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A unique dual pendulum system was developed to measure single-impact com-
pression responses of foamed polymers. The data, complemented with a math-
ematical model of impact, led to measures of the material’s energy absorption,
compression modulus, and damping. Results are presented for a class of open-
celled foamed polymers specifically developed for shock mitigation. The exper-
iments employed such materials of four different densities, with impact times
ranging in the 1 to 5 ms range and mean impact stresses up to 160 kN/m2. The
results for these materials showed: (1) energy losses of up to 50% of incident
energy, with a peak energy absorption per unit volume of 18 kJ/m3; (2) peak
compression modulus of 880 kN/m2 with strain rates approaching 200 s−1; (3) a
mean damping factor of 0.258 with a standard deviation of 0.029. Such data are
of practical importance in many shock-mitigating applications, including pros-
theses, floor pads and cushions, gloves for hand-held vibrating tools, grips for
hockey sticks and tennis rackets, and soles for sports shoes.

Introduction

This design effort and experimental study was motivated by the need for a relatively
simple and accurate experimental system to quantify single-impact responses of
foamed polymers. Related studies involving repeated specimen loading have em-
ployed costly universal testing machines with sensor-controlled stress or strain,
and magnetic shakers for forced harmonic motion of the specimen. Studies based
on the these methods are presented in the treatise of Gibson and Ashby [2001],
who reviewed the open literature up to 1999 on the properties and mathematical
modeling of cellular solids, for both man-made foams and naturally occurring ma-
terials such as wood and cancerous bone. Measuring techniques and typical data
for complex moduli, based on the forced oscillation method, were reviewed by
Deverge and Jaouen [2004]. These sources and their extensive bibliographies did
not reveal any experimental systems or impact analyses similar to those discussed
here. No damping data were found in the open literature for one-time impact on
foamed polymers.

Keywords: foamed polymers, impact response.
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Specimen type Specimen geometry Static modulus Mass density
diameter, mm thickness, mm E , kN/m2 kg/m3

white 38.1 7.00 143. 370.
blue 38.1 6.40 373. 451.
red 38.1 5.30 336. 421.

black 38.1 4.86 377. 481.

Table 1. Geometric and physical properties of the foamed poly-
mer specimens.

The characteristics that typify the foamed polymer studied herein are: linearly
elastic behavior for static strains up to about 30%; an after-impact recovery time
of about 30 s or less to the state of nearly zero strain (the initial state); and an
open-celled microstructure in which there are small holes in the cell walls. This
class of foamed polymer was developed in the late 1980s by an orthopedist and
a New England material science laboratory. These materials are commercially
available through Implus Footcare, Morrisville, NC. The material is particularly
characterized by its capacity to absorb high levels of impact energy, and is thus used
as padding for artificial limbs and for the insoles of sports shoes. Four different
densities of these materials, designated by color, were evaluated in the present
study. Some of their physical properties are listed in Table 1, together with the size
of the impact specimens used.

Shown in Figure 1 are scanning electron micrographs of the most dense material
(black), magnified 16 and 160 times. This foamed polymer has an average cell
diameter of about 0.2 mm. The general shape of these cells closely matches those
observed in the micrographs of a polyurethane foam for which the average cell di-
ameter was also about 0.2 mm; see [Gibson and Ashby 2001, p. 178, Figure 5.2(g)].
This comparison suggests that the base material was a form of polyurethane. The
properties of the base material such as density and chemical composition cannot
be disclosed since they are patented and proprietary.

This presentation begins with a description of a unique dual-pendulum measur-
ing system, which is followed by a mathematical model of impact that identifies the
key parameters to be measured. The study concludes with extensive experimental
results for the foamed polymers of Table 1: determinations of material impact
energy loss, and the effects of impact stress level and strain rate on both material
stiffness and impact-induced damping.
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Figure 1. Scanning electron micrographs of the highest density
(black) foamed polymer: (a) transverse section through a 4.85 mm
thick mat, at 16×; (b) center of mat (a) at 160×. (Courtesy of
George W. Pearsall, Duke University.)

Experimental system design

Shown in Figure 2 is the dual pendulum impact system: the driver pendulum and
target pendulum, with the foamed polymer specimen of diameter D0 and thickness
h sandwiched between the two impacting die faces. The two pendula are identical.
Each consists of a solid steel cylinder of the specimen diameter D0, with a minia-
ture accelerometer mounted coaxially. The total mass of the steel cylinder and the
accelerometer is m, and this assembly is hereafter referred to as a pendulum die.
Each steel pendulum arm of length ` is rigid or nearly so, and is affixed to the mass
center of each die. This arm, together with its bearing shaft, has a mass which is
less than one percent of m. The centers of the two arm pivot points are spaced so
that the die separation distance is h, the thickness of the test specimen, when the
pendula are hanging vertically and at rest. Each pendulum pivot point is the center
for a protractor. With a pointer extension to each pendulum arm, the arm angle for
a pendulum at rest can be read on its protractor to an accuracy of ±0.1◦.

Shown in Figure 3 are the key positions of the pendula at which the arm angles
are measured. The first positions represent the initial static states, in which the
driver pendulum arm is hand-held at the visual protractor setting θ0, and the target
pendulum hangs vertically. The second positions are the maximum post-impact
rebound angles θ1 and θ2 for the driver and target pendulum arms, respectively.
These latter extreme rotations are measured either visually or electronically. In the
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Figure 2. Mechanical design of the dual pendulum system. The
components are: a – accelerometer; b – bead; c –steel slotted bead
arm; d – steel bearing shaft; e – steel driver die; f – transparent
plastic side pannel; g – steel pendulum arm; h – transparent plas-
tic protractor; i – RVDT; j – steel spacer; k – foamed polymer
specimen; l – string; m – steel target die.
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Figure 3. Initial pendulum configuration (left), and maximum re-
bound configuration (right).



MEASURING IMPACT RESPONSES OF FOAMED POLYMERS 729

0 2 4 6 8
−5

10

20

30

40

A
cc

el
er

at
io

n 
x,

  g
’s

Time, t  ms

t0 / 2 

a0 sin(πt / t0) 

measured 

t0 

a0 

. . 

Figure 4. A typical measured acceleration-time history for the im-
pacting driver pendulum, and its best-fit to a half sine curve.

visual method, an extension of the slotted pendulum arm, as shown in Figure 2,
pushes a tiny bead along a taut horizontal string, one for each pendulum. There is
just enough friction between each relatively weightless bead and string so that the
bead does not overshoot its mark corresponding to the maximum arm angle θ1 or
θ2. Later, when the pendula come to rest, these angles are read on the protractor
by aligning the pointer extension with its bead. This visual method for measuring
rebound angles gave results that were as accurate and reproducible as the electronic
method that used two Schaevitz rotary variable differential transformers (RVDTs)
attached to the rotating shafts, as shown in Figure 2. Each RVDT required a 5
volt AC power supply. The voltage output was proportional to rotation, with a
sensitivity of 0.01V/degree. At impact, this voltage triggered a digitizing storage
oscilloscope, which recorded the time history of rotation for each RVDT.

For each experiment, the driver pendulum was released at a predetermined angle
θ0, its accelerometer output voltage triggered a Hewlett Packard 100 MHz digitiz-
ing storage oscilloscope at the instant of impact, and the tangential acceleration-
time history ẍ1 of the driver die was recorded and stored for later data process-
ing. The accelerometer was the 25 gram quartz model 353B33 with a 25 volt DC
power supply, both manufactured by PCB Piezoelectronics. The sensitivity of this
accelerometer was 100 mV/g where g = 9.81 m/s2. After numerous preliminary
impact experiments using these foamed polymers, it was concluded that a half sine
curve of amplitude a0 and impact time t0 was a good fit to all measurements ẍ1.
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Figure 5. Mathematical models of the two pendulums and the specimen.

That is,

ẍ1 = −a0 sin
π t
t0

, (1)

in which the negative sign indicates deceleration. Shown in Figure 4 is a typical
experimental trace of ẍ1 and its best-fit half sine curve. Here, the exact time of
separation between the specimen and the target die just after impact could not be
determined experimentally, and was approximated as t0.

Given θ0 and the measured quantities θ1, θ2, and ẍ1, the material responses to
impact can be computed using the following mathematical model.

Mathematical model of impact

Shown in Figure 5 is the mathematical model of the foamed polymer specimen
sandwiched between the two dies. The coordinates x1 and x2 are defined as the
respective driver and target die face displacements from their static (free hanging)
states. The specimen is assumed to behave linearly, or nearly so, to have negli-
gible mass compared to m, and to exhibit damping proportional to the specimen
velocity. The representation in Figure 5 reflects these assumptions, in which the
specimen’s impact force is P and its stiffness and damping parameters are ks and
cs , respectively. In general, ks and cs may vary with time and strain-rate, given an
impact time history initiated by θ0. In these terms, the equations of motion for the
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driver pendulum, the specimen, and the target pendulum are, respectively,

− P = mẍ1, (2)

P − ks(x1 −x2) − cs(ẋ1 − ẋ2) = 0, (3)

ks(x1 −x2) + cs(ẋ1 − ẋ2) = mẍ2. (4)

When the first two equations are added to eliminate P ,

ks(x1 −x2) + cs(ẋ1 − ẋ2) = −mẍ1. (5)

The result observed by comparing Equations (4) and (5) is that ẍ2 = −ẍ1, from
which it is concluded that measures of both ẍ1 and ẍ2 would be redundant. The
driver die acceleration ẍ1 was the acceleration chosen to be measured.

Kinematics of impact. The kinematics of the compressed specimen are deduced
by integrating Equation (1) and using the result that ẍ2 = −ẍ1. The first integration
gives the respective driver and target die velocities as

ẋ1 = v0 −
t0a0

π

(
1− cos

π t
t0

)
, ẋ1(0) = v0, (6)

ẋ2 =
t0a0

π

(
1− cos

π t
t0

)
, ẋ2(0) = 0, (7)

which satisfy the stated initial conditions of each die at the instant t = 0, or just
prior to die impact. The second integration gives the die displacements, subject to
zero initial conditions, as

x1 = v0t −
t0a0

π

(
t −

t0
π

sin
π t
t0

)
, x1(0) = 0, (8)

x2 =
t0a0

π

(
t −

t0
π

sin
π t
t0

)
, x2(0) = 0. (9)

The preimpact driver die velocity v0 in Equations (6) and (8) is deduced by
equating the change of potential energy between the driver die’s state at θ0 and
the state at first impact (t =0), to the change in kinetic energy between these same
states, or

mg`(1− cos θ0) =
1
2 mv2

0, (10)

which leads to
v0 =

√
2g`(1− cos θ0). (11)

The two assumptions inherent in Equation (10) are: energy losses due to bearing
and air friction between the two states are negligible, and rotational kinetic energy
of the die and arm is negligible in comparison to the to the translational energy of
the die. The first assumption was verified by performing free swing tests with the
driver arm, in which the specimen and target die were absent. These results showed
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that for an initial angular position θ0, the die arm swung to within one percent of its
mirror angle −θ0. The second assumption was validated by a computation, which
showed that the rotational kinetic energy was less than one percent of mv2

0/2 for
the dual pendulum apparatus shown in Figure 2.

Energy absorption. The incident energy density, or the energy per volume of the
specimen that is available for absorption (Figure 3, left), is defined by

W0 =
4mg`

πh D2
0
(1 − cos θ0). (12)

Not absorbed by the specimen is the maximum potential energy per volume of the
specimen after rebound (Figure 3, right), or

Wr =
4mg`

πh D2
0

(
(1 − cos θ1) + (1 − cos θ2)

)
. (13)

The specimen’s unit energy absorption is the difference of the last two expressions:
W0 − Wr . Expressed as a percent of the incident energy density, the unit energy
absorption for this nearly frictionless system is thus

W =
(1 − cos θ0) − (1 − cos θ1) − (1 − cos θ2)

(1 − cos θ0)
× 100%. (14)

Impact stress, strain, and strain rate. Since the specimen’s impact force is P ,
Equations (1) and (2) can be used to calculate the time-dependent impact stress, or

σ =
4P

π D2
0

=
4ma0

π D2
0

sin
π t
t0

. (15)

The mean stress σ̄ up to the time t0/2 of maximum compression, and the peak
stress σp at this time are deduced from the previous equation as

σ̄ =
2
t0

∫ t0/2

0
σ dt =

8ma0

π2 D2
0

and σp =
4ma0

π D2
0

. (16)

The impact strain ε is based on the relative displacement x1 − x2 between the die
faces. Using Equations (8) and (9), this strain is thus

ε =
x1 −x2

h
=

v0t
h

−
2t0a0

πh

(
t −

t0
π

sin
π t
t0

)
, (17)

in which v0 is given by (11). The average strain rate up to maximum compression
at t = t0/2, as deduced from Equations (6) and (7), is defined as

ε̇a =
2

t0h

∫ t0/2

0
(ẋ1 − ẋ2) dt =

v0

h
−

2t0a0

πh

(
1−

2
π

)
. (18)
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Specimen stiffness-damping constraint. A constraint relationship between ks and
cs can be computed by time averaging (5), using (1). That is,

1
t0

∫ t0

0

(
ks(x1 −x2) + cs(ẋ1 − ẋ2)

)
dt =

ma0

t0

∫ t0

0
sin

π t
t0

dt. (19)

Let ks and cs be constant, on the average, and integrate (19) after substituting for
the displacements and velocities given by Equations (6)–(9). The result is

ks =
4π2ma0 − 2π2(πv0 −2t0a0)cs

π3t0v0 − 2π2t2
0 a0 + 8t2

0 a0
, (20)

in which v0 is given by (11).

Impact damping. The nondimensional damping factor ζ , commonly employed in
linear dynamic systems, is defined as

ζ =
cs

2
√

ksm
. (21)

Energy methods are now used to predict an explicit equation for ζ . The difference
of peak potential energies for the initial and rebound states, depicted in Figure 3, is
the energy lost in specimen damping (subject to the assumptions already discussed).
This loss is

1E = mg`(1− cos θ0) − mg`(1− cos θ1) − mg`(1− cos θ2). (22)

A second form for 1E is based on the damping power, or the product of the
damping force cs(ẋ1 − ẋ2) and the relative die velocity (ẋ1 − ẋ2). The energy loss
is this product integrated over the die-specimen contact time t0, or

1E = cs

∫ t0

0
(ẋ1 − ẋ2)

2 dt. (23)

When Equations (22) and (23) are equated and the velocities ẋ1 and ẋ2 of Equa-
tions (6) and (7) are substituted, the resulting equation can be solved for ζ . After
performing the integrations and regrouping the parameters, this leads to

cs =
π2mg`(cos θ1 + cos θ2 − cos θ0 −1)

π2t0v2
0 − 4π t2

0 a0v0 + 6t3
0 a2

0

. (24)

Thus, with cs and ks of Equations (24) and (20), the damping factor ζ can be
computed from Equation (21).

The results of this impact analysis are summarized as follows. Given the ap-
paratus and specimen parameters (m, `, D0, h), and imposing the initial angle θ0,
measures of the quantities (θ1, θ2, a0, t0) give measures of the specimen’s key re-
sponses. These measures are: the percent of the incident energy absorbed, (14);
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Figure 6. Stress-strain behavior for the four foamed polymers at
the low strain rate of about 0.001 s−1.

the stress-strain behavior, Equations (15) and (17); the mean compressive stress
and strain rate, Equations (16) and (18); and the stiffness and damping properties,
Equations (20), (21), and (24). The experiments to measure (θ1, θ2, a0, t0) are now
described.

Experimental protocol and measurements

The foamed polymer specimens described in Table 1 were cut from the as-received
sheet material with a sharp steel cookie-cutter die of the same diameter as the
impacting die, or 38.1 mm. One set of specimens was used for the standard com-
pression tests, and the other set was used for the impact experiments.

The uniaxial compression tests for each of the four materials were all performed
at the rather slow strain rate of about 0.001 s−1. The results are the stress-strain
data shown in Figure 6, with a least-squares straight line fit for each material. The
slope of each line gives the static modulus E , which is strictly valid only for the
stated strain rate. These values of E are listed in Table 1. These results indicate
that the four materials behave linearly, or nearly so, up to strains of about 30%,
and lend credibility to the hypothesized linear mathematical model.

The protocol for the impact experiments was as follows. The black specimen,
defined as the reference specimen, was glued to the die face of the driver pendulum.
This pendulum arm was then hand-held at θ0 = 10◦ and released. Then the voltage-
time history representing ẍ1 was recorded by the digital storage oscilloscope, which
also displayed to four significant figures the peak voltage representing a0 and the
rise time t0/2 to this peak. Using the accelerometer’s calibration factor of 100
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mV/g, the peak voltage was converted to the peak acceleration a0, expressed in
units of g. Then the first rebound angles θ1 and θ2 were measured by one of the
two procedures already explained (the bead method was preferred for its simplicity).
This same experimental procedure was repeated four more times for θ0 = 10◦.
Based on these five trial runs, the arithmetic average (mean value) was computed
for each of the four measured quantities (θ1, θ2, a0, t0). This procedure was then
repeated for θ0 = 20◦, 30◦, and 40◦ using the same black specimen. A time lapse of
at least 60 s was allowed between each impact, so that the specimen could regain
its initial thickness.

The sixteen data sets so obtained for the black specimen are listed in Table 2,
together with the four incident energy density levels W0, which were computed
from (12) for each respective initial pendulum angle θ0 = 10, 20, 30, 40◦. Here
m = 0.461 kg (which includes the accelerometer’s mass) and ` = 0.239 m. The four
incident energy density levels of the black specimens were chosen to be the same
as those for the nonblack specimens, as shown in the W0 column of Table 2. The
corresponding values of θ0 for the nonblack specimens, computed from (12), were
all somewhat higher than their black specimen counterparts at θ0 = 10, 20, 30, 40◦,

Specimen W0, Measured mean of five trials
type kJ/m3 θ0,

◦ θ1,
◦ θ2,

◦ a0, g t0, ms

white 2.96 12.0 4.42 7.48 7.72 4.62
11.8 24.1 9.10 17.0 17.0 3.84
26.1 36.2 15.2 24.8 26.8 3.60
45.6 48.5 16.8 32.0 35.5 3.44

blue 2.96 11.5 4.44 6.82 14.4 2.43
11.8 23.0 8.90 15.7 28.5 2.03
26.1 34.6 12.5 23.8 43.2 1.92
45.6 46.2 16.7 31.5 56.8 1.87

red 2.96 10.8 4.26 6.52 13.1 2.61
11.8 20.9 7.26 14.2 25.8 2.19
26.1 31.4 11.6 22.3 38.6 2.24
45.6 41.9 14.3 29.6 52.2 2.18

black 2.96 10.0 4.26 6.16 14.8 1.74
11.8 20.0 7.40 14.1 30.8 1.62
26.1 30.0 12.5 20.9 47.1 1.41
45.6 40.0 15.4 27.8 62.5 1.44

Table 2. Dual-pendulum impact measurements.
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Figure 7. Influence of the mean impact stress on the percent of
the incident specimen energy absorbed during impact.

which reflects the differences in specimen thicknesses. The matching of incident
energy density levels allows for later comparisons of dynamic responses among
specimens of unequal volume.

Using the same experimental protocol as for the black specimen, but with the
stated θ0 values, the sixteen sets of experimental measures (θ1, θ2, a0, t0) for each
white, blue, and red specimen were obtained. Again, each numerical entry of each
set represents a five-trial average. Such results were reproducible; that is, given
θ0, the deviation of any one measurement of a five-trial run was within 2% of its
corresponding mean value.

Computed responses and discussion

Based on the 16 data sets of Table 2, and the two pendulum parameters m =

0.461 kg and ` = 0.239 m, the material impact responses predicted by the math-
ematical model were computed. Computational algorithms and graphic displays
were developed using Mathematica [Wolfram 1999]. The results are presented in
Figures 7–11. In all of these figures, each data point corresponds to a data set
(θ0, θ1, θ2, a0, t0), or a row in Table 2.

Shown in Figures 7 and 8 are two measures of energy absorption, each as a
function of the mean impact stress σ̄ , defined by Equation (16). The dashed straight
line in each figure is the least-squares fit to all data. The percent of the incident
energy absorbed, based on Equation (14), is shown in Figure 7, which indicates a
weakly decreasing energy loss with increasing σ̄ . The best-fit straight line to these
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Figure 8. Influence of the mean impact stress on the energy ab-
sorbed per unit specimen volume during impact.

data is
W (%) = 46.17 − 0.0803σ̄ , (25)

in which the units of σ̄ are kN/m2.
The energy absorbed per unit volume of each specimen, or W0 −Wr in Equations

Equation (12) and Equation (13), is shown in Figure 8. The increase in the unit
energy loss Wv is approximately linear with σ̄ , for which the best-fit straight line
is

W0 − Wr = 0.126σ̄ − 2.11, (26)

where the units of energy and mean stress are kJ/m3 and kN/m2. The data of Figure
8 show that at a given mean stress level σ̄ , the most dense (black) foamed polymer
has a consistently lower unit energy loss than the least dense (white) material.

Shown in Figure 9 are the stress-strain curves for all of the specimens, in which
each exhibits hysteresis behavior typical of energy-absorbing material. Each curve
for each of the four materials has a label a, b, c, or d, which corresponds respec-
tively to the incident unit energy level listed in Table 2, or 2.96, 11.8, 26.1, and
45.6 kJ/m3. These curves were generated using (15) and (17), which are parametric
equations in time t . To each closed curve there corresponds an average strain rate
ε̇a , computed from Equations (18) and (11) for each θ0. The peak of each closed
curve, at t = t0/2, marks the end of increasing compression stress. At the end
of impact, assumed to occur at t = t0, the stress is zero. Then each unloaded
specimen was observed to recover (along the abscissa to the origin) to nearly its
original thickness h in about 30 s. The area enclosed by each of the 16 hysteresis
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Figure 9. Stress-strain and hysteresis behavior for the foamed
polymers, showing the influence of strain rate.

curves in Figure 9 corresponds to the energy absorbed per unit volume, the values
of which were also computed using Equation (14) and displayed in Figure 8.

Shown in Figure 10 is a weak dependency of the compression modulus Ec on
the average strain rate ε̇a , for all four materials. This modulus is defined in terms
of the elastic stiffness ks , or

Ec =
4hks

π D2
0
. (27)

For each material, it appears that Ec approaches a limiting or asymptotic value as ε̇a

increases. For the highest-density material (black), for instance, Ec → 900 kN/m2

as ε̇a → 150 s−1. For the two intermediate density materials, the average asymp-
totic values are nearly the same, or about 700 kN/m2; and for the least dense mate-
rial, Ec → 300 kN/m2.
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Figure 10. Influence of strain rate on the compression modulus
for the four foamed polymers.
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Figure 11. Influence of the mean impact stress on the damping
factors for the four foamed polymers.

Shown in Figure 11 is the damping factor ζ , with its weak dependency on the
mean level of impact stress σ̄ . The straight line is the least-squares fit (mean value)
of data for all four materials, or

ζ = 0.258, SD = 0.029. (28)
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Conclusions

This dual-pendulum measuring system is simple in construction and versatile in
operation. System bearing-friction was minimized by precision machining and
graphite lubrication. The impact energy permanently lost to the apparatus was
minimized in two ways: (1) by choosing equal specimen and die diameters, which
confined the transmitted acoustic waves to the same diameter cylinders, eliminating
most of the energy dispersion in the uniform dies; (2) by assigning more than 99%
of a pendulum’s mass to the die so that the pendulum’s center of percussion was
nearly coincident with the die’s longitudinal axis of symmetry, thus reducing the
horizontal bearing impact reaction force, and its contribution to friction energy loss
to nearly zero. Further, by matching each of the four incident energy density levels
(a, b, c, d) for the consecutive testing of each specimen type, comparisons of the
dynamic responses among specimens of different thicknesses could be made.

That the mathematical model for impact is consistent with the measurements
was demonstrated in the following ways:

• For all 16 data sets of Table 2, the following two independent measures for the
velocity of the target die just after impact agreed to within about 10%. That
is,

ẋ1(t=t0) '
√

2gl(1 − cos θ1). (29)

Here, the left side is the value predicted by Equation (6), and the right side is
based on the conservation of energy and the independent measure θ1.

• The closed area of each of the 16 hysteresis curves of Figure 9 generally
agreed within 10% to its counterpart unit energy calculated from Equation
(14).

• Consider Figure 9 for a given material. The slope of each stress-strain curve
up to about t = 0.4t0 is consistently higher than the slope E of Figure 6 for the
same material. Theory predicts that this slope will increase with increasing
strain rate, an effect that is due to the accompanying increase in the elastic
and damping reaction forces.

Future developments include new and complementary theories of impact for a
variety of nonlinear, open or closed-cell materials for which this dual pendulum
system can be employed to measure material properties.
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