematically indeterminate
structure made of three bodies, hinged at points a, b, c and d.

We observe that a, as given by the second equation in (6–26), is positive in view
of the first inequality of (6–25), and vanishes for

ζ =
ξ(3ξ + 2)
(ξ + 1)2

.
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ϕp0

X

Y

d
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h

d/ϕ

Figure 9. Load-distribution laws on the top of the rectangular
panel and corresponding stress field.

In this particular circumstance, the value of fm given by (6–27) coincides with the
value of fm given by (6–24) and with the value of g given by the first equation in
(6–26).

7. Panels: oblique top loads

Let us consider a rectangular panel of width b and height h, clamped at its bottom
and subjected to horizontal and vertical loads distributed on the top of the panel.
Assume that the vertical load p0 is uniform, whereas the horizontal load q has a
linear distribution (Figure 9),

p(x)= p0, 0 ≤ x ≤ b;

q(x)=

{
ϕp0(d−x)

d , 0 ≤ x ≤ d,

0, d ≤ x ≤ b.

Let U be the interior of the panel. As proved in [Lucchesi and Zani 2003a], the
stress field T 0 in the region 0 ≤ x ≤ d and 0 ≤ y ≤ d/ϕ is given by

T 0 =

 p0ϕ
2d(x − d)2
(ϕy−d)3 e1 ⊗ e1 +

2p0ϕd(x−d)
(ϕy−d)2 e1 � e2 +

p0d
ϕy−d e2 ⊗ e2 in U1

in U2,
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where U1, U2 are cones, both with vertex p = (d, dϕ), given by

U1 = {(x, y) ∈ U : 0 ≤ x ≤ d, 0 ≤ ϕy ≤ x},

U2 = {(x, y) ∈ U : 0 ≤ x ≤ d, x ≤ ϕy ≤ d}.

The stress field T 0 is discontinuous along the line x = ϕy but it is an easy matter
to verify that the jump of the normal component of T 0 across the discontinuity
line is zero. Therefore x = ϕy differs from the singularity curves considered in the
previous examples in that its corresponding superficial stress field vanishes.

In the coordinate system with origin in p, X = d − x , Y = d/ϕ− y, shown in
Figure 9, with corresponding unit normal base ê1 = −e1 and ê2 = −e2, we have

T 0(x)=

{
−

p0d
ϕ
(x · ê2)

−3 x ⊗ x in U1,

0 in U2,

where we put x = (X, Y ). Recalling Proposition 2, we note that in U1 we have

T 0(x)= |x|
−3 α

(
x
|x|

)
x ⊗ x,

with the function α given by

α(e)= −
p0d
ϕ
(e · ê2)

−3, (7–1)

e ∈ S1. Therefore, writing e = ê1 cos θ + ê2 sin θ and ψ = tan−1(1/ϕ), from
Equation (7–1) we obtain the following value of the vector constant c as in (3–12):

c = −
p0d
ϕ

∫ π/2

ψ

(e · ê2)
−3 e dH1(e),

= −
p0d
ϕ

∫ π/2

ψ

(sin θ)−3(ê1 cos θ + ê2 sin θ) dθ,

= −p0d(ϕ ê1/2 + ê2),

= p0d(ϕe1/2 + e2),

(7–2)

which equals the resultant of the load applied to the top of the panel on the interval
[0, d]; see Equation (3–13).

To determine the stress field in the remaining parts of the panel, we assume the
existence of a singularity curve S with equation y = ω(x), starting from the point
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p, and we proceed as in Example 2, assuming

Tr =


T 0 in U1 ∪ U2,

−p0e2 ⊗ e2 in U3,

0 in U4.

The form of the curve y = ω(x) is obtained similarly to that in Equation (6–13):
one identifies f = c and hence f1 = p0dϕ/2 and ν = 2/ϕ [see (7–2)] to obtain

ω(x)=
(x − d)2

ϕd
+

2(x − d)
ϕ

+
d
ϕ

=
x2

ϕd
.

The maximun value of ϕ compatible with equilibrium is b2/(hd) and is attained
when S meets the corner (b, h) of the panel.

8. Conclusions

The divergence measure tensor fields presented above constitute a new class of sin-
gular stress fields equilibrated with the loads and compatible with the incapability
of the material to withstand traction. They appear to be a powerful tool that can be
helpful in many applications to assess the safe magnitude of the applied load.

Although the examples presented in this work deal only with the plane problem
in the absence of the body forces, the general part of this paper is meant to be
applicable to more general situations [Lucchesi et al. 2004; 2005b].

Appendix A. Appendix: surfaces and surface divergence theorem

This appendix gathers the differential geometric notions used above. These are
mainly the k-dimensional surfaces in Rn , which we denote generically by U, the k-
dimensional surfaces with boundary, which we denote by S, the surface divergence
of vector fields and tensor fields on U or S, and the surface divergence theorem
1. Most of the notions discussed below can be used in their intuitive sense but we
prefer to give explicit definitions to avoid misunderstandings.

We start with the notion of surface. We give a definition that is convenient for
the proof of Proposition 1. We refer to [Federer 1969, Subsection 3.1.19] for the
discussion of surfaces without boundary of arbitrary class C s and to [Lee 2003]
for manifolds with boundary of class C∞.

A.1. Surfaces. If U is a subset of Rn , k an integer with 0 ≤ k ≤ n, and s a positive
integer, then the following conditions are equivalent [Federer 1969, Subsection
3.1.19]:

(i) for each x ∈ U there exists a neighborhood Z of x in Rn and a class C s

injective map φ from an open set in Rk into Rn with continuous inverse such



A NEW CLASS OF EQUILIBRATED STRESS FIELDS FOR NO-TENSION BODIES 533

that

U ∩ Z = ran φ, rank ∇φ( p)= k whenever p ∈ dom φ;

(ii) for each x ∈ U there exists a neighborhood Z of x in Rn and a class C s map
ω : Z → Rn−k such that

U ∩ Z = ω−1(0), rank ∇ω( y)= n − k whenever y ∈ Z .

If these equivalent conditions are satisfied, we say that U is a k-dimensional surface
of class C s . It is not assumed that surfaces are connected. We shall always assume
that s ≥ 2, and omit the qualification “of class C2” in our terminology. It is easy
to see that U is an n-dimensional surface in Rn if and only if U is an open subset
of Rn and U is a 0-dimensional surface if and only if U is a set of isolated points.
We call one-dimensional surfaces curves. We shall encounter zero-dimensional
surfaces as boundaries of curves.

If x ∈ U we denote by Tx(U)⊂ Rn the tangent space to U at x, defined by

Tx(U)= ran ∇φ(φ−1(x))= ker ∇ω(x), (A–1)

where φ and ω are as in (i) and (ii) above; we note that the two expressions in
(A–1) are independent of the choices of these two objects. Clearly, Tx(U) is a
k-dimensional subspace of Rn .

Next we discuss surfaces with boundary. These occur in the surface divergence
theorem, below, and are defined as closed parts S of surfaces U without boundary
such that the boundary ∂S is regular enough to have a well defined tangent space
for Hk−1 a.e. point.

A.2. Surfaces with boundary. We say that a subset S of Rn is a k-dimensional
surface with boundary if the following three conditions are satisfied:

(i) S is closed;

(ii) there exists a k-dimensional surface U such that S ⊂ U;

(iii) for every x in the relative boundary ∂S of S in U there exist a set Z and
a map φ as in Item 1 of Section A.1, an ε > 0, and a Lipschitz function
f : dom f → R on an open subset of Rk−1 such that

φ(D−)⊂ Z ∩ (S \ ∂S), φ(D+)⊂ Z ∩ (U \ S),

where D± are the “ ± ε layers along the graph of f,” given by

D± = {( y, a) ∈ Rk
: y ∈ dom f, a = f ( y)± t, where 0< t < ε}.

We set int S := S \ ∂S and note that int S is a surface (without boundary) as
defined in Section A.1. If x ∈ S, we define the tangent space Tx(S) to S at x
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by Tx(S)= Tx(U); this definition is independent of the choice of U. Note that if
x, Z ,φ, and f are as in Item (iii) above then

Z ∩ ∂S = φ(graph f ),

that is, φ carries the graph of f into ∂S; in particular x = φ( y, f ( y)) for some
y ∈ dom f . Motivated by this, we define the tangent space Tx(∂S) of ∂S at x for
Hk−1 a.e. x ∈ ∂S as the image of the tangent space T at ( y, f ( y)) to graph f under
∇φ whenever T exists. By definition, T exists if and only if f is differentiable at
y; we then set

T := span
{
∇i h( y) : i = 1, . . . , k − 1

}
,

where h : dom f → Rk is defined by h(z)= (z, f (z)), z ∈ dom f , and

∇i , i ≤ i ≤ k − 1,

denotes the partial differentiation in Rk−1. We then set

Tx(∂S) := span{∇φ( y, f ( y))∇i h( y) : i = 1, . . . , k − 1}

where y is defined by x = φ( y, f ( y)). Since f is differentiable at Lk−1 a.e. point
of dom f by Rademacher’s theorem, Tx(∂S) is defined for Hk−1 a.e. x ∈ ∂S.

The tangent space to ∂S is now used to define an exterior normal to ∂S as
follows. If S is a k-dimensional surface with boundary then there exists a function
m, defined on Hk−1 almost all of ∂S and with values in Sn−1, which we write
m : ∂S → Sn−1, such that we have the following conditions satisfied for Hk−1 a.e.
x ∈ ∂S:

(i) m(x) ∈ Tx(S);

(ii) m(x) is perpendicular to Tx(∂S);

(iii) m points out of S in the sense that there exists a continuously differentiable
map S : (−1, 1)→ Rn with S((−1, 0])⊂ S, S(0)= x and dS/dt (0)= m(x).

Any two functions satisfying (i)–(iii) differ at most on a set of Hk−1 measure 0; we
call any such an m the exterior normal of S, and refer to [Lee 2003, Proposition
13.26] for the proof in the case of C∞ manifolds with C∞ boundary. If S is a curve
with endpoints and hence ∂S is a collection of the initial and final endpoints (see
below for the definition), then the outer normal coincides with the outer tangents
to S at the endpoints.

In the special case k = n, we call the n-dimensional surfaces with boundary in Rn

regions with Lipschitz boundary; recall that, contrary to the common terminology,
we assume that S is closed; since in this case ∂S coincides with the topological
boundary of S, it follows that int S is a region with Lipschitz boundary in the
standard sense [Nečas 1967], which we call open regions with Lipschitz boundary.
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For the special case k = 1 we call surfaces of dimension 1 with boundary curves
with endpoints.

Referring to [Lee 2003, Chapter 13] for the standard notion of an orientation of a
vector space, we say that a k-dimensional surface in Rn with boundary is orientable
if there exists a continuous map on S giving the orientation of each tangent space
of S. Each such a map is called an orientation of the surface. An oriented k-
dimensional surface with boundary is a surface S with boundary together with an
orientation of S.

A.3. Fields on surfaces, surface gradient and surface divergence. With the aim
to define the surface divergence of a vector or tensor field defined on a surface,
we first introduce a surface derivative via ‘theoretical’ formulas (A–2) and (A–3),
below, and give ‘practical’ formulas (A–4) and (A–5).

If S is a k-dimensional surface with boundary, S ⊂ S, f : S → V where V
is a finite-dimensional inner product space, and x ∈ S \ ∂S, we say that f is
differentiable at x if N ∩ S ⊂ S for some neighborhood N of x in Rn and if there
exists a linear transformation ∇ f (x) from Rn to V , called the surface derivative
of f at x, such that

∇ f (x)P = ∇ f (x) (A–2)

and
lim
y→x

y∈S, y 6=x

| f ( y)− f (x)− ∇ f (x)( y − x)|/| y − x| = 0, (A–3)

where P is the orthogonal projection from Rn onto Tx(S). Note that for k = n
this coincides with the usual definition of the (Fréchet) derivative interpreted as a
linear transformation [Dieudonné 1960, Chapter VIII]; for k = n − 1 this reduces
to the surface gradient defined in [Gurtin and Murdoch 1975; Gurtin 2000]. For
a general k, we interpret ∇ f (x) as a linear transformation from Rn to V and not
as a linear transformation from Tx(S) to V . However Equation (A–2) shows that
∇ f (x) = 0 on the orthogonal complement Tx(S)

⊥. If V = R, we identify the
linear transformation ∇ f (x) from Rn to R with a vector in Rn , equally denoted,
via ∇ f (x)a = ∇ f (x) · a for any a ∈ Rn . It is easy to see that if φ is as in Section
A.1 (i) then f is differentiable at x if and only if f ◦ φ is differentiable in the
classical sense at p := φ−1(x) and then

∇ f (x)= ∇( f ◦ φ)( p)[∇φ( p)]−1 P, (A–4)

where [∇φ( p)]−1
: Tx(S) → Rk is the inverse of ∇φ( p) : Rk

→ Tx(S). Also,
if N is a neighborhood of x in Rn and g : N → V is an extension of f that is
differentiable in the classical sense at x then

∇ f (x)= ∇g(x)P, (A–5)
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where ∇g(x) is the derivative of g at x in the classical sense. If T ⊂ S, we say
that f : S → V is continuously differentiable on T if ∇ f (x) exists for every x ∈ T
and the mapping ∇ f is continuous on T .

If q : S → Rn is differentiable at x ∈ S, we define the surface divergence
div q(x) ∈ R of q at x by

div q(x) := tr[∇q(x)].

For k = n this coincides with the standard divergence, while for k = n − 1 this re-
duces to the surface divergence defined in [Gurtin and Murdoch 1975] and [Gurtin
2000].

If S ⊂S and q : S →Rn , we say that q is tangential [Gurtin 2000] if q(x)∈Tx(S)

for every x ∈ S. If T : S → Lin is differentiable at x ∈ S, we define the surface
divergence div T (x) ∈ Rn of T at x to be the unique element of Rn such that

a · div T (x)= div[TTa](x), (A–6)

for every a ∈ Rn
; see [Gurtin and Murdoch 1975] and [Gurtin 2000]. We note the

following standard identity for a smooth tensor field T and a smooth vector field
v on an open subset of a surface:

div(TTv)= ∇v · T + v · div T . (A–7)

To give formulas for the surface divergence, we assume that U ⊂ Rn is a surface
of dimension k, that φ : P → U is a local parameterization of U on an open
set P ⊂ Rk of class C2, (that is, φ satisfies Item (i) of Section A.1), and that
q : ran φ → Rn is a continuously differentiable tangential vector field on ran φ ⊂ U.
We write

q ◦ φ =

k∑
i=1

q i gi ,

where gi : P → Rn are the coordinate vectors of φ, given by gi = ∇φ ei , where
ei , i = 1, . . . , k, is the standard basis in Rk . Then q i are continuously differentiable
functions on P and one has

(div q) ◦ φ = Jφ−1

k∑
i=1

∇i (Jφq i ), (A–8)

where Jφ:P→(0,∞) is the Jacobian of φ, defined by

Jφ2 = det(∇φT
∇φ),

and ∇i denotes the partial differentiation in Rk . This can be deduced from [Lee
2003, Problem 14-11 (a)] in the case of class C∞ objects and the generalization to
the above smoothness assumptions is straightforward; nevertheless we note that φ
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must be of class C2 to make the right side of Equation (A–8) meaningful. One finds
similarly that a continuously differentiable symmetric tensor field T : ran φ → Lin
is superficial if and only if it can be written in the form

T ◦ φ =

k∑
i, j=1

T i j gi ⊗ g j ,

where T i j are continuously differentiable functions on P . From Equations (A–6)
and (A–8) we can deduce that

(div T ) ◦ φ = Jφ−1

k∑
i, j=1

∇ j (JφT i j gi ). (A–9)

Theorem 1 (Surface divergence theorem). If S is an oriented k-dimensional sur-
face with boundary and if q : S → Lin is a continuous tangential vector field with
compact support and with a continuous and Hk integrable derivative in int S then∫

S
div q dHk

=

∫
∂S

q · m dHk−1 (A–10)

where m is the exterior normal to S.

We refer to [Lee 2003, Theorem 14.23] for the proof for C∞ objects. The proof
under the present generality follows by noting that the maps φ as in Section A.2
item (iii) carry (parts) of S into (parts) of regions with Lipschitz boundary in Rk for
which the divergence theorem is known to hold [Nečas 1967] for functions from
the Sobolev class W 1,1. In the proof one invokes Equation (A–8) to transform the
surface integral of the surface divergence into the volume integral of the ‘volume’
divergence, invoking the divergence theorem and transforming the resulting inte-
gral to the right side of Equation (A–10). The proof is then completed with the
help of a partition of unity, see [Šilhavý 2005b, Chapter 5] for details. The use of
formula (A–8) requires a class C2 smoothness of S.
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