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SPECTRAL ELEMENT MODELING AND ANALYSIS OF AN
AXIALLY MOVING THERMOELASTIC BEAM-PLATE

KYUNGSOO KWON AND USIK LEE

Axially moving thin-walled structures exposed to sudden external thermal loads
may experience severe vibrations. For accurate predictions of the thermally in-
duced vibrations, this paper develops a spectral element model for the axially
moving beam-plates subjected to sudden external thermal loads. The spectral
element model is formulated from the frequency-dependent dynamic shape func-
tions which satisfy the governing equations in the frequency domain. Thus,
when compared with the conventional finite element model in which simple
polynomials are used as the shape functions, the spectral element model provides
exact solutions by treating a whole uniform structure member as a single finite
element, regardless of its length. Numerical studies are conducted to evaluate
the present spectral element model and also to investigate the dynamic character-
istics of an axially moving beam-plate subjected to a sudden thermal load on its
upper surface.

1. Introduction

A sudden thermal load applied to a structure may induce rapid movements in that
structure, causing it to vibrate. These thermally induced vibrations may be encoun-
tered, for example, in high-speed modern aircraft subjected to aerodynamic heating,
nuclear reactors in extremely high temperature and temperature gradient environ-
ments, high-speed propulsion units, and galvanized steel strips passing through a
hot zinc tank.

The thermally induced vibration of a beam subjected to a suddenly applied heat
flux distributed along its span was studied in [Boley 1956]. Since then many studies
have been conducted for various thermoelastic structures such as beams [Boley
and Barber 1957; Yu 1969; Manolis and Beskos 1980; Massalas and Kalpakidis
1984; Eslami and Vahedi 1989; Kidawa-Kukla 1997], laminated beams [Al-Huniti
2004], plates [Boley 1956; Kozlov 1972; Takeuti and Furukawa 1981; Massalas
et al. 1982; Trajkovski and C̆ukić 1999; Verma 2001; Arafat et al. 2003; Al-Huniti
2004], laminated plates [Chandrashekhara and Tenneti 1994; Mukherjee and Sinha

Keywords: Thermally induced vibration, beam-plate, axially moving structure, spectral element
model, spectral element analysis, dynamic characteristics.
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1996], panels [Sharma 2001; Oguamanam et al. 2004], cylinders [Takeuti et al.
1983], and so forth. [Lee 1985] conducted thermoelastic damping analysis for the
beams, plates and shells undergoing flexural vibration, and [Kinra and Milligan
1994] considered thermoelastic damping for beams. [Tauchert 1991] presented
an extensive review on the subject of thermally induced vibrations of plates, and
[Thornton 1992] made a survey of the literature on thermal structures, mostly fo-
cusing on aerospace applications. To eliminate the paradox of infinite velocity
of heat propagation in the classical theory of thermoelasticity [Biot 1956], some
researchers such as [Lord and Shulman 1967] developed the generalized theory of
thermoelasticity by introducing thermal relaxation times. However, as the thermal
relaxation effect is very small at high temperatures [Lord and Shulman 1967], the
classical theory of thermoelasticity will be adopted in this study. In the existing
literatures, various solution techniques have been used: they include the Green
function method [Kidawa-Kukla 1997], integral transformation method [Massalas
et al. 1982; Trajkovski and C̆ukić 1999; Sharma 2001; Al-Huniti 2004], finite
element method [Eslami and Vahedi 1989; Chandrashekhara and Tenneti 1994;
Mukherjee and Sinha 1996; Oguamanam et al. 2004], and the modal analysis
method [Lee 1985].

Existing studies on thermally induced vibration have focused mostly on sta-
tionary (not axially moving) thermoelastic structures. Recently, Al-Huniti [2004]
considered the dynamics of a stationary laminated beam under the effect of a mov-
ing heat source. However, to our best knowledge, the dynamics of axially moving
thermoelastic structures such as the galvanized steel strips passing through a hot
zinc tank has not been investigated. Furthermore, the spectral element method
(SEM) has not been applied to such axially moving thermoelastic structures. The
SEM is an element method, like the finite element method (FEM). The fundamental
differences from FEM are:

(1) The SEM uses a spectral element matrix (exact dynamic stiffness matrix),
which is formulated in the frequency domain by using the dynamic (frequency-
dependent) shape functions exactly solved from governing equations.

(2) The FFT algorithm is used to efficiently reconstruct the time domain response
from the frequency domain solution. Because no approximation or assump-
tion is made in the course of spectral element formulation, SEM indeed pro-
vides exact solutions and thus it is well recognized as an exact solution method
[Lee and Leung 2000; Lee 2004].

In this paper we develop an SEM for an axially moving thermoelastic beam-
plate and conduct a spectral element analysis to investigate the dynamic behavior
of an axially moving beam-plate subjected to a sudden temperature change on its
surface.
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Figure 1. Geometry of an axially moving beam-plate.

2. Derivation of the governing equations

2A. Equations of motion. Consider a thin beam-plate moving in the x (axial) di-
rection at speed c, as shown in Figure 1. The beam-plate has thickness h and width
b. The material properties of the beam-plate are given by Young’s modulus E and
Poisson’s ratio ν. Assume that the beam-plate has a small amplitude vibration and
that its displacements don’t vary along the width direction as the word ‘beam-plate’
implies.

Using Kirchhoff’s hypothesis, one can write the displacements as

W (x, t)= w(x, t),

U (x, z, t)= u(x, t)− zw′(x, t),
(1)

where w(x, t) is the displacement of the midplane of the beam-plate in the z direc-
tion, u(x, t) the displacement in the x direction, z is the transverse distance from
the midplane to the point of interest on the cross-section of the beam-plate, and
the prime denotes the derivative with respective to x . From (1), the strain in the x
direction can be readily obtained as

εxx = U ′(x, z, t)= u′(x, t)− zw′′(x, t). (2)

The stress in the x direction, taking into account the thermal stress, is given by
[Ugral 1999]

σxx =
E

1 − ν2 εxx −
Eα

1 − ν
1T (x, z, t), (3)
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where 1T (x, z, t) is the difference between the absolute temperature T (x, z, t)
and the reference, stress-free absolute temperature T0 as

1T (x, z, t)= T (x, z, t)− T0.

Using (2) and (3) we can derive the strain energy P as

P =
1
2

∫ L

0

∫ h/2

−h/2
σxxεxx bdz dx =

1
2

∫ L

0
(Dw′′2

+ E Au′2
+ MTw

′′
− NT u′) dx, (4)

where L is the span between two simple supports (see Figure 1), A is the cross-
sectional area of the beam-plate, and the following definitions are used:

D =
E I

(1 − ν2)
, I =

bh3

12
, E A =

E A
1 − ν2 . (5)

In Equation (4), MT and NT are the thermal moment and thermal (axial) force,
defined by

MT (x, t)=
Eαb
1 − ν

∫ h/2

−h/2
1T (x, z, t)z dz,

NT (x, t)=
Eαb
1 − ν

∫ h/2

−h/2
1T (x, z, t) dz.

(6)

Similarly, by using (1), the kinetic energy K can be derived as

K =
ρ

2

∫ L

0

∫ h/2

−h/2

(
(c + U̇ )2 + (Ẇ + cW ′)2

)
b dz dx

=
ρ

2

∫ L

0

(
A(c + u̇)2 + A(ẇ+ cw′)2 + I ẇ′2) dx .

(7)

Finally, the virtual work is given by

δW =

∫ L

0

(
px(x, t)δu(x, t)+ pz(x, t)δw(x, t)

)
dx

+ M1(t)δφ1(t)+ M2(t)δφ2(t)+ V (t)1δw1(t)

+ V2(t)δw2(t)+ N1(t)δu1(t)+ N2(t)δu2(t), (8)

where px(x, t) and pz(x, t) are distributed loads acting on the beam-plate in the
x and z directions. Mi , Vi and Ni (i = 1, 2) represent the boundary moments,
transverse shear forces and axial forces applied at x = 0 and L , respectively. The
transverse displacement, axial displacement and slope (φ = ∂w/∂x) at boundaries
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are defined by
w1(t)= w(0, t), w2(t)= w(L , t),

φ1(t)= w′(0, t), φ2(t)= w′(L , t),

u1(t)= u(0, t), u2(t)= u(L , t).

The equations of motion and the relevant boundary conditions of the beam-plate
can be derived from Hamilton’s principle:∫ t2

t1
(δK − δP + δW ) dt = 0.

Substituting (4), (7), and (8) into this equality and integrating by parts yields∫ t2

t1

∫ L

0

(
−Dw′′′′

− ρAc2w′′
− 2ρAcẇ′

− ρAẅ+ ρ I ẅ′′
−

1
2 M ′′

T + pz
)
δw dx dt

+

∫ t2

t1

∫ L

0

(
−ρAü + E Au′′

−
1
2 N ′

T + px
)
δu dx dt

+

∫ t2

t1

(
−M(x, t)δφ

∣∣L
0 + M1δφ1 + M2δφ2 −V (x, t)δw

∣∣L
0 +V1δw1 +V2δw2

−N (x, t)δu
∣∣L
0 + N1δu1 + N2δu2

)
dt = 0, (9)

where the limits 0 and L refer to the variable x , and where

M(x, t)= Dw′′
+

1
2 MT ,

V (x, t)= −Dw′′′
− ρhc2w′

−
1
2 M ′

T − ρAcẇ+ ρ I ẅ′,

N (x, t)= E Au′
−

1
2 NT .

(10)

From the first two integrals in (9) we obtain the equations of motion:

E Au′′
− ρAü = −px(x, t)+ 1

2 N ′

T , (11)

Dw′′′′
+ ρAc2w′′

+ 2ρAcẇ′
− ρ I ẅ′′

+ ρAẅ = pz(x, t)− 1
2 M ′′

T . (12)

The boundary conditions can be obtained from the last integral of (9) as

M(0, t)= −M1(t) or φ(0, t)= φ1(t),

M(L , t)= M2(t) or φ(L , t)= φ1(t),

V (0, t)= −V1(t) or w(0, t)= w1(t),

V (L , t)= V2(t) or w(L , t)= w2(t),

N (0, t)= −N1(t) or u(0, t)= u1(t),

N (L , t)= N2(t) or u(L , t)= u2(t).

(13)
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2B. Heat conduction equation. The temperature field T (x, z, t) or 1T (x, z, t) is
governed by the heat conduction equation. The heat conduction equation can be
derived from the law of energy conservation as [Lee 1985; Özisik 1993]

−q ′

x − q ′

z −
T0αE
1−2ν

∂e
∂t

= ρcp
∂T
∂t
, (14)

where α is the coefficient of thermal expansion and cp is the specific heat at constant
strain. The first two terms in the left of Equation (14) represent the net energy
inflow and qx and qz are the heat fluxes per unit area in the x and z directions,
respectively, defined by

qx(x, z, t)= −kT ′(x, z, t)+ ρcpc1T (x, z, t),

qz(x, z, t)= −kT ◦(x, z, t),
(15)

where k is the thermal conductivity of the medium. The circle (◦) symbol denotes
the derivative with respective to z and this notation will be used throughout. Notice
that the effect of the moving speed c is taken into account in the heat flux qx

[Özisik 1993; Beck and McMasters 2004]. The term on the right in Equation (14)
represents the energy stored in the structure. The third term on the left represents
the rate of thermal energy generation due to elastic deformation, where e(x, z, t)
is the dilatation defined by [Lee 1985; Ugral 1999]

e = εxx + εyy + εzz ∼=

(1−2ν
1−ν

)
(u′

− zw′′)+
(1+v

1−ν

)
α1T ∼=

(1+v

1−ν

)
α1T, (16)

where εxx , εyy, εzz are the normal strains in the x, y, z directions. In (16), the strain
εyy is neglected because we are considering a beam-plate. The dilatation due to
the pure elastic deformation is also neglected in the last expression of (16) because
its effect on the temperature change will be a small, secondary effect.

Substituting (15) and (16) in (14) gives the heat conduction equation as

−k(T ′′
+ T ◦◦)+ ρcpcT ′

+ (T0α
2 Eν + ρcp)Ṫ ∼= 0, (17)

where

Eν =
1 + v

(1 − 2ν)(1 − ν)
E . (18)

In deriving the heat conduction equation, we have implicitly assumed that the
heating of the plate will not exceed the limit where the material’s thermal and
mechanical properties become temperature-dependent. In addition, we will assume
that the beam-plate is subject to the thermal loads applied only on its top or bottom
surface and that the thermal loads do not vary along the width direction, y. Because
of the geometry of beam-plate and the y-axis independence of thermal loads, the
instantaneous temperature variation due to the sudden temperature change on the
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top or bottom surface of beam-plate will be more significant in the thickness direc-
tion than in the in-plane direction. Accordingly, one may assume the temperature
as the function of z and t to simplify (17) as follows:

kT ◦◦
−
(
T0α

2 Eν + ρcp
)
Ṫ = 0. (19)

Once the proper thermal boundary conditions are specified for a given problem,
one can readily solve Equation (18) for T (z, t) and then apply the solution to
Equation (11) to investigate the thermal-induced vibration of a beam-plate. Notice
that, because the temperature will be assumed in this study as the function of z
and t only, the thermal moment MT and thermal force NT defined by Equation
(6) will be functions of t only. In this case, the last terms in (11) will vanish
and the thermal loads will affect the vibration of beam-plate through the boundary
conditions, which can be guessed from Equations (10) and (13).

3. Spectral element formulation

3A. Brief review of DFT theory. (For more details, see for instance [Newland
1993].) In discrete Fourier transform (DFT) theory, a periodic function of time
x(t) with period T can be always expressed by the Fourier series as

x(t)=

∞∑
n=−∞

Xneiωn t , (20)

where i =
√

−1, ωn = n(2π/T ) = nω1 are the discrete frequencies, and Xn are
constant Fourier (or spectral) components given by

Xn =
1
T

∫ T

0
x(t)e−iωn t dt (n = 0, 1, 2, . . . ,∞). (21)

Equations (20) and (21) are the continuous Fourier transforms pair for a periodic
function.

Although x(t) is a continuous function of time t , it is often the case that only
sampled values of the function are available, in the form of a discrete time series
{x(tr )}. If N is the number of samples, all equally spaced with a time interval
1 = T/N , the discrete time series are given by xr = x(tr ), where tr = r1 and
r = 0, 1, 2, . . . , N − 1. The integral in Equation (21) can be replaced with the
summation as follows:

Xn =

N−1∑
r=0

x(tr )e−iωn tr (n = 0, 1, 2, . . . , N−1), (22)
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which is the DFT of the discrete time series {xr }. Any typical value xr of the series
{xr } can be obtained from the synthesis equation

x(tr )=
1
N

N−1∑
n=0

Xneiωn tr (r = 0, 1, 2, . . . , N−1), (23)

which is the inverse discrete Fourier transform (IDFT). Thus Equations (22) and
(23) represent the DFT-IDFT pair. Although (22) is an approximation of (20), it
allows all discrete time series {xr } to be regained exactly [Newland 1993]. The
Fourier components Xn in (23) can normally be arranged as

X N−n = X∗

n (n = 0, 1, 2, . . . , N/2),

where ∗ denotes complex conjugation. X N/2 corresponds to the highest frequency
ωN/2 = (N/2)ω1, the Nyquist frequency.

The fast Fourier transforms (FFT) is an ingenious computer algorithm that per-
forms the synthesis analysis extremely efficiently, in time logarithmic rather than
linear in N . While the FFT-based spectral analysis uses a computer, it is not a
numerical method in the usual sense, because the analytical descriptions of Equa-
tions (22) and (23) are retained.

3B. Formulation of the spectral element matrix. Based on DFT theory, assume
the solutions of Equation (11) in spectral form are

u(x, t)=

N−1∑
n=0

Un(x)eiωn t , w(x, t)=

N−1∑
n=0

Wn(x)eiωn t , (24)

where Un(x) and Wn(x), for n = 0, 1, . . . , N−1, are the spectral components of
the dynamic responses u(x, t) and w(x, t). The accuracy of dynamic responses
may depend on how many spectral components are taken into account in the FFT-
based spectral analysis, for a chosen time window T . Similarly, one can express
the external loads and thermal loads in the spectral forms as

px(x, t)=

N−1∑
n=0

Pxn(x)eiωn t , pz(x, t)=

N−1∑
n=0

Pzn(x)eiωn t ,

NT (t)=

N−1∑
n=0

NT neiωn t , MT (t)=

N−1∑
n=0

MT neiωn t ,

(25)

where Pxn(x), Pzn(x), NT n(x) and MT n(x), for n = 0, 1, . . . , N−1, are the spectral
components of px(x, t), py(x, t), NT (t), and MT (t). The spectral components
MT n and NT n in Equation (25) are constant, rather than functions of x , because
the temperature is assumed to vary only in the thickness (z) direction.
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Substituting (24) and (25) into (11), we get

E AU ′′

n + ρAω2
nUn = Fxn,

DW ′′′′
n +

(
ρAc2

+ ρ Iω2
n
)
W ′′

n + 2iρAcωnW ′

n − ρAω2
nWn = Fzn,

(26)

where

Fxn(x)= −Pxn +
1
2 N ′

T n = −Pxn, Fzn(x)= Pzn −
1
2 M ′′

T n = Pzn. (27)

Here the thermal force and moment terms do not appear because temperature is
assumed to vary only in the thickness direction. In a similar way, the resultant
moment, transverse shear force and axial force defined in (10) can be also expressed
in spectral form as

Nn(x)= E AU ′

n −
1
2 NT n,

Vn(x)= −DW ′′′

n −
(
ρAc2

+ ρ Iω2
n
)
W ′

n − iρAcωnWn,

Mn(x)= DW ′′

n +
1
2 MT n,

(28)

where Nn(x), Vn(x) and Mn(x) are the spectral components of N (x, t), V (x, t)
and M(x, t), respectively.

The spectral element formulation begins with the governing equations without
external forces [Lee and Leung 2000; Lee 2004]. Therefore, the homogeneous
form of governing equations can be deduced from (26) as

E AU ′′

n + ρAω2
nUn = 0,

DW ′′′′
n +

(
ρAc2

+ ρ Iω2
n
)
W ′′

n + 2iρAcωnW ′

n − ρAω2
nWn = 0.

(29)

The general solutions of (29) can be assumed to be

Un(x)= Aneκn x , Wn(x)= Bneλn x ,

where κn and λn are the wavenumbers for the axial and transverse vibration mode,
respectively. Substituting these equalities into (29) yields the dispersion relations

E Ak2
n + ρAω2

n = 0,

Dλ4
n +

(
ρAc2

+ ρ Iω2
n
)
λ2

n + 2iρAcωnλn − ρAω2
n = 0.

From this, two wavenumbers knr (r = 1, 2) can be obtained for axial vibration
modes and four wavenumbers λnr (r = 1, 2, 3, 4) for the transverse vibration modes.
By using the wavenumbers thus computed, the general solutions of the dispersion
relations can expressed in summation form as

Un(x)=

2∑
r=1

Anr eknr x , Wn(x)=

4∑
r=1

Bnr eλnr x ,
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Figure 2. Sign convention for finite beam-plate element.

or in matrix-vector multiplication form as

Un(x)=
[
EUn(x;ωn)

]
{Cn},

Wn(x)=
[
EW n(x;ωn)

]
{Cn},

(30)

where [
EUn(x;ωn)

]
=
[
ekn1x 0 0 ekn2x 0 0

]
,[

EW n(x;ωn)
]
=
[
0 eλn1x eλn2x 0 eλn3x eλn4x

]
,

{Cn} =
{

An1 Bn1 Bn2 An2 Bn3 Bn4
}T
.

The constant vector {Cn} will be determined by the boundary conditions.
Now consider a finite beam-plate element of length l as shown in Figure 2.

The corresponding spectral components of the nodal degree of freedom (DOF) are
defined by

Un1 = Un1(0), Wn1 = Wn1(0), 8n1 = W ′

n1(0),

Un2 = Un2(l), Wn2 = Wn2(l), 8n2 = W ′

n2(l).

Applying these values to Equation (30) yields a relationship between the spectral
nodal DOF vector {dn} and the constant vector {Cn}:

{dn} =
[
Xn(ωn)

]
{Cn}, (31)

where {dn} =
{
Un1 Wn1 8n1 Un2 Wn2 8n2

}T and

[Xn] =



1 0 0 1 0 0
0 1 1 0 1 1
0 λn1 λn2 0 λn3 λn4

ekn1l 0 0 ekn2l 0 0
0 eλn1l eλn2l 0 eλn3l eλn4l

0 λn1eλn1l λn2eλn2l 0 λn3eλn3l λn4eλn4l


.
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One can use (31) to eliminate the constant vector {Cn} from Equation (30),
obtaining

Un(x)= [EUn][Xn]
−1

{dn} ≡ [NUn(x;ωn)]{dn},

Wn(x)= [EW n][Xn]
−1

{dn} ≡ [NW n(x;ωn)]{dn},
(32)

where [NUn] and [NW n] are the dynamic (frequency-dependent) shape function
matrices.

In the following, the well-known variational approach [Reddy 2002] is used to
formulate the spectral element matrix by using the displacement fields given by
Equation (32) and the temperature field given in the next section. The weak form
statements of the governing equations (26) are∫ l

0

(
E AU ′′

n + ρAω2
nUn + Pxn

)
δUn dx = 0,∫ l

0

(
DW ′′′′

n + (ρAc2
+ρ Iω2

n)W
′′

n + 2iρAcωnW ′

n − ρAω2
nWn − Pzn

)
δWn dx = 0.

Substituting the loading terms from (27) into these equalities and integrating by
parts yields∫ l

0

(
E AU ′

n δU
′

n −ρAω2
nUn δUn

)
dx −

∫ l

0
Pxn δUn dx −

1
2 NT n δUn

∣∣l
0−Nn δUn

∣∣l
0 = 0,∫ l

0

(
DW ′′

n δW ′′

n − (ρAc2
+ ρ Iω2

n)W
′

n δW ′

n + iρAcωn(W ′

n δWn − Wn δW ′

n)

−ρAω2
nWn δWn

)
dx−

∫ l

0
Pzn δWn dx+

1
2 MT n δW ′

n

∣∣l
0−Vn δWn

∣∣l
0−Mn δW ′

n

∣∣l
0 =0,

where Equation (28) has been used and where, as before, the limits 0 and l refer
to the variable x .

Substituting (32) into these two equalities yields

{δdn}
T (

[SUn]{dn} − { fUn}
)
= 0, {δdn}

T (
[SW n]{dn} − { fW n}

)
= 0, (33)

where

[SUn] =

∫ l

0

(
E A[N ′

Un]
T
[N ′

Un] − ρAω2
n[NUn]

T
[NUn]

)
dx,

[SW n] =

∫ l

0

(
D[N ′′

W n]
T
[N ′′

W n] − (ρAc2
+ ρ Iω2

n)[N ′

W n]
T
[N ′

W n]

+ iρAcωn
(
[NW n]

T
[N ′

W n]−[N ′

W n]
T
[NW n]

)
−ρAω2

n[NW n]
T
[NW n]

)
dx, (34)
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{ fUn}=
{

N1n 0 0 N2n 0 0
}T

+

∫ l

0
Pxn(x)[NUn]

T dx−
1
2 NT n[NUn(l)−NUn(0)]T,

{ fW n} =
{
0 V1n M1n 0 V2n M2n

}T
+

∫ l

0
Pzn(x)[NW n]

T dx

+
1
2 MT n

[
N ′

W n(l)− N ′

W n(0)
]T
.

The details of the matrices [SUn] and [SW n] are given in the Appendix.
Since {δdn} is arbitrary, the spectral element equation can be deduced from (33):

[Sn(ω)]{dn} = { fn}. (35)

Here
[Sn(ω)] = [SUn(ω)] + [SW n(ω)]

is the frequency-dependent spectral element matrix and

{ fn} = { fn}1 + { fn}2

is the spectral nodal force, where

{ fn}1 = {N1n V1n M1n N2n V2n M2n}
T ,

{ fn}2 =

∫ l

0
Pxn(x)[NUn]

T dx +

∫ l

0
Pzn(x)[NW n]

T dx

−
1
2 NT n[NUn(l)− NUn(0)]T

+
1
2 MT n[N ′

W n(l)− N ′

W n(0)]
T .

(36)

All spectral elements can be assembled in a completely analogous way to that
used in the conventional FEM. Assembling all spectral elements represented by
(35) and then applying appropriate boundary conditions yields a global system
equation in the form

[SG
n (ω)]{dG

n } = { fG
n }.

The natural frequencies ωNAT can be computed from the condition that the determi-
nant of global spectral stiffness matrix [SG

n ] should vanish at natural frequencies:

det[SG
n (ωNAT)] = 0.

3C. Temperature in the frequency domain. The approximate temperature field is
governed by Equation (18) and the thermal boundary conditions specified on the
upper and lower surfaces of the beam-plate. As done in the preceding section for
the displacements field, the temperature field can be also represented in the spectral
form as

T (z, t)=

N−1∑
n=0

Tn(z)eiωn t ,
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where Tn are the spectral components of temperature field T (z, t). Substituting
this equality into the heat conduction equation (18) yields

T ◦◦

n − iωnβ
2Tn = 0, (37)

where

β2
=

1
k

(
T0α

2 Eη+ ρcp
)
.

The general solution of Equation (37) can be readily obtained as

Tn(z)= Bn1e−τn z
+ Bn2eτn z, (38)

where

τn = β
√

iωnβ = (1 + i)β
√
ωn

2
. (39)

The constants Bn1 and Bn2 are determined by the thermal boundary conditions spec-
ified on the upper and lower surfaces of beam-plate. Once the spectral components
of temperature T are computed from (38), the corresponding spectral components
of thermal moment MT and thermal force NT in (36) can be readily computed
from (6) and (25).

4. Numerical results and discussion

As an illustrative example, a beam-plate which is axially moving over two simple
supports of distance L = 2 m is considered. The beam-plate has thickness h = 5 mm,
width b = 0.5 m, Young’s modulus E = 73 GPa, Poisson’s ratio ν = 0.33, mass
density ρ = 2770 kg/m3, thermal expansion coefficient α23.0 × 10−6/K , thermal
conductivity k = 177 W/mK, and specific heat cp = 875 J/kg· K. As shown in Figure
3, the temperature change is applied only to the middle part of the upper surface,
while the remaining parts are allowed to remain at room temperature T0.

First, to show the high accuracy of the present spectral element model, we
compare in Table 1 the natural frequencies obtained for the beam-plate using the

L1 L2 L1

T0 T0+∆T(t) T0

T0

L

Figure 3. Example problem: thermal boundary conditions on the
upper and lower surfaces of the beam-plate which moves axially
over two simple supports.
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c (m/s) Method N ω
(w)

1 ω
(w)

2 ω
(w)

3 ω
(w)

4 ω
(w)

5 ω
(u)
15

0

Exact − 3.083 12.329 27.743 49.321 77.066 679.78

SEM 1 3.083 12.329 27.742 49.317 77.057 679.78

FEM

10 3.083 12.331 27.758 49.403 77.371 680.48
20 3.083 12.330 27.744 49.327 77.087 679.95
50 3.083 12.329 27.743 49.322 77.067 679.81

100 3.083 12.329 27.743 49.322 77.067 679.79

4

SEM 1 2.886 12.197 27.626 49.210 76.955 679.78

FEM

10 2.886 12.198 27.643 49.298 77.274 680.48
20 2.886 12.197 27.628 49.220 76.985 679.95
50 2.886 12.197 27.627 49.215 76.966 679.81

100 2.886 12.197 27.627 49.215 76.965 679.79

8

SEM 1 2.248 11.790 27.277 48.889 76.649 679.78

FEM

10 2.248 11.792 27.296 48.983 76.982 680.48
20 2.248 11.790 27.280 48.899 76.681 679.95
50 2.248 11.790 27.279 48.893 76.660 679.81

100 2.248 11.790 27.279 48.893 76.659 679.79

12.33

SEM 1 0.0 11.012 26.631 48.297 76.087 679.78

FEM

10 0.0 11.015 26.654 48.402 76.446 680.48
20 0.0 11.012 26.634 48.307 76.120 679.95
50 0.0 11.012 26.633 48.301 76.098 679.81

100 0.0 11.012 26.633 48.301 76.097 679.79

Table 1. Natural frequencies (Hz) of a beam-plate obtained by the
present SEM, the FEM and the exact theory [Blevins 1979]. N is
the number of finite elements used in the analysis, c is the fluid
velocity, and the superscripts (w) and (u) stand respectively for
the transverse and axial displacement modes.

present spectral element model (SEM), the finite element model (FEM), and the
exact theory (only for stationary beam), for various speeds of the beam-plate. The
number of finite elements used in the FEM varies from 10 to 100, while only one
finite element is used for the SEM. The table shows that the SEM results are almost
same as the exact values when c = 0, and the FEM values converge to the SEM
values when c 6= 0 as the number of finite elements used in FEM is increased. This
suggests that the present spectral element model is very accurate.

One more thing we can observe from Table 1 is that in general the magni-
tude of natural frequency (real part of eigenfrequency) decreases as the moving
speed of beam-plate is increased. The first natural frequency becomes zero at
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Figure 4. Moving speed dependence of the lowest first three
eigenfrequencies of beam-plate.

c = 12.33 m/s, which is the divergence speed at which the divergence instability
may occur. Figure 4 shows in detail how the eigenfrequency of beam-plate varies
as the moving speed of beam-plate is increased. One can see from Figure 4 that
the beam-plate will have divergence instability at c = 12.33 m/s and coupled-mode
flutter instability at c = 25.35 m/s.
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Figure 5. Time history of the thermal load applied on the middle
region (L2) of the upper surface of beam-plate shown in Figure 3.

To investigate the thermally induced vibration of the beam-plate, the temper-
ature on the middle part of the upper surface of the beam-plate is suddenly el-
evated so that 1T = 20 K and the elevated temperature is sustained for 0.01
seconds from t = 0, as shown in Figure 5. Figure 6 shows the time history of
the temperature distribution through the thickness of the beam-plate, and Figure 7
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Figure 6. Time history of temperature distribution through the
thickness of beam-plate.
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Figure 7. Time histories of the thermal moment MT and thermal
force NT in the region L1 ≤ x ≤ (L − L2).

shows the corresponding thermal moment MT and thermal force NT in the region
L1 ≤ x ≤ L − L2. Notice that L1 = L3 = 0.8 m and L2 = 0.4 m. Figure 6 shows
that the temperature quickly spreads out to become symmetric with respect to the
middle plane of the beam-plane. Accordingly the thermal moment MT disappears
after about 0.05 seconds, while the thermal force NT converges to a small value.
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Figure 8. Comparison of the frequency response functions of the
axial and transverse displacements obtained by the present SEM
and FEM when c = 4 m/s and L2 = 0.2L .

Figure 8 compares the frequency response functions obtained by the present SEM
and FEM. Similarly Figure 9 compares the corresponding time responses. It is
clear from both figures that FEM results converge to SEM results as the number
of finite elements used in FEM is increased, which also proves the high accuracy
of the present spectral element model. Notice that the minimum number of finite
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Figure 9. Comparison of the axial and transverse displacements
obtained by the present SEM and FEM when c = 4 m/s and L2 =

0.2L .

elements used in SEM is three, because the beam-plate has temperature disconti-
nuities at x = L1 and x = L1 + L2.

Figure 10 shows the time responses of transverse displacement at three different
moving speeds of beam-plate. From Figure 10, one can observe that the period of
time response increases as the moving speed increases. As previously discussed,
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Figure 10. Transverse displacement versus moving speed c when
L2 = 0.2L .
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Figure 11. Transverse displacements when c = 12.33 m/s (diver-
gence speed) and c = 25.35 m/s (flutter speed) when L2 = 0.2L .

this is because the natural frequencies decrease as the moving speed increases.
Figure 11 shows the time responses at divergence speed c = 12.33 m/s and flutter
speed c = 25.35 m/s. As expected, the divergence and flutter instabilities indeed
occur at the divergence and flutter speeds, respectively.
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Figure 12. Axial and transverse displacements versus size of L2

on which thermal load is applied when c = 4 m/s.

Figure 12 shows the time responses of axial and transverse displacements de-
pending on the length of middle part (L2) subjected to the sudden temperature
change of Figure 5, when the moving speed of beam-plate is c = 4 m/s. The time
responses in both axial and transverse displacements tend to increase as the length
of middle part becomes larger.
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Figure 13. Axial and transverse displacements versus excita-
tion frequency f of the thermal load given by 1T (x, t) =

10 sin(2π f t)+ 20(K ) when c = 4 m/s and L2 = 0.2L .

Figure 13 compares the axial and transverse displacements excited by a har-
monic thermal load defined by 1T (x, t)= 10 sin(2π f t)+ 20(K ) when c = 4 m/s
and L2 = 0.2L . It is obvious from Figure 13 that the resonance in transverse vibra-
tion mode occurs when the excitation frequency f is close to the first transverse
natural frequency 2.886 Hz (see Table 1).
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Figure 14. Time histories of the thermal moment MT and thermal
force NT in the region L1 ≤ x ≤ (L − L2) versus duration of
thermal load 1t when c = 4 m/s.

Figure 14 shows the time histories of the thermal moments MT and thermal
forces NT in the region L1 ≤ x ≤ (L − L2) for different durations of thermal load,
1t , and Figure 15 shows the corresponding axial and transverse displacements. In
general, it is shown that the amplitudes of vibration become larger as the duration
of thermal load becomes larger.
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Figure 15. Time responses of axial and transverse displacements
versus duration of thermal load 1t when c = 4 m/s.
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5. Conclusions

We develop a spectral element model for an axially moving beam-plate subjected
to external thermal loads. The model is formulated from frequency-dependent
dynamic shape functions that are exact frequency-domain solutions of governing
equations, and it is evaluated by comparison with the conventional finite element
model. Numerical studies show the high accuracy of the present method and al-
low us to model the thermally induced vibration of an axially moving beam-plate
subjected to a sudden temperature change on the upper surface of the beam-plate.

Appendix

Matrices [SUn] and [SWn] in Equation (34).

[SUn] = [X−1
n ]

T
[RUn][X−1

n ], where [RUn] =



Yn11 0 0 Yn14 0 0
0 0 0 0 0 0
0 0 0 0 0 0

Yn14 0 0 Yn44 0 0
0 0 0 0 0 0
0 0 0 0 0 0


and

Yni j =
e(kni +knj )l − 1

kni + knj
(E Akni knj − ρAω2

n).

[SW n] = [X−1
n ]

T
[RW n][X−1

n ], where [RW n] =



0 0 0 0 0 0
0 Xn11 Xn12 0 Xn13 Xn14

0 Xn12 Xn22 0 Xn23 Xn24

0 0 0 0 0 0
0 Xn13 Xn23 0 Xn33 Xn34

0 Xn14 Xn24 0 Xn34 Xn44


and Xni j =

e(λni +λnj )l − 1
λni + λnj

(
Dλ2

niλ
2
nj − Rnλniλnj+iρAcωn(λni − λnj )− ρAω2

n
)
.

The finite element model

The finite element model used in this study is formulated by assuming the displace-
ment fields within a finite beam-plate element of length l as follows:

u(x, t)= [NU (x)]{d(t)}, w(x, t)= [NW (x)]{d(t)},

where {d(t)} is the nodal DOF vector defined by

{d(t)} =
{
u1(t) w1(t) φ1(t) u2(t) w2(t) φ2(t)

}T

and [NU (t)] and [NW (t)] are the shape function matrices defined by

[NU (x)] =
[
1 − ξ 0 0 ξ 0 0

]
and [NW (x)] =

[
0 NW 1 NW 2 0 NW 3 NW 4

]
,
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where ξ = x/ l and

NW 1 =2ξ 3
−3ξ 2

+1, NW 2 = lξ(ξ−1)2, NW 3 =−2ξ 3
+3ξ 2, NW 4 = lξ(ξ 2

−ξ).

Following the usual procedure [Reddy 2002], the finite element equation can be
derived as

[M]{d̈} + [C]{d̈} + [K ]{d} = { f},

where { f} is the nodal force vector defined by

{ f} =
{

N1−NT /2 V1 M1+MT /2 N2+NT /2 V2 M2−MT /2T }
+

∫ l

0

(
px [NU ]

T
+ pz[NW ]

T ) dx

and the finite element matrices [M], [C], and [K ] are given by

[M] =

∫ l

0

(
ρA[NU ]

T
[NU ] + ρA[NW ]

T
[NW ]−ρ I [N ′

W ]
T
[N ′

W ]
)

dx

=
ρAl
420



140 0 0 70 0 0
0 156 22l 0 54 −13l
0 22l 4l2 0 13l −3l2

70 0 0 140 0 0
0 54 13l 0 156 −22l
0 −13l −3l2 0 −22l 4l2


−
ρ I
30l



0 0 0 0 0 0
0 36 3l 0 −36 3l
0 3l 4l2 0 −3l l2

0 0 0 0 0 0
0 −36 −3l 0 36 −3l
0 3l −l2 0 −3l 4l2



[C] =∫ l

0

(
ρAc

(
[NW ]

T
[N ′

W ] − [N ′

W ]
T
[NW ]

))
dx =

ρAc
30



0 0 0 0 0 0
0 0 6l 0 30 −6l
0 −6l 0 0 6l −l2

0 0 0 0 0 0
0 −30 −6l 0 0 6l
0 6l l2 0 −6l 0



[K ] =

∫ l

0

(
E A[N ′

U ]
T
[N ′

U ] + D[N ′′

W ]
T
[N ′′

W ] + ρAc2
[N ′

W ]
T
[N ′

W ]
)
dx

=
E A
l



1 0 0 −1 0 0
0 0 0 0 0 0
0 0 0 0 0 0

−1 0 0 1 0 0
0 0 0 0 0 0
0 0 0 0 0 0


+

D
l3



0 0 0 0 0 0
0 12 6l 0 −12 6l
0 6l 4l2 0 −6l 2l2

0 0 0 0 0 0
0 −12 −6l 0 12 −6l
0 6l 2l2 0 −6l 4l2


−
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−
ρAc2

30l



0 0 0 0 0 0
0 36 3l 0 −36 3l
0 3l 4l2 0 −3l −l2

0 0 0 0 0 0
0 −36 −3l 0 36 −3l
0 3l −l2 0 −3l 4l2


.

References

[Al-Huniti 2004] N. S. Al-Huniti, “Dynamic behavior of a laminated beam under the effect of a
moving heat source”, J. Compos. Mater. 38:23 (2004), 2143–2160.

[Arafat et al. 2003] H. N. Arafat, W. Faris, and A. H. Nayfeh, “Vibrations and buckling of annular
and circular plates subjected to a thermal load”, in 44th AIAA/ASME/ASCE/AHS Structures, Struc-
tural Dynamics, and Materials Conference (Norfolk, VA, 2003), AIAA, 2003.

[Beck and McMasters 2004] J. V. Beck and R. L. McMasters, “Solutions for multi-dimensional
transient heat conduction with solid body motion”, Int. J. Heat Mass Transf. 47:17–18 (2004), 3757–
3768.

[Biot 1956] M. Biot, “Thermoelasticity and irreversible thermodynamics”, J. Appl. Phys. 27 (1956),
240–253.

[Blevins 1979] R. D. Blevins, Formulas for natural frequency and mode shape, Van Nostrand Rein-
hold, New York, 1979.

[Boley 1956] B. A. Boley, “Thermally induced vibrations of beams”, J. Aeronaut. Sci. 23 (1956),
179–181.

[Boley and Barber 1957] B. A. Boley and A. D. Barber, “Dynamic response of beams and plates to
rapid heating”, J. Appl. Mech. (Trans. ASME) 24 (1957), 413–416.

[Chandrashekhara and Tenneti 1994] K. Chandrashekhara and R. Tenneti, “Non-linear static and
dynamic analysis of heated laminated plates: a finite element approach”, Compos. Sci. Technol.
51:1 (1994), 85–94.

[Eslami and Vahedi 1989] M. R. Eslami and H. Vahedi, “Coupled thermoelasticity beam problems”,
AIAA J. 27:5 (1989), 662–665.

[Kidawa-Kukla 1997] J. Kidawa-Kukla, “Vibration of a beam induced by harmonic motion of a heat
source”, J. Sound Vib. 205:2 (1997), 213–222.

[Kinra and Milligan 1994] V. K. Kinra and K. B. Milligan, “A second-law analysis of thermoelastic
damping”, J. Appl. Mech. (Trans. ASME) 61 (1994), 71–76.

[Kozlov 1972] V. Kozlov, “Thermoelastic vibrations of a rectangular plate”, Prikl. Mat. Mekh 8
(1972), 123–127.

[Lee 1985] U. Lee, “Thermoelastic and electromagnetic damping analysis”, AIAA J. 23:11 (1985),
1783–1790.

[Lee 2004] U. Lee, Spectral element method in structural dynamics, Inha University Press, Incheon,
Korea, 2004.

[Lee and Leung 2000] U. Lee and A. Y. T. Leung, “The spectral element method in structural dy-
namics”, Shock Vibr. Dig. 32:6 (2000), 451–465.

[Lord and Shulman 1967] H. Lord and Y. Shulman, “A generalized dynamical theory of thermoelas-
ticty”, J. Mech. Phys. Solids 15:5 (1967), 299–309.

http://dx.doi.org/10.1177/0021998304045588
http://dx.doi.org/10.1177/0021998304045588
http://dx.doi.org/10.1016/j.ijheatmasstransfer.2004.03.012
http://dx.doi.org/10.1016/j.ijheatmasstransfer.2004.03.012
http://dx.doi.org/10.1063/1.1722351
http://dx.doi.org/10.1016/0266-3538(94)90159-7
http://dx.doi.org/10.1016/0266-3538(94)90159-7
http://pdf.aiaa.org/getfile.cfm?urlX=8%3CWIG7D%2FQKU%3E6B5%3AKF2Z%5CD%3A%2B82%2AH%25%5FOCK%0A
http://dx.doi.org/10.1006/jsvi.1997.0980
http://dx.doi.org/10.1006/jsvi.1997.0980
http://pdf.aiaa.org/getfile.cfm?urlX=7%3CWIG7D%2FQKU%3E6B5%3AKF2Z%5CD%3A%2B82%2A%28%24%5E%3F%40%20%0A
http://dx.doi.org/10.1016/0022-5096(67)90024-5
http://dx.doi.org/10.1016/0022-5096(67)90024-5


632 KYUNGSOO KWON AND USIK LEE

[Manolis and Beskos 1980] G. D. Manolis and D. E. Beskos, “Thermally induced vibrations of beam
structures”, Comput. Methods Appl. Mech. Eng. 21:3 (1980), 337–355.

[Massalas and Kalpakidis 1984] C. V. Massalas and V. K. Kalpakidis, “Coupled thermoelastic vibra-
tions of a Timoshenko beam”, Lett. Appl. Eng. Sci. 22:4 (1984), 459–465.

[Massalas et al. 1982] C. V. Massalas, A. Dalamangas, and G. Tzivanidis, “A note on the dynamics
of thermoelastic thin plates”, J. Sound Vib. 81:2 (1982), 303–306.

[Mukherjee and Sinha 1996] N. Mukherjee and P. K. Sinha, “Thermal shocks in composite plates: a
coupled thermoelastic finite element analysis”, Compos. Struct. 34:1 (1996), 1–12.

[Newland 1993] D. E. Newland, Random vibrations, spectral and wavelet analysis, 3 ed., Longman,
New York, 1993.

[Oguamanam et al. 2004] D. C. D. Oguamanam, J. S. Hansen, and G. R. Heppler, “Nonlinear tran-
sient response of thermally loaded laminated panels”, J. Appl. Mech. (Trans. ASME) 71:1 (2004),
49–56.

[Özisik 1993] M. N. Özisik, Heat conduction, 2 ed., Wiley, New York, 1993.

[Reddy 2002] J. N. Reddy, Energy principles and variational methods in applied mechanics, Wiley,
Hoboken, 2002.

[Sharma 2001] J. N. Sharma, “Three-dimensional vibration analysis of a homogeneous transversely
isotropic thermoelastic cylindrical panel”, J. Acoust. Soc. Am. 110:1 (2001), 254–259.

[Takeuti and Furukawa 1981] Y. Takeuti and T. Furukawa, “Some considerations on thermal shock
problems in a plate”, J. Appl. Mech. (Trans. ASME) 48:2 (1981), 113–118.

[Takeuti et al. 1983] Y. Takeuti, R. Ishida, and Y. Tanigawa, “On an axisymmetric coupled thermal
stress problem in a finite circular cylinder”, J. Appl. Mech. (Trans. ASME) 50 (1983), 116–121.

[Tauchert 1991] T. R. Tauchert, “Thermally induced flexure, buckling, and vibration of plates”, Appl.
Mech. Rev. 44:8 (1991), 347–360.

[Thornton 1992] E. A. Thornton, “Thermal structures: four decades of progress”, J. Aircr. 29:3
(1992), 485–498.
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AN ATOMISTIC INSTABILITY CONDITION AND
APPLICATIONS

JIA LU AND LIANG ZHANG

We present an atomic-level criterion for material stability in an atomic system.
The criterion draws on the strong ellipticity condition in continuum elasticity
theory; however, it is formulated directly in terms of atomic potential without
resorting to the continuum concepts. Since the criterion is based on local ener-
getics at an atomic site, we expect it to be applicable to pre-defected systems,
provided that the site energy can be reasonably defined. The kinetic implication
of the stability condition is also discussed. The application in nanotubes shows
that the criterion can capture the tensile limit strain of both perfect and defective
nanotubes, and the predictions agree well with the atomistic simulations reported
in the literature.

1. Introduction

The loss of elastic stability in an atomic lattice is often a precursor to defect nu-
cleation. For a nonhomogeneous system, lattice instability typically occurs first
at “weak spots” where the local deformation has exceeded the stability limit. If
loaded further, the lattice may respond by irreversible deformations such as bond
breaking, defect nucleation or topological transformation. Thus, local instability
provides fundamental information about elastic limit and ultimately the strength of
an atomic structure. Present atomistic simulations such as molecular dynamics can
provide invaluable details of the mechanical motion of atomic systems. However,
to extract physical insight into the system behavior especially the onset of local
irreversible motion requires the identification of indicators that characterize the
critical state at which the transition occurs.

To motivate the stability condition presented in this work, it is instructive to
review relevant concepts in elastic stability at continuum scale. The stability of a
finitely deforming elastic body under quasistatic load is typically characterized by
the positiveness of the increment of the free energy in reconfigurations from an equi-
librium state [Truesdell and Noll 1965]. Stability conditions may be divided into
two categories: one is for structural stability that characterizes the stability of the
entire system including possibly the energetic contribution from the external load;

Keywords: Strong ellipticity condition, acoustic tensor, lattice stability, carbon nanotube.
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the other is for material stability that concerns the stability of an isolated material
element. In nonlinear elasticity, the material stability is characterized by the strong
ellipticity condition [Ogden 1997; Ciarlet 1988]. Van Hove [1947] showed that
the strong ellipticity condition guarantees the uniqueness of solution for Dirichlet
boundary value problems. In the context of stability, the condition precludes the ex-
istence of any nonzero reconfiguration that does not alter its boundary. The loss of
strong ellipticity, on the other hand, indicates that the stationary acceleration wave
[Hill 1962] or locally supported discontinuous bifurcation [Rice 1976] becomes ad-
missible in an initially homogeneous deformation field. The stability governed by
the strong ellipticity condition, therefore, corresponds to Gibbs’ notion of internal
stability that requires a system be stable under arbitrary reconfigurations that leave
the boundary unaltered [Gibbs 1993]. The condition is intrinsic to the material
since the energetic influence from the external environment is excluded.

The local stability considered in this work can be intuitively understood as ma-
terial stability in atomic systems. Numerous studies have reported on the elastic
stability of crystal lattice. Born and Huang [1954] and others [Hill and Milstein
1977; Wang and Yip 1993; Wang et al. 1995; Morris and Krenn 2000] treated a unit
cell as an elastic system, and derived stability conditions for perfect crystals. These
criteria are formulated in terms of the local stress and the elasticity tensor; however,
they are derived under the assumption that the unit cell deforms homogeneously,
which is valid only for simple lattice. The analysis of material stability can be fur-
ther complicated by the presence of defects. Presently, there is no unified method
for local stability in defective systems. Kitamura et al. [2004a; 2004b] proposed to
detect the instability by the singularity of the global tangent stiffness matrix. The
method applies to general systems; however, it is for structural stability and the
detected unstable motions include global modes such as elastic buckling. Dmitriev
et al. [2004] proposed a scheme of local analysis that considers only atoms in a
small region of interest. The method, strictly speaking, is not of material stability
analysis. Yashiro and Tomita [2001] used Wang’s criteria [Wang and Yip 1993;
Wang et al. 1995], which are for defect-free simple lattice, to predict the material
stability in defective system. The results showed a reasonable correlation with
molecular dynamics simulations, however, the theoretical basis remains unclear.

In a series of papers, Li and others [Li et al. 2002; Van Vliet et al. 2003; Zhu
et al. 2004; Li et al. 2004] have proposed a local condition (called 3 criterion
therein) for detecting the nucleation of point defect in perfect crystals. The crite-
rion is based on the strong ellipticity condition, but evaluated using the stress and
elasticity tensor derived from the atomic description. Li and others [Li et al. 2002;
Van Vliet et al. 2003] speculated that the loss of strong ellipticity indicates the
admissibility of nonhomogeneous bifurcation modes, which could occur at atomic
spacing and result in a single dislocation or microcrack. While the exact nature
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of the localized singularity remains debatable, this line of thinking suggests that
the atomistic displacement singularity and the continuum scale strain localization
may be analyzed in the same theoretical framework. A similar approach has been
applied to predict the strain-localization and crack initiation in atomic-informed
continuum models [Klein and Gao 1998; Gao and Klein 1998].

In this contribution, we further explore this line of thinking and propose an
alternative form of atomic material stability condition. The condition is based
on the local energy landscape and is formulated directly in atomistic description
without resorting to continuum concepts and homogenization. We also discuss the
kinetic implication of the condition, and show that the condition corresponds to
a monotonicity condition in a properly defined atomic stress. The critical state
signifies the stationary point in the response of “atomic traction”. We utilize the
criterion to analyze the stability of carbon nanotubes (CNT). The application im-
proves a recent work by the same authors [Lu and Zhang 2006] where they used
the strong ellipticity condition based on a continuum elasticity model to predict the
failure strain of CNTs. The tensile failure strains in [Lu and Zhang 2006] compare
well with the stability limits obtained from crystal elasticity models [Zhang et al.
2002a] as well as early molecular dynamics simulations [Yakobson et al. 1997];
however, they appear higher than those reported in recent publications [Troya et al.
2003; Zhang et al. 2005; Mielke et al. 2004]. In the present work, the analysis is
performed directly in the discrete setting and comparable results are obtained. In
addition, the method in [Lu and Zhang 2006] is limited to perfect tubes. Here, both
perfect and defective tubes are considered.

2. Atomistic material instability condition

As discussed above, the strong ellipticity condition characterizes material stability
in an finitely deforming elastic body. With reference to the strain energy function
W = W (F) where F is the deformation gradient, the strong ellipticity condition
is given by

Ai I kK bi bk NI NK > 0 with Ai I kK =
∂2W

∂Fi I ∂FkK
for all arbitrary nonzero vectors b and N . Ai I kK is the (Cartesian) component of the
fourth-order elasticity tensor, Fi I is the component of the deformation gradient, and
(bi , NI ) are the components of the vectors b and N . The summation convention
applies to repeated indices unless stated otherwise. Introducing n = F−T N , the
condition can be written in spatial form, as

(Ci jkl + δikτjl)bi bknj nl > 0, (1)

where Ci jkl = (det F)−1 Ai I kK Fj I Fl K is the spatial elasticity tensor and τjl is the
component of the Cauchy stress. This condition is often stated alternatively in
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terms of the positive-definiteness of the acoustic tensor

Qik(n)= (Ci jkl + δikτjl)nj nl . (2)

If the energy function is sufficiently smooth, the strong ellipticity condition is
equivalent to the rank-one convexity of the energy function, which can written

∂2

∂ε2

∣∣∣
ε=0

W (F + εb⊗ N) > 0 (3)

for arbitrary nonzero vectors b and N , see [Ciarlet 1988, Section 5.10]. In this
paper, the operator ⊗ means the standard tensor product.

There are several justifications for the strong ellipticity condition. At continuum
scale, the strong ellipticity condition guarantees the uniqueness of solution for
Dirichlet boundary value problems [Van Hove 1947]. In the context of stability,
the condition precludes any nonzero incremental motion that leaves the boundary
unaltered. The loss of strong ellipticity condition indicates that the energy surface
is locally concave, and a particular form of local discontinuous bifurcation become
admissible even if the material element is subjected to all round displacement
boundary conditions [Hill 1962; Rice 1976]. In [Li et al. 2002; Van Vliet et al.
2003; Zhu et al. 2004; Li et al. 2004], the condition (1) is utilized in atomic system,
with the continuum stress and elasticity tensor being evaluated using the Ray sum
[Ray et al. 1986; Lutsko 1988].

Here, we propose a direct atomic level stability condition without resorting to
the concepts of stress and elasticity tensor. We focus on models in which the
system potential can be expressed as a sum of bond potentials. For such systems
one can define the energy of an atomic site and partition the total potential into
contributions from the site potentials. Consider such a system at an equilibrium
state (temperature T = 0). Let ra be the position of atom a and let rab := rb − ra

be the bond vector. The potential of bond ab is

Vab = Vab(rpq).

For many-body interaction, the potential Vab depends not only on bond rab, but
also on other bonds in the potential range. The potential of an atom site can be
defined by

Wa =
1
2

∑
b

Vab(rpq). (4)

The summation runs over all bonds connecting to atom a.
Motivated by the strong ellipticity condition, we postulate that for an atomic site

to be locally stable, the equilibrium state must satisfy the condition

b · Qa(n)b> 0 (5)
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for arbitrary nonzero vectors n and b. Here,

Qa(n)=
1
2

∑
b

∑
p,q

∑
s,t

(rpq · n)
∂2Vab

∂ rpq∂ rst
(rst · n) (6)

is the atomistic counterpart of the acoustic tensor, which depends quadratically
on n. The condition (5) is equivalent to the positive-definiteness of the atomistic
acoustic tensor Qa .

The condition can be stated alternatively as a convexity condition for Wa . If the
site energy Wa is at least twice differentiable, the condition (5) is equivalent to

∂2

∂ε2

∣∣∣
ε=0

Wa
(
rpq + εb(rpq · n)

)
> 0 (7)

for arbitrary nonzero vectors b and n. The equivalence can be directly verified.
This representation corresponds directly to the rank-one convexity condition (3).
The rank-one deformation gradient increment, in a discrete setting, corresponds to
the atomic displacement increment

δrab = b(rab · n). (8)

We refer to (7) as a mono-mode convexity condition.
Several remarks on the condition (5) or (7) are in order. First, the stability

condition is postulated based on the premise that the stability of a site is deter-
mined by the local energy landscape. If the condition (5) is violated for certain
vectors b and n, the energy surface is locally concave, and bifurcation into lower
energy modes becomes possible. The displacement mode (8) is chosen to test the
convexity as it naturally corresponds to the rank-one deformation gradient in the
continuum theory. In simple crystals b and n retain the physical explanation as
wave vectors [Li et al. 2002; Van Vliet et al. 2003]. Second, as will be discussed in
Section 3, the condition is related to the monotonicity of a properly defined atomic
stress that characterizes the average intensity of interaction between an atom and
the surrounding atoms. In particular, the singularity in Q signifies the state where
the traction is momentarily stationary in a mono-mode incremental displacements.
Thirdly, the condition coincides with Li’s criterion for simple crystals (see Appen-
dix). However, they may differ in complex lattices depending on how the atomic
stress and elasticity tensor are evaluated in Li’s approach. The atomistic form (6)
has the advantage of being free from continuum concepts. More importantly, since
the condition is based on the local property of the energy function, we expect it to
be applicable to defective systems provided that the site energy can be reasonably
defined.
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3. Kinetic implications

The condition (5) can be further examined from the standpoint of atomic stress,
which provides information about the local kinetics in some average sense. For
systems that admit the site energy of the form (4), the static atomic stress at site a
can be defined as

σa =
1

2ω

∑
b

∑
p,q

∂Vab

∂ rpq
⊗ rpq ,

where ω is the volume of atomic site a. This expression of stress can be de-
rived from an energetic argument by considering the mechanical power in a su-
perposed affine incremental motion. The quantity represents the average inten-
sity of interaction between the atom a and the surrounding atoms. The stress so
defined is symmetric, and the symmetry follows from the invariant requirement
Vab(rpq)= Vab(Rrpq) for any rotation tensor R. Intuitively, if the atomic system
is mechanically stable, one expects the stress to satisfy the monotonicity condition

δσa · δε > 0

for properly defined strain increment δε.
The stress increment under incremental atomic displacements δrpq is given by

δσa =
1

2ω

∑
b

∑
p,q

∑
s,t

( ∂2Vab

∂ rpq∂ rst
δrst

)
⊗ rpq

+
1

2ω

∑
b

∑
p,q

∂Vab

∂ rpq
⊗ δrpq −

δω

2ω2

∑
b

∑
p,q

∂Vab

∂ rpq
⊗ rpq . (9)

Consider the mono-mode displacement increment (8). Since this incremental dis-
placement field is affine, we can define the corresponding strain increment, as

δε =
1
2(b ⊗ n + n ⊗ b). (10)

Regardless of how the atomic volume ω is defined, the volume increment is given
by the formula δω = ω(tr δε), which yield

δω = ω(b · n). (11)

Substituting (8) into (9), and invoking equations (10), (11), a straight forward cal-
culation yields

δσa · δε =
1
ω

b · Qa(n)b.

Hence, the positiveness of Qa ensures that the atomic stress is at least monotonic
in the incremental mode (8).
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Alternatively, the definition of stress motivates the introduction of atomic trac-
tion in an imaginary plane of normal n:

tn
a := σan =

1
2ω

∑
b

∑
p,q

∂Vab

∂ rpq
(rpq · n). (12)

This quantity represents the contribution of the atom a to the macroscopic trac-
tion in the direction n. Similarly to (9), the increment under incremental atomic
displacements δrab is

δ tn
a =

1
2ω

∑
b

∑
p,q

∑
s,t

(rpq · n)
∂2Vab

∂ rpq∂ rst
δrst

+
1

2ω

∑
b

∑
p,q

∂Vab

∂ rpq
(δrpq · n)−

δω

2ω2

∑
b

∑
p,q

∂Vab

∂ rpq
(rpq · n). (13)

Again, consider the mono-mode (8). Recalling (11), the last two terms in equation
(13) cancel each other and the traction increment (13) takes the form

δ tn
a =

1
ω

Qa(n)b. (14)

If at a point along a loading path the acoustic tensor becomes singular, namely
Qa(n)b = 0 for a pair of direction vectors (b, n), then, according to equation (14),
the atomic traction is momentarily stationary. This is another important indicator
for the onset of instability in atomic systems, since the stationary point in atomic
force often marks the incipiency of softening response.

4. Application in carbon nanotubes

The validity of the stability condition is assessed with application in carbon nan-
otubes. The criterion is utilized to identify the critical load of elastic instability in
defective carbon nanotubes under tension. In this study, we are concerned with the
stability of CNT at lower temperatures where the system is in quasistatic state, and
its stability is determined primarily by the mechanical characteristics of the inter-
atomic potential. The atomic coordinates are computed using molecular mechanics
(MM). The analysis does not consider thermal effects, however, we expect that at
low temperatures the influence of thermal contribution to the local stability of CNT
is negligibly small. The first generation Tersoff–Brenner potential [Brenner 1990;
1992] is used to model CNT bond energy. The parameters listed as potential-I in
[Brenner 1990] are utilized in the computation, as in [Zhang et al. 2002a; 2002b].
This empirical potential has been widely used in studying carbon nanotubes and is
found to be able to accurately describe the bond energy, elastic modulus and even
defect nucleation. With Brenner’s potential the interatomic energy between atom
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a and b is expressed by the function

V (rab)= VR(rab)− B̄VA(rab),

where rab is the length of the covalent bond, VR and VA are the repulsive and attrac-
tive terms depending on the bond length, and B̄ models the multibody coupling
between bond ab and its environment, which depends on angles between ab and
adjacent bonds. At an atomic site of a CNT, one can distinguish the three bond
vectors in the unit cell of the honeycomb lattice of graphene by bond vectors rα,
α = 1, 2, 3 which makes three angles, labeled such that θαβ is the angle between
bond α and β. The site energy is

Wa =
1
2

3∑
α=1

(
VR(rα)− B̄(cos θαβ, cos θαγ )VA(rα)

)
(β 6= γ ).

It has been observed that the cutoff function in Brenner’s bond-order potential
produces unphysical results [Shenderova et al. 2000; Belytschko et al. 2002]. Re-
cent studies [Troya et al. 2003; Zhang et al. 2005; Mielke et al. 2004] have used
a modification originally suggested in [Shenderova et al. 2000], which removes
the cutoff function but retains the interactions only for atoms initially within a
2 Å cutoff distance. The present work also follows this approach. The summation
over the bonds pq and st in (6) is truncated accordingly. Nevertheless, the resulting
stress and acoustic tensor include the contributions from the derivatives of the bond
order function B̄(θαβ, θαγ ). These contributions can not be omitted because π
bond characterized by the function B̄ plays an important role in strengthening the
cohesive interaction between carbon atoms.

To simulate uniaxial tension, the atoms at the two ends are subjected to pre-
scribed displacement increments while the coordinates of the interior atoms are
computed using molecular mechanics. The convexity condition (5) is monitored
by the smallest eigenvalue of Qa(n). To find the minimum eigenvalue at a given
atomic configuration, the vector n is swept through the admissible range with a
pre-set increment and a bi-section process is used to locate the critical direction,
as in [Lu and Zhang 2006]. The procedure is performed at every atom site and
at every load increment. Although the process can be computationally intensive,
it is a mere postprocessing of the molecular mechanics data and therefore doesn’t
interfere with MM solution process.

We begin by considering pristine tubes. Figure 1 shows the values of the smallest
eigenvalue of Qa at different elongation in an armchair [10, 10] and a zigzag [17, 0]

tube. Black circles indicates unstable atoms at which the smallest eigenvalue be-
comes negative. Stable atom sites are denoted by grey or hollow circles, where the
grey scale is obtained by scaling the (positive) eigenvalue of Qa from 0 to 1, with
increasing grayness for decreasing eigenvalues. Our analysis finds that the pristine
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Figure 1. Stability of perfect armchair [10, 10] (upper row) and
zigzag [17, 0] tubes (lower row) under various tensile strains.
Black circles indicate the unstable sites where the smallest eigen-
value of the acoustic tensor is negative. The grey scale is obtained
by scaling the (positive) eigenvalues inversely against the largest
positive value in the loading process.

tubes lose stability uniformly when stretched to a critical strain. Particularly, the
armchair [10, 10] becomes unstable at 29.8%. In comparison, numerous studies
reported the critical tensile strain values close to 30% [Yakobson et al. 1997; Mar-
ques et al. 2004; Mielke et al. 2004; Zhang et al. 2005]. The critical strain for
the zigzag tube [17, 0] is found to be 19.1%, again the value is consistent with
the reported range of 16–20% [Dumitrica et al. 2003; Mielke et al. 2004; Zhang
et al. 2005]. See Table 1. The molecular dynamics simulations by Yakobson et al.
[1997] and recently by Marques et al. [2004] showed that the deformation is ini-
tially homogeneous till the critical strain is reached. Upon further stretching, a
largely distorted neck appears and the tube quickly breaks into segments. As in
[Lu and Zhang 2006], the critical directions b and n are found to be parallel to the
tube axis, indicating that the unstable model corresponds to an incipient mode-I
crack.

The same analysis is conducted for nanotubes embedded with a single Stone-
Wales (SW) defect [Stone and Wales 1986]. Existing studies suggest that the
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Figure 2. Evolution of unstable zone in CNTs with Stone-Wales
defect. Upper row: [10, 10] armchair tube. Lower row: [17, 0]

zigzag.

5/7/7/5 ring may behave as a dislocation core and weakens the strength moder-
ately [Buongiorno Nardelli et al. 1998; Yakobson 1998; Mielke et al. 2004; Troya
et al. 2003]. Figure 2 shows the evolution of instability zone during stretching.
Unlike the pristine tubes which lose stability uniformly, here the unstable sites
appear first at the SW ring; when loaded further the unstable zone quickly spreads
out and results in global instability (MM computation fails to converge). For the
[10, 10] armchair, the initial instability is found to occur at 21% strain, and the tube
loses global stability at 26% strain. As shown in Table 1, the lower limit compares
well with the reported yield strain obtained from molecular and quantum mechanics
simulations. The upper limit 26% also corresponds nicely with break strain of SW
defective tubes reported by Marques et al. [2004]. For the zigzag tube [17, 0], the
initial instability is found to be 14%. In comparison, other studies [Mielke et al.
2004; Troya et al. 2003] found the critical strains of zigzag tubes to be close to
14%.

Recent simulations have reported that vacancy defects can significantly reduce
the strength of CNTs. Mielke et al. [2004] predicted the limit strain of 11–15% for
[5, 5] armchair tubes with one-atom vacancy, and 9–13% limit strain for [10, 0]

tubes with the same defect. Zhang et al. [2005] reported moderately lower limit
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Critical Tensile Strains of SWCNTs
Tube type Defect εcrit(%) Method Reference

[17, 0] pristine 19.1 MM (TB-G1) present work
[10, 0] pristine 16.0 QM-AM1 [Dumitrica et al. 2003]
[10, 0] pristine 20.0 QM-PM3 [Mielke et al. 2004]
[10, 0] pristine 18.1 MM (MTB-G2) [Zhang et al. 2005]
[10, 10] pristine 29.8 MM (TB-G1) present work
[5, 5] pristine 27.9 QM-MSINDO [Troya et al. 2003]
[5, 5] pristine 30.0 QM-DFT [Mielke et al. 2004]
[5, 5] pristine 29.7 MM (MTB-G2) [Zhang et al. 2005]

[17, 0] SW 14.1 MM (TB-G1) present work
[10, 0] SW 13.9 QM-PM3 [Mielke et al. 2004]
[10, 10] SW 21.3 MM (TB-G1) present work
[5, 5] SW 24.4 QM-MSINDO [Troya et al. 2003]
[5, 5] SW 22.0 QM-PM3 [Mielke et al. 2004]
[17, 0] vacancy 13.0 MM (TB-G1) present work
[10, 0] vacancy 13.0 QM-PM3 [Mielke et al. 2004]
[10, 10] vacancy 12.8 MM (TB-G1) present work
[5, 5] vacancy 15.3 QM-PM3 [Mielke et al. 2004]
[5, 5] vacancy 11.4 MM (MTB-G2) [Zhang et al. 2005]

Table 1. Tensile failure strain of CNTs and comparison with pre-
dictions of molecular mechanics (MM), molecular dynamics (MD)
and quantum mechanics (QM) simulations. TB-G1 and MTB-
G2 stand for the first- and modified second-generation Tersoff-
Brenner potentials.

strain for the zigzag tubes. We consider the [17, 0] zigzag tube with a symmetric,
reconstructed one-atom vacancy. The initial instability is found to occur at 13.0%
strain. When loaded further, the unstable zone spreads and the tube loss global
stability at about 17% strain. Figure 3 shows the distribution of unstable sites at
various strains. We also consider the [10, 10] armchair tube with an asymmetric
one-atom vacancy. The onset of unstable atoms is captured at 12.8% strain, and
the tube quickly loss global stability when loaded slightly further. The limit strains
for both the armchair and the zigzag tubes compare reasonally well with Mielke’s
predictions. The armchair result also agrees with the range reported in [Zhang et al.
2005].
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Figure 3. Evolution of unstable zone in the [17, 0] tube with a
symmetric one-atom vacancy.
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Figure 4. Stress versus strain in perfect and SW defective tubes.
The instability points detected by the stability criterion correlate
directly to the sudden stress drop in the response.

Figure 4 shows the (engineering) tensile stress as a function of strain for the
pristine and SW defective tubes. The limit strains correlate nicely to the sudden
loss of stress in the response. The stress is computed by dividing the resultant end
reaction force by the tube’s original circumference and the shell thickness of 0.34
nanometer.
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5. Summary

An atomic level stability condition has been presented for predicting the local
elastic instability of an atomic system. The criterion corresponds to the strong
ellipticity condition in continuum elasticity, but is formulated directly in terms
of atomic quantities without explicit reference to continuum stress and elasticity
tensor. Being essentially a generalization of the continuum condition for material
stability, the criterion is expected to capture the onset of local failure in atomic
systems. Also, since the criterion is directly based on the site potential, we expect
it to be applicable in complex lattices and defective systems provided that the site
energy can be reasonably defined.

Preliminary applications in tensile CNTs has shown promising results. For pris-
tine tubes, the predicted limit strains are in excellent agreement with the reported
values from molecular and quantum mechanics simulations. For SW defective
tubes, the lower limits (at the onset of unstable sites) agree very well with the re-
ported failure strains. A single one-atom vacancy in the [10, 10] is found to reduce
the limit strain significantly, consistently with the findings in recent publications.
The spatial distribution of the stability indicator also provides useful information
about the unstable zone and its evolution during a loading course.

Appendix

In this appendix we provide an explicit expression for the acoustic tensor Qa in
the context of pairwise potentials and show that in this case the condition coincides
with the criterion in [Li et al. 2002; Van Vliet et al. 2003]. Fir a pairwise potential,
the bond energy Vab depends only on the bond length rab =

√
rab · rab, namely

Vab = V (rab). The site energy therefore is Wa =
∑

b V (rab). Using the chain rule
and invoking the identity ∂rab/∂ rab = rab/rab, we find

∂V
∂ rab

=
∂V
∂rab

rab

rab
.

Furthermore,

∂2V
∂ rab∂ rab

=
1

r2
ab

∂2V
∂r2

ab
rab⊗ rab +

1
rab

∂V
∂rab

(
I −

1
r2
ab

rab⊗ rab

)
,

where I is the second order identity tensor. It follows that, for this system the
atomistic acoustic tensor (6) takes the form

Qa =
1
2

∑
b

(
1

r2
ab

(∂2V
∂r2

ab
−

1
rab

∂V
∂rab

)
(rab ·n)2rab⊗ rab +

1
rab

∂V
∂rab

(rab ·n)2 I
)
. (15)

The summation runs over all bonds emanating from atom a.
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According to the recipe of Li and others [Li et al. 2002; Van Vliet et al. 2003],
the stability condition is evaluated using the continuum acoustic tensor (2) in con-
junction with derived atomic stress and elasticity tensor. For this system, the static
Virial stress [Irving and Kirkwood 1950; Cheung and Yip 1991; Shen and Atluri
2004] or BDT stress [Basinski et al. 1971; Shen and Atluri 2004] is given by

σ :=
1

2ω

∑
b

∂V
∂ rab

⊗ rab =
1

rab

∂V
∂rab

rab⊗ rab, (16)

where ω is the volume of atomic site a. The isothermal elastic tensor at T = 0 can
be obtained from the Ray sum [Ray et al. 1986; Lutsko 1988], as

C =
1

2ω

∑
b

1
r2
ab

(∂2V
∂r2

ab
−

1
rab

∂V
∂rab

)
rab⊗ rab⊗ rab⊗ rab. (17)

Li’s procedure results in an expression identical to (15) modulo a volume factor,
as can be readily checked by substituting (16) and (17) into (2). The two criteria
coincide in this special case.
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A MODE III MOVING CRACK BETWEEN A FUNCTIONALLY
GRADED COATING AND A HOMOGENEOUS SUBSTRATE

BAO-LIN WANG AND JIE-CAI HAN

This paper considers an anti-plane moving crack between a functionally graded
coating and a homogeneous substrate. The shear modulus and the mass density
of the FGM coating are considered for a class of functional forms for which
the equilibrium equation has an analytical solution. The problem is solved by
means of singular integral equation technique. Results are plotted to show the
effect of material nonhomogeneity and crack moving velocity on the crack tip
field. The angular variation of the near-tip stress field is of particular interest, and
the crack bifurcation behaviour is also discussed. It is shown that choice of an
appropriate fracture criterion is essential for studying the stability of a moving
crack in FGMs. Different fracture criteria could give opposite predictions for
crack stability. It seems that the maximum cleavage stress near the crack tips is
a reasonable failure criterion for a moving crack in FGMs.

1. Introduction

In functionally graded materials, the compositions and microstructures vary con-
tinuously in the thickness direction and the mismatch of material properties at the
coating/substrate interface is eliminated. The problem of cracks in functionally
graded materials has been studied extensively. In particular, some authors have
studied dynamic fracture problems of FGMs. Marur and Tippur [1998] computed
the magnitude and phase of complex stress intensity factors in FGMs for static
and dynamic loading. Rousseau and Tippur [2001] studied the effect of different
elastic gradient profiles on the fracture behavior of dynamically loaded function-
ally graded materials with cracks parallel to the elastic gradient. They used finite-
element analyses of FGM and homogeneous beams to examine crack tip responses
to low velocity and symmetric impact loading on the uncracked edge of the beams.
Wu et al. [2002] proposed an extended dynamic J integral for functional graded ma-
terials. Zhang et al. [2003] used a boundary integral equation method to investigate
the dynamic response of FGM crack problems. Chen et al. [2003] investigated the
dynamic fracture of a crack in a functionally graded piezoelectric interface. Guo
et al. [2005] considered the dynamic response of an edge crack in a functionally

Keywords: functionally graded materials, coatings, fracture mechanics, moving crack.
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graded orthotropic strip. Zhou et al. [2004] investigated the dynamic behavior of
a finite crack in functionally graded materials using the Schmidt method. The dy-
namic propagations of anti-plane shear cracks in functionally graded piezoelectric
strips have been investigated by Kwon [2004] and Shin et al. [2004]. Recently,
Sladek et al. [2005] used a meshless local boundary integral equation method for
dynamic anti-plane shear crack problems in functionally graded materials.

All these papers considered the time dependence of the crack tip field in FGMs.
Solutions to problems of moving cracks in FGMs are important since they can
assist in the understanding of how FGMs can best be constructed to arrest running
cracks. Some earlier investigations [Jin et al. 2003; Bi et al. 2003; Jin and Zhong
2002; Li and Weng 2002; Ma et al. 2005] have considered moving cracks in FGMs
with exponentially distributed material properties.

In this paper, we study a crack moving at the interface between an FGM layer and
a homogeneous substrate. The properties of the FGM are considered for a class of
continuous functions of the coordinate perpendicular to the crack plane. The Yoffe
model [1951] of a running crack is adopted. The crack is assumed to propagate at a
constant velocity. The results show that crack growth behavior is strongly affected
by the material nonhomogeneity and the crack moving velocity. Different fracture
criteria may lead to different, indeed opposite, crack growth predictions. This
suggests that the selection of a fracture criterion is essential for moving cracks in
FGMs. Based on the maximum cleavage stress criterion, the dependence of crack
bifurcation angle and the critical crack speed (at which bifurcation occurs) on the
stress intensity factor are found to be identical for functionally graded materials
and homogeneous materials. Stress intensity factors, however, have a strong de-
pendence on material nonhomogeneity and crack moving velocity.

2. Formulation of the crack problem

From the viewpoint of applications, anti-plane crack problems often provide a
useful analog to the more interesting in-plane fracture problems. Therefore, we
investigate an anti-plane crack problem in an FGM/substrate structure. The prop-
erties of the FGM vary along the y-axis, as shown in Figure 1. There is a plane
crack of length 2a lying at the interface between the FGM and the substrate. The
crack advances with a constant length in the material having shear modulus µ(Y )
and mass density ρ(Y ). Crack motion is maintained at a constant velocity V by
the uniform anti-plane shear stress −τ0(x) applied to the crack faces.

We call XY the fixed coordinate system and xy the coordinates attached to the
moving crack. Under anti-plane deformation, the constitutive equations are

τxz = µ(Y )
∂w

∂X
, τyz = µ(Y )

∂w

∂Y
, (1)
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Figure 1. Geometry of the crack problem.

where µ(Y ) is the shear modulus, which is a constant for y < 0. From the equilib-
rium equation

∂τxz

∂X
+
∂τyz

∂Y
= ρ

∂2w

∂t2

and the constitutive equations, we obtain

µ(Y )
(
∂2w

∂X2 +
∂2w

∂Y 2

)
+

dµ(Y )
dY

∂w

∂Y
= ρ(Y )

∂2w

∂t2 .

To simplify this equation, we apply the coordinate change x = X − V t , obtaining

µ(y)
(
∂2w

∂x2 +
∂2w

∂y2

)
+

dµ(y)
dy

∂w

∂y
− V 2ρ(y)

∂2w

∂x2 = 0. (2)

Let the solution of (2) be given by

w(x, y)=
1

2π

∫
∞

−∞

F(y, s)e−isx ds (3)

(see [Erdogan and Ozturk 1992]), where the function F is to be determined. It
follows from (2) and (3) that

d2 F
dy2 + p(y)

d F
dy

−

(
1 −

V 2ρ(y)
µ(y)

)
s2 F = 0, (4)

where

p(y)=
µ′(y)
µ(y)

.

To overcome the complexity of mathematics involved, we will focus in this study
on a special class of FGMs in which the properties vary proportionally, that is,

µ(y)= µ0 f (y) and ρ(y)= ρ0 f (y) (5)
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for some function f (y), where µ0 and ρ0 are material properties of the homoge-
neous substrate. From equations (4) and (5), we obtain

d2 F
dy2 + p(y)

d F
dy

−ω2s2 F = 0, (6)

where

ω =

√
1 − (V/c)2 with c =

√
µ0/ρ0

is the lowest bulk wave speed for plane wave propagation along the x direction.
Introduce the function

H(y, s)= F(y, s) f (y)1/2. (7)

Then Equation (6) becomes

d2 H
dy2 −

1
4

(
p2

+ 2
dp
dy

+ 4s2ω2
)

H = 0. (8)

We will now look for a particular class of functions for which this equation has
an analytical solution. The simplest class of such functions is obtained by assuming
that

p2
+ 2

dp
dy

= 4`0,

where `0 is a constant. We consider three classes of functions satisfying this equa-
tion (see [Erdogan and Ozturk 1992; Wang et al. 2003]):

(a) With `0 > 0 and β =
√
`0:

p(y)= ∓2β, f (y)= exp(∓2βy),

p(y)= 2β coth(βy + 0.8814), f (y)= sinh2(βy + 0.8814),

p(y)= 2β tanh(βy), f (y)= cosh2(βy).

(9)

(b) With `0 < 0 and β =
√

−`0:

p(y)= −2β tan(βy), f (y)= cos2(βy). (10)

(c) With `0 = 0 and β arbitrary:

p(y)= 2β/(βy + 1), f (y)= (βy + 1)2,

p(y)= 0, f (y)= 1.
(11)

The material properties are continuous at the interface between the coating and the
substrate if the coating property gradient is described by any of these equations.
The case p = 0, f = 1 describes a homogeneous coating.
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3. The solutions

For the choices of p(y) and f (y) just listed, Equation (8) can be solved in analytic
form:

H = A(s) exp(|s|γ y)+ B(s) exp(−|s|γ y), γ =

√
ω2 + `0/s2, (12)

where A and B are arbitrary constants. It follows from (12), (7) and (3) that

w(x, y)=
1

2π

∫
∞

−∞

(
f1a(y)A1(s)+ f1b(y)B1(s)

)
e−isx ds, −h1 < y < 0,

w(x, y)=
1

2π

∫
∞

−∞

(
f2a(y)A2(s)+ f2b(y)B2(s)

)
e−isx ds, h2 > y > 0,

(13)
where A1(s), B1(s), A2(s) and B2(s) are unknown functions and

f1a(y)= e|s|ωy, f1b(y)= e−|s|ωy,

f2a(y)= f (y)−1/2e|s|γ y, f2b(y)= f (y)−1/2e−|s|γ y .
(14)

In formulating those boundary conditions, the crack problem has been treated
using the superposition technique; that is, the problem without any cracks has
been solved and the equal and opposite values of the stresses have been used as
the applied loads on the crack surfaces. Therefore, the boundary and continuity
conditions are as follows (see Figure 1):

τyz(x,−h1)= 0 = τyz(x, h2) forx ∈ (−∞,∞), (15)

τyz(x,+0)= τyz(x,−0) forx ∈ (−∞,∞), (16)

w(x,+0)= w(x,−0) forx /∈ (b, c), (17)

τyz(x,+0)= τyz(x,−0)= τ0(x) forx ∈ (b, c). (18)

Those conditions can be used to determine the unknown constants A1(s), B1(s),
A2(s) and B2(s).

3.1. The singular integral equation. The three homogeneous boundary conditions
shown in Equations (15) and (16) can be used to eliminate three of the four un-
known functions. The mixed boundary conditions (17)–(18) then give a system
of dual integral equations to determine the remaining one. By defining a new
unknown function

g(x)=
∂w(x,+0)− ∂w(x,−0)

∂x
, (19)
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the problem can be reduced to an integral equation in g; then it is seen that (17) is
equivalent to

g(x)= 0 for x /∈ (b, c)
∫ c

b
g(x) dx = 0,

and (18) gives the desired integral equation.
By substituting the values from Equations (13) via Hooke’s law into the bound-

ary conditions (15) and continuity conditions (16), and by using Equation (19), we
can determine A1(s), B1(s), A2(s) and B2(s) in terms of the Fourier transforms
of g. Noting that g is zero for x /∈ (b, c), the expressions found for A1(s), B1(s),
A2(s) and B2(s) are

A1(s)=
1

1(s)

(
f ′

2a(0)− f ′

2b(0)
f ′

2a(h2)

f ′

2b(h2)

)
i
s

∫ c

b
g(t)eist dt,

B1(s)= exp(−2|s|ωh1)A1(s),

A2(s)=
1

1(s)

(
f ′

1a(0)− f ′

1b(0)
f ′

1a(−h1)

f ′

1b(−h1)

)
i
s

∫ c

b
g(t)eist dt,

B2(s)= −
f ′
a(h2)

f ′

b(h2)
A2(s),

where
f ′

a(y)= ∂ fa(y)/∂y, f ′

b(y)= ∂ fb(y)/∂y,

and

1(s)=

(
1 −

f ′

2a(h2)

f ′

2b(h2)

)(
f ′

1a(0)− f ′

1b(0)
f ′

1a(−h1)

f ′

1b(−h1)

)
−

(
1 −

f ′

1a(−h1)

f ′

1b(−h1)

)(
f ′

2a(0)− f ′

2b(0)
f ′

2a(h2)

f ′

2b(h2)

)
.

Substituting Equations (1) and (13) into the remaining boundary condition (18),
we obtain:

1
π

∫ c

b
g(t)K (x, t) dt = τ0(x)/µ0, (20)

where

K (x, t)=
i
2

∫
∞

−∞

k(s)eis(t−x)ds, (21)

k(s)=
1

s1(s)

(
f ′

1a(0)− f ′

1b(0)
f ′

1a(−h1)

f ′

1b(−h1)

)(
f ′

2a(0)− f ′

2b(0)
f ′

2a(h2)

f ′

2b(h2)

)
. (22)

Therefore, the integral kernel k can be obtained by inserting the property distribu-
tions (9)–(11) into Equations (14) and then into (22).
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To determine the singular behavior of (20) we must examine the behavior of the
kernel k. For this, it is sufficient to determine and separate those leading terms in
the asymptotic expansion of k as |s| → ∞ that would lead to unbounded integrals.
From the expression of k in (22) it can be shown that in the asymptotic expansions
for |s| → ∞ the only terms that would give unbounded integrals are

k(±∞)= − sgn(s) 1
2ω.

By adding and substituting this asymptotic value to and from k in (21), and by
evaluating the integrals involving the leading terms, we obtain

K (x, t)=
1
2ω

1
t − x

+
i
2

∫
∞

−∞

3(s)eis(t−x) ds,

where
3(s)= k(s)+ 1

2 sgn(s)ω.

Thus, Equation (20) becomes

ω

2π

∫ c

b

1
t − x

g(t) dt +
1
π

∫ c

b
K1(x, t)g(t) dt =

τ0(x)
µ0

, (23)

where

K1(x, t)=
i
2

∫
∞

−∞

3(s)eis(t−x)ds = −

∫
∞

0
3(s) sin

(
s(t − x)

)
ds

is a known bounded function.

3.2. The crack tip field. Equation (23) contains a Cauchy-type kernel. Conse-
quently, the crack tip behavior can be characterized by a standard square-root
singularity. The solution of the singular integral equation (23) has the form

g(x)=
G(x)

√
(x − b)(c − x)

, (24)

where G is a bounded function. After normalizing the interval (b, c), equation (23)
can be solved numerically by using a Gaussian quadrature formula. The mode III
stress intensity factor at, for example, at the crack tip x = b is defined by

k3(b)= lim
x→b−0

√
2(x − b) τyz(x, 0).

Observing that Equation (23) gives the stress component τyz(x, 0) on the plane of
the crack for x ∈ (b, c) as well as x /∈ (b, c), and substituting from (24) into (23),
a simple asymptotic analysis shows that

k3(b)=
µ0

2
ω

G(b)
√

a
, k3(c)= −

µ0

2
ω

G(c)
√

a
.
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Of practical interest is the stress status near the crack tip. From the above results
we can obtain the asymptotic fields near the moving crack tips in terms of the stress
intensity factor in the moving coordinate system. The results at the right crack tip
are

τyz =
k3(c)
√

2π r̂
cos

θ̂

2
, τxz = −

k3(c)

ω
√

2π r̂
sin

θ̂

2
, (25)

where

r̂ =

√
(x − a)2 + (ωy)2, θ̂ = tan−1 ωy

x − a
. (26)

4. Infinite functionally graded medium

The foregoing analysis can be easily extended to the case of an infinite function-
ally graded medium (h1 → ∞ and h2 → ∞). Suppose by using superposition
technique, the solution has been reduced to a perturbation problem where the only
applied loads are the anti-plane shear stresses on the crack surfaces. To satisfy the
regularity conditions at infinity, the constants B1 and A2 in Equations (13) must
equal zero. Following a similar analysis procedure in Section 3, we obtain the
remaining unknown constants B2 and A1 as

A1(s)=
f ′

2b(0)
f ′

1a(0)− f ′

2b(0)
i
s

∫ c

b
g(t)eist dt,

B2(s)=
f ′

1a(0)
f ′

1a(0)− f ′

2b(0)
i
s

∫ c

b
g(t)eist dt .

The integral equation (20) remains unchanged, provided that the integral kernel
k(s) in (21) be replaced by

k(s)=
f ′

1a(0) f ′

2b(0)
s[ f ′

1a(0)− f ′

2b(0]
.

The rest of the analysis and the equation system are the same as those in the previ-
ous section.

5. Results and discussion

We have considered an infinite medium (h1 → ∞, h2 → ∞) with proportional
material properties f (y) and p(y) varying according to one of several functions,
namely, f (y) = exp(βy), f (y) = sinh2(βy + 0.8814), and f (y) = exp(−βy).
The latter represents a soft coating (the stiffness of the coating is less than that
of the substrate). The values of the stress intensity factors for a single crack are
given in Figure 2, where a = (c − b)/2 is the half-crack length. As expected, the
value of k3 for a homogeneous medium (β = 0) is 1 for any crack velocity. For
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Figure 2. Stress intensity factors for a crack at different velocities.

the property distribution f (y)= exp(βy), the values of the stress intensity factor
k3 increase with the material nonhomogeneity β and the crack moving velocity V .
Oppositely, for the property distributions f (y)= exp(−βy) and f (y)= sinh2(βy+

0.8814), the values of k3 decrease with the material nonhomogeneity and the crack
moving velocity. The results indicate further that for a nonhomogeneous material
with property distributions f (y)= exp(−βy) and f (y)= sinh2(βy + 0.8814) the
stress intensity factor k3 is smaller than the corresponding value for a homogeneous
material.

The fact that the values of k3 can increase or decrease with crack moving ve-
locities suggests that, if the stress intensity factor criterion is used to predict the
unstable fracture initiation, then the critical applied loads can increase or decrease
with crack velocities, depending on the type of the material nonhomogeneity (gra-
dient). For example, unstable fracture is more likely to take place, for a lower crack
moving velocity, for material gradient f (y)= sinh2(βy +0.8814), and for a higher
crack moving velocity, for material gradient f (y)= exp(βy).

For a quick assessment of a possible unstable crack growth initiation, it is gener-
ally sufficient to examine the amplitude and the direction of the maximum cleavage
stress τθ z(r, θ) at the crack tips. The cleavage stress τθ z(r, θ) can be expressed as

τθ z(r, θ)= τyz cos θ − τxz sin θ, (27)



658 BAO-LIN WANG AND JIE-CAI HAN

where (r, θ) are the polar coordinates at the crack tip and θ is measured from
the positive x-axis (see Figure 1). Figure 3 gives the variation of cleavage shear
stress τθ z(r, θ) with the angle for different crack velocities. It is seen that the
stresses depend significantly on the crack velocities. Unlike the static solution, the
maximum value of τθ z(r, θ) does not always occur along the axis coincident with
the crack (θ = 0). For small velocities, the shear stress decreases monotonously
with the angle. As the velocity increases, τθ z(r, θ) in each curve attains a maximum

0 3 0 6 0 9 0 1 2 0 1 5 0 1 8 0
0 . 0

0 . 5

1 . 0

1 . 5

2 . 0

V=0

V/c=0.5

V/c=0.7
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r
z

2

0
τ

τ
θ

0 3 0 6 0 9 0 1 2 0 1 5 0 1 8 0
0 . 0

0 . 2

0 . 4

0 . 6

0 . 8

1 . 0

V=0

V/c=0.5

V/c=0.7

θ

Figure 3. Angular distribution of stress τθ z with polar angle for a
crack moving at different velocities. Top: f = exp(βy), βa = 3.
Bottom: f = sinh2(βy + 0.8814), βa = 1.5.
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value at an angle different from θ = 0. This suggests that crack bifurcation may
occur at a sufficient higher crack moving velocity.

Further consideration of the results in Figure 3 shows that the peak values of
the cleavage stress τθ z(r, θ) increase with the crack moving velocity, both for the
gradient f (y)= exp(βy) and for the gradient f (y)= sinh2(βy + 0.8814). Hence,
it is more reasonable to use the maximum cleavage stress τθ z(r, θ) as a fracture
criterion, since it can predict that the fracture is more likely to take place for a
higher crack moving velocity, no matter what kind of material nonhomogeneity
the medium has.

As mentioned above, the crack may bifurcate at a sufficient high moving velocity.
Referring to Figure 3, the bifurcation angle θc and the critical crack speed at which
bifurcation initiation can be found from:

∂τθ z(r, θc)

∂θc
= 0,

∂2τθ z(r, θc)

∂θ2
c

< 0. (28)

From Equations (25), (26), (27) and (28) we see that the value of θc is only a
function of crack moving velocities and does not depend on the material gradient.
Therefore, the bifurcation angle θc and the critical crack speed at which bifurcation
occurs are the same as for an ordinary homogeneous isotropic solid.

6. Conclusions

The fracture problem for a functionally graded material under anti-plane shear
loads is investigated for a class of property distributions. The paper aims at de-
termining the crack tip stress field, evaluating simultaneously the effects of the
crack velocity and material varying properties. Also discussed are the stability of
crack growth, crack bifurcation and failure criteria to be adopted. The following
conclusions can be drawn:

• Unlike the case of a a homogeneous coating, crack motion affects the stress
intensity factors for an FGM coating.

• Stress intensity factors depend on the crack velocity as well as material non-
homogeneity. They can increase or decrease with material nonhomogeneities
and crack velocities, depending on the type of the material property distribu-
tion.

• For a stationary crack, the angular distribution of the stress field near the
crack tips is the same as for a homogeneous material. But for a moving crack
the singular stress field near the crack tips is altered considerably by crack
velocity.

• It is more convenient to use the maximum cleavage stress τθ z(r, θ) as a fracture
criterion for a moving crack in FGMs, since it can explain the fact that the
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fracture is more likely to take place for a higher moving velocity, for any
of the kinds of material nonhomogeneity (gradients) considered in this paper.
Oppositely, if the stress intensity factor criterion is used, the crack growth
could be enhanced or retarded by crack moving velocity, depending on the
material nonhomogeneity.
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NONLOCAL CONTINUUM MODELS FOR CARBON
NANOTUBES SUBJECTED TO STATIC LOADING

QUAN WANG AND YASUHIDE SHINDO

Static and buckling analyses of carbon nanotubes (CNTs) are carried out with
newly developed nonlocal continuum models. Small-scale effects are explicitly
derived for bending deformation solutions for CNTs subjected to general flexural
loading first. Solutions via nonlocal continuum models are expressed by simple
terms related to scale coefficients in addition to remaining terms via local contin-
uum models in which the simplicity of the nonlocal continuum models is clearly
observed. Discussions on various derivations of Young’s modulus for CNTs
from existing experimental work in the literature are provided, revealing the
applicability of the nonlocal continuum models. In addition, a simple equation
for the buckling load of CNTs with various general boundary conditions subject
to axial loading via the nonlocal elastic beam model is explicitly derived for
instability analysis. The results of this research provide benchmark solutions for
the response of CNTs subject to general static loading, with small-scale effects
modeled and revealed. Thus, the work has great potential in studying mechanical
properties of CNTs of various sizes.

1. Introduction

Carbon nanotubes (CNTs) have been the focus of extensive research [Ball 2001;
Baughman et al. 2002; Harris 1999; Treacy et al. 1996] since they were discovered
by Iijima [1991], because of their potential to lead to new applications, such as fric-
tionless nanoactuators, nanomotors, nanobearings, and nanosprings [Lau 2003].

Two major analytical approaches are used in studies of CNTs. The first is
atomic modeling, and includes techniques such as classical molecular dynamics
(MD) [Iijima et al. 1996; Yakobson et al. 1997], tight binding molecular dynamics
(TBMD) [Hernandez et al. 1998] and density functional theory (DFT) [Sanchez-
Portal et al. 1999]. Its use is limited to the study of systems having a relatively
small number of atoms.

The second approach, continuum modeling, is more practical in analyzing car-
bon nanotubes of large-scale systems. Continuum modeling includes elastic beam

Keywords: Nonlocal continuum models, carbon nanotubes, single-walled carbon nanotubes, elastic
beam model, stability analysis.
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and shell models, which have been applied in analyzing static response, stability
and vibration of CNTs. Yakobson et al. [1996] studied unique features of fullerenes
and developed a continuum shell model to study instability patterns of a CNT under
different compressive loads. Ru [2000a; 2000b] proposed the buckling analysis of
CNTs with shell models. Parnes and Chiskis [2002] investigated elastic buckling
of nanofiber reinforced composites with elastic beam theory. Wang and coworkers
[Wang and Varadan 2005; Wang 2005; Wang et al. 2005b] have investigated global
and local instability or kinks of CNTs with elastic beam models. In these contin-
uum models, stress at a reference point is defined and considered traditionally to
be a functional of the strain field at the exact point in the body; hence the models
are usually called classical or local continuum models. A pioneering work [Zhang
et al. 2002] established a nanoscale continuum theory to incorporate interatomic
potentials into a continuum analysis in studying the linear modulus of a single-
wall CNT. The Young’s modulus predicted by that work agreed well with prior
experimental results and atomic studies. The simplicity of these continuum models
has inspired a great deal of work on CNT mechanical behavior, and this research
has shown that continuum mechanics is easy to handle and accurate in predicting
much this behavior.

Local continuum models do not admit intrinsic size dependence in elastic so-
lutions of inclusions and inhomogeneities. At nanolength scales, however, size
effects often become prominent, and in view of the increasing interest in nanotech-
nology, they need to be addressed [Sharma et al. 2003]. Wang et al. [2005a] used
the Tersoff–Brenner potential and ab initio calculations to find the size dependence
of CNTs in a thin-shell model. Sun and Zhang [2003] pointed out the limitations of
the applicability of classical continuum models in nanotechnology. They indicated
the importance of semicontinuum models in analyzing nanomaterials with plate-
like geometry. Their results contrast with those obtained from classical continuum
models; the values of material properties were found to depend heavily on the
thickness of the plate structure. The modeling of such a size-dependent phenome-
non has become an active researcher subject [Sheehan and Lieber 1996; Yakobson
and Smalley 1997]. One concludes from these works that the applicability of the
classical continuum models at small scales may be questionable. At such scales the
microstructure of the material, such as the lattice spacing between individual atoms,
becomes increasingly important and the discrete structure of the material can no
longer be homogenized into a continuum. Therefore, more appropriate continuum
models rather than classical or local elastic beam and shell theories are needed in
studying the small-scale effect in nanomaterials.

Nonlocal elasticity was first proposed by Eringen [1976; 1983] to account for
the scale effect in elasticity, by assuming the stress at a reference point to be a func-
tional of the strain field at every point in the body. In this way, the internal size scale
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could be considered in the constitutive equations simply as a material parameter.
Recently, Pugno and Ruoff [2004] modified continuum fracture mechanics and
proposed their fracture quantized mechanics to predict fractures of tiny systems
with a given geometry and type of loading occurred at quantized stress.

The application of nonlocal elasticity models to nanomaterials has received at-
tention from the nanotechnology community only recently. Peddieson et al. [2003]
proposed a version of nonlocal elasticity for the formulation of an Euler–Bernoulli
beam theory. They concluded that nonlocal continuum mechanics could potentially
play a useful role in the analysis of phenomena related to nanotechnology applica-
tions. Sudak [2003] studied infinitesimal column buckling of CNTs, incorporating
van der Waals forces and small-scale effects, and showed that the critical axial
strain decreases, compared to the results with classical continuum beam model,
where the small length scale increases in magnitude. Zhang et al. [2004] proposed
a nonlocal multishell model for the axial buckling of CNTs under axial compres-
sion. Their results showed that the effect of the small-scale on axial buckling
strain is related to the buckling mode and the length of tubes. Wang [2005] studied
the dispersion relations for CNTs considering small-scale effects. A qualitative
validation study showed that results based on the nonlocal continuum mechanics
are in agreement with the published experimental reports in this field.

These studies of the use of nonlocal continuum mechanics in the mechanical
analysis of CNTs have shown that nonlocal continuum mechanics is not signifi-
cantly harder to apply than local continuum mechanics. In existing buckling and
vibration analyses of CNTs, the results can all be expressed concisely; only a few
terms related to scale coefficients need be included in addition to those based on
local continuum models. The simplicity of nonlocal continuum mechanics implies
that these proposed nonlocal elastic models, such as nonlocal elastic beam and
shell models, have great potential in the study of scale effects, in cases where such
effects have to be taken into account (which cannot be done via local continuum
mechanics).

In this article we focus on the static and buckling analysis of CNTs using non-
local continuum models. We first derive explicitly the small-scale effect in the
bending analysis of single-walled CNTs subjected to general loading; one clearly
observes a difference in response between the local and nonlocal continuum models
for this problem. To our knowledge, no experimental data based on CNT static
measurements are available yet that would to reflect scale effects. Wang [2005]
studied the validity and applicability of nonlocal continuum models using experi-
mental data for vibrating CNTs only.

To qualitatively show the scope of the proposed research, we show how to derive
the Young’s modulus of a CNT from experiments, using the force-displacement
relation, in such a way that small-scale effects, in particular systems studied in
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the literature, can be identified and estimated from published measurements of the
Young’s modulus.

We next derive solutions for the buckling load of a CNT subjected to axial
loading with various boundary conditions, using the nonlocal continuum model,
relating these solutions to those obtained with local continuum models. In all
simulations, the results of static and buckling analyses are expressed in simple
terms related to scale coefficients, in addition to the terms corresponding to local
continuum models. This shows the simplicity of the nonlocal continuum models.
It is hoped that this work will help provide benchmark solutions for the analysis
of CNTs via continuum models.

2. Elastic nonlocal beam models for CNT analysis

According to the theory of nonlocal elasticity [Eringen 1976], the stress at a ref-
erence point x is considered to be a functional of the strain field at every point
in the body. This observation is in accordance with the atomic theory of lattice
dynamics and experimental observations on phonon dispersion. In the limit when
the effects of strains at points other than x is neglected, one obtains the classical
(local) theory of elasticity. The basic equations for linear, homogeneous, isotropic,
nonlocal elastic solid with zero body force are given by

σi j, j = 0,

σi j (x)=

∫
α
(
|x − x ′

|, τ
)
Ci jklεkl(x ′) dV (x ′)for x ∈ V,

εi j =
1
2(ui, j + u j,i ),

where Ci jkl is the elastic module tensor of classical isotropic elasticity, σi j and εi j

are the stress and strain tensors, and ui is displacement vector.
Next,

α
(
|x−x ′

|, τ
)

is the nonlocal modulus or attenuation function, which serves to incorporate into
the constitutive equations the nonlocal effects at the reference point x produced
by local strain at the source x ′. Here

∣∣x − x ′
∣∣ is the Euclidean distance and τ is

the quotient e0a/ l [Peddieson et al. 2003], where l is the external characteristic
length (crack length, wavelength, etc.), a is an internal characteristic length, which
we choose as 0.142 nm, the length of a C-C bond, as in [Sudak 2003]; and e0 is
an adjustable parameter, given as 0.39 in [Eringen 1983], although Sudak [2003]
proposed a value in the order of hundreds. Our work suggests that Eringen’s value
is close to the mark, but it needs to be further verified through experiments or
through matching dispersion curves of plane waves with those of atomic lattice
dynamics for CNTs.
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Wang [2005] made a rough estimate of the scale coefficient e0a from the avail-
able highest frequency of a single-walled CNT in the literature, based on vibration
analysis using the nonlocal elastic Timoshenko beam model. The asymptotic fre-
quency was derived there as ω = 21456/(e0a) if the mass density is ρ = 2.3 g/cm3

and the thickness of the nanotube is t = 0.34 nm. Hence, a conservative evaluation
of the scale coefficient is given by the equation above as e0a < 2.1 nm for a single-
walled CNT, if the measured frequency value is greater than 10 THz. This value,
like the frequency, is radius-dependent.

Eringen [1983] reduced the integral-partial differential equations for this linear
nonlocal elasticity problem to singular partial differential equations of a special
class of physically admissible kernel. In addition, Hooke’s law for a uniaxial stress
state can be determined by

σ(x)− (e0a)2
d2σ(x)

dx2 = Eε(x), (1)

where E is the Young’s modulus of the material.
We now apply Euler–Bernoulli beam theory based on the nonlocal continuum

elasticity. The free body diagram of an infinitesimal element of a beam structure
subjected to both an axial compression force F and a flexural distributed force q(x)
is shown in Figure 1. The equilibrium equation for the vertical force component is
easily seen to be

dV
dx

+ q(x)= 0,

q(x)

F

F

M

M + d M

dx

V

V +dV

Figure 1. Free body diagram of a beam element.
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and that for the moment on the one-dimensional structure is

V −
d M
dx

+ F
dw(x)

dx
= 0, (2)

where V (x, t) and M(x, t) are the resultant shear force and bending moment on
the beam, and w(x) is the flexural deflection of the beam.

Differentiating the latter equation and substituting into the former one gets

d2 M
dx2 = F

dw2(x)
dx2 − q(x). (3)

Consider the definitions of the resultant bending moment and the kinematics rela-
tion in a beam structure:

M =

∫
A

y σd A and ε = − y
d2w

dx2 ,

where y is the coordinate measured from the mid-plane in the height direction of
the beam.

Substituting this into the nonlocal constitutive relation Equation (1) leads to

M − (e0a)2
d2 M
dx2 = − EI

d2w

dx2 ,

where EI is the bending rigidity of the beam structure. Further considering Equa-
tion (3) and Equation (2), the expressions for moment and shear force are derived
as

M(x)= −
(
EI − F(e0a)2

)d2w(x)
dx2 − q(e0a)2,

V (x)= − EI
d3w(x)

dx3 − F
d

dx

(
w(x)−

(
e0a

)2 d2w(x)
dx2

)
− (e0a)2

dq(x)
dx

.

(4)

Substitution of the second of these equations into (2) yields the nonlocal elastic
beam model for CNTs subjected to static flexural and axial loadings:

EI
d4w(x)

dx4 +F
d2

dx2

(
w(x)−(e0a)2

d2w(x)
dx2

)
−q(x)

(
1−(e0a)2

d2q(x)
dx2

)
= 0. (5)

It is easily seen from the derivation that the local Euler–Bernoulli beam model is
recovered when the parameter e0 is identically zero.
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3. Flexural bending analysis of CNTs

To investigate the bending analysis of CNTs subjected to static flexural loading,
the governing equation for CNTs can be derived from (5) as

EI
d4w(x)

dx4 = q(x)− (e0a)2
d2q(x)

dx2 .

Hence the model for a CNT subject to a distributed force q(x), concentrated forces
Pi at x = ai (i = 1 . . .m), and bending moment M j at x = b j ( j = 1 . . . n) has
the form

EI
d4w(x)

dx4 = q(x)− (e0a)2
d2q(x)

dx2 +

m∑
i=1

Pi
(
δ(x − ai )− (e0a)2δ′′(x − ai )

)
−

n∑
j=1

M j
(
δ′(x−b j )− (e0a)2δ′′′(x−b j )

)
, (6)

where δ is the Dirac delta function, and ′ denotes differentiation with respect to x .
By integrating both sides of (6), one obtains expressions for the beam deforma-

tion and its three derivatives as follows:

w′′′(x)=
1
EI

∫ x

0
q(x1) dx1 − (e0a)2

dq(x)
dx

+ C1

+

m∑
i=1

Pi
(
H(x−ai )− (e0a)2δ′(x−ai )

)
−

n∑
j=1

M j
(
δ(x−b j )− (e0a)2δ′′(x−b j )

)
, (7)

w′′(x)=
1
EI

∫ x

0
(x−x1)q(x1) dx1 − (e0a)2q(x)+ C1x + C2

+

m∑
i=1

Pi
(
(x−ai )H(x−ai )− (e0a)2δ(x−ai )

)
−

n∑
j=1

M j
(
H(x−b j )− (e0a)2δ′(x−b j )

)
, (8)

w′(x)=
1
EI

1
2

∫ x

0
(x−x1)

2q(x1) dx1 − (e0a)2
∫ x

0
q(x1) dx1

+
C1

2
x2

+ C2x + C3 +

m∑
i=1

Pi
(
(x−ai )

2 H(x−ai )/2 − (e0a)2 H(x−ai )
)

−

n∑
j=1

M j
(
(x−b j )H(x−b j )− (e0a)2δ(x−b j )

)
, (9)
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w(x)=
1
EI

1
6

∫ x

0
(x−x1)

3q(x1) dx1 − (e0a)2
∫ x

0
(x−x1)q(x1) dx1

+
C1

6
x3

+
C2

2
x2

+ C3x + C4

+

m∑
i=1

Pi
(
(x−ai )

3 H(x−ai )/6 − (e0a)2(x−ai )H(x−ai )
)

−

n∑
j=1

M j
(
(x−b j )

2 H(x−b j )/2 − (e0a)2 H(x−b j )
)
. (10)

3.1. Cantilevered CNT. Next we discuss small-scale effects on the response of a
CNT under different boundary conditions.

We first study a cantilevered CNT of length L subjected to a concentrated force
P at x = l. This system has been used by Wong et al. [1997] to measure the
Young’s modulus. According to (10), the response of the CNT under a point force
P is

w(x)=
1
EI

( 1
6C1x3

+
1
2C2x2

+C3x +C4 +
1
6 P(x−l)3 H(x−l)− P(x−l)H(x−l)

)
.

The boundary conditions at the left end, w(0)= w′(0)= 0, lead to the solutions
having C3 = C4 = 0. The boundary conditions at the right end, M(L)= V (L)= 0,
together with Equations (4), lead to

−EI
d2w(x)

dx2

∣∣∣∣
x=L

− Pδ(L − l)(e0a)2 = 0, that is,
d2w(x)

dx2

∣∣∣∣
x=L

= 0,

−EI
d3w(x)

dx3

∣∣∣∣
x=L

− (e0a)2 Pδ′(L − l)= 0, that is,
d3w(x)

dx3

∣∣∣∣
x=L

= 0.

(11)

Hence C1 and C2 can be derived by substituting (7) and (8) into (11):

C1 = − P and C2 = Pl.

The response of the CNT is therefore

w(x)=
1
EI

(
P(x−l)3

6
H(x−l)− P

(
e0a

)2
(x−l)H(x−l)−

Px3

6
+

Plx2

2

)
.

From this we find that the small-scale term, P(e0a)2(x−l)H(x−l), will affect
the response of the CNT only in the domain x > a. The response at x = l is

w(l)=
Pl3

3EI
. (12)

It is important to determine whether the small-scale term has any effect on the
derived Young’s modulus in experimental investigations. In the investigations of
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mechanical properties of CNTs by Wong et al. [1997] and Poncharal et al. [1999],
the response of a cantilevered CNT at the position of the concentrated force was
employed to evaluate Young’s modulus of CNTs. According to Equation (12), it is
clear that the derived Young’s modulus can be viewed as an “accurate” evaluation,
since the measurement is independent of the small-scale effect.

Wong et al. [1997] also considered the beam subjected to surface friction force
in their modeling of the cantilevered CNT. The friction force can be modeled as a
uniform distributed force f applied on the beam. From Equation (10), the response
of the CNT can be written as

w(x)=
1
EI

(
f x4

24
−

f x2

2
(e0a)2 + C1x3/6 + C2x2/2 + C3x + C4

)
.

The fixed left end again leads to C3 = C4 = 0. Zero moment and shear force at the
right end lead to C1 = − f L and C2 = f L2/2, by (4), leading to the solution

EIw′′(L)+ (e0a)2 f = 0 and EIw′′′(L)= 0.

Therefore, the response of the CNT under uniform distributed force is

w(x)=
1
EI

(
f x4

24
−

f Lx3

6
+

f L2x2

4
−

f x2

2
(e0a)2

)
.

It can be seen that the small-scale term has an effect on the measurement of
mechanical properties for a cantilevered CNT subjected to uniformly distributed
force. This effect has to be considered if an independent value for the Young’s
modulus or any other material properties is to be evaluated properly. The small-
scale effect on the deformation of the CNT is studied numerically in terms of the
location of the deformation and the length of the CNT by studying the ratio of
the response for the nonlocal versus the local continuum models, at x = l. In the
simulations we take e0a = 2 nm, as suggested in [Wang 2005]. In the top half of
Figure 2 we see a plot of this ratio versus the nondimensional location (l/L), for a
CNT having length L = 10 nm. We see that the small-scale effect is more obvious
for the response at the point near the free end. The small-scale effect decreases the
response, indicating that its neglect may lead to an overestimation of the Young’s
modulus from the measurements. In [Wong et al. 1997], an increasing variation
of the Young’s modulus was found by using the classical beam model when the
measurement was towards the free end of the cantilever CNT, with both distributed
friction and point loading modeled in their experiment. These authors’ findings on
the increasing variation of the Young’s modulus are in agreement with the result
shown in the figure for the nonlocal beam model, in which a decreasing variation
of the bending deformation is observed as one moves toward the free end. The
effect of the length of the CNT on the ratio is seen in Figure 2, bottom, where
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Figure 2. Small-scale effect versus location of the measurement
(top) and length of CNT (bottom) for the model of a cantilevered
CNT under distributed force.

we take l/L = 0.5. It is expected that the small-scale effect is higher for shorter
CNTs, and this can be seen in the figure. Thus a local continuum model becomes
appropriate for modeling large CNTs.

3.2. Simply supported CNT. Next, the response of a simply supported CNT sub-
jected to a concentrated force P at x = l will be discussed to show the small-scale
effect. The governing equation for the CNT can be obtained from (10) as
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w(x)=
1
EI

(
P(x−l)3

6
H(x−l)− P(x−l)H(x−l)(e0a)2

+
C1x3

6
+

C2x2

2
+ C3x + C4

)
. (13)

The boundary conditions on the two sides of the CNT, w(0) = w(L) = M(0) =

M(L) = 0, lead to the solution for the four coefficients, C1, C2, C3 and C4, and
thus the response of the CNT can finally be obtained as:

w(x)=
1
EI

(
P(x−l)3

6
H(x−l)− P(x−l)H(x−l)

(
e0a

)2

−
P
(
L − l

)
x3

6L
+

P(L − l)(−l2
+ 2Ll)x

6L
+

P(L − l)
(
e0a

)2x
L

)
.

The response of the CNT at the force location, x = l, is thus derived as:

w(l)=
1
EI

(
−

P
(
L − l

)
l3

6L
+

P(L − l)(−l2
+ 2Ll)l

6L
+

P(L − l)
(
e0a

)2l
L

)
.

Especially when l = L/2, one can obtain,

w

(
L
2

)
=

L3

48EI

(
1 + 12

(e0a
L

)2
)
.

The study of the small-scale effect on the simply supported CNT is illustrated in
Figure 3. The top half of the figure plots the ratio of the response from the local
and nonlocal continuum model versus the nondimensional location (l/L) for a
CNT with L = 10 nm. It is observed that the small-scale effect is more obvious for
the response at the two ends of the beam. The effect leads to the value of the ratio
up to 2.4. The small-scale effect makes the response of the CNT larger indicating
that an under-estimated Young’s modulus might be obtained from the measurement
of deformation of a simply supported CNT. The effect of the length of the CNT
on the ratio is shown in the bottom half of the figure, for l/L = 0.5. It is again
within our understanding that the small-scale has higher effect for shorter simply
supported CNTs.

3.3. Fixed-fixed CNT. Salvetat et al. [1999] investigated the elastic and shear
modulus of CNTs by measuring the displacement of a fixed-fixed CNT subjected
to a concentrated force. Thus, it is of significance to understand and evaluate the
small-scale effect on the results of the moduli by measuring the response of fixed-
fixed CNTs. The general expression for the deformation result of a fixed-fixed CNT
subjected to a concentrated force P at x = l is same as Equation (13). Considering
the boundary conditions at the two ends of the beam, w(0) = w′(0) = w(L) =
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Figure 3. Small-scale effect versus location of the measurement
(top) and length of CNT (bottom) for a singly supported CNT.

w′(L) = 0, one can obtained the values for the four coefficients, C1, C2, C3 and
C4, and hence, the response of the beam shown as

w(x)=
1
EI

(
P(x−l)3

6
H(x−l)− P(x−l)H(x−l)(e0a)2

+

(
P(e0a)2

L2

(2l
L

− 1
)

−
P(L − l)2

6L2

(
1 +

2l
L

))
x3

+

(
P
(
e0a

)2

L2

(
2L − 3l

)
+

P(L − l)2l
2L2

)
x2

)
.
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The expression for the response at x = l is thus given as:

w(x)=
1
EI

((
P
(
e0a

)2

L2

(2l
L

− 1
)

−
P(L − l)2

6L2

(
1 +

2l
L

))
x3

+

(
P(e0a)2

L2

(
2L − 3l

)
+

P(L − l)2l
2L2

)
x2

)
.

Furthermore, the result for l = L/2 is given as:

w
(L

2

)
=

P L3

192

(
1 + 24

(e0a
L

)2
)
.

Figure 4, top, shows the ratio of the response from the local and nonlocal continuum
model versus the nondimensional location (l/L), for L = 10 nm. It is seen clearly
that the ratio reaches 3.7 when the measurement is taken near fixed ends and 1.96
for measurement at the center of the beam. This observation indicates that the
Young’s modulus may be underestimated by a factor of at least two in the fixed-
fixed CNT. The bottom half of the figure again shows the effect of the length of
the CNT on the estimation of the response, if the measurement point is taken at the
middle of the CNT. It is seen that the small-scale effect is still obvious for a CNT
with L = 15 nm although this effect becomes smaller with longer CNTs.

From the numerical simulation on three types of CNTs, it is found that the small-
scale effects are more obvious for stiffer CNTs, i.e. fixed-fixed CNTs, and less
obvious for softer CNTs, i.e. cantilevered CNTs. Since the experimental results in
[Salvetat et al. 1999] are inconsistent, the verification for the nonlocal beam model
cannot be implemented at the moment, but will be conducted when consistent data
are available. However, the scale effect was truly observed in [Salvetat et al. 1999].

4. Buckling analysis of CNTs

Buckling is one type of instability exhibited by structures subjected to compressive
loading. Sudak [2003] derived the buckling load of simply supported CNTs via
the nonlocal continuum model. To establish the relationship between the buckling
load of CNTs considering small-effect from nonlocal continuum models and that
without taking into account of small-effect from local continuum models is the
main objective in this section.

The governing equation for a CNT subjected to a compressive loading, F , is
given as follows according to Equation (5):

EI
d4w(x)

dx4 + F
d2

dx2

(
w(x)− (e0a)2

d2w(x)
dx2

)
= 0. (14)
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Figure 4. Small-scale effect versus location of the measurement
(top) and length of CNT (bottom) for a fixed-fixed CNT.

The general solution for Equation (14) can be easily derived as:

w(x)= A1 cosα x + A2 sinα x + A3x + A4, (15)

where α =

√
F

EI−F(e0a)2 .
The buckling load can be derived from an eigenvalue problem to find nontrivial

solution for w(x) by substituting Equation (15) into four boundary conditions at
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the ends of beams. The fundamental value of α for the first buckling mode is
derived as follows [Timoshenko and Gere 1963]:

α =
βπ

L
, (16)

where β has different value for beams with different boundary conditions, i.e. β = 1
for simply supported beams; β = 0.5 for cantilevered beams; β = 2 for fixed-
fixed beams. From Equation (16), the buckling load for CNTs with the nonlocal
continuum model can thus be obtained as

F =

EI
(
βπ

L

)2

1 + (e0a)2
(
βπ

L

)2 . (17)

It can be seen clearly that the buckling load becomes smaller with a factor(
1 + (e0a)2

(βπ
L

)2
)−1

(18)

from the nonlocal elastic beam theory compared to that from local continuum
model. Equation (17) provides a general solution for the buckling load with the
nonlocal continuum model. For example, the solution for buckling load at β = 1
for a simply supported CNT was provided by Sudak [2003]. From the solution
shown in (17), it can be concluded that the small-scale effect is more obvious for
shorter, or smaller L , and stiffer CNT, or higher β. Yakobson et al. [1996] studied
the instability behavior of CNTs by using molecular dynamics. In their results
on the instability patterns, they found a beam-like buckling mode with two half
wavenumber in tube length direction at the axial compression strain ε = 0.09 for a
CNT with length 6 nm and diameter 1 nm. However, according to the continuous
elastic beam model [Wang and Varadan 2005], the CNT may have its beam-like
buckling for a two-half wavenumber mode only at compression strain ε = 0.137.
Such discrepancy of the derived buckling strain may be due to the scale effect.
From the currently developed nonlocal theory, it can be easily found that the over-
estimated buckling strain can be modulated to match the result from the molecular
dynamics calculations in [Yakobson et al. 1996] if the scale coefficient is set to be
e0a = 1.2 nm. It is also noted that the nonlocal beam model cannot capture the
radius-dependent scale effect since in beam model, a uniform radial deformation
assumption is endorsed. The possible radius-dependent scale effect found in [Wang
et al. 2005a] could only be evaluated from a nonlocal shell model which will be
developed and studied later.
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5. Conclusions

Small-scale effects on both the bending analysis of CNTs subjected to static flex-
ural loading and the buckling load of CNTs subjected to compressive loading are
explicitly studied with the nonlocal continuum beam theory. It is found that there
is no such effect on the static response of a cantilevered CNT at the location where
the beam is subjected to a concentrated force, and hence the experimental work on
the measurement of Young’s modulus of CNTs on a cantilevered CNT subjected to
concentrated force is relatively reliable since the small-scale effect of CNTs is not
involved in the measurement of the response. On the other hand, the small-scale
effects are explicitly derived on the response of cantilevered CNT subjected to
distributed force at all locations, simply supported CNTs and fixed-fixed CNTs at
the location where the CNT is subjected to concentrated force. The effect becomes
more obvious with smaller size of CNTs. In addition, the effect is dependent on
the location where the response is taken. For example, the effect is higher on the
responses, where the force is applied at the two ends of both simply supported
and fixed-fixed CNTs. But the effect is higher at the free end of a cantilevered
CNT subjected to a uniformly distributed force. The results also reveals that the
small-scale effects are more obvious for stiffer CNTs, i.e. fixed-fixed CNTs, and
less obvious for softer CNTs, i.e. cantilevered CNTs. The results on buckling
instability of CNTs show that the buckling load becomes smaller when small-scale
effect is considered by the nonlocal continuum model. The ratio of the result from
nonlocal model to that via local model is explicitly derived for CNTs with any gen-
eral boundary conditions. Furthermore, the small-scale effect is found to be more
obvious for shorter and stiffer CNT in buckling analysis. Further studies may focus
on the corresponding analysis of multi-walled CNTs. In all simulations, the results
for CNTs static and buckling analyses are all expressed by simple terms related
to scale coefficients in addition to terms by local continuum models. Thus, the
simplicity of the nonlocal continuum mechanics is well seen and the applicability
of the theory is promising.
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CONSERVATION LAWS AT NANO/MICRO SCALES

YOUPING CHEN AND JAMES LEE

This paper aims to find a field description of local conservation laws at nano/
micro scales. Atomistic definitions and field representations of fundamental
physical quantities are presented. By decomposing atomic deformation into ho-
mogeneous lattice deformation and inhomogeneous relative atomic deformation,
and also decomposing momentum flux and heat flux into homogeneous and inho-
mogeneous parts, the field representations of conservation laws at atomic scale
have been formulated, which follow exactly the time evolution laws that exist in
atomistic simulations, where the atomic motion is fully described, the inhomo-
geneous internal motion is not ignored, and the smallest particles considered are
atoms.

1. Introduction

The atomic view of a crystal is as a periodic arrangement of local atomic bonding
units. Each lattice point defines the location of the center of a unit. The space
lattice is macroscopically homogeneous. Embedded in each lattice point is a group
of bonded atoms, the smallest structural unit of the crystal. The structure of the
unit together with the network of lattice points determines the crystal structure and
hence the physical properties of the material.

For crystals that have more than one atom in the unit cell, elastic distortions give
rise to wave propagation of two types: acoustic and optic. In the acoustic type, all
atoms in the unit cell move essentially in the same phase, resulting in deformation
of the lattice. In the optical type, atoms move within the unit cell, leave the lattice
unchanged, and give rise to internal deformations. In real material response, atomic
vibrations usually include simultaneous lattice deformation and internal deforma-
tion. The displacement of the α-th atom in the k-th unit cell, u(k, α) is in fact a
sum of the lattice displacement u(k) and the internal displacement ξ(k, α), that is,

u(k, α)= u(k)+ ξ(k, α). (1–1)

Keywords: local conservation laws, lattice deformation.
Support for this work by the National Science Foundation under Awards Number CMS-0301539 and
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Figure 1. Atomic view of crystal structure: left, space lattice;
right, crystal structure.

Analysis of phonon dispersion relations can show that, for a unit cell with ν
atoms, there will be 3 acoustic and 3(ν− 1) optical vibrational modes, and hence
3 lattice displacements and 3(ν− 1) internal displacement patterns. There are two
length/time scales associated with the atomic displacement in Equation (1–1). The
lattice deformation u(k) is homogeneous up to the point of structural instability
(phase transformation). It is in the low and audible frequency region, and its length
scale can be from sub-nano to macroscopic. The internal displacement ξ(k, α)
measures the displacement of atoms relative to the lattice, and contributes to the
inhomogeneous deformation. It is in the high frequency region, typically in the
infrared, and its length scale is less than a nanometer.

From the viewpoint of molecular dynamics simulation, an ordered single crystal
is considered to have n unit cells; each unit cell is composed of ν atoms with mass
mα, position Rkα and velocity V kα, where α = 1, 2, . . . , ν and k = 1, 2, . . . , n.
The mass m, coordinate Rk and velocity V k at the center of the unit cell can be
obtained as

m =

ν∑
α=1

mα, Rk
=

1
m

ν∑
α=1

mαRkα, V k
=

1
m

ν∑
α=1

mαV kα. (1–2)

The relative positions and velocities between atoms and the center of the unit
cell are

1rkα
= Rkα

− Rk, 1vkα
= V kα

− V k . (1–3)

It follows that
u(k, α)= u(k)+ ξ(k, α). (1–4)

This again shows that the total atomic displacement u(k, α) is a sum of a homoge-
neous lattice deformation u(k) and an inhomogeneous internal deformation ξ(k, α),
as is obtained in Equation (1–1) from a crystal dynamics viewpoint. Note that the
inhomogeneous internal deformations will be averaged out upon cell-averages, and
are ignored in classical macroscopic theories.

This paper aims to formulate a field representation of the conservation laws
for multielement systems. Unlike the approach in statistical mechanics, here the
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atomic motion and deformation are decomposed into homogeneous and inhomoge-
neous parts and the conservation equations are to be valid at atomic scale. Atom-
istic definitions of physical quantities are derived in Section 2; general dynamic
equations (time evolution) of instantaneous and averaged physical quantities are
introduced in Section 3; and the balance laws at atomic scale are formulated in
Section 4. A summary and discussions are presented in Section 5. Standard dyadic
notations are adopted in this paper.

2. Atomistic definitions of physical quantities

2.1. Instantaneous physical quantities. Macroscopic quantities are generally de-
scribed by continuous (or piecewise-continuous) functions of physical space co-
ordinates x and of time t . They are fields in physical space-time. Microscopic
dynamic quantities, on the other hand, are functions of phase-space coordinates
(r, p), that is, the positions and momenta of atoms (see Equations (1–2) and (1–3)):

r =
{

Rkα
= Rk

+1rkα
∣∣ k = 1, 2, . . . , n;α = 1, 2, . . . , ν

}
,

p =
{
mαV kα

= mαV k
+ mα1vkα

∣∣ k = 1, 2, . . . , n;α = 1, 2, . . . , ν
}
,

where the superscript kα refers to the α-th atom in the k-th unit cell. Consider a
one-particle dynamic function a(Rkα, V kα). The corresponding local density at a
given point x in physical space can be represented by

A(Rkα, V kα
; x)= a(Rkα, V kα)δ(Rkα

− x).

Here the δ-function, δ(Rkα
− x), is a localization function and provides the link

between phase space and physical space descriptions. It can be a Dirac δ-function
or a distribution function. For a Dirac δ-function [Irving and Kirkwood 1950], one
has

δ(x − Rkα)=

{
∞, x = Rkα,

0, x 6= Rkα.

This means that, in a discontinuous atomic description, there can be a contribution
to this function only if an atom happens to be located at x, that is, if Rkα

= x.
In the distribution or weighting function approach, the localization function is

a nonnegative function that has a finite size and finite value [Hardy 1963; 1982;
Ranninger 1965], peaks at x = Rkα and tends to zero as |x − Rkα

| becomes large.
For example, one can use the Gaussian distribution function

δ(x − Rkα)=
1

π3/2l3 exp
(
−|x − Rkα

|
2/ l2),
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where l characterizes the length of the region of a lattice point or of an atom. Both
the Dirac δ-function and the distribution function shall satisfy∫

V
δ(x − Rkα) d3x = 1.

This is a standard treatment in statistical mechanics for defining a mapping of phase
space into physical space.

We intend here to employ a different field description that specifies the positions
of the unit cell and of the atom relative to the unit cell, similar to the MD model
representation in Figure 2 of a multielement crystal. Unlike the standard treatment
in statistical mechanics, we employ x throughout the rest of this paper to represent
continuous collections of lattice points, corresponding to the phase space coordi-
nates, Rk and yα to represent the α-th atomic position relative to the lattice point x,
corresponding to 1rkα; see Figures 2 and 3. Therefore, this localization function

α-th atom

k-th unit cell1rkα
Rkα

Rk

Figure 2. Atomic coordinate in terms of the positions of the unit
cell and of the atom relative to the unit cell.

α-th atom

Lattice point xyα
x + yα

x

Figure 3. Field representation of the positions of the unit cell and
of the atoms relative to the unit cell.
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that defines the mapping of phase space into physical space has the form

δ(Rk
+1rkα

− x − yα)= δ(Rk
− x)δ(1rkα

− yα),

with which the correspondence between a lattice point x in physical space to the
position of the center of the k-th unit cell in phase space, Rk , is then established,
and the position of the α-th atom associated with lattice point x, yα, shall be in
one-to-one correspondence with 1rkα , the relative position of the α-th atom in the
unit cell k. That is, for any given physical point x at an instantaneous time, a unit
cell can be found whose center Rk is located at this point, and a physical space
description of the relative position of the α-th atom, yα, can be determined.

The local density of any measurable phase-space function A(r, p) can then be
defined as

A(x, yα)=

n∑
k=1

A(r, p)δ(Rk
− x)δ(1rkα

− yα)≡ Aα(x),

with normalization conditions∫
V
δ(Rk

− x) d3x = 1 for all k, (2–1)

where V is the volume of the whole system. Equation (2–1) implies that over the
entire physical space all the unit cells (k = 1, 2, . . . , n) can be found. Then, for
each unit cell k, the second δ-function, δ(1rkα

− yα), identifies yα to be 1rkα:

δ(1rkξ
− yα)=

{
1 if ξ = α and 1rkξ

= yα,
0 if ξ 6= α or 1rkξ

6= yα.

It follows that

δ(1rkα
− yα)=

ν∑
ξ=1

δ(1rkξ
− yα),

and ∫
V
δ(Rk

− x)δ(1rkα
− yα) d3x = 1 for all k, α.

2.2. Averaged field variables. To obtain an observable quantity in a MD simula-
tion, one must first be able to express this observable as a function of the positions
and momenta of the particles in the system. However, a measured value of A, called
Am , is not obtained from an experiment performed at an instant; rather the exper-
iment requires a finite duration. During that measuring period individual atoms
evolve through many values of positions and momenta. Therefore, the measured
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value Am is generally the phase function A(r, p) averaged over a time interval 1t :

Am(t)=
1
1t

∫ 1t

0
A
(
r(t + τ), p(t + τ)

)
dτ.

In equilibrium MD it is assumed that this time-interval average reliably approx-
imates the time average 〈A〉 = limt→∞

1
t

∫ t
0 A(r(τ ), p(τ )) dτ , which would be

obtained from a measurement performed over an essentially infinite duration:

Am = 〈A〉. (2–2)

In statistical mechanics a macroscopic quantity is defined as the ensemble aver-
age of an instantaneous dynamical function:

〈A〉 ≡

∫
p

∫
r

A(r, p) f (r, p, t) d r d p,

where f is the normalized probability density function
((∫

f (r, p, t) d r d p = 1
))

.
Equation (2–2) distinguishes molecular dynamics from statistical mechanics. Sta-
tistical mechanics replaces the time average with an ensemble average by invoking
the ergodic hypothesis, which is motivated by the inability to compute the phase-
space trajectory of a real system containing huge numbers of molecules. When
one departs from equilibrium, very little theoretical guidance is available from
statistical mechanics, and MD begins to play the role of an experimental tool.

Most current MD applications involve systems that are either in equilibrium or
in some time-independent stationary state; where individual results are subject to
fluctuation, it is the well-defined averages over sufficiently long time intervals that
are of interest. Extending MD to open systems, where coupling to the external
world is of a more general kind, introduces many new problems. Not only are
open systems out of thermodynamic equilibrium, but also in many cases they are
spatially inhomogeneous and time-dependent. To smooth out the results and to
obtain results close to experiments, measurements of physical quantities are need
to be collected and averaged over a finite time duration. Therefore, in deriving the
field descriptions of atomic quantities and balance equations, it is the time-interval
averaged quantities that will be used, and the local density function, averaged over
an interval 1t around time t , reads

Āα(x, t)= 〈Aα〉 ≡ Aαm

=
1
1t

∫ 1t

0

n∑
k=1

A
(
r(t + τ), p(t + τ)

)
δ(Rk

− x)δ(1rkα
− yα) dτ.

The fundamental physical quantities considered in this paper are mass, momentum,
atomic force, momentum flux, total and internal energy, heat flux and temperature.
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2.3. Mass density. Define the local mass density of the α-th atom as a time-interval
averaged quantity

ρ̄α(x, t)= ρ̄(x, yα, t)=

〈 n∑
k=1

mαδ(Rk
− x)δ(1rkα

− yα)
〉
.

The total mass of the system is then given by

M =

∫
V

( v∑
α=1

ρ̄α(x, t)
)

d3x

=

〈 ∫
V

( n∑
k=1

v∑
α=1

mαδ(Rk
− x)δ(1rkα

− yα)
)

d3x
〉
= n

v∑
α=1

mα
= nm.

Here, the definition of mass densities is similar to that of Kreuzer [1981], who
defined the total mass density of a system involving ν different components, each
with mass density ρα, as

ρ̄ =

ν∑
α=1

ρ̄α.

2.4. Linear momentum density. The linear momentum measures the flow of mass.
The link between the atomic measure of the flow of mass and the field description of
momentum density is achieved through the localization function and time interval
averaging:

ρ̄α(v̄+1v̄α)=

〈 n∑
k=1

mα(V k
+1vkα)δ(Rk

− x)δ(1rkα
− yα)

〉
,

where v̄ = ẋ and 1v̄α = ẏα are the time-interval averaged velocity of the mass
center of a unit cell and the velocity of the α-th atom relative to the center of the
unit cell, respectively.

2.5. Atomic forces. It is assumed that the interatomic force can be derived from in-
teratomic potential. Whether the interaction is through two or three-body potential,
one always has the force acting on the atom i as

f i
= −

∂U
∂Ri , (2–3)

and the mutual interaction force between atom i and atom j can be obtained as

f i j
= −

∂U
∂(Ri

− R j )
=

∂U
∂(R j

− Ri )
= − f j i , (2–4)

where U is the total potential energy of the system, f i j the interatomic force, and
Ri

− R j the relative separation vector between the two atoms i and j .
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For multielement systems, forces acting on an atom can be divided into three
kinds:

(1) f
kα
lβ
1 : interatomic force between (k, α) and (l, β) atoms in two different unit

cells, and f
kα
lβ
1 = − f

lβ
kα
1 ;

(2) f
kαβ
2 : interatomic force between (k, α) and (k, β) atoms in the same unit cell,

and f
kαβ
2 = − f kβα

2 ;

(3) f kα
3 : body force on atom (k, α) due to the external fields.

The total force acting on an atom (k, α) can be written as

Fkα
=

n∑
l=1

ν∑
β=1

f
kα
lβ
1 +

ν∑
β=1

f
kαβ
2 + f kα

3 . (2–5)

The body force density due to an external field is

f̄ α ≡

〈 n∑
k=1

f kα
3 δ(R

k
− x)δ(1rkα

− yα)
〉
,

and body couple density is

Lα =

〈 n∑
k=1

f kα
3 ⊗ (Rk

+1rkα)δ(Rk
− x)δ(1rkα

− yα)
〉
= f̄ α ⊗ x + l̄α,

where l̄α = 〈
∑n

k=1 f kα
3 ⊗1rkαδ(Rk

− x)δ(1rkα
− yα)〉.

Assuming that the total internal potential energy is Uint and using the force-
potential function relationship (2–3)–(2–4), the internal force density due to atomic
interaction can be expressed as

f̄ αint(x)≡

〈 n∑
k=1

( n∑
l=1

ν∑
β=1

f
kα
lβ
1 +

ν∑
β=1

f
kαβ
2

)
δ(Rk

− x)δ(1rkα
− yα)

〉

= −

〈 n∑
k,l=1

ν∑
ξ,η=1

∂Uint

∂(Rkξ
− Rlη)

δ(Rk
− x)δ(1rkξ

− yα)
〉

−

〈 n∑
k=1

ν∑
ξ,η=1

∂Uint

∂(Rkξ
− Rkη)

δ(Rk
− x)δ(1rkξ

− yα)
〉
.

From Equation (2–4) we have f
kξ
lη
1 = − f

lη
kξ
1 and f kξη

2 = − f
kηξ
2 . Interchanging the
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indices kξ and lη, we see that

f̄ αint(x)=
1
2

〈 n∑
k,l=1

ν∑
ξ,η=1

f
kξ
lη
1

(
δ(Rk

−x)δ(1rkξ
− yα)−δ(Rl

−x)δ(1r lη
− yα)

)〉

+
1
2

〈 n∑
k=1

ν∑
ξ,η=1

f kξη
2 δ(R

k
− x)

(
δ(1rkξ

− yα)− δ(1rkη
− yα)

)〉
, (2–6)

Since the formulation involves many-body interactions, it is understood that the
summation over k and l does not include the case k = l and similarly the summation
over α and β does not include the case α = β. In this article, velocity-dependent
interactions such as interaction with magnetic fields are not considered, and hence
the forces depend only on atomic positions. However, the results can be generalized
to include such cases.

2.6. Momentum flux density. It is well accepted that the momentum flux in an
N -body dynamics system can be divided into two parts: kinetic and potential parts
[Hoover 1986; 1991; Chen and Lee 2003a; 2003b; Chen et al. 2003]. The kinetic
part of the momentum flux is the flow of momentum due to atomic motion, which,
in the co-moving coordinate system, is

skin = − p ⊗ p/m.

By virtue of the possible macroscopic motion of the material body, the velocity that
contributes to momentum flux is the difference between the instantaneous velocity
and the stream velocity (the ensemble or time average of the velocity):

Ṽ
kα

= V kα
− 〈V kα

〉 = V kα
− (v̄+1v̄α).

This velocity difference Ṽ
kα

measures the fluctuations of atoms relative to the local
equilibrium and is related to the thermal motion of atoms. In the field representa-
tion, the kinetic part of local density of momentum flux at the α-th atomic position
embedded in lattice point x is

s̄αkin = −

〈 n∑
k=1

mα Ṽ
kα

⊗ Ṽ
kα
δ(Rk

− x)δ(1rkα
− yα)

〉
.

The potential flow of momentum occurs through the mechanism of the interpar-
ticle forces (Figure 4). For a pair of particles α and β that lie on different sides
of a surface that intersects the line connecting the two particles at x + yα , the pair
force

f
kξ
lη = − f

lη
kξ
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gives the rate at which momentum is transported from particle kξ to particle lη. For
each such pair the direction of this transport is along the direction of Rkξ

− Rlη.
So, the potential contribution to the momentum flux is

spot = −(Rkξ
− Rlη)⊗ f

kξ
lη ,

which is continuous along the line connecting the two particles. Notice that

δ(Rk
− x)δ(1rkξ

− yα)− δ(Rl
− x)δ(1r lη

− yα)

=

∫ 1

0

d
dλ

(
δ(Rkλ+ Rl(1 − λ)− x)δ(1rkξλ+1r lη(1 − λ)− yα)

)
dλ.

With the consideration of all interatomic forces that pass through the atomic site
(x, yα), the local density of the momentum transport at (x, yα) due to atomic
interaction is thus expressed as

s̄αpot = −

〈
1
2

∫ 1

0
dλ

n∑
k,l=1

ν∑
ξ,η=1

(Rkξ
− Rlη)⊗ f

kξ
lη
1 δ
(
Rkλ+ Rl(1 − λ)− x

)
δ
(
1rkξλ+1r lη(1 − λ)− yα

)〉
−

〈
1
2

∫ 1

0
dλ

n∑
k=1

ν∑
ξ,η=1

(Rkξ
− Rkη)⊗ f kξη

2 δ(R
k
− x)

δ
(
1rkξλ+1rkη(1 − λ)− yα

)〉
.

The continuum counterpart of momentum flux density is the stress tensor. How-
ever, the mathematical infinitesimal volume that does not violate the continuum
assumption is the volume 1V defining the density of lattice points, which is the
volume of a unit cell. The vector sum of all the atomic forces within this volume
may not pass through the mass center of the 1V . The continuum definition of
stress is, therefore, not the momentum flux density; for a crystal with more than
one atom in the unit cell, the continuum stress is only the homogeneous part of the
momentum flux summing over a volume of at least one unit cell, and it may not
be symmetric.

x + yα

Rkξ Rlη

Figure 4. Flow of momentum due to interatomic force.
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The total momentum flux is, therefore, better represented upon decomposition
of a homogeneous part, caused by lattice motion and deformation and related to
continuum stress, and an inhomogeneous part, caused by internal (relative) atomic
motion and deformation. The homogeneous kinetic, inhomogeneous kinetic, ho-
mogeneous potential and inhomogeneous potential parts are given by, respectively,

t̄αkin = −

〈 n∑
k=1

mα Ṽ
k
⊗ Ṽ

kα
δ(Rk

− x)δ(1rkα
− yα)

〉
,

τ̄αkin = −

〈 n∑
k=1

mα1ṽkα
⊗ Ṽ

kα
δ
(
Rk

− x)δ(1rkα
− yα

)〉
,

t̄αpot = −

〈
1
2

∫ 1

0
dλ

n∑
k,l=1

ν∑
ξ,η=1

(Rk
− Rl)⊗ f

kξ
lη
1 δ(R

kλ+ Rl(1 − λ)− x)

× δ(1rkξλ+1r lη(1 − λ)− yα)
〉
,

τ̄αpot = −

〈
1
2

∫ 1

0
dλ

n∑
k,l=1

ν∑
ξ,η=1

(1rkξ
−1r lη)⊗ f

kξ
lη
1 δ
(
Rkλ+ Rl(1−λ)− x

)
× δ

(
1rkξλ+1r lη(1 − λ)− yα

)〉
−

〈
1
2

∫ 1

0
dλ

n∑
k=1

ν∑
ξ,η=1

(1rkξ
−1rkη)⊗ f kξη

2 δ(R
k
− x)

× δ
(
1rkξλ+1rkη(1 − λ)− yα

)〉
,

(2–7)

where Ṽ
k
= V k

− 〈V k
〉 = V k

− v̄, 1ṽkα
=1vkα

− 〈1vkα
〉 =1vkα

−1v̄α.
Using

d
dλ

(
δ
(

Rkλ+ Rl(1 − λ)− x
)
δ
(
1rkξλ+1r lη(1 − λ)− yα

))
= − ∇x ·

(
(Rk

− Rl)δ
(
Rkλ+ Rl(1 − λ)− x

)
δ
(
1rkξλ+1r lη(1 − λ)− yα

))
− ∇ yα ·

(
(1rkξ

−1r lη)δ
(

Rkλ+ Rl(1 − λ)− x
)
δ
(
1rkξλ+1r lη(1 − λ)− yα

))
,

we see from Equation (2–6), and the last two equations of (2–7), that the diver-
gences of the potential momentum fluxes are related to the internal forces by

∇x · t̄αpot + ∇ yα · τ̄αpot = f̄ αint

=

〈
n∑

k=1

ν∑
η=1

( n∑
l=1

f
kα
lη
1 + f

kαη
2

)
δ(Rk

− x)δ(1rkα
− yα)

〉
. (2–8)
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2.7. Total energy density and internal energy density. The total energy of atom
α in a microscopic N -body dynamics system is the sum of kinetic and potential
energies. In continuum theory, the local energy density is usually defined as energy
per unit mass. This implies

ρ̄α Ēα =

〈 n∑
k=1

( 1
2 mα(V kα)2 + U kα)δ(Rk

− x)δ(1rkα
− yα)

〉
.

The local density of internal energy, which is the state function of thermodynamics,
can be expressed as the sum of thermal energy and potential energy:

ρ̄α ε̄α =

〈 n∑
k=1

( 1
2 mα(Ṽ

kα
)2 + U kα)δ(Rk

− x)δ(1rkα
− yα)

〉
.

Rewriting the total energy density as

ρ̄α Ēα =

〈 n∑
k=1

( 1
2 mα

{
(Ṽ

kα
)2 + 2Ṽ

kα
· (v̄+1v̄α)+ (v̄+1v̄α)2

}
+ U kα)

× δ(Rk
− x)δ(1rkα

− yα)
〉
,

there results the macroscopic relation of densities of the total energy, the internal
energy and the kinetic energy as

〈ραEα〉 = 〈ραεα〉 +
1
2 ρ̄

α(v̄+1v̄α)2.

2.8. Heat flux. The flow of energy by atomic motion, for all particles in the vol-
ume 1V , gives the kinetic contribution to the energy flux. It comes from the rate
at which the local energy E i of atom i moves with local atomic velocity pi/mi ,

Qi
kin = −

pi

mi E i .

The potential contribution to the energy flow occurs whenever two moving par-
ticles interact in such a way that one particle transfers a part of their joint energy to
the other. It comes from the rate at which energy is transported through the action
of interparticle forces: atom i is doing work on atom j , multiplied by the distance
Ri

− R j over which this energy is transferred:

Qpot = −
1
2
(Ri

− R j )

(
pi

2mi +
p j

2m j

)
· f i j .

Noting that heat flux is the conductive flow of internal energy per unit time
and area [Huang 1967; Cochran 1973], the local density functions of kinetic and
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potential heat fluxes, therefore, are expressed as

Q̄α

kin = −

〈 n∑
k=1

Ṽ
kα[ 1

2 mα(Ṽ
kα
)2 + U kα]δ(Rk

− x)δ(1rkα
− yα)

〉
,

Q̄α

pot = −

〈
1
2

∫ 1

0
dλ

n∑
k,l=1

ν∑
ξ,η=1

(Rkξ
− Rlη)Ṽ

kξ

× f
kξ
lη
1 δ
(
Rkλ+ Rl(1 − λ)− x

)
δ
(
1rkξλ+1r lη(1 − λ)− yα

)〉
−

〈
1
2

∫ 1

0
dλ

n∑
k=1

ν∑
ξ,η=1

(Rkξ
− Rkη)Ṽ

kξ

× f kξη
2 δ(R

k
− x)δ

(
1rkξλ+1rkη(1 − λ)− yα

)〉
.

Clearly there are homogeneous and inhomogeneous parts. Similar to the decom-
position of momentum flux density, let the heat flux density be decomposed into
four parts: the homogeneous kinetic, inhomogeneous kinetic, homogeneous po-
tential and inhomogeneous potential part of heat flux, all of which are given by,
respectively,

q̄αkin = −

〈 n∑
k=1

Ṽ
k[ 1

2 mα(Ṽ
kα
)2 + U kα]δ(Rk

− x)δ(1rkα
− yα)

〉
,

j̄αkin = −

〈 n∑
k=1

1ṽkα[ 1
2 mα(Ṽ

kα
)2 + U kα]δ(Rk

− x)δ(1rkα
− yα)

〉
,

q̄αpot = −

〈
1
2

∫ 1

0
dλ

n∑
k,l=1

ν∑
ξ,η=1

(Rk
− Rl)Ṽ

kξ

× f
kξ
lη
1 δ
(
Rkλ+ Rl(1 − λ)− x

)
δ
(
1rkξλ+1r lη(1 − λ)− yα

)〉
,

j̄αpot = −

〈
1
2

∫ 1

0
dλ

n∑
k,l=1

ν∑
ξ,η=1

(1rkξ
−1r lη)Ṽ

kξ

× f
kξ
lη
1 δ
(
Rkλ+ Rl(1 − λ)− x

)
δ
(
1rkξλ+1r lη(1 − λ)− yα

)〉
−

〈
1
2

∫ 1

0
dλ

n∑
k=1

ν∑
ξ,η=1

(1rkξ
−1rkη)Ṽ

kξ

× f kξη
2 δ(R

k
− x)δ

(
1rkξλ+1rkη(1 − λ)− yα

)〉
.
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We see that the inhomogeneous heat flux is closely associated with the inhomoge-
neous stress and may represent the thermal currents that flow back and forth during
vibration between stress inhomogeneities. With the definition of the potential parts
of momentum fluxes and the identity of δ function, it is straightforward to prove
that the divergences of potential heat fluxes have the following characteristics:

∇x ·
(
q̄αpot + t̄αpot · (v̄+1v̄α)

)
+ ∇ yα ·

(
j̄αpot + τ̄

α
pot · (v̄+1v̄α)

)
=

〈
1
2

n∑
k,l=1

ν∑
η=1

(V kα
+ V lη) · f

kα
lη
1 δ(R

k
− x)δ(1rkα

− yα)
〉

+

〈
1
2

n∑
k=1

ν∑
η=1

(V kα
+ V kη) · f

kαη
2 δ(R

k
− x)δ(1rkα

− yα)
〉
. (2–9)

2.9. Temperature. The temperature T for the microscopic N -body system is also
an average quantity. It can be most simply expressed in terms of thermal energy
by the mean-squared velocity relative to the local stream velocity [Hoover 1991],
as

T α(x)=

〈
1V
3kB

n∑
k=1

mα(Ṽ
kα
)2δ(Rk

− x)δ(1rkα
− yα)

〉

=

〈
1V
3kB

n∑
k=1

mα(V kα)2δ(Rk
− x)δ(1rkα

− yα)
〉
−

mα

3kB
(v̄+1v̄α)2,

where kB is Boltzmann constant, Ṽ
kα

are the velocity differences or the fluctuations
of atoms, and 1V is the volume that defines the density of lattice points, that is,
the volume of a unit cell.

3. Time evolution of physical quantities

As mentioned above, an observable quantity in a MD simulation is supposed to be
a function of the positions and momenta of the particles in the system:

A(x, yα)=

n∑
k=1

A(r, p)δ(Rk
− x)δ(1rkα

− yα)≡ Aα(x).

With

∇Rkδ(Rk
− x)= −∇xδ(Rk

− x),

∇1rkαδ(1rkα
− yα)= −∇ yαδ(1rkα

− yα),
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and in the general case that the phase space function A does not involve field
quantities, the time evolution of its local density function can be expressed as

∂Aα

∂t

∣∣∣∣
x, yα

=

n∑
k=1

Ȧδ(Rk
− x)δ(1rkα

− yα)

− ∇x ·

( n∑
k=1

V k
⊗ Aδ(Rk

− x)δ(1rkα
− yα)

)

− ∇ yα ·

( n∑
k=1

1vkα
⊗ Aδ(Rk

− x)δ(1rkα
− yα)

)
. (3–1)

For the time-interval averaged (at time t in the interval 1t) field quantity Āα,

Āα(x, t)= 〈Aα〉 ≡ Aαm =
1
1t

∫ 1t

0
A(r(t + τ), p(t + τ), x, yα) dτ,

one has

∂Āα

∂t

∣∣∣∣
x,yα

=

〈 n∑
k,l=1

ν∑
γ=1

δ(Rk
−x)δ(1rkα

− yα)
(

V lγ
·∇Rlγ+

1
mγ

Flγ
·∇V lγ

)
A
〉

−∇x ·

〈 n∑
k=1

V k
⊗Aδ(Rk

−x)δ(1rkα
− yα)

〉

−∇
α
y ·

〈 n∑
k=1

1vkα
⊗Aδ(Rk

−x)δ(1rkα
− yα)

〉
. (3–2)

Equations (3–1) and (3–2) are the time evolution laws for instantaneous quantity
Aα and averaged field quantity Āα , respectively. When Aα is a conserved property,
it results in the local conservation laws that govern the time evolution of Aα and
Āα, respectively.

4. Formulation of the balance laws

A thermodynamic theory of irreversible processes starts with a set of general bal-
ance equations that govern the time evolution of the system. It is the objective of
this paper to establish differential balance equations for a thermodynamic system
on the same foundation of molecular dynamics: the classical N -body dynamics.
Those balance equations will follow exactly the time evolution laws that exist in
a molecular dynamics simulation, where the atomic motion is fully described, the
inhomogeneous internal motion is not ignored, and the smallest particles are atoms.
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4.1. Conservation of mass. With ρ̄α = 〈
∑n

k=1 mαδ(Rk
− x)δ(1rkα

− yα)〉, the
time evolution of mass density can be obtained as

∂ρ̄α

∂t
= −∇x ·

〈 n∑
k=1

mαV kδ(Rk
− x)δ(1rkα

− yα)
〉

− ∇ yα ·

〈 n∑
k=1

mα1vkαδ(Rk
− x)δ(1rkα

− yα)
〉
.

From the definition of linear momentum, one immediately finds

∂ρ̄α

∂t
+∇x ·(ρ̄

α v̄)+∇ yα ·(ρ̄
α1v̄α)= 0 or

dρ̄α

dt
+ρ̄α(∇x ·v̄+∇ yα ·1v̄

α)= 0.

For cell-average mass density ρ̄ = 〈
∑n

k=1 mδ(Rk
− x)〉, we readily see that

∂ρ̄

∂t
+ ∇x · (ρ̄v̄)= 0 or

dρ̄
dt

+ ρ̄∇x · v̄ = 0.

This is identical to the continuity equation in macroscopic physics.

4.2. Balance of linear momentum. Recall the field representation of local linear
momentum density as

ρ̄α(v̄+1v̄α)≡

〈 n∑
k=1

mαV kαδ(Rk
− x)δ(1rkα

− yα)
〉
.

Substituting it into Equation (3–2), it follows that

∂ρ̄α(v̄+1v̄α)

∂t
=

〈 n∑
k,l=1

ν∑
γ=1

δ(Rk
− x)δ(1rkα

− yα)
Flγ

mγ
· ∇V lγ (mαV kα)

〉

−∇x ·

〈 n∑
k=1

mαV k
⊗ V kαδ(Rk

− x)δ(1rkα
− yα)

〉
−∇yα ·

〈 n∑
k=1

mα1vkα
⊗ V kαδ(Rk

− x)δ(1rkα
− yα)

〉
.

With the divergence of momentum flux, Equation (2–8), one has〈 n∑
k=1

Fkαδ(Rk
− x)δ(1rkα

− yα)
〉
= ∇x · t̄αpot + ∇ yα · τ̄αpot + f̄ α. (4–1)

Since〈 n∑
k=1

mα Ṽ
k
δ(Rk

−x)δ(1rkα
− yα)

〉
=

〈 n∑
k=1

mα1ṽkαδ(Rk
−x)δ(1rkα

− yα)
〉
= 0,
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this gives

∇x ·

〈 n∑
k=1

mαV k
⊗ V kαδ(Rk

− x)δ(1rkα
− yα)

〉
= ∇x ·

〈 n∑
k=1

mα
(
Ṽ

k
⊗ Ṽ

kα
+ v̄⊗ (v̄+1v̄α)

)
δ(Rk

− x)δ(1rkα
− yα)

〉
= ∇x ·

(
− t̄kinα + ρ̄α v̄⊗ (v̄+1v̄α)

)
, (4–2)

∇ yα ·

〈 n∑
k=1

mα1vkα
⊗ V kαδ(Rk

− x)δ(1rkα
− yα)

〉
= ∇ yα ·

〈 n∑
k=1

mα
(
1ṽkα

⊗ Ṽ
kα

+1v̄α ⊗ (v̄+1v̄α)
)
δ(Rk

− x)δ(1rkα
− yα)

〉
= ∇ yα ·

(
−τ̄αkin + ρ̄α1v̄α ⊗ (v̄+1v̄α)

)
. (4–3)

Combining Equations (4–1)–(4–3) with t̄α = t̄αkin + t̄αpot and τ̄α = τ̄αkin + τ̄αpot, the
time evolution of linear momentum is obtained as

∂

∂t

(
ρ̄α(v̄+1v̄α)

)
= ∇x ·

(
t̄α − ρ̄α v̄⊗ (v̄+1v̄α)

)
+ ∇ yα ·

(
τ̄α − ρ̄α1v̄α ⊗ (v̄+1v̄α)

)
+ f̄ α,

or

ρ̄α
d
dt
(v̄+1v̄α)= ∇x · t̄α + ∇ yα · τ̄α + f̄ α.

For cell-average linear momentum density, ρ̄v̄ ≡ 〈
∑n

k=1 mV kδ(Rk
− x)〉, the

time evolution is obtained as

∂

∂t
(ρ̄v̄)= ∇x ·

[
t̄ − ρv̄⊗ v̄

]
+ f̄ or ρ̄

d
dt
v̄ = ∇x · t̄ + f̄ , (4–4)

where t̄ =
∑ν

α=1 t̄α and f̄ =
∑ν

α=1 f̄ α are the cell averages of homogeneous
momentum flux density and body force density, respectively. Equation (4–4) is
identical with the conservation law of linear momentum in macroscopic continuum
mechanics. However, the latter no longer holds at atomic scale.

4.3. Balance of angular momentum. The angular momentum density can be de-
fined as

ρ̄αψ̄
α

≡

〈 n∑
k=1

mαV kα
× Rkαδ(Rk

− x)δ(1rkα
− yα)

〉
= ρ̄α(v̄+1v̄α)× (x + yα).
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Substituting it into Equation (3–2), there results

∂

∂t
(ρ̄αψ̄

α
)=

〈 n∑
k=1

mαV kα
· V kαδ(Rk

− x)δ(1rkα
− yα)

〉
+

〈 n∑
k=1

Fkα
· Rkαδ(Rk

− x)δ(1rkα
− yα)

〉
− ∇x ·

〈 n∑
k=1

(Ṽ
k
+ v̄)⊗ mα(Ṽ

kα
+ v̄+1v̄α)× Rkαδ(Rk

− x)δ(1rkα
− yα)

〉
− ∇yα ·

〈 n∑
k=1

(1ṽkα
+1v̄α)⊗ mα(Ṽ

kα
+v̄+1v̄α)× Rkαδ(Rk

− x)δ(1rkα
− yα)

〉
≡ A + B + C + D,

where

A =

〈 n∑
k=1

(mαV ka
×V ka)δ(Rk

−x)δ(1rkα
− yα)

〉
= 0,

B =

〈 n∑
k=1

( n∑
l=1

ν∑
η=1

f
kα
lη
1 ×Rkα

+

ν∑
η=1

f
kαη
2 ×Rkα

)
×δ(Rk

−x)δ(1rkα
− yα)

〉
+L̄α

=

〈 n∑
k=1

( n∑
l=1

ν∑
η=1

f
kα
lη
1 +

ν∑
η=1

f
kαη
2

)
δ(Rk

−x)δ(1rkα
− yα)

〉
×(x+ yα)+L̄α

= (∇x · t̄
α
pot+∇ yα ·τ̄

α
pot)×(x+ yα)+L̄α,

C = −∇x ·

(〈 n∑
k=1

mα Ṽ
k
(Rk

−x)δ(1rkα
− yα)

〉
×(x+ yα)

)
−∇x ·(v̄⊗ρ̄

αψ̄
α
)

= −∇x ·
(
v̄⊗ρ̄αψ̄

α
− t̄αkin×(x+ yα)

)
,

D = −∇ yα ·

(
1v̄α⊗ρ̄αψ̄

α
+

〈 n∑
k=1

1ṽkα
⊗mαV kα

×Rkαδ(Rk
−x)×δ(1rkα

− yα)
〉)

= −∇ yα ·(1v̄
α
⊗ρ̄αψ̄

α
)

−∇ yα ·

(〈 n∑
k=1

1ṽkα⊗mα(Ṽ
k
α+v̄+1v̄α)δ(Rk

−x)δ(1rkα
− yα)

〉
×(x+ yα)

)
= −∇ yα ·

(
1v̄α⊗ρ̄αψ̄

α
−τ̄αkin×(x+ yα)

)
.
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Combining A, B, C , and D gives

∂

∂t
(ρ̄αψ̄

α
)= −∇x ·

(
v̄⊗ ρ̄αψ̄

α
− t̄αkin × (x + yα)

)
−∇ yα ·

(
1v̄α⊗ρ̄αψ̄

α
−τ̄αkin×(x+ yα)

)
+(∇x · t̄

α
pot+∇ yα ·τ̄

α
pot)×(x+ yα)+L̄α,

or

ρ̄α
dψ̄

α

dt
= ∇x ·

(
t̄αkin × (x + yα)

)
+ ∇ yα ·

(
τ̄αkin × (x + yα)

)
+ (∇x · t̄αpot + ∇ yα · τ̄αpot)× (x + yα)+ L̄α.

Notice that the time evolution of angular momentum can also be expressed from
its field definition as

ρ̄α
dψ̄

α

dt
= ρ̄α

d(v̄+1v̄α)

dt
× (x + yα)= (∇x · t̄α + ∇ yα · τ̄α + f̄ α)× (x + yα).

Since t̄α + τ̄α is symmetric (see Equations (2–7) and x and yα are mutually inde-
pendent within any unit cell, the balance law of angular momentum is shown to be
identically satisfied.

4.4. Conservation of energy. With the definition of local total energy density

ρ̄α Ēα =

〈 n∑
k=1

( 1
2 mα(V kα)2 + U kα)δ(Rk

− x)δ(1rkα
− yα)

〉
,

Equation (3–2) results in

∂

∂t
(ρα Ēα)= − ∇x ·

〈 n∑
k=1

V k( 1
2 mα(V kα)2 + U kα)δ(Rk

− x)δ(1rkα
− yα)

〉
− ∇ yα ·

〈 n∑
k=1

1vkα( 1
2 mα(V kα)2 + U kα)δ(Rk

− x)δ(1rkα
− yα)

〉

+

〈 n∑
k=1

Fkα
· V kαδ(Rk

− x)δ(1rkα
− yα)

〉

+

〈 n∑
k,m=1

ν∑
γ=1

(V mγ
· ∇Rmγ )U kαδ(Rk

− x)δ(1rkα
− yα)

〉
≡ A + B + C + D.
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A, B, C and D can be further derived as

A = − ∇x ·

〈 n∑
k=1

(V k
− v̄+ v̄)

( 1
2 mα(Ṽ

kα
)2 + Ṽ

kα
· (v̄+1v̄α)

+
1
2 mα(v̄+1v̄α)2 + U kα)δ(Rk

− x)δ(1rkα
− yα)

〉
= − ∇x ·

(
− q̄αkin − t̄αkin · (v̄+1v̄α)+ v̄

(
ρ̄α ε̄α +

1
2 ρ̄

α(v̄+1v̄α)2
))
,

B = − ∇
α
y ·

〈 n∑
k=1

(1vkα
−1v̄α +1v̄α)

( 1
2 mα(Ṽ

ka
)2 + Ṽ

ka
· (v̄+1v̄α)

+
1
2 mα(v̄+1v̄α)2 + U kα)δ(Rk

− x)δ(1rka
− yα)

〉
= − ∇ yα ·

(
− j̄αkin − τ̄αkin · (v̄+1v̄α)+1v̄α

(
ρ̄α ε̄α +

1
2 ρ̄

α(v̄+1v̄α)2
))
,

C =

〈 n∑
k=1

ν∑
β=1

V kα
·

( n∑
l=1

f
kα
lη
1 + f

kαβ
2

)
δ(Rk

− x)δ(1rkα
− yα)

〉
+

〈 n∑
k=1

V kα
· f 3δ(R

k
− x)δ(1rkα

− yα)
〉
,

D =
1
2

〈 n∑
k=1

n∑
l=1

ν∑
γ=1

(V lγ
· ∇Rlγ )U kαδ(Rk

− x)δ(1rkα
− yα)

〉

= −
1
2

〈 n∑
k=1

n∑
l=1

ν∑
γ=1

(V kα
− V lγ ) · f

kα
lγ
1 δ(R

k
− x)δ(1rkα

− yα)
〉

−
1
2

〈 n∑
k=1

ν∑
γ=1

(V kα
− V kγ ) · f

kαγ
2 δ(R

k
− x)δ(1rkα

− yα)
〉
.

With the divergence of heat flux (Equation (2–9)), we see that

C + D =

〈
1
2

n∑
k,l=1

ν∑
η=1

(V kα
+ V lη) · f

kα
lη
1 δ(R

k
− x)δ(1rkα

− yα)
〉

+

〈
1
2

n∑
k=1

ν∑
η=1

(V kα
+ V kη) · f

kαη
2 δ(R

k
− x)δ(1rkα

− yα)
〉

= ∇x ·
(
q̄αpot + t̄αpot · (v̄+1v̄α)

)
+ ∇ yα ·

(
j̄αpot + τ̄

α
pot · (v̄+1v̄α)

)
+

〈 n∑
k=1

(V kα
− v̄−1v̄α) · f 3δ(R

k
− x)δ(1rkα

− yα)/1V α

〉
+ (v̄+1v̄α) · f̄ α.
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If the external field is not velocity-dependent, the sum of A, B, C , and D reads

∂(ρ̄α Ēα)
∂t

= ∇x ·
(
q̄α − v̄ρ̄α ε̄α + t̄α · (v̄+1v̄α)

)
+ ∇ yα ·

(
j̄α −1v̄αρ̄α ε̄α + τ̄α · (v̄+1v̄α)

)
− ∇x ·

{1
2 ρ̄

α v̄(v̄+1v̄α)2
}
− ∇ yα ·

{1
2 ρ̄

α1v̄α(v̄+1v̄α)2
}
+ (v̄+1v̄α) · f̄ α.

From the conservation equation of mass and the balance equation of linear momen-
tum, the total energy equation can be rewritten in terms of internal energy as

∂

∂t
(ρ̄α Ēα)=

∂

∂t
(
ρ̄α ε̄α +

1
2 ρ̄

α(v̄+1v̄α)2
)

=
∂

∂t
(ρ̄α ε̄α)− ∇x ·

( 1
2 ρ̄

α v̄(v̄+1v̄α)2
)
− ∇ yα ·

( 1
2 ρ̄

α1v̄α(v̄+1v̄α)2
)

+ (v̄+1v̄α) · (∇x · t̄α + ∇ yα · τ̄α + f̄ α).

Finally, the time evolution of internal energy is obtained as

∂

∂t
(ρ̄α ε̄α)+ ∇x · (−q̄α + v̄ρ̄α ε̄α)+ ∇ yα · (− j̄α +1v̄αρ̄α ε̄α)

= t̄α : ∇x(v̄+1v̄α)+ τ̄α : ∇ yα (v̄+1v̄α),

or

ρ̄α
d ε̄α

dt
= ∇x · q̄α + ∇ yα · j̄α + t̄α : ∇x(v̄+1v̄α)+ τ̄α : ∇ yα (v̄+1v̄α),

where

t̄α : ∇x(v̄+1v̄α)≡ t̄αi j

∂(v̄ j +1v̄αj )

∂xi
,

τ̄α : ∇ yα (v̄+1v̄α)≡ τ̄αi j

∂(v̄ j +1v̄αj )

∂yαi
.

One can find that the time evolution law of cell-averaged energy is different
from the macroscopic equation of conservation of energy. This indicates that the
macroscopic form of the conservation of energy equation no longer holds even at
cell level; the energy density of a unit cell is not a homogeneous quantity; and the
contribution of the internal motion and deformation of atoms to the evolution of
energy density cannot be ignored.

5. Summary and discussion

By decomposing atomic displacements, momentum and heat fluxes into homo-
geneous and inhomogeneous parts, we have formulated a field representation of
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conservation laws at an atomic scale. The mathematical representations for conser-
vation of mass, balance of linear momentum and conservation of energy are

dρ̄α

dt
+ ρ̄α(∇x · v̄+ ∇ yα ·1v̄α)= 0,

ρ̄α
d
dt
(v̄+1v̄α)= ∇x · t̄α + ∇ yα · τ̄α + f̄ α,

ρ̄α
d ε̄α

dt
= ∇x · q̄α + ∇ yα · j̄α + t̄α : ∇x(v̄+1v̄α)+ τ̄α : ∇ yα (v̄+1v̄α),

and the balance law of angular momentum at atomic scale is identically satisfied.
Here are some conclusions:

(1) The field representations of conservation equations were formulated within
the framework of atomic N-body dynamics. They are the exact time evolution
laws of conserved quantities in MD simulations.

(2) Recall that in micromorphic theory [Eringen and Suhubi 1964; Eringen 1999],
the balance laws for mass, linear momentum, generalized spin, and energy
were obtained as

dρ̄
dt

= − ρ̄∇x · v̄

ρ̄
d v̄
dt

= ∇x · t̄ + f̄ ,

ρ̄
dφ̄
dt

= ∇x · m̄ + ω̄ · ρ i · ω̄T
+ ( t̄ − s̄)T + l̄,

ρ̄
d ε̄
dt

= t̄ : ∇v̄+ m̄
...∇ω̄+ ω̄ : ( s̄ − t̄ )T + ∇ · q̄,

where ϕ is generalized spin, ω the gyration tensor and l the external couple.
Assuming that the inner atomic structure is a continuum and thus 1vkα

= ω ·

1rkα , one will find that the obtained balance laws in this paper can be reduced
to the balance laws in micromorphic theory upon such continuum assumption
and cell averaging [Chen and Lee 2003a; 2003b; Chen et al. 2003]. Note
that because the atomic motion and deformation as well as momentum and
heat fluxes are decomposed into homogeneous and inhomogeneous parts, the
higher order moment stress is avoided in this paper. Also, if the structural unit
of the crystal is considered as a point mass, ignoring the atomic structure of
the primitive unit cell and relative motion and deformation within this cell, the
balance equations we obtain can be reduced to those of continuum mechanics.

(3) For a single component system the obtained balance laws are identical with
those obtained by Irving and Kirkwood [1950].
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(4) The averaged quantities are time-interval averages. If one uses ensemble av-
erages, it is straightforward to prove that Liouville’s theorem would result in
the same form as in Equation (3–2) for the time evolutions in equilibrium
statistical mechanics; the Boltzmann transport equation as well as BBGKY
theory would also yield the same for conserved properties in nonequilibrium
statistical mechanics [Chen and Lee 2003a; 2003b; Chen et al. 2003; Kreuzer
1981].

(5) The formulation in this paper has proved that for multielement systems the
local conservation equations at atomic scale differ from that at macroscopic
scale, and the contribution of the internal motion and deformation of atoms
cannot be ignored.

(6) While in molecular dynamics simulations, some physical phenomena may de-
pend on the initial condition, the time-interval 1t , and the choice of the local-
ization function δ, it is noticed that the obtained mathematical representation
of the conservation laws is fully in terms of field variables, and is independent
of the initial conditions, the time interval and the choice of the localization
function.

References

[Chen and Lee 2003a] Y. Chen and J. D. Lee, “Connecting molecular dynamics to micromorphic
theory, I: Instantaneous mechanical variables”, Physica A 322 (2003), 359–376.

[Chen and Lee 2003b] Y. Chen and J. D. Lee, “Connecting molecular dynamics to micromorphic
theory, II: Balance laws”, Physica A 322 (2003), 377–392.

[Chen et al. 2003] Y. Chen, J. D. Lee, and A. Eskandarian, “Atomistic counterpart of micromorphic
theory”, Acta Mech. 161:1–2 (2003), 81–102.

[Cochran 1973] W. Cochran, The dynamics of atoms in crystals, Edward Arnold Limited, London,
1973.

[Eringen 1999] A. C. Eringen, Microcontinuum field theories, I: Foundations and solids, Springer,
New York, 1999. MR 2000i:74007

[Eringen and Suhubi 1964] A. C. Eringen and E. S. Suhubi, “Nonlinear theory of simple microelastic
solids, I”, Int. J. Eng. Sci. 2:2 (1964), 189–203.

[Hardy 1963] R. J. Hardy, “Energy-flux operator for a lattice”, Phys. Rev. 132:1 (1963), 168–177.
MR 28 #948

[Hardy 1982] R. J. Hardy, “Formulas for determining local properties in molecular-dynamics simu-
lations: Shock waves”, J. Chem. Phys. 76:1 (1982), 622–628.

[Hoover 1986] W. G. Hoover, Molecular dynamics, Springer, Berlin, 1986.

[Hoover 1991] W. G. Hoover, Computational statistical mechanics, Elsevier, Amsterdam, 1991.

[Huang 1967] K. Huang, Statistical mechanics, Willey, New York, 1967.

[Irving and Kirkwood 1950] J. H. Irving and J. G. Kirkwood, “The statistical mechanical theory of
transport processes, IV: The equations of hydrodynamics”, J. Chem. Phys. 18:6 (1950), 817–829.
MR 12,230d

http://dx.doi.org/10.1016/S0378-4371(02)01921-0
http://dx.doi.org/10.1016/S0378-4371(02)01921-0
http://dx.doi.org/10.1016/S0378-4371(02)01922-2
http://dx.doi.org/10.1016/S0378-4371(02)01922-2
http://dx.doi.org/10.1007/s00707-002-0981-2
http://dx.doi.org/10.1007/s00707-002-0981-2
http://www.ams.org/mathscinet-getitem?mr=2000i:74007
http://dx.doi.org/10.1016/0020-7225(64)90004-7
http://dx.doi.org/10.1016/0020-7225(64)90004-7
http://dx.doi.org/10.1103/PhysRev.132.168
http://www.ams.org/mathscinet-getitem?mr=28:948
http://dx.doi.org/10.1063/1.442714
http://dx.doi.org/10.1063/1.442714
http://dx.doi.org/10.1063/1.1747782
http://dx.doi.org/10.1063/1.1747782
http://www.ams.org/mathscinet-getitem?mr=12,230d


704 YOUPING CHEN AND JAMES LEE

[Kreuzer 1981] H. J. Kreuzer, Nonequilibrium thermodynamics and its statistical foundations, Ox-
ford University Press, London, 1981. MR 82d:82001

[Ranninger 1965] J. Ranninger, “Lattice thermal conductivity”, Phys. Rev. 140:6A (1965), A2031–
A2046.

Received 4 Dec 2005.

YOUPING CHEN: ypchen2@gwu.edu
School of Engineering and Applied Science, The George Washington University, Academic Center
T739, 801 22nd Street NW, Washington, DC 20052, United States

JAMES LEE: jdlee@gwu.edu
School of Engineering and Applied Science, The George Washington University, Academic Center
T739, 801 22nd Street NW, Washington, DC 20052, United States

http://www.ams.org/mathscinet-getitem?mr=82d:82001
http://dx.doi.org/10.1103/PhysRev.140.A2031
mailto:ypchen2@gwu.edu
mailto:jdlee@gwu.edu


JOURNAL OF MECHANICS OF MATERIALS AND STRUCTURES
Vol. 1, No. 4, 2006

STRESSES AND STRAINS AT NANO/MICRO SCALES

YOUPING CHEN, JAMES LEE AND LIMING XIONG

This paper is concerned with stress and strain fields at atomic scale. Unlike
other formulations of atomistic expression of macroscopic stress fields or ho-
mogeneous systems, this paper aims at field descriptions of atomic stresses and
strains for multi-element crystalline materials. By decomposing atomic deforma-
tion into homogeneous lattice deformation and inhomogeneous relative atomic
deformation, a field representation of momentum flux is formulated within the
framework of atomic many-body dynamics, and the connection to a macroscopic
definition of stress is obtained. The atomic strain measures and the atomic stress-
strain relations are derived. Phonon dispersion relations are calculated and pre-
sented.

1. Introduction

Stress is an important concept in characterizing the states of condensed matter,
and has been extensively studied from both macroscopic and microscopic points
of view. Quantum mechanics theory of stress may be traced back to the earliest
years of the development of quantum mechanics [Born et al. 1926]. Through
atomistic simulations of momentum flux in classical many-body dynamics, the
study of stress response to external disturbance has played an important role in
understanding mechanical properties of materials [Horstemeyer and Baskes 1999].
One of the fundamental properties in classical continuum mechanics is stress. Ex-
tensions of macroscopic continuum theory to microcontinuum theories are mainly
due to the deficiency of stress descriptions – we thus have theories incorporating
moment stress, microstress average, couple stress, etc. [Eringen and Suhubi 1964;
Mindlin 1964; Eringen 1967; Cosserat and Cosserat 1909; Toupin 1962; Green
and Rivlin 1964]. While the underlying physics is same, the descriptions from
different viewpoints are thoroughly different.

Atomistic view of a crystal is as a periodic arrangement of local atomic bonding
units. Each lattice point defines the location of the center of the unit that forms
the smallest structural unit of the crystal. The structure of the unit together with

Keywords: stress, strain, atomic scale, many-body dynamics.
The support to this work by National Science Foundation under Award Numbers CMS-0301539 and
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(a) (b) (c) (d)

Figure 1. Stresses in ABO3 ferroelectrics: (a) The ABO3 struc-
tural unit; (b) Lattice points and the unit cell (2D illustration); (c)
stress evaluated at lattice position with the volume of a unit cell;
(d) moment stress resulting from the resultant moment of inter-
atomic forces.

the network of lattice points determines the crystal structure and hence the physi-
cal properties of the material. Classical continuum mechanics, on the other hand,
views a crystal as a homogeneous and continuous medium. The basic structural unit
of the crystal is idealized as point mass, and the internal motion and deformation
of atoms within the unit are ignored.

Consider ABO3 ferroelectrics as an example. There are five atoms in a unit cell,
the smallest structural unit (Figure 1a). This unit cell (a mass point in classical
continuum theory) gives the smallest allowable volume in which the continuum
hypothesis is not violated (Figure 1b). However, at ferroelectric phase, for this
mathematical infinitesimal, the vector sum of all interatomic forces will not pass
through the mass center. This will result in a surface couple on the surface of this
infinitesimal volume, and hence a higher order moment stress, m, (as shown in
Figure 1d) in addition to the stress in the traditional continuum definition (Figure
1c). Such higher order stress has been employed in many micro-continuum theories
to account for the effect of microstructure. Among those well-established, there are
micromorphic theory [Eringen and Suhubi 1964; Eringen 1999], microstructure
theory [Mindlin 1964], micropolar theory [Eringen 1967], and Cosserat theory
[Cosserat and Cosserat 1909]. As a consequence of the higher order stresses, there
are higher order strains to be the corresponding thermodynamic conjugates.

However, it is very difficult, if not impossible, for these micro-continuum theo-
ries to describe the dynamics feature of atoms in complex crystals at nano/micro
scales. Material properties or behavior related to atomic motion and interaction
cannot be modeled accurately by the existing micro-continuum theories. Moreover,
the stresses and strains defined in classical or micro-continuum theories may not be
consistent with the atomistic definitions in microscopic modeling and simulations.

This paper aims at field descriptions of stress and strain at atomic scale for multi-
element crystals. In Section 2 the momentum flux density in the classical N -body
dynamics will be introduced. A field representation of momentum flux will be
derived in Section 3, atomic stress-strain relation as well as the atomistic measures



STRESSES AND STRAINS AT NANO/MICRO SCALES 707

of strain will be derived in Section 4, a few numerical examples will be presented in
Section 5, and a summary and discussions will be presented in Section 6. Standard
dyadic and tensor notations are employed in this paper.

2. Momentum flux in classical N-body dynamics

2.1. Atomic forces. In an atomic N -body system, if one defines the force between
atom i and atom j as

f i j
= −

〈
∂Uint

∂(Ri
− R j )

〉
=

〈
∂Uint

∂(R j
− Ri )

〉
= − f j i , (2–1)

one then has

f i
=

n∑
j=1

f i j ,

where f i j is the interatomic force and Ri
− R j the relative separation vector be-

tween the two atoms i and j .
Now consider a multi-element crystal with n unit cell and ν atoms in each primi-

tive unit cell. Generally, forces acting on an atom (k, α),where k = 1, 2, . . . n and
α = 1, 2, . . . ν, can be divided into three kinds:

1. f
kα
lβ
1 : interatomic force between (k, α) and (l, β) atoms in two different unit

cells k and l, with

f
kα
lβ
1 = − f

lβ
kα
1 .

2. f
kαβ
2 : interatomic force between (k, α) and (k, β) atoms in the same unit cell

k, with

f
kαβ
2 = − f kβα

2 .

3. f kα
3 : body force on atom (k, α) due to the external fields.

The total force acting on an atom (k, α) can be written as

Fkα
=

n∑
l=1

ν∑
β=1

f
kα
lβ
1 +

ν∑
β=1

f
kαβ
2 + f kα

3 .

2.2. Momentum flux. The quantum mechanical theorem of stress by Born et al.
[1926] and Nielsen and Martin [1985] can result in exactly the same form as the
momentum flux in classical many-body dynamics [Hoover 1986; 1991; Chen and
Lee 2003a; 2003b]. On a microscopic basis of atomic many-body dynamics, there
are two kinds of contributions to the momentum flux: kinetic and potential.
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Figure 2. Flow of momentum due to inter-particle force.

Suppose a particle α carries a momentum p. During a small time interval dt
this momentum is transported a distance ( p/mα)dt . The resulting “kinetic” con-
tribution to the momentum flux, in the co-moving coordinate system, is

sαkin = − p ⊗ p/mα. (2–2)

By virtue of the possible macroscopic motion of the material body, the veloc-
ity that contributes to momentum flux is the difference between the instantaneous
velocity and the stream velocity (the ensemble or time-interval average of the ve-
locity),

Ṽ
kα

= V kα
−
〈
V kα〉

= V kα
− (v̄ +1v̄α). (2–3)

This velocity difference, Ṽ
kα

, measures the fluctuations of atoms relative to the
local equilibrium and is related to the thermal motion of atoms.

The “potential” flow of momentum occurs through the mechanism of the inter-
particle forces. For a pair of particles kα and lβ that lie on different sides of a
surface, the pair force

f
kα
lβ = − f

lβ
kα

gives the rate at which momentum is transported from particle kα to particle lβ. For
each such pair the direction of this transport is along the line parallel to Rkα

− Rlβ ,
and the potential contribution to the momentum flux is

spot = −Rkα
⊗ f

kα
lβ − Rlβ

⊗ f
lβ
kα = −(Rkα

− Rlβ)⊗ f
kα
lβ . (2–4)

This momentum transfer can be visualized as a direct connection between two
interacting particles (Figure 2), which is continuous through the line linking them.

3. Field representation of momentum flux

3.1. Field representation of the atomic system. An ordered atomic system can be
viewed as a periodic arrangement of local atomic bonding units. Each lattice point
defines the location of the center of the unit. The space lattice is macroscopically
homogeneous, and the deformation of lattice is homogeneous up to the point of
structural instability (phase transformation). Therefore, the network of lattice point
is continuous, and the deformation gives rise to a field function u(x), where each
point x in the physical space corresponds to a lattice point Rk in the phase space;
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Figure 3. Physical space and phase space descriptions of an
atomic position.

embedded within each point x is a group of ν discrete atoms (1rkα) (Figure 3).
With a localization function

δ(Rk
+1rkα

− x − yα)= δ(Rk
− x)δ(1rkα

− yα),

the local density of any measurable phase-space function A(r, p), where

A(r, p)= A
(
r(t), p(t)

)
,

can be expressed as [Chen and Lee 2006]

Āα(x, t)=
〈
Aα
〉
≡ Aαm =

1
1t

∫ 1t

0

n∑
k=1

A(r, p)δ(Rk
− x)δ(1rkα

− yα)dτ,

Here, quantities in physical space are expressed in terms of time-interval aver-
ages, as in experimental observations, which are performed over a finite duration.
The localization function, a Dirac δ-function or a distribution function, links the
expressions of a dynamic function in phase space to the local density function
in physical space. The displacement of lattice point x, u(x), gives rise to the
homogeneous and continuous lattice deformation with length scale from nano to
macroscopic. The relative displacements of the a-th atom, ξ(x, α), result in relative
atomic deformation within the inner structure and describe the inhomogeneous and
non-continuum atomic behavior whose length scale is less than a nanometer. The
total atomic displacement is u(x)+ ξ(x, α) in physical space, corresponding to
the u(k)+ ξ(k, α) in phase space, with the time scale of u(x) at audible frequency
region and ξ(x, α) at inferred.

3.2. Field descriptions of forces and momentum flux. The field representation of
total force acting on a an atom α can be expressed as

Fα(x)≡

〈
n∑

k=1

(
n∑

l=1

ν∑
β=1

f
kα
lβ
1 +

ν∑
β=1

f
kαβ
2 + f kα

3

)
δ(Rk

− x)δ(1rkα
− yα)

〉
,
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where the external body force density f̄ α is given by

f̄ α(x)≡

〈
n∑

k=1

f kα
3 δ(R

k
− x)δ(1rkα

− yα)

〉
,

and the internal force density is (see Equation (2–1))

f̄ αint(x)=

〈
n∑

k=1

(
n∑

l=1

ν∑
ξ,η=1

f
kξ
lη
1 +

ν∑
ξ,η=1

f kξη
2

)
δ(Rk

− x)δ(1rkξ
− yα)

〉
.

From Equations (2–2)–(2–4), the local densities of kinetic and potential momen-
tum fluxes can be expressed as

s̄αkin(x)= −

〈
n∑

k=1

mα Ṽ
kα

⊗Ṽ
kα
δ(Rk

−x)δ(1rkα
− yα)

〉
,

s̄αpot(x)= −

〈
1
2

n∑
k,l=1

ν∑
ξ,η=1

(Rkξ
−Rlη)

⊗ f
kξ
lβ
1

∫ 1

0
dλδ

(
Rkλ+Rl(1−λ)−x

)
δ
(
1rkξλ+1r lη(1−λ)− yα

)〉

−

〈
1
2

n∑
k=1

ν∑
ξ,η=1

(Rkξ
−Rkη)

⊗ f kξη
2

∫ 1

0
dλδ(Rk

−x)δ
(
1rkξλ+1rkη(1−λ)− yα

)〉
.

The momentum flux in MD has been considered as the atomistic counterpart of the
continuum stress. However, it is seen that

(1) The smallest mathematical infinitesimal volume that does not violate the con-
tinuum assumption is the volume 1V defining the density of lattice points,
which is the volume of a primitive unit cell. The vector sum of all the atomic
forces within this volume may not pass through the mass center of the 1V
(Figure 4).

(2) The continuum definition of stress is not the momentum flux density. For a
crystal with more than one atom in the unit cell, the continuum stress is only
the homogenous part of the momentum flux summing over a volume of at
least a primitive unit cell, and it may not be symmetric.

The total momentum flux density is, therefore, better represented by the sum of
a homogeneous part, t , which is due to the motion and deformation of the lattice
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Figure 4. Illustration of atomic forces in a unit cell.

and is related to continuum stress,

t̄αkin = −

〈
n∑

k=1

mα Ṽ
k
⊗ Ṽ

kα
δ(Rk

− x)δ(1rkα
− yα)

〉
, (3–1)

t̄αpot = −

〈
1
2

∫ 1

0
dλ

n∑
k,l=1

ν∑
ξ,η=1

(Rk
− Rl)

⊗ f
kξ
lη
1 δ
(
Rkλ+ Rl(1 − λ)− x

)
δ(1rkξλ+1r lη(1 − λ)− yα)

〉
, (3–2)

and an inhomogeneous part, τ , which is due to the internal motion and deformation,

τ̄αkin = −

〈
n∑

k=1

mα1ṽkα
⊗ Ṽ

kα
δ(Rk

− x)δ(1rkα
− yα)

〉
, (3–3)

τ̄αpot = −

〈
1
2

∫ 1

0
dλ

n∑
k,l=1

ν∑
ξ,η=1

(1rkξ
−1r lη)

⊗ f
kξ
lβ
1 δ
(

Rkλ+ Rl(1 − λ)− x
)
δ
(
1rkξλ+1r lη(1 − λ)− yα

)〉
−

〈
1
2

∫ 1

0
dλ

n∑
k=1

ν∑
ξ,η=1

(1rkξ
−1rkη)

⊗ f kξη
2 δ(R

k
− x)δ

(
1rkξλ+1rkη(1 − λ)− yα

)〉
. (3–4)
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Using the identity

d
dλ

(
δ
(

Rkλ+ Rl(1 − λ)− x
)
δ
(
1rkξλ+1r lη(1 − λ)− yα

))
= −∇x ·

(
(Rk

− Rl)δ
(

Rkλ+ Rl(1 − λ)− x
)
δ
(
1rkξλ+1r lη(1 − λ)− yα

))
− ∇ yα ·

((
1rkξ

−1r lη)δ(Rkλ+ Rl(1 − λ)− x
)
δ
(
1rkξλ+1r lη(1 − λ)− yα

))
,

the divergences of the potential momentum fluxes can be related to the interatomic
forces as

∇x · t̄αpot + ∇ yα · τ̄αpot = f αpot(x)

=

〈
n∑

k=1

ν∑
η=1

(
n∑

l=1

f
kα
lη
1 + f

kαη
2

)
δ(Rk

− x)δ(1rkα
− yα)

〉
. (3–5)

Note that for cell average t̄pot =
∑ν

α=1 t̄αpot. Using
∑ν

α,β=1 f
kαβ
2 = 0, one finds

∇x · t̄pot =

〈
n∑

k,l=1

ν∑
α,β=1

f
kα
lβ
1 δ(R

k
− x)

〉
(3–6)

=

〈
n∑

k=1

ν∑
α,β=1

( n∑
l=1

f
kα
lβ
1 + f

kαβ
2

)
δ(Rk

− x)

〉
. (3–7)

This is the well-known stress-force relation in the continuum description.
It is seen from Equations (3–5) and (3–6) that

ν∑
α=1

∇yα · τ̄αpot = 0.

This indicates that the divergence of the inhomogeneous momentum flux density
will be averaged out and will not contribute to cell-averaged balance equation of
linear momentum. However, note that

ν∑
α=1

τ̄αpot 6= 0.

The inhomogeneous part of momentum flux does not vanish upon cell averaging.
Therefore, as pointed out by Nielsen and Martin [1985], the classical definition
of macroscopic stress as “any tensor field which satisfies the condition that its
divergence is the vector force field” [Sommerfeld 1950; Nye 1957] cannot give a
unique definition of stress, and additional consideration is required to include the
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inhomogeneous part of momentum flux in order to uniquely describe the stress
field at microscopic scale for inhomogeneous systems.

4. Stress-strain relations in the nano/micro scales

4.1. Interatomic forces. Results of atomic-level molecular dynamics simulation
depend critically on the interatomic forces. A key issue in atomic-level simulations
is therefore the choice of a suitable potential energy function or interatomic force.
For the sake of simplicity, this paper considers only systems with central force
pair potential. Assuming the separation distance of two atoms is d i j , and the total
potential energy of the system U is a function of the atomic positions only, one has

U =

n∑
i 6= j

U (d i j ).

Setting

G(d i j )≡
1

d i j

∂U
∂(d i j )

,

the interatomic force between atoms i and j can be written as

f i j
= −

∂U

∂(di j )
= −

∂U
∂(d i j )

di j

d i j = − G(d i j )di j .

Here di j is the separation vector between two atoms i and j .
In our notation the vectorial relative displacement between atom (k, α) and atom

(l, β) is

Rkα
− Rlβ

= (Rkα
o − Rlβ

o )+ u(k)− u(l)+ ξ(k, α)− ξ(l, β).

Here Rkα
o and Rlβ

o are the position vectors of atoms (k, α) and (l, β) in the ground
state, u(k) and u(l) are the displacements of the centers of the k-th and the l-th
unit cells, and ξ(k, α) and ξ(l, β) are the displacements of atoms (k, α) and (l, β)
relative to their unit cell centers, that is, lattice points.

4.2. Momentum flux density. The temperature in an N -body dynamics systems
is generally defined as [Chen and Lee 2006]

T α
=

〈
1V
3kB

n∑
k=1

mα(Ṽ
kα
)2δ(Rk

− x)δ(1rkα
− yα)

〉
.

We see that the kinetic parts of momentum flux in Equations (3–1) and (3–3),
caused by the thermal motion of atoms, are related to temperature. They depend
only on the magnitude of the fluctuations of atoms. This implies

t̄αkin + τ̄αkin = −γ T α I or t̄αkin = −γ1T α I, τ̄αkin = −γ2T α I,



714 YOUPING CHEN, JAMES LEE AND LIMING XIONG

with

γ1 + γ2 = γ, γ =
kB

1V
.

Using the δ-function identity (see Appendix),

∫ 1

0
δ
(
Rkλ+ Rl(1 − λ)− x

)
δ
(
1rkξλ+1r lη(1 − λ)− yα

)
dλ

=

∞∑
m=1

1
m!

(
(Rk

− Rl) · ∇x + (1rkξ
−1r lη) · ∇ yα

)m−1
δ(Rk

− x)δ(1rkξ
− yα),

we see that the potential momentum fluxes, Equations (3–2) and (3–4), are func-
tions of a series of high order gradients, with zeroth order terms

( t̄αpot)
0
= −

〈
1
2

n∑
k,l=1

ν∑
ξ,η=1

(Rk
−Rl)⊗ f

kξ
lη
1 δ(R

k
− x)δ(1rkξ

− yα)

〉
,

(τ̄αpot)
0
= −

〈
1
2

n∑
k,l=1

ν∑
ξ,η=1

(1rkξ
−1r lη)⊗ f

kξ
lβ
1 δ(R

k
− x)δ(1rkξ

− yα)

〉

−

〈
1
2

n∑
k=1

ν∑
ξ,η=1

(1rkξ
−1rkη)⊗ f kξη

2 δ(R
k
− x)δ(1rkξ

− yα)

〉
.

Note that the sum of zeroth momentum flux, ( t̄αpot)
0
+ (τ̄αpot)

0, is the atomic
virial stress. Using the expressions for interatomic forces, ( t̄αpot)

0 and (τ̄αpot)
0 can

be expressed as

(
t̄αpot(x, t)

)0
=

1
2(1V )2

∫
V (x′)

υ∑
β=1

G
(
dαβ

)
(x − x′)⊗ dαβdV (x′), (4–1)

(
τ̄αpot(x, t)

)0
=

1
2(1V )2

∫
V (x′)

υ∑
β=1

G
(
dαβ

)
yαβ

′

⊗ dαβdV (x′)

+
1
1V

υ∑
β=1

G
(
yαβ

)
yαβ ⊗ yαβ, (4–2)
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and the first order terms as(
t̄αpot(x, t)

)1
=

1
4
∇x ·

(
1

(1V )2

∫
V (x′)

(x−x′)

υ∑
β=1

G(dαβ)(x−x′)⊗dαβdV (x′)

)

+
1
4
∇yα ·

(
1

(1V )2

∫
V (x′)

υ∑
β=1

yαβ
′

G(dαβ)(x−x′)⊗dαβdV (x′)

)
, (4–3)

(
τ̄αpot(x, t)

)1
=

1
4
∇x ·

(
1

(1V )2

∫
V (x′)

(x−x′)

υ∑
β=1

G(dαβ) yαβ
′

⊗dαβdV (x′)

)

+
1
4
∇yα ·

(
1

(1V )2

∫
V (x′)

υ∑
β=1

yαβ
′

G(dαβ) yαβ
′

⊗dαβdV (x′)

)

+
1
4
∇yα ·

(
1
1V

υ∑
β=1

yαβG(yαβ) yαβ⊗ yαβ
)
, (4–4)

where

dαβ(x, x′)≡ xo + u(x)+ yαo + ξ(x, α)−
(
x′

o + u(x′)+ yβo + ξ(x′, β)
)
,

yαβ ≡ yα − yβ = yαo + ξα(x)−
(

yβo + ξβ(x)
)
,

yαβ
′

≡ yα − y′β
= yαo + ξα(x)−

(
yβo + ξβ(x′)

)
,

dαβ ≡
∣∣dαβ∣∣,

yαβ ≡
∣∣ yαβ∣∣.

Equations (4–1)–(4–4) are the zeroth and the first order nonlinear nonlocal
constitutive relations for the potential momentum flux density. The independent
variables are the lattice displacement u(x, t) and the relative atomic displacements
ξ(x, α, t) 1= ξα(x, t).

4.3. Linear local momentum flux density. To derive the linear constitutive rela-
tions for the potential momentum flux density one may make the assumption of
infinitesimal deformation, namely, dαβ − dαβo → 0. Therefore, the internal atomic
force density can be written as

f αint(x)≈
1

(1V )2

∫
V (x′)

ν∑
β=1

(
cαβo
(
x0, x′

0
)
+ cαβ1

(
x0, x′

0
)(

dαβ−dαβo
))

dV (x′),

where dαβ0 = dαβ(x0, x′

0) is the separate vector between two ground-state atoms,
and cαβo (x0, x′

0) = cαβ1 dαβo and cαβ1 are the interatomic force constants which can
be computed from quantum mechanics and are functions of the type of atoms in
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question as well as their separation. For the sake of simplicity, one may write

cαβ
′

0,1 = cαβ0,1(x0, x′

0), cαβ0,1 = cαβ0,1(x0, x0).

Using linearized atomic force, Equations (4–1)–(4–4) become

(
t̄αpot(x, t)

)0
=

1
2(1V )2

∫
V (x′)

υ∑
β=1

(x − x′)⊗
(
cαβ

′

o + cαβ
′

1 (dαβ − dαβo )
)
dV (x′),

(
t̄αpot(x, t)

)1
=

1
4(1V )2

∇x ·

∫
V (x′)

υ∑
β=1

(x − x′)(x − x′)

⊗
(
cαβ

′

o + cαβ
′

1 (dαβ−dαβo )
)
dV (x′)

+
1

4(1V )2
∇yα ·

∫
V (x′)

υ∑
β=1

yαβ
′

(x−x′)

⊗
(
cαβ

′

o + cαβ
′

1 (dαβ−dαβo )
)
dV (x′),

(
τ̄αpot(x, t)

)0
=

1
2(1V )2

∫
V (x′)

υ∑
β=1

yαβ
′

⊗
(
cαβ

′

o + cαβ
′

1 (dαβ−dαβo )
)
dV (x′)

+
1

21V

υ∑
β=1

yαβ ⊗
(
cαβo + cαβ1 ( yαβ − yαβo )

)
,

(
τ̄αpot(x, t)

)1
=

1
4(1V )2

∇x ·

∫
V (x′)

(x−x′)

υ∑
β=1

yαβ
′

⊗
(
cαβ

′

o + cαβ
′

1 (dαβ − dαβo )
)
dV (x′)

+
1

4(1V )2
∇yα ·

∫
V (x′)

υ∑
β=1

yαβ
′

yαβ
′

⊗
(
cαβ

′

o + cαβ
′

1 (dαβ−dαβo )
)
dV (x′)

+
1

4(1V )
∇yα ·

υ∑
β=1

yαβ yαβ ⊗
(
cαβo + cαβ1 ( yαβ−yαβo )

)
.

Note that material properties should make the ground state stresses vanish: t̄αpot(0)=
τ̄αpot(0)= 0. Hence, the expressions for potential momentum flux in the ground state

t̄αpot(0)=
1

2(1V )2

∫
V (x′)

υ∑
β=1

(
xo − x′

o
)
⊗ cαβ

′

o dV (x′),

τ̄αpot(0)=
1

2(1V )2

∫
V (x′)

ν∑
β=1

yαβo ⊗ cαβ
′

o dV (x′)+
1
1V

ν∑
β=1

yαβo ⊗ cαβo ,
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can be used for validation once the material parameters cαβ
′

0 , cαβ0 and the ground
state structural parameters xo and yαβo are obtained from quantum mechanical cal-
culations.

If one further neglects nonlocal effects considering only the interactions between
unit cells in a close neighborhood, one then has

u(x)− u(x′)≈ u,x · (xo − x′

0),

ξ(x, β)− ξ(x′, β)≈ ξβ,x ·
(
xo − x′

0
)
,

ξ(x, α)− ξ(x, β) 1= γ αβ ·
(

yαo − yβo
)
,

and hence

(
x − x′

)
−
(
xo − x′

o
)
= u(x)− u(x′)≈ u,x ·

(
xo − x′

0
)
, (4–5)(

yα − yβ
)
−
(

yα0 − yβ0
)
= ξ(x, α)− ξ(x, β) 1= γ αβ ·

(
yαo − yβo

)
, (4–6)(

yα − y′β
)
−
(

yα0 − y′β

0

)
= ξ(x, α)− ξ(x′, β)

= ξ(x, α)− ξ(x, β)+ ξ(x, β)− ξ(x′, β)

≈ γ αβ ·
(

yαo − yβo
)
+ ξβ,x ·

(
xo − x′

0
)
, (4–7)

dαβ − dαβ0 ≈
(
u,x + ξβ,x

)
·
(
xo − x′

0
)
+ γ αβ ·

(
yαo − yβo

)
. (4–8)

The zeroth order linear local potential momentum flux density can be then ex-
pressed as

t̄α(x, t)= − γ1T α I +

υ∑
β=1

(
A1

: u,x + A2
: γ αβ + A3

: ξβ,x
)
, (4–9)

τ̄α(x, t)= − γ2T α I +

υ∑
β=1

(
B1

: u,x + B2
: γ αβ + B3

: ξβ,x
)
. (4–10)

Here (A : B)i jk...lmn = Ai jk... pq Bpq...lmn .
Note that dαβo , xo − x′

o, and yαβo = yαo − yβo are material constants, while dαβ ,
x − x′ and yα − yβ are up to first order in u,x , ξβ,x , and γ αβ . Using Equations
(4–5)–(4–8) one can find that the first order terms of momentum flux density are
the strain gradient terms. Therefore, Equations (4–9) and (4–10) represent the
linear local form of zeroth order homogeneous and inhomogeneous momentum
flux density, and the sum of the two is the field representation of atomic virial
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Figure 5. Illustration of strain measures in the formulated field theory.

stress. One can also write them in tensor notation as:

t̄αmn(x, t)= − γ
δmn
1 T α

+

υ∑
β=1

(
A1

mnpqε
1
pq + A2

mnpqε
2
pq + A3

mnpqε
3
pq
)
,

τ̄αmn(x, t)= − γ
δmn
2 T α

+

υ∑
β=1

(
B1

mnpqε
1
pq + B2

mnpqε
2
pq + B3

mnpqε
3
pq
)
,

where
ε1

pq = u p,q , ε2
pq = γ αβpq , ε3

pq = ξβp,q , (4–11)

and
Ai=1,2,3

mnpq , Bi=1,2,3
mnpq

are material constants which can be expressed in terms of ground state structural
parameters xo − x′

0, yαo − yβo and a material parameter cαβ1 .

4.4. Strain measures. The field representation of momentum flux involves tem-
perature, lattice deformation and relative atomic deformation. The linear local
forms of momentum flux are expressed in terms of temperature and lattice strain
u,x(x), relative atomic strain ξβ,x(x), and atomic-bond strain γ αβ(x). They are
the lattice deformation gradient, relative atomic deformation gradient and relative
atomic-bond stretch, and can be illustrated through Figure 5.

5. Numerical examples

For the purpose of numerical validation, a periodic solid under simple tension is
modeled and simulated. Stress and strain relations are computed based on the
formulas derived in this paper and by atomic-level molecular dynamics simulation
(MD) as well. The general-purpose parallel MD simulation code DL-POLY is
employed [Smith and Forester 2001] to perform the simulation. The modeling of
simple tension is achieved through NVT ensemble.
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(a) ZnO (wurtzite) (b) BaTiO3 (perovskite, cubic phase)

O
Ba
Ti

(c) MgO (rock salt)

Figure 6. Crystal structure of zinc oxide, barium titanate, and
magnesium oxide.

Three single crystalline materials are considered in this paper. Among them,
piezoelectric and semiconductor material Zinc Oxide, ZnO, is wurtzite structured
with lattice constants a = 3.249 Å and c = 5.206 Å, ferroelectric material Barium
Titanate, BaTiO3 is in its cubic phase with the lattice constant a = 3.943 Å, and
MgO, the standard test-bed material for the evaluation of theoretical methods to
calculate some mechanical properties, has a rock salt structure with the lattice
constant a = 4.2 Å. The Coulomb and Buckingham interatomic potentials are em-
ployed for the MD simulation, and the material parameters are taken from [Catlow
1986; Grimes 1994; McCoy et al. 1997a; 1997b; Grimes et al. 1995; Chen et al.
1997].

Under uniform simple tension loading, there are no strain gradients, and hence
only the zeroth momentum flux exists. Thus, the formula for the total stress reduces
to the zeroth order momentum flux, ( t̄αpot)

0
+(τ̄αpot)

0, which is identical to the atomic
virial stress.

The numerical results of the stress-strain relations before the onset of structure
stability (phase transition) by the formulation and DL-POLY are plotted in Figure 7.
A good agreement between the results from the formulation and from the DL-POLY
simulation is found, while the computational time ratio between these two methods
is about 1 to 104. Although the analytical stress-strain relation is nonlinear and
nonlocal, surprisingly the numerical results indicate that the stress-strain relation
is quite linear until structural transformation.

6. Summary and discussion

The field representation of momentum flux density is formulated in this paper
within the framework of atomic N -body dynamics. Three strain measures and
the momentum flux density–strain relations are obtained. Major considerations
and conclusions regarding the formulation may be summarized as follows:
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Figure 7. Stress-strain relation of zinc oxide (a), barium titanate
(b), and magnesium oxide (c) by the formulation and by molecular
dynamics simulation code DL-POLY.

(1) The momentum flux formulated in this paper exactly represents the momen-
tum flux in an atomic N -body dynamics model. Both the atomic-level mo-
mentum flux and the atomic displacements can be fully represented in terms
of field variables: temperature, lattice deformation and relative atomic defor-
mation. All material constants involved can be obtained through the atomistic
formulation.

(2) This paper has shown that the stress in the conventional continuum description
is not the momentum flux density in an atomic N -body dynamics model; it
is only the homogeneous part of momentum flux density summing over at
least the volume of a primitive unit cell. Decomposing the momentum flux
into homogeneous and inhomogeneous parts, one can establish the connection
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between the atomic momentum flux density and the continuum stress, and
obtain the field representation of conservation equations on the atomic scale
[Chen and Lee 2006].

(3) The formulations have shown that the momentum flux density-strain relation,
which may be referred to as atomic stress-strain relation, is nonlinear and
nonlocal in displacements, and involves higher order gradients. In the case
of homogeneous strain so that no strain gradients exist, the formula for total
stress shall be identical to the virial theorem. Or, if the average stress of
a whole specimen is concerned, then the total stress formula shall also be
identical to the virial theorem.

(4) The three strain measures are obtained for the linear local constitutive relation.
One may prove that the nonlinear nonlocal relation can also be expressed in
terms of the temperature and the three strain measures.

(5) The numerical examples in this paper, although quite preliminary, show that
the stress-strain relation under uniform loading is linear until structural insta-
bility.

Appendix

Define

δ(λ; k, l, ξ, η, α)≡δ
(

Rkλ+ Rl(1 − λ)−x
)
δ
(
1rkξλ+1r lη(1−λ)− yα

) 1
= δ(λ),

1(k, ξ, α)≡δ
(

Rk
− x

)
δ
(
1rkξ

− yα
) 1
=1= δ(1),

A ≡
(

Rk
− Rl)

· ∇x,

B ≡
(
1rkξ

−1r lη)
· ∇ yα .

It is readily verified that

dδ
dλ

= − (A + B)δ,

dδ = − (A + B)δdλ,∫ 1

0
λ

dδ
dλ

dλ=

∫ 1

0
λdδ = λδ

∣∣1
0 −

∫ 1

0
δdλ= δ(1)−

∫ 1

0
δdλ,

∫ 1

0
δdλ=1+ (A + B)

∫ 1

0
λδdλ,∫ 1

0
λndδ =1− n

∫ 1

0
λn−1δdλ,
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which gives ∫ 1

0
λn−1δdλ=

1

n
+

1
n
(A + B)

∫ 1

0
λnδdλ.

One may then prove that∫ 1

0
δdλ=1+ (A + B)

∫ 1

0
λδdλ

=1+ (A + B)
(
1

2
+

1
2
(A + B)

∫ 1

0
λ2δdλ

)
=1+

1
2
(A + B)1+

1
2
(A + B)2

∫ 1

0
λ2δdλ

= · · · =

∞∑
n=1

1
n!
(A + B)n−11,

or, in other words,∫ 1

0
δ
(
Rkλ+Rl(1−λ)−x

)
δ
(
1rkξλ+1r lη(1−λ)− yα

)
dλ

=

∞∑
m=1

1
m!

(
(Rk

−Rl)·∇x+(1rkξ
−1r lη)·∇ yα

)m−1
δ(Rk

−x)δ(1rkξ
− yα),

∫ 1

0
δ
(
Rkλ+Rl(1−λ)−x

)
dλ=

∞∑
m=1

1
m!

(
(Rk

−Rl)·∇x
)m−1

δ(Rk
−x).
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MEASURING IMPACT RESPONSES OF FOAMED POLYMERS

JAMES F. WILSON

A unique dual pendulum system was developed to measure single-impact com-
pression responses of foamed polymers. The data, complemented with a math-
ematical model of impact, led to measures of the material’s energy absorption,
compression modulus, and damping. Results are presented for a class of open-
celled foamed polymers specifically developed for shock mitigation. The exper-
iments employed such materials of four different densities, with impact times
ranging in the 1 to 5 ms range and mean impact stresses up to 160 kN/m2. The
results for these materials showed: (1) energy losses of up to 50% of incident
energy, with a peak energy absorption per unit volume of 18 kJ/m3; (2) peak
compression modulus of 880 kN/m2 with strain rates approaching 200 s−1; (3) a
mean damping factor of 0.258 with a standard deviation of 0.029. Such data are
of practical importance in many shock-mitigating applications, including pros-
theses, floor pads and cushions, gloves for hand-held vibrating tools, grips for
hockey sticks and tennis rackets, and soles for sports shoes.

Introduction

This design effort and experimental study was motivated by the need for a relatively
simple and accurate experimental system to quantify single-impact responses of
foamed polymers. Related studies involving repeated specimen loading have em-
ployed costly universal testing machines with sensor-controlled stress or strain,
and magnetic shakers for forced harmonic motion of the specimen. Studies based
on the these methods are presented in the treatise of Gibson and Ashby [2001],
who reviewed the open literature up to 1999 on the properties and mathematical
modeling of cellular solids, for both man-made foams and naturally occurring ma-
terials such as wood and cancerous bone. Measuring techniques and typical data
for complex moduli, based on the forced oscillation method, were reviewed by
Deverge and Jaouen [2004]. These sources and their extensive bibliographies did
not reveal any experimental systems or impact analyses similar to those discussed
here. No damping data were found in the open literature for one-time impact on
foamed polymers.

Keywords: foamed polymers, impact response.
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Specimen type Specimen geometry Static modulus Mass density
diameter, mm thickness, mm E , kN/m2 kg/m3

white 38.1 7.00 143. 370.
blue 38.1 6.40 373. 451.
red 38.1 5.30 336. 421.

black 38.1 4.86 377. 481.

Table 1. Geometric and physical properties of the foamed poly-
mer specimens.

The characteristics that typify the foamed polymer studied herein are: linearly
elastic behavior for static strains up to about 30%; an after-impact recovery time
of about 30 s or less to the state of nearly zero strain (the initial state); and an
open-celled microstructure in which there are small holes in the cell walls. This
class of foamed polymer was developed in the late 1980s by an orthopedist and
a New England material science laboratory. These materials are commercially
available through Implus Footcare, Morrisville, NC. The material is particularly
characterized by its capacity to absorb high levels of impact energy, and is thus used
as padding for artificial limbs and for the insoles of sports shoes. Four different
densities of these materials, designated by color, were evaluated in the present
study. Some of their physical properties are listed in Table 1, together with the size
of the impact specimens used.

Shown in Figure 1 are scanning electron micrographs of the most dense material
(black), magnified 16 and 160 times. This foamed polymer has an average cell
diameter of about 0.2 mm. The general shape of these cells closely matches those
observed in the micrographs of a polyurethane foam for which the average cell di-
ameter was also about 0.2 mm; see [Gibson and Ashby 2001, p. 178, Figure 5.2(g)].
This comparison suggests that the base material was a form of polyurethane. The
properties of the base material such as density and chemical composition cannot
be disclosed since they are patented and proprietary.

This presentation begins with a description of a unique dual-pendulum measur-
ing system, which is followed by a mathematical model of impact that identifies the
key parameters to be measured. The study concludes with extensive experimental
results for the foamed polymers of Table 1: determinations of material impact
energy loss, and the effects of impact stress level and strain rate on both material
stiffness and impact-induced damping.
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Figure 1. Scanning electron micrographs of the highest density
(black) foamed polymer: (a) transverse section through a 4.85 mm
thick mat, at 16×; (b) center of mat (a) at 160×. (Courtesy of
George W. Pearsall, Duke University.)

Experimental system design

Shown in Figure 2 is the dual pendulum impact system: the driver pendulum and
target pendulum, with the foamed polymer specimen of diameter D0 and thickness
h sandwiched between the two impacting die faces. The two pendula are identical.
Each consists of a solid steel cylinder of the specimen diameter D0, with a minia-
ture accelerometer mounted coaxially. The total mass of the steel cylinder and the
accelerometer is m, and this assembly is hereafter referred to as a pendulum die.
Each steel pendulum arm of length ` is rigid or nearly so, and is affixed to the mass
center of each die. This arm, together with its bearing shaft, has a mass which is
less than one percent of m. The centers of the two arm pivot points are spaced so
that the die separation distance is h, the thickness of the test specimen, when the
pendula are hanging vertically and at rest. Each pendulum pivot point is the center
for a protractor. With a pointer extension to each pendulum arm, the arm angle for
a pendulum at rest can be read on its protractor to an accuracy of ±0.1◦.

Shown in Figure 3 are the key positions of the pendula at which the arm angles
are measured. The first positions represent the initial static states, in which the
driver pendulum arm is hand-held at the visual protractor setting θ0, and the target
pendulum hangs vertically. The second positions are the maximum post-impact
rebound angles θ1 and θ2 for the driver and target pendulum arms, respectively.
These latter extreme rotations are measured either visually or electronically. In the



728 JAMES F. WILSON

c

b

h

i

d

f
•••
g

c

b l

h h

d
j

f

g

a

e k m SCALE

SIDE VIEW FRONT VIEW

Figure 2. Mechanical design of the dual pendulum system. The
components are: a – accelerometer; b – bead; c –steel slotted bead
arm; d – steel bearing shaft; e – steel driver die; f – transparent
plastic side pannel; g – steel pendulum arm; h – transparent plas-
tic protractor; i – RVDT; j – steel spacer; k – foamed polymer
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Figure 3. Initial pendulum configuration (left), and maximum re-
bound configuration (right).
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Figure 4. A typical measured acceleration-time history for the im-
pacting driver pendulum, and its best-fit to a half sine curve.

visual method, an extension of the slotted pendulum arm, as shown in Figure 2,
pushes a tiny bead along a taut horizontal string, one for each pendulum. There is
just enough friction between each relatively weightless bead and string so that the
bead does not overshoot its mark corresponding to the maximum arm angle θ1 or
θ2. Later, when the pendula come to rest, these angles are read on the protractor
by aligning the pointer extension with its bead. This visual method for measuring
rebound angles gave results that were as accurate and reproducible as the electronic
method that used two Schaevitz rotary variable differential transformers (RVDTs)
attached to the rotating shafts, as shown in Figure 2. Each RVDT required a 5
volt AC power supply. The voltage output was proportional to rotation, with a
sensitivity of 0.01V/degree. At impact, this voltage triggered a digitizing storage
oscilloscope, which recorded the time history of rotation for each RVDT.

For each experiment, the driver pendulum was released at a predetermined angle
θ0, its accelerometer output voltage triggered a Hewlett Packard 100 MHz digitiz-
ing storage oscilloscope at the instant of impact, and the tangential acceleration-
time history ẍ1 of the driver die was recorded and stored for later data process-
ing. The accelerometer was the 25 gram quartz model 353B33 with a 25 volt DC
power supply, both manufactured by PCB Piezoelectronics. The sensitivity of this
accelerometer was 100 mV/g where g = 9.81 m/s2. After numerous preliminary
impact experiments using these foamed polymers, it was concluded that a half sine
curve of amplitude a0 and impact time t0 was a good fit to all measurements ẍ1.
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driver die specimen target die

equilibrium: x1 x2

P ks
cs

specimen during impact:

Fk = ks(x1 − x2)

Kc = c(ẋ1 − ẋ2)

die during impact:

Fk

P

Kc

NOT TO SCALE

Figure 5. Mathematical models of the two pendulums and the specimen.

That is,

ẍ1 = −a0 sin
π t
t0
, (1)

in which the negative sign indicates deceleration. Shown in Figure 4 is a typical
experimental trace of ẍ1 and its best-fit half sine curve. Here, the exact time of
separation between the specimen and the target die just after impact could not be
determined experimentally, and was approximated as t0.

Given θ0 and the measured quantities θ1, θ2, and ẍ1, the material responses to
impact can be computed using the following mathematical model.

Mathematical model of impact

Shown in Figure 5 is the mathematical model of the foamed polymer specimen
sandwiched between the two dies. The coordinates x1 and x2 are defined as the
respective driver and target die face displacements from their static (free hanging)
states. The specimen is assumed to behave linearly, or nearly so, to have negli-
gible mass compared to m, and to exhibit damping proportional to the specimen
velocity. The representation in Figure 5 reflects these assumptions, in which the
specimen’s impact force is P and its stiffness and damping parameters are ks and
cs , respectively. In general, ks and cs may vary with time and strain-rate, given an
impact time history initiated by θ0. In these terms, the equations of motion for the
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driver pendulum, the specimen, and the target pendulum are, respectively,

− P = mẍ1, (2)

P − ks(x1 −x2)− cs(ẋ1 − ẋ2)= 0, (3)

ks(x1 −x2)+ cs(ẋ1 − ẋ2)= mẍ2. (4)

When the first two equations are added to eliminate P ,

ks(x1 −x2)+ cs(ẋ1 − ẋ2)= −mẍ1. (5)

The result observed by comparing Equations (4) and (5) is that ẍ2 = −ẍ1, from
which it is concluded that measures of both ẍ1 and ẍ2 would be redundant. The
driver die acceleration ẍ1 was the acceleration chosen to be measured.

Kinematics of impact. The kinematics of the compressed specimen are deduced
by integrating Equation (1) and using the result that ẍ2 = −ẍ1. The first integration
gives the respective driver and target die velocities as

ẋ1 = v0 −
t0a0

π

(
1− cos

π t
t0

)
, ẋ1(0)= v0, (6)

ẋ2 =
t0a0

π

(
1− cos

π t
t0

)
, ẋ2(0)= 0, (7)

which satisfy the stated initial conditions of each die at the instant t = 0, or just
prior to die impact. The second integration gives the die displacements, subject to
zero initial conditions, as

x1 = v0t −
t0a0

π

(
t −

t0
π

sin
π t
t0

)
, x1(0)= 0, (8)

x2 =
t0a0

π

(
t −

t0
π

sin
π t
t0

)
, x2(0)= 0. (9)

The preimpact driver die velocity v0 in Equations (6) and (8) is deduced by
equating the change of potential energy between the driver die’s state at θ0 and
the state at first impact (t =0), to the change in kinetic energy between these same
states, or

mg`(1− cos θ0)=
1
2 mv2

0, (10)

which leads to
v0 =

√
2g`(1− cos θ0). (11)

The two assumptions inherent in Equation (10) are: energy losses due to bearing
and air friction between the two states are negligible, and rotational kinetic energy
of the die and arm is negligible in comparison to the to the translational energy of
the die. The first assumption was verified by performing free swing tests with the
driver arm, in which the specimen and target die were absent. These results showed
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that for an initial angular position θ0, the die arm swung to within one percent of its
mirror angle −θ0. The second assumption was validated by a computation, which
showed that the rotational kinetic energy was less than one percent of mv2

0/2 for
the dual pendulum apparatus shown in Figure 2.

Energy absorption. The incident energy density, or the energy per volume of the
specimen that is available for absorption (Figure 3, left), is defined by

W0 =
4mg`
πh D2

0
(1 − cos θ0). (12)

Not absorbed by the specimen is the maximum potential energy per volume of the
specimen after rebound (Figure 3, right), or

Wr =
4mg`
πh D2

0

(
(1 − cos θ1)+ (1 − cos θ2)

)
. (13)

The specimen’s unit energy absorption is the difference of the last two expressions:
W0 − Wr . Expressed as a percent of the incident energy density, the unit energy
absorption for this nearly frictionless system is thus

W =
(1 − cos θ0)− (1 − cos θ1)− (1 − cos θ2)

(1 − cos θ0)
× 100%. (14)

Impact stress, strain, and strain rate. Since the specimen’s impact force is P ,
Equations (1) and (2) can be used to calculate the time-dependent impact stress, or

σ =
4P
πD2

0
=

4ma0

πD2
0

sin
π t
t0
. (15)

The mean stress σ̄ up to the time t0/2 of maximum compression, and the peak
stress σp at this time are deduced from the previous equation as

σ̄ =
2
t0

∫ t0/2

0
σ dt =

8ma0

π2 D2
0

and σp =
4ma0

πD2
0
. (16)

The impact strain ε is based on the relative displacement x1 − x2 between the die
faces. Using Equations (8) and (9), this strain is thus

ε =
x1 −x2

h
=
v0t
h

−
2t0a0

πh

(
t −

t0
π

sin
π t
t0

)
, (17)

in which v0 is given by (11). The average strain rate up to maximum compression
at t = t0/2, as deduced from Equations (6) and (7), is defined as

ε̇a =
2

t0h

∫ t0/2

0
(ẋ1 − ẋ2) dt =

v0

h
−

2t0a0

πh

(
1−

2
π

)
. (18)
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Specimen stiffness-damping constraint. A constraint relationship between ks and
cs can be computed by time averaging (5), using (1). That is,

1
t0

∫ t0

0

(
ks(x1 −x2)+ cs(ẋ1 − ẋ2)

)
dt =

ma0

t0

∫ t0

0
sin

π t
t0

dt. (19)

Let ks and cs be constant, on the average, and integrate (19) after substituting for
the displacements and velocities given by Equations (6)–(9). The result is

ks =
4π2ma0 − 2π2(πv0 −2t0a0)cs

π3t0v0 − 2π2t2
0 a0 + 8t2

0 a0
, (20)

in which v0 is given by (11).

Impact damping. The nondimensional damping factor ζ , commonly employed in
linear dynamic systems, is defined as

ζ =
cs

2
√

ksm
. (21)

Energy methods are now used to predict an explicit equation for ζ . The difference
of peak potential energies for the initial and rebound states, depicted in Figure 3, is
the energy lost in specimen damping (subject to the assumptions already discussed).
This loss is

1E = mg`(1− cos θ0)− mg`(1− cos θ1)− mg`(1− cos θ2). (22)

A second form for 1E is based on the damping power, or the product of the
damping force cs(ẋ1 − ẋ2) and the relative die velocity (ẋ1 − ẋ2). The energy loss
is this product integrated over the die-specimen contact time t0, or

1E = cs

∫ t0

0
(ẋ1 − ẋ2)

2 dt. (23)

When Equations (22) and (23) are equated and the velocities ẋ1 and ẋ2 of Equa-
tions (6) and (7) are substituted, the resulting equation can be solved for ζ . After
performing the integrations and regrouping the parameters, this leads to

cs =
π2mg`(cos θ1 + cos θ2 − cos θ0 −1)

π2t0v2
0 − 4π t2

0 a0v0 + 6t3
0 a2

0

. (24)

Thus, with cs and ks of Equations (24) and (20), the damping factor ζ can be
computed from Equation (21).

The results of this impact analysis are summarized as follows. Given the ap-
paratus and specimen parameters (m, `, D0, h), and imposing the initial angle θ0,
measures of the quantities (θ1, θ2, a0, t0) give measures of the specimen’s key re-
sponses. These measures are: the percent of the incident energy absorbed, (14);
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Figure 6. Stress-strain behavior for the four foamed polymers at
the low strain rate of about 0.001 s−1.

the stress-strain behavior, Equations (15) and (17); the mean compressive stress
and strain rate, Equations (16) and (18); and the stiffness and damping properties,
Equations (20), (21), and (24). The experiments to measure (θ1, θ2, a0, t0) are now
described.

Experimental protocol and measurements

The foamed polymer specimens described in Table 1 were cut from the as-received
sheet material with a sharp steel cookie-cutter die of the same diameter as the
impacting die, or 38.1 mm. One set of specimens was used for the standard com-
pression tests, and the other set was used for the impact experiments.

The uniaxial compression tests for each of the four materials were all performed
at the rather slow strain rate of about 0.001 s−1. The results are the stress-strain
data shown in Figure 6, with a least-squares straight line fit for each material. The
slope of each line gives the static modulus E , which is strictly valid only for the
stated strain rate. These values of E are listed in Table 1. These results indicate
that the four materials behave linearly, or nearly so, up to strains of about 30%,
and lend credibility to the hypothesized linear mathematical model.

The protocol for the impact experiments was as follows. The black specimen,
defined as the reference specimen, was glued to the die face of the driver pendulum.
This pendulum arm was then hand-held at θ0 = 10◦ and released. Then the voltage-
time history representing ẍ1 was recorded by the digital storage oscilloscope, which
also displayed to four significant figures the peak voltage representing a0 and the
rise time t0/2 to this peak. Using the accelerometer’s calibration factor of 100
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mV/g, the peak voltage was converted to the peak acceleration a0, expressed in
units of g. Then the first rebound angles θ1 and θ2 were measured by one of the
two procedures already explained (the bead method was preferred for its simplicity).
This same experimental procedure was repeated four more times for θ0 = 10◦.
Based on these five trial runs, the arithmetic average (mean value) was computed
for each of the four measured quantities (θ1, θ2, a0, t0). This procedure was then
repeated for θ0 = 20◦, 30◦, and 40◦ using the same black specimen. A time lapse of
at least 60 s was allowed between each impact, so that the specimen could regain
its initial thickness.

The sixteen data sets so obtained for the black specimen are listed in Table 2,
together with the four incident energy density levels W0, which were computed
from (12) for each respective initial pendulum angle θ0 = 10, 20, 30, 40◦. Here
m = 0.461 kg (which includes the accelerometer’s mass) and `= 0.239 m. The four
incident energy density levels of the black specimens were chosen to be the same
as those for the nonblack specimens, as shown in the W0 column of Table 2. The
corresponding values of θ0 for the nonblack specimens, computed from (12), were
all somewhat higher than their black specimen counterparts at θ0 = 10, 20, 30, 40◦,

Specimen W0, Measured mean of five trials
type kJ/m3 θ0,

◦ θ1,
◦ θ2,

◦ a0, g t0, ms

white 2.96 12.0 4.42 7.48 7.72 4.62
11.8 24.1 9.10 17.0 17.0 3.84
26.1 36.2 15.2 24.8 26.8 3.60
45.6 48.5 16.8 32.0 35.5 3.44

blue 2.96 11.5 4.44 6.82 14.4 2.43
11.8 23.0 8.90 15.7 28.5 2.03
26.1 34.6 12.5 23.8 43.2 1.92
45.6 46.2 16.7 31.5 56.8 1.87

red 2.96 10.8 4.26 6.52 13.1 2.61
11.8 20.9 7.26 14.2 25.8 2.19
26.1 31.4 11.6 22.3 38.6 2.24
45.6 41.9 14.3 29.6 52.2 2.18

black 2.96 10.0 4.26 6.16 14.8 1.74
11.8 20.0 7.40 14.1 30.8 1.62
26.1 30.0 12.5 20.9 47.1 1.41
45.6 40.0 15.4 27.8 62.5 1.44

Table 2. Dual-pendulum impact measurements.
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Figure 7. Influence of the mean impact stress on the percent of
the incident specimen energy absorbed during impact.

which reflects the differences in specimen thicknesses. The matching of incident
energy density levels allows for later comparisons of dynamic responses among
specimens of unequal volume.

Using the same experimental protocol as for the black specimen, but with the
stated θ0 values, the sixteen sets of experimental measures (θ1, θ2, a0, t0) for each
white, blue, and red specimen were obtained. Again, each numerical entry of each
set represents a five-trial average. Such results were reproducible; that is, given
θ0, the deviation of any one measurement of a five-trial run was within 2% of its
corresponding mean value.

Computed responses and discussion

Based on the 16 data sets of Table 2, and the two pendulum parameters m =

0.461 kg and ` = 0.239 m, the material impact responses predicted by the math-
ematical model were computed. Computational algorithms and graphic displays
were developed using Mathematica [Wolfram 1999]. The results are presented in
Figures 7–11. In all of these figures, each data point corresponds to a data set
(θ0, θ1, θ2, a0, t0), or a row in Table 2.

Shown in Figures 7 and 8 are two measures of energy absorption, each as a
function of the mean impact stress σ̄ , defined by Equation (16). The dashed straight
line in each figure is the least-squares fit to all data. The percent of the incident
energy absorbed, based on Equation (14), is shown in Figure 7, which indicates a
weakly decreasing energy loss with increasing σ̄ . The best-fit straight line to these
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Figure 8. Influence of the mean impact stress on the energy ab-
sorbed per unit specimen volume during impact.

data is
W (%)= 46.17 − 0.0803σ̄ , (25)

in which the units of σ̄ are kN/m2.
The energy absorbed per unit volume of each specimen, or W0 −Wr in Equations

Equation (12) and Equation (13), is shown in Figure 8. The increase in the unit
energy loss Wv is approximately linear with σ̄ , for which the best-fit straight line
is

W0 − Wr = 0.126σ̄ − 2.11, (26)

where the units of energy and mean stress are kJ/m3 and kN/m2. The data of Figure
8 show that at a given mean stress level σ̄ , the most dense (black) foamed polymer
has a consistently lower unit energy loss than the least dense (white) material.

Shown in Figure 9 are the stress-strain curves for all of the specimens, in which
each exhibits hysteresis behavior typical of energy-absorbing material. Each curve
for each of the four materials has a label a, b, c, or d, which corresponds respec-
tively to the incident unit energy level listed in Table 2, or 2.96, 11.8, 26.1, and
45.6 kJ/m3. These curves were generated using (15) and (17), which are parametric
equations in time t . To each closed curve there corresponds an average strain rate
ε̇a , computed from Equations (18) and (11) for each θ0. The peak of each closed
curve, at t = t0/2, marks the end of increasing compression stress. At the end
of impact, assumed to occur at t = t0, the stress is zero. Then each unloaded
specimen was observed to recover (along the abscissa to the origin) to nearly its
original thickness h in about 30 s. The area enclosed by each of the 16 hysteresis
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Figure 9. Stress-strain and hysteresis behavior for the foamed
polymers, showing the influence of strain rate.

curves in Figure 9 corresponds to the energy absorbed per unit volume, the values
of which were also computed using Equation (14) and displayed in Figure 8.

Shown in Figure 10 is a weak dependency of the compression modulus Ec on
the average strain rate ε̇a , for all four materials. This modulus is defined in terms
of the elastic stiffness ks , or

Ec =
4hks

πD2
0
. (27)

For each material, it appears that Ec approaches a limiting or asymptotic value as ε̇a

increases. For the highest-density material (black), for instance, Ec → 900 kN/m2

as ε̇a → 150 s−1. For the two intermediate density materials, the average asymp-
totic values are nearly the same, or about 700 kN/m2; and for the least dense mate-
rial, Ec → 300 kN/m2.
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Figure 10. Influence of strain rate on the compression modulus
for the four foamed polymers.
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Figure 11. Influence of the mean impact stress on the damping
factors for the four foamed polymers.

Shown in Figure 11 is the damping factor ζ , with its weak dependency on the
mean level of impact stress σ̄ . The straight line is the least-squares fit (mean value)
of data for all four materials, or

ζ = 0.258, SD = 0.029. (28)
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Conclusions

This dual-pendulum measuring system is simple in construction and versatile in
operation. System bearing-friction was minimized by precision machining and
graphite lubrication. The impact energy permanently lost to the apparatus was
minimized in two ways: (1) by choosing equal specimen and die diameters, which
confined the transmitted acoustic waves to the same diameter cylinders, eliminating
most of the energy dispersion in the uniform dies; (2) by assigning more than 99%
of a pendulum’s mass to the die so that the pendulum’s center of percussion was
nearly coincident with the die’s longitudinal axis of symmetry, thus reducing the
horizontal bearing impact reaction force, and its contribution to friction energy loss
to nearly zero. Further, by matching each of the four incident energy density levels
(a, b, c, d) for the consecutive testing of each specimen type, comparisons of the
dynamic responses among specimens of different thicknesses could be made.

That the mathematical model for impact is consistent with the measurements
was demonstrated in the following ways:

• For all 16 data sets of Table 2, the following two independent measures for the
velocity of the target die just after impact agreed to within about 10%. That
is,

ẋ1(t=t0)'
√

2gl(1 − cos θ1). (29)

Here, the left side is the value predicted by Equation (6), and the right side is
based on the conservation of energy and the independent measure θ1.

• The closed area of each of the 16 hysteresis curves of Figure 9 generally
agreed within 10% to its counterpart unit energy calculated from Equation
(14).

• Consider Figure 9 for a given material. The slope of each stress-strain curve
up to about t = 0.4t0 is consistently higher than the slope E of Figure 6 for the
same material. Theory predicts that this slope will increase with increasing
strain rate, an effect that is due to the accompanying increase in the elastic
and damping reaction forces.

Future developments include new and complementary theories of impact for a
variety of nonlinear, open or closed-cell materials for which this dual pendulum
system can be employed to measure material properties.

Acknowledgements

The author thanks Rhett T. George for his advice on electronic measurements; and
the reviewers for their valuable insights.



MEASURING IMPACT RESPONSES OF FOAMED POLYMERS 741

References

[Deverge and Jaouen 2004] M. Deverge and L. Jaouen, “A review of experimental methods for the
elastic and damping characteristics of acoustical porous materials”, in Internoise 2004: The 33rd
International Congress and Exposition on Noise Control Engineering, Prague, Czech Republic,
August 22–25 2004, Available at http://www.univ-lemans.fr/~s012782/Deverge Jaouen v5.pdf.

[Gibson and Ashby 2001] L. J. Gibson and M. F. Ashby, Cellular solids: structure and properties,
2nd ed., Cambridge University Press, Cambridge, 2001.

[Wolfram 1999] S. Wolfram, The Mathematica book, 5th ed., Wolfram Media, Champaign, IL, 1999.

Received 11 Dec 2005.

JAMES F. WILSON: jwilson@duke.edu
Pratt School of Engineering, Duke University, 6319 Mimosa Drive, Chapel Hill, NC 27514,
United States

http://www.univ-lemans.fr/~s012782/Deverge_Jaouen_v5.pdf
http://www.univ-lemans.fr/~s012782/Deverge_Jaouen_v5.pdf
mailto:jwilson@duke.edu


JOURNAL OF MECHANICS OF MATERIALS AND STRUCTURES
Vol. 1, No. 4, 2006

SO. . . IS THIS A SURFACE-BREAKING CRACK?

MILAN POZNIC AND CLAUDIO PECORARI

An inspection technique used to assess the structural integrity of critical compo-
nents in a nuclear power plant must be able to discern surface-breaking cracks
from subsurface cracks. This work proposes an ultrasonic method to provide that
information and presents a theoretical investigation into it. The main assump-
tion of the model is that water carried by pressurized pipes infiltrates and fills a
surface-breaking crack, while a subsurface crack is dry. The model simulates an
inspection in which the modulation technique is employed and the surface host-
ing the crack is not accessible. A ratio, R, constructed with signals recorded in
backscattering configuration during a modulation cycle, is examined and shown
to provide a clear criterion allowing subsurface cracks to be distinguished from
surface-breaking cracks when a shear vertical wave at 45 degree incidence is
employed as a probe.

1. Introduction

Stress corrosion cracks, especially in pipes carrying pressurized water, constitute
a serious threat to the structural integrity of nuclear power plants. They are often
found in regions proximal to the inner surface of the pipe, and can be either surface-
breaking or subsurface. The growth of a subsurface crack is caused mostly by fa-
tigue. However, if a crack reaches the surface of the hosting component, corrosion
becomes the main factor affecting crack growth. This is the case because water
enters the fracture thanks to the combination of tensile stresses, which cause the
crack to remain open while the plant is operating, and the pipe internal pressure,
which can reach values of the order of 70 atm.

For this reason, it is of the utmost importance for a nondestructive technique
employed in the assessment of a plant’s structural integrity to enable not only
the detection of stress-corrosion cracks, but also their characterization as surface-
breaking or subsurface defects. Indeed, there have been instances in which cracks
have been characterized as subsurface during inspection but proved to be surface-
breaking upon a destructive metallurgical investigation [Jenssen et al. 2000]. Of
relevance to the subject of this work is also the presence of debris resulting from

Keywords: partially closed cracks, modulation, wave scattering stress-corrosion.

743

http://www.jomms.org
http://dx.doi.org/10.2140/pjm.2006.1-4


744 MILAN POZNIC AND CLAUDIO PECORARI

corrosion, which tends to bridge the gap between the surfaces, rendering the defect
more transparent to an inspecting ultrasonic beam.

This work presents the principles of an ultrasound-based technique designed
to discern partially closed cracks that are subsurface from those that are surface-
breaking. The proposed method exploits the effects of water confinement within
a partially closed, surface-breaking crack on the acoustic response of the defect.
The sensitivity of the proposed technique to the presence of fluid trapped between
the crack faces, and to compressive stresses acting on the crack, is examined. The
emphasis on cracks that are partially closed derives from the near certainty that,
following the shut-down of the plant prior to inspection, stresses due to the plant’s
operating conditions are removed and cracks tend to partially close, at least in
vicinity of their tips (see [Newman et al. 2003], for example). This investigation
is limited to the worst-case scenario in which the surface hosting the crack is not
accessible and the inspection must be carried out from the outer surface of the
component.

The article is organized as follows. We first report experimental results which il-
lustrate the characteristic dependence of the stiffness on the pressure applied to dry
and fluid-filled interfaces. We then present a model which evaluates the backscat-
tering by partially closed, surface-breaking and subsurface cracks. To simulate
the effect of partial closure on backscattering, spring boundary conditions are em-
ployed. Experimental results obtained on partially closed interfaces are employed
in the theoretical model to describe the effect of water trapped within a surface-
breaking fracture. The model is used to simulate experiments in which the partial
closure of the crack is modulated by a low-frequency, high-amplitude wave while
a probing ultrasonic wave interrogates the defect. We close with a discussion of
the significance of these findings for the development of a method allowing water-
confining, surface-breaking cracks and dry subsurface cracks to be distinguished
from each other.

2. Dry and water-confining interfaces

The interaction between ultrasonic waves and interfaces formed by two rough,
nonconforming surfaces in contact under increasing pressure has been investigated
extensively both experimentally and theoretically; see for example [Baltazar et al.
2002; Baik and Thompson 1984; Drinkwater et al. 1996; Lavrentyev and Rokhlin
1998; Kim et al. 2004a]. Models have been developed that derive the macroscopic
mechanical properties of such interfaces from those of the asperities in contact
and from the topographical properties of the surfaces. This considerable effort
notwithstanding, several of the outstanding issues concerning this problem still
await a solution [Pecorari and Poznic 2006]. In particular, the effect of water
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confined between surfaces in partial contact appears not to be accounted for by
any available model.

In this section we present experimental results on both dry and water-confining
interfaces and use them in the theoretical modeling of ultrasonic wave scattering
by surface-breaking and subsurface cracks. The experimental set-up employed in
this investigation is discussed in [Pecorari and Poznic 2006] and is not repeated
here. The only noteworthy differences from our earlier experimental conditions
are:

i. The nominal frequency of the transducer used to generate and receive the
waves reflected by the imperfect interface is 2.25 MHz here.

ii. The measurements were carried out also with shear waves.

iii. The rms roughness of the two surfaces employed here was evaluated to be of
the order of 0.2µm. In all the measurements, the inspecting waves insonify
the interface at normal incidence.

Among the properties of interest, the stiffness K of the imperfect interface is of
primary importance in understanding the interaction between ultrasonic waves and
such interfaces. It is defined by the relation K = ∂P/∂δ, where P is the applied
pressure (or the tangential stress) and δ is the relative approach (or the tangential
displacement) between the mean planes of the rough surfaces. The values KN and
KT of the normal and transverse interfacial stiffness can be recovered from the
measured reflection coefficients RL and RT for longitudinal and shear waves at
normal incidence via the well-known relation

RL ,T = −
1

1 − 2 j (KN ,T /ωZL ,T )
,

where ω is the circular frequency of the incident and scattered waves, and ZL , ZT

are the acoustic longitudinal and shear impedances of the medium. The symbol
j represents the imaginary unit. When water is confined by the interface, and the
real area over which mechanical contact between the surfaces take place is a small
fraction of the nominal area, the normal stiffness of the latter can be written as the
sum of two terms: KN = (3/d0)+1KN . The first term describes the effect of
a layer of water with thickness d0, the latter quantity being the distance between
the mean planes of the rough surfaces when no pressure is applied to the interface.
The symbol 3 represents the only nonzero elastic constant of the liquid medium.
The second term, 1KN , describes the part of the stiffness which depends on the
applied pressure. Since the shear modulus of water is zero, the transverse stiffness
does not contain a term analogous to 3/d0.

Figure 1 reports experimental results obtained at normal incidence using steel-
steel interfaces with rms roughness σ approximately equal to 0.2 microns. They
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Figure 1. Normalized normal (left) and transverse (right) spring
stiffness versus pressure applied to a water-confining and dry steel-
steel interface. The symbols represent experimental results.

illustrate the dependence of the normalized normal, KN/ωZL , and transverse,
KT /ωZL , interface stiffness components on the applied pressure for both dry and
water-confining interfaces, respectively. The pressure is varied from 0 MPa to
80 MPa at which point the reflection coefficient of a longitudinal wave interacting
with a water-confining interface is smaller than 0.1. The two most relevant features
of Figure 1, left, are the overall larger normal stiffness of the water-confining in-
terface compared to that of the dry one, and the initial fast increase of KN when
pressure not exceeding 5 MPa is applied to the interface. Unpublished numerical
simulations by these authors show that the addition of the term accounting for
the thin fluid layer, 3/d, to the stiffness of the dry interface is not sufficient to
reproduce the experimental results. A possible explanation for this deficiency of
the model may be found in the results of both experimental and theoretical in-
vestigations into the interaction between solid surfaces confining water; see [Das
et al. 1996; Israelachvili 1992; Grabbe and Horn 1993; Ho et al. 1998; Pashley
and Israelachvili 1984]. These works show that repulsive forces between solid
surfaces arise when the distance between the latter is comparable to the dimension
of the fluid’s molecules. The physical origin of such repulsive forces may vary from
system to system, but common to all is the increase of structural order caused by the
spatial confinement on the molecules of the fluid. These findings suggest that these
repulsive forces may also occur between asperities of the system under investiga-
tion, opposing their mechanical contact when they are separated by a distance of the
order of a nanometer. An alternative interpretation to that just outlined considers
the effect of drainage forces which oppose the motion of the solid surfaces in the
direction normal to their mean planes. A suitable mathematical model for such a
phenomenon should extend the analysis carried out by Chan and Horn [1985] on
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cylindrical surfaces with axes oriented normally to each other and to the direction
of motion. Essential for the accuracy of the novel model, the extension of Chang
and Horn’s model should account for the statistical character of the surface profiles.
Of importance is also the results concerning the shear stiffness, KT , which have
been obtained with the same two interfaces; see Figure 1, right. They display a
dependence on the applied pressure which, for our purposes, can be assumed to be
identical. In other words, they show that the viscosity of the fluid does not affect
KT , and thus, a mechanism which does not call upon the viscosity of the fluid
appears to offer a more plausible explanation of the experimental observation. In
summary, the experimental results of Figure 1 show that water strongly affects the
dependence of the interface normal stiffness on the applied pressure, while it does
not alter that of the shear stiffness.

3. Theory

Figure 2 illustrates the geometry of the material system and of the defect under
consideration. The segment of material of length a separating the crack from the
surface in the diagram on the left is also known as the ligament. With reference
to Figure 2, and following the method developed by Achenbach et al. [1980]
and Mendelsohn et al. [1980], the original problem posed by the scattering of
an incident bulk wave onto the crack is decomposed into a symmetrical and an
antisymmetrical part.

a


b


x


y


d


x


y


Figure 2. Geometry of the material system and its defect. The
material system occupies the half-space y > 0. Left: Subsurface
crack. Right: surface-breaking crack, with a = 0 and b = d .
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When considering the scattering by a subsurface crack, the boundary conditions
along the crack face, which are associated with the symmetrical problem are

σ+

xy = 0, x = 0, 0 ≤ y <∞,

σ+

xx = KN 1 u, a ≤ y < b,


u = 0, 0 ≤ y < a or b ≤ y <∞,

(3–1)

and those associated with the antisymmetrical problem are

σ+

xx = 0, x = 0, 0 ≤ y <∞,

σ+

xy = KT1v, a ≤ y < b,


v = 0, 0 ≤ y < a or b ≤ y <∞.

(3–2)

In these equations, the σ+

i i are the total stress components acting on the positive
side of the crack, i.e., on the side for which x = 0+, while u and v are the dis-
placement components in the x and y direction, respectively. The spring stiffness
densities KN and KT are generally allowed to be functions of depth, y, so that non-
uniform closure can be modeled. The remaining boundary conditions are those
used by Achenbach et al. [1980] and Mendelsohn et al. [1980] for an open crack.
In particular, the surface y = 0 is assumed to be free of traction. The crack closure
is simulated by varying the contact pressure between the crack faces according to
the next equations, which are given next only for a subsurface crack:

P(y)= Ptip exp
y − b
`

, (a + b)/2 ≤ y ≤ b,

P(y)= Ptip exp
a − y
`

, a ≤ y ≤ (a + b)/2.
(3–3)

Here Ptip is the pressure at the crack tips and ` is the decay length which controls
the spatial extent of the tip closure. The pressure distribution on a surface-breaking
crack is obtained from (3–3) by letting a = 0 and substituting (a +b)/2 with b = d .
Equations (3–3) are used to assign a local value to the spring stiffness densities by
way of the relationships illustrated in Figure 1. The purpose of this feature of the
model is twofold. First, the effect of the water on the scattering phenomenon is
accounted for within the same mathematical scheme used to treat a dry partially
closed crack. Secondly, the boundary conditions in equations (3–1) and (3–2) allow
for the simulation of the well documented closure of a crack in the regions proximal
to its tips [Newman et al. 2003], the causes of which are varied, still debated, and
leading essentially to the same result when considered from the wave scattering
point of view.
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The equations of motion for the two displacement components are

c2
L
∂2u
∂x2 + c2

T
∂2u
∂y2 +

(
c2

L − c2
T
) ∂2v

∂x∂y
=
∂2u
∂t2 ,

c2
L
∂2v

∂x2 + c2
T
∂2v

∂y2 +
(
c2

L − c2
T
) ∂2u
∂x∂y

=
∂2v

∂t2 ,

where t represents time, and cL and cT are the phase velocities of longitudinal
and shear waves, respectively. The solutions of these are given by the following
expressions (see [Achenbach et al. 1980; Mendelsohn et al. 1980]):

us(Ex)=
2
π

∫
∞

0

(
ξkL Ase−αL y

− 2κ−2αT kLC se−αT y) sin(ξ x) dξ

+
2
π

∫
∞

0

(
αLkL Bse−αL x

+ 2κ−2ξkL Dse−αT x) cos(ξ y) dξ, (3–4)

vs(Ex)=
2
π

∫
∞

0

(
αLkL Ase−αL y

− 2κ−2ξkLC se−αT y) cos(ξ x) dξ

+
2
π

∫
∞

0

(
ξkL Bse−αL x

+ 2κ−2αT kL Dse−αT x) sin(ξ y) dξ, (3–5)

for the symmetric field, while those of the antisymmetric are

ua(Ex)=
2
π

∫
∞

0

(
ξkL Aae−αL y

− 2κ−2αT kLCae−αT y) cos(ξ x) dξ

+
2
π

∫
∞

0

(
αLkL Bae−αL x

+ 2κ−2ξkL Dae−αT x) sin(ξ y) dξ, (3–6)

va(Ex)=
2
π

∫
∞

0

(
−αLkL Aae−αL y

+ 2κ−2ξkLCae−αT y) sin(ξ x) dξ

−
2
π

∫
∞

0

(
ξkL Bae−αL x

+ 2κ−2αT kL Dae−αT x) cos(ξ y) dξ . (3–7)

The time-dependence of the solution is assumed to be harmonic. In the equations
above, Aa,s , Ba,s,Ca,s , and Da,s are functions of the integration variable ξ , and
are themselves given in terms of integrals of suitable functions containing the tan-
gential slope of the two components of the crack opening displacement. These are
obtained by solving two decoupled singular integral equations derived by enforcing
the boundary conditions (3–1) and (3–2) on the solutions of the equations of motion.
The symbols kL and kT are the wavenumbers of the longitudinal and shear waves,
respectively. With the same meaning of the subscripts L and T , the quantities αL
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and αT are defined by

αL =


√

ξ 2
− k2

L if ξ ≥ kL ,

− j
√

k2
L − ξ 2 if ξ < kL ,

αT =


√

ξ 2
− k2

T if ξ ≥ kT ,

− j
√

k2
T − ξ 2 if ξ < kT .

The branch of the square root function in the complex plane is chosen to satisfy
the Sommerfeld radiation condition.

Equations (3–4)–(3–7) concern the field in the quarter-space where both x and
y are positive. The field components in the quarter-space where x < 0 are obtained
from those given by those equations as follows:

us(x < 0, y)= − us(|x |, y),

vs(x < 0, y)= vs(|x |, y),

ua(x < 0, y)= ua(|x |, y),

va(x < 0, y)= −va(|x |, y).

In solving the integral equations in the unknown tangential slope of two com-
ponents of the displacement discontinuity, the condition that their integral over the
extent of the crack is null must be enforced. The scattering by an open subsurface
crack was solved first by Brind and Achenbach [1981].

The scattering from a partially closed, surface-breaking crack is modeled within
the same mathematical framework. The boundary conditions for this problem are
obvious extensions of those given for a subsurface crack, and the solutions of the
problem are again sought in the form given by equations (3–4)–(3–7).

As described earlier, the real physical system hosting the crack is a steel pipe
containing water. Therefore, the boundary conditions stating that the surface y = 0
is traction-free are not correct. Enforcing the continuity of traction and normal
displacement across the solid-water interface, however, would add considerable
mathematical complications without substantially affecting the phenomena of in-
terest in this work. In fact, the algorithm later proposed to characterize the defect
as being surface-breaking or internal is designed to measure only the relative effect
of the applied modulation on the scattering properties of the defect with respect to
those displayed by the defect in its unperturbed state. Boundary conditions which
amount to a small perturbation of the total field within the solid half-space are not
expected to have a significant effect on the results of this algorithm.

4. Numerical results

The experimental results of Section 2 indicate that the most striking difference
between the properties of two interfaces under consideration is the rapid increase of
the normal stiffness of the water-confining interface as soon as contact between as-
perities is established. This naturally suggests the use of the parametric modulation
technique as a novel method to characterize a crack as being surface-breaking or
subsurface. The modulation technique exploits the nonlinear properties of partially
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closed cracks, and more specifically the dependence of the crack stiffness on the
applied pressure. Xiao and Nagy [1998] employed thermal stresses induced by a
laser source to vary the closure of a surface-breaking crack which was simultane-
ously insonified by a high frequency Rayleigh wave. By means of suitable signal
processing of the backscattered ultrasonic pulse acquired during different phases
of the thermal modulation, these authors showed that the acoustic signature of the
crack can be extracted from the noisy environment (see also [Nagy 1992]). In
other words, the modulation technique was shown to be able to selectively detect
nonlinear material defects. Rokhlin et al. [2004] adapted this method to increase
the sensitivity of ultrasonic inspections to poor adhesive bonds between aluminum
plates, while Kim et al. [2004b] (see also references therein) used it to characterize
small surface-breaking cracks initiated at surface pits by fatigue. Finally, Kazakov
et al. [2002] used the same idea to image the nonlinear properties of a surface-
breaking crack. Rokhlin et al. [2004], Kim et al. [2004a; 2004b] and Kazakov
et al. [2002] used a low-frequency source of mechanical vibrations to vary the
instantaneous properties of the defect of interest.

In this work, an experimental configuration similar to those employed by the
previously cited authors is simulated. A crack under investigation is subjected to
a sinusoidal, time-dependent pressure field of amplitude 1P: P(t)=1P sin(�t),
the frequency of the modulation, �, being orders of magnitude lower than that
of an ultrasonic wave, ω, which is used to monitor the instantaneous state of the
crack. This pressure is superposed on the static pressure given in (3–3), which
is responsible for the initial partial closure. During a cycle, three backscattered
ultrasonic signals are recorded, two at the opposite turning points of each cycle,
and one at the mid point when P(t) = 0. By using the peak-to-peak amplitude
of the back-scattered wave, or any other feature of this signal which reflects the
variation of the crack state, the following ratio is constructed:

R =
(
B−

− B+
)
/B0, (4–1)

where B−,+ are the features of interest measured when the crack is most open (−)
or closed (+), respectively, and B0 refers to the crack state in its rest condition.
Note that the ratio R is independent of the amplitude of the incident wave, and,
thus conveys information which depends on the intrinsic properties of the defect
and of the modulation, but not on the intensity of the inspecting wave. This work
investigates the conditions under which R can possibly serve as an “index of state”
to distinguish a fluid filled surface-breaking crack from a dry subsurface crack.
The numerical results presented next and the conclusions drawn from them refer
to phenomena involving only monochromatic waves. However, given the linearity
of the system, their validity can be extended to wave packets formed by linear
superposition of harmonic waves.
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Figure 3. Schematics of the simulated modulation experiment il-
lustrating the relationship between the state of the crack and the
signal backscattered by it during a cycle of the modulation. The
arrows pointing towards the crack represent the sum of the static
pressure and the modulation.

The following numerical investigation considers the scattering by partially closed
surface-breaking and subsurface cracks in a steel half-space. The mass density and
phase velocity of longitudinal and shear waves in steel are ρ = 7.8 × 103 kg m−3,
cL = 5900 ms−1, and cT = 3200 ms−1. The results presented in all the follow-
ing figures refer to a configuration in which a shear vertical wave impinges on
the defect at 45 degree incidence, unless otherwise stated. The frequency of the
wave is f = 2.25 MHz. The solution of the scattering problem is evaluated in the
backscattering direction. The observation point lies at a distance of about 30 shear
wavelengths (about 40 mm) from the surface of the half-space.

The residual pressure which determines the closure of the crack (see Equation
(3–3)) is chosen to represent three characteristic configurations: one in which the
closure is uniform, and two in which it decays with rates equal to 0.1 mm and 1 mm,
respectively. The rationale behind the choice of the latter values stems from the
assumption that the cracks of interest are detectable by conventional methods, and,
thus, their extent is of the order of several millimeters. For such cracks a likely
state is one in which their tip(s) are partially closed while throughout the remaining
portion of their extent there is no mechanical contact between the surfaces. The
pressure at the crack tip, Ptip, is chosen to be equal to 5 MPa and 70 MPa to rep-
resent two well distinct situations in which the crack tip is nearly open or fairly
closed, respectively. The values of the normalized stiffness constants KN/(ωZL)

and KT /(ωZL) corresponding to these pressure values are 0.2 and 0.07, respec-
tively, if the crack is dry, and 3 and 0.07 if a defect contains water. The amplitude
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Figure 4. Ratio R versus nondimensional crack size kT d for val-
ues of pressure at the crack tip equal to 5 MPa and 70 MPa. The
pressure distribution is constant along the crack extent. Left: dry
surface-breaking crack. Right: water-confining surface-breaking
crack.

of the modulation is 1P = 5 MPa in all simulations. For this value of the amplitude
1P , the modulation causes the crack to open completely when Ptip = 5 MPa. The
dependence of the ratio R on the nondimensional size of the crack, kT d , is reported
over a range which corresponds to cracks with physical dimension reaching values
up to 5.36 mm.

In Figure 4, the left panel refers to a dry surface-breaking crack and the right
panel to the same crack when it is filled with water. In both figures, the cases
in which the crack is subjected to a uniform pressure, Ptip, of 5 MPa and 70 MPa
are considered. In Figure 4, left, the crack shows a nearly constant response when
Ptip = 70 MPa, reflecting the modest effect the modulation has on the crack opening,
while it displays wide oscillation for the lower value of the applied pressure. In
both cases, however, the ratio R does not exceeds values of 0.1 as the size of the
crack increases. If water is confined within the crack (Figure 4, right), the value of
the ratio for Ptip = 70 MPa is even smaller as a consequence of the higher values
of the crack stiffness, while for Ptip = 5 MPa R reaches values larger than 2 over
nearly all the range of values of kT d considered here. As indicated in Figure 2,
right, the depth of the surface-breaking crack is d. This striking contrast is due to
the large variation of values spanned by the normal stiffness as the total applied
pressure varies between 0 and 10 MPa (see Figure 1, right).

Figure 5 illustrates the dependence of the ratio R for a surface-breaking crack
with a closure given by the second equation of (3–3), specified for the case of a
surface-breaking crack (a = 0, and b = d as upper limit), and with `= 1 mm. As in
the case considered in Figure 4, left, the response of a dry surface-breaking crack
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tends to settle around values of the order of 0.1 as the size of the crack increases.
However, a water-confining crack subjected to a compressive stress of 70 MPa at
its crack tip (Figure 5, right) displays a remarkably different behavior compared to
that shown in the corresponding panel of Figure 4. In fact, as the crack size exceeds
the decay length, `, corresponding to a value kT `≈ 5, the ratio rapidly increases
to reach values larger than one. This prediction can be explained as the result
of an increasingly larger portion of the crack surface being subjected to a static
pressure smaller than the amplitude of the modulation. Since the ratio R measures
the relative variation of the backscattered signal caused by the modulation, the
larger the portion of the crack, the opening of which is significantly affected by
the modulation, the larger R. The extreme example of this situation is provided
by the results of the previous figure in which ` is infinity. For Ptip = 70 MPa,
the variation of the opening of the crack produces nearly no modulation of the
scattered field since nowhere along the surface the crack opens. On the other hand,
for Ptip = 5 MPa, the whole surface of the crack completely opens and closes,
causing the largest variation of the backscattering considered in this work. The
behavior of the curve associated with a pressure of 5 MPa at the crack tip may
also be interpreted along the same line. Of interest is also the observation that
the two curves appear to converge towards each other as the size of the crack
increases. This result is further confirmed by those obtained if the decay length
is decreased to become ` = 0.1 mm, as shown in Figure 6, right. On the other
hand, the predictions concerning a dry surface-breaking crack, which is partially
closed by the same pressure field (Figure 6, left), do not present features which
significantly differ from those already shown in the left panels of Figures 4 and 5.
Also worthy of attention is the difference between the values of the plateau in the
right panels of 5 and 6, the former being slightly larger than the latter (1 versus
0.75). This finding may be expected in virtue of positive correlation between the
values of ` and the extent of the region over which a significant variation of the
local stiffness takes place. That is to say, the wider this region, the stronger the
effect of the modulation on the amplitude of the backscattered wave, the extreme
case being that considered in Figure 4 for Ptip = 5 MPa.

The investigation carried out on a surface-breaking crack was repeated with
a subsurface crack. Contrary to the former case, the investigation on the latter
yielded results which do not substantially differ from each other. For this reason,
only the predictions on the dependence of the ratio R on the size of a crack, d =

(b − a), which is subjected to a pressure field decaying with a constant `= 1 mm
are presented in Figure 7, those on the left being obtained for Ptip = 5 MPa, while
those on the right refer to Ptip = 70 MPa. Each figure illustrates the behavior of
R for three values of the ligament size: a/λT = 0.4, 1 and 2. The most relevant
feature of these results is that, with the exception of a small range of values of kT d
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Figure 5. Ratio R versus nondimensional crack size kT d for val-
ues of the pressure at the crack tip equal to 5 MPa and 70 MPa.
The pressure distribution decays exponentially from the crack tip
with a characteristic length `= 1 mm. Left: dry surface-breaking
crack. Right: water-confining surface-breaking crack.
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Figure 6. Ratio R versus nondimensional crack size kT d for val-
ues of the pressure at the crack tip equal to 5 MPa and 70 MPa.
The pressure distribution decays exponentially from the crack tip
with a characteristic length `= 0.1 mm. Left: dry surface-breaking
crack. Right: water-confining surface-breaking crack.

corresponding to cracks smaller than one wavelength of the incident wave, the ratio
R always remains below a threshold value of 0.3.

In view of earlier results proving the higher sensitivity of shear waves to small
surface breaking cracks when they are insonified at angles of incidence just above
the critical angle of longitudinal waves [Pecorari and Poznic 2005; Pecorari 2005],
the behavior of the ratio R has been examined also under these conditions, and
found to yield no clear criterion to discern subsurface from surface-breaking cracks.
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Figure 7. Ratio R versus nondimensional crack size kT d = kT (b−

a) for values of the ligament, a, equal to 0.4λT , 1λT , and 2λT . The
pressure distribution decays exponentially from the crack tip with
a characteristic length `= 1 mm. Left: Ptip = 5 MPa. Right: Ptip =

70 MPa.

Similar negative results have obtained with longitudinal waves at 45 degrees, 60
degrees and 85 degrees incidence.

Finally, the results in Figure 8 concern the sensitivity of the ratio R to a variation
of the angle on incidence from 45 degrees to 40 degrees, both for a surface-breaking
crack filled with water (left), and for a dry subsurface crack (right). The pressure
closing the crack is characterized by Ptip = 70 MPa and `= 0.1 mm, which is the
less favorable of the two cases. Similar results have been obtained for an angle
of incidence equal to 50 degrees and by reducing the value of the pressure at the
crack tip to 5 MPa. The main conclusion to be drawn from the latter results is
that the proposed technique appears to be robust within a variation of the angle of
incidence of at least ±5 degrees, since they confirm the results presented earlier.

5. Summary and concluding remarks

The potential use of the modulation technique to discern surface-breaking from
subsurface cracks in components carrying pressurized water has been investigated
theoretically. To that end, a model predicting the backscattered signal from dry
and water-confining surface-breaking cracks and from subsurface cracks has been
developed.

By using the backscattered signals recorded at the two turning points of a mod-
ulation cycle, B−,+, and when the no modulation is applied, B0, the ratio

R =
B−

− B+

B0
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Figure 8. Ratio R versus nondimensional crack size kT d = kT (b−

a). The pressure distribution decays exponentially from the crack
tip with a characteristic length ` = 0.1 mm, and Ptip = 70 MPa.
The angle of incidence is θin = 40 degree. Left: Water-confining,
surface-breaking crack. Right: subsurface crack with ligament
size a equal to 0.4λT , 1λT , and 2λT .

has been constructed. This ratio does not depend on the amplitude of the incident
wave, though it appears to vary with both angle of incidence and wave polariza-
tion. For a shear vertical wave at 45 degree incidence, R is predicted to exceeds
a threshold limit of 0.5 when a surface-breaking crack is filled with water, while
it is always lower than 0.5 if the crack, whether surface-breaking or subsurface, is
dry. The difference in the values of the ratio is ascribed to the dramatic variation
of the normal stiffness of a partially closed, water-confining crack as the surfaces
of the latter come into contact, and it may be used as a criterion for differentiating
water-confining surface-breaking from subsurface cracks.

To confirm the validity of the proposed method a deeper investigation into the
role of the rms roughness of the composite interface formed by the crack surfaces
needs to be carried out. In fact, as illustrated in [Pecorari and Poznic 2005], the
variation of the normalized normal stiffness of a water-confining interface is consid-
erably reduced when the rms roughness of the interface increases from 0.1µm to
1.5µm. In this context, results by Parisi et al. [2000] (see also references therein)
concerning the self-affine nature of the surfaces of fatigue cracks also need be taken
into account if the profile of a stress-corrosion crack displays similar properties.
Should this be the case, in fact, the extent to which a self-affine profile can be
represented by models describing the statistical properties of an infinite interface
treated as a stochastic process with spectrum containing components with arbi-
trarily small wavelengths must be reassessed. Of relevance to the behavior of the
partially closed crack tip and to the model used to predict its acoustic response is
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also the asymptotic behavior of the normal stiffness in proximity of the crack tip.
In this work, the crack is assumed to be either uniformly closed or increasingly
open as the observation point moves from the tip toward the mouth or center of
the crack. Watanabe et al. [2005] have recently brought to the authors’ attention
the incompatibility between the asymptotic behavior of the stress (∝

√
1/r) and

of the displacement discontinuity (∝
√

r) when the crack stiffness is assumed to
be constant and finite. This incompatibility would be removed if the self-affine
nature of the crack surfaces were considered. In fact, the rms roughness evaluated
over an interval shorter than the smaller cut-off wavelength of the profile’s power
spectrum, and including the crack tip, would be zero. Thus, the crack would be
either completely open or completely closed in the neighborhood of its crack tip.
In the first case KN = 0, in the second KN → ∞, and in both the use of the
spring boundary conditions would be compatible with the assumed asymptotic be-
havior of the quantities involved. However, whether either condition would extend
far enough from the crack tip to affect the numerical solution of the scattering
problem obtained in this work remains a matter to investigate. The limits of the
model notwithstanding, it is the authors’ opinion that the proposed method deserves
the consideration of a working hypothesis for further experimental investigation,
and that alone can provide a definite answer to the problem of interest to this
communication.
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Appendix

In this appendix, the integral equations and the formulas expressing the displace-
ment components of the scattered field in terms of the solutions of the former are
given in the case in which the crack is subsurface. The integral equations are
found by enforcing the boundary conditions given in equations (3–1) and (3–2)
on the general solutions of the equations of motion. These equations are singular
and decoupled. Their unknowns, A(S) and B(S), are functions representing the
tangents of the tangential and normal crack opening displacement components,
respectively.

Let Ain be the amplitude of the incident wave and ξ the transform variable used
in the integral representation of the general solution of the equations of motion
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(3–4)–(3–7). Introduce the normalized quantities and coordinates

Ā = AinkL , ā = akL , b̄ = bkL , X = xkL , Y = ykL ,

ζ = kLξ, βL = kLαL , and βT = kLαT ,

in which kL is the wave number of the incident wave; also let H be the Heaviside
unit step function. The integral equation for the symmetric problem then becomes∫ b̄

ā
B(S)

(
1

S+Y
−

2πκ2

1−κ2 K̄N (Y )H(S−Y )+
1

1−κ2

∫
∞

0
(I1+I2) dζ

)
d S

+

∫ b̄

ā

B(S)
S−Y

d S =
πκ2

2(κ2−1)
σ̄ I

xx(Y )
Ā

, (A-1)

where

I1 =

∫
∞

0

(κ2
+ 2β2

L)(β
2
T + ζ 2)e−βL Y

− 4βLβT ζ
2e−βT Y

4ζ 2βLβT − (ζ 2 +β2
T )

2

(
F1eβL S

+ F2eβT S) dζ,

I2 =

∫
∞

0

(
(ζ 2

+β2
T )

2
− 4ζ 2βLβT

ζβL
−
(
2 − 2κ2)) sin(ζ S) cos(ζY ) dζ,

with F1 =
(
−κ2(2 − κ2)− 4β2

Lζ
2
)
/β2

L and F2 = 4ζ 2.
The integral equation associated with the antisymmetric problem is∫ b̄

ā
B(S)

(
1

S+Y
+
πκ2

κ2−1
K̄T (Y )H(S−Y )+

4
κ2−1

∫
∞

0
(I3+I4) dζ

)
d S

+

∫ b̄

ā

A(S)
S−Y

d S =
π

(1−κ2)

τ̄ I
xy(Y )

Ā
, (A-2)

where

I3 =

∫
∞

0

−4ζ 2βLβT e−βL Y
+ (2ζ 2

+ κ2)2e−βT Y

4ζ 2βLβT − (β2
T + ζ 2)2

(
E1e−βL S

+ E2e−βT S) dζ,

I4 =

∫
∞

0

(
4ζ 2βLβT − (ζ 2

+β2
T )

2

4ζβT
−

1
2

(
κ2

− 1
))

sin(ζ S) cos(ζY ) dζ,

with E1 = −ζ 2 and E2 = (ζ 4
− ζ 2κ2

+ κ2/4)/β2
T . If the crack is surface-breaking,

additional terms appear in the integrals I1 and I3, namely F3 = κ2(2 − κ2)/β2
L

and E3 = −κ4/4β2
T , respectively; see also [Mendelsohn et al. 1980]. In all these

expressions κ = kT /kL . The right-hand sides of (A-1) and (A-2) are the respective
components of the stress field carried by the incident wave.

The components of the displacement field scattered by a subsurface crack, nor-
malized by the amplitude of the incident wave Ain and propagating in the positive
quarter-space, are given by the following expression:
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Symmetric problem.

U S(X, Y )=

2
π

∫
∞

0
dζ
∫ b̄

ā

(
(β2

T +ζ 2)(F1e−βL S
+F2e−βT S)

κ2
(
4ζ 2βLβT −(β2

T +ζ 2)2
) (

ζe−βL Y
−

2ζβLβT

β2
T +ζ 2

e−βT Y
)

sin(ζ X)

+

(2ζ
κ2 e−βT X

−
β2

T +ζ 2

ζκ2 e−βL X
)

cos(ζY ) sin(ζ S)

)
B(S) d S,

V S(X, Y )=

2
π

∫
∞

0
dζ
∫ b̄

ā

(
(β2

T +ζ 2)(F1e−βL S
+F2e−βT S)

κ2
(
4ζ 2βLβT −(β2

T +ζ 2)2
) (

βLe−βL Y
−

2ζ 2βL

β2
T +ζ 2

e−βT Y
)

cos(ζX)

+

(2βT

κ2 e−βT X
−
(β2

T +ζ 2)

βLκ2 e−βL X
)

sin(ζY ) sin(ζ S)

)
B(S) d S.

Antisymmetric problem.

U a(X, Y )=

2
π

∫
∞

0
dζ
∫ b̄

ā

(
(E1e−βL S

+E2e−βT S)

4ζ 2βLβT −(β2
T +ζ 2)2

(
4ζ 2βT e−βL Y

−2βT (β
2
T +ζ 2)e−βT Y ) cos(ζX)

−

(
βLe−βL X

−
β2

T +ζ 2

2βT
e−βT X

)
sin(ζY ) sin(ζ S)

)
A(S) d S,

V a(X, Y )=

2
π

∫
∞

0
dζ
∫ b̄

ā

(
(E1e−βL S

+E2e−βT S)

4ζ 2βLβT −(β2
T +ζ 2)2

(
−4ζβTβLe−βL Y

+2ζ(β2
T +ζ 2)e−βT Y ) sin(ζX)

−

(
ζe−βL X

−
β2

T +ζ 2

2ζ
e−βT X

)
cos(ζY ) sin(ζ S)

)
A(S) d S.

Similar expressions for the displacement components scattered by a surface-
breaking crack can be found in [Mendelsohn et al. 1980].
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NANOPARTICLES UNDER THE INFLUENCE OF
SURFACE/INTERFACE ELASTICITY

CHANGWEN MI AND DEMITRIS A. KOURIS

We investigate the effect of surface/interface elasticity in the presence of nano-
particles, embedded in a semi-infinite elastic medium. The work is motivated by
the technological significance of self-organization of strained islands in multilay-
ered systems. Islands, adatom-clusters, or quantum dots are modeled as inhomo-
geneities, with properties that differ from the ones of the surrounding material.
Within the framework of continuum elasticity theory, the Papkovitch–Neuber
displacement methodology coupled with Gurtin’s surface elasticity yields an an-
alytical solution. The elastic field is expressed in terms of four sets of spherical
and cylindrical harmonics. Surface elasticity introduces an additional length
scale and results suggest that local stresses are significantly affected by the size
of the nanoparticles.

1. Introduction

Self-assembly presents a promising alternative in fabrication of quantum dots. The
main requirements for applications are size uniformity and high spatial density of
dots. Currently, uniformity is on the order of 10% and no systematic approach
has been proposed for its improvement. Covering of the first generation of islands
or dots by a cap layer (say, of a substrate material) and growth of subsequent
generations of dots result in the ultimate development of a two-dimensional super-
lattice. The spatial uniformity of island structures was first addressed by Tersoff
et al. [1996]. Their islands were modeled as spherical inclusions (same properties
as the surrounding material) in an elastic half-space, a problem that was originally
solved by Mindlin and Cheng [1950]. Tersoff et al. [1996] chose to effectively
treat the islands as point sources (centers of dilatation) in a semi-infinite matrix. In
most material systems used in practice, however, quantum dots and the surrounding
material do not have identical material properties.

The presence of inhomogeneities in elastic media has been a well studied subject
in applied mechanics for several decades [Mura 1987]. Until recently, however,
almost all such studies have been concerned with either an infinite medium or a
semi-infinite body without including surface effects, either on the plane boundary,

Keywords: surface/interface effects, inhomogeneity, half-space.
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or at the matrix/inhomogeneity interface. Mindlin and Cheng [1950] first studied
the thermoelastic stress in a semi-infinite solid containing a spherical inclusion
subjected to dilatational thermal expansion. Tsuchida [1970; 1972] derived a three-
dimensional solution for displacements and stresses in a half-space having a spheri-
cal cavity, for various loading conditions. The classical solution for the elastic state
of a spherical inhomogeneity in a semi-infinite elastic body without incorporating
surface effects was obtained by Tsutsui et al. [1974].

These problems were solved within the context of classical elasticity, without
accounting for size effects. It is well known, however, that under certain circum-
stances, surface elasticity can be of importance. For material structures with one
or more dimensions at the nanometer scale (for example, thin film and nano-sized
inhomogeneities), the surface area to volume ratio becomes significant. Conse-
quently, surface effects have a major influence on the local stress-strain field.

The physical origin of the surface stress can be explained by the nature of the
chemical bonding of those atoms close to the surface. The loss of the transla-
tional symmetry in the direction normal to surface results in a different bonding
configuration in the vicinity of the surface, when compared to the one in the bulk.
The atoms at and close to the surface lose some of their neighbors or are bonded to
some “wrong” neighbors. As a result, the equilibrium interatomic distance for such
atoms is different from the bulk atoms. This phenomenon results in an “excess”
stress for atoms close to the surface.

The theory of isotropic surface elasticity was established by Gurtin and Mur-
doch [1975a; 1975b; 1978]. Cahn and Larche [1982] studied the mechanical and
chemical equilibrium of a small spherical precipitate in an infinite matrix of a
different phase. Recently Sharma et al. [2003] derived closed-form expressions
for the displacements and stresses of a strained spherical inhomogeneity by using
a variational approach. Sharma and Ganti [2004] also studied the elastic state of
spherical and cylindrical inhomogeneities embedded in an infinite elastic medium,
by combining the classical Green’s function method with linear isotropic surface
elasticity theory. Duan et al. [2005b] developed explicit forms of the stress con-
centration tensor for spherical and circular inhomogeneities with surface effects.
While surface/interface effects were incorporated, all of these investigations have
been limited to the study of an infinite elastic medium.

In the present work, we model a nanoparticle or island as a spherical inhomo-
geneity problem inside an elastic half-space. The material properties of the inhomo-
geneity are different from those of the surrounding material (matrix). The system is
subjected to biaxial tension applied at the remote boundary of the matrix, parallel to
the free surface. The ensuing three-dimensional problem is solved with the help of
the Papkovitch–Neuber displacement potential theory. Section 2 illustrates the for-
mulation of the problem of an embedded inhomogeneity in a half-space including
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surface/interface effects. Following [Gurtin et al. 1998], the displacements on the
surface/interface boundary are still considered to be continuous. The tractions both
on the plane boundary and at the matrix/inhomogeneity interface, however, are dis-
continuous, as a result of the well known Laplace–Young effects [Adamson 1982,
Chapter II]. The problem is solved in Section 3, incorporating the surface/interface
stress boundary conditions. Section 4 illustrates the impact of surface/interface
effects as the location, size, and material properties of the inhomogeneity change.
Finally, a series of conclusions are presented in Section 5. The elaborate and quite
tedious mathematical formulation presented in Sections 2 and 3 is the result of
a conscious decision to provide a complete, self-contained document, since the
detailed methodology cannot be found elsewhere.

2. Displacement formulation

Let us consider a spherical inhomogeneity in a semi-infinite elastic solid, as shown
in Figure 1. The center of the inhomogeneity coincides with the center of the coordi-
nate system. Cylindrical (r, θ, z) and spherical (R, θ, ϕ) coordinates will be used
alternatively throughout the manuscript. Following [Gurtin and Murdoch 1978],
the plane boundary (z = −c) and the matrix/inhomogeneity interface (R = a) are
modeled as thin films of vanishing depth; both “surfaces” adhere to the bulk without
slipping. The model is based on the assumption of a linearly elastic and isotropic
material system.

The governing equations for the bulk are given by

σi j, j = 0, σi j = 2G
( ν

1 − 2ν
εkkδi j + εi j

)
, εi j =

1
2(ui, j + u j,i ),

coupled with the equations for surfaces and interfaces derived in [Gurtin and Mur-
doch 1975a; 1975b]

εS
αβ =

1
2(Pi jε jk Pkl + Pi j ε̄ jk Pkl),

σ S
αβ = τ0δαβ + 2(µS

− τ0)ε
S
αβ + (λS

+ τ0)ε
S
κκδαβ + τ0(uS

α)
S
,β,

[σi j ]n j = −(σ S
αβ)

S
,β .

(1)

By convention, the Roman subscripts denote the quantities belonging to the bulk
and assume values from 1 to 3, while the Greek refer to the surface/interface and
assume values from 1 to 2. Here u, ε and σ denote displacement, strain and stress
fields in bulk; the material properties of the bulk are represented by the shear
modulus G and Poisson’s ratio ν; λS, µS and τ0 refer to the surface Lamé con-
stants, and the residual surface stress when the bulk is unstrained, respectively;
[σi j ] = σi j (out) − σi j (in) and n is the outward unit normal to the surface; εS

and σ S denote the surface strain and surface stress fields on the surface. Since
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Figure 1. Spherical inhomogeneity in a half-space.

the surface is defined as a two-dimensional continuous space, the components
of surface strain and surface stress with direction normal to the surface vanish.
Pi j = δi j −ni n j is the projection tensor which allows tensor transformation between
the three-dimensional bulk space and the two-dimensional surface space. In terms
of the projection tensor, the surface strain is defined as the average value of the bulk
strains from both sides projected onto the surface. The notion of surface gradient,
surface divergence of a vector, and surface divergence of a superficial tensor can
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be clarified by the following identities (see [Gurtin et al. 1998]):

(uS
α)

S
,β = ui,k Pk j , aα(αS

αβ)
S
,β = (σ S

βααβ)
S
,α = tr

(
(σ S
βααβ)

S
,γ

)
, (2)

for every constant vector a, where tr is the trace. For convenience, the surface
divergence of the surface stress tensor will be denoted by γ .

Both in the embedded particle and surrounding matrix, the displacement field
satisfies the following Navier’s equation (without body forces):

1
1 − 2ν

u j, j i + ui, j j = 0.

In the case of axial symmetry without torsion, its solution can be expressed as
superposition of two displacement fields due to potentials φ0 and φ3. In cylindrical
coordinates, these displacements and the corresponding strains and stresses are
given by

2Gur =
∂φ0

∂r
+ z

∂φ3

∂r
,

2Guz =
∂φ0

∂z
+ z

∂φ3

∂z
− (3 − 4ν)φ3,

2Gεrr = −
1
r
∂φ0

∂r
−
∂2φ0

∂z2 −
z
r
∂φ3

∂r
− z

∂2φ3

∂z2 ,

2Gεθθ =
1
r
∂φ0

∂r
+

z
r
∂φ3

∂r
,

2Gεzz =
∂2φ0

∂z2 − 2(1 − 2ν)
∂φ3

∂z
+ z

∂2φ3

∂z2 ,

2Gεr z =
∂2φ0

∂r∂z
− (1 − 2ν)

∂φ3

∂r
+ z

∂2φ3

∂r∂z
,

σrr = −
1
r
∂φ0

∂r
−
∂2φ0

∂z2 −
z
r
∂φ3

∂r
− z

∂2φ3

∂z2 − 2ν
∂φ3

∂z
,

σθθ =
1
r
∂φ0

∂r
+

z
r
∂φ3

∂r
− 2ν

∂φ3

∂z
,

σzz =
∂2φ0

∂z2 − 2(1 − ν)
∂φ3

∂z
+ z

∂2φ3

∂z2 ,

σr z =
∂2φ0

∂r∂z
− (1 − 2ν)

∂φ3

∂r
+ z

∂2φ3

∂r∂z
,

uθ = 0, εrθ = εθ z = 0, σrθ = σθ z = 0,

(3)



768 CHANGWEN MI AND DEMITRIS A. KOURIS

where ∇
2φ0 = ∇

2φ3 = 0 and ∇
2
=
∂2

∂r2 +
1
r
∂

∂r
+
∂2

∂z2 . Converting these equations
to spherical coordinates via

z = R cosϕ and r = R sinϕ,

we get for the spherical components of displacements, strains and stresses

2Gu R =
∂φ0

∂R
+µ

(
R
∂φ3

∂R
− (3 − 4ν)φ3

)
,

2Guϕ =

√
1 −µ2

(
−

1
R
∂φ0

∂µ
−µ

∂φ3

∂µ
+ (3 − 4ν)φ3

)
,

2GεR R =
∂2φ0

∂R2 +µ
(

R
∂2φ3

∂R2 − 2(1 − 2ν)
∂φ3

∂R

)
,

2Gεθθ =
1
R

(∂φ0

∂R
−
µ

R
∂φ0

∂µ

)
+µ

(∂φ3

∂R
−
µ

R
∂φ3

∂µ

)
,

2Gεϕϕ = −
∂2φ0

∂R2 −
1
R
∂φ0

∂R
+
µ

R2

∂φ0

∂µ
− Rµ

∂2φ3

∂R2 −µ
∂φ3

∂R

+

(
−2(1 − 2ν)+ (3 − 4ν)µ2

)
R

∂φ3

∂µ
,

2GεRϕ =

√
1 −µ2

×

( 1
R2

∂φ0

∂µ
−

1
R
∂2φ0

∂R∂µ
+ (1−2ν)

∂φ3

∂R
−µ

∂2φ3

∂R∂µ
+

2(1−ν)µ

R
∂φ3

∂µ

)
,

σR R =
∂2φ0

∂R2 + Rµ
∂2φ3

∂R2 − 2(1 − ν)µ
∂φ3

∂R
−

2ν(1 −µ2)

R
∂φ3

∂µ
,

σθθ =
1
R

(∂φ0

∂R
−
µ

R
∂φ0

∂µ

)
+ (1 − 2ν)µ

∂φ3

∂R
−

(
µ2(1 − 2ν)+ 2ν

)
R

∂φ3

∂µ
,

σϕϕ = −
∂2φ0

∂R2 −
1
R
∂φ0

∂R
+
µ

R2

∂φ0

∂µ
− Rµ

∂2φ3

∂R2 − (1 + 2ν)µ
∂φ3

∂R

+
(3 − 2ν)µ2

− 2(1 − ν)

R
∂φ3

∂µ
,

σRϕ =

√
1−µ2

( 1
R2

∂φ0

∂µ
−

1
R
∂2φ0

∂R∂µ
+ (1−2ν)

∂φ3

∂R
−µ

∂2φ3

∂R∂µ
+

2(1−ν)µ

R
∂φ3

∂µ

)
,

uθ = 0, 2GεRθ = 2Gεθϕ = 0, σRθ = σθϕ = 0, (4)
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where µ= cosϕ, and the harmonic operator now takes the form

∇
2
=

∂2

∂R2 +
2
R
∂

∂R
−

2µ
R2

∂

∂µ
+
(1 −µ2)

R2

∂2

∂µ2 .

For the purpose of completeness, we now derive general expressions for sur-
face/interface quantities, both on the plane boundary (z = −c) and on the ma-
trix/inhomogeneity interface (R = a). In cylindrical coordinates, the projection
tensor for the plane boundary is given by

Prr = Pθθ = 1, all other Pi j = 0. (5)

Substituting Equations (3) and (5) into the first equation of (1), and the first equa-
tion of (2), the surface strain tensor and the surface gradient of the surface displace-
ment on the plane boundary are found to be

ε f s
rr = u f s

r,r = −
1

4G

(1
r
∂φ0

∂r
+
∂2φ0

∂z2 +
z
r
∂φ3

∂r
+ z

∂2φ3

∂z2

)
z=−c

,

ε
f s
θθ = u f s

θ,θ =
1

4G

(1
r
∂φ0

∂r
+

z
r
∂φ3

∂r

)
z=−c

,

ε
f s

rθ = u f s
r,θ = 0,

where the superscript f denotes the plane boundary. By the use of these relations
and the second equation of (1), it is found that

σ f s
rr = τ f 0 −

(
χ f 2

1
r
∂φ0

∂r
+χ f 0

∂2φ0

∂z2 +χ f 2
z
r
∂φ3

∂r
+χ f 0z

∂2φ3

∂z2

)
z=−c

,

σ
f s
θθ = τ f 0 +

(
χ f 2

1
r
∂φ0

∂r
−χ f 1

∂2φ0

∂z2 +χ f 2
z
r
∂φ3

∂r
−χ f 1z

∂2φ3

∂z2

)
z=−c

,

σ
f s

rθ = 0,

(6)

where τ f 0 denotes the deformation-independent surface stress defined on the plane
boundary. The length scale parameters χ f 0, χ f 1, and χ f 2 are defined in Equation
(28) in the Appendix. The surface divergence of the surface stress tensor can be
obtained by transforming the second equation of (2) into cylindrical coordinates.
An explicit formula for evaluating this vector can be found in [Duan et al. 2005a,
(2.2)]. As a result, the surface divergence of the surface stress γ f on the plane
boundary is given by

γ f
r = −χ f 0

( ∂3φ0

∂r∂z2 + z
∂3φ3

∂r∂z2

)
z=−c

, γ
f
θ = γ f

z = 0. (7)

For the matrix/inhomogeneity interface (R = a), the projection tensor is

Pθθ = Pϕϕ = 1, all other Pi j = 0.
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The relevant interface quantities can be derived from this equation together with
(1), (2) and (4):

εs
θθ = us

θ,θ =
1

4G

(
1
R
∂φ0

∂R
−
µ

R2

∂φ0

∂µ
+µ

∂φ3

∂R
−
µ2

R
∂φ3

∂µ

)
R=a

,

εs
ϕϕ = us

θ,θ =
1

4G

(
µ

R2

∂φ0

∂µ
−
∂2φ0

∂R2 −
1
R
∂φ0

∂R
− Rµ

∂2φ3

∂R2 −µ
∂φ3

∂R

+
−2(1−2ν)+ (3−4ν)µ2

R
∂φ3

∂µ

)
R=a

,

εs
θϕ = us

θ,ϕ = 0,

σ s
θθ = τ0 +

(
−χ1

∂2φ0

∂R2 +χ2
1
R
∂φ0

∂R
−χ2

µ

R2

∂φ0

∂µ
−χ1 Rµ

∂2φ3

∂R2 +χ2µ
∂φ3

∂R

−
2(1 − 2ν)χ1 + (χ0 − (3 − 4ν)χ1)µ

2

R
∂φ3

∂µ

)
R=a

,

σ s
ϕϕ = τ0 +

(
−χ0

∂2φ0

∂R2 −χ2
1
R
∂φ0

∂R
+χ2

µ

R2

∂φ0

∂µ
−χ0 Rµ

∂2φ3

∂R2 −χ2µ
∂φ3

∂R

+
−2(1 − 2ν)χ0 + ((3 − 4ν)χ0 −χ1)µ

2

R
∂φ3

∂µ

)
R=a

,

σ s
θϕ = 0,

γR =

(
−

2τ0

R
+
χ3

R
∂2φ0

∂R2 +χ3µ
∂2φ3

∂R2 +
2(1 − ν)χ3(1 −µ2)

R2

∂φ3

∂µ

)
R=a

,

γθ = 0,

γϕ =

√
1 −µ2

(
∂

∂µ

(χ0

R
∂2φ0

∂R2 +
χ2

R2

∂φ0

∂R
−
χ2

R3φ0

)
+µ

∂

∂µ

(
χ0
∂2φ3

∂R2 +
χ2

R
∂φ3

∂R
−

4(1 − ν)χ2

R2 φ3

)
−

(
(1 − 4ν)χ0

∂2φ3

∂R2 +
(3 − 8ν)χ0 +χ1

R
∂φ3

∂R

))
R=a

,

(8)

where τ0 is the deformation-independent interface stress defined at the spherical
interface. The interface length scale parameters χ0, χ1, χ2, and χ3 are defined in
Equation (29) of the Appendix.

Given the expressions for the surface divergence of the surface stress (7), the
boundary conditions at the free surface can be expressed in cylindrical coordinates



NANOPARTICLES UNDER THE INFLUENCE OF SURFACE/INTERFACE ELASTICITY 771

as
(σr z)z=−c = −γ f

r , (σzz)z=−c = 0. (9)

At infinity,

(σrr )r→∞ = (σθθ )r→∞ = T, (σr z)r→∞ = (σzz)r→∞ = 0, (10)

corresponding to the far-field biaxial tension. The boundary conditions at the ma-
trix/inhomogeneity interface consist of the displacement continuity condition and
the third equation in (1). These can be rewritten as follows, using Equations (8)
for the γ ’s:

(u R)R=a = (ū R)R=a, (uϕ)R=a = (ūϕ)R=a,

(σR R)R=a − (σ̄R R)R=a = −γR, (σRϕ)R=a − (σ̄Rϕ)R=a = −γϕ,
(11)

where the quantities denoted by an over bar refer to the inhomogeneity.
In cylindrical and spherical coordinates, the general solution to the harmonic

equation can be expressed in terms of cylindrical or spherical harmonics, respec-
tively. Based on these basic solutions, four sets of displacement potentials are
selected to represent the solutions to our problem. The first represents the biaxial
tension applied at infinity and is given by

φ0

T
= −

(1 − ν)

(1 + ν)
R2 P2(µ),

φ3

T
= −

1
(1 + ν)

R P1(µ). (12)

Here Pn(µ) is the Legendre function of the first kind of order n, with P0(µ)= 1,
P1(µ)=µ, P2(µ)= (3µ2

−1)/2, and so forth. In terms of cylindrical coordinates,
(12) can be rewritten as

φ0

T
= −

(1 − ν)

2(1 + ν)
(2z2

− r2),
φ3

T
= −

1
(1 + ν)

z. (12∗)

The disturbance due to the presence of the inhomogeneity can be expressed by
the following three sets of displacement potentials:

φ0

T
=

∞∑
n=0

An
Pn(µ)

Rn+1 ,
φ3

T
=

∞∑
n=0

Bn
Pn(µ)

Rn+1 ; (13)

φ0

T
=

∫
∞

0
ψ1(λ)J0(λr)e−λz dλ,

φ3

T
=

∫
∞

0
λψ2(λ)J0(λr)e−λz dλ (14)

for the matrix (with z >−c, R > a), and

φ0

T
=

∞∑
n=0

Ān Rn Pn(µ),
φ3

T
=

∞∑
n=0

B̄n Rn Pn(µ) (15)
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for the inhomogeneity (R < a). In these expressions, Jν(λr) is the Bessel function
of the first kind of order ν; An , Bn , Ān and B̄n are unknown coefficients of the
spherical harmonics; and ψ1(λ) and ψ2(λ) are unknown functions of the integral
variable λ. With these choices of the displacement potentials, the boundary condi-
tion (10) is satisfied automatically. The unknown constants An , Bn , Ān , B̄n and the
unknown functions ψ1(λ), ψ2(λ) are to be determined by enforcing the boundary
conditions (9) and (11).

3. Solution of the problem

The displacement potential (13) is expressed in spherical coordinates. In order to
satisfy the boundary condition (9), it must be transformed into cylindrical coordi-
nates. From [Sneddon [1951], p.514], it is found that for z ≥ 0,

Pn(µ)

Rn+1 =
1
n!

∫
∞

0
λn J0(λr)e−λz dλ.

Replacing (z) with (−z), (µ) with (−µ), and with the aid of the parity property
of Legendre polynomials, it is found that for z ≤ 0,

Pn(µ)

Rn+1 =
(−1)n

n!

∫
∞

0
J0(λr)eλzλn dλ.

Using this, the displacement potential (13) can be rewritten as

φ0

T
=

∫
∞

0
ω1(λ)J0(λr)eλz dλ,

φ3

T
=

∫
∞

0
λω2(λ)J0(λr)eλz dλ, (13∗)

where

ω1(λ)=

∞∑
n=0

An(−1)nλn/n!, ω2(λ)=

∞∑
n=0

Bn(−1)nλn−1/n!. (16)

At this point, the expressions for stress and the surface divergence of the surface
stress on the plane boundary can be obtained readily by substituting potentials
(12∗), (13∗), and (14) into (3) and (7) (see Equations (23) and (24)). By satisfying
the plane boundary conditions (9), we get the relations∫

∞

0
λ2
((
ψ1 + (−cλ+1−2ν)ψ2

)
ecλ

−
(
ω1 + (−cλ−1+2ν)ω2

)
e−cλ

)
J1(λr) dλ

= −

∫
∞

0
χ0λ

3((ψ1 − cλψ2)ecλ
+ (ω1 − cλω2)e−cλ)J1(λr) dλ,∫

∞

0
λ2
((
ψ1 + (−cλ+2−2ν)ψ2

)
ecλ

+
(
ω1 + (−cλ−2+2ν)ω2

)
e−cλ

)
J0(λr) dλ

= 0.
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This is satisfied identically if

(χf 0λ+1)ψ1 −(χf 0cλ2
+cλ−1+2ν)ψ2

= (1−χf 0λ)ω1e−2cλ
+(χf 0cλ2

−cλ−1+2ν)ω2e−2cλ,

ψ1 +(−cλ+2−2ν)ψ2 = −ω1e−2cλ
−(−cλ−2+2ν)ω2e−2cλ.

Solving this for ψ1(λ) and ψ2(λ), we obtain

ψ1(λ)= −
(
(2(c+b1)λ−(3−4ν))ω1 +

(
4(1−2ν)(1−ν)−2c(c+2b1)λ

2)ω2
)

× e−2cλ/(1 + 2b1λ),

ψ2(λ)= −
(
2ω1 − ((3−4ν)+ 2(c+b1)λ)ω2

)
e−2cλ/(1 + 2b1λ), (17)

where b1 = (1 − ν)χ f 0. These are the conditions necessary to satisfy Equation (9).
The stress components on the plane boundary are reduced to (25) by substituting
Equations (16) and (17) in (23).

The next task is to satisfy the boundary conditions on the matrix/inhomogeneity
interface. For this purpose, we must transform the potential (14) into spherical
coordinates. From [Morse and Feshbach 1953, p. 1318], it is found that for z ≥ 0,

eλz J0(λr)=

∞∑
n=0

(λR)n

n!
Pn(µ).

Replacing (z) with (−z), (µ) with (−µ), and with the aid of the parity property
of Legendre polynomials, it is deduced that for z ≤ 0,

e−λz J0(λr)=

∞∑
n=0

(−1)n
(λR)n

n!
Pn(µ).

With the use of this equation, the displacement potential (14) can be expressed in
spherical coordinates as

φ0

T
=

∞∑
n=0

αn Rn Pn(µ),
φ3

T
=

∞∑
n=0

βn Rn Pn(µ), (14∗)

where

αn =

∫
∞

0

(−1)nλn

n!
ψ1(λ) dλ, βn =

∫
∞

0

(−1)nλn

n!
λψ2(λ) dλ.

Substituting (16) and (17) into these two equations, expanding 1/(1 + 2b1λ) in
powers of λ for small b1, and using Euler’s integral of the second kind∫

∞

0
λne−cλ dλ= n!/cn+1 (n, c > 0),
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(see [Gradshteyn and Ryzhik 1994, p. 357]), we can write

αn =

∞∑
m=0

( f n
m Am + gn

m Bm), βn =

∞∑
m=0

(
2(m + 1)qn

m+1 Am + hn
m Bm

)
, (18)

where

qn
m =

(−1)m+n

m!n!

∫
∞

0

λm+ne−2cλ

(1 + 2b1λ)
dλ

=


(−1)m+n

m!n!

(m + n)!
(2c)m+n+1 if b1 = 0,

∞∑
k=0

(−1)m+n+k (2b1)
k(m + n + k)!

m!n!(2c)m+n+k+1 if b1 6= 0,

f n
m = (3 − 4ν)qn

m + 2(c + b1)(m + 1)qn
m+1,

gn
m = 4(1 − 2ν)(1 − ν)

qn
m−1

m
− 2c(c + 2b1)(m + 1)qn

m+1,

hn
m = (3 − 4ν)qn

m − 2(c + b1)(m + 1)qn
m+1.

The expressions for displacement, stress, and the interface divergence of the
interface stress on the matrix/inhomogeneity interface can be derived by substitut-
ing displacement potentials into Equations (4) and (8). The elastic fields in the
matrix are obtained by superposing potentials (12), (13), and (14∗), while those in
inhomogeneity are given by (15). These expressions are listed in the Appendix. To
satisfy the boundary condition (11), we must have

∞∑
n=0

(
sA1 An + sB1 Bn−1 + sB2 Bn+1 + sα1αn + sβ1βn−1

+ sβ2βn+1 −0−1(s Ā1
Ān + sB̄1

B̄n−1 + sB̄2
B̄n+1)

)
Pn(µ)

= −
2(1 − 2ν)a

3(1 + ν)
P0(µ)+

2a
3

P2(µ),
(19)

∞∑
n=1

(
tA1 An + tB1 Bn−1 + tB2 Bn+1 + tα1αn + tβ1βn−1

+ tβ2βn+1 −0−1(t Ā1
Ān + tB̄1

B̄n−1 + tB̄2
B̄n+1)

)
P ′

n(µ)= −
a
3

P ′

2(µ), (20)

∞∑
n=0

(isA1
+ i A1)An + (isB1

+ iB1)Bn−1 + (isB2
+ iB2)Bn+1

+ (isα1
+ iα1)αn + (isβ1

+ iβ1)βn−1 + (isβ2
+ iβ2)βn+1

+ (0−1is Ā1
− i Ā1

) Ān + (0−1isB̄1
− i B̄1

)B̄n−1 + (0−1isB̄2
− i B̄2

)B̄n+1

 Pn(µ)

=

(
2τ0

aT
+

4(1 − 2ν)χ3

3a(1 + ν)
−

2
3

)
P0(µ)+

(2χ3

3a
+

2
3

)
P2(µ), (21)
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∞∑
n=1

(lsA1
+ lA1)An + (lsB1

+ lB1)Bn−1 + (lsB2
+ lB2)Bn+1

+ (lsα1
+ lα1)αn + (lsβ1

+ lβ1)βn−1 + (lsβ2
+ lβ2)βn+1

+ (0−1ls Ā1
− l Ā1

) Ān + (0−1lsB̄1
− l B̄1

)B̄n−1 + (0−1lsB̄2
− l B̄2

)B̄n+1

 P ′

n(µ)

=

(3χ0 −χ1

3a
−

1
3

)
P ′

2(µ), (22)

where P ′
n(µ)= d Pn(µ)/ dµ, 0 = Ḡ/G, and the coefficients s, t , i , l are defined

in the Appendix (page 788). In Equations (19) and (20), the displacement contain-
ing α1, β0 represents the rigid body motion of the matrix. We set α1 = β0 = 0
by viewing the matrix as a reference state. The displacement containing Ā1, B̄0

corresponds to the rigid body motion of the inhomogeneity. As a result, one of
the two coefficients can be set to zero, so we set Ā1 6= 0, B̄0 = 0. Equating the
coefficients of Pn(µ), P ′

n(µ) on both sides of Equations (19)–(22), and with the
aid of Equation (18), we obtain a set of linear algebraic equations leading to the
unknown coefficients {An, Bn, Ān, B̄n}.

4. Results and discussion

Results were obtained in order to illustrate the impact of surface and interface
effects on the elastic field in the vicinity of the inhomogeneity (nanoparticle). The
key parameters are the shear moduli ratio 0 and the inhomogeneity position and
size, denoted by c and a, respectively. The shear modulus of the matrix is set to
G = 26 GPa, while 0 ranges over different values of the nanoparticle’s stiffness.
The limiting value 0 = 0 represents a spherical void while 0 → ∞ corresponds to
a rigid particle. Poisson’s ratios are kept equal (ν = ν̄ = 0.25) for the matrix and
the inhomogeneity. The far-field biaxial tension is set at T = 100 MPa. Numerical
computations indicate that the coefficients An , Bn , Ān , and B̄n decay monotonically
with increasing n. These coefficients converge more rapidly for small ratios a/c.
As a result, for all ratios a/c, less than 20 terms are necessary to obtain the elastic
field, with an accuracy of five significant figures.

When surface and interface effects are ignored, the results are compared with
the classical solution of a semi-infinite elastic body having a spherical cavity or a
spherical inhomogeneity [Tsuchida and Nakahara 1970; Tsutsui et al. 1974], and
were found to be in perfect agreement.

The impacts of interface and free-surface elasticity were studied separately. First,
only the effects of interface elasticity were considered. The interface elastic con-
stants were selected as λs

=6.85107 N/m,µs
=−0.83145 N/m, and τ0 =0.91084 N/m.

These quantities can be deduced from the manipulation of the surface properties
of an aluminum [111] free surface in [Miller and Shenoy 2000].
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4.1. Interface elasticity only: stress distribution. Normalized stress components
with and without interface elasticity are shown in Figures 2–4. Stresses at three
specific points of the matrix/inhomogeneity interface vary with the ratio a/c (radius
of the particle normalized by the distance from the free surface). The particle
position is fixed at c = 50 nm. It is clear that the stress changes significantly when
the particle size is small, for both soft (0 = 0.5) and hard (0 = 2) particles. In
some cases, the interface effects even change the sign of the stress for small ratios
of a/c. As expected, the stress fields converge to the classical solutions when the
inhomogeneity size increases.

Numerical calculations are also performed to study the impact of interface elas-
ticity on the stress distribution at R = a when a spherical particle of fixed size
approaches the plane boundary. Results were similar to the ones illustrated in
Figures 2–4. As long as the particle size is of nanometer size, interface elasticity
significantly changes the particle/matrix interface stresses, even if the particle is
pretty far from the plane boundary (free surface).

To examine the stress distribution along the interface, calculations were carried
out for various shear moduli ratios (Figures 5–6). For the matrix, softer particles
(0 < 1) are affected more than harder particles (0 > 1). As seen in Figure 6,
top, the maximum shear stress τ1 converges to the classical solution as 0 increases
when the inhomogeneity is hard (0 > 1), while it deviates greatly from the classical
solution when the inhomogeneity is soft (0 < 1).

The maximum principal stress σ̄1 is compressive, while its classical counterpart
is tensile everywhere. The sign of σ̄1 has been altered by the interface effects.
Unlike σ1, σ̄1 is more sensitive to harder particles than to softer ones. Compared
to σ̄1, τ̄1 is only slightly affected by interface elasticity. It remains tensile at every
point around the interface. The maximum variation of τ̄1 from the classical solution
occurs at ϕ = π for soft inhomogeneity (0 < 1).

Figure 7 illustrates the variation of stresses σrr and σθθ with r/c, at the plane
boundary. The impact of interface elasticity on σrr and σθθ is analogous to that
on σ1 and τ1: the softer the particle, the more significant the interface elasticity
becomes. However, for large values of r/c (≥ 3), σrr and σθθ converge to the
classical solution.

By limit analysis, the solutions of the present problem with only the interface
effects should approach those of a spherical inhomogeneity with interface effects
in an infinite medium when a � c. With the ratio a/c ≤ 0.01, the elastic field at the
spherical interface is in agreement with the one obtained for the infinite medium,
with an accuracy of at least five significant figures.

4.2. Free-surface elasticity only: stress distribution. Calculations were performed
to determine the free-surface elasticity effects on the stress distribution at z = −c
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and R = a. We consider an aluminum [100] free surface with properties λ f s
=

3.49387 N/m, µ f s
= −5.70915 N/m, and τ f 0 = 0.56893 N/m [Miller and Shenoy

2000]. The most important character of the plane surface effects is the nonvanish-
ing shear stress σr z at the plane boundary, as shown analytically in (25). In the
classical solution, the conditions of zero traction at the plane boundary force σr z to
vanish. Figure 8 shows the distribution of σr z with the normalized radial coordinate
r/c, for c = 10 nm, a = 8 nm, and various shear moduli ratios. When the particle
stiffness is not too different from the surrounding material (0 = 0.5 − 2), surface
elasticity is not important. Otherwise (0 = 0.1, 10), its influence is significant.
Nevertheless, the magnitude of σr z is small (≤ 2% T ). The impact of the free
surface effects on σrr and σθθ is found to be of the same order as that of σr z . The
influence on the stress fields at the matrix/inhomogeneity interface is even smaller.
One can safely conclude that compared to the applied tension at infinity, the free
surface elasticity may be neglected.

5. Summary and conclusions

The axisymmetric problem of a spherical particle near the surface of a semi-infinite
elastic body was solved, incorporating the effects of surface/interface elasticity.
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The solution was obtained within the framework of linear elasticity, through a
displacement potential formulation.

The free surface and the interface were modeled as two-dimensional continu-
ous spaces with vanishing thickness. Aside from the bulk material properties, the
surface and interface boundaries have their own material constants (for example,
the residual surface stress and surface Lamé constants). Numerical calculations
indicate that the stress distribution along the plane boundary and the matrix/particle
interface is significantly affected by surface/interface elasticity.

Following the analysis, one can make a few important observations:

• The impact of interface elasticity is a function of the particle size: the smaller
the particle, the more important interface elasticity becomes. The elastic fields
converge to the classical solution as the particle size increases (typically for
a ≥ 100 nm).

• The influence of interface elasticity depends on the softness or rigidity of the
particles. For the matrix, the interface effects on the stress distribution are
more pronounced when the particles are soft. However, the opposite is true
for the particles themselves.

• In contrast with the zero traction requirement along the free surface in the
classical solution, plane elasticity yields a nonvanishing shear stress, as shown
in (25) and Figure 8. The plane surface effects become more important when
the particle approaches the plane boundary. However, for distances where
continuum theory is considered valid (typically ≥ 5 nm), the magnitude of
the disturbance due to the plane surface elasticity is small, when compared to
the applied load.

• Due to the presence of the residual interface stress (see [He and Li in press]),
superposition will not be valid when one considers interface elasticity. This is
critical, because it significantly complicates the problem when multiple loads
(say, misfit strain and mechanical load) are applied separately.

The study presented here illustrates that models incorporating nanoparticles near
surfaces cannot ignore surface and particularly, interface elasticity effects. This is
especially true when one models self-organized adatom clusters and islands, since
most of these structures are of nanoscale size. The important problem of strained
islands due to misfit strains will be addressed in a separate communication.
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Appendix

Elastic fields at the plane boundary. The stresses along the plane boundary are
given below in terms of potentials (12∗), (13∗), and (14):(σrr

T

)
z=−c = 1 −

∫
∞

0 λ(ω1 − cλω2)
(
λJ0(λr)− 1

r J1(λr)
)
e−cλ dλ

−
∫

∞

0 2νλ2ω2 J0(λr)e−cλ dλ

−
∫

∞

0 λ(ψ1 − cλψ2)
(
λJ0(λr)− 1

r J1(λr)
)
ecλ dλ

+
∫

∞

0 2νλ2ψ2 J0(λr)ecλ dλ,(σθθ
T

)
z=−c = 1 −

∫
∞

0 λ
( 1

r (ω1 − cλω2)J1(λr)+ 2νλω2 J0(λr)
)
e−cλ dλ

−
∫

∞

0 λ
( 1

r (ψ1 − cλψ2)J1(λr)− 2νλψ2 J0(λr)
)
ecλ dλ,(σzz

T

)
z=−c =

∫
∞

0 λ2
(
ω1 − (cλ+ 2 − 2ν)ω2

)
J0(λr)e−cλ dλ

+
∫

∞

0 λ2
(
ψ1 + (−cλ+ 2 − 2ν)ψ2

)
J0(λr)ecλ dλ,(σr z

T

)
z=−c = −

∫
∞

0 λ2
(
ω1 − (cλ+ 1 − 2ν)ω2

)
J1(λr)e−cλ dλ

+
∫

∞

0 λ2
(
ψ1 + (−cλ+ 1 − 2ν)ψ2

)
J1(λr)ecλ dλ.

(23)

The surface divergence of the surface stress on the plane boundary is

γ
f

r = χ f 0T
(∫

∞

0 λ3(ω1 − cλω2)J1(λr)e−cλ dλ

+
∫

∞

0 λ3(ψ1 − cλψ2)J1(λr)ecλ ∂λ
)
. (24)

With Equations (16) and (17), Equation (23) is reduced to

(σrr

T

)
z=−c

= 1 +

∞∑
n=0

(−1)n An

(
−4

Fn+2
0

n!
+ 4(1 − ν)

1
r

Fn+1
1

n!

)

+

∞∑
n=0

(−1)n Bn

(
4(1 − 2ν)

Fn+1
0

n!
+ 4c

Fn+2
0

n!

−4(1 − 2ν)(1 − ν)
1
r

Fn
1

n!
− 4(1 − ν)c

1
r

Fn+1
1

n!

)
,

(σθθ
T

)
z=−c

= 1 +

∞∑
n=0

(−1)n An

(
−4ν

Fn+2
0

n!
−

4(1 − ν)

r
Fn+1

1

n!

)

+

∞∑
n=0

(−1)n Bn

(
4ν(1 − 2ν)

Fn+1
0

n!
+ 4νc

Fn+2
0

n!

+
4(1 − 2ν)(1 − ν)

r
Fn

1

n!
+

4c(1 − ν)

r
Fn+1

1

n!

)
,

(25)
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(σr z

T

)
z=−c

=

∞∑
n=0

4b1(−1)n
(

−An
Fn+3

1

n!
+ Bn

(
(1 − 2ν)

Fn+2
1

n!
+ c

Fn+3
1

n!

))
,

(σzz)z=−c = 0, (26)

where

Fn
ν =

∫
∞

0

Jν(λr)e−cλλn

1 + 2b1λ
dλ. (27)

With the aid of the Taylor’s series expansion of 1/(1 + 2b1λ) for small parameter
b1, and the relation∫

∞

0
Jν(λr)e−cλλn dλ=

(n − ν)!

(r2 + c2)(n+1)/2 Pνn
( c
√

r2 + c2

)
(c > 0, v+ n >−1)

from [Gradshteyn and Ryzhik 1994, p. 732–733], Equation (27) can be approxi-
mated as

Fn
ν ≈

∞∑
m=0

(−1)m(2b1)
m (m + n + ν)!

(r2 + c2)(m+n+1)/2 Pνm+n

( c
√

r2 + c2

)
,

where Pνn (µ) is the associated Legendre function of order n and degree ν.
The length parameters in (6) are defined as

χ f 0 = (λ f s
+ 2µ f s)/4G, χ f 1 = (λ f s

+ τ f 0)/4G, χ f 2 = χ f 0 −χ f 1, (28)

where λ f s , µ f s denote the surface Lamé moduli for the plane boundary (z = −c).

Elastic fields at the spherical interface. The displacements and stresses in the
matrix at R = a are given by(2Gu R

T

)
R=a =

∞∑
n=0

(
2
3

a
(1 − 2ν

1 + ν
δ0n − δ2n

)
+ sA1 An + sB1 Bn−1 + sB2 Bn+1

+ sα1αn + sβ1βn−1 + sβ2βn+1

)
Pn(µ),(2Guϕ

T

)
R=a =

√
1 −µ2

∞∑
n=1

(1
3

aδ2n + tA1 An + tB1 Bn−1 + tB2 Bn+1

+ tα1αn + tβ1βn−1 + tβ2βn+1

)
P ′

n(µ),(σR R

T

)
R=a =

∞∑
n=0

(2
3
(δ0n − δ2n)+ i A1 An + iB1 Bn−1 + iB2 Bn+1

+ iα1αn + iβ1βn−1 + iβ2βn+1

)
Pn(µ),(σRϕ

T

)
R=a =

√
1 −µ2

∞∑
n=1

(1
3
δ2n + lA1 An + lB1 Bn−1 + lB2 Bn+1

+ lα1αn + lβ1βn−1 + lβ2βn+1

)
P ′

n(µ),
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(σθθ
T

)
R=a =

∞∑
n=1

(
−

An

an+3 −
Bn−1(n−1)(1−2ν)
(2n−1)an+1 −

βn−1an−2(n−1)(1−2ν)
(2n−1)

−
Bn+1

(
(n+2)(1−2ν)+ 2(2n+3)ν

)
(2n+3)an+3 −αnan−2

−
βn+1an

(
2(2n+3)ν+ (n+2)(1−2ν)

)
(2n+3)

)
µP ′

n(µ)

+

∞∑
n=0

(
δ0n −

An(n+1)
an+3 −

Bn−1n2(1−2ν)
(2n−1)an+1 +

βn−1an−2n(n−1)(1−2ν)
(2n−1)

−
Bn+1(n+1)

(
(n+2)(1−2ν)+ 2(2n+3)ν

)
(2n+3)an+3 +αnan−2n

+
βn+1an(n+1)

(
(n+1)(1−2ν)− 2(2n+3)ν

)
(2n+3)

)
Pn(µ),

(σϕϕ
T

)
R=a =

∞∑
n=1

(
An

an+3 +
Bn−1(n−1)(3−2ν)
(2n−1)an+1 +

βn−1an−2(n−1)(3−2ν)
(2n−1)

−
Bn+1

(
2(2n+3)(1−ν)− (n+2)(3−2ν)

)
(2n+3)an+3 +αnan−2

−
βn+1an

(
2(2n+3)(1−ν)− (n+2)(3−2ν)

)
(2n+3)

)
µP ′

n(µ)

+

∞∑
n=0

(
1
3
(δ0n+2δ2n)−

An(n+1)2

an+3 −
Bn−1n2(n−2ν)
(2n−1)an+1

−
Bn+1(n+1)

(
(n+2)(n + 2−2ν)+ 2(2n+3)(1−ν)

)
(2n+3)an+3

−αnan−2n2
−
βn−1an−2(n−1)n(n − 1+2ν)

(2n−1)

−
βn+1an(n+1)

(
(n+1)(n + 1+2ν)+ 2(2n+3)(1−ν)

)
(2n+3)

)
Pn(µ).

The displacements and stresses in the inhomogeneity at R = a are given by

(2Ḡū R

T

)
R=a

=

∞∑
n=0

(s Ā1
Ān + sB̄1

B̄n−1 + sB̄2
B̄n+1)Pn(µ),
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T

)
R=a

=

√
1 −µ2

∞∑
n=1

(t Ā1
Ān + tB̄1

B̄n−1 + tB̄2
B̄n+1)P ′

n(µ),

( σ̄R R

T

)
R=a

=

∞∑
n=0

(i Ā1
Ān + i B̄1

B̄n−1 + i B̄2
B̄n+1)Pn(µ),

( σ̄Rϕ

T

)
R=a

=

√
1 −µ2

∞∑
n=1

(l Ā1
Ān + l B̄1

B̄n−1 + l B̄2
B̄n+1)P ′

n(µ),

( σ̄θθ
T

)
R=a

= −

∞∑
n=1

(
Ānan−2

+
B̄n−1an−2(n−1)(1−2ν̄)

(2n−1)

+
B̄n+1an

(
2(2n+3)ν̄+ (n+2)(1−2ν̄)

)
(2n+3)

)
µP ′

n(µ)

+

∞∑
n=0

(
Ānan−2n +

B̄n−1an−2n(n−1)(1−2ν̄)
(2n−1)

+
B̄n+1an(n+1)

(
(n+1)(1−2ν̄)− 2(2n+3)ν̄

)
(2n+3)

)
Pn(µ),

( σ̄ϕϕ
T

)
R=a

=

∞∑
n=1

(
Ānan−2

+
B̄n−1an−2(n−1)(3−2ν̄)

(2n−1)

−
B̄n+1an

(
2(2n+3)(1−ν̄)− (n+2)(3−2ν̄)

)
(2n+3)

)
µP ′

n(µ)

−

∞∑
n=0

(
Ānan−2n2

+
B̄n−1an−2(n−1)n(n − 1+2ν̄)

(2n−1)

+
B̄n+1an(n+1)

(
(n+1)(n + 1+2ν̄)+ 2(2n+3)(1−ν̄)

)
(2n+3)

)
Pn(µ).

The interface divergence of the interface stress at R = a is given by

γR = T
∞∑

n=0

(
−

( 2
aT
τ0+

4(1−2ν)χ3

3a(1+ν)

)
δ0n −

2χ3

3a
δ2n +iSA1

An +iSB1
Bn−1+iSB2

Bn+1

+iSα1
αn +iSβ1

βn−1+iSβ2
βn+1+0−1(iSĀ1

Ān +iSB̄1
B̄n−1+iSB̄2

B̄n+1
))

Pn(µ),

γϕ = T
√

1−µ2
∞∑

n=1

(
−
(3χ0−χ1)

3a
δ2n +lSA1

An +lSB1
Bn−1+lSB2

Bn+1+lSα1
αn

+lSβ1
βn−1+lSβ2

βn+1+0−1(lSĀ1
Ān +lSB̄1

B̄n−1+lSB̄2
B̄n+1

))
P ′

n(µ).

In these equations, the coefficients are defined as
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sA1 = −
(n+1)
an+2 , tA1 = −

1
an+2 ,

sB1 = −
n(n+3−4ν)
(2n−1)an , tB1 = −

(n − 4+4ν)
(2n−1)an ,

sB2 = −
(n+1)(n+5−4ν)
(2n+3)an+2 , tB2 = −

(n+5−4ν)
(2n+3)an+2 ,

sα1 = nan−1(1−δ1n), tα1 = −an−1(1−δ1n),

sβ1 =
n(n − 4+4ν)an−1(1−δ1n)

(2n−1)
, tβ1 = −

(n − 4+4ν)an−1(1−δ1n)

(2n−1)
,

sβ2 =
(n+1)(n − 2+4ν)an+1

(2n+3)
, tβ2 = −

(n+5−4ν)an+1

(2n+3)
,

s Ā1
= nan−1, t Ā1

= −an−1,

sB̄1
=

n(n − 4+4ν̄)an−1(1−δ1n)

(2n−1)
, tB̄1

= −
(n − 4+4ν̄)an−1(1−δ1n)

(2n−1)
,

sB̄2
=
(n+1)(n − 2+4ν̄)an+1

(2n+3)
, tB̄2

= −
(n+5−4ν̄)an+1

(2n+3)
,

i A1 =
(n+1)(n+2)

an+3 , iSA1
=
(n+1)(n+2)χ3

an+4 ,

iB1 =
n(n2

+3n−2ν)
(2n−1)an+1 , iSB1

=
n
(
n(n+1)− 2(1−2ν)(n−1)

)
χ3

(2n−1)an+2 ,

iB2 =
(n+1)(n+2)(n+5−4ν)

(2n+3)an+3 , iSB2
=
(n+1)(n+2)(n+5−4ν)χ3

(2n+3)an+4 ,

iα1 = (n−1)nan−2, iSα1
= (n−1)nχ3an−3,

iβ1 =
(n−1)n(n−4+4ν)an−2

(2n−1)
, iSβ1

=
(n−1)n(n−4+4ν)χ3an−3

(2n−1)
,

iβ2 =
(n+1)(n2

−n−2−2ν)an

(2n+3)
, iSβ2

=

(n+1)
(
n(n+1)+ 2(1−2ν)(n+2)

)
χ3an−1

(2n+3)
,

i Ā1
= (n−1)nan−2, iSĀ1

= (n−1)nχ3an−3,

i B̄1
=
(n−1)n(n−4+4ν̄)an−2

(2n−1)
, iSB̄1

=
(n−1)n(n−4+4ν̄)χ3an−3

(2n−1)
,

i B̄2
=
(n+1)(n2

−n−2−2ν̄)an

(2n+3)
, iSB̄2

=

(n+1)
(
n(n+1)+ 2(1−2ν̄)(n+2)

)
χ3an−1

(2n+3)
,
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lA1 =
(n+2)
an+3 , lSA1

=
(n+2)(nχ0+χ1)

an+4 ,

lB1 =
(n2

−2+2ν)
(2n−1)an+1 , lSB1

=

(
n3

− 2n2(1−2ν)− 2n + 4(1−ν)
)
χ0

+
(
n2

+ 4(1−ν)(n−1)
)
χ1

(2n−1)an+2 ,

lB2 =
(n+2)(n+5−4ν)
(2n+3)an+3 , lSB2

=
(n+2)(n+5−4ν)(nχ0+χ1)

(2n+3)an+4 ,

lα1 = −(n−1)an−2, lSα1
= (n−1)

(
(n+1)χ0 −χ1

)
an−3,

lβ1= −
(n−1)(n−4+4ν)an−2

(2n−1)
, lSβ1

=
(n−1)(n−4+4ν)

(
(n+1)χ0 −χ1

)
an−3

(2n−1)
,

lβ2= −
(n2

+2n−1+2ν)an

(2n+3)
, lSβ2

=

((
n3

+n2(5−4ν)+n(5−8ν)−3
)
χ0

−
(
(n+1)2−4(1−ν)(n+2)

)
χ1
)
an−1

(2n+3)
,

l Ā1
= −(n−1)an−2, lSĀ1

= (n−1)
(
(n+1)χ0 −χ1

)
an−3,

l B̄1
= −

(n−1)(n−4+4ν̄)an−2

(2n−1)
, lSB̄1

=
(n−1)(n−4+4ν̄)

(
(n+1)χ0 −χ1

)
an−3

(2n−1)
,

l B̄2
= −

(n2
+2n−1+2ν̄)an

(2n+3)
, lSB̄2

=

((
n3

+n2(5−4ν̄)+n(5−8ν̄)−3
)
χ0

−
(
(n+1)2−4(1−ν̄)(n+2)

)
χ1
)
an−1

(2n+3)
.

The length scale parameters are defined as

χ0 =
1

4G
(λS

+2µS), χ1 =
1

4G
(λS

+τ0),

χ2 = χ0 −χ1, χ3 = χ0 +χ1,

(29)

where λS , µS are the interface Lamé moduli for spherical interface (R = a).
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EXTREME VALUES OF POISSON’S RATIO AND OTHER
ENGINEERING MODULI IN ANISOTROPIC MATERIALS

ANDREW N. NORRIS

Conditions for a maximum or minimum of Poisson’s ratio of anisotropic elastic
materials are derived. For a uniaxial stress in the 1-direction and Poisson’s ratio
ν defined by the contraction in the 2-direction, the following three quantities
vanish at a stationary value: s14, [2νs15 + s25] and [(2ν − 1)s16 + s26], where
sIJ are the components of the compliance tensor. Analogous conditions for sta-
tionary values of Young’s modulus and the shear modulus are obtained, along
with second derivatives of the three engineering moduli at the stationary values.
The stationary conditions and the hessian matrices are presented in forms that
are independent of the coordinates, which lead to simple search algorithms for
extreme values. In each case the global extremes can be found by a simple search
over the stretch direction n only. Simplifications for stretch directions in a plane
of orthotropic symmetry are also presented, along with numerical examples for
the extreme values of the three engineering constants in crystals of monoclinic
symmetry.

1. Introduction

Poisson’s ratio ν, Young’s modulus E and the shear modulus G, collectively called
the engineering moduli, are of fixed value in isotropic materials and related by
2G(1 + ν) = E . No such connection holds in anisotropic elastic solids, and all
three become dependent upon the directions of stretch, lateral strain, and the shear
directions. Hayes [1972] derived some universal relations between values for cer-
tain pairs of orthogonal directions. However, apart from cubic symmetry [Norris
2006b], there is no general formula for the directions and values associated with the
largest and smallest values of the engineering moduli. The purpose of this paper
is to provide systematic methods which can be used to find the extreme values of
the engineering moduli in any type of anisotropy.

The problem of finding the extreme values of Young’s modulus is the simplest
since E depends only on a single direction of stretch. Numerical searching is
practical and straightforward; thus Cazzani and Rovati provide a detailed analysis
of the extrema of Young’s modulus for cubic and transversely isotropic materials

Keywords: Poisson’s ratio, Young’s modulus, shear modulus, anisotropic.
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[Cazzani and Rovati 2003] and for materials with tetragonal symmetry [Cazzani
and Rovati 2005], with extensive illustrative examples. Boulanger and Hayes
[1995] obtained analytic expressions related to extrema of Young’s modulus. For
stretch in the 1-direction, they showed that E = 1/s11 achieves a stationary value
if the two conditions s15 = 0 and s16 = 0 are satisfied. In a pair of complementary
papers, Ting derived explicit expressions for the stress directions and the stationary
values of Young’s modulus for triclinic and monoclinic [Ting 2005b], orthotropic,
tetragonal, trigonal, hexagonal and cubic materials [Ting 2005a]. We will rederive
the stationary conditions for E below, along with conditions required for a local
maximum or minimum.

Poisson’s ratio and the shear modulus depend upon pairs of orthogonal direc-
tions, which makes their classification far more complicated than for E . At the
same time, there is considerable interest in anisotropic materials which exhibit
negative values of Poisson’s ratio, also called auxetic materials [Yang et al. 2004].
In sharp contrast to isotropic solids for which −1 < ν < 1/2, the value of ν is
unrestricted in anisotropic materials and may achieve arbitrarily large positive and
negative values in the same material. The first hint of this surprising possibility was
given by Boulanger and Hayes [1998] who presented a theoretical set of elastic
moduli for a material with orthorhombic symmetry which satisfy the positivity
requirements, but exhibit simultaneous arbitrarily large positive and negative val-
ues of ν. Ting and Chen [2005] and Ting [2004] subsequently demonstrated that
the same remarkable phenomenon can be obtained in any nonisotropic material
symmetry, including cubic symmetry and transverse isotropy. Further explanation
of the effect in cubic symmetry is provided in Section 6 below and in [Norris
2006b]. We note that Rovati presented extensive numerical examples of auxetic
behavior in orthorhombic [Rovati 2003] and monoclinic materials [Rovati 2004],
while Ting and Barnett [2005] derived general conditions required for the occur-
rence of negative values of ν.

The purpose of this paper is to provide a general framework for finding the
maximum and minimum values of ν and G in anisotropic materials. Some progress
in this regard is due to Ting [2005a] who discusses the conditions for extreme
values of the shear modulus with particular attention to shear in planes of material
symmetry. As far as I know, there are no results reported to date on conditions
necessary for extreme values of the Poisson’s ratio. Particular attention is given
in this paper to the Poisson’s ratio, with the emphasis on deriving conditions that
are independent of the coordinate system used. It will become evident that there
is a strong analogy between the problems for the shear modulus and the Poisson’s
ratio. In particular, by formulating the problems in a coordinate free manner, the
task of searching for extreme values of both is similar.
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The outline of the paper is as follows. The three engineering moduli are intro-
duced in Section 2, along with the equations for the transformation of elastic moduli
under rotation. These are used in Section 3 to derive the conditions required for
stationary values of ν, E and G, and the values of the second derivatives (Hessian)
at the stationary points are determined in Section 4. The various results are all cast
in terms of stretch, strain and shearing along coordinate axes. The more general for-
mat for stationary conditions in general directions, independent of the coordinates,
are presented in Section 5. The specific application to Poisson’s ratio is considered
in Section 6. The stationary conditions for stretch in a plane of orthotropic symme-
try are derived, and it is shown that at most four stationary values of ν can occur,
two for in-plane lateral strain, and two out-of-plane. These results are applied to the
specific case of extreme values of ν in materials with cubic symmetry, recovering
results of [Norris 2006b]. Applications to generally anisotropic materials are also
discussed, and a fast procedure for searching for extreme values of ν is derived and
demonstrated for some materials of monoclinic symmetry. Finally, in Section 7 we
present a similar procedure for finding the global extreme values of G in generally
anisotropic media, with numerical examples.

2. Definition of the engineering moduli and preliminary equations

Poisson’s ratio measures lateral strain in the presence of uniaxial stress. For any
orthonormal pair of vectors {n,m}, the Poisson’s ratio νnm = ν(n,m) is defined by
the ratio of the strains in the two directions for a uniaxial state of stress along one
of them [Rovati 2004]:

νnm = −
ε : mm
ε : nn

for σ = σ nn,

where ε and σ are the symmetric tensors of strain and stress, respectively, and ab
is the tensor product, sometimes denoted a ⊗ b. The Young’s modulus En = E(n)
relates the axial strain and stress,

En =
σ

ε : nn
for σ = σ nn.

The third engineering modulus is the shear modulus Gnm = G(n,m),

Gnm =
σ

ε : (nm + mn)
for σ = σ (nm + mn).

Tensor components are defined relative to the fixed orthonormal basis {e1, e2, e3},

σ = σi j ei e j , ε = εi j ei e j .

The stress σi j and strain εi j are related by

εi j = si jklσkl .
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(Lower case Latin suffixes take on the values 1, 2, and 3, and the summation conven-
tion on repeated indices is assumed unless noted otherwise.) Here si jkl denote the
components of the fourth order compliance tensor. We use the Voigt notation for
conciseness; compliance is S = [sIJ ] , I, J = 1, 2, . . . , 6, with I = 1, 2, 3, 4, 5, 6
corresponding to i j = 11, 22, 33, 23, 31, 12, and sJ I = sIJ .

The goal is to find conditions for a maximum or minimum of the engineering
moduli, with emphasis on Poisson’s ratio. With no loss in generality assume that
n is in the e1 direction, and m is in the e2 direction. Thus, we consider ν ≡ ν12,
E ≡ E1 and G ≡ G12, that is,

ν = −
s12

s11
, E =

1
s11
, G =

1
4s66

. (1)

(We take s66 = s1212 although it is common to subsume the factor of 4 in the
definition of s66 in eq. (1)3.) Our objective is then to find conditions for a maximum
or minimum of each engineering modulus under the assumption that the material
is assumed to be free to orient in arbitrary directions with oriented moduli while
the stress remains of fixed orientation. This is equivalent to stationarity conditions
for νnm , En and Gnm for a fixed orientation material while {n,m} range over all
possible orthonormal pairs.

We therefore need to consider how ν, E and G of (1) vary under general rotation
of the material. Define the rotation by angle θ about an arbitrary direction q, |q| = 1,
as Q(q, θ) ∈ O(3), such that vectors (including the basis vectors) transform as
r → r′

= Qr. Under the change of basis associated with Q(q, θ), second order ten-
sors (including stress and strain) transform as σ → σ ′, where σ ′

i j = Qir Q jsσrs , or

σ ′

i j = Qi jrsσrs, where Qi jrs =
1
2

(
Qir Q js + Qis Q jr

)
.

In order to simplify the algebra we use the connection between fourth order elas-
ticity tensors in 3 dimensions and second order symmetric tensor of 6 dimensions
[Mehrabadi and Cowin 1990]. Accordingly, the 6 × 6 matrix Ŝ with elements ŜIJ

is defined as

Ŝ = TST, where T ≡ diag
(
1, 1, 1,

√
2,

√
2,

√
2
)
.

Rotation of second and fourth order tensors is most simply presented in terms
of the 6 × 6 rotation matrix Q̂ which is the 6-dimensional version of the fourth
order tensor Qi jrs , introduced by Mehrabadi et al. [1995]. Fourth order tensors
transform as Ŝ → Ŝ′

= Q̂ŜQ̂T , where Q̂(q, θ) is an orthogonal second order tensor
of six dimensions, satisfying Q̂Q̂T

= Q̂T Q̂ = Î =diag(1, 1, 1, 1, 1, 1). It satisfies

∂Q̂
∂θ
(q, θ)= R̂(q)Q̂, Q̂(q, 0)= Î, (2)
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where R̂ is a skew symmetric six dimensional tensor linear in q,

R̂(q)=



0 0 0 0
√

2q2 −
√

2q3

0 0 0 −
√

2q1 0
√

2q3

0 0 0
√

2q1 −
√

2q2 0

0
√

2q1 −
√

2q1 0 q3 −q2

−
√

2q2 0
√

2q2 −q3 0 q1
√

2q3 −
√

2q3 0 q2 −q1 0


.

Further details can be found in [Mehrabadi et al. 1995; Norris 2006a].

3. Extremal conditions

Consider any one of the engineering moduli, say f, as a function of both the un-
derlying compliance and of the rotation Q̂. A stationary value is obtained if f is
unchanged with respect to additional small rotations. In order to formulate this
more precisely, assume f is at a stationary point, and define

Ŝ(q, θ)= Q̂(q, θ )̂SQ̂T (q, θ). (3)

Define the rotational derivative,

f ′(q)≡
∂ f
∂θ

(̂
S(q, θ)

)∣∣∣∣
θ=0

=
∂ f
∂sIJ

s ′

IJ (q). (4)

The elements s ′

IJ (q) of the the rotational derivative of the compliance can be ex-
pressed by using the representation (2) with (3),

Ŝ′
= R̂(q)̂S + ŜR̂T (q). (5)

Thus, we have the equality given on top of page 798, where the sIJ are the values
at θ = 0 (which are independent of q) and the derivatives are linear functions of
the coordinates of q. We may write

f ′(q)= d( f )
· q, (6)

where the vector d( f ) is independent of q and depends only on the compliances.
The engineering modulus f is stationary with respect to the direction n, and the

direction m where applicable, if f ′(q) vanishes for all axes of rotation q. This is
equivalent to requiring that all possible deviations in n and m leave f unchanged to
first order in the rotation. The stipulation that this hold for all rotation axes covers
all permissible transformations. The general condition for stationarity is therefore
that the vector d( f ) must vanish, that is,

d( f )
= 0 at a stationary point of f.
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

s ′

11
s ′

22
s ′

33
s ′

12
s ′

23
s ′

13
s ′

14
s ′

25
s ′

36
s ′

15
s ′

16
s ′

24
s ′

26
s ′

34
s ′

35
s ′

44
s ′

55
s ′

66
s ′

45
s ′

46
s ′

56



=



0 4s15 −4s16

−4s24 0 4s26

4s34 −4s35 0
−2s14 2s25 2s16 − 2s26

2s24 − 2s34 −2s25 2s36

2s14 2s35 − 2s15 −2s36

s12 − s13 −s16 + 2s45 s15 − 2s46

s26 − 2s45 s23 − s12 −s24 + 2s56

−s35 + 2s46 s34 − 2s56 s13 − s23

s16 −s11 + s13 + 2s55 −s14 − 2s56

−s15 s14 + 2s56 s11 − s12 − 2s66

s22 − s23 − 2s44 −s26 s25 + 2s46

−s25 − 2s46 s24 −s22 + s12 + 2s66

−s33 + s23 + 2s44 −s36 − 2s45 s35

s36 + 2s45 s33 − s13 − 2s55 −s34

2s24 − 2s34 −2s46 2s45

2s56 2s35 − 2s15 −2s45

−2s56 2s46 2s16 − 2s26

s25 − s35 + s46 −s14 + s34 − s56 s55 − s44

−s36 + s26 − s45 s44 − s66 s14 − s24 + s56

s66 − s55 s36 − s16 + s45 −s25 + s15 − s46




q1

q2

q3

 .

We now apply this formalism to the three engineering moduli and derive d(ν), d(E)

and d(G) in turn.

3.1. Poisson’s ratio. For Poisson’s ratio, Equation (4) becomes

ν ′(q)= (s11)
−2 [s12 s ′

11(q)− s11 s ′

12(q)
]
. (7)

Thus, from the display above and Equations (6) and (7), we have

d(ν) =
2

s2
11

[
s11s14e1 +

(
2s12s15 − s11s25

)
e2 +

(
s11s26 − s11s16 − 2s12s16

)
e3
]
. (8)

Setting this to zero and using the definition of ν in (1), and the fact that s11 > 0,
we obtain three conditions for a stationary value of Poisson’s ratio:

s14 = 0, 2νs15 + s25 = 0, (2ν− 1)s16 + s26 = 0. (9)

These must be simultaneously satisfied at a maximum or minimum of ν. Note that
the compliance elements appearing in (9) are all zero in isotropic materials.
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3.2. Young’s modulus. Proceeding in the same manner as for the Poisson’s ratio,
and using E ′(q)= −(s11)

−2s ′

11(q), gives

d(E) = 4(s11)
−2 (−s15e2 + s16e3).

Setting this to zero implies the conditions for an extremum in Young’s modulus

s15 = 0, s16 = 0. (10)

These agree with two conditions determined by Boulanger and Hayes [1995] and
by Ting [2005b].

3.3. Shear modulus. The rotational derivative of the shear modulus is

G ′(q)= −
1
4(s66)

−2s ′

66(q),

and the gradient vector is

d(G) = 1
2(s66)

−2 [s56e1 − s46e2 + (s26 − s16)e3
]
.

Hence, the shear modulus has an extreme value if the following conditions hold:

s56 = 0, s46 = 0, s16 − s26 = 0. (11)

4. Second derivatives

The nature of a stationary value of the general engineering modulus f can be
discerned, at least locally, by the second derivative. By analogy with Equation (4),
we define the rotational second derivative,

f ′′(q)≡
∂2 f

∂sIJ∂sK L
s ′

IJ (q)s
′

K L(q)+
∂ f
∂sIJ

s ′′

IJ (q). (12)

The elements s ′′

IJ (q) of the rotational second derivative of the compliance follow
from

Ŝ′′(q)= R̂2Ŝ + ŜR̂2T
+ 2R̂ŜR̂T .

This is a direct consequence of Equation (5). We do not need all 21 elements, and
for brevity only present the following three values which are necessary to evaluate
the second derivatives of the engineering moduli,
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s ′′

11 = 4
[
(s13−s11+2s55)q2

2 +(s12−s11+2s66)q2
3 −2(s14+2s56)q2q3

+s15q3q1+s16q1q2
]
,

s ′′

12 = 2
[
(s13−s12)q2

1 +(s23−s12)q2
2 +(s11+s22−2s12−4s66)q2

3

+(s14−2s24+4s56)q2q3+(s25−2s15+4s46)q3q1+(s16+s26−4s45)q1q2
]
,

s ′′

66 = 2
[
(s55−s66)q2

1 +(s44−s66)q2
2 +(s16+s26−2s36−2s45)q1q2

+(s11+s22−2s12−4s66)q2
3 +(2s25−2s15+3s46)q1q3+(2s14−2s24+3s56)q2q3

]
.

Before applying these to the three engineering moduli f = ν, E and G, we
note that in each case that f is a homogeneous function of degree 0 or −1 in
the compliance elements. Consequently the second derivative f ′′ evaluated at the
stationary point where f ′

= 0 simplifies because the first term in (12) vanishes,
leaving

f ′′(q)=
∂ f
∂sIJ

s ′′

IJ (q) at f ′(q)= 0. (13)

The terms s ′′

IJ (q) are second order in q, and we can write

f ′′(q)= D( f )
: qq at f ′(q)= 0,

where D( f )
= D( f )T is a nondimensional symmetric 3 × 3 matrix which is inde-

pendent of q. Thus, D( f ) is positive (negative) semidefinite at a local minimum
(maximum) of f . The condition for a local minimum (maximum) is therefore that
the three eigenvalues of D( f ) are positive (negative). If the matrix is not definite
and has eigenvalues of opposite sign, then the modulus has a locally saddle shaped
behavior.

4.1. Poisson’s ratio. The second derivative of the Poisson’s ratio at a stationary
point is, using (13),

ν ′′(q)= −(s11)
−1 (s ′′

12 + νs ′′

11
)

at ν ′(q)= 0. (14)

Thus, when ν ′(q)= 0, Equation (14) gives

ν ′′(q)=
2

s2
11

{
s11(s12 − s13)q2

1 +
[
s11(s12 − s13)+ 2s12(s13 − s11 + 2s55)

]
q2

2

+
[
s11(2s12 + 4s66 − s11 − s22)+ 2s12(s12 − s11 + 2s66)

]
q2

3

+ 2
[
s11(s24 − 2s56 −

1
2 s14)− 2s12(s14 + 2s56)

]
q2q3

+ 2
[
s11(s15 − 2s46 −

1
2 s25)+ s12s15

]
q3q1

+ 2
[
s11(2s45 −

1
2 s16 −

1
2 s26)+ s12s16

]
q1q2

}
.

Since this is evaluated at the stationary value, we may use (9) to simplify and obtain
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D(ν)
=

2
s11


s12−s13 2s45−s16 s15−2s46

2s45−s16
s12−s13−

2ν(s13−s11+2s55)
s24−2(1−2ν)s56

s15−2s46 s24−2(1−2ν)s56
s12−s22+2s66+

(1−2ν)(s12−s11+2s66)

 , (15)

where we have used the definition of ν to simplify the elements.

4.2. Young’s modulus. At a stationary point we have E ′′(q) = −(s11)
−2 s ′′

11 and
E ′(q)= 0. Using the extremal (10), we find

D(E)
=

1
s2

11

0 0 0

0 s11−s13−2s55 s14+2s56

0 s14+2s56 s11−s12−2s66

 .
Note that D(E) is rank deficient (of rank 2), which is a consequence of the fact

that E is invariant under rotation about the e1 stretch axis. The local nature of the
stationary value depends upon the two nonzero eigenvalues of the matrix.

4.3. Shear modulus. The shear modulus satisfies

G ′′(q)= −
1
4(s66)

−2 s ′′

66 at G ′(q)= 0,

and hence,

D(G)
=

1
2s2

66

 s66−s55 s36−s16+s45 s15−s25

s36−s16+s45 s66−s44 s24−s14

s15−s25 s24−s14 2s12+4s66−s11−s22

 .

5. Coordinate invariant formulation

In this section we rephrase the results for the stationary conditions and for the
second derivatives at the stationary conditions in coordinate invariant form. Let
{n,m,p} be an orthonormal triad analogous to {e1, e2, e3} before. Define the
nondimensional symmetric second order tensors A,B,C,N,M and P by

Ai j = s−1
nn si jklnknl,

Ni j = s−1
nn sik jlnknl,

Bi j = s−1
nn si jklmkml,

Mi j = s−1
nn sik jlmkml,

Ci j = s−1
nn si jkl pk pl,

Pi j = s−1
nn sik jl pk pl,

where snn = si jklni n j nknl . Thus,

ν(n,m)= −A : mm, E(n)=
1

snn
, G(n,m)=

E(n)
4N : mm

.
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5.1. Poisson’s ratio. The derivative of Poisson’s ratio can be expressed in general
form as

d(ν) =
[
A : (mp + pm)

]
n −

[
(2νA + B) : (pn + np)

]
m

+
{[
(2ν− 1)A + B

]
: (nm + mn)

}
p, (16)

which follows from (8), and may be checked by the substitutions n → e1, m → e2

and p → e3. This provides a local expansion of the Poisson’s ratio for small rotation
about the axis q:

ν(q, θ)= ν(q, 0)+ d(ν) · q θ + O(θ2).

In particular, d(ν) = 0 at a stationary point.
The second order tensor D(ν) of (15) becomes, in general format,

D(ν)
=
[
A : (mm − pp)

]
nn +

{
ν− [(1 + 2ν)A + 4νN] : pp

}
mm

+
{
2ν2

− 1 + [4(1 − ν)N − M] : mm
}
pp

+
[
(2P − N) : (nm + mn)

] 1
2(nm + mn)

+
[
(N − 2M) : (pn + np)

] 1
2(pn + np)

+
{[

M − 2(1 − 2ν)N
]
: (mp + pm)

} 1
2(mp + pm). (17)

Hence, the local expansion near a stationary point is

ν(q, θ)= ν(q, 0)+ 1
2 D(ν)

: qq θ2
+ O(θ3).

5.2. Young’s modulus. In the same way as before we find that

d(E) = 2E(n)
[
− A : (pn + np)m + B : (nm + mn)p

]
, (18)

D(E)
= E(n)

{[
A : (nn−pp)− 2P : nn

]
mm +

[
A : (nn−mm)− 2M : nn

]
pp

+ (A + 2N) : (mp+pm)1
2(mp+pm)

}
. (19)

5.3. Shear modulus. Similarly, for the shear modulus

d(G)=4
G2(n)
E(n)

[
N : (mp+pm)n−M : (pn+np)m+(B−A) : (nm+mn)p

] (20)

D(G)
= 8

G2(n)
E(n)

{
N : (mm−pp)nn + M : (nn−pp)mm + 4N : mm pp

+ (P+C−A) : (nm+mn) 1
2(nm + mn)

+ (A−B) :
[
(mm−nn)pp−(mp+pm) 1

2(mp+pm)+(pn+np)1
2(pn+np)

]}
.

(21)



EXTREME VALUES OF POISSON’S RATIO . . . IN ANISOTROPIC MATERIALS 803

6. Applications to Poisson’s ratio

We now concentrate on general properties of the Poisson’s ratio, applying the for-
malism for the stationary value to different situations. We begin with the general
case of a plane of material symmetry in an orthotropic material.

6.1. Plane of symmetry in orthotropic material. We assume the stretch direction
n lies in a plane of symmetry of an orthotropic material, and the direction of con-
traction m lies (a) perpendicular to the plane or (b) in the plane. This configuration
includes all planes in hexagonal materials that contain the axis of symmetry, and
therefore provides the stationary values of ν in materials with hexagonal symmetry
(transverse isotropy).

With no loss in generality, let e(0)3 be the normal to the plane of symmetry and
let case (a) correspond to m = e3 and case (b) corresponds to m in the plane of
e(0)1 , e(0)2 . In both (a) and (b) n lies in the plane of e(0)1 , e(0)2 . Define the rotated axes

e1 = cos θ e(0)1 + sin θ e(0)2 , e2 = − sin θ e(0)1 + cos θ e(0)2 , e3 = e(0)3 .

Let SIJ denote the compliances relative to the fixed set of axes {e(0)1 , e(0)2 , e(0)3 },
and sIJ the compliances in the coordinates of the rotated axes. By definition of
a symmetry plane, all coefficients si jkl with index 3 appearing once or thrice are
zero. Then,

s11 =
S11S22 − S2

0

S11 + S22 − 2S0
+

1
4(S11 + S22 − 2S0)

( S22 − S11

S11 + S22 − 2S0
− cos 2θ

)2
, (22)

s12 = S12 +
1
4(S11 + S22 − 2S0) sin2 2θ, (23)

s13 =
1
2(S13 + S23)−

1
2(S23 − S13) cos 2θ, (24)

s16 =
1
4(S11 + S22 − 2S0)

( S22 − S11

S11 + S22 − 2S0
− cos 2θ

)
sin 2θ, (25)

s26 =
1
4(S11 + S22 − 2S0)

( S22 − S11

S11 + S22 − 2S0
+ cos 2θ

)
sin 2θ, (26)

s36 =
1
2(S23 − S13) sin 2θ, (27)

where S0 ≡ S12 + 2S66. Thus, in the two cases to be considered, we have n = e1

and s11 = 1/E(θ).

Case (a): m = e3 perpendicular to the plane of symmetry. We now consider station-
ary values of ν = ν13, for which the three conditions for stationary ν are, instead
of (9),

s14 = 0, 2νs16 + s36 = 0, (2ν− 1)s15 + s35 = 0. (28)

The first and last of these are automatically satisfied, based on the assumed mate-
rial symmetry. Using s16 and s36 from (22)–(27), the second of (28) implies that



804 ANDREW N. NORRIS

sin 2θ = 0, which is the exceptional case of prior symmetry, or that θ satisfies

cos 2θ =
S22 − S11

S11 + S22 − 2S0
+

1
ν

( S23 − S13

S11 + S22 − 2S0

)
.

Using this to eliminate cos 2θ from the expression for ν = ν13 = −s13/s11 yields a
quadratic equation for ν,

ν2
− νaν−

1
4ρa = 0,

where

νa =
(S0 − S22)S13 + (S0 − S11)S23

S11S22 − S2
0

, ρa =
(S23 − S13)

2

S11S22 − S2
0
.

Define E∗ and θ∗ by

E∗
=

S11 + S22 − 2S0

S11S22 − S2
0
,

then we may identify E∗ as the value of E(θ) when the second term on the RHS
of (22) vanishes, that is, E∗

= E(θ∗), where θ∗ satisfies

cos 2θ∗
=

S22 − S11

S11 + S22 − 2S0
. (29)

The angle θ∗ defines the direction at which E is stationary (maximum or minimum).
It exists iff the RHS of (29) lies between −1 and 1. Regardless of whether or not
the angle exists, it can be checked, νa = ν13(θ

∗) = −E∗s13(θ
∗). The value of

Young’s modulus in the stretch direction θ for the stationary value of ν satisfies

E∗

E
+
νa

ν
= 2.

In summary, the possible stationary values for stretch in the plane of symmetry
and the strain measured in the direction perpendicular to the plane are

νa± =
1
2νa ±

1
2

(
ν2

a + ρa)
1/2, (30)

and the stationary values occur if −1< γa± < 1, where

γa± =
S22 − S11

S11 + S22 − 2S0
+

1
νa±

( S23 − S13

S11 + S22 − 2S0

)
,

in which case the direction of stretch is given by θ =
1
2 cos−1 γa±. Otherwise the

stationary values occur at θ = 0 and π/2.
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Case (b): m = e2 in the plane of symmetry. With n = e1 again, conditions (9)1

and (9)2 are met and only (9)3 is not automatically satisfied. Substituting the
expressions for s16 and s26 from (22)–(27) into equation (9)3 implies that either
sin 2θ = 0, which is simply the axial case, or

cos 2θ =
S22 − S11

S11 + S22 − 2S0
+

1
ν− 1

( S22 − S11

S11 + S22 − 2S0

)
.

Substituting this into the relation for ν= ν12, namely νsnn +s12 = 0, and eliminating
cos 2θ produces a quadratic equation in ν. The equation is most simply expressed
as a quadratic in the shifted Poisson’s ratio (ν− 1):

(ν− 1)2 − (νb − 1)(ν− 1)− 1
4ρb = 0,

where

νb = −1 − E∗
(
S12 − S0

)
, ρb =

(S11 − S22)
2

S11S22 − S2
0
.

That is, νb = ν12(θ
∗)= −E∗s12(θ

∗). Note that the value of Young’s modulus E in
the stretch direction θ satisfies

E∗

E
+
νb − 1
ν− 1

= 2.

In summary, the possible stationary values for stretch and strain both in the plane
of symmetry are

νb± =
1
2(νb + 1)± 1

2

(
(νb − 1)2 + ρb

)1/2
, (31)

and the stationary values occur if −1< γb± < 1, where

γb± =
S22 − S11

S11 + S22 − 2S0
+

1
νb± − 1

( S22 − S11

S11 + S22 − 2S0

)
,

in which case the direction of stretch is given by θ =
1
2 cos−1 γb±.

6.2. Example: cubic materials. The general coordinate invariant form of the com-
pliance of a cubic material is [Walpole 1984]

S =

( 1
3κ

−
1

2µ2

)
J +

1
2µ1

I +

( 1
2µ2

−
1

2µ1

)
D, (32)

where I and J are fourth order isotropic tensors, Ii jkl =
1
2(δikδ jl + δilδ jk), Ji jkl =

1
3δi jδkl , and

D = aaaa + bbbb + cccc.

Here, the orthonormal triad {a, b, c} is coaxial with the cube axes. The condition
that the elastic strain energy is always positive definite is that the three moduli κ ,
µ1 and µ2 are positive. We use, for simplicity, crystallographic-type notation for
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unit vectors, e.g., pqr̄ where p, q and r are positive numbers, indicates the unit
vector (pa + qb − rc)/

√
p2 + q2 + r2.

We consider the stationary conditions (9) for stretch in the e1 direction and lateral
strain in the e2 direction. Since s14, s15, s16, s25 and s26 vanish for isotropic media,
it follows that the only contribution to these quantities is from the tensor D. We
may therefore rewrite the stationary conditions (9) as

D14 = 0, 2νD15 + D25 = 0, (2ν− 1)D16 − D26 = 0, (33)

where D14 = D1123, etc. The realm of stretch directions that needs to be considered
may be reduced to those defining the irreducible 1

48 th of the surface of the unit
sphere. This in turn is defined by 1

48 th of the surface of the cube (see figure),
where the vertices of the triangle correspond to the directions 001, 110, and 111.
In a separate paper [Norris 2006b] it is shown that the extreme values of ν do not
occur within the interior of the triangle. It turns out that the extreme values are only
possible for stretch direction e1 along 001, 110, or in certain cases, for e1 located
along the edge between 110 and 111. In the case that e1 = 001, the lateral direction
e2 may be any orthogonal direction, and when e1 = 110 the lateral directions are
001 or 11̄0, each of which can correspond to the minimum or maximum for ν,
depending on the elastic parameters κ , µ1 and µ2. It is clear from the symmetry
of the situation that the quantities D14, D15, D16, D25 and D26 vanish identically
for e1 along 001 or 110 with e2 as described. A full description of the possible
extreme values of ν in cubic materials is involved but complete, and we refer to
[Norris 2006b] for details.

To summarize the findings of Norris [2006b] regarding solutions of Equations
(33): all possible stretch directions which solve the three stationary conditions
are confined to the symmetry plane with normal 110, and equivalent planes of

001

110

111

Figure 1. The irreducible 1
48 th of the cube surface is defined by

the isosceles triangle with vertices as shown.
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symmetry. We can therefore apply the results for a plane of orthotropic symmetry.
Explicit calculation from (32) gives S66 = (4µ1)

−1, S12 = S23 = (9κ)−1
− (6µ2)

−1,
S13 = S12 + χ/4, S0 = S12 + 2S66, S11 = S0 + χ/4, S22 = S0 + χ/2, where
χ = (µ2)

−1
− (µ1)

−1. Thus,

νa = νb = ν111 ≡
3κ − 2µ1

6κ + 2µ1
, ρa = ρb = ρ ≡

1
6(ν111 + 1)

(µ1

µ2
− 1

)
, (34)

where ν111 = ν(111,m) is the Poisson’s ratio for stretch in the 111 direction, and
is independent of the lateral direction m.

The actual values of the possible extrema for ν can be obtained from equations
and (30), (31) and (34). Skipping over the unedifying details, see [Norris 2006b],
it can be shown that only the stationary values νa− and νb+ are possible global
extrema,

νa− =
1
2ν111 −

1
2

√
ν2

111 + ρ, νb+ =
1
2

(
ν111 + 1

)
+

1
2

√(
ν111 − 1

)2
+ ρ.

Note that ν111 is independent of µ2, which only enters these expressions via the
term ρ. The extremely large values of Poisson’s ratio discovered by Ting and Chen
[2005] correspond to ρ � 1, which can occur if µ2/µ1 � 1. Under this circum-
stance νa− is large and negative, νb+ is large and positive, and the magnitudes
are, in principle, unbounded [Ting and Chen 2005; Ting and Barnett 2005; Norris
2006b].

The directions associated with the global extrema are given by

cos 2θa− =
1
3 −

1
3νa−

, cos 2θb+ =
1
3 +

1
3(νb+ − 1)

.

Both directions bifurcate from θ = 0 [Norris 2006b], and therefore these extreme
values only occur if ν <−

1
2 or ν > 3

2 , respectively. A complete description of the
extrema for all possible values of the elastic moduli is given by Norris [2006b].

6.3. Application to generally anisotropic materials. We first present a result that
suggests a simple algorithm for searching for global extreme values of ν in gener-
ally anisotropic materials.

6.3.1. A local min-max result for Poisson’s ratio. The tensor of second derivatives
of ν(n,m) at the stationary point D(ν) must be positive or negative definite in order
that the stationary point be a minimum or a maximum, respectively. Consider a
possible minimum, then a necessary although not sufficient condition is that the
three diagonal elements of D(ν) are positive. In particular, Equation (17) gives

D(ν)
: nn = νnp − νnm ≥ 0.
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This implies that ν = νnm must be strictly less than νnp. At the same time, the
stationary condition d(ν) = 0 must hold, and in particular,

d(ν) · n = 0 ⇒ ε : mp = 0 for σ = σ nn. (35)

This implies that the shear strain εmp in the m,p-plane is zero. Hence, for any unit
vector r ⊥ n, we have

ε : rr = (r · m)2 εmm + (r · p)2 εpp,

or
νnr = (r · m)2 νnm + (r · p)2 νnp = νnm + (r · p)2

(
νnp − νnm

)
≥ νnm,

with equality only for r = m. Thus:

Lemma 1. If νnm is a minimum (maximum) value, then it is also a minimum (max-
imum) among all possible νnr for r in the plane perpendicular to n.

This result is a direct consequence of the general expression for D(ν). It implies
that if we can satisfy (35) then the values of νnm and νnp are the extreme values
for the given stretch direction n. We next show how this single condition can be
achieved.

6.3.2. Satisfaction of one extremal condition. The stationary values of Poisson’s
ratio occur, in general, for stretch directions at which the vector d(ν) of Equation
(16) vanishes. We now show that one of the three components can be made to
vanish; specifically, d(ν) · n = A : (mp + pm) is zero for an appropriate choice of
the orthogonal directions m and p.

We use the fact that the appropriate pair m and p correspond to stationary values
of A : mm and A : pp. These satisfy A : mm + A : pp =trA − 1, so a maximum in
one implies a minimum for the other. In order to find these directions for a given
n, consider the function of m:

g(m)≡ A : mm − λm · m − 2αm · n.

Setting to zero the gradient with respect to m implies that m satisfies

m = α
(
A − λI

)−1n.

The scalars λ and α follow by requiring that m · n = 0 and m · m = 1, respectively.
The former implies that λ satisfies

n ·
(
A − λI

)−1n = 0.

This condition can be rewritten by expanding the inverse in terms of the cofactor
matrix of

(
A−λI

)
, and using the property A : nn = 1, which yields a quadratic in λ:

λ2
+ λ

(
1 − tr A

)
+ adj(A) : nn = 0. (36)
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Here adj(A) is the adjoint matrix. If A is invertible, then adj(A)= (detA)A−1, and
more generally the adjoint is the transpose of the cofactor matrix. Thus for any
type of anisotropy, and for any direction n, it is a straightforward to determine the
appropriate orthogonal pair m, p, which automatically give d(ν) · n = 0. Finding
the right axes requires solving the quadratic (36) for λ. The associated values of
Poisson’s ratio are the maximum and minimum for the given direction n. In this
way, finding extremal values of Poisson’s ratio for all possible n is reduced to
seeking values which satisfy the remaining two conditions:

(2νA + B) : np = 0,
[
(2ν− 1)A + B

]
: nm = 0,

or equivalently, 2νs15 + s25 = 0 and (2ν − 1)s16 + s26 = 0, respectively. This
is the strategy used to determine the global extrema of ν in materials with cubic
symmetry [Norris 2006b].

6.3.3. Algorithm for finding global extreme values of ν. Rather than searching for
directions n which satisfy the three stationary conditions on ν, Lemma 1 suggests
that a simple search for maximum and minimum values of Poisson’s ratio can be
effected as follows. For a given n define the pair ν±(n) by

ν±(n)= −A : m(A)
± m(A)

± ,

m(A)
± = ‖

(
A − λ

(A)
± I

)−1n‖
−1 (A − λ

(A)
± I

)−1n,

λ
(A)
± =

1
2

(
tr A − 1

)
±

1
2

[(
tr A − 1

)2
− 4 adj(A) : nn

]1/2
.

The search for global extrema is then a matter of finding the largest and smallest
values of ν±(n) by searching over all possible directions n. In practice, even for
triclinic materials with no symmetry, the search only has to be performed over half
of the unit sphere ‖n‖ = 1, such as n · e ≥ 0 for some fixed direction e. In this
way, the numerical search is equivalent in complexity to that of finding the global
extrema of Young’s modulus.

This algorithm was applied to data for two crystals of monoclinic symmetry:
Cesium dihydrogen phosphate and Lanthanum niobate, with the results in Table 1.
The numerical results were obtained by using a 100×100 mesh for the hemisphere
‖n‖ = 1, n · e2 ≥ 0. It was found that the extreme values of the engineering moduli
are not sensitive to the mesh size, although the values of the directions do change
slightly.

7. Applications to the shear modulus

If we compare the vector derivative function for the shear modulus, d(G) of (20),
with d(ν) of (16), we note that the components in the n direction have a similar
form, but with different matrices involved. Thus, it is N for d(G) · n, while for
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Material quantity value n1 n2 n3

Cesium dihydrogen Emax 19.3 0.44 0.76 0.47
phosphate Emin 0.53 0.99 0.00 0.06
(CsH2PO4) Gmax 12.2 0.42 0.71 −0.56

Gmin 0.20 0.68 0.00 0.73
νmax 2.70 −0.23 0.82 0.52
νmin −1.93 −0.49 0.85 −0.20

Lanthanum niobate Emax 154.8 0.45 0.87 −0.21
(LaNbO4) Emin 2.27 −0.50 0.00 0.87

Gmax 72.57 −0.28 0.71 −0.64
Gmin 0.70 −0.96 0.00 0.27
νmax 3.95 0.00 1.00 0.00
νmin -3.01 0.00 1.00 0.00

Table 2. Extreme values of E , G and ν for two materials of mon-
oclinic symmetry with symmetry plane n2 = 0. Units of E and G
are GPa. Cesium dihydrogen phosphate: s11 = 1820.0, s22 = 103.0,
s33 = 772.0, s44 = 33.25, s55 = 112.5, s66 = 29.25, s12 = −219.0,
s13 = −1170.0, s23 = 138.0, s15 = 124.5, s25 = −75.0, s35 = −90.5,
s46 = 8.25. Lanthanum niobate: s11 = 66.8, s22 = 14.8, s33 = 146.0,
s44 = 5.7, s55 = 265.0, s66 = 4.675, s12 = 16.9, s13 = −94.8, s23 =
−30.8, s15 = 118.0, s25 = 45.6, s35 = −186.5, s46 = 0.95. Units in
(TPa)−1. (Data from Every and McCurdy [1992]).

d(ν) · n it is A. The properties of the second derivatives D(G)
: nn and D(ν)

: nn are
similarly related. Proceeding with the same arguments as for the Poisson’s ratio,
we deduce:

Lemma 2. If Gnm is a minimum (maximum) value, then it is also a minimum
(maximum) among all possible Gnr for r in the plane perpendicular to n.

This in turn leads to a similar method for finding the global extrema of G.

7.1. Algorithm for finding global extreme values of G. Define the pair G±(n) by

G±(n)=
E(n)

N : m(N )
± m(N )

±

,

m(N )
± =

∥∥(N − λ
(N )
± I

)−1n
∥∥−1 (N − λ

(N )
± I

)−1n,

λ
(N )
± =

1
2

(
tr N − 1

)
±

1
2

[(
tr N − 1

)2
− 4 adj(N) : nn

]1/2
.
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Then the global extreme values of G can be found by searching over n only. Thus,
the problem of finding the global extrema of the shear modulus is reduced to the
same level of complexity as searching for the maximum and minimum Young’s
modulus. Table 1 summarizes the extreme values of G found using this algorithm
for two crystals of monoclinic symmetry.

8. Conclusions

The results of this paper provide a consistent framework for determining the ex-
treme values of the three engineering moduli in materials of any crystal symmetry
or none. General conditions have been derived which must be satisfied at stationary
values of ν, E and G. These are equations (9), (10) and (11), which have also
been cast in forms that are independent of the coordinates used, in equations (16),
(18) and (20), respectively. The associated three hessian matrices which determine
the local nature of the stationary value, maximum, minimum or saddle, are given
in equations (17), (19) and (21). The stationary conditions for Poisson’s ratio
simplify for stretch in a plane of orthotropic symmetry, for which there are at most
4 stationary values of ν. Two can occur for in-plane stretch and strain, and the
other two for out-of-plane strain. This implies that transversely isotropic materials
have at most four stationary values of Poisson’s ratio. The results for the plane of
symmetry also reproduce known results for cubic materials [Norris 2006b]. The
hessian matrices for ν and G lead to algorithms for finding the extreme values.
The key is to remove the dependence on the m direction by explicit representation
of the maximum and minimum for a given n direction. The algorithms have been
demonstrated by application to materials of low symmetry.
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