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We present an atomic-level criterion for material stability in an atomic system.
The criterion draws on the strong ellipticity condition in continuum elasticity
theory; however, it is formulated directly in terms of atomic potential without
resorting to the continuum concepts. Since the criterion is based on local ener-
getics at an atomic site, we expect it to be applicable to pre-defected systems,
provided that the site energy can be reasonably defined. The kinetic implication
of the stability condition is also discussed. The application in nanotubes shows
that the criterion can capture the tensile limit strain of both perfect and defective
nanotubes, and the predictions agree well with the atomistic simulations reported
in the literature.

1. Introduction

The loss of elastic stability in an atomic lattice is often a precursor to defect nu-
cleation. For a nonhomogeneous system, lattice instability typically occurs first
at “weak spots” where the local deformation has exceeded the stability limit. If
loaded further, the lattice may respond by irreversible deformations such as bond
breaking, defect nucleation or topological transformation. Thus, local instability
provides fundamental information about elastic limit and ultimately the strength of
an atomic structure. Present atomistic simulations such as molecular dynamics can
provide invaluable details of the mechanical motion of atomic systems. However,
to extract physical insight into the system behavior especially the onset of local
irreversible motion requires the identification of indicators that characterize the
critical state at which the transition occurs.

To motivate the stability condition presented in this work, it is instructive to
review relevant concepts in elastic stability at continuum scale. The stability of a
finitely deforming elastic body under quasistatic load is typically characterized by
the positiveness of the increment of the free energy in reconfigurations from an equi-
librium state [Truesdell and Noll 1965]. Stability conditions may be divided into
two categories: one is for structural stability that characterizes the stability of the
entire system including possibly the energetic contribution from the external load;
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the other is for material stability that concerns the stability of an isolated material
element. In nonlinear elasticity, the material stability is characterized by the strong
ellipticity condition [Ogden 1997; Ciarlet 1988]. Van Hove [1947] showed that
the strong ellipticity condition guarantees the uniqueness of solution for Dirichlet
boundary value problems. In the context of stability, the condition precludes the ex-
istence of any nonzero reconfiguration that does not alter its boundary. The loss of
strong ellipticity, on the other hand, indicates that the stationary acceleration wave
[Hill 1962] or locally supported discontinuous bifurcation [Rice 1976] becomes ad-
missible in an initially homogeneous deformation field. The stability governed by
the strong ellipticity condition, therefore, corresponds to Gibbs’ notion of internal
stability that requires a system be stable under arbitrary reconfigurations that leave
the boundary unaltered [Gibbs 1993]. The condition is intrinsic to the material
since the energetic influence from the external environment is excluded.

The local stability considered in this work can be intuitively understood as ma-
terial stability in atomic systems. Numerous studies have reported on the elastic
stability of crystal lattice. Born and Huang [1954] and others [Hill and Milstein
1977; Wang and Yip 1993; Wang et al. 1995; Morris and Krenn 2000] treated a unit
cell as an elastic system, and derived stability conditions for perfect crystals. These
criteria are formulated in terms of the local stress and the elasticity tensor; however,
they are derived under the assumption that the unit cell deforms homogeneously,
which is valid only for simple lattice. The analysis of material stability can be fur-
ther complicated by the presence of defects. Presently, there is no unified method
for local stability in defective systems. Kitamura et al. [2004a; 2004b] proposed to
detect the instability by the singularity of the global tangent stiffness matrix. The
method applies to general systems; however, it is for structural stability and the
detected unstable motions include global modes such as elastic buckling. Dmitriev
et al. [2004] proposed a scheme of local analysis that considers only atoms in a
small region of interest. The method, strictly speaking, is not of material stability
analysis. Yashiro and Tomita [2001] used Wang’s criteria [Wang and Yip 1993;
Wang et al. 1995], which are for defect-free simple lattice, to predict the material
stability in defective system. The results showed a reasonable correlation with
molecular dynamics simulations, however, the theoretical basis remains unclear.

In a series of papers, Li and others [Li et al. 2002; Van Vliet et al. 2003; Zhu
et al. 2004; Li et al. 2004] have proposed a local condition (called 3 criterion
therein) for detecting the nucleation of point defect in perfect crystals. The crite-
rion is based on the strong ellipticity condition, but evaluated using the stress and
elasticity tensor derived from the atomic description. Li and others [Li et al. 2002;
Van Vliet et al. 2003] speculated that the loss of strong ellipticity indicates the
admissibility of nonhomogeneous bifurcation modes, which could occur at atomic
spacing and result in a single dislocation or microcrack. While the exact nature
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of the localized singularity remains debatable, this line of thinking suggests that
the atomistic displacement singularity and the continuum scale strain localization
may be analyzed in the same theoretical framework. A similar approach has been
applied to predict the strain-localization and crack initiation in atomic-informed
continuum models [Klein and Gao 1998; Gao and Klein 1998].

In this contribution, we further explore this line of thinking and propose an
alternative form of atomic material stability condition. The condition is based
on the local energy landscape and is formulated directly in atomistic description
without resorting to continuum concepts and homogenization. We also discuss the
kinetic implication of the condition, and show that the condition corresponds to
a monotonicity condition in a properly defined atomic stress. The critical state
signifies the stationary point in the response of “atomic traction”. We utilize the
criterion to analyze the stability of carbon nanotubes (CNT). The application im-
proves a recent work by the same authors [Lu and Zhang 2006] where they used
the strong ellipticity condition based on a continuum elasticity model to predict the
failure strain of CNTs. The tensile failure strains in [Lu and Zhang 2006] compare
well with the stability limits obtained from crystal elasticity models [Zhang et al.
2002a] as well as early molecular dynamics simulations [Yakobson et al. 1997];
however, they appear higher than those reported in recent publications [Troya et al.
2003; Zhang et al. 2005; Mielke et al. 2004]. In the present work, the analysis is
performed directly in the discrete setting and comparable results are obtained. In
addition, the method in [Lu and Zhang 2006] is limited to perfect tubes. Here, both
perfect and defective tubes are considered.

2. Atomistic material instability condition

As discussed above, the strong ellipticity condition characterizes material stability
in an finitely deforming elastic body. With reference to the strain energy function
W = W (F) where F is the deformation gradient, the strong ellipticity condition
is given by

Ai I kK bi bk NI NK > 0 with Ai I kK =
∂2W

∂ Fi I ∂ FkK
for all arbitrary nonzero vectors b and N . Ai I kK is the (Cartesian) component of the
fourth-order elasticity tensor, Fi I is the component of the deformation gradient, and
(bi , NI ) are the components of the vectors b and N . The summation convention
applies to repeated indices unless stated otherwise. Introducing n = F−T N , the
condition can be written in spatial form, as

(Ci jkl + δikτjl)bi bknj nl > 0, (1)

where Ci jkl = (det F)−1 Ai I kK Fj I Fl K is the spatial elasticity tensor and τjl is the
component of the Cauchy stress. This condition is often stated alternatively in
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terms of the positive-definiteness of the acoustic tensor

Qik(n) = (Ci jkl + δikτjl)nj nl . (2)

If the energy function is sufficiently smooth, the strong ellipticity condition is
equivalent to the rank-one convexity of the energy function, which can written

∂2

∂ε2

∣∣∣
ε=0

W (F + εb⊗ N) > 0 (3)

for arbitrary nonzero vectors b and N , see [Ciarlet 1988, Section 5.10]. In this
paper, the operator ⊗ means the standard tensor product.

There are several justifications for the strong ellipticity condition. At continuum
scale, the strong ellipticity condition guarantees the uniqueness of solution for
Dirichlet boundary value problems [Van Hove 1947]. In the context of stability,
the condition precludes any nonzero incremental motion that leaves the boundary
unaltered. The loss of strong ellipticity condition indicates that the energy surface
is locally concave, and a particular form of local discontinuous bifurcation become
admissible even if the material element is subjected to all round displacement
boundary conditions [Hill 1962; Rice 1976]. In [Li et al. 2002; Van Vliet et al.
2003; Zhu et al. 2004; Li et al. 2004], the condition (1) is utilized in atomic system,
with the continuum stress and elasticity tensor being evaluated using the Ray sum
[Ray et al. 1986; Lutsko 1988].

Here, we propose a direct atomic level stability condition without resorting to
the concepts of stress and elasticity tensor. We focus on models in which the
system potential can be expressed as a sum of bond potentials. For such systems
one can define the energy of an atomic site and partition the total potential into
contributions from the site potentials. Consider such a system at an equilibrium
state (temperature T = 0). Let ra be the position of atom a and let rab := rb − ra

be the bond vector. The potential of bond ab is

Vab = Vab(rpq).

For many-body interaction, the potential Vab depends not only on bond rab, but
also on other bonds in the potential range. The potential of an atom site can be
defined by

Wa =
1
2

∑
b

Vab(rpq). (4)

The summation runs over all bonds connecting to atom a.
Motivated by the strong ellipticity condition, we postulate that for an atomic site

to be locally stable, the equilibrium state must satisfy the condition

b · Qa(n)b > 0 (5)
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for arbitrary nonzero vectors n and b. Here,

Qa(n) =
1
2

∑
b

∑
p,q

∑
s,t

(rpq · n)
∂2Vab

∂ rpq∂ rst
(rst · n) (6)

is the atomistic counterpart of the acoustic tensor, which depends quadratically
on n. The condition (5) is equivalent to the positive-definiteness of the atomistic
acoustic tensor Qa .

The condition can be stated alternatively as a convexity condition for Wa . If the
site energy Wa is at least twice differentiable, the condition (5) is equivalent to

∂2

∂ε2

∣∣∣
ε=0

Wa
(
rpq + εb(rpq · n)

)
> 0 (7)

for arbitrary nonzero vectors b and n. The equivalence can be directly verified.
This representation corresponds directly to the rank-one convexity condition (3).
The rank-one deformation gradient increment, in a discrete setting, corresponds to
the atomic displacement increment

δrab = b(rab · n). (8)

We refer to (7) as a mono-mode convexity condition.
Several remarks on the condition (5) or (7) are in order. First, the stability

condition is postulated based on the premise that the stability of a site is deter-
mined by the local energy landscape. If the condition (5) is violated for certain
vectors b and n, the energy surface is locally concave, and bifurcation into lower
energy modes becomes possible. The displacement mode (8) is chosen to test the
convexity as it naturally corresponds to the rank-one deformation gradient in the
continuum theory. In simple crystals b and n retain the physical explanation as
wave vectors [Li et al. 2002; Van Vliet et al. 2003]. Second, as will be discussed in
Section 3, the condition is related to the monotonicity of a properly defined atomic
stress that characterizes the average intensity of interaction between an atom and
the surrounding atoms. In particular, the singularity in Q signifies the state where
the traction is momentarily stationary in a mono-mode incremental displacements.
Thirdly, the condition coincides with Li’s criterion for simple crystals (see Appen-
dix). However, they may differ in complex lattices depending on how the atomic
stress and elasticity tensor are evaluated in Li’s approach. The atomistic form (6)
has the advantage of being free from continuum concepts. More importantly, since
the condition is based on the local property of the energy function, we expect it to
be applicable to defective systems provided that the site energy can be reasonably
defined.
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3. Kinetic implications

The condition (5) can be further examined from the standpoint of atomic stress,
which provides information about the local kinetics in some average sense. For
systems that admit the site energy of the form (4), the static atomic stress at site a
can be defined as

σa =
1

2ω

∑
b

∑
p,q

∂Vab

∂ rpq
⊗ rpq ,

where ω is the volume of atomic site a. This expression of stress can be de-
rived from an energetic argument by considering the mechanical power in a su-
perposed affine incremental motion. The quantity represents the average inten-
sity of interaction between the atom a and the surrounding atoms. The stress so
defined is symmetric, and the symmetry follows from the invariant requirement
Vab(rpq) = Vab(Rrpq) for any rotation tensor R. Intuitively, if the atomic system
is mechanically stable, one expects the stress to satisfy the monotonicity condition

δσa · δε > 0

for properly defined strain increment δε.
The stress increment under incremental atomic displacements δrpq is given by

δσa =
1

2ω

∑
b

∑
p,q

∑
s,t

( ∂2Vab

∂ rpq∂ rst
δrst

)
⊗ rpq

+
1

2ω

∑
b

∑
p,q

∂Vab

∂ rpq
⊗ δrpq −

δω

2ω2

∑
b

∑
p,q

∂Vab

∂ rpq
⊗ rpq . (9)

Consider the mono-mode displacement increment (8). Since this incremental dis-
placement field is affine, we can define the corresponding strain increment, as

δε =
1
2(b ⊗ n + n ⊗ b). (10)

Regardless of how the atomic volume ω is defined, the volume increment is given
by the formula δω = ω(tr δε), which yield

δω = ω(b · n). (11)

Substituting (8) into (9), and invoking equations (10), (11), a straight forward cal-
culation yields

δσa · δε =
1
ω

b · Qa(n)b.

Hence, the positiveness of Qa ensures that the atomic stress is at least monotonic
in the incremental mode (8).
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Alternatively, the definition of stress motivates the introduction of atomic trac-
tion in an imaginary plane of normal n:

tn
a := σan =

1
2ω

∑
b

∑
p,q

∂Vab

∂ rpq
(rpq · n). (12)

This quantity represents the contribution of the atom a to the macroscopic trac-
tion in the direction n. Similarly to (9), the increment under incremental atomic
displacements δrab is

δ tn
a =

1
2ω

∑
b

∑
p,q

∑
s,t

(rpq · n)
∂2Vab

∂ rpq∂ rst
δrst

+
1

2ω

∑
b

∑
p,q

∂Vab

∂ rpq
(δrpq · n) −

δω

2ω2

∑
b

∑
p,q

∂Vab

∂ rpq
(rpq · n). (13)

Again, consider the mono-mode (8). Recalling (11), the last two terms in equation
(13) cancel each other and the traction increment (13) takes the form

δ tn
a =

1
ω

Qa(n)b. (14)

If at a point along a loading path the acoustic tensor becomes singular, namely
Qa(n)b = 0 for a pair of direction vectors (b, n), then, according to equation (14),
the atomic traction is momentarily stationary. This is another important indicator
for the onset of instability in atomic systems, since the stationary point in atomic
force often marks the incipiency of softening response.

4. Application in carbon nanotubes

The validity of the stability condition is assessed with application in carbon nan-
otubes. The criterion is utilized to identify the critical load of elastic instability in
defective carbon nanotubes under tension. In this study, we are concerned with the
stability of CNT at lower temperatures where the system is in quasistatic state, and
its stability is determined primarily by the mechanical characteristics of the inter-
atomic potential. The atomic coordinates are computed using molecular mechanics
(MM). The analysis does not consider thermal effects, however, we expect that at
low temperatures the influence of thermal contribution to the local stability of CNT
is negligibly small. The first generation Tersoff–Brenner potential [Brenner 1990;
1992] is used to model CNT bond energy. The parameters listed as potential-I in
[Brenner 1990] are utilized in the computation, as in [Zhang et al. 2002a; 2002b].
This empirical potential has been widely used in studying carbon nanotubes and is
found to be able to accurately describe the bond energy, elastic modulus and even
defect nucleation. With Brenner’s potential the interatomic energy between atom
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a and b is expressed by the function

V (rab) = VR(rab) − B̄VA(rab),

where rab is the length of the covalent bond, VR and VA are the repulsive and attrac-
tive terms depending on the bond length, and B̄ models the multibody coupling
between bond ab and its environment, which depends on angles between ab and
adjacent bonds. At an atomic site of a CNT, one can distinguish the three bond
vectors in the unit cell of the honeycomb lattice of graphene by bond vectors rα,
α = 1, 2, 3 which makes three angles, labeled such that θαβ is the angle between
bond α and β. The site energy is

Wa =
1
2

3∑
α=1

(
VR(rα) − B̄(cos θαβ, cos θαγ )VA(rα)

)
(β 6= γ ).

It has been observed that the cutoff function in Brenner’s bond-order potential
produces unphysical results [Shenderova et al. 2000; Belytschko et al. 2002]. Re-
cent studies [Troya et al. 2003; Zhang et al. 2005; Mielke et al. 2004] have used
a modification originally suggested in [Shenderova et al. 2000], which removes
the cutoff function but retains the interactions only for atoms initially within a
2 Å cutoff distance. The present work also follows this approach. The summation
over the bonds pq and st in (6) is truncated accordingly. Nevertheless, the resulting
stress and acoustic tensor include the contributions from the derivatives of the bond
order function B̄(θαβ, θαγ ). These contributions can not be omitted because π

bond characterized by the function B̄ plays an important role in strengthening the
cohesive interaction between carbon atoms.

To simulate uniaxial tension, the atoms at the two ends are subjected to pre-
scribed displacement increments while the coordinates of the interior atoms are
computed using molecular mechanics. The convexity condition (5) is monitored
by the smallest eigenvalue of Qa(n). To find the minimum eigenvalue at a given
atomic configuration, the vector n is swept through the admissible range with a
pre-set increment and a bi-section process is used to locate the critical direction,
as in [Lu and Zhang 2006]. The procedure is performed at every atom site and
at every load increment. Although the process can be computationally intensive,
it is a mere postprocessing of the molecular mechanics data and therefore doesn’t
interfere with MM solution process.

We begin by considering pristine tubes. Figure 1 shows the values of the smallest
eigenvalue of Qa at different elongation in an armchair [10, 10] and a zigzag [17, 0]

tube. Black circles indicates unstable atoms at which the smallest eigenvalue be-
comes negative. Stable atom sites are denoted by grey or hollow circles, where the
grey scale is obtained by scaling the (positive) eigenvalue of Qa from 0 to 1, with
increasing grayness for decreasing eigenvalues. Our analysis finds that the pristine
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Figure 1. Stability of perfect armchair [10, 10] (upper row) and
zigzag [17, 0] tubes (lower row) under various tensile strains.
Black circles indicate the unstable sites where the smallest eigen-
value of the acoustic tensor is negative. The grey scale is obtained
by scaling the (positive) eigenvalues inversely against the largest
positive value in the loading process.

tubes lose stability uniformly when stretched to a critical strain. Particularly, the
armchair [10, 10] becomes unstable at 29.8%. In comparison, numerous studies
reported the critical tensile strain values close to 30% [Yakobson et al. 1997; Mar-
ques et al. 2004; Mielke et al. 2004; Zhang et al. 2005]. The critical strain for
the zigzag tube [17, 0] is found to be 19.1%, again the value is consistent with
the reported range of 16–20% [Dumitrica et al. 2003; Mielke et al. 2004; Zhang
et al. 2005]. See Table 1. The molecular dynamics simulations by Yakobson et al.
[1997] and recently by Marques et al. [2004] showed that the deformation is ini-
tially homogeneous till the critical strain is reached. Upon further stretching, a
largely distorted neck appears and the tube quickly breaks into segments. As in
[Lu and Zhang 2006], the critical directions b and n are found to be parallel to the
tube axis, indicating that the unstable model corresponds to an incipient mode-I
crack.

The same analysis is conducted for nanotubes embedded with a single Stone-
Wales (SW) defect [Stone and Wales 1986]. Existing studies suggest that the
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Figure 2. Evolution of unstable zone in CNTs with Stone-Wales
defect. Upper row: [10, 10] armchair tube. Lower row: [17, 0]

zigzag.

5/7/7/5 ring may behave as a dislocation core and weakens the strength moder-
ately [Buongiorno Nardelli et al. 1998; Yakobson 1998; Mielke et al. 2004; Troya
et al. 2003]. Figure 2 shows the evolution of instability zone during stretching.
Unlike the pristine tubes which lose stability uniformly, here the unstable sites
appear first at the SW ring; when loaded further the unstable zone quickly spreads
out and results in global instability (MM computation fails to converge). For the
[10, 10] armchair, the initial instability is found to occur at 21% strain, and the tube
loses global stability at 26% strain. As shown in Table 1, the lower limit compares
well with the reported yield strain obtained from molecular and quantum mechanics
simulations. The upper limit 26% also corresponds nicely with break strain of SW
defective tubes reported by Marques et al. [2004]. For the zigzag tube [17, 0], the
initial instability is found to be 14%. In comparison, other studies [Mielke et al.
2004; Troya et al. 2003] found the critical strains of zigzag tubes to be close to
14%.

Recent simulations have reported that vacancy defects can significantly reduce
the strength of CNTs. Mielke et al. [2004] predicted the limit strain of 11–15% for
[5, 5] armchair tubes with one-atom vacancy, and 9–13% limit strain for [10, 0]

tubes with the same defect. Zhang et al. [2005] reported moderately lower limit
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Critical Tensile Strains of SWCNTs
Tube type Defect εcrit(%) Method Reference

[17, 0] pristine 19.1 MM (TB-G1) present work
[10, 0] pristine 16.0 QM-AM1 [Dumitrica et al. 2003]
[10, 0] pristine 20.0 QM-PM3 [Mielke et al. 2004]
[10, 0] pristine 18.1 MM (MTB-G2) [Zhang et al. 2005]
[10, 10] pristine 29.8 MM (TB-G1) present work
[5, 5] pristine 27.9 QM-MSINDO [Troya et al. 2003]
[5, 5] pristine 30.0 QM-DFT [Mielke et al. 2004]
[5, 5] pristine 29.7 MM (MTB-G2) [Zhang et al. 2005]

[17, 0] SW 14.1 MM (TB-G1) present work
[10, 0] SW 13.9 QM-PM3 [Mielke et al. 2004]
[10, 10] SW 21.3 MM (TB-G1) present work
[5, 5] SW 24.4 QM-MSINDO [Troya et al. 2003]
[5, 5] SW 22.0 QM-PM3 [Mielke et al. 2004]
[17, 0] vacancy 13.0 MM (TB-G1) present work
[10, 0] vacancy 13.0 QM-PM3 [Mielke et al. 2004]
[10, 10] vacancy 12.8 MM (TB-G1) present work
[5, 5] vacancy 15.3 QM-PM3 [Mielke et al. 2004]
[5, 5] vacancy 11.4 MM (MTB-G2) [Zhang et al. 2005]

Table 1. Tensile failure strain of CNTs and comparison with pre-
dictions of molecular mechanics (MM), molecular dynamics (MD)
and quantum mechanics (QM) simulations. TB-G1 and MTB-
G2 stand for the first- and modified second-generation Tersoff-
Brenner potentials.

strain for the zigzag tubes. We consider the [17, 0] zigzag tube with a symmetric,
reconstructed one-atom vacancy. The initial instability is found to occur at 13.0%
strain. When loaded further, the unstable zone spreads and the tube loss global
stability at about 17% strain. Figure 3 shows the distribution of unstable sites at
various strains. We also consider the [10, 10] armchair tube with an asymmetric
one-atom vacancy. The onset of unstable atoms is captured at 12.8% strain, and
the tube quickly loss global stability when loaded slightly further. The limit strains
for both the armchair and the zigzag tubes compare reasonally well with Mielke’s
predictions. The armchair result also agrees with the range reported in [Zhang et al.
2005].
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Figure 3. Evolution of unstable zone in the [17, 0] tube with a
symmetric one-atom vacancy.
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Figure 4. Stress versus strain in perfect and SW defective tubes.
The instability points detected by the stability criterion correlate
directly to the sudden stress drop in the response.

Figure 4 shows the (engineering) tensile stress as a function of strain for the
pristine and SW defective tubes. The limit strains correlate nicely to the sudden
loss of stress in the response. The stress is computed by dividing the resultant end
reaction force by the tube’s original circumference and the shell thickness of 0.34
nanometer.
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5. Summary

An atomic level stability condition has been presented for predicting the local
elastic instability of an atomic system. The criterion corresponds to the strong
ellipticity condition in continuum elasticity, but is formulated directly in terms
of atomic quantities without explicit reference to continuum stress and elasticity
tensor. Being essentially a generalization of the continuum condition for material
stability, the criterion is expected to capture the onset of local failure in atomic
systems. Also, since the criterion is directly based on the site potential, we expect
it to be applicable in complex lattices and defective systems provided that the site
energy can be reasonably defined.

Preliminary applications in tensile CNTs has shown promising results. For pris-
tine tubes, the predicted limit strains are in excellent agreement with the reported
values from molecular and quantum mechanics simulations. For SW defective
tubes, the lower limits (at the onset of unstable sites) agree very well with the re-
ported failure strains. A single one-atom vacancy in the [10, 10] is found to reduce
the limit strain significantly, consistently with the findings in recent publications.
The spatial distribution of the stability indicator also provides useful information
about the unstable zone and its evolution during a loading course.

Appendix

In this appendix we provide an explicit expression for the acoustic tensor Qa in
the context of pairwise potentials and show that in this case the condition coincides
with the criterion in [Li et al. 2002; Van Vliet et al. 2003]. Fir a pairwise potential,
the bond energy Vab depends only on the bond length rab =

√
rab · rab, namely

Vab = V (rab). The site energy therefore is Wa =
∑

b V (rab). Using the chain rule
and invoking the identity ∂rab/∂ rab = rab/rab, we find

∂V
∂ rab

=
∂V
∂rab

rab

rab
.

Furthermore,

∂2V
∂ rab∂ rab

=
1

r2
ab

∂2V
∂r2

ab
rab⊗ rab +

1
rab

∂V
∂rab

(
I −

1
r2
ab

rab⊗ rab

)
,

where I is the second order identity tensor. It follows that, for this system the
atomistic acoustic tensor (6) takes the form

Qa =
1
2

∑
b

(
1

r2
ab

(∂2V
∂r2

ab
−

1
rab

∂V
∂rab

)
(rab ·n)2rab⊗ rab +

1
rab

∂V
∂rab

(rab ·n)2 I
)

. (15)

The summation runs over all bonds emanating from atom a.
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According to the recipe of Li and others [Li et al. 2002; Van Vliet et al. 2003],
the stability condition is evaluated using the continuum acoustic tensor (2) in con-
junction with derived atomic stress and elasticity tensor. For this system, the static
Virial stress [Irving and Kirkwood 1950; Cheung and Yip 1991; Shen and Atluri
2004] or BDT stress [Basinski et al. 1971; Shen and Atluri 2004] is given by

σ :=
1

2ω

∑
b

∂V
∂ rab

⊗ rab =
1

rab

∂V
∂rab

rab⊗ rab, (16)

where ω is the volume of atomic site a. The isothermal elastic tensor at T = 0 can
be obtained from the Ray sum [Ray et al. 1986; Lutsko 1988], as

C =
1

2ω

∑
b

1
r2
ab

(∂2V
∂r2

ab
−

1
rab

∂V
∂rab

)
rab⊗ rab⊗ rab⊗ rab. (17)

Li’s procedure results in an expression identical to (15) modulo a volume factor,
as can be readily checked by substituting (16) and (17) into (2). The two criteria
coincide in this special case.
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