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EXTREME VALUES OF POISSON’S RATIO AND OTHER
ENGINEERING MODULI IN ANISOTROPIC MATERIALS

ANDREW N. NORRIS

Conditions for a maximum or minimum of Poisson’s ratio of anisotropic elastic
materials are derived. For a uniaxial stress in the 1-direction and Poisson’s ratio
ν defined by the contraction in the 2-direction, the following three quantities
vanish at a stationary value: s14, [2νs15 + s25] and [(2ν − 1)s16 + s26], where
sIJ are the components of the compliance tensor. Analogous conditions for sta-
tionary values of Young’s modulus and the shear modulus are obtained, along
with second derivatives of the three engineering moduli at the stationary values.
The stationary conditions and the hessian matrices are presented in forms that
are independent of the coordinates, which lead to simple search algorithms for
extreme values. In each case the global extremes can be found by a simple search
over the stretch direction n only. Simplifications for stretch directions in a plane
of orthotropic symmetry are also presented, along with numerical examples for
the extreme values of the three engineering constants in crystals of monoclinic
symmetry.

1. Introduction

Poisson’s ratio ν, Young’s modulus E and the shear modulus G, collectively called
the engineering moduli, are of fixed value in isotropic materials and related by
2G(1 + ν) = E . No such connection holds in anisotropic elastic solids, and all
three become dependent upon the directions of stretch, lateral strain, and the shear
directions. Hayes [1972] derived some universal relations between values for cer-
tain pairs of orthogonal directions. However, apart from cubic symmetry [Norris
2006b], there is no general formula for the directions and values associated with the
largest and smallest values of the engineering moduli. The purpose of this paper
is to provide systematic methods which can be used to find the extreme values of
the engineering moduli in any type of anisotropy.

The problem of finding the extreme values of Young’s modulus is the simplest
since E depends only on a single direction of stretch. Numerical searching is
practical and straightforward; thus Cazzani and Rovati provide a detailed analysis
of the extrema of Young’s modulus for cubic and transversely isotropic materials
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[Cazzani and Rovati 2003] and for materials with tetragonal symmetry [Cazzani
and Rovati 2005], with extensive illustrative examples. Boulanger and Hayes
[1995] obtained analytic expressions related to extrema of Young’s modulus. For
stretch in the 1-direction, they showed that E = 1/s11 achieves a stationary value
if the two conditions s15 = 0 and s16 = 0 are satisfied. In a pair of complementary
papers, Ting derived explicit expressions for the stress directions and the stationary
values of Young’s modulus for triclinic and monoclinic [Ting 2005b], orthotropic,
tetragonal, trigonal, hexagonal and cubic materials [Ting 2005a]. We will rederive
the stationary conditions for E below, along with conditions required for a local
maximum or minimum.

Poisson’s ratio and the shear modulus depend upon pairs of orthogonal direc-
tions, which makes their classification far more complicated than for E . At the
same time, there is considerable interest in anisotropic materials which exhibit
negative values of Poisson’s ratio, also called auxetic materials [Yang et al. 2004].
In sharp contrast to isotropic solids for which −1 < ν < 1/2, the value of ν is
unrestricted in anisotropic materials and may achieve arbitrarily large positive and
negative values in the same material. The first hint of this surprising possibility was
given by Boulanger and Hayes [1998] who presented a theoretical set of elastic
moduli for a material with orthorhombic symmetry which satisfy the positivity
requirements, but exhibit simultaneous arbitrarily large positive and negative val-
ues of ν. Ting and Chen [2005] and Ting [2004] subsequently demonstrated that
the same remarkable phenomenon can be obtained in any nonisotropic material
symmetry, including cubic symmetry and transverse isotropy. Further explanation
of the effect in cubic symmetry is provided in Section 6 below and in [Norris
2006b]. We note that Rovati presented extensive numerical examples of auxetic
behavior in orthorhombic [Rovati 2003] and monoclinic materials [Rovati 2004],
while Ting and Barnett [2005] derived general conditions required for the occur-
rence of negative values of ν.

The purpose of this paper is to provide a general framework for finding the
maximum and minimum values of ν and G in anisotropic materials. Some progress
in this regard is due to Ting [2005a] who discusses the conditions for extreme
values of the shear modulus with particular attention to shear in planes of material
symmetry. As far as I know, there are no results reported to date on conditions
necessary for extreme values of the Poisson’s ratio. Particular attention is given
in this paper to the Poisson’s ratio, with the emphasis on deriving conditions that
are independent of the coordinate system used. It will become evident that there
is a strong analogy between the problems for the shear modulus and the Poisson’s
ratio. In particular, by formulating the problems in a coordinate free manner, the
task of searching for extreme values of both is similar.
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The outline of the paper is as follows. The three engineering moduli are intro-
duced in Section 2, along with the equations for the transformation of elastic moduli
under rotation. These are used in Section 3 to derive the conditions required for
stationary values of ν, E and G, and the values of the second derivatives (Hessian)
at the stationary points are determined in Section 4. The various results are all cast
in terms of stretch, strain and shearing along coordinate axes. The more general for-
mat for stationary conditions in general directions, independent of the coordinates,
are presented in Section 5. The specific application to Poisson’s ratio is considered
in Section 6. The stationary conditions for stretch in a plane of orthotropic symme-
try are derived, and it is shown that at most four stationary values of ν can occur,
two for in-plane lateral strain, and two out-of-plane. These results are applied to the
specific case of extreme values of ν in materials with cubic symmetry, recovering
results of [Norris 2006b]. Applications to generally anisotropic materials are also
discussed, and a fast procedure for searching for extreme values of ν is derived and
demonstrated for some materials of monoclinic symmetry. Finally, in Section 7 we
present a similar procedure for finding the global extreme values of G in generally
anisotropic media, with numerical examples.

2. Definition of the engineering moduli and preliminary equations

Poisson’s ratio measures lateral strain in the presence of uniaxial stress. For any
orthonormal pair of vectors {n, m}, the Poisson’s ratio νnm = ν(n, m) is defined by
the ratio of the strains in the two directions for a uniaxial state of stress along one
of them [Rovati 2004]:

νnm = −
ε : mm
ε : nn

for σ = σ nn,

where ε and σ are the symmetric tensors of strain and stress, respectively, and ab
is the tensor product, sometimes denoted a ⊗ b. The Young’s modulus En = E(n)

relates the axial strain and stress,

En =
σ

ε : nn
for σ = σ nn.

The third engineering modulus is the shear modulus Gnm = G(n, m),

Gnm =
σ

ε : (nm + mn)
for σ = σ (nm + mn).

Tensor components are defined relative to the fixed orthonormal basis {e1, e2, e3},

σ = σi j ei e j , ε = εi j ei e j .

The stress σi j and strain εi j are related by

εi j = si jklσkl .
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(Lower case Latin suffixes take on the values 1, 2, and 3, and the summation conven-
tion on repeated indices is assumed unless noted otherwise.) Here si jkl denote the
components of the fourth order compliance tensor. We use the Voigt notation for
conciseness; compliance is S = [sIJ ] , I, J = 1, 2, . . . , 6, with I = 1, 2, 3, 4, 5, 6
corresponding to i j = 11, 22, 33, 23, 31, 12, and sJ I = sIJ .

The goal is to find conditions for a maximum or minimum of the engineering
moduli, with emphasis on Poisson’s ratio. With no loss in generality assume that
n is in the e1 direction, and m is in the e2 direction. Thus, we consider ν ≡ ν12,
E ≡ E1 and G ≡ G12, that is,

ν = −
s12

s11
, E =

1
s11

, G =
1

4s66
. (1)

(We take s66 = s1212 although it is common to subsume the factor of 4 in the
definition of s66 in eq. (1)3.) Our objective is then to find conditions for a maximum
or minimum of each engineering modulus under the assumption that the material
is assumed to be free to orient in arbitrary directions with oriented moduli while
the stress remains of fixed orientation. This is equivalent to stationarity conditions
for νnm , En and Gnm for a fixed orientation material while {n, m} range over all
possible orthonormal pairs.

We therefore need to consider how ν, E and G of (1) vary under general rotation
of the material. Define the rotation by angle θ about an arbitrary direction q, |q| = 1,
as Q(q, θ) ∈ O(3), such that vectors (including the basis vectors) transform as
r → r′

= Qr. Under the change of basis associated with Q(q, θ), second order ten-
sors (including stress and strain) transform as σ → σ ′, where σ ′

i j = Qir Q jsσrs , or

σ ′

i j = Qi jrsσrs, where Qi jrs =
1
2

(
Qir Q js + Qis Q jr

)
.

In order to simplify the algebra we use the connection between fourth order elas-
ticity tensors in 3 dimensions and second order symmetric tensor of 6 dimensions
[Mehrabadi and Cowin 1990]. Accordingly, the 6 × 6 matrix Ŝ with elements ŜIJ

is defined as

Ŝ = TST, where T ≡ diag
(
1, 1, 1,

√
2,

√
2,

√
2
)
.

Rotation of second and fourth order tensors is most simply presented in terms
of the 6 × 6 rotation matrix Q̂ which is the 6-dimensional version of the fourth
order tensor Qi jrs , introduced by Mehrabadi et al. [1995]. Fourth order tensors
transform as Ŝ → Ŝ′

= Q̂ŜQ̂T , where Q̂(q, θ) is an orthogonal second order tensor
of six dimensions, satisfying Q̂Q̂T

= Q̂T Q̂ = Î =diag(1, 1, 1, 1, 1, 1). It satisfies

∂Q̂
∂θ

(q, θ) = R̂(q)Q̂, Q̂(q, 0) = Î, (2)
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where R̂ is a skew symmetric six dimensional tensor linear in q,

R̂(q) =



0 0 0 0
√

2q2 −
√

2q3

0 0 0 −
√

2q1 0
√

2q3

0 0 0
√

2q1 −
√

2q2 0

0
√

2q1 −
√

2q1 0 q3 −q2

−
√

2q2 0
√

2q2 −q3 0 q1
√

2q3 −
√

2q3 0 q2 −q1 0


.

Further details can be found in [Mehrabadi et al. 1995; Norris 2006a].

3. Extremal conditions

Consider any one of the engineering moduli, say f, as a function of both the un-
derlying compliance and of the rotation Q̂. A stationary value is obtained if f is
unchanged with respect to additional small rotations. In order to formulate this
more precisely, assume f is at a stationary point, and define

Ŝ(q, θ) = Q̂(q, θ )̂SQ̂T (q, θ). (3)

Define the rotational derivative,

f ′(q) ≡
∂ f
∂θ

(̂
S(q, θ)

)∣∣∣∣
θ=0

=
∂ f
∂sIJ

s ′

IJ (q). (4)

The elements s ′

IJ (q) of the the rotational derivative of the compliance can be ex-
pressed by using the representation (2) with (3),

Ŝ′
= R̂(q)̂S + ŜR̂T (q). (5)

Thus, we have the equality given on top of page 798, where the sIJ are the values
at θ = 0 (which are independent of q) and the derivatives are linear functions of
the coordinates of q. We may write

f ′(q) = d( f )
· q, (6)

where the vector d( f ) is independent of q and depends only on the compliances.
The engineering modulus f is stationary with respect to the direction n, and the

direction m where applicable, if f ′(q) vanishes for all axes of rotation q. This is
equivalent to requiring that all possible deviations in n and m leave f unchanged to
first order in the rotation. The stipulation that this hold for all rotation axes covers
all permissible transformations. The general condition for stationarity is therefore
that the vector d( f ) must vanish, that is,

d( f )
= 0 at a stationary point of f.
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

s ′

11
s ′

22
s ′

33
s ′

12
s ′

23
s ′

13
s ′

14
s ′

25
s ′

36
s ′

15
s ′

16
s ′

24
s ′

26
s ′

34
s ′

35
s ′

44
s ′

55
s ′

66
s ′

45
s ′

46
s ′

56



=



0 4s15 −4s16

−4s24 0 4s26

4s34 −4s35 0
−2s14 2s25 2s16 − 2s26

2s24 − 2s34 −2s25 2s36

2s14 2s35 − 2s15 −2s36

s12 − s13 −s16 + 2s45 s15 − 2s46

s26 − 2s45 s23 − s12 −s24 + 2s56

−s35 + 2s46 s34 − 2s56 s13 − s23

s16 −s11 + s13 + 2s55 −s14 − 2s56

−s15 s14 + 2s56 s11 − s12 − 2s66

s22 − s23 − 2s44 −s26 s25 + 2s46

−s25 − 2s46 s24 −s22 + s12 + 2s66

−s33 + s23 + 2s44 −s36 − 2s45 s35

s36 + 2s45 s33 − s13 − 2s55 −s34

2s24 − 2s34 −2s46 2s45

2s56 2s35 − 2s15 −2s45

−2s56 2s46 2s16 − 2s26

s25 − s35 + s46 −s14 + s34 − s56 s55 − s44

−s36 + s26 − s45 s44 − s66 s14 − s24 + s56

s66 − s55 s36 − s16 + s45 −s25 + s15 − s46




q1

q2

q3

 .

We now apply this formalism to the three engineering moduli and derive d(ν), d(E)

and d(G) in turn.

3.1. Poisson’s ratio. For Poisson’s ratio, Equation (4) becomes

ν ′(q) = (s11)
−2 [

s12 s ′

11(q) − s11 s ′

12(q)
]
. (7)

Thus, from the display above and Equations (6) and (7), we have

d(ν)
=

2
s2

11

[
s11s14e1 +

(
2s12s15 − s11s25

)
e2 +

(
s11s26 − s11s16 − 2s12s16

)
e3

]
. (8)

Setting this to zero and using the definition of ν in (1), and the fact that s11 > 0,
we obtain three conditions for a stationary value of Poisson’s ratio:

s14 = 0, 2νs15 + s25 = 0, (2ν − 1)s16 + s26 = 0. (9)

These must be simultaneously satisfied at a maximum or minimum of ν. Note that
the compliance elements appearing in (9) are all zero in isotropic materials.
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3.2. Young’s modulus. Proceeding in the same manner as for the Poisson’s ratio,
and using E ′(q) = −(s11)

−2s ′

11(q), gives

d(E)
= 4(s11)

−2 (−s15e2 + s16e3).

Setting this to zero implies the conditions for an extremum in Young’s modulus

s15 = 0, s16 = 0. (10)

These agree with two conditions determined by Boulanger and Hayes [1995] and
by Ting [2005b].

3.3. Shear modulus. The rotational derivative of the shear modulus is

G ′(q) = −
1
4(s66)

−2s ′

66(q),

and the gradient vector is

d(G)
=

1
2(s66)

−2 [
s56e1 − s46e2 + (s26 − s16)e3

]
.

Hence, the shear modulus has an extreme value if the following conditions hold:

s56 = 0, s46 = 0, s16 − s26 = 0. (11)

4. Second derivatives

The nature of a stationary value of the general engineering modulus f can be
discerned, at least locally, by the second derivative. By analogy with Equation (4),
we define the rotational second derivative,

f ′′(q) ≡
∂2 f

∂sIJ ∂sK L
s ′

IJ (q)s ′

K L(q) +
∂ f
∂sIJ

s ′′

IJ (q). (12)

The elements s ′′

IJ (q) of the rotational second derivative of the compliance follow
from

Ŝ′′(q) = R̂2Ŝ + ŜR̂2T
+ 2R̂ŜR̂T .

This is a direct consequence of Equation (5). We do not need all 21 elements, and
for brevity only present the following three values which are necessary to evaluate
the second derivatives of the engineering moduli,
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s ′′

11 = 4
[
(s13−s11+2s55)q2

2 +(s12−s11+2s66)q2
3 −2(s14+2s56)q2q3

+s15q3q1+s16q1q2
]
,

s ′′

12 = 2
[
(s13−s12)q2

1 +(s23−s12)q2
2 +(s11+s22−2s12−4s66)q2

3

+(s14−2s24+4s56)q2q3+(s25−2s15+4s46)q3q1+(s16+s26−4s45)q1q2
]
,

s ′′

66 = 2
[
(s55−s66)q2

1 +(s44−s66)q2
2 +(s16+s26−2s36−2s45)q1q2

+(s11+s22−2s12−4s66)q2
3 +(2s25−2s15+3s46)q1q3+(2s14−2s24+3s56)q2q3

]
.

Before applying these to the three engineering moduli f = ν, E and G, we
note that in each case that f is a homogeneous function of degree 0 or −1 in
the compliance elements. Consequently the second derivative f ′′ evaluated at the
stationary point where f ′

= 0 simplifies because the first term in (12) vanishes,
leaving

f ′′(q) =
∂ f
∂sIJ

s ′′

IJ (q) at f ′(q) = 0. (13)

The terms s ′′

IJ (q) are second order in q, and we can write

f ′′(q) = D( f )
: qq at f ′(q) = 0,

where D( f )
= D( f )T is a nondimensional symmetric 3 × 3 matrix which is inde-

pendent of q. Thus, D( f ) is positive (negative) semidefinite at a local minimum
(maximum) of f . The condition for a local minimum (maximum) is therefore that
the three eigenvalues of D( f ) are positive (negative). If the matrix is not definite
and has eigenvalues of opposite sign, then the modulus has a locally saddle shaped
behavior.

4.1. Poisson’s ratio. The second derivative of the Poisson’s ratio at a stationary
point is, using (13),

ν ′′(q) = −(s11)
−1 (

s ′′

12 + νs ′′

11
)

at ν ′(q) = 0. (14)

Thus, when ν ′(q) = 0, Equation (14) gives

ν ′′(q) =
2

s2
11

{
s11(s12 − s13)q2

1 +
[
s11(s12 − s13) + 2s12(s13 − s11 + 2s55)

]
q2

2

+
[
s11(2s12 + 4s66 − s11 − s22) + 2s12(s12 − s11 + 2s66)

]
q2

3

+ 2
[
s11(s24 − 2s56 −

1
2 s14) − 2s12(s14 + 2s56)

]
q2q3

+ 2
[
s11(s15 − 2s46 −

1
2 s25) + s12s15

]
q3q1

+ 2
[
s11(2s45 −

1
2 s16 −

1
2 s26) + s12s16

]
q1q2

}
.

Since this is evaluated at the stationary value, we may use (9) to simplify and obtain
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D(ν)
=

2
s11


s12−s13 2s45−s16 s15−2s46

2s45−s16
s12−s13−

2ν(s13−s11+2s55)
s24−2(1−2ν)s56

s15−2s46 s24−2(1−2ν)s56
s12−s22+2s66+

(1−2ν)(s12−s11+2s66)

 , (15)

where we have used the definition of ν to simplify the elements.

4.2. Young’s modulus. At a stationary point we have E ′′(q) = −(s11)
−2 s ′′

11 and
E ′(q) = 0. Using the extremal (10), we find

D(E)
=

1
s2

11

0 0 0

0 s11−s13−2s55 s14+2s56

0 s14+2s56 s11−s12−2s66

 .

Note that D(E) is rank deficient (of rank 2), which is a consequence of the fact
that E is invariant under rotation about the e1 stretch axis. The local nature of the
stationary value depends upon the two nonzero eigenvalues of the matrix.

4.3. Shear modulus. The shear modulus satisfies

G ′′(q) = −
1
4(s66)

−2 s ′′

66 at G ′(q) = 0,

and hence,

D(G)
=

1
2s2

66

 s66−s55 s36−s16+s45 s15−s25

s36−s16+s45 s66−s44 s24−s14

s15−s25 s24−s14 2s12+4s66−s11−s22

 .

5. Coordinate invariant formulation

In this section we rephrase the results for the stationary conditions and for the
second derivatives at the stationary conditions in coordinate invariant form. Let
{n, m, p} be an orthonormal triad analogous to {e1, e2, e3} before. Define the
nondimensional symmetric second order tensors A, B, C, N, M and P by

Ai j = s−1
nn si jklnknl,

Ni j = s−1
nn sik jlnknl,

Bi j = s−1
nn si jklmkml,

Mi j = s−1
nn sik jlmkml,

Ci j = s−1
nn si jkl pk pl,

Pi j = s−1
nn sik jl pk pl,

where snn = si jklni n j nknl . Thus,

ν(n, m) = −A : mm, E(n) =
1

snn
, G(n, m) =

E(n)

4N : mm
.
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5.1. Poisson’s ratio. The derivative of Poisson’s ratio can be expressed in general
form as

d(ν)
=

[
A : (mp + pm)

]
n −

[
(2νA + B) : (pn + np)

]
m

+
{[

(2ν − 1)A + B
]
: (nm + mn)

}
p, (16)

which follows from (8), and may be checked by the substitutions n → e1, m → e2

and p → e3. This provides a local expansion of the Poisson’s ratio for small rotation
about the axis q:

ν(q, θ) = ν(q, 0) + d(ν)
· q θ + O(θ2).

In particular, d(ν)
= 0 at a stationary point.

The second order tensor D(ν) of (15) becomes, in general format,

D(ν)
=

[
A : (mm − pp)

]
nn +

{
ν − [(1 + 2ν)A + 4νN] : pp

}
mm

+
{
2ν2

− 1 + [4(1 − ν)N − M] : mm
}
pp

+
[
(2P − N) : (nm + mn)

]1
2(nm + mn)

+
[
(N − 2M) : (pn + np)

]1
2(pn + np)

+
{[

M − 2(1 − 2ν)N
]
: (mp + pm)

}1
2(mp + pm). (17)

Hence, the local expansion near a stationary point is

ν(q, θ) = ν(q, 0) +
1
2 D(ν)

: qq θ2
+ O(θ3).

5.2. Young’s modulus. In the same way as before we find that

d(E)
= 2E(n)

[
− A : (pn + np) m + B : (nm + mn) p

]
, (18)

D(E)
= E(n)

{[
A : (nn−pp) − 2P : nn

]
mm +

[
A : (nn−mm) − 2M : nn

]
pp

+ (A + 2N) : (mp+pm) 1
2(mp+pm)

}
. (19)

5.3. Shear modulus. Similarly, for the shear modulus

d(G)
=4

G2(n)

E(n)

[
N : (mp+pm) n−M : (pn+np) m+(B−A) : (nm+mn) p

] (20)

D(G)
= 8

G2(n)

E(n)

{
N : (mm−pp) nn + M : (nn−pp) mm + 4N : mm pp

+ (P+C−A) : (nm+mn)1
2(nm + mn)

+ (A−B) :
[
(mm−nn) pp−(mp+pm) 1

2(mp+pm)+(pn+np)1
2(pn+np)

]}
.

(21)
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6. Applications to Poisson’s ratio

We now concentrate on general properties of the Poisson’s ratio, applying the for-
malism for the stationary value to different situations. We begin with the general
case of a plane of material symmetry in an orthotropic material.

6.1. Plane of symmetry in orthotropic material. We assume the stretch direction
n lies in a plane of symmetry of an orthotropic material, and the direction of con-
traction m lies (a) perpendicular to the plane or (b) in the plane. This configuration
includes all planes in hexagonal materials that contain the axis of symmetry, and
therefore provides the stationary values of ν in materials with hexagonal symmetry
(transverse isotropy).

With no loss in generality, let e(0)
3 be the normal to the plane of symmetry and

let case (a) correspond to m = e3 and case (b) corresponds to m in the plane of
e(0)

1 , e(0)
2 . In both (a) and (b) n lies in the plane of e(0)

1 , e(0)
2 . Define the rotated axes

e1 = cos θ e(0)
1 + sin θ e(0)

2 , e2 = − sin θ e(0)
1 + cos θ e(0)

2 , e3 = e(0)
3 .

Let SIJ denote the compliances relative to the fixed set of axes {e(0)
1 , e(0)

2 , e(0)
3 },

and sIJ the compliances in the coordinates of the rotated axes. By definition of
a symmetry plane, all coefficients si jkl with index 3 appearing once or thrice are
zero. Then,

s11 =
S11S22 − S2

0

S11 + S22 − 2S0
+

1
4(S11 + S22 − 2S0)

( S22 − S11

S11 + S22 − 2S0
− cos 2θ

)2
, (22)

s12 = S12 +
1
4(S11 + S22 − 2S0) sin2 2θ, (23)

s13 =
1
2(S13 + S23) −

1
2(S23 − S13) cos 2θ, (24)

s16 =
1
4(S11 + S22 − 2S0)

( S22 − S11

S11 + S22 − 2S0
− cos 2θ

)
sin 2θ, (25)

s26 =
1
4(S11 + S22 − 2S0)

( S22 − S11

S11 + S22 − 2S0
+ cos 2θ

)
sin 2θ, (26)

s36 =
1
2(S23 − S13) sin 2θ, (27)

where S0 ≡ S12 + 2S66. Thus, in the two cases to be considered, we have n = e1

and s11 = 1/E(θ).

Case (a): m = e3 perpendicular to the plane of symmetry. We now consider station-
ary values of ν = ν13, for which the three conditions for stationary ν are, instead
of (9),

s14 = 0, 2νs16 + s36 = 0, (2ν − 1)s15 + s35 = 0. (28)

The first and last of these are automatically satisfied, based on the assumed mate-
rial symmetry. Using s16 and s36 from (22)–(27), the second of (28) implies that
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sin 2θ = 0, which is the exceptional case of prior symmetry, or that θ satisfies

cos 2θ =
S22 − S11

S11 + S22 − 2S0
+

1
ν

( S23 − S13

S11 + S22 − 2S0

)
.

Using this to eliminate cos 2θ from the expression for ν = ν13 = −s13/s11 yields a
quadratic equation for ν,

ν2
− νaν −

1
4ρa = 0,

where

νa =
(S0 − S22)S13 + (S0 − S11)S23

S11S22 − S2
0

, ρa =
(S23 − S13)

2

S11S22 − S2
0
.

Define E∗ and θ∗ by

E∗
=

S11 + S22 − 2S0

S11S22 − S2
0

,

then we may identify E∗ as the value of E(θ) when the second term on the RHS
of (22) vanishes, that is, E∗

= E(θ∗), where θ∗ satisfies

cos 2θ∗
=

S22 − S11

S11 + S22 − 2S0
. (29)

The angle θ∗ defines the direction at which E is stationary (maximum or minimum).
It exists iff the RHS of (29) lies between −1 and 1. Regardless of whether or not
the angle exists, it can be checked, νa = ν13(θ

∗) = −E∗s13(θ
∗). The value of

Young’s modulus in the stretch direction θ for the stationary value of ν satisfies

E∗

E
+

νa

ν
= 2.

In summary, the possible stationary values for stretch in the plane of symmetry
and the strain measured in the direction perpendicular to the plane are

νa± =
1
2νa ±

1
2

(
ν2

a + ρa)
1/2, (30)

and the stationary values occur if −1 < γa± < 1, where

γa± =
S22 − S11

S11 + S22 − 2S0
+

1
νa±

( S23 − S13

S11 + S22 − 2S0

)
,

in which case the direction of stretch is given by θ =
1
2 cos−1 γa±. Otherwise the

stationary values occur at θ = 0 and π/2.
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Case (b): m = e2 in the plane of symmetry. With n = e1 again, conditions (9)1

and (9)2 are met and only (9)3 is not automatically satisfied. Substituting the
expressions for s16 and s26 from (22)–(27) into equation (9)3 implies that either
sin 2θ = 0, which is simply the axial case, or

cos 2θ =
S22 − S11

S11 + S22 − 2S0
+

1
ν − 1

( S22 − S11

S11 + S22 − 2S0

)
.

Substituting this into the relation for ν = ν12, namely νsnn +s12 = 0, and eliminating
cos 2θ produces a quadratic equation in ν. The equation is most simply expressed
as a quadratic in the shifted Poisson’s ratio (ν − 1):

(ν − 1)2
− (νb − 1)(ν − 1) −

1
4ρb = 0,

where

νb = −1 − E∗
(
S12 − S0

)
, ρb =

(S11 − S22)
2

S11S22 − S2
0
.

That is, νb = ν12(θ
∗) = −E∗s12(θ

∗). Note that the value of Young’s modulus E in
the stretch direction θ satisfies

E∗

E
+

νb − 1
ν − 1

= 2.

In summary, the possible stationary values for stretch and strain both in the plane
of symmetry are

νb± =
1
2(νb + 1) ±

1
2

(
(νb − 1)2

+ ρb
)1/2

, (31)

and the stationary values occur if −1 < γb± < 1, where

γb± =
S22 − S11

S11 + S22 − 2S0
+

1
νb± − 1

( S22 − S11

S11 + S22 − 2S0

)
,

in which case the direction of stretch is given by θ =
1
2 cos−1 γb±.

6.2. Example: cubic materials. The general coordinate invariant form of the com-
pliance of a cubic material is [Walpole 1984]

S =

( 1
3κ

−
1

2µ2

)
J +

1
2µ1

I +

( 1
2µ2

−
1

2µ1

)
D, (32)

where I and J are fourth order isotropic tensors, Ii jkl =
1
2(δikδ jl + δilδ jk), Ji jkl =

1
3δi jδkl , and

D = aaaa + bbbb + cccc.

Here, the orthonormal triad {a, b, c} is coaxial with the cube axes. The condition
that the elastic strain energy is always positive definite is that the three moduli κ ,
µ1 and µ2 are positive. We use, for simplicity, crystallographic-type notation for
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unit vectors, e.g., pqr̄ where p, q and r are positive numbers, indicates the unit
vector (pa + qb − rc)/

√
p2 + q2 + r2.

We consider the stationary conditions (9) for stretch in the e1 direction and lateral
strain in the e2 direction. Since s14, s15, s16, s25 and s26 vanish for isotropic media,
it follows that the only contribution to these quantities is from the tensor D. We
may therefore rewrite the stationary conditions (9) as

D14 = 0, 2νD15 + D25 = 0, (2ν − 1)D16 − D26 = 0, (33)

where D14 = D1123, etc. The realm of stretch directions that needs to be considered
may be reduced to those defining the irreducible 1

48 th of the surface of the unit
sphere. This in turn is defined by 1

48 th of the surface of the cube (see figure),
where the vertices of the triangle correspond to the directions 001, 110, and 111.
In a separate paper [Norris 2006b] it is shown that the extreme values of ν do not
occur within the interior of the triangle. It turns out that the extreme values are only
possible for stretch direction e1 along 001, 110, or in certain cases, for e1 located
along the edge between 110 and 111. In the case that e1 = 001, the lateral direction
e2 may be any orthogonal direction, and when e1 = 110 the lateral directions are
001 or 11̄0, each of which can correspond to the minimum or maximum for ν,
depending on the elastic parameters κ , µ1 and µ2. It is clear from the symmetry
of the situation that the quantities D14, D15, D16, D25 and D26 vanish identically
for e1 along 001 or 110 with e2 as described. A full description of the possible
extreme values of ν in cubic materials is involved but complete, and we refer to
[Norris 2006b] for details.

To summarize the findings of Norris [2006b] regarding solutions of Equations
(33): all possible stretch directions which solve the three stationary conditions
are confined to the symmetry plane with normal 110, and equivalent planes of

001

110

111

Figure 1. The irreducible 1
48 th of the cube surface is defined by

the isosceles triangle with vertices as shown.
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symmetry. We can therefore apply the results for a plane of orthotropic symmetry.
Explicit calculation from (32) gives S66 = (4µ1)

−1, S12 = S23 = (9κ)−1
− (6µ2)

−1,
S13 = S12 + χ/4, S0 = S12 + 2S66, S11 = S0 + χ/4, S22 = S0 + χ/2, where
χ = (µ2)

−1
− (µ1)

−1. Thus,

νa = νb = ν111 ≡
3κ − 2µ1

6κ + 2µ1
, ρa = ρb = ρ ≡

1
6(ν111 + 1)

(µ1

µ2
− 1

)
, (34)

where ν111 = ν(111, m) is the Poisson’s ratio for stretch in the 111 direction, and
is independent of the lateral direction m.

The actual values of the possible extrema for ν can be obtained from equations
and (30), (31) and (34). Skipping over the unedifying details, see [Norris 2006b],
it can be shown that only the stationary values νa− and νb+ are possible global
extrema,

νa− =
1
2ν111 −

1
2

√
ν2

111 + ρ, νb+ =
1
2

(
ν111 + 1

)
+

1
2

√(
ν111 − 1

)2
+ ρ.

Note that ν111 is independent of µ2, which only enters these expressions via the
term ρ. The extremely large values of Poisson’s ratio discovered by Ting and Chen
[2005] correspond to ρ � 1, which can occur if µ2/µ1 � 1. Under this circum-
stance νa− is large and negative, νb+ is large and positive, and the magnitudes
are, in principle, unbounded [Ting and Chen 2005; Ting and Barnett 2005; Norris
2006b].

The directions associated with the global extrema are given by

cos 2θa− =
1
3 −

1
3νa−

, cos 2θb+ =
1
3 +

1
3(νb+ − 1)

.

Both directions bifurcate from θ = 0 [Norris 2006b], and therefore these extreme
values only occur if ν < −

1
2 or ν > 3

2 , respectively. A complete description of the
extrema for all possible values of the elastic moduli is given by Norris [2006b].

6.3. Application to generally anisotropic materials. We first present a result that
suggests a simple algorithm for searching for global extreme values of ν in gener-
ally anisotropic materials.

6.3.1. A local min-max result for Poisson’s ratio. The tensor of second derivatives
of ν(n, m) at the stationary point D(ν) must be positive or negative definite in order
that the stationary point be a minimum or a maximum, respectively. Consider a
possible minimum, then a necessary although not sufficient condition is that the
three diagonal elements of D(ν) are positive. In particular, Equation (17) gives

D(ν)
: nn = νnp − νnm ≥ 0.
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This implies that ν = νnm must be strictly less than νnp. At the same time, the
stationary condition d(ν)

= 0 must hold, and in particular,

d(ν)
· n = 0 ⇒ ε : mp = 0 for σ = σ nn. (35)

This implies that the shear strain εmp in the m, p-plane is zero. Hence, for any unit
vector r ⊥ n, we have

ε : rr = (r · m)2 εmm + (r · p)2 εpp,

or
νnr = (r · m)2 νnm + (r · p)2 νnp = νnm + (r · p)2 (

νnp − νnm
)
≥ νnm,

with equality only for r = m. Thus:

Lemma 1. If νnm is a minimum (maximum) value, then it is also a minimum (max-
imum) among all possible νnr for r in the plane perpendicular to n.

This result is a direct consequence of the general expression for D(ν). It implies
that if we can satisfy (35) then the values of νnm and νnp are the extreme values
for the given stretch direction n. We next show how this single condition can be
achieved.

6.3.2. Satisfaction of one extremal condition. The stationary values of Poisson’s
ratio occur, in general, for stretch directions at which the vector d(ν) of Equation
(16) vanishes. We now show that one of the three components can be made to
vanish; specifically, d(ν)

· n = A : (mp + pm) is zero for an appropriate choice of
the orthogonal directions m and p.

We use the fact that the appropriate pair m and p correspond to stationary values
of A : mm and A : pp. These satisfy A : mm + A : pp =trA − 1, so a maximum in
one implies a minimum for the other. In order to find these directions for a given
n, consider the function of m:

g(m) ≡ A : mm − λm · m − 2αm · n.

Setting to zero the gradient with respect to m implies that m satisfies

m = α
(
A − λI

)−1n.

The scalars λ and α follow by requiring that m · n = 0 and m · m = 1, respectively.
The former implies that λ satisfies

n ·
(
A − λI

)−1n = 0.

This condition can be rewritten by expanding the inverse in terms of the cofactor
matrix of

(
A−λI

)
, and using the property A : nn = 1, which yields a quadratic in λ:

λ2
+ λ

(
1 − tr A

)
+ adj(A) : nn = 0. (36)
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Here adj(A) is the adjoint matrix. If A is invertible, then adj(A) = (detA)A−1, and
more generally the adjoint is the transpose of the cofactor matrix. Thus for any
type of anisotropy, and for any direction n, it is a straightforward to determine the
appropriate orthogonal pair m, p, which automatically give d(ν)

· n = 0. Finding
the right axes requires solving the quadratic (36) for λ. The associated values of
Poisson’s ratio are the maximum and minimum for the given direction n. In this
way, finding extremal values of Poisson’s ratio for all possible n is reduced to
seeking values which satisfy the remaining two conditions:

(2νA + B) : np = 0,
[
(2ν − 1)A + B

]
: nm = 0,

or equivalently, 2νs15 + s25 = 0 and (2ν − 1)s16 + s26 = 0, respectively. This
is the strategy used to determine the global extrema of ν in materials with cubic
symmetry [Norris 2006b].

6.3.3. Algorithm for finding global extreme values of ν. Rather than searching for
directions n which satisfy the three stationary conditions on ν, Lemma 1 suggests
that a simple search for maximum and minimum values of Poisson’s ratio can be
effected as follows. For a given n define the pair ν±(n) by

ν±(n) = −A : m(A)
± m(A)

± ,

m(A)
± = ‖

(
A − λ

(A)
± I

)−1n‖
−1 (

A − λ
(A)
± I

)−1n,

λ
(A)
± =

1
2

(
tr A − 1

)
±

1
2

[(
tr A − 1

)2
− 4 adj(A) : nn

]1/2
.

The search for global extrema is then a matter of finding the largest and smallest
values of ν±(n) by searching over all possible directions n. In practice, even for
triclinic materials with no symmetry, the search only has to be performed over half
of the unit sphere ‖n‖ = 1, such as n · e ≥ 0 for some fixed direction e. In this
way, the numerical search is equivalent in complexity to that of finding the global
extrema of Young’s modulus.

This algorithm was applied to data for two crystals of monoclinic symmetry:
Cesium dihydrogen phosphate and Lanthanum niobate, with the results in Table 1.
The numerical results were obtained by using a 100×100 mesh for the hemisphere
‖n‖ = 1, n · e2 ≥ 0. It was found that the extreme values of the engineering moduli
are not sensitive to the mesh size, although the values of the directions do change
slightly.

7. Applications to the shear modulus

If we compare the vector derivative function for the shear modulus, d(G) of (20),
with d(ν) of (16), we note that the components in the n direction have a similar
form, but with different matrices involved. Thus, it is N for d(G)

· n, while for
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Material quantity value n1 n2 n3

Cesium dihydrogen Emax 19.3 0.44 0.76 0.47
phosphate Emin 0.53 0.99 0.00 0.06
(CsH2PO4) Gmax 12.2 0.42 0.71 −0.56

Gmin 0.20 0.68 0.00 0.73
νmax 2.70 −0.23 0.82 0.52
νmin −1.93 −0.49 0.85 −0.20

Lanthanum niobate Emax 154.8 0.45 0.87 −0.21
(LaNbO4) Emin 2.27 −0.50 0.00 0.87

Gmax 72.57 −0.28 0.71 −0.64
Gmin 0.70 −0.96 0.00 0.27
νmax 3.95 0.00 1.00 0.00
νmin -3.01 0.00 1.00 0.00

Table 2. Extreme values of E , G and ν for two materials of mon-
oclinic symmetry with symmetry plane n2 = 0. Units of E and G
are GPa. Cesium dihydrogen phosphate: s11 = 1820.0, s22 = 103.0,
s33 = 772.0, s44 = 33.25, s55 = 112.5, s66 = 29.25, s12 = −219.0,
s13 = −1170.0, s23 = 138.0, s15 = 124.5, s25 = −75.0, s35 = −90.5,
s46 = 8.25. Lanthanum niobate: s11 = 66.8, s22 = 14.8, s33 = 146.0,
s44 = 5.7, s55 = 265.0, s66 = 4.675, s12 = 16.9, s13 = −94.8, s23 =
−30.8, s15 = 118.0, s25 = 45.6, s35 = −186.5, s46 = 0.95. Units in
(TPa)−1. (Data from Every and McCurdy [1992]).

d(ν)
· n it is A. The properties of the second derivatives D(G)

: nn and D(ν)
: nn are

similarly related. Proceeding with the same arguments as for the Poisson’s ratio,
we deduce:

Lemma 2. If Gnm is a minimum (maximum) value, then it is also a minimum
(maximum) among all possible Gnr for r in the plane perpendicular to n.

This in turn leads to a similar method for finding the global extrema of G.

7.1. Algorithm for finding global extreme values of G. Define the pair G±(n) by

G±(n) =
E(n)

N : m(N )
± m(N )

±

,

m(N )
± =

∥∥(
N − λ

(N )
± I

)−1n
∥∥−1 (

N − λ
(N )
± I

)−1n,

λ
(N )
± =

1
2

(
tr N − 1

)
±

1
2

[(
tr N − 1

)2
− 4 adj(N) : nn

]1/2
.
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Then the global extreme values of G can be found by searching over n only. Thus,
the problem of finding the global extrema of the shear modulus is reduced to the
same level of complexity as searching for the maximum and minimum Young’s
modulus. Table 1 summarizes the extreme values of G found using this algorithm
for two crystals of monoclinic symmetry.

8. Conclusions

The results of this paper provide a consistent framework for determining the ex-
treme values of the three engineering moduli in materials of any crystal symmetry
or none. General conditions have been derived which must be satisfied at stationary
values of ν, E and G. These are equations (9), (10) and (11), which have also
been cast in forms that are independent of the coordinates used, in equations (16),
(18) and (20), respectively. The associated three hessian matrices which determine
the local nature of the stationary value, maximum, minimum or saddle, are given
in equations (17), (19) and (21). The stationary conditions for Poisson’s ratio
simplify for stretch in a plane of orthotropic symmetry, for which there are at most
4 stationary values of ν. Two can occur for in-plane stretch and strain, and the
other two for out-of-plane strain. This implies that transversely isotropic materials
have at most four stationary values of Poisson’s ratio. The results for the plane of
symmetry also reproduce known results for cubic materials [Norris 2006b]. The
hessian matrices for ν and G lead to algorithms for finding the extreme values.
The key is to remove the dependence on the m direction by explicit representation
of the maximum and minimum for a given n direction. The algorithms have been
demonstrated by application to materials of low symmetry.
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