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PLANE HARMONIC ELASTO-THERMODIFFUSIVE WAVES IN
SEMICONDUCTOR MATERIALS

JAGAN NATH SHARMA AND NAVEEN THAKUR

The aim of this article is to give a detailed account of the plane harmonic generalized elasto-thermo-
diffusive (ETNP) waves in semiconductive materials. The shear (purely transverse) waves get decoupled
from the rest of the motion and remain independent of the influence of other fields. These waves propa-
gate without dispersion and attenuation in semiconductors. The coupled system of partial differential
equations, governing the rest of the interacting fields, has been solved to obtain a complex secular
equation. According to the frequency equation, four coupled longitudinal waves, namely, the quasither-
moelastic (QTE), quasielastodiffusive (QEN/QEP), quasithermodiffusive (QTN/QTP), and quasithermal
(T-mode), can exist and propagate in an infinite semiconductor. The complex secular equation of plane
harmonic waves in semiconductors is solved by using Descartes’ algorithm and the irreducible case of
Cardan’s method in order to obtain phase velocities and attenuation coefficients of all possible coupled
waves. The thermoelastic (ET), elastodiffusive (EN/EP) and thermodiffusive (TN/TP) waves have also
been investigated as special cases. The derived theoretical results have been illustrated and verified
numerically for germanium (Ge) and silicon (Si) semiconductors. The computed phase velocity and
attenuation profiles have been presented graphically.

1. Introduction

Certain substances like germanium, silicon, carbon etc. are neither good conductors like copper nor
insulators like glass. In other words, the resistivity (10−4 to 0.5�m) of these materials lies between
conductors and insulators. Such substances are classified as semiconductors. Semiconductors have
some useful properties and are being extensively used in electronic circuits. For instance, transistor −a
semiconductor device is fast replacing bulky vacuum tubes in almost all applications. A semiconductor
has negative temperature coefficient of resistance i.e. the resistance of a semiconductor decreases with
increase in temperature and vice-versa. Wave motion is a form of disturbance, which travels through
a medium due to the repeated periodic motion of particles about their mean positions. The motion
being handed over from one particle to the other. The waves which can be produced or propagated in
a material medium, are called elastic (mechanical) waves. In case of large frictional forces present in
the medium, the wave motion dies out soon. [Maruszewski 1986a; 1986b; 1987a] presented theoretical
considerations of the simultaneous interactions of elastic, thermal and diffusion of charge carriers’ fields
in semiconductors. The problems of interaction of various fields were formulated mathematically by
[Maruszewski 1989; 1986c; 1987b] based on the following assumptions:

(i) All the considerations are made in the framework of the phenomenological model.

(ii) The electric neutrality of the semiconductor is satisfied.

Keywords: semiconductors, relaxation time, electrons and holes, waves, germanium and silicon.
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814 JAGAN NATH SHARMA AND NAVEEN THAKUR

(iii) The magnetic field effect can be ignored.

(iv) The mass of the charge carrier fields is negligible.

(v) The surface heat sources are neglected.

(vi) The electric field with in the boundary layer is very weak and can be neglected.

(vii) The recombination functions of electrons and holes are selected on the basis of facts that take care
of defects and hence the concentration values of the charge carrier fields according to [Many et al.
1965].

(viii) The surface of the semiconductor is free of mechanical loading.

(ix) The temperature T0 = constant is the uniform reference temperature and θ = T − T0, is the temper-
ature change of the body.

(x) The concentrations of electrons and holes satisfy the conditions N = n− n0, P = p− p0, where
n, p and n0, p0 are respectively the nonequilibrium and equilibrium values of electrons and holes
concentrations.

Maruszewski [1989] studied the propagation of thermodiffusive surface waves in the semiconductors
with relaxation of heat and charge carrier fields. The secular equation of coupled elastic, thermal and
diffusive waves is obtained and illustrated by considering two particular cases of elastodiffusive (EN)
and thermodiffusive (TN) waves.

The governing equations in classical dynamic coupled thermoelasticity are wave-type (hyperbolic)
equations of motion and a diffusion type (parabolic) equation of heat conduction. Therefore, it is seen
that a part of the solution of energy equation extends to infinity implying that if a homogeneous isotropic
elastic medium is subjected to thermal or mechanical disturbance, the effects of temperature and displace-
ment fields are experienced at an infinite distance from the source of disturbance. This shows that part
of the disturbance has an infinite velocity of propagation, a physically impossible phenomenon. With
this drawback in mind, some researches such as [Lord and Shulman 1967; Green and Lindsay 1972;
Dhaliwal and Sherief 1980] and [Chandrasekharaiah 1986], modified the Fourier law of heat conduction
and constitutive relations to obtain a hyperbolic equation for heat conduction. These models include
the time needed for acceleration of heat flow in addition to the coupling between temperature and strain
fields. According to the investigations of [Ackerman et al. 1966; Guyer and Krumhansl 1966; Ackerman
and Overton 1969], these theories have also been supported with the experimental exhibition of actual
occurrence of ‘second sound’ at low temperature and small intervals of time. [Banerjee and Pao 1974]
investigated the propagation of plane harmonic waves in infinitely extended anisotropic thermoelastic
solids by taking into account the thermal relaxation time. Extensive studies of wave propagation in heat
conducting elastic solids under the influence of thermal relaxation time in “infinite velocity” and “finite
velocity” descriptions, have been carried out by many investigators such as [Scott 1989; Chadwick 1979;
Sharma et al. 2000; Sharma 1986] and [Sharma and Singh 1989; 1990].

The present article is aimed at giving a detailed account of the plane harmonic generalized thermoe-
lastic waves in infinite semiconductor materials in context of the mathematical model formulated by
[Maruszewski 1989]. The basic equations are first nondimensionalized and then solved by adopting
the approach of [Achenbach 1973] after decoupling the shear waves’ (purely transverse) motion. The
shear waves are not affected by thermal and charge carrier fields and also remain independent from the
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rest of the motion. The frequency equation for rest of the motion reveals that, in general, there are
four longitudinal waves namely, a quasithermoelastic (QTE), a quasithermal (T-mode) and two quasid-
iffusive (elastodiffusive QEN/QEP and thermodiffusive QTN/QTP waves), which can propagate in such
semiconductor media. These waves are coupled and get modified due to thermal variations, thermal
relaxation time, and life/relaxation times of electron and hole fields. The complex secular equation of
coupled waves is then solved by using Descartes’ algorithm along with irreducible Cardan’s method.
The analytical results so obtained have been verified numerically and illustrated graphically in case of
Ge and Si materials.

2. Formulation of the problem

We consider an unbounded, homogeneous, isotropic, thermoelastic semiconductor at a uniform tempera-
ture T0 in an undisturbed state. Let Eu(x1, x2, x3, t)= (u1, u2, u3) and θ(x1, x2, x3, t) be the displacement
vector and temperature change of the medium at any time t , respectively. The basic governing equations
of motion and heat conduction, in the absence of body forces and heat sources, for such materials as
given by [Maruszewski 1989] are

µui, j j + (λ+µ)u j,i j − ρüi − λ
n N ,i −λp P,i − λT θ,i = 0, (1)

K θ,i i +mnq N,i i +m pq P,i i

−

(
1+ t Q ∂

∂t

)
(ρCeθ̇ + ρT0α

n Ṅ + ρT0α
p Ṗ + T0λ

T u̇k,k)− ρ(an
1 Ṅ + a p

1 Ṗ)

=

(
an

1

( ρ
t+n

)
N + a p

1

( ρ
t+p

)
P
)
, (2)

ρDn N,i i +mqnθ,i i − ρ
(

1− an
2 T0α

n
+ tn ∂

∂t

)
Ṅ − an

2
(
ρCeθ̇ + ρT0α

p Ṗ + T0λ
T u̇k,k

)
= −

(
1+ tn ∂

∂t

)( ρ
t+n

)
N , (3)

ρD p P,i i +mqpθ,i i − ρ
(

1− a p
2 T0α

p
+ t p ∂

∂t

)
Ṗ − a p

2

(
ρCeθ̇ + ρT0α

n Ṅ + T0λ
T u̇k,k

)
=−

(
1+ t p ∂

∂t

)( ρ
t+p

)
P, (4)

where the notation

an
1 =

aQn

aQ , a p
1 =

aQp

aQ , an
2 =

aQn

an , a p
2 =

aQp

a p ,

P = p− p0, N = n− n0, λT
= (3λ+ 2µ)αT ,

is used. The field variables have been subjected to only those assumptions (except (v), (vi) and (viii))
of [Maruszewski 1989] that are applicable and relevant in the present context of an infinite description
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of semiconductors. Here λ,µ are Lame parameters; ρ is the density of the semiconductor; λn, λp are
the elastodiffusive constants of electrons and holes; αT is the coefficient of linear thermal expansion of
the material; K is the thermal conductivity; α p, αn are thermodiffusive constants of holes and electrons;
aQn, aQp, aQ, an, a p are the flux-like constants; and Dn, D p are the diffusion coefficients of electron and
holes. The quantities mnq ,m pq ,mqn,mqp are the Peltier–Seebeck–Dufour–Soret-like constants; t Q, tn

and t p are the relaxation times of heat, electron and hole fields, respectively; Ce is the specific heat; t+n , t+p
denotes the life times of the carriers’ fields; and n, p and n0, p0 are the nonequilibrium and equilibrium
values of electrons and holes, respectively. The comma notation is used for spatial derivatives and a
superposed dot represents differentiation with respect to time.

We define the quantities

x ′i =
ω∗xi

c1
, t ′l = ω∗t, θ ′ =

θ

T0
, P ′ =

P
p0
,

N ′ =
N
n0
, u′i =

ρω∗c1

λT T0
ui , t Q′

= t Qω∗, t p′
= t pω∗,

tn′
= tnω∗, t+

′

n = t+n ω
∗, t+

′

p = t+p ω
∗, δ2

=
c2

2

c2
1
,

εT =
λT 2

T0

ρCe(λ+ 2µ)
, ω∗ =

Ce(λ+ 2µ)
K

, c2
1 =

λ+ 2µ
ρ

,

c2
2 =

µ

ρ
, k =

K
ρCe

, λ̄n =
λnn0

λT T0
, λ̄p =

λP p0

λT T0
,

εqn
=

mqnT0

ρDnn0
, εqp

=
mqpT0

ρD p p0
, εn =

an
2 K T0

ρn0 Dn , εp =
a p

2 K T0

ρp0 D p ,

ε pq
=

m pq p0

K T0
, εnq

=
mnqn0

K T0
, an

0 =
an

1 n0

CeT0
, a p

0 =
a p

1 p0

CeT0
,

αn
0 =

αnn0

Ce
, α

p
0 =

α p p0

Ce
.

(5)

Here εT and k are the thermoelastic coupling parameter and thermal diffusivity. Upon introducing the
scalar point potential function φ and vector point potential function Eψ defined by the relations

Eu =∇φ+∇ × Eψ, ∇ · Eψ = 0 (6)

into Equations (1)–(4), along with the quantities in (5), we obtain

∇
2φ− φ̈− λn N − λp P − θ = 0, (7a)
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− εT∇
2(φ̇+ t Qφ̈)+ εnq

∇
2 N −

{
αn

0 t Q∂2

∂t2 +
(
an

0 +α
n
0
) ∂
∂t
+

an
0

t+n

}
N

+ε pq
∇

2 P −
{
α

p
0 t Q∂2

∂t2 + (a p
0 +α

p
0 )
∂

∂t
+

a p
0

t+p

}
P +∇2θ −

(
θ̇ + t Q θ̈

)
= 0,

(7b)

−εnεT∇
2φ̇+∇2 N −

K
ρCe Dn

(
−

1
t+n
+

(
1−
∈n α

n
0 Dn

k
−

tn

t+n

) ∂
∂t
+

tn∂2

∂t2

)
N

−εnα
p
0 Ṗ − εn θ̇ + ε

qn
∇

2θ = 0,
(7c)

−εpεT∇
2φ̇+∇2 P −

K
ρCe D p

(
−

1
t+p
+

(
1−
∈p α

p
0 D p

k
−

t p

t+p

) ∂
∂t
+

t p∂2

∂t2

)
P

−εpα
n
0 Ṅ − εp θ̇ + ε

qp
∇

2θ = 0,

(7d)

∇
2 Eψ =

1
δ2
Ëψ. (7e)

The last equation of (7e) corresponds to purely transverse waves which get decoupled from rest of the
motion and are not affected by the thermal and charge carrier fields. These waves travel with nondimen-
sional velocity ′δ′ without dispersion, attenuation, or damping. We drop this motion in the following
analysis unless stated otherwise. Equations (7c) and (7d) can be further simplified under the assumption
that the considered semiconductor is of relaxation type. For such materials, according to [Maruszewski
1989], the diffusion approximation of the physical process ceases to be obligatory and the relaxation/life
times tn, t+n (t

p, tp+) become comparable to each other in their values (tn
= tn+, t p

= tp+).

3. Solution of the problem

We may take plane harmonic wave solutions as

(φ, θ, N , P)= (φ,θ,N , P ) exp
{
iω(v−1xr nr − t)

}
, r = 1, 2, 3. (8)

The use of solution (8) in the coupled system of equations (7a)–(7d), after straightforward algebraic
reductions and manipulations, leads to the following characteristic equation

ξ 4
− Aξ 3

+ Bξ 2
−Cξ + D = 0, ξ = v−2, (9)
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where

A =
1+

(
11+12+ (1+ εT )13

)
1

,

B =

(
1′1+ (1+ εT )(1

′

2+1
′

3)+1
′

4+1
′

5+1
′

6

)
1

,

C =

(
(1+ εT )1

′′

1+1
′′

2+1
′′

3+1
′′

4
)

1
,

D =
1′′′1
1
.

(10)

Here the quantities 1i (i = 1, 2, 3), 1′i (i = 1, 2, 3, 4, 5, 6), 1′′i (i = 1, 2, 3, 4), 1′′′1 and 1 are defined in
the Appendix. Equation (9), being a fourth degree polynomial equation in ξ , has four roots, and hence
in general, there are four ETNP waves: a QTE, a T-mode, and two quasidiffusive waves (QEN/QEP and
QTN/QTP), in addition to purely transverse waves which can propagate in such semiconductive materi-
als. The secular equation (9) with complex coefficients A, B, C , and D contains complete information
regarding the wave number, frequency, phase velocity and attenuation coefficient of these waves. In
order to solve the complex secular equation (9) we use Descartes’ algorithm outlined below:

Shifting the roots of secular equation (9) by a factor of A
4 to eliminate the second term, we obtain

ζ 4
+ Hζ 2

+Gζ + I = 0, (11)

where

ζ = ξ −
A
4
, H = B−

3A2

8
, G =

AB
2
−

A3

8
−C, I = D+

A2 B
16
−

3A4

256
−

AC
4
.

Factoring Equation (11) into two quadratic factors, we have

ζ 4
+ Hζ 2

+Gζ + I = (ζ 2
+ lζ +m)(ζ 2

− lζ + n). (12)

Comparing the coefficients of various powers of ζ in (12) on both sides, we get

m+ n = l2
+ H, n−m =

G
l
, mn = I. (13)

Eliminating m and n from Equation (13), we obtain

Z3
+ 2H Z2

+ (H 2
− 4I )Z −G2

= 0, (14)

where Z = l2. Being cubic with complex coefficients, Equation (14) can be solved by using the irreducible
case of Cardan’s method with the help of De Moivre’s theorem. We again shift the roots of (14) by a
factor of −2H

3 in order to obtain the standard cubic as

Y 3
− 3H∗Y −G∗ = 0, (15)

where

Y = Z +
2H
3
, H∗ =

(H 2
+ 12I )
9

, G∗ = G2
−

8H I
3
+

2H 3

27
. (16)
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Let the roots of Equation (15) be of the type

Y =U + V (17)

so that U 3
+ V 3

= G∗, U 3V 3
= H∗

3
.

We may find the cube roots with the help of De Moivre’s theorem, as shown below:
Let

U 3
=

G∗+
√

G∗− 4H∗3

2
= L + i M, L ,M ∈ R. (18)

Then the values of U are given by

Uk = r1/3
(

cos
2kπ +8

3
+ i sin

2kπ +8
3

)
, k = 0, 1, 2, (19)

where r =
√

L2+M2 and 8 = tan−1
(
M/L

)
. Having determined U , the values of V can be obtained

from the relation U V = H∗ which further leads to the required values of Y and hence to the values of
l2
= Z = Y − 2H/3. One of the (convenient) values of l so obtained is then used to evaluate m and n

by Equation (13). Using the values of m, n and l, the reduced secular Equation (11) is factored into two
quadratic factors of the type (12), which are further solved to obtain the four roots ζi , i = 1, 2, 3, 4. The
complex roots of secular equation (9) are obtained from the relation ξi = ζi + A/4, for i = 1, 2, 3, 4. This
leads to the determination of the complex phase velocities as

vi =
1
√
ξi
, for i = 1, 2, 3, 4. (20)

In general, v is complex, and hence we may write

v−1
= V−1

+ iω−1 Q (21)

so that the exponent part exp [iω(v−1x pn p − t)] of solutions (8) can be rewritten as

exp
{
iω(V−1x pn p − t)− Qx pn p

}
.

This implies that V is the phase speed and Q the attenuation coefficient of ETNP waves.
Upon using representation (21) in Equation (20) we can obtain the phase velocity (Vi ) and the atten-

uation coefficient (Qi ) of different modes of wave propagation. We obtain

Vi =
1

Re
√
ξi
, Qi = ωIm(

√
ξi ), i = 1, 2, 3, 4. (22)

4. Special cases of wave solutions

In this section we consider some special cases of wave propagation such as EN/EP, TN/TP and ET waves,
in semiconductor materials.
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4.1. Elastodiffusive (EN/EP) waves. If we confine our discussion concerning the reciprocal dynamical
interactions of elastic and electron diffusion fields to the propagation of EN waves, the system of equa-
tions (7) in the absence of thermal and hole charge carrier fields (P = θ = 0, εT = 0= εnq , α0

n
= 0= a0

n)

along with the solution to (8) leads to the secular equation

(ξ − p2
1)(ξ − p2

2)= 0, (23)

where p2
1 + p2

2 = 1+ τ ∗
′

n , p2
1 p2

2 = τ
∗
′

n .
Here τ ∗

′

n is obtained from τ ∗n defined in the Appendix, on setting αn
0 = 0. In general, the roots ξ = p2

1, p2
2

are complex and hence waves are attenuated in space. The corresponding phase velocity depends directly
on the relaxation and life times of the electrons. For relaxation type semiconductors (tn

= t+n ), the
quantity τ ∗

′

n becomes real and so are the roots ξ = p2
1, p2

2 . Therefore for such semiconductors EN waves
propagate without dispersion, damping, and attenuation, which is in agreement with [Maruszewski 1989].
The amplitude ratios of the waves in this case are related by

N̄
φ̄
= k2(v2

− 1)/λ̄n. (24)

Upon using representation (21), the phase velocities and attenuation coefficients of EN waves are obtained
as

Vi =
1

Re(pi )
, Qi = ωIm(pi ), i = 1, 2. (25)

The EP-waves can also be discussed in a similar manner by omitting the influence of thermal and
electron fields (N = θ = 0, εT = 0= ε pq , α

p
0 = 0= a p

0 ). The corresponding results can be obtained by
replacing (N , n) with (P, p) in the above analysis.

4.2. TN/TP waves. Here we confine our discussion concerning the reciprocal dynamical interactions of
the thermal and electron diffusion fields to the propagation of TN waves, and omit the elastic and hole
charge carrier fields (φ = 0= P, α p

0 = 0= εp, ε
qp
= 0= εT ). The system of equations (7) with the help

of solution (8) in this case leads to the secular equation

(ξ − q2
1 )(ξ − q2

2 )= 0, (26)

where

q2
1 + q2

2 =
τ Q
+ τ ∗n − ε

qnτ ′n − iω−1εnε
nq

1− εnqεqn , q2
1 q2

2 =
τ Qτ ∗n − iω−1εnτ

′
n

1− εnqεqn . (27)

The complex phase velocity can be obtained from Equation (26) as

v−1
i = qi , i = 1, 2. (28)

In this case the waves are attenuated in space and damped with time even for relaxation type of semi-
conductors. Upon using representation (21) the real phase velocities and attenuation coefficients of TN
waves are obtained as

Vi =
1

Re(qi )
, Qi = ω Im(qi ), i = 1, 2. (29)
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Here the amplitude ratios are given by

θ̄

N̄
=
τ ′nv

2
− εnq

1− τ Qv2 =
τ ∗n v

2
− 1

εqn − iω−1εnv2 . (30)

The results pertaining to TP waves can be obtained from the above analysis by replacing N , n with P ,
p after setting (φ = 0= N , αn

0 = 0= εn, ε
qn
= 0= εT ) in the governing equations (7).

4.3. ET waves. When a complete equilibrium state of electron and hole concentration is established
the system becomes charge-free. Here, we confine our discussion concerning the reciprocal dynamical
interactions of elastic and thermal fields in the absence of electron and hole fields (N = 0 = P, εn =

εp = 0, εqn
= 0= εqp) to the propagation of ET waves.

In this case the system of equations (7) governing the interaction along with solution (8) leads to the
secular equation for ET waves as under

(ξ − a2
1)(ξ − a2

2)= 0, (31)

where
a2

1 + a2
2 = 1+ (1+ εT )τ

Q, a2
1a2

2 = τ
Q (32)

and τ Q is defined in the Appendix. The secular equation (31) gives us v−1
i =±ai , i = 1, 2.

These quantities are also complex so the waves are attenuated in space and damped with time. Upon
using representation (21) the real phase velocities and attenuation coefficients of ET waves are obtained
as

Vi =
1

Re(ai )
, Qi = ω Im(ai ), i = 1, 2. (33)

In this case the amplitude ratios are given by

θ̄

φ̄
= k2(v2

− 1). (34)

This type of wave motion has already been discussed by many authors such as [Chandrasekharaiah 1986;
Chadwick 1979; Chadwick and Seet 1970; Sharma et al. 2000; Sharma 1986; Sharma and Singh 1989;
1990; Scott 1989].

5. Numerical results and discussion

In this section the values of phase velocity and attenuation coefficient of various partial wave modes have
been computed numerically from the analytical results obtained above for Ge and Si materials under
the assumption that the semiconductor considered is of relaxation type. In such a case, the diffusion
approximation of the physical processes ceases to be obligatory, and tn, t+n , tp, t+p become comparable
to each other in their values so that tn = t+n , tp = t+p . The physical data for these materials is given
in Table 1. To understand the interactions of various fields considered in thermoelastic semiconductors,
the nondimensional phase velocities and attenuation coefficients of different modes of wave propagation
have been obtained and computed numerically for Ge and Si materials, and their profiles are plotted
on log-linear scale against nondimensional frequency (ω) in Figures 1, 2–7, 8. The phase velocity and
attenuation coefficient profiles in special cases of ET, EN/EP and TN/TP waves have also been computed
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Coefficient Unit Value (Ge) Value (Si) Reference

λ Nm−2 0.48× 1011 0.64× 1011 [Maruszewski 1989]

µ Nm−2 0.53× 1011 0.65× 1011 [Maruszewski 1989]

ρ Kgm−3 5.3× 103 2.3× 103 [Maruszewski 1989]

t+n s < 10−5 < 1.4× 10−6 [Maruszewski 1989]

t+p s < 10−5 < 10−5 [Maruszewski 1989]

Dn m2s−1 10−2 0.35× 10−2 [Maruszewski 1989]

D p m2s−1 0.5× 10−2 0.125× 10−2 [Maruszewski 1989]

K ωm−1K−1 60 150 [Sze 1981]

Ce jKg−1K−1 310 700 [Sze 1981]

αT K−1 5.8× 10−6 2.6× 10−6 [Sze 1981]

n0 = p0 m−3 1020 1020 [Zambuto 1989]

α p m2 / s 1.3× 10−3 5× 10−3 [Zambuto 1989]

αn m2 / s 3.4× 10−3 1× 10−2 [Zambuto 1989]

mnq vk−1 1.4× 10−5 1.4× 10−5 [Lal 1995]

m pq vk−1
−0.004× 10−6

−0.004× 10−6 [Lal 1995]

mqn vk−1 1.4× 10−5 1.4× 10−5 [Lal 1995]

mqp vk−1
−0.004× 10−6

−0.004× 10−6 [Lal 1995]

Table 1. Physical data of germanium and silicon.

and represented graphically on log-linear scales in Figures 9–15. The numerical results are found to be
in close agreement with the theoretical analysis.

Figure 1 shows the phase velocity (V1) profiles of QTE waves with frequency in Ge and Si semicon-
ductor materials. The variations of phase velocity at low frequency (ω� 1) limits are quite small as
compared to that at high-frequency (ω� 1). The phase velocity in both the cases increases sharply in
the frequency range 0.3 ≤ ω ≤ 100 to attain its maximum value at ω = 100 for Ge and at ω = 30 in
case of Si, and then becomes steady after a slight decline in its value for ω ≥ 100. Although the effect
of relaxation time of heat transportation is negligibly small, it is still more significant at high frequency
(isothermal) conditions than at low frequency (isentropic) limits, especially when ω≥ 10. This also shows
that thermal relaxation (second sound) effects are short lived. The behavior of dispersion curves for Ge
and Si materials is similar except that the magnitude of velocity in the latter one is quite small. Figure
2 shows nondimensional attenuation-frequency curves of QTE waves. As evident from Figures 1 and 2,
the behavior of nondimensional attenuation coefficient (Q1) is similar to that of nondimensional velocity
(V1) for Ge. It assumes maximum value at ω = 100 in higher frequency regime and is significantly
affected by thermal relaxation time of heat transportation. The attenuation profile of silicon (Si) is linear
everywhere except in the range 1≤ ω ≤ 100, where it has Gaussian character with mean value at ω = 10.
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Figure 1. Phase velocity profile of QTE waves.
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Figure 2. Attenuation coefficient profile of QTE waves.

Figure 3 shows nondimensional phase velocity (V2) profiles of QEN/QEP waves with nondimensional
frequency (ω) in Ge and Si semiconductor materials. For the 0≤ ω ≤ 10 frequency range, the variations
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Figure 3. Phase velocity profile of QEN/QEP waves.
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Figure 4. Attenuation coefficient profile of QEN/QEP waves.

of phase velocity are almost linear in Ge material and increase logarithmically at higher values of the
frequency afterwards. The phase velocity profile for silicon (Si) semiconductor is slightly dispersive for
0≤ ω ≤ 10 in contrast to that of Ge which is linear and hence nondispersive in this range of frequency
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Figure 5. Phase velocity profile of QTN/QTP waves.
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Figure 6. Attenuation coefficient profile of QTN/QTP waves.

values. The effect of thermal relaxation on the transportation of charge carrier fields is observed to be
prominent for higher values (ω ≥ 10) of the frequency. From Figure 4, we see that the behavior of
attenuation coefficient (Q2) is same as that of the phase velocity in Figure 3, except that the thermal
relaxation has negligibly small effect in this case. The variations of the attenuation coefficient are
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linear for the frequency range 0 ≤ ω ≤ 10 and increase logarithmically afterwards in both Ge and Si
semiconductors. Here the attenuation profiles for thermal relaxation and nonrelaxation cases overlap
each other, meaning that thermal relaxation phenomenon does not affect the attenuation coefficient. The
critical value of frequency pertaining to the change of this behavior of phase velocity and attenuation
coefficient in both the semiconductors (Ge and Si) is observed to be at ω = 30 rather than at ω = 1.0.

Figure 5 shows the phase velocity (V3) profile of QTN/QTP waves in Ge and Si semiconductors. It
is observed that the phase velocity is almost negligible in the frequency range 0≤ ω ≤ 0.3, and suffers
a sharp increase in its value in 0.3 < ω ≤ 10. This slightly decreases after attaining its maximum
value at ω = 100 for Ge and at ω = 30 in the case of Si to become steady afterwards. The effect of
thermal relaxation time is quite pertinent to phase velocity at higher frequencies in the case of Ge, but
it has virtually no effect on Si semiconductors. The magnitude of phase velocity in the germanium
semiconductor is much higher than that of the silicon one. Figure 6 represents attenuation coefficient
profiles of QTN/QTP waves for Ge and Si materials. The behavior of the attenuation coefficient (Q3)

in this case is more or less similar to that of Q2 as represented by Figure 4 except for the variations in
magnitude.

Figure 7 shows the phase velocity (V4) profiles of T-mode waves in Ge and Si semiconductor materials
with respect to nondimensional frequency. The phase velocity in silicon (Si) material has Gaussian
behavior with mean value at ω = 10 in the frequency range 0.3 ≤ ω ≤ 30. The phase velocity profile
of Ge has linear variations in 0 ≤ ω ≤ 3 but is subject to dispersion beyond ω ≥ 3. The effect of
thermal relaxation on phase velocity is clearly visible in the case of Si, but is quite small for the Ge
semiconductor. Figure 8 represents the attenuation coefficient profile of T-mode waves for Ge and Si
materials. The behavior of attenuation coefficient (Q4) profiles in this case is more or less similar to
that of Q3 represented by the profiles in Figure 6 except for certain variations in magnitude and its
prominence in this case.

Figure 9 shows phase velocity and attenuation coefficient profiles for EN/EP waves with respect to
frequency. The nondimensional phase velocity in Ge and Si increases sharply in the frequency range
0≤ ω ≤ 1 and becomes linear for ω ≥ 1 in both materials. This means that the elasto-diffusive waves are
significantly influenced by electron and hole charge carrier fields in the low frequency limit, but remain
unaffected by such fields at higher frequencies in both materials. The variations of attenuation coefficient
are noticed to be significant, but quite small, in the frequency range 0≤ ω ≤ 0.1 for Ge and Si materials.
The magnitude of the attenuation coefficient in the silicon (Si) semiconductor is greater than that of the
Ge, but it varies in Gaussian manner with mean value at ω = 0.01 in both materials. The attenuation
coefficient profiles disappear for ω ≥ 0.1 in the materials seen in Figure 9.

Figure 10 represents the nondimensional phase velocity and attenuation coefficient profiles of elec-
tron/hole diffusive (N/P) waves with frequency. We see that the phase velocity varies linearly with the
frequency in the range 0≤ ω ≤ 0.1, and then increases logarithmically for 0.1≤ ω ≤ 10 before becoming
steady/fixed at ω ≥ 10. The amplitude of phase velocity in Ge is larger than that of the case of Si
material. The behavior of the attenuation coefficient of electron/hole diffusive (N/P) waves is similar
to that of phase velocity for electron/hole diffusive waves except for the fact that the magnitude of the
former has larger values in the case of Si as compared to those of the Ge semiconductor. Thus, in the Si
semiconductor these waves are subjected to more attenuation than in the case of Ge.
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Figure 9. Phase velocity and attenuation coefficient profiles of elasto-diffusive (EN/EP) waves.
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Figure 10. Phase velocity and attenuation coefficient profiles of electron/hole diffusive
(N/P) waves.
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Figure 11. Phase velocity and attenuation coefficient profiles of thermodiffusive
(TN/TP) waves.

Figure 11 depicts phase velocity and attenuation coefficient profiles of N/P waves. In the frequency
range 0 ≤ ω ≤ 10, a zigzag type of behavior of phase velocity profiles is noticed and it varies linearly
for ω ≥ 10. For higher frequency (ω ≥ 10) velocity, the profiles for both materials overlap each other,
meaning that there is no physical distinction between Ge and Si profiles. It is further observed that
there is a sharp increase in the values of attenuation coefficient in the frequency range 0.01 ≤ ω ≤ 10,
which become steady/fixed at ω ≥ 10 in both semiconductors. Figure 12 shows the phase velocity and
attenuation coefficient profiles of electron and hole (N/P) diffusive waves with respect to nondimensional
frequency. The behavior of these profiles is more or less similar to that in Figure 9, except for some
variations in the behavior of phase velocity in 0 ≤ ω ≤ 0.03 and that in the magnitude of attenuation
coefficient in addition to its existence beyond ω ≥ 0.1 here. The peak values of attenuation are observed
to be at ω = 0.03 and ω = 0.1 for Ge and Si, respectively, instead of ω = 0.01 in Figure 9.

Figure 13 deals with the phase velocity profiles of ET waves in Ge and Si materials. The nondimen-
sional phase velocity in Ge materials has value unity at low frequency (ω� 1) range, which comes
down to its isothermal value at high-frequency (ω� 1) limits. Thus in the Ge semiconductor, the phase
velocity lies between isentropic and isothermal values as already established by many authors, such as
[Chadwick 1979; Chadwick and Seet 1970; Sharma et al. 2000] and [Sharma and Singh 1989]. For the
Si material the phase velocity varies linearly throughout with value unity at all frequencies and hence ET
waves in this case travel without dispersion, irrespective of isentropic or isothermal conditions. Figure 14
represents attenuation coefficient profiles of ET waves. The nature of the attenuation profiles is the same
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Figure 12. Phase velocity and attenuation coefficient profiles of electron/hole diffusive
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Figure 14. Attenuation coefficient profile of ET waves.

as that in Figure 10 except that waves have less attenuation in the case of Si than Ge here, in addition
to negligible magnitude of attenuation coefficient. The nondimensional phase velocity and attenuation
coefficient profiles in the case of Ge and Si semiconductors are given in Figure 15. Both the quantities
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Figure 15. Phase velocity and attenuation coefficient profiles of T-mode waves.
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are observed to vary logistically and the phenomenon is closer to wave motion than diffusion one. The
profiles in case of Ge and Si materials overlap each other because of negligibly small distinction in their
behavior and difference in their values.

The comparison of Figures 1, 2, 9, 13, and 14 suggests that the interactions of mechanical, thermal
and electron/hole charge carrier fields have attributed to significant modifications in the values of phase
velocity and attenuation coefficients of elastic, thermal and diffusive waves in the low and high frequency
ranges. While the phase velocity has been lower down in its value in both germanium and silicon semi-
conductors, the attenuation coefficient has increased manifold and shifts in the value of critical frequency
(ωc) from ωc

= 1 to ωc
= 10 in case of Si and to ωc

= 100 for Ge semiconductor. Similarly, the comparison
of Figures 3, 4, 10 and 12 leads to the conclusion that the interaction of all the above fields with each
other results in a fourfold increase in the phase velocity and an increase of four orders of magnitude in
the attenuation coefficient of QEN/QEP waves in addition to phase shifts/changes. Figures 5, 6, 7, 8, 11,
and 15 reveal that the magnitude of nondimensional phase velocity and attenuation coefficient of thermal
waves has increased tenfold to that of T-mode due to the considered effect of various fields. The nature
of this quantity has become closer to wave phenomena in contrast to diffusion as in Figure 15.

Appendix

The quantities

1i , i = 1, 2, 3,

1′i , i = 1, 2, 3, 4, 5, 6,

1′′i , i = 1, 2, 3, 4,

1′′′1 and 1,

used in equations (10) are defined as

1= 1− εnqεqn
− ε pqεqp, 13 = τ

Q
− εnε

nq
− εpε

pq ,

11 = (1− εqnεnq)(τ ∗p + iω−1εpεTλp )

− εqp{τ ′p + λpτ
QεT − iω−1εnε

nq(αn
0 + λpεT )

}
,

1′2 = (τ
Q
− εnε

nq)(τ ∗p + iω−1εpεTλp )

− εp
{
τ ′p + λpτ

QεT − iω−1εnε
nq(αn

0 + λpεT )
}
,

1′4 = τ
∗

p(1− ε
qnεnq)− εqp(τ ′p − iω−1εnε

nqαn
0 ),

1′6 = τ
Q
− iω−1(εnε

nq
+ εpε

pq),

1
′′

3 = τ
∗

p(τ
Q
− iω−1εnε

nq)− iω−1εp(τ
′

p − iω−1εnε
nqαn

0 ),

1
′′

2 = (τ
∗

n − ε
qnτ ′n)(τ

∗

p − ε
qpτ ′p)

−
{
(iω−1εpα

p
0 − ε

qpτ ′n)(iω
−1εnα

n
0 − ε

qnτ ′p)
}
,
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1′1 =
{
(τ ∗p + iω−1εpεTλp )− ε

qp(τ ′p + εTλpτ
Q)
}

×
{
(τ ∗n + iω−1εnεTλn )− ε

qn(τ ′n + εTλnτ
Q)
}

−
{
iω−1εp(α

p
0 + λnεT )− ε

qp(τ ′n + εTλnτ
Q)
}

×
{
(iω−1εn(α

n
0 + λpεT )− ε

qn(τ ′p + εTλpτ
Q)
}
,

1
′′′

1 =

(
τ ∗n − iω−1εn

τ ′n
τ Q

)(
τ ∗p − iω−1εp

τ ′p

τ Q

)
+ω−2εnεp

(
αn

0 −
τ ′p

τ Q

)(
α

p
0 −

τ ′n
τ Q

)
,

1
′′

1 =

(
(τ ∗p + iω−1εpεTλp )−

εp(τ
′
p + εTλpτ

Q)

τ Q

)
×

(
(τ ∗n + iω−1εnεTλn )−

εn(τ
′
n + εTλnτ

Q)

τ Q

)
−

(
iω−1εp(α

p
0 + εTλn )−

εp(τ
′
n + εTλnτ

Q)

τ Q

)
×

(
iω−1εn(α

n
0 + εTλp )−

εn(τ
′
p + εTλpτ

Q)

τ Q

)
,

where

τ Q
= t Q

+ iω−1,

εn
′
=
εn

εqn ,

εp
′
=
εp

εqp ,

τn
′
= t Qαn

0 + iω−1(αn
0 + an

0 )− an
0ω
−2/t+n ,

τp
′
= t Qα

p
0 + iω−1(α

p
0 + a p

0 )− a p
0 ω
−2/t+p ,

τn
∗
=

K
ρCe Dn

(
tn
+ iω−1

(
1−
∈n α

n
0 Dn

k
−

tn

t+n

)
+

1
ω2t+n

)
,

τp
∗
=

K
ρCe D p

(
t p
+ iω−1

(
1−
∈p α

p
0 D p

k
−

t p

t+p

)
+

1
ω2t+p

)
.

The other coefficients 12, 1′3, 1′5 and 1′′4 can be written from 11 , 1′2 , 1′4 and 1′′3 respectively, by
replacing n with p and vice-versa.
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THERMOMECHANICAL FORMULATION OF STRAIN GRADIENT PLASTICITY
FOR GEOMATERIALS

JIDONG ZHAO, DAICHAO SHENG AND IAN F. COLLINS

Constitutive formulation of strain gradient plasticity for geomaterials via a thermomechanical approach
is investigated in this paper. It is demonstrated that, by defining two thermodynamical potentials (a free-
energy function and a rate of dissipation function), the entire constitutive behavior of a decoupled strain-
gradient-dependent material may be determined. The elastic relations are dependent on the free-energy
function, while the plastic yielding and flow rule are determined by the dissipation function in conjunc-
tion with the free-energy function. Yield surfaces in both dissipative stress and true stress spaces may
be derived without difficulty. Nonassociative flow rules and possible micromechanical mechanisms for
the difference between plastic work and rate of plastic dissipation are interpreted for gradient-dependent
materials. Using the obtained formulations and choosing appropriate thermodynamical functions, a wide
variety of strain gradient plasticity models in the literature are recovered. Typical features associated with
geomaterials, such as pressure and Lode-angle dependency, are addressed in detail. This paper provides
a general thermodynamically-consistent framework of developing strain gradient plasticity models for
geomaterials.

1. Introduction

A large number of microscale experiments on metallic materials have been done in recent years and
have demonstrated strong size effects in solids (see [Fleck et al. 1994; Nix and Gao 1998; Tsagrakis
and Aifantis 2002] and references therein). In most cases, the introduction of one or more gradient-
dependent internal length scales of the deformation field is necessary to qualitatively and quantitatively
interpret the behavior of size effects. Classical continuum theories fail to address the problem due to
their local assumptions and lack of length scale(s) in the constitutive descriptions. The same reason
accounts for their inability to determine the shear band size and describe the post-localization behavior
in localization problems, which are frequently observed in metals and geomaterials. Modeling of strain
localization by classical theories may generally lead to such consequences as the loss of ellipticity for
the governing equations and spurious mesh-dependency problems in computation. In fact, length scales
exist prevalently in a material and the loads applied to it, in the form of either the characteristic size of
the homogeneous deformation domain (internal length scale), or the wavelength of a harmonic external
load (external characteristic length scale) [Eringen and Kafadar 1976]. The internal length scale is
closely related to the microscopically discontinuous structures or particles underlying a macroscopically
continuous material body, such as the atomic lattice spacing in crystals, the grain size of polycrystals,
and the grain diameter in granular materials, etc., whereas the external length scale is dependent on the
properties of a loading force. The application regime of classical continuum theories is actually bounded

Keywords: strain gradient plasticity, thermomechanical approach, pressure dependency, lode-angle dependency, geomaterials.
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by the ratio of the external characteristic length scale over the internal length scale. When this ratio is
much larger than 1, the details of the interactions between the microstructures can be neglected, and
classical local continuum theories may be successfully applied. However, when this ratio approaches
1, the influence of microstructures is no longer negligible and classical models become inadequate to
account for the mechanical behavior. Consequently gradient-enhanced generalized continuum theories
are needed to take microstructural effects into account [Chambon et al. 2004].

A variety of gradient-enhanced theories have thus been proposed in the literature to address the prob-
lems mentioned above associated with classical theories and to account for the influence of microstruc-
tures, such as the Cosserat (micropolar) continuum theory [Cosserat and Cosserat 1909], the theory of mi-
cromorphic continua [Toupin 1962; Mindlin 1964; 1965; Germain 1973], the nonlocal gradient plasticity
pioneered in [Aifantis 1984; 1987; Zbib and Aifantis 1988b; 1988a] and Fleck and Hutchinson’s [1993;
1997] flow theory of gradient plasticity and its further extensions. For a comprehensive review of gradient
theories, see [Chambon et al. 2004; Voyiadjis and Abu Al-Rub 2005]. In general, the existing gradient
theories typically include higher-order gradient terms with coefficients that represent length-scale mea-
sures of microstructural deformation in the constitutive equations, and are mostly employed to investigate
metal plasticity behavior. Compared with metals, the gradient-dependent characteristics in geomaterials
are also evident. Geomaterials often contain microstructures such as grains, microvoids and microcracks.
The basic micromechanical particles in geomaterials are much larger than the corresponding particles in
metals, so microstructure is of much greater significance to continuum models of geomaterials than it is to
metals. Higher gradient theories with internal length scales that relate the microstructures in geomaterials
with the macroscopic mechanical behavior are thus necessary. The gradient dependency in geomaterials
is also experimentally evident. For example, the experimental observation of localization phenomena in
granular soils has indicated that the deformed material is usually characterized by strong spatial density
variation. Formation of shear bands, a finite-thickness material zone with increased porosity, has been
observed in sands [Vardoulakis and Graf 1985]. In such a region of strong spatial variation, higher
gradients of appropriate physical properties of the material should be of vital importance. In addition,
many other features of geomaterials can be attributed to micromechanical behaviors of structures on the
microscale. By using gradient-dependent constitutive models with internal length scales, the influence
of these microstructures may be appropriately addressed.

However, due to the distinctive features exhibited by geomaterials in contrast with metals, direct
application of the gradient theories developed for metals to geomaterials may result in great deviations.
Typical geomaterials like rocks, soils and some other granular materials have long been recognized
to be associated with special properties and mechanical behaviors, such as the property of multiphase
media, nonlinear elasticity, isotropic hardening behavior, pressure-sensitive frictional behavior, plastic
volumetric changes during plastic loading course, nonassociated flow laws, and progressive strength
degradation. In developing gradient models for geomaterials, these features have to be addressed.

There have been a limited number of gradient-enhanced constitutive models specially developed for
and applied to geomaterials. In this connection, micropolar Cosserat continuum theories have long
been applied to granular materials [Mühlhaus 1986; Mühlhaus and Vardoulakis 1987; Pijaudier-Cabot
and Bazant 1987] by including microrotational terms into constitutive formulations. However, introduc-
ing only microrotational terms in a micropolar continuum is not sufficient since it cannot describe the
dilative deformation in a shear band or other localized bifurcation modes such as compaction bands
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[Olsson 1999]. Vardoulakis and Aifantis [1989; 1991; 1994] extended the gradient plasticity model to
account for frictional/dilatant materials by incorporating the second-order strain gradients into the flow
rule, yield condition, and/or dilatancy condition. The principle of virtual work is used to derive the
appropriate extra boundary conditions. Mühlhaus and Aifantis [1991] derived a variational formulation
for the Aifantis’ gradient plasticity in connection with shear band analysis. Fremond and Nedjar [1996]
proposed a combined gradient and rate-dependent damage model for quasibrittle materials. Chambon
et al. [1996; 1998; 2001; 2004] developed a single and multimechanism flow theory of gradient plasticity
for geomaterials as a possible approach to the analysis of localized failure, based on the framework of
[Germain 1973]. Matsushima et al. [2000; 2002] further presented a finite deformation version of their
theory. Aifantis et al. [1999] and Oka et al. [2002] proposed a gradient-dependent viscoplastic constitutive
model for water-saturated clay, with gradients of the volumetric viscoplastic strain being included in the
constitutive equations, while di Prisco et al. [2002] modified a preexisting elastoviscoplastic model for
granular soils according to gradient and nonlocal approaches. Based on the framework of [Mindlin
1964; Fleck and Hutchinson 1993; 1997], Zhou and coworkers [Zhou et al. 2002; Zhao et al. 2005]
developed a strain-gradient-enhanced damage model for rock-like geomaterials with application to shear
band analysis. [Zhao and Sheng 2006] further constructed a framework of strain gradient plasticity by
an internal-variable approach with normality structures to account for the influence of microstructures
on the overall macroscopic mechanical behavior of gradient-dependent solids. Effects of strain gradient
have also been used to account for the friction-controlled interparticle slip and particle rearrangement
for granular materials [Valanis 1996; Walsh and Tordesillas 2004].

In developing the above gradient-dependent constitutive relations for geomaterials, a general routine
for constitutive development has been followed by proposing observation-based constitutive relations
first and then imposing the laws of thermodynamics on these relations. However, the modern theory
of thermomechanics, as expounded, for example, in [Ziegler 1975; 1983; Houlsby 1981; Maugin 1992;
Coussy 1995; Collins and Houlsby 1997; Rajagopal and Srinivasa 1998a; 1998b; Houlsby and Puzrin
2000; Puzrin and Houlsby 2001], develops constitutive models by first guaranteeing the fulfillment of
these laws. Additional internal variables other than the general state variables such as plastic strain or
generalized stress variables will then be used to characterize the material behavior. It is suggested that the
total constitutive relations be determined by merely two thermodynamic potentials: a specific free-energy
function and a dissipation function. This theory places strong emphasis on the use of internal variables
to describe the past history of the material. The first and second laws of thermodynamics are enforced in
the formulation to accommodate the requirements for most of the constitutive models. This theory has
also been systematically applied to soil mechanics modeling; see [Houlsby 1981; 1982; Collins 2005]
and references therein). In particular, the thermomechanical framework has been proven to be useful
in accommodating models for geotechnical materials which generally exhibit nonassociated plastic flow
behavior, pressure-sensitivity, nonlinear elasticity and dilatancy. A variety of plasticity models like the
Drucker–Prager criterion and critical state models have been recovered and extended.

Even though arguments still exist on some issues, this thermomechanical approach has shown great
generality in constitutive developments with solid thermodynamic considerations. In recognition of the
advantages associated with this approach, we will apply it to develop a framework of gradient theory
for geomaterials, covering some of the important features of geomaterials associated with the influence
of microstructures. This theory is essentially a continuum one in that the discrete granular structure
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for granular materials is not specially treated. However, by taking into account gradient terms and
introducing a length scale, the microstructures in the materials as well as the microscale inhomogeneities
may be appropriately reflected. It is demonstrated that by the thermomechanical formulations developed
in the next section, a large range of gradient-dependent constitutive models existing in literature may be
recovered and special features of geomaterials may be conveniently addressed.

Due to the introduction of gradient terms, some second-order tensors that correspond to microlevel
strains, as well as third-order tensors corresponding to microlevel strain gradients, may be chosen as
state variables. However, it should be noted that, because of the dependence of elastic compliances on
the stresses and internal variables for some materials (‘coupled’, as will be noted subsequently), the
strain rates and strain gradient rates may be dependent on the current values of the microdeformations
within the material body, such that their integrations, which make up the total strains and strain gradients,
are generally path-dependent. In this case, elastic and plastic strains and strain gradients are no longer
appropriate for selection as independent state variables. The only exception is for decoupled materials
where the elastic compliances are independent of the internal variables. Such materials include most
ductile metals and the critical state models with linear relationships in the double logarithmic ln e-ln p
space [Lubliner 1972; Collins and Houlsby 1997]. To avoid the excessive complication of the coupled
case for materials, we hereafter restrict our discussions to decoupled materials only, for which the free-
energy function may be defined by two separate terms that characterize the elastic free energy and stored
plastic energy components. In this case, the elastic and plastic terms for both strain and strain gradient
may be regarded as state variables.

2. Thermomechanical formulation for gradient-dependent geomaterials

2.1. Development of constitutive relations. In the following formulation, isothermal, small strain defor-
mation and rate-independent processes are assumed. The mechanical behavior of a material is assumed
to be determined once the (Helmholtz) free-energy function 9 and the rate of dissipation function 8̂ are
specified. The former represents the stored energy, the latter the rate at which energy is being converted
irreversibly into heat. Both functions are defined for unit volume. Since the dissipation rate is generally
path dependent, it is different from the pure time-rate as expressed by 8̇. Following the framework
of strain gradient theory in [Mindlin 1964; Germain 1973; Fleck and Hutchinson 1993; 1997], the
mechanical behavior of the material is assumed to be described by the strain ε and strain gradients
η, and their respective work-conjugate thermodynamic forces: Cauchy stress σ and higher-order stress
τ . The first law of thermodynamics states that a variation in the free energy is equal to the variation in
the work done on the unit domain and the heat flux into the domain such that

σi j ε̇i j + τi jk η̇i jk = 9̇ + 8̂, (1)

where the free energy is a state function dependent on a set of state variables that can describe the past
history of the material: α = α(α1,α2, . . . ,αn). Here the internal variable αi (i = 1, · · · , n) may be in
the form of a scalar, vector, or tensor (of second order or higher). The generalized n internal variables
in tensor form, as stated in [Collins and Houlsby 1997] and [Puzrin and Houlsby 2001], preserve the
ability to model compression and shear effects separately in granular geomaterials, model anisotropy
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features through use of multiple kinematic hardening laws, and describe the past history of an elastic-
plastic material. A more general form of the free-energy function has been suggested by Rice [1971]
to be a functional of the time history of the internal variables. The Helmholtz free-energy function
9 = 9(ε, η,α) is expressed in the compound space of strain and strain gradients. If expressed in an
alternative space of Cauchy stress and higher-order stress, a Gibbs free energy function �=�(σ , τ ,α)
may be found, related to the Helmholtz free-energy function by an appropriate Legendre transformation,
such as

�=�(σ , τ ,α)=9(ε, η,α)− σ : ε− τ
...η. (2)

The rate of dissipation function is assumed to be dependent on dissipative internal variables α as well
as their rates α̇. For rate independent materials, 8̂ is a homogeneous first-degree functional in the space
of α̇. For purely frictional materials, the strength parameters are dimensionless frictional angles, which
is different from the yield stress for metals. It is thus necessary to include some component(s) of the
current stress and/or higher-order stress in the expression for the rate of dissipation function [Collins
and Kelly 2002; Collins 2005]. In consequence, the rate of dissipative function for gradient-dependent
materials is assumed to have an expression of this form: 8̂= 8̂(σ , τ ,α, α̇).

The key assumption of the thermomechanical approach for constructing constitutive relations is that
they are fully determined by two functions: a thermodynamic potential, such as the Helmholtz free-
energy function, or any of the related potentials derived from Legendre transformations, and the rate of
dissipation function. Here it is assumed that all aspects of the isothermal constitutive behavior of such
rate-independent gradient-enhanced materials may be uniquely defined by the two functions 9(ε, η,α)
and 8̂(σ , τ ,α, α̇). Thus Equation (1) may be rewritten as

σi j ε̇i j + τi jk η̇i jk =
∂9

∂εi j
ε̇i j +

∂9

∂ηi jk
η̇i jk +

(
∂9

∂αk
⊗ α̇k +

∂8̂

∂α̇k
⊗ α̇k

)
,

where Euler’s theorem for homogeneous functions has been used to rewrite 8̂, and where ⊗ denotes an
appropriate inner tensor operator according to the order of the internal variables. For example, if the
second-order tensor is adopted for the internal variables, ⊗ implies the dyadic inner production operator
‘:’. It is then simple to obtain

σi j =
∂9

∂εi j
, τi jk =

∂9

∂ηi jk
, qk

= −
∂9

∂αk
=
∂8̂

∂α̇k
(3)

and

8̂= qk
⊗ α̇k for α̇k 6= 0, (4)

where the Cauchy stress σ and the higher-order stress τ are sometimes called quasiconservative stresses
[Ziegler and Wehrli 1987], which are conjugate with the state variables of strains and strain gradients,
and the dissipative stresses qk are the work conjugates of the internal variables. The dissipation surfaces
represented by 8̂ in the (compound) space of α̇k are star-shaped with respect to the origin and convex,
and the dissipative stresses qk lie in their outward normal [Ziegler and Wehrli 1987]. In deriving these
relations, a weak form of Ziegler’s orthogonality hypothesis has been used.
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Recalling the Gibbs free-energy function defined in Equation (2) and the results obtained in (3) and
(4), one may easily obtain

σi j =
∂9

∂εi j
, ηi jk =

∂9

∂τi jk
, qk

=
∂�

∂αk
. (5)

Hence decomposition of the rates of strain and strain gradient leads to

ε̇i j = ε̇
e
i j + ε̇

p
i j , η̇i jk = η̇

e
i jk + η̇

p
i jk,

where

ε̇e
i j =

∂2�

∂σi j∂σkl
σ̇kl, η̇e

i jk =
∂2�

∂τi jk∂τlmn
τ̇lmn, (6)

ε̇
p
i j =

∂2�

∂σi j∂αk
⊗ α̇k, η̇

p
i jk =

∂2�

∂τi jk∂αk
⊗ α̇k, (7)

denote the elastic and plastic rates for strains and strain gradients, respectively. The coefficients before
σ̇kl and τ̇lmn in Equation (6) are the instantaneous elastic and higher order elastic compliances for the
material. They are generally dependent on the Cauchy stresses, higher-order stresses and on the internal
variables as well. Total elastic and plastic parts of strains and strain gradients may be obtained by
integrations of the expressions (6) and (7) over the entire loading course.

As far as decoupled materials are concerned, we further choose ε p
i j and ηp

i jk to be the internal variables.
A general form of free-energy function depends on both the elastic and plastic strains and strain gradients
like this: 9 = 9(εe

i j , ε
p
i j , η

e
i jk, η

p
i jk). For the decoupled case, it can be written as the sum of an elastic

term 9e(εe
i j , η

e
i jk), which depends on the elastic strains and elastic strain gradients only, and a plastic

term 9 p(ε
p
i j , η

p
i jk), which depends only on the plastic strains and plastic strain gradients. That is,

9(εe
i j , ε

p
i j , η

e
i jk, η

p
i jk)=9

e(εe
i j , η

e
i jk)+9

p(ε
p
i j , η

p
i jk). (8)

As ε p
i j and ηp

i jk have been chosen as the internal variables, from Equation (3), their thermodynamic
conjugate dissipative stresses σ d

i j and τ d
i jk may be written as

σ d
i j =

∂8̂

∂ε̇
p
i j
, τ d

i jk =
∂8̂

∂η̇
p
i jk
. (9)

With the preceding assumptions, the instantaneous elastic moduli for both strains and strain gradients
are independent of the plastic strains and plastic strain gradients. Consequently, the total work rate may
be decomposed into two parts:

Ŵ = Ŵ e
+ Ŵ p, (10)

where Ŵ e
= 9̇e(εe

i j , η
e
i jk) and Ŵ p

= 9̇ p(ε
p
i j , η

p
i jk)+ 8̂.

We have
9̇e(εe

i j , η
e
i jk)= σi j ε̇

e
i j + τi jk η̇

e
i jk;

thus

σi j =
∂9e

∂εe
i j
, τi jk =

∂9e

∂ηe
i jk
. (11)
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The last several equations since Equation (8) lead to the relations

σi j = ρi j + σ
d
i j , τi jk = πi jk + τ

d
i jk, (12)

where

ρi j =
∂9 p

∂ε
p
i j

and πi jk =
∂9 p

∂η
p
i jk

(13)

are the shift stress and higher-order shift stress, which may present sound physical interpretations in
developing anisotropic, kinematic hardening gradient models.

As we can see, several stress measures have been defined in the course of this section, including Cauchy
stress, higher-order stress, dissipative stress, shift stress and higher-order shift stress. It is necessary to
clarify these stresses here. First, as is well known, in conventional theories, Cauchy stress refers to
the stress term at infinitesimal deformation, and is used to express Cauchy’s first and second laws of
motion (for the latter case, together with couple stress). Cauchy stress denotes force per unit area of the
deformed solid. Other definitions of stress also appear in constitutive descriptions, including Kirchhoff,
nominal (First Piola–Kirchhoff) and Material (Second Piola–Kirchhoff) stress tensors. The latter three
stress measures consider forces acting on the undeformed solid, and require knowledge not only of the
behavior of the deformed state, but also of the predeformation state. For a problem involving infinitesimal
deformation, all the aforementioned stress measures are equal. However, here in this paper, we use
Cauchy stress to represent the usual stress as in conventional theory, merely in distinguishing from
the higher-order stresses that are introduced afterward, not distinguishing it from the aforementioned
Kirchhoff and other stresses. In addition, the assumption of small strain made in the beginning of this
section also cancels the differences between Cauchy stress and the other three terms.

Second, the term higher-order stress follows the usage of [Toupin 1962; Mindlin 1964; 1965; Fleck
and Hutchinson 1997], and addresses the additional stresses required by strain gradient theories in addi-
tion to Cauchy stress. This higher-order stress is a more general stress that includes the couple stress as
a subset case, as it may address both cases of rotation gradient and stretch gradient, while couple stress
applies to rotation gradient case only. The third point regards dissipative stress. In passing, the dissipative
stresses are defined as the conjugates of internal variables [Ziegler and Wehrli 1987]. In conventional
thermomechanics, it may denote a vector, a second order tensor such as Cauchy stress, or a set of such
vectors and tensors. While in the framework of strain gradient theory, third-order tensors may also appear
(as is shown in Equation (9)), depending on the choice of internal variables. The occurrence of shift
stress and higher-order shift stress is due to the nonidentity of true compound stress space (constituted
by Cauchy stress and higher-order stress) and compound dissipative stress space (constituted by usual
dissipative stress and higher-order dissipative stress). More information regarding this point can be found
in [Collins and Houlsby 1997].

Plastic work and plastic dissipation. The plastic work rate and the rate of dissipation are generally dif-
ferent from each other, contrary to the long-held understanding in soil mechanics [Collins and Kelly
2002; Collins 2005]. The second law of thermodynamics states that the rate of dissipation can never be
negative, but the sign of the plastic work increment is not restricted [Mroz 1973; Lubliner 1990]. Thus,
the two rates are not equal to each other in the general case. The difference between them was called the
stored plastic work, and was thought to be related to the frozen elastic energy on the microscale. As for
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strain gradient characterized materials, the plastic work and dissipation rates are given by

Ŵ p
= σi j ε̇

p
i j + τi jk η̇

p
i jk = σi j

∂2�

∂σi j∂αk
⊗ α̇k + τi jk

∂2�

∂τi jk∂αk
⊗ α̇k,

8̂= qk
⊗ α̇k =

∂�

∂αk
⊗ α̇k .

(14)

For a decoupled material, the plastic strain ε p
i j and plastic strain gradient ηp

i jk are chosen to be the
internal state variables, with

σ d
i j and τ d

i jk

being their conjugate dissipative stresses. The difference between the plastic work rate and dissipation
rate is

Ŵ s
= Ŵ p

− 8̂=

(
σkl

∂2�

∂σkl∂ε
p
i j
− σ d

i j

)
ε̇

p
i j +

(
τlmn

∂2�

∂τlmn∂η
p
i jk
− τ d

i jk

)
η̇

p
i jk,

where Ŵ s is the stored plastic work rate for the gradient-dependent material. For the fully decoupled
case, Ŵ s

= 9̇ p, or alternatively, Ŵ p
= 9̇ p

+8̂. From a micromechanical point of view, the stored plastic
work in gradient-dependent materials may depend on the microscopic material properties as well as the
imposed deformation state. As discussed in [Benzerga et al. 2003], for brittle or quasibrittle materials that
may be characterized by single crystals, the behavior of stored plastic work during unloading processes
is essentially controlled by the density of statistical stored dislocations (SSDs) as well as geometrical
necessary dislocations (GNDs), of which the latter have long been attributed to the micromechanical
origin of strain gradient effects. As for granular Cosserat materials, part of plastic work may be used to
drive the interparticle rotation, and upon unloading, part of the rotation deformation remains unrecovered.
The unrecoverable plastic work associated with this rotation part together with the frozen part contributed
from strains makes up the total stored plastic work for granular Cosserat materials.

It is easy to see, for arbitrary plastic deformation increments, that the following conditions hold if and
only if Ŵ s becomes zero:

σ d
i j = σkl

∂2�

∂σkl∂ε
p
i j
, τ d

i jk = τlmn
∂2�

∂τlmn∂η
p
i jk
. (15)

Taking (5) into account, Equation (15) may be rewritten as

qk
=
(
qσ , qτ

)
, qσ =

∂qσ
∂σi j

σi j , qτ =
∂qτ
∂τi jk

τi jk, (16)

where qσ = ∂�/∂αε, qτ = ∂�/∂αη. Equation (16) implies that qk are homogeneous functions of degree
one in the compound space of Cauchy stress σi j and higher-order stress τi jk . In consequence, the rate
of dissipation function 8̂ is also a homogeneous first degree-function of degree one in the compound
space of Cauchy stress and higher-order stress, such that the material may be called a purely frictional
material. For a purely frictional material, there is no stored plastic work frozen in the elastic energy, and
thus the plastic work is totally dissipated. Yield loci of such models always exhibit convex cones in three
dimensions, as will be demonstrated in the next section for such criteria as the generalized Coulomb,
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von Mises, Drucker–Prager and Matsuoka–Nakai criteria in the framework of the strain gradient the-
ory. However, frictional materials refer to those whose dissipation function depends not only on the
Cauchy stress and higher-order stress, but also on the function(s) of the plastic deformations (such as the
consolidation pressure in soil mechanics). In conventional soil mechanics, these materials are generally
treated by critical state models with typical yield loci of homothetic curves or surfaces, as in [Collins
and Kelly 2002]. It will also be shown in the following sections, in the compound stress space of σi j and
τi jk , that the yield loci of gradient-dependent frictional materials also exhibit a homothetic feature. A
third category of materials is termed as quasifrictional materials, which, in addition to the true stresses,
depends on material parameters that involve stresses (such as cohesion as for structured soils, or fracture
toughness as in particle crushing).

Nonassociative flow rule. The nonassociated flow rule is a distinguished characteristic of geomaterials.
In conventional plastic theory, the dissipation function is generally assumed to depend on the plastic strain
and the plastic strain rate. Consequently, the assumption that the associated flow rule is normal to the
yield surface is frequently made in this theory. However, geomaterials generally exhibit a quite different
behavior when the direction of the plastic strain rate vector is not normal to the current yield surface. The
most used associated flow rule for metals has been proved to be inadequate for geomaterials. Models
with nonassociated flow rules have thus been developed in terms of separate yield functions and plastic
potentials [Oda and Iwashita 1999; Lade 1988; Vardoulakis and Sulem 1995]. However, the general
theory of thermomechanics can still be applied with necessary nonassociated flow rules whenever the
dissipation potential depends on the current stress or on the total strain or elastic strain. It remains true
for the case of frictional gradient-dependent geomaterials. As will be shown in the following, whenever
the dissipation function has an explicit dependency on the true stresses, the normality property of flow
rules in the dissipative stress space will be lost when being transferred to true stress space.

We follow the same procedure used in [Collins 2005] to derive the nonassociative flow rule for gradient-
dependent geomaterials. As has been stated in Equation (3), the dissipative stresses qk are expressed as
the derivative of 8̂ with respect to α̇k . It is assumed a dual function F̃(σ , τ ,α, q) may be found by a
Legendre transformation of 8̂, such that α̇k may be expressed in terms of qk . As has been stated, 8̂ is a
homogeneous function of degree one in α for rate-independent materials, since there is no characteristic
time. For such a function the above transformation is singular. In such a case, the value of the Legendre
dual of 8̂ is identically zero [Collins and Houlsby 1997]:

F̃(σ , τ ,α, q)= 0. (17)

In addition, the relation between α̇k and qk is not unique. Instead of having a unique expression, the
dual relation to Equation (3) may be presented in a form for the time derivatives of the internal variables
as follows:

α̇k = λ̇
∂ F̃(σ , τ ,α, q)

∂qk . (18)

Equations (17) and (18) present a yield condition and associated flow rule in generalized stress space
(or alternatively dissipative stress space). And the yield function in Equation (17) displays an obvious
dependence on the true stresses σ and τ , which is inherited from the original form of 8̂ and is always
necessary for frictional materials. In true compound stress space of σ and τ , the yield condition may be
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obtained as follows:

F
(
σ , τ ,αk

)
= F̃

(
σ , τ ,αk, qk

=
∂�(σ , τ ,αk)

∂αk

)
= 0. (19)

As we have

∂F
∂σ
=
∂ F̃
∂σ
+

∂2�

∂σ∂αk
⊗
∂ F̃
∂qk ,

∂F
∂τ
=
∂ F̃
∂τ
+

∂2�

∂τ∂αk
⊗
∂ F̃
∂qk . (20)

In connection with Equations (6), (18), (19) and (20), the flow rule for the plastic rates of strain and
strain gradient in the true compound stress space may be obtained as

ε̇
p
i j = λ̇

∂F
∂σ
+
∂8̂

∂σ
, η̇

p
i jk = λ̇

∂F
∂τ
+
∂8̂

∂τ
, (21)

where
∂8̂

∂σ
= − λ̇

∂ F̃
∂σ
,

∂8̂

∂τ
= − λ̇

∂ F̃
∂τ
.

These relations are obtained from the Legendre transformation between 8̂ and F̃ in connection with
Equation (18). As can be seen, when ∂ F̃/∂σ and ∂ F̃/∂τ are not zero, Equation (21) clearly exhibits a
natural feature of nonassociated flow rule. This is an obvious advantage of thermomechanical approach
for addressing geomaterial behaviour.

3. Derivation of a class of J2-flow theory of strain gradient plasticity for isotropic incompressible
geomaterials

In this section, the thermomechanical formulations obtained in last section are employed to derive a
class of strain gradient plasticity models that may be regarded as extensions of J2-flow theory for typical
pressure-insensitive materials. Further implications of the formulations, including features suitable for
describing pressure-sensitive geomaterials, will be addressed in the next section. Following [Fleck and
Hutchinson 1993], it is assumed that couple stresses exist in the elastic-plastic body, with elastic strain,
plastic strain and Cauchy stress being εe

i j , ε
p
i j and σi j . The strain gradient effects are manifested in a

curvature tensor in its elastic and plastic parts:

χ e
i j = eilmη

e
mjl and χ

p
i j = eilmη

p
mjl ,

where eilm is the permutation tensor. The couple stress is denoted by mi j , which may be related to the
higher-order stress τi jk defined in last section as: mi j = eilmτmjl . In a conventional J2 flow theory, it is
generally regarded that the plastic strain is incompressible, such that the yield condition may be defined
through the von Mises effective stress by the deviatoric part of the Cauchy stress si j : σe =

√
(3si j si j )/2.

In the presence of strain gradients and couple stresses, the plastic work conjugate forces for ε p
i j and χ p

i j are
si j and mi j respectively. In addressing incompressibility in the presence of strain gradients, Smyshlyaev
and Fleck [1996] (see also [Fleck and Hutchinson 2001]) have made an orthogonal decomposition of
the strain gradient tensor and obtained an acute incompressible tensor for strain gradients, in which the
incompressibility condition for strain gradients is expressed as: ηk j j = 0 for k = 1, 2, 3. To avoid the
excessive complexity of accounting for the general case of strain gradients, however, here in this paper
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we assume the curvature tensor in conjunction with its work conjugate couple stress adequately fulfills
the incompressibility condition for gradient effects, at least for a particular range of materials (such as
Cosserat materials). In fact, due to the symmetrical nature of the strain gradient tensor, ηi jk = η j ik , the
curvature tensor χi i = 0, which implies the incompressibility of strain gradients.

Free energy function and elastic relations. We first suppose that the material can be characterized by the
linear Gibbs free-energy function

�= 1
2Ci jklσi jσkl +

1
2 Mi jkll−2m j i mlk, (22)

where

Ci jkl =
1+ v
2E

(δikδ jl + δilδ jk)−
v

E
δi jδkl, Mi jkl =

1+ v
E

(
l
le

)2

δikδ jl, (23)

and E and v denote the Young’s modulus and Poisson’s ratio. The length scale l is interpreted as the
free slip distance between statistically stored dislocations, while le is introduced to divide the curvature
tensor χi j into elastic and plastic parts. It is assumed le � l such that the dominant size effect in the
material is associated with plastic rather than elastic strain gradients. It is easy to find that this definition
of the free-energy function in Equations (22) and (23) results in a dependence of the instantaneous elastic
modulus on the elastic state variables only, which corresponds to the special case of decoupled materials,
where the shift stresses contributed from free energy are zero and the dissipative stresses coincide with
the true stresses. In this case, the elastic behavior of the material may be totally determined by the
Gibbs free-energy function, while the plastic behavior may be completely determined by a dissipative
rate function. In view of Equation (6), we obtain from (22) the elastic incremental relations

ε̇e
i j = Ci jkl σ̇kl, χ̇ e

i j = Mi jkll−2ṁlk . (24)

Dissipation function and plastic relations. In defining a function for the rate of plastic dissipation, it is
further assumed that the plastic parts of the strains and strain gradients ε p

i j and χ p
i j , may be regarded

to be the internal variables. The following general form for the rate-dissipation function is assumed to
be capable of appropriately describing the dissipative processes for a class of strain-gradient-dependent
materials:

8̂= B
(

A1(ε̇
p
i j ε̇

p
i j )+ A2(l2χ̇

p
i j χ̇

p
i j )
)1/2

, (25)

where the coefficients A1, and A2 are dimensionless constants. B is a scalar with a dimension of stress,
with the possibility of being further extended to a complex function depending on plastic strains and
strain gradients. Equation (25) is a generalization of the dissipation function for von Mises materials in
[Ziegler and Wehrli 1987, Equation 6.2, p. 208], where the dissipation function is assumed to depend on
the second invariant of the plastic strain rate only. In view of Equation (9), the dissipation stresses may
be obtained by differentiating the dissipation function (25) with respect to the plastic strain increments
and the curvature increments respectively, such that

σ d
i j =

∂8̂

∂ε̇
p
i j
=

A1 B2

8̂
ε̇

p
i j , md

ji =
∂8̂

∂χ̇
p

i j
=

A2 B2l2

8̂
χ̇

p
i j . (26)

The rate of dissipation function can always be written as

8̂= σ d
i j ε̇

p
i j +md

ji χ̇
p

i j . (27)
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Eliminating the rates of strain and strain gradient from Equations (26) and (27), we obtain for the
yield function in dissipative stress space

F̃ =
(σ d

i jσ
d
i j )

A1
+
(l−2md

i j m
d
i j )

A2
− B2

= 0. (28)

We will demonstrate here that a variety of strain gradient plasticity models proposed in the literature
may be recovered by selecting different values for the coefficients A1, A2 and B for the dissipation
function and, in conjunction, the elastic relations presented in (24), We identify several cases:

Case 1. A1 = A2 = 2/3, B is a scalar and B ≥ 0.

In this case, the dissipative stresses are identical with the true stresses: σ d
i j = si j , md

i j = mi j . Manipu-
lation of Equation (28) easily leads to the following yield surface in the true stress space:

F =6e− B = 0, (29)

where 6e is a generalized effective stress defined by

6e =

√
3
2 si j si j +

3
2 l−2mi j mi j . (30)

In conjunction with (26), the normality of the plastic flow rule of (29) results in

ε̇
p
i j = λ̇

∂F
∂si j
= λ̇

∂F
∂6e

∂6e

∂si j
, χ̇

p
i j = λ̇

∂F
∂mi j

= λ̇
∂F
∂6e

∂6e

∂mi j
,

where λ̇= 6̇e/h and the instantaneous hardening rate h = h(6e) are chosen so that the uniaxial tensile
response may be reproduced. We thus obtain, for the incremental plastic strains and strain gradients,

ε̇
p
i j =

3
2h

si j

6e
6̇e, χ̇

p
i j =

3
2h

l−1m j i

6e
6̇e. (31)

In view of the elastic incremental relations defined in Equation (24), the yield surface defined in (29),
and the plastic incremental parts defined in (31), one may readily find that the J2 flow version of the
[Fleck and Hutchinson 1993] strain gradient theory is fully recovered (see Equations (52), (53), (52a),
(52b), (52c) and (45) therein). This case can actually be termed an elastic-perfectly plastic gradient
material, as noted in [Ziegler and Wehrli 1987].

Suppose the principal deviator stresses and principal couple stresses are s1, s2, s3 and m1, m2, m3

respectively. Define

S(I )e =

√
(s2

1 + l−2m2
1) sgn(s1),

S(II )
e =

√
(s2

2 + l−2m2
2) sgn(s2),

S(III )
e =

√
(s2

3 + l−2m2
3) sgn(s3).

(32)

Obviously the yield locus defined by (29) is a circle with a radius
√

6B/3 in the π-plane defined by
S(I )e , S(II )

e and S(III )
e , as is shown in Figure 1. The scalar B serves here as a generalized yield stress

in tension, which is
√

3 times the generalized yield stress in pure shear. For the case being considered
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here, the dissipation stress space coincides with the true stress space so that the yield surfaces in the two
stress spaces are identical. Based on similar formulations for the above J2-flow theories with generalized
von Mises yield criteria, other yielding criteria such as Tresca and maximum tension failure can also be
formulated with ease, by defining different dissipation rate functions. For example, if we defined the rate
of dissipation function as

8̂= B
(∣∣γ̇ p

1

∣∣+ ∣∣γ̇ p
2

∣∣+ ∣∣γ̇ p
3

∣∣),
where γ̇ p

1 = ėp
1 + lω̇p

1 , γ̇ p
2 = ėp

2 + lω̇p
2 , γ̇ p

3 = ėp
3 + lω̇p

3 , and ėp
i and ω̇p

i (i = 1, 2, 3) are the principal
distortion strains and deviatoric curvatures. Denoting the principal deviator stresses and principal couple
stresses by s1, s2, s3 and m1, m2, m3, we have

si =
∂8̂

∂ ėp
i
=
∂8̂

∂γ̇
p

i

∂γ̇
p

i

∂ ėp
i
= B sgn

(
γ̇

p
i

)
,

mi =
∂8̂

∂ω̇
p
i
=
∂8̂

∂γ̇
p

i

∂γ̇
p

i

∂ω̇
p
i
= Bl sgn

(
γ̇

p
i

)
.

Adopting the same definition as in (32) and noting that sgn(si )= sgn(γ̇ p
i ), we have

S(I )e − S(II )
e = B

(
sgn(γ̇ p

1 )− sgn(γ̇ p
2 )
)
,

S(II )
e − S(III )

e = B
(
sgn(γ̇ p

2 )− sgn(γ̇ p
3 )
)
,

S(I )e − S(III )
e = B

(
sgn(γ̇ p

1 )− sgn(γ̇ p
3 )
)
.

The yield surface thus defined is obviously a generalized Tresca Hexagon. If B again serves as a
generalized yield stress in tension, in the π -plane defined by S(I )e , S(II )

e and S(III )
e , this hexagon circum-

scribes the generalized von Mises circle as shown in Figure 1. In this case B is twice the generalized
yield stress in pure shear, just as in the conventional Tresca condition.

Given the J2 flow version of strain gradient theory as listed above, the deformation version of strain
gradient theory of Fleck and Hutchinson [1993] may also be easily attained. In fact, if we assume that
the equivalent plastic strain has the form

ε̄e =

√
2
3ε

p
i jε

p
i j +

2
3 l2χ

p
i jχ

p
i j , (33)

the rate of dissipation function has the expression

8̂= B ˙̄εe.

One can easily verify that

si j =
∂8̂

∂ε̇
p
i j
=
∂8̂

∂ ˙̄εe

∂ε̄e

∂ε
p
i j
=

3
2

B
ε̄e
ε

p
i j ,

mi j =
∂8̂

∂χ̇
p

i j
=
∂8̂

∂ ˙̄εe

∂ε̄e

∂χ
p

i j
=

3
2

B
ε̄e

l2χ
p

i j ,
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Figure 1. Yield loci of (a) the generalized von Mises and (b) generalized Tresca
gradient-dependent materials in the π -plane.

where the coefficient B is actually equal to the generalized effective stress defined in Equation (30).
Thus the deformation version of strain gradient theory proposed by Fleck and Hutchinson [1993] is
again recovered.

For the J2 flow version of strain gradient theory just obtained, a generalized form of Drucker’s stability
postulate [Drucker 1951] has been suggested by Fleck and Hutchinson when h > 0:

σ̇i j ε̇
p
i j + ṁi j χ̇

p
i j ≥ 0.

This result was formerly developed by Koiter [1960] for phenomenological plasticity theories with
multiple yield functions, and by Hill [1966] in a more general form for a metal crystal deforming in
multislip. From a thermomechanical view, the above inequality actually implies the change of plastic
dissipative work is always pointing to the dissipating direction and this dissipative process is irreversible.
While the widely used normality law is justified by Drucker’s postulate, a more general stability postulate
that may cover the nonnormality case has been proposed by Ziegler and Wehrli [1987], which, if extended
to strain gradient theory, has the formulation

σ̇i j ε̇
i
i j + τ̇i jk η̇

i
i jk ≥ 0, (34)

where

ε̇i
i j =

(
∂2�

∂σi j∂ε
p
kl

)
ε̇

p
kl,

η̇i
i jk =

(
∂2�

∂τi jk∂η
p
lmn

)
η̇

p
lmn

may be termed as the irreversible strain rate and the irreversible strain gradient rate, respectively. Equation
(34) applies to coupled materials as well as decoupled materials.
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Case 2. B = 0.

As an extreme instance of Case 1, this case implies zero dissipation in the material. Consequently, no
plastic strains and strain gradients occur in the deformation, and

l = le, εi j = ε
e
i j , χi j = χ

e
i j .

The total constitutive behavior may be determined by the elastic relations in (24) only. This is similar
to the linear elastic strain gradient theory of [Mindlin 1964], where a higher-order elastic compliance
tensor of the sixth order, Mi jklmn , was defined to relate the higher-order elastic stress τlmn with elastic
strain gradient ηi jk , in the form ηi jk = Mi jklmnτlmn . Equation (24) in this condition may be regarded as a
special case of couple stress theory. For a general isotropic elastic case, the tensor Mi jklmn is dependent
on five material constants and has general symmetry of Mi jklmn = Mlmni jk [Mindlin 1964].

Case 3. A1 = 2, A2 = 0, and B is a nonnegative function to be specified.

In this case, ε p
i j is regarded as the only internal variable. Incompressible solids are considered to have

only the deviatoric stress si j contributing to the plastic work. χ p
i j does not explicitly enter the rate of

dissipation function as an independent internal variable. Instead, it is assumed to enter the coefficient
function B in accounting for the accumulated plastic strain gradient effects. In other words, though the
strain gradient may appear in the final constitutive formulations, no work-conjugate force is specified for
it. Consequently, the terms containing gradients in the free energy function will also be dropped and the
free-energy function in Equation (23) turns out to be

�= 1
2Ci jklσi jσkl .

Only the first equation in (24) remains valid, and it can be recast as

σ̇kl = C−1
i jkl i jkl

ε̇e
i j .

The rate of dissipation function defined in (25) becomes 8̂= B
(

A1(ε̇
p
i j ε̇

p
i j )
)1/2. And the dissipative stress

conjugate with ε̇ p
i j is

σ d
i j =

∂8̂

∂ε̇
p
i j
=

A1 B2

8̂
ε̇

p
i j . (35)

Hence the yield function in the dissipation stress space becomes

F =
√
(σ d

i jσ
d
i j )/A1− B = 0.

Here we have assumed that B is a nonnegative function related with the history of plastic strain and
plastic strain gradient. However, no rates of plastic strain and strain gradient are involved in B, so that
Equation (35) always holds true.

In this case, the dissipative stress σ d
i j coincides with the deviatoric stress si j . If the effective stress is

defined as
τ =

√
si j si j/2,

the yield function in the true stress presents the form

F = τ − B = 0. (36)
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Here B is further assumed to be of the form

B = τ0
(

f (γ p)r1 + g(`nηn)
r2 + k(γ0)

r3
)1/mr4, (37)

where τ0 is a measure of the hardening modulus in simple shear. f is a function of the effective plastic
strain γ p, and g is the measure of the effective plastic strain gradient η of any order, while k denotes a
function of the initial yield strain in shear γ0. The power n relates to the order of the gradient used to
represent η. If the first order gradient is used then n = 1. r1, r2, r3 and r4 are assumed as phenomenolog-
ical material constants (or interaction coefficients). This expression in (37) actually corresponds to an
extending form of the hardening law proposed by Voyiadjis and Abu Al-Rub [2005], where a function for
the initial yield stress is expressed in terms of the initial yield shear strain, which enters the bracket as a
function k. These authors have demonstrated this hardening law is not phenomenological but physically
based and is derived from a set of dislocation mechanics-based considerations. Variable internal length
scales instead of constant ones have also been used in the same reference in developing a strain gradient
plasticity model. However, most of the current strain gradient theories still retain the method of using
constant length scales, due to the simplicity and convenience that it affords.

Consequently, if we choose

r1 = r2 = r3 = 1, r4 = 1/m, f (γ p)= c0(γ
p)1/m,

g(`nηn)= c1`η+ c2`
2η2, with n = 2,

where c0 is a constant but c1 and c2 may depend on γ p, the gradient terms are expressed as

c1`η = c1`
∣∣∇γ p

∣∣= c1`
√
∇γ p · ∇γ p and c2`

2η2 = c2`
2
∇

2γ p,

where ∇ and ∇2 are the forward gradient and Laplacian operators respectively. As a result, the yield
function of (36) can be rewritten as

F = τ − τ0
(
h(γ0)+ c0(γ

p)1/m
+ c1`

∣∣∇γ p
∣∣+ c2`

2
∇

2γ p)
= 0. (38)

It is easy to prove that a yield function presenting a form of (38) may cover a family of Aifantis
and his coworkers’ gradient plasticity models, by appropriately simplifying the coefficients c0, c1 and
c2 [Aifantis 1984; 1987; Zbib and Aifantis 1988b; 1988a; Mühlhaus and Aifantis 1991 and references
therein].

Otherwise, if we adopt the parameters

r1 = r2 = r3 = 2, n = 1, r4 = 2/(3m), f (γ p)= c0(γ
p)1/m,

g(`nηn)= c1`α, h(γ0)= γ0,

where α =
√

2χ p
i jχ

p
i j =
√

2η, and c0 and c1 are constants, we obtained the yield surface

F = τ − τ0
(
(γ0)

2
+ c1(γ

p)2+ c1(`α)
2)3/2
= 0. (39)
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If the differential of strain gradients over γ p can be neglected, the consistency condition of Equation
(39) results in the instantaneous hardening rate:

h =
τ̇

γ̇ p = 3τ0c0γ
p((γ0)

2
+ c0(γ

p)2+ c1(`α)
2)1/2

. (40)

Or alternatively

h =
τ̇

γ̇ p = Gξ
(

1+
c1(`α/γ0)

2

1+ c0(γ p/γ0)2

)1/2

, (41)

where G = τ0/γ0 is the elastic shear modulus, and

ξ(γ p)= 3c0γ
p
√

1+ c0(γ p/γ0)2.

The hardening rate presented in Equation (41) shares a similarity with that proposed in [Acharya and
Bassani 1996; 2001, (13)]. Given the function ξ(γ p) in (41) is further generalized such that the power-
law based hardening rate in the latter reference may be included as a special case, in conjunction with
the elastic relations in (34b), the J2-flow theory of strain gradient plasticity formulated in both references
may be immediately recovered. Note that for crystal metals undergoing incompatible lattice distortion, as
stated in [Bassani 2001], the physical implications of the hardening rate present in (41) may be interpreted
as follows: the term in the numerator of the square bracket may be regarded to reflect the increase in
hardening due to incompatibility induced by Geometrically Necessary Dislocations (GNDs), while the
term in the denominator gives rise to a greater effect of incompatibility in the early stages of deformation
and approximately account for a significant initial density of GNDs.

A common difference between the gradient plasticity theories pioneered by Aifantis and coworkers
and other gradient theories such as those based on micromorphic, micropolar or second gradient continua
is that the description of the kinematics of the deformation at a given material point by the latter theories
is generally enriched by the introduction of the microdeformations along with a work-conjugate thermo-
dynamic quantity playing the role of a higher-order stress tensor. The introduction of these extra terms
into the equilibrium equations requires additional boundary conditions to be specified in the solution of
practical boundary value problems. While in the models based on gradient plasticity of Aifantis and
coworkers, the yield function, the flow rule and/or the dilatancy condition are assumed to depend on the
Laplacian of some suitable scalar measure of the accumulated plastic strain or a set of internal variables.
No higher-order stress tensors are introduced into the constitutive description. Comparisons of these
theories have been addressed in [Chambon et al. 2004].

4. Derivations of constitutive models for isotropic pressure-sensitive gradient-dependent
geomaterials

4.1. Yield functions in the dissipative stress space. As is well known, geomaterials are generally sensi-
tive to hydrostatic pressure. The failure modes of these materials are quite different for small stress level
and high mean compressive stresses. Under high hydrostatic pressure, they can yield and flow like metal
in such a way that if gradient effects are considered, the aforementioned generalized J2-flow theories
are capable of addressing them. However, in the low and intermediate compressive stress stage, the
failure criteria of geomaterials are sensitive to hydrostatic states of stress. The yield criteria described
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above are no longer adequate to address the plastic deformation process in this case, and thus pressure-
dependent failure models are required. Typical pressure-dependent conventional plasticity models are
the Mohr–Coulomb, Drucker–Prager and the critical-state Cam–Clay failure criteria. In considering
pressure-dependence, it is appropriate to let pressure-terms (typically the first invariants of stresses) enter
the dissipation function. As for gradient-dependent materials, here we only consider the first invariants
of Cauchy stress, neglecting the first invariant of higher-order stresses. This assumption is generally
acceptable and convenient for most geomaterials since, in most cases, the hydrostatic part for the Cauchy
stress is easily physically interpreted while that of the higher-order stress is not. In gradient theories, the
higher-order stress is frequently related with higher-order boundary traction. However, except in such
special cases as pure bending where only momentum force boundary conditions are imposed (in this case
the first invariant of couple stress is zero), physical meanings of other higher-order boundary tractions are
yet to be comprehended. Thus in the following formulations, only the first invariant of Cauchy stress is
considered whenever the explicit dependence of dissipation function on the true stresses is addressed. We
note that in this subsection, the influence of intermediate stress on the failure behavior or, alternatively,
on the Lode-dependence, is not considered, but will be addressed in next subsection.

In view of these assumptions, we consider the following general form for the pressure-dependent
dissipation function rate for gradient materials:

8̂= (B0+ B1 I1+ B2 I 2
1 )

1/2(A1(ε̇
p
i j ε̇

p
i j )+ A2(l2η̇

p
i jk η̇

p
i jk)
)1/2

, (42)

where I1 = σkk . A1, A2, B0, B1 and B2 are constants, where

A1 ≥ 0, A2 ≥ 0, B0 ≥ 0, B1 ≤ 0, B2 ≥ 0, |B1| ≥ 2
√

B0 B2.

It should also be noted that if A2 = 0 in (42), it is equivalent to the expression proposed by [Ziegler and
Wehrli 1987, Equation 7.11] for conventional pressure-sensitive materials without gradient effects. The
dissipative stresses may thus be obtained from (42) by

σ d
i j =

∂8̂

∂ε̇
p
i j
=

A1(B0+ B1 I1+ B2 I 2
1 )

8̂
ε̇

p
i j ,

τ d
i jk =

∂8̂

∂η̇
p
i jk
=

A2(B0+ B1 I1+ B2 I 2
1 )l

2

8̂
η̇

p
i jk .

(43)

Consequently, the following yield function in the dissipative stress space is obtained

F̃ =
(σ d

i jσ
d
i j )

A1
+
(l−2τ d

i jkτ
d
i jk)

A2
− (B0+ B1 I1+ B2 I 2

1 )= 0. (44)

For convenience, we assume further that A1 = A2 = 2/3, and we define the following generalized J2

and principal invariants:

J̃2 =
3
2(σ

d
i jσ

d
i j + l−2τ d

i jkτ
d
i jk), tII =

√
3
2

(
(σ d

II )
2+ l−2τ 2

II

)
,

tI =

√
3
2

(
(σ d

I )
2+ l−2τ 2

I

)
, tIII =

√
3
2

(
(σ d

III )
2+ l−2τ 2

III

)
.
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The following relations hold for the most general case.

I1 ≤
−B1−

√
B2

1 − 4B0 B2

2B2
. (45)

In the compound dissipative stress, Equation (44) describes a hyperboloid shape, whose axis is

tI = tII = tIII , I1 =
−

√
B2

1 − 4B0 B2− B1

2B2
. (46)

The intersection of this cone with the π -plane defined by tI , tII and tIII is a circle with radius√
B0+ B1 I1+ B2 I 2

1 ,

as shown in Figure 2, left. The longitudinal section of this hyperboloid cone, defined by I1/
√

3 and√
2 J̃2, by analogy to the traditional meridian plane for conventional models, is illustrated in Figure 2,

right. As a special case, if

B1 = − 2
√

B0 B2,

the yield surface (44) may be further rewritten as

F̃ =
3(σ d

i jσ
d
i j )

2
+

3(l−2τ d
i jkτ

d
i jk)

2
−
(√

B0−
√

B2 I1
)2
= 0, (47)

with I1 ≤
√

B0/B2. Equation (47) is actually a generalized Drucker–Prager criterion for the pressure-
sensitive gradient-dependent materials. It denotes a conoid-shaped cone in the compound dissipative
stress space, with a circle of radius √

B0−
√

B1 I1

in the intersected π -plane defined by tI , tII and tIII . The section in the meridian plane defined by I1/
√

3
and

√
2 J̃2 is two lines (Figure 2, right), which are intersected with the curves defined by (46) at J̃2 = B0.

Based on the generalized Drucker–Prager criterion in Equation (47), if it is further assumed that
B2 = 0, the generalized von Mises case as summarized in Section 3 will be recovered. This is a natural
consequence, since in conventional plasticity theories, the Drucker–Prager criterion is an extension of
von Mises generalized to the pressure-sensitive case. Based on (47), further simplifications may be made
by considering that B0 = 0, so the yield surface becomes

F̃ =
√

J̃2±
√

B2 I1 = 0. (48)

As a result, a generalized form of the cohesionless Coulomb criterion that cannot sustain tension is
obtained, which has a similar cone in the π -plane defined by tI , tII and tIII as the generalized Drucker–
Prager criterion and also two lines in the meridian plane, except that the corner of the two lines is located
at O ′ for (48) (Figure 2). Here

√
B2 acts as a frictional coefficient and may be regarded as

√
B2 = tanφ0,

where φ0 is the frictional angle of the material.
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(47)

(48)

(44)

Figure 2. Yield loci for the generalized pressure-sensitive gradient materials defined by
(47) (solid line), (48) (double dashed line) and (44) (dashed line) respectively. Left: view
in the π -plane defined by tI , tII and tIII . Right: view in the meridian plane.

4.2. Lode-angle-dependence of isotropic pressure-sensitive gradient materials. Experimental investi-
gations indicate that the third stress invariant of Cauchy stress affects significantly the behavior of pres-
sure sensitive materials, such that the mechanical behavior of geomaterials may be better described by a
Lode-angle-dependence relation. In conventional soil mechanics, this is attained by adding a function of
the Lode angle into the yield functions. To achieve this aim for pressure-sensitive gradient materials, we
will demonstrate in this section that Lode-angle-dependence may be easily manipulated by including the
Lode angle in the expression for the rate of dissipation function. Bardet [1990] has tried to generalize the
lode dependence for pressure-sensitive materials without gradient effects. In conventional soil mechanics,
the Lode angle ϑ is defined by

ϑ = −
1
3

arcsin
(

3
√

3
2

s3

J 3

)
, (49)

where s =
(
si j s jkski/3

)1/3, J =
(
si j si j/2

)1/2. ϑ varies between −π/6 and π/6. In line with the experi-
mental origin of Lode angle, including the influence of the deviatoric parts of higher-order stresses (e.g.,
incorporating the second invariant of higher-order stresses) into the definition of ϑ will be somewhat
misleading. Thus even in the presence of strain gradients, the definition for ϑ will not be modified, and
remains in form of (49). Accordingly, we use the general function of ϑ proposed by Eekelen [1980]

g(ϑ)= a(1+ b sin 3ϑ)−c,

where a, b and c are constants. By appropriately selecting values for a, b and c, a large variety of failure
criteria such as von Mises, Tresca, Mohr–Coulomb, Matsuoka and Nakai [1974] and Lade and Duncan
[1975] may be approximated.



STRAIN GRADIENT PLASTICITY FOR GEOMATERIALS 857

Starting from (42), it is assumed the rate of dissipation function is

8̂= (B0+ B1 I1+ B2 I 2
1 )

1/2g(ϑ)
(

A1(ε̇
p
i j ε̇

p
i j )+ A2(l2η̇

p
i jk η̇

p
i jk )

)1/2
. (50)

Repeating the derivation in last subsection one readily obtains various Lode-dependence criteria. As
an illustrative example, when B1 = − 2

√
B0 B2, a Lode-dependence generalized Drucker–Prager yield

surface in the compound dissipative stress space may be obtained, yielding

F̃ =
√

J̃2−
(√

B0−
√

B2 I1
)
g(ϑ)= 0. (51)

In the π-plane defined by tI , tII and tIII , the deviatoric curve for Equation (51) will depend on the
selection of g(ϑ). For example, when

a = sinφ0 (forφ0 the frictional angle),

b = 4a/3
√

3,

c = 0.25,

a generalized deviatoric curve like that of [Lade and Duncan 1975] is obtained. If, instead,

a = sinφ0,

b = 2a(3− a2)/3
√

3,

c = 0.25,

for Equation (45), we get a generalized deviatoric curve [Matsuoka and Nakai 1974]. When g(ϑ)= 1,
the generalized compression Drucker–Prager curve is obtained. These curves are compared in Figure 3.

Figure 3. Deviatoric curves for various generalized criteria for pressure-sensitive gradi-
ent geomaterials in the π-plane defined by tI , tII and tIII . (a) Generalized compression
Drucker–Prager criterion. (b) Generalized Lade–Duncan criterion. (c) Generalized Mat-
suoka and Nakai criterion.
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4.3. Example of a constitutive relation derivation for a particular case. To derive the constitutive rela-
tions, yield function, and flow rule in the true stress space for pressure-sensitive gradient geomaterials,
the free energy function must be specified. Without loss of generality, it is assumed here that the free-
energy function may be decoupled into an elastic part and a plastic part as in Equation (9). In particular,
we assume for the two parts the expressions

9e
=

1
2 De

i jklε
e
i jε

e
kl +

1
2 N e

i jklmnl−2ηe
i jmη

e
lkn,

9 p
=

1
2 D p

i jklε
p
i jε

p
kl +

1
2 N p

i jklmnl−2η
p
i jmη

p
lkn,

where

De
i jkl and D p

i jkl

are elastic and plasticity stiffness, while

N e
i jklmn and N p

i jklmn

are higher-order elastic and plasticity stiffness. The rate of dissipation function uses the special case
of (50) when B1 = − 2

√
B0 B2 so that the Lode-dependent generalized Drucker–Prager surface in the

dissipative stress space in (51) may be attained. In view of (11), it is readily found that the elastic
behavior of the material is governed by

σi j =
∂9e

∂εe
i j
= De

i jklε
e
kl, τi jk =

∂9e

∂ηe
i jk
= N e

i jmlknl−2ηe
lmn,

while the back stresses defined in (13) are

ρi j =
∂9 p

∂ε
p
i j
= D p

i jklε
p
kl, πi jk =

∂9 p

∂η
p
i jk
= N p

i jmlknl−2η
p
lkn.

In connection with Equations (12) and (51), the yield function in the true compound stress space of
σi j and τi jk is

F =
√

J̄2−
(√

B0−
√

B2 I1
)
g(ϑ)= 0,

where

J̄2 =
3
2

(
(σi j − ρi j )(σi j − ρi j )+ l−2(τi jk −πi jk)(τi jk −πi jk)

)
.

By analogy with Equation (43), normality relations hold in the dissipative stress space:

σ d
i j =

A1
(√

B0−
√

B2 I1
)2(g(ϑ))2

8̂
ε̇

p
i j ,

τ d
i jk =

A2
(√

B0−
√

B2 I1
)2(g(ϑ))2l2

8̂
η̇

p
i jk,
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where A1 = A2 = 2/3. Therefore, in considering (13), the plastic strain and plastic strain gradient
increments satisfy

ε̇
p
i j = 8̂

σi j − ρi j

A1
(√

B0−
√

B2 I1
)2(g(ϑ))2 ,

η̇
p
i jk = 8̂

l−2(τi jk −πi jk)

A2
(√

B0−
√

B2 I1
)2(g(ϑ))2 .

In combination with (21), the plastic multiplier may be determined, and thus the plastic incremental
relations are obtained. While differentiating the yield surface equation, attention should be paid to the
dependence of the Lode angle function g(ϑ) on the stresses. Thus far, the total constitutive relations for
the Lode-angle-dependence pressure-sensitive gradient material are derived from the free-energy function
and the rate of dissipation function.

5. Conclusions

Strain gradient plasticity constitutive models for gradient-dependent geomaterials can be constructed
systematically from two thermodynamical potentials via the thermomechanical approach. In this way,
the first and second thermodynamic laws are satisfied simultaneously, and yield surface in the dissipative
stress space as well as the true stress space may be attained without difficulty. Both associated and
nonassociated flow rule can be achieved. Appropriate selection of free-energy function and dissipation
rate function makes it possible to recover a large range of strain gradient plasticity models proposed
in the literature. In the framework of strain gradient theory, the flexibility of defining dissipation rate
functions makes it easy to account for special features associated with geomaterials, such as pressure-
sensitivity and Lode-angle dependency. Various failure criteria in geomechanics, such as those of von
Mises, Tresca, Drucker–Prager, Coulomb, Lade–Duncan and Matsuoka–Nakai, have been generalized
to include the strain gradient effects. Further extension of the obtained formulation to other criteria,
such as critical state models, may also be obtained with relative ease. Further investigation will be
directed towards incorporating the coupling between plasticity and damage for a range of geomaterials,
like quasibrittle rocks, within the framework of strain gradient theory and thermomechanics. It is also
noted that, regarding the numerical implementations of the gradient-dependent models developed from
the current framework, some of the existing finite element methods proposed for strain gradient plasticity
can be used and there is no need to develop new algorithms [Shu et al. 1999; Zervos et al. 2001; Abu
Al-Rub and Voyiadjis 2005].
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THE EFFECT OF CONTACT CONDITIONS AND MATERIAL PROPERTIES ON
ELASTIC-PLASTIC SPHERICAL CONTACT

VICTOR BRIZMER, YUVAL ZAIT, YURI KLIGERMAN AND IZHAK ETSION

The elastic-plastic contact between a sphere and rigid flat is analyzed under perfect slip and full stick
conditions for a wide range of the sphere mechanical properties. The analysis provides comparison of
the contact load, contact area and distribution of the contact pressure for these two contact conditions. It
is found that the contact conditions and mechanical properties have little effect on the global contact
parameters. However, the evolution of the plastic zone with increasing interference is substantially
different for contacts under perfect slip or full stick conditions.

Nomenclature

a = contact area radius

ac = critical contact area radius:
√

Rωc in slip,
√

Rδc in stick

A = contact area

Ac = critical contact area: πRωc in slip, πRδc in stick

A∗ = A/πRωc in slip, A/πRδc in stick

Cν = pmc/Y0 = 1.234+ 1.256ν

E = Young’s modulus of the sphere

ET = tangent modulus of the sphere

Lc = critical load in stick

p = contact pressure

pav = average contact pressure, P/A

pavc = critical average pressure in slip, (2/3)pmc

pmc = critical maximum pressure in slip

P = load

Pc = critical load in slip

P∗ = P/Pc in slip, P/Lc in stick

R = radius of the sphere

Y0 = virgin yield strength of the sphere

z0 = location of yielding inception

Keywords: spherical contact, contact conditions, elastic-plastic contact.
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δc = critical interference in stick

ν = Poisson’s ratio of the sphere

ω = interference

ωc = critical interference in slip

ω∗ = ω/ωc in slip, ω/δc in stick

ωt = transition interference, at which the plastic region first reaches the sphere surface

ω∗t = ωt/ωc in slip, ωt/δc in stick

ζ0 = dimensionless yielding inception depth, z0/a

ζ ∗0 = yielding inception depth ratio (stick over slip).

1. Introduction

The elastic-plastic contact of a deformable sphere and a rigid flat is a primary problem in contact me-
chanics with important scientific and technological aspects. The subject stems from the classical work of
Hertz in 1881, who derived an analytical solution for the frictionless (that is, perfect slip) elastic contact
of two spheres [Johnson 1985]. The stress field associated with elastic spherical contact was calculated in
detail by Huber in 1904 [Fischer-Cripps 2000]. These pioneering works were extended in the following
years to expand the frictionless contact into the elastic plastic regime, and to include frictional contact.

Chang et al. [1987] developed a model (CEB model) for the elastic-plastic contact between rough
surfaces, which was based on analyzing the contact between a single sphere and a rigid flat under perfect
slip condition. According to this model the sphere remains elastic, and hence the theory of Hertz holds
until a certain critical interference at which yielding inception in the sphere is reached. Above the critical
interference volume conservation of the sphere summit is imposed while the contact pressure distribution
is assumed uniform and equal to the maximum pressure at the yielding inception. This simplified model
resulted in a discontinuity in the contact load and in the derivative of the contact area with respect to the
interference at the transition from elastic to elastic-plastic regime. Several modifications of the original
CEB model were suggested [Evseev et al. 1991; Chang 1997; Zhao et al. 2000] in order to smooth the
transition from the elastic to plastic regime, However, all these modifications are purely mathematical
manipulations without any physical basis. Mesarovic and Fleck [2000] analyzed the problem of a normal
frictionless contact between two dissimilar spheres. They studied the effect of material strain-hardening
and the geometrical and mechanical dissimilarity of the spheres on the contact parameters and on the
regime of deformation. Kogut and Etsion [2002] used a finite element method to study numerically the
evolution of the plastic zone in elastic-plastic contact between a sphere and a rigid flat under perfect
slip condition. They provided convenient dimensionless expressions for the contact load, contact area
and mean contact pressure, covering a wide range of interferences for a single value of the Poisson’s
ratio (ν = 0.3). Similar results were then obtained by Quicksall et al. [2004] and Jackson and Green
[2005]. Etsion et al. [2005] studied the process of loading-unloading of an elastic-plastic loaded sphere
in contact with a rigid flat under perfect slip condition. They calculated the contact load, stresses and
deformations in the sphere during both loading and unloading, for a wide range of interferences and
several combinations of material properties.
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The first analytical solution of the elastic spherical contact problem under full stick condition is by
Goodman [1962]. Goodman found a simplified solution for the tangential stress distribution over the
contact area of two dissimilar elastic spheres. The effect of these tangential stresses on the normal
displacements was neglected, so that the pressure distribution over the contact area was assumed to be
Hertzian. A more exact analysis of the elastic spherical contact under full stick contact condition was
performed by Spence [1968] who solved simultaneously the dual integral equations for shear stresses
and pressure distribution over the contact area and calculated the total compressive load. It follows
from Spence’s results that for small values of Poisson’s ratio, the influence of the shear stresses on the
contact load is appreciable. Spence [1975] extended his previous analysis to the case of partial stick
using a certain value of friction coefficient. Hills and Sackfield [1987] presented a complete picture of
the stress distribution in the elastic spherical contact under full and partial stick contact conditions, using
the assumptions of [Goodman 1962]. Kosior et al. [1999] analyzed an elastic spherical contact under
partial slip condition (with a finite Coulomb friction) using a domain decomposition method coupled
with a boundary element method. They calculated stress distribution, contact radius and displacement as
functions of the sphere mechanical properties. Their results were in good agreement with the analytical
solution of Spence [1975]. Mesarovic and Fleck [1999] studied numerically the problem of spherical
indentation of a rigid sphere into an elastic-plastic half-space under perfect slip and full stick conditions.
They investigated the effect of contact conditions and material strain-hardening on the contact parameters
and on the regime of deformation. Brizmer et al. [2006] studied the influence of the two different contact
conditions (full stick vs. perfect slip) and material properties on the elasticity terminus of a contact
between a smooth elastic sphere and rigid flat. The plastic yield inception of ductile materials and the
failure inception of brittle materials were studied separately.

From the above introduction it can be seen that most of the existing literature on elastic-plastic spher-
ical contact concerns perfect slip condition while full stick condition is mostly limited to elastic contact.
Moreover, an accurate study of the effect of the sphere mechanical properties on the contact parameters,
such as contact load and contact area, and on the evolution of the plastic zone with increasing interference,
is still missing. Since a realistic elastic-plastic contact of a sphere and flat may be far from the ideal
assumption of perfect slip, it seems appropriate to analyze the problem of spherical contact under stick
condition for different material properties, and to compare the results with the corresponding solutions
of perfect slip.

2. Theoretical background

Figure 1 presents a deformable sphere in contact with a rigid flat. The solid and dashed lines show
the contours of the contacting bodies after and before the loading. The inner solid contour of the
deformed sphere shown in Figure 1 corresponds to relatively low values of Poisson’s ratio (that is, a
compressible material), when the volume of the sphere diminishes under compressive loading. For high
values of Poisson’s ratio (that is, a nearly incompressible material) the volume of the sphere remains
almost constant during the deformation. For conservation of volume, the points of the sphere will tend
to move outwards rather than inwards in the radial direction (the outer solid contour in Figure 1). Two
different types of the contact conditions are analyzed in the present work: perfect slip and full stick. The
former case assumes no tangential stresses in the contact area. The latter case implies that corresponding
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Figure 1. Model of a deformable sphere in contact with a rigid flat.

points of the sphere and the flat (which initially laid outside the contact area and were free to acquire
a relative displacement) that are overtaken by the expanding contact zone, are prevented from further
relative displacement [Johnson et al. 1973]. The perfect slip assumption, although not describing a
general realistic contact condition, allows a relatively simple analytical solution in the elastic regime
and can be considered as a limiting case. The full stick assumption, on the other hand, is more realistic
when considering the junction formed in the interface of contacting bodies [Tabor 1959]. In this case the
stress field and yielding criterion at the junction interface obey material constitutive laws. This approach
is different from previous frictional contact solutions (for example, [Spence 1975]) where partial slip is
obtained when a certain local Coulomb friction law is assumed.

The contact area, its radius a, and interference ω (see Equation (1)) correspond to a contact load P .
The material of the sphere is assumed to be elastic-isotropic linear hardening [Etsion et al. 2005].

Since the problem is axisymmetric, it is sufficient to consider only half of the axisymmetric hemisphere
section, as shown in Figure 1. The boundary conditions consist of constraints in the vertical and radial
directions at the bottom of the hemisphere and in the radial direction at the axis of symmetry (see
Equation (1)). The surface of the sphere is free elsewhere except for tractions imposed by the contacting
rigid flat.

The critical interference ωc or δc at yielding inception in perfect slip or in full stick, respectively, and
their corresponding values of the critical loads, Pc and Lc, were given by Brizmer et al. [2006] in the
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form:

ωc =

(
Cν
π(1− ν2)

2

(
Y0

E

))2

R (1)

δc/ωc = 6.82ν− 7.83(ν2
+ 0.0586) (2)

Pc =
π3Y0

6
C3
ν

(
R(1− ν2)

(
Y0

E

))2

(3)

Lc/Pc = 8.88ν− 10.13(ν2
+ 0.089). (4)

In Equations (1) and (3), Cν = 1.234+1.256 ν is the maximum dimensionless contact pressure at yielding
inception in slip, pmc/Y0. The parameters Y0, E , and ν are the virgin yield stress, the Young modulus,
and the Poisson’s ratio of the sphere material, respectively. Equations (1) and (3) for the perfect slip
were obtained analytically, using the Hertz solution [Johnson 1985] and applying the von Mises yield
criterion. Equations (2) and (4), corresponding to the full stick condition, were derived numerically.

The critical value of the contact area, corresponding to yield inception for slip contact condition
follows from Hertz solution [Johnson 1985]:

Ac = πωc R (5)

and for stick, as was found in [Brizmer et al. 2006]:

Ac = πδc R. (6)

The dimensionless yielding inception depth in perfect slip, ζ0, and the ratio of yielding inception depth
in stick over that in slip, ζ ∗0 , are [Brizmer et al. 2006]:

ζ0 = z0/a = 0.381+ ν/3 (7)

ζ ∗0 = 0, ν ≤ 0.26;

ζ ∗0 = 1.54(ν− 0.26)0.294, 0.26< ν ≤ 0.5;
(8)

where z0 is the yielding inception depth in perfect slip.

3. Finite elements model

The loading of an elastic-plastic contact is a complicated problem. To avoid oversimplifications, this
contact problem was solved numerically, by a finite element method using the commercial package AN-
SYS 8.0. The mesh consisted of 8,800 six-node triangular axisymmetric elements (Plane2) comprising
a total of 29,277 nodes. The sphere was divided into three different mesh density zones (see Figure 2),
where zones I and II were within 0.015R and 0.1R, respectively, from the sphere summit, and zone III
outside the 0.1R distance. Zone I had the finest mesh and the other zones had a gradually coarser mesh at
increasing distance from the sphere summit. The sphere surface consisted of contact elements (Conta172)
that matched the size of the elements in each zone. The rigid flat was modeled by a single nonflexible
element (Targe169). The material of the sphere was assumed elastic linear isotropic hardening with a
tangent modulus, ET , that was selected as 2% of the Young modulus E , which is an upper limit of many
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Figure 2. The finite elements model.

practical materials, see, for example, [Carmichael 1955]. This linear isotropic hardening significantly
improves convergence compared to an elastic perfectly plastic material without causing much change
(less than 2.5%) in the results. Hence, this hardening enables comparison with existing results for per-
fect slip condition, such as those in [Kogut and Etsion 2002], yet provides a better convergence of the
numerical solution. The von Mises yielding criterion was used to detect local transition from elastic
to plastic deformation, and Hooke’s and the Prandtl–Reuss’ constitutive laws governed the stress-strain
relations in the elastic and plastic zones, respectively. A nonlinear finite deformation definition was used
to allow large interferences (up to ω∗ = 110).

To verify the accuracy of the finite element model, results for purely elastic contact under perfect slip
condition were tested against the Hertz solution. The correlations of the contact load and contact area
were within 1% and 3%, respectively. Another check was done at high interferences in full stick and
in perfect slip by increasing the mesh density and ensuring convergence of the results within a small
pre-defined tolerance. Typical computation times on a 1.6 GHz PC were about 2–3 minutes for small,
and 10–15 minutes for large interferences.
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4. Results and discussion

The effects of the contact conditions (full stick vs. perfect slip), and of the material properties on the
contact load and contact area were investigated in the present work over a wide range of dimensionless
interferences from elastic to full plastic contact 0.25 ≤ ω∗ ≤ 110 (here ω∗ is ω/ωc in slip and ω/δc

in stick). Three different values of Poisson’s ratio typical for ductile metals, 0.25, 0.35 and 0.45, were
selected in the present analysis along with three values of the ratio E/Y0: 500, 1000 and 2000. Each
combination of the material properties was examined over the full range of interferences.

The results for the dimensionless contact load and contact area in slip as functions of ω∗ in the elastic
regime, ω∗ < 1, were found identical to the Hertz solution, as would be expected. The results of the
contact area in stick were found to be identical to those in slip. From the Hertz solution A = πRω ,
hence, from the definition of the critical areas in slip and stick in Equations (5) and (6), respectively,
it is clear that A∗ = A/Ac = ω

∗ in both stick and slip regardless of the Poisson’s ratio. The results of
the contact load, P∗, in stick (P/Lc) were found very similar to these in slip (P/Pc) particularly at an
increasing Poisson’s ratio. The diminishing difference between the contact load P∗ in stick and slip with
an increasing Poisson’s ratio is attributed to the increasing material incompressibility. This can be seen,
at least for the elastic regime, from the Hertz solution for the radial displacement, ur , of the sphere points
at the contact area:

ur (r, ν)= f (r) · (1− 2ν)(1+ ν), (9)

where f (r) is a certain function of the radial coordinate, the radius of the contact area and the Young’s
modulus of the sphere. From Equation (9) it is clear that a higher Poisson’s ratio results in lower relative
displacements between the sphere and the flat in slip, making the slip condition closer to the zero relative
displacements in stick condition.

In the elastic-plastic regime, ω∗ > 1, the numerical results for the dimensionless contact area A∗ and
contact load P∗ as functions of ω∗ were again very similar in stick and in slip. These results were best
fitted and have the following forms:

A∗ = ω∗
(

1+ exp
( 1

1− (ω∗)α

))
, (10)

P∗ = (ω∗)3/2
(

1− exp
( 1

1− (ω∗)β

))
, (11)

where α and β are linear functions of the Poisson’s ratio:

α = 0.25+ 0.125ν; β = 0.174+ 0.08ν.

The approximate expressions in Equations (10) and (11) for A∗ and P∗ describe the numerical FEM
results with an average difference of 4% in A∗ and 2% in P∗.

From Equation (10) it can be seen that for ω∗ slightly larger than one (that is, just after the yielding
inception), A∗ approaches ω∗, in agreement with the elastic solution of Hertz. On the other hand, for large
values of ω∗, A∗ approaches 2ω∗, i.e. the approximate fully plastic solution of [Abbott and Firestone
1933]. Equation (11) gives P∗ ≈ (ω∗)3/2 for ω∗ slightly larger than 1, which is in agreement with
Hertz solution. These results compare favorably with the relevant dimensionless expressions presented
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Figure 3. The effect of dimensionless interference on the dimensionless contact pres-
sure distribution, p/Y0, in slip and in stick, for a typical case of ν = 0.3.

in [Kogut and Etsion 2002] (the KE model) and in [Etsion et al. 2005] for ν = 0.3, and slip condition for
elastic perfectly plastic and for elastic linear hardening materials, respectively.

Equations (10) and (11) suggest that normalizing the results for the contact area and contact load by
their appropriate critical values at yielding inception for either slip or stick (see Equations (1) to (6))
as given by [Brizmer et al. 2006], provides, for ductile materials, a powerful universal solution for the
elastic-plastic contact problem in both stick and slip where an analytical solution is impossible. It extends
the classical Hertz solution into the elastic-plastic regime while providing a physical insight of the main
dimensionless parameters affecting this contact problem in both slip and stick.

It can be seen from Equations (10) and (11) that the ratio E/Y0 has no effect on the results for a
given dimensionless interference ω∗ in both stick and slip, while the Poisson’s ratio has little effect on
the dimensionless contact area and contact load. It is also evident that isotropic linear hardening has
negligible effect on the results compared to elastic perfectly plastic behavior.

The effect of the contact conditions on the contact pressure distribution, p/Y0, at the contact area for
a typical case ν = 0.3 is shown in Figure 3. The solid and dashed lines correspond to full stick and
perfect slip, respectively. It can be seen that the two contact conditions yield very similar results for the
full range of interferences with pressures in slip slightly higher than in stick, at least for ω∗ ≤ 25. This
seemingly counterintuitive result is due to the fact that the critical interference in stick δc is significantly
less than ωc in slip (e.g. δc/ωc ≈ 0.88 for ν = 0.3, see Equation (2)). Hence, the pressure distributions in
slip correspond to dimensional interference, ω, that is 12% higher than the dimensional interference in
stick for a given value of ω∗. In other words, the pressure in slip would be somewhat lower than that in
stick for the same dimensional interference. Recalling that the contact area depends on the interference
(same contact area for same ω in both slip and stick), the results in Figure 3 are in agreement with the
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Figure 4. The effect of the Poisson’s ratio on the dimensionless contact pressure distri-
bution in slip and in stick for the case of ω∗ = 6.

observation (see, for example, [Johnson 1985, p. 123]) that “friction can increase the total load required
to produce a contact of given size by at most 5% compared with Hertz”.

The effect of the Poisson’s ratio on contact pressure distribution in slip and in stick is shown in Figure 4
for the case of ω∗= 6. It can be seen that a higher Poisson’s ratio results in higher contact pressure for this
dimensionless interference in both slip and stick. This is attributed to the fact that at a higher Poisson’s
ratio, the material is less compressible and so higher pressure is required to deform it. For the case of
ν = 0.45 where the critical interferences in stick and slip are almost identical, as in Equation (2) (ω values
in stick and in slip are equal), the solid and dashed lines coincide, that is, the pressure distributions in
slip and in stick are almost identical. On the other hand, for ν = 0.25 where δc/ωc ≈ 0.76 (see Equation
(2)) the dimensional interference, ω, in slip for a given value of ω∗ is larger than that in stick causing the
pressure distribution in slip to be slightly higher than that in stick.

The dimensionless average contact pressure, pav/Y0, vs. the dimensionless interference, ω∗, in slip
has the form (see Equations (1), (3), and (5) and the definition of Cν):(

pav

Y0

)
slip
=

P
AY0
=

P∗

A∗
·

Pc

πωc RY0
=

P∗

A∗
·

pavc

Y0
, (12)

while in stick: (
pav

Y0

)
stick
=

P∗

A∗
·

Lc

πδc RY0
=

P∗

A∗
·

pavc

Y0
·
(Lc/Pc)

(δc/ωc)
, (12a)
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Figure 5. The dimensionless average contact pressure pav/Y0 vs. the dimensionless interference.

where the dimensionless parameters: pavc/Y0, Lc/Pc and δc/ωc are known functions of ν (see Nomen-
clature and Equations (2) and (4)). From Equations (12) and (12a) we have:

(pav)slip

(pav)stick
=
δc/ωc

Lc/Pc
. (13)

By using Equations (2) and (4) it can easily be shown that for ν = 0.25, the ratio of the average contact
pressures, slip over stick, in Equation (13) is 1.1, while for ν ≥ 0.3 it is very close to a unity. Hence, like
the dimensionless contact area and contact load (Equations (10) and (11)), the average contact pressures
in stick and in slip are very similar and can also be properly normalized by their critical values.

Substituting A∗ and P∗ from Equations (10) and (11), respectively, into Equation (12) or (12a) yields
the dimensionless average pressure in stick or in slip as a function of ω∗ and ν. The results are presented
in Figure 5 along with the numerical FEM results showing a very good agreement with an average
difference of 4%. It was found that Equations (12) or (12a) can also be well approximated by the simpler
form:

pav

Y0
= (ω∗)1/2 · tanh

(
1

2
(
(ω∗)γ − 1

)) · pavc

Y0
, (14)

where
γ = 0.2+ 0.06ν,

without any loss of accuracy. It can be easily seen that for ω∗ slightly larger than 1, pav/pavc = (ω
∗)1/2,

which is in agreement with the Hertz solution.
From Figure 5 it can be seen that the average contact pressure increases sharply up to an interference

that is about 10ω∗. From there on the rate of increase of the average pressure diminishes, and at about
110ω∗ the average pressure reaches a value that varies from 2.73Y0 for ν = 0.25 to 3.28Y0 for ν = 0.45.
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Figure 6. The early evolution of the plastic region for small values of the dimensionless
interference in stick at different values of the Poisson’s ratio (a)–(c) in comparison with
that in slip for 0.25≤ ν ≤ 0.45 (d).

The higher average contact pressure at larger Poisson’s ratios is due to the reduced compressibility as
shown in Figure 4. The results in Figure 5 are in good agreement (within 5%) with [Kogut and Etsion
2002] where a value of 2.8Y0 was found for ν = 0.3. A similar effect of the Poisson’s ratio on the
hardness was found by Kogut and Komvopoulos [2004] for indentation and Jackson and Green [2005].
In these two references a reduction in pav/Y0 was observed for very large interferences corresponding
to a/R values in access of 0.1. Our analysis is limited to a/R < 0.05.

The early evolution of the plastic region for small dimensionless interferences (ω∗ ≤ 8) within the
sphere tip is presented in Figure 6. As we see, the Poisson’s ratio has a large effect on the early evolution
of the plastic region under full stick condition (see Figure 6a–c). On the other hand it was found that
under slip condition the Poisson’s ratio effect is negligible. Hence, for slip condition just one typical
case for the range 0.25≤ ν ≤ 0.45 is presented in Figure 6d. The differences in the early evolution of the
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plastic region between stick and slip are in good agreement with the results of [Brizmer et al. 2006] for
the yielding inception depth that was found highly dependent on the Poisson’s ratio in stick, but almost
unaffected by it in slip (see Equations (7) and (8). Another interesting difference between stick and slip
concerns the existence of an elastic core close to the contact interface. This core is completely missing
in Figure 6a, it has an annular shape in Figure 6b, and is continuous over a central portion of the contact
area in Figures 6c and 6d. Further numerical simulations in the range 0.3 ≤ ν ≤ 0.4 revealed that this
elastic core (that is, the elastic zone at the very top of the sphere surrounded by the expending plastic
region), which persists up to relatively high values of ω∗ in slip [Kogut and Etsion 2002], is completely
missing in stick when ν < 0.35. As can further be seen from Figure 6c, d the early evolution of the
plastic region in stick for a Poisson’s ratio of 0.45 is similar to that in slip.

The transition interference, ω∗t , at which the evolving plastic zone first reaches the surface of the
sphere is also very different in stick and in slip. This can be seen from Figures 6a–d, and more clearly
from Figure 7. From this figure we see that in slip, ω∗t varies linearly from 6 to 8 over the entire range
of the Poisson’s ratio. In stick, on the other hand, when ν ≤ 0.26 the plastic zone starts at the contact
interface (see Equation (8) hence, ω∗t = 1. As the Poisson’s ratio increases the transition interference,
ω∗t , in stick increases too, first moderately until ν = 0.35, then very rapidly until ν = 0.39, and finally
as ν approaches 0.45 the transition interference in stick approaches that in slip. The higher values of
ω∗t in slip compared to stick, as shown in Figure 7, are due to the deeper location of yielding inception
under the former contact condition (see Equations (7) and (8)), which requires more deformation for the
plastic zone to reach the sphere surface. Also, at Poisson’s ratios below 0.35 in stick, the plastic region
first reaches the sphere surface at the center of the contact area even when incepting slightly below it
(see Figures 6a and b). In slip this event starts close to the circumference of the contact area (see also
[Kogut and Etsion 2002]) at a much longer distance from the point of yield inception and thus requires
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Figure 8. Typical evolution of the plastic zone for high values of the dimensionless
interference for 0.25≤ ν ≤ 0.45, showing identical behavior in stick and slip.

larger interferences. The sharp increase of ω∗t in stick observed above ν = 0.35 can be explained by the
appearance of the annular elastic core (see Figure 6b) that extends towards the center of the contact area
with further increases of the Poisson’s ratio (Figure 6c), blocking the upward advancement of the plastic
zone front and forcing it radially out, similarly to the behavior in slip.

The evolution of the plastic zone for dimensionless interferences higher than 15 is shown in Figure
8. As can be seen the differences between stick and slip conditions disappear and the plastic zone
becomes identical regardless of the Poisson’s ratio. The reason for this identical behavior is that at higher
interferences with increasing size of the plastic zone, the different historical location of the yielding
inception and the development of the elastic core in stick and slip become insignificant.

5. Conclusion

The effects of contact condition (perfect slip or full stick) and material properties on elastic-plastic nor-
mally loaded spherical contact were investigated for a large range of interferences. The results for the
dimensionless contact area, contact load and average contact pressure were found to be almost insensi-
tive to the contact condition, independent of the ratios E/Y0 and ET /E and of the sphere radius, and
slightly affected by the Poisson’s ratio. The numerical results were approximated by simple empirical
expressions based on realistic physical behavior. It was shown that normalizing the various parameters
by their corresponding critical values at yielding inception provides a powerful general solution for the
contact problem that is valid under both perfect slip and full stick conditions. Unlike the global contact
parameters, the early evolution of the plastic zone in the contact region is very much affected by Poisson’s
ratio mainly under stick contact condition. Up to about ν = 0.4 this evolution in stick is also very different
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from the evolution in slip. At higher values of the Poisson’s ratio the behavior in stick becomes very
similar to that in slip. As the dimensionless interference increases and the plastic zone continues to
expand, the differences between stick and slip diminish for the full range of Poisson’s ratio.
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ASYMPTOTIC FIELDS AT FRICTIONLESS AND FRICTIONAL COHESIVE
CRACK TIPS IN QUASIBRITTLE MATERIALS

QIZHI XIAO AND BHUSHAN LAL KARIHALOO

The lack of any work on the asymptotic fields at the tips of cohesive cracks belies the widespread use of
cohesive crack models. This study is concerned with the solution of asymptotic fields at cohesive crack
tips in quasibrittle materials. Only normal cohesive separation is considered, but the effect of Coulomb
friction on the cohesive crack faces is studied. The special case of a pure mode I cohesive crack is fully
investigated. The solution is valid for any separation law that can be expressed in a special polynomial
form. It is shown that many commonly used separation laws of quasibrittle materials, for example,
rectangular, linear, bilinear, and exponential, can be easily expressed in this form. The asymptotic fields
obtained can be used as enrichment functions in the extended/generalized finite element method at the
tip of long cohesive cracks, as well as short branches/kinks.

1. Introduction

Cohesive zone (or crack) models, which were introduced by Barenblatt [1962] and Dugdale [1960]
for elastoplastic fracture in ductile metals, and by Hillerborg et al. [1976] for quasibrittle materials (who
called them fictitious crack models), have become an important tool for describing localization and failure
in engineering materials and structures. In a cohesive zone model, the nonlinear fracture process zone —
due to degrading mechanisms such as plastic microvoiding or microcracking — in front of the actual
crack tip is lumped into a discrete line (two-dimensional) or plane (three-dimensional) and represented
by stress-displacement relationships across this line or plane. The cohesive crack model is a constitutive
assumption in the sense that a cohesive crack can develop anywhere in a specimen or a structure, and
not only ahead of a preexisting crack tip. For ductile fracture, the most important parameters of the
cohesive zone model are the tensile strength ft and the work of separation or fracture energy Gc (see,
[Hutchinson and Evans 2000]), which is the work needed to create a unit area of a fully developed crack.
For quasibrittle fracture, the decohesion law stems from microcracking as in concrete or ceramics; the
shape of the stress-separation relation (called the softening or stress-crack opening or tension-softening
curve) plays a much bigger role and is sometimes even more important than the value of the tensile
strength ft (see [Chandra et al. 2002]).

Elices et al. [2002] have reviewed the background of cohesive crack models and discussed the deter-
mination of the tension-softening function by inverse analysis procedures. They also illustrated the pre-
dictive capability of the cohesive zone model for concrete, glassy polymer and steel. Recently, Karihaloo
et al. [2003] have proposed a simple method for determining the true specific fracture energy of concrete
and also a method [Abdalla and Karihaloo 2004] for constructing a softening curve corresponding to
this energy. In the most widely used standard formulation of the cohesive crack model for quasibrittle

Keywords: asymptotic field, cohesive crack tip, Coulomb friction, quasibrittle material, cohesion-separation laws.
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materials, it is assumed that the stress-strain behavior is isotropic linear elastic, and that the crack is
initiated at a point where the maximum principal stress σI reaches the tensile strength ft , and that the
crack is oriented normal to the direction of σI . An evolution law is also postulated for the monotonic
mode I loading so that the cohesive stress is a unique function of the crack opening which, for concrete,
decreases monotonically along the cohesive zone. Although this standard formulation of the cohesive
crack model is highly simplified, it is able to capture the essence of fracture of concrete specimens and
structures.

A concise overview of the various ways to implement numerically the cohesive zone methodology
is given in [de Borst et al. 2004]. The recently developed extended/generalized finite element method
(XFEM/GFEM) (see [Moës et al. 1999; Strouboulis et al. 2001; Babuška et al. 2003; Karihaloo and
Xiao 2003b; Xiao and Karihaloo 2005]) provides a proper representation of the discrete character of
cohesive zone formulations avoiding any mesh bias. The XFEM/GFEM enriches the standard local FE
approximations with known information about the problem, such as a displacement discontinuity across
a crack, the asymptotic solution at a crack tip, or a strain discontinuity across an interface, with the use of
the partition of unity (PU). It avoids meshes conforming with the discontinuity and adaptive remeshing as
the discontinuity grows as is the case with the FEM. Wells and Sluys [2001], Moës and Belytschko [2002]
and Hansbo and Hansbo [2004] analyzed a continuous cohesive crack that runs through an existing FE
mesh. Remmers et al. [2003] further studied the possibility of defining cohesive segments that can arise at
arbitrary locations and in arbitrary directions and thus allow for the resolution of complex crack patterns
including crack nucleation at multiple locations, followed by growth and coalescence. In these existing
XFEM/GFEM implementations of the cohesive zone, the enrichment function used at the cohesive crack
tip is usually a jump function (cohesive crack tip touches the element boundary) [Wells and Sluys 2001]
or a branch function [Moës and Belytschko 2002] which does not represent the true asymptotic nature
of the displacement/stress field there. (Hansbo and Hansbo [2004] considered an element traversed
by a discontinuity as a double element with each being used for the interpolation of one side of the
discontinuity). Recently, Xiao and Karihaloo [2005] have demonstrated that, for a crack with traction-
free faces, when the crack tip asymptotic field is available and used as an enrichment function, the
XFEM/GFEM not only avoids using a mesh conforming with the crack but is also more accurate than
FEM. However, it is necessary to ensure that the unknown coefficients of the crack tip field at all the
enriched nodes are equal to one another. Hence XFEM/GFEM can use a much coarser mesh around the
crack tip. However, when the enrichment function does not represent the true asymptotic nature of the
crack tip field, the mesh needs to be refined in the same manner as in the FEM. Thus it is advantageous
to know the true asymptotic fields around a cohesive crack tip.

Planas et al. [2003] discussed possible generalizations of the cohesive crack model to mixed mode.
Many other studies on mixed mode cohesive cracks can also be found in the literature, for example,
[Valente 1991; Cocchetti et al. 2002], but there is doubt about the accuracy of the cohesion-sliding
relation because it is difficult to isolate it from frictional forces between the rough cohesive crack faces
in quasibrittle materials such as concrete.

Coulomb friction along the contacting crack faces has been considered by many researchers. Deng
[1994] studied the plane strain/stress asymptotic crack tip fields of stationary and steadily moving cracks
along bimaterial interfaces and in homogeneous solids. He considered both anisotropic and isotropic
solids. Leblond and Frelat [2004] studied crack kinking from an initially closed, homogeneous or
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interface crack, in the presence of Coulomb friction. Bialas and Mróz [2005] analyzed progressive inter-
face delamination failure in antiplane shear of an elastic plate bonded to a rigid substrate under monotonic
loading by normal compressive stress and varying shear stress using the cohesive crack model. Mróz
and Bialas [2005] considered a rigid softening interface (critical stress softening) under both monotonic
and cyclic loadings.

In the cohesive cracks, the friction is considered for a finite opening. In this sense frictional cohesive
cracks are different from the previously mentioned works on frictional contact of crack faces, where the
crack faces are in contact and not open. However, in cohesive cracks, although the crack faces are not in
contact because of the applied cohesive stresses, frictional forces can come into play between the faces
when there is relative sliding.

Hong and Kim [2003] studied plane elastic eigenfunction expansions of the cohesive crack tip field
due to the closing tractions and the separation-gradients at the cohesive zone ahead of a semiinfinite crack
in an inverse manner, similar to that used by Karihaloo [1999]. In these works, the softening curve is not
defined a priori but is obtained parametrically from the analysis. This often leads to softening diagrams
that are not representative of real materials [Planas et al. 2001].

The lack of any work on the asymptotic fields at the tips of cohesive cracks belies the widespread use
of cohesive crack models. In this study, we will solve the asymptotic fields at the tips of cohesive cracks
in quasibrittle materials. The material outside the fracture process (that is, cohesive) zone is isotropic
linear elastic. This is true of quasibrittle materials. We will consider frictionless as well as frictional
cohesive cracks. We will use the eigenfunction expansion method of Williams [1957] and combine it
with the complex function formalism of Muskhelishvili [1953] in the spirit of Sih and Liebowitz [1968].
The cohesive and frictional laws on the crack faces are imposed through appropriate boundary conditions.

This paper is organized as follows: Section 2 discusses a cohesive law of concrete suitable for the
asymptotic analysis of cohesive cracks; Section 3 discusses the mathematical formulation and local
symmetry and/or boundary conditions; Section 4 gives asymptotic fields for several cases; Section 5
discusses the applicability of the results obtained in Section 4 to other cohesive laws; the implementation
of the asymptotic fields in XFEM/GFEM is illustrated in Section 6 with examples of mode I cohesive
crack tip fields; and finally conclusions and discussion are presented in Section 7.

2. Reformulation of a tension-softening diagram for quasibrittle materials

Cornelissen et al. [1986] introduced the following exponential relation to fit their results from uniaxial
tests on double edge notched normal and lightweight concrete panels:

σ

ft
= f

( w
wc

)
−
w

wc
f (1), f

( w
wc

)
=

[
1+

(
C1
w

wc

)3]
e−C2w/wc . (1)

It fits their experimental results with a high degree of accuracy. In Equation (1), σ and ft are the
stress normal to the cohesive crack face and the uniaxial tensile strength, respectively; w and wc are the
opening displacement of the cohesive crack faces, and the critical opening displacement of the preexisting
macrocrack tip at which the cohesive crack tip begins to grow; and C1 and C2 are fitting parameters.
Details of the test set up as well as the cohesive relation Equation (1) can be found in [Karihaloo 1995].
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Figure 1. A comparison of formula Equation (1) with polynomials (2) and (3) for NC.

The following polynomial, denoted as polynomial (a), fits the results of Cornelissen et al. [1986] just
as well as Equation (1)

σ

ft
= 1+

5∑
i=1

ai

( w
wc

)i
−

(
1+

5∑
i=1

ai

)( w
wc

)6
, (2)

where the ai , i = 1, . . . , 5, are fitting parameters.
To simplify the derivation of the cohesive crack tip asymptotic fields, we will represent the relation

Equation (1) by the polynomial, denoted polynomial (b),

σ

ft
= 1+

5∑
i=1

αi

( w
wc

)(2/3)i
−

(
1+

5∑
i=1

αi

)( w
wc

)4
, (3)

where the αi , i = 1, . . . , 5, are fitting parameters.
Obviously, all three formulae (1)–(3) satisfy the following requirements: at the tip of the cohesive

crack, w/wc = 0 and σ/ ft = 1; at the tip of the preexisting traction-free macrocrack: if w/wc = 1 then
σ/ ft = 0.

Note that although there are five unknown parameters in (2) and (3) to be determined by regression,
this is easier than the determination of the two parameters in the exponential relation (1).

For a normal concrete (NC) with density 2370 kg/m3, compressive strength fc = 47 MPa, Young
modulus E = 39 GPa, ft = 3.2 MPa, wc = 160µm, and specific fracture energy G F = 100 J/m2 (area
under the tension-softening curve), Cornelissen et al. [1986] fitted their experimental results by Equation
(1) with C1 = 3 and C2 = 6.93. Their tension-softening diagram can be fitted by Equation (2) with
a1 = −7.04, a2 = 26.456, a3 = −55.233, a4 = 63.741, and a5 = −38.305. The correlation coefficient
is 1. This diagram can also be fitted by Equation (3) with α1 = −0.872, α2 = −16.729, α3 = 67.818,
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Figure 2. A comparison of formula Equation (1) with polynomials (2) and (3) for LC.

α4=−110.462, and α5= 83.158. The correlation coefficient is again 1. These three fittings are compared
in Figure 1, and cannot be distinguished on the scale of the figure.

For a lightweight concrete (LC) with density 1865 kg/m3, fc = 49 MPa, E = 22.4 GPa, ft = 2.43 MPa,
wc = 140µm, and G F = 61 J/m2, Cornelissen et al. [1986] fitted their experimental results by Equation
(1) with C1 = 1 and C2 = 5.64. Their tension-softening diagram can be fitted by Equation (2) with
a1 = −5.618, a2 = 15.36, a3 = −25.378, a4 = 25.659 and a5 = −14.525. The correlation coefficient
is 1. This diagram can also be fitted by polynomial Equation (3) with α1 = −0.753, α2 = −12.335,
α3 = 41.08, α4 =−57.205, and α5 = 38.412. The correlation coefficient is again 1. These three fittings
are compared in Figure 2, and again cannot be distinguished on the scale of the figure.

3. Mathematical formulation

Muskhelishvili [1953] showed that, for plane problems, the stresses and displacements in the Cartesian
coordinate system (see Figure 3) can be expressed in terms of two analytic functions φ(z) and χ(z) of
the complex variable z = reiθ

σx + σy = 2
[
φ′(z)+φ′(z)

]
,

σy − σx + 2iτxy = 2
[
zφ′′(z)+χ ′′(z)

]
,

2µ(u+ iv)= κφ(z)− zφ′(z)−χ ′(z),

(4)

where a prime denotes differentiation with respect to z, and an overbar denotes a complex conjugate.
In Equation (4), µ= E/[2(1+ ν)] is the shear modulus; the Kolosov constant is κ = 3− 4ν for plane
strain or κ = (3− ν)/(1+ ν) for plane stress; E and ν are Young’s modulus and the Poisson ratio.

For a general plane mixed mode I + II problem, the complex functions φ(z) and χ(z) can be chosen
as series of complex eigenvalue Goursat functions [Sih and Liebowitz 1968; Owen and Fawkes 1983;
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Figure 3. A real traction-free crack terminating in a fracture process (cohesive) zone
(FPZ) with residual stress transfer capacity σy(w) whose faces close smoothly near its
tip (K1 = 0). The material outside the FPZ is linear elastic, but within the FPZ is
softening.

Karihaloo and Xiao 2003a]

φ(z)=
∑
n=0

Anzλn =

∑
n=0

Anrλn eiλnθ ,

χ(z)=
∑
n=0

Bnzλn+1
=

∑
n=0

Bnrλn+1ei(λn+1)θ ,
(5)

where the complex coefficients are An = a1n + ia2n and Bn = b1n + ib2n . The eigenvalues λn and
coefficients a1n , a2n , b1n and b2n are real.

If we substitute the complex functions Equation (5) into (4), the complete series expansions of the
displacements and stresses near the tip of the crack become

2µu =
∑
n=0

rλn
{
κ(a1n cos λnθ − a2n sin λnθ)+ λn

[
−a1n cos(λn − 2)θ + a2n sin(λn − 2)θ

]
+ (λn + 1)(−b1n cos λnθ + b2n sin λnθ)

}
,

(6)

2µv =
∑
n=0

rλn
{
κ(a1n sin λnθ + a2n cos λnθ)+ λn

[
a1n sin(λn − 2)θ + a2n cos(λn − 2)θ

]
+ (λn + 1)(b1n sin λnθ + b2n cos λnθ)

}
, (7)

σx =
∑
n=0

rλn−1
{

2λn
[
a1n cos(λn − 1)θ − a2n sin(λn − 1)θ

]
−λn(λn − 1)

[
a1n cos(λn − 3)θ − a2n sin(λn − 3)θ

]
−(λn + 1)λn

[
b1n cos(λn − 1)θ − b2n sin(λn − 1)θ

]}
, (8)

σy =
∑
n=0

rλn−1
{

2λn
[
a1n cos(λn − 1)θ − a2n sin(λn − 1)θ

]
+λn(λn − 1)

[
a1n cos(λn − 3)θ − a2n sin(λn − 3)θ

]
+(λn + 1)λn

[
b1n cos(λn − 1)θ − b2n sin(λn − 1)θ

]}
, (9)
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τxy =
∑
n=0

rλn−1
{
λn(λn − 1)

[
a1n sin(λn − 3)θ + a2n cos(λn − 3)θ

]
+(λn + 1)λn

[
b1n sin(λn − 1)θ + b2n cos(λn − 1)θ

]}
. (10)

The opening displacement (COD) behind the cohesive zone tip is

w = v
∣∣
θ=π
− v

∣∣
θ=−π

=

∑
n=0

rλn

µ

[
(κ + λn)a1n + (λn + 1)b1n

]
sin λnπ (11)

and the sliding displacement of the crack faces is

δ = u
∣∣
θ=π
− u

∣∣
θ=−π

=

∑
n=0

rλn

µ

[
(λn − κ)a2n + (λn + 1)b2n

]
sin λnπ. (12)

To complete the asymptotic analysis of the crack tip fields, solutions need to satisfy the proper symme-
try conditions along the line of extension of the cohesive crack, and boundary conditions on the cohesive
crack faces.

If the crack faces are traction-free (that is, there is no cohesive zone), then

σy
∣∣
θ=π
= σy

∣∣
θ=−π

= 0, τxy
∣∣
θ=π
= τxy

∣∣
θ=−π

= 0. (13)

If normal cohesive separation applies to the crack faces, relationship Equation (3) needs to be satisfied
over the cohesive zone. The stresses at the cohesive crack tip are nonsingular (because the stress intensity
factor K I = 0). Moreover, the following conditions need to be satisfied:

(a) If the cohesive crack faces are frictionless, we have

σy
∣∣
θ=π
= σy

∣∣
θ=−π

6= 0, τxy
∣∣
θ=π
= τxy

∣∣
θ=−π

= 0, (14)

(b) If the Coulomb friction is considered, we have

σy
∣∣
θ=π
= σy

∣∣
θ=−π

6= 0, τxy
∣∣
θ=π
= τxy

∣∣
θ=−π

=−µ f σy
∣∣
θ=±π

6= 0, (15)

where µ f equals the positive or negative value of the coefficient of kinetic friction, which is assumed
to be constant, depending on the relative sliding direction of the two crack faces. Specifically, µ f > 0
when δ > 0 and µ f < 0 when δ < 0.

(c) If the cohesive crack faces are in pure mode I condition, we have

σy
∣∣
θ=π
= σy

∣∣
θ=−π

6= 0, τxy
∣∣
θ=π
= τxy

∣∣
θ=−π

= 0, τxy
∣∣
θ=0 = 0, v

∣∣
θ=0 = 0. (16)

In all three situations, the length of the process (cohesive) zone is either prescribed (that is, an initial
cohesive zone exists before the loading is applied, and does not propagate under the present loading) or
is determined by the condition w = wc in the normal cohesion-separation relation Equation (3) at the
instant of growth of the preexisting traction-free crack.

4. Asymptotic crack tip fields

For completeness and later use, we will first deduce the Williams expansion for a traction-free crack
without a cohesive zone.
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4.1. Williams expansions for cracks with traction-free faces. After enforcing the traction-free condi-
tions Equation (13) on the crack faces, we have

λn =
1
2 n, n = 0, 1, 2, . . . (17)

and

−b1n =
(n/2)+ (−1)n

(n/2)+ 1
a1n, −b2n =

(n/2)− (−1)n

(n/2)+ 1
a2n. (18)

It is easy to confirm that with the eigenvalues Equation (17) and the coefficient relationships (18) the
solutions (6)–(10) reduce to the well-known Williams expansions [Owen and Fawkes 1983; Karihaloo
and Xiao 2003a]:

u =
∞∑

n=0

r n/2

2µ

{
a1n

[(
κ+ 1

2 n+(−1)n
)

cos 1
2 nθ− 1

2 n cos
( 1

2 n−2
)
θ
]

−a2n

[(
κ+ 1

2 n−(−1)n
)

sin 1
2 nθ− 1

2 n sin
( 1

2 n−2
)
θ
]}
, (19)

v =

∞∑
n=0

r n/2

2µ

{
a1n

[(
κ− 1

2 n−(−1)n
)

sin 1
2 nθ+ 1

2 n sin
( 1

2 n−2
)
θ
]

+a2n

[(
κ− 1

2 n+(−1)n
)

cos 1
2 nθ+ 1

2 n cos
( 1

2 n−2
)
θ
]}
, (20)

σx =

∞∑
n=1

1
2 n r (n/2)−1

{
a1n

[(
2+ 1

2 n+(−1)n
)

cos
( 1

2 n−1
)
θ−

( 1
2 n−1

)
cos
(1

2 n−3
)
θ
]

−a2n

[(
2+ 1

2 n−(−1)n
)

sin
( 1

2 n−1
)
θ−
(1

2 n−1
)

sin
( 1

2 n−3
)
θ
]}
, (21)

σy =

∞∑
n=1

1
2 n r (n/2)−1

{
a1n

[(
2− 1

2 n−(−1)n
)

cos
( 1

2 n−1
)
θ+

( 1
2 n−1

)
cos
(1

2 n−3
)
θ
]

−a2n

[(
2−1

2 n+(−1)n
)

sin
( 1

2 n−1
)
θ+

(1
2 n−1

)
sin
( 1

2 n−3
)
θ
]}
, (22)

τxy =

∞∑
n=1

1
2 n r (n/2)−1

{
a1n

[( 1
2 n−1

)
sin
( 1

2 n−3
)
θ−

( 1
2 n+(−1)n

)
sin
( 1

2 n−1
)
θ
]

+a2n

[( 1
2 n−1

)
cos
( 1

2 n−3
)
θ−

( 1
2 n−(−1)n

)
cos
( 1

2 n−1
)
θ
]}
. (23)

The displacements corresponding to n = 0

u0 =
κ + 1
2µ

a10, v0 =
κ + 1
2µ

a20 (24)

are rigid body translations at the crack tip. The displacements corresponding to a22

û2 =−
κ + 1
2µ

a22r sin θ =−
κ + 1
2µ

a22 y,

v̂2 =
κ + 1
2µ

a22r cos θ =
κ + 1
2µ

a22x
(25)



ASYMPTOTIC FIELDS AT COHESIVE CRACK TIPS 889

represent the rigid body rotation θ0 =−(κ + 1)a22/(2µ) with respect to the crack tip, with x = r cos θ
and y = r sin θ . Terms involving a10, a20 and a22 do not contribute to the strains or stresses. Terms
involving coefficients a1n (a2n), n ≥ 1, correspond to pure mode I (II) expansions. The corresponding
opening and sliding displacements of the crack faces are

w =
∑

n=1,3,5,...

r n/2

µ
a1n(κ + 1) sin(nπ/2) (26)

δ =
∑

n=1,3,5,...

−
r n/2

µ
a2n(κ + 1) sin(nπ/2). (27)

4.2. Frictionless cohesive crack with normal cohesive separation. The relationship Equation (3) be-
tween cohesion and normal separation will be discussed below after considering conditions Equation
(14) on the crack faces.

Imposition of the left side of Equation (14) on (9) gives

(a2n + b2n) sin(λn − 1)π = 0 H⇒


λn = n+ 1, for n = 0, 1, 2, . . . (a)

or

b2n =−a2n (b)

and imposition of the right side of Equation (14) on (10) gives[
(λn − 1)a1n + (λn + 1)b1n

]
sin(λn − 1)π = 0[

(λn − 1)a2n + (λn + 1)b2n
]

cos(λn − 1)π = 0.

We thus have for case (a)

b2n =−
λn − 1
λn + 1

a2n,

and for case (b)

cos(λn − 1)π = 0, or equivalently, λn =
2n+ 1

2
+ 1 for n = 0, 1, 2, . . .

and

b1n =−
λn − 1
λn + 1

a1n.

Taken together, the solutions are composed of two parts. The first part corresponds to integer eigen-
values

(a) λn = n+ 1, b2n =−
n

n+ 2
a2n, n = 0, 1, 2, . . . , (28)

giving
σy
∣∣
θ=±π

=

∑
n=0

(n+ 2)(n+ 1)rn(a1n + b1n) cos nπ

or

σ̂y =
σy|θ=±π

ft
=

∑
n=0

cnrn
= 1+

∑
n=1

cnrn, (29)
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where

cn =
(n+ 2)(n+ 1)(a1n + b1n) cos nπ

ft
and c0 =

2(a10+ b10)

ft
= 1, (30)

since σy|θ=±π = ft when r→ 0.
The opening and sliding displacements of the cohesive crack faces vanish for integer eigenvalues

w = 0 and δ = 0. (31)

The second part of the asymptotic solutions corresponds to noninteger eigenvalues

(b) λn =
2n+ 3

2
, b1n =−

2n+ 1
2n+ 5

a1n, b2n =−a2n, n = 0, 1, 2, . . . , (32)

giving
σy
∣∣
θ=±π

= 0,

w =
∑
n=0

r (2n+3)/2

µ

[(
κ +

2n+ 3
2

)
a1n +

2n+ 5
2

b1n

]
sin

2n+ 3
2

π
(33)

or
ŵ =

w

wc
=

∑
n=0

d̄nr (2n+3)/2,

d̄n =

[(
κ + (2n+ 3)/2

)
a1n +

(
(2n+ 5)/2

)
b1n
]

sin
(
(2n+ 3)/2

)
π

µwc
,

(34)

δ =
∑
n=0

r (2n+3)/2

µ

[(2n+ 3
2
− κ

)
a2n +

2n+ 5
2

b2n

]
sin

2n+ 3
2

π. (35)

The cohesive separation relationship Equation (3) is rewritten in normalized form using (29) and (34):

σ̂y = 1+
5∑

i=1

αi ŵ
(2/3)i
−

(
1+

5∑
i=1

αi

)
ŵ4. (36)

Consider the truncated N + 1 terms of ŵ Equation (34), and set d0 = d̄0, dn = d̄n/d0 for n > 1. We
have

ŵ = d0r3/2
(

1+
N∑

n=1

dnrn
)
. (37)

The expansion of ŵ raised to the power (2/3)i is also truncated to N + 1 terms, since these terms
include only the truncated N + 1 terms of ŵ. Hence

ŵ(2/3)i = d(2/3)i0 r i
(

1+
N∑

n=1

βinrn
)

(38)

with

βin =
f (n)i (0)

n!
, fi (r)=

(
1+

N∑
n=1

dnrn
)(2/3)i

, (39)
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where f (n)i (0) denotes the n-th derivative at r = 0.
The first five derivatives of fi (r) Equation (39) are given in the Appendix, and the corresponding five

coefficients βin are

βi1 =
2
3 id1,

βi2 =
1
3 i
( 2

3 i − 1
)
d2

1 +
2
3 id2,

βi3 =
1
9 i
( 2

3 i − 1
)(2

3 i − 2
)
d3

1 +
2
3 i
( 2

3 i − 1
)
d1d2+

2
3 id3,

βi4 =
1

36 i
( 2

3 i − 1
)(2

3 i − 2
)(2

3 i − 3
)
d4

1 +
1
3 i
( 2

3 i − 1
)(2

3 i − 2
)
d2

1 d2

+
1
3 i
( 2

3 i − 1
)
d2

2 +
2
3 i
( 2

3 i − 1
)
d1d3+

2
3 id4,

βi5 =
1

180 i
( 2

3 i − 1
)(2

3 i − 2
)( 2

3 i − 3
)(2

3 i − 4
)
d5

1 ,

+
1
9 i
( 2

3 i − 1
)(2

3 i − 2
)( 2

3 i − 3
)
d3

1 d2

+
1
3 i
( 2

3 i − 1
)(2

3 i − 2
)
d1d2

2 +
1
3 i
( 2

3 i − 1
)(2

3 i − 2
)
d2

1 d3

+
2
3 i
( 2

3 i − 1
)
d2d3+

2
3 i
( 2

3 i − 1
)
d1d4+

2
3 id5.

(40)

With the use of Equation (38), the right hand side of the cohesive relationship (36) becomes

1+
5∑

i=1

αi d
(2/3)i
0 r i

(
1+

N∑
n=1

βinrn
)
−

(
1+

5∑
i=1

αi

)
d4

0r6
(

1+
N∑

n=1

β6nrn
)
.

If we choose N = 5, then after satisfying the cohesive relationship Equation (36) we have the following
expressions for the coefficients cn in Equation (29):

c1 = α1d2/3
0 ,

c2 = α2d4/3
0 +α1d2/3

0 β11,

c3 = α3d2
0+α1d2/3

0 β12+α2d4/3
0 β21,

c4 = α4d8/3
0 +α1d2/3

0 β13+α2d4/3
0 β22+α3d2

0β31,

c5 = α5d10/3
0 +α1d2/3

0 β14+α2d4/3
0 β23+α3d2

0β32+α4d8/3
0 β41,

c6 = α1d2/3
0 β15+α2d4/3

0 β24+α3d2
0β33+α4d8/3

0 β42+α5d10/3
0 β51−

(
1+

5∑
i=1
αi

)
d4

0 ,

c7 = α2d4/3
0 β25+α3d2

0β34+α4d8/3
0 β43+α5d10/3

0 β52−

(
1+

5∑
i=1
αi

)
d4

0β61,

c8 = α3d2
0β35+α4d8/3

0 β44+α5d10/3
0 β53−

(
1+

5∑
i=1
αi

)
d4

0β62,

c9 = α4d8/3
0 β45+α5d10/3

0 β54−

(
1+

5∑
i=1
αi

)
d4

0β63,

c10 = α5d10/3
0 β55−

(
1+

5∑
i=1
αi

)
d4

0β64,

c11 =−

(
1+

5∑
i=1
αi

)
d4

0β65. (41)
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The asymptotic solution above is not for a pure mode I cohesive crack tip (compare Equation (14) and
(16)), since along the line of extension of the crack, θ = 0, the shear stress does not vanish (τxy 6= 0).

For noninteger eigenvalues Equation (39), the coefficients a1n and a2n may be regarded as indepen-
dent, so that coefficients b1n are linearly dependent on a1n and b2n on a2n . For integer eigenvalues
(28), coefficients a1n and a2n may also be regarded as independent, so that coefficients b2n now depend
linearly on a2n . However, the coefficients b1n for integer eigenvalues will depend both linearly on a1n

for integer eigenvalues and nonlinearly on a1n for noninteger eigenvalues via (37), (34), (37), (39) and
(41). The inherent nonlinear nature of the problem is reflected in these nonlinear relationships between
the coefficients of the asymptotic fields.

The displacements (8), (7) corresponding to λ−1 = 0, or n =−1 in (35) are rigid body translations at
the crack tip

2µu−1 = κa1,−1− b1,−1, 2µv−1 = κa2,−1+ b2,−1. (42)

The displacements corresponding to a20 (n = 0, λ0 = 1 and b20 = 0 from Equation (28)) represent rigid
body rotation with respect to the crack tip

2µû0 =−r(κ + 1)a20 sin θ, 2µv̂0 = r(κ + 1)a20 cos θ. (43)

4.3. Coulomb frictional cohesive crack with normal cohesive separation. In principle, a cohesive re-
lationship can also be considered in the tangential direction for quasibrittle materials. However, this
is a contentious issue, since it is difficult to separate the cohesive-sliding relation from the frictional
force between the rough cohesive crack faces. Hence, in the following, we consider the Coulomb fric-
tion between the crack faces instead of a tangential cohesive relationship. The corresponding boundary
conditions are Equation (15).

The complete asymptotic solutions are again composed of two parts. The first part corresponding to
integer eigenvalues is similar to case (a) in Section 4.2 but with different constraints on the coefficients

λn = n+ 1, na2n + (n+ 2)b2n =−µ f (n+ 2)(a1n + b1n), n = 0, 1, 2, . . . . (44)

From (44), we have

b2n =−
n

n+ 2
a2n −µ f (a1n + b1n).

When µ f = 0, the cohesive crack faces are frictionless, and Equation (44) reduces to (28). These solutions
have nonzero σy and τxy along the cohesive crack faces, but zero crack opening w. The second part of
the asymptotic solutions corresponding to noninteger eigenvalues satisfies

b1n =−
λn − 1
λn + 1

a1n, b2n =−a2n, (µ f a1n − a2n) cos(λn − 1)π = 0. (45)

If we assume that
µ f a1n − a2n 6= 0, (46)

the third equation in Equation (45) gives

cos(λn − 1)π = 0 (47)

so that the second part of asymptotic solutions is identical to (b) of Section 4.2 (that is, (33)–(35)).
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The remaining solution procedure and final asymptotic solutions as well as the dependence of the
coefficients are similar to those in 4.2. Equations (42) and (43) again represent the rigid body modes for
the present case.

4.4. A pure mode I cohesive crack. For a pure mode I cohesive crack, the crack faces are frictionless.
After satisfying the conditions (16)3 and (16)4, we have

(λn − 1)a2n + (λn + 1)b2n = 0

(κ + λn)a2n + (λn + 1)b2n = 0
(48)

and finally a2n=b2n=0. Conditions (16)1 and (16)2 are satisfied if [(λn−1)a1n+(λn+1)b1n] sin(λn−1)π
vanishes, which is to say, 

λn = n+ 1, n = 0, 1, 2, . . . (c)

or

b1n =−
λn − 1
λn + 1

a1n. (d)

Solution (c) gives the same normal cohesive stress σy as Equation (29) along the cohesive crack
faces and a nonvanishing σy along the line of extension of the crack, but without a jump in the normal
displacement w, that is, as in Equation (31).

Solution (d) corresponds to noninteger eigenvalues. Without loss of generality, but to simplify the en-
forcement of the normal cohesive relationship Equation (36), we can choose such noninteger eigenvalues
that result in no tractions on the cohesive crack faces (but a nonvanishing σy along the line of extension
of the crack) and a displacement discontinuity w in the normal direction. In other words,

σy
∣∣
θ=±π

= 0⇒ (a1n + b1n) cos(λn − 1)π = 0⇒ λn =
2n+ 3

2
, n = 0, 1, 2, . . . . (49)

It is easy to confirm that these solutions are nothing but the nonsingular odd terms in pure mode I Williams
expansions Equation (19)–Equation (23) for a traction-free crack:

u =
∑
n=1

r (2n+1)/2

2µ
a1n

[(
κ+

2n−1
2

)
cos

2n+1
2

θ−
2n+1

2
cos

2n−3
2

θ
]

(50)

v =
∑
n=1

r (2n+1)/2

2µ
a1n

[(
κ−

2n−1
2

)
sin

2n+1
2

θ+
2n+1

2
sin

2n−3
2

θ
]

(51)

σx =
∑
n=1

2n+1
2

r (2n−1)/2a1n

(2n+3
2

cos
2n−1

2
θ−

2n−1
2

cos
2n−5

2
θ
)

(52)

σy =
∑
n=1

2n+1
2

r (2n−1)/2a1n

(
−2n+5

2
cos

2n−1
2

θ+
2n−1

2
cos

2n−5
2

θ
)

(53)

τxy =
∑
n=1

2n+1
2

r (2n−1)/2a1n

(2n−1
2

sin
2n−5

2
θ−

2n−1
2

sin
2n−1

2
θ
)
. (54)
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Solutions (c) and (d) together give the asymptotic solutions for a pure mode I cohesive crack. The normal
cohesive relationship is satisfied in the same way as in Section 4.2. The COD corresponding to Equation
(51) is

w =
∑
n=0

r (2n+3)/2

µ
a1n(κ + 1) sin

2n+ 3
2

π

ŵ =
∑
n=0

d̄nr (2n+3)/2, d̄n =
(κ + 1)
µwc

a1n sin
2n+ 3

2
π.

(55)

Now ŵ can again be reformulated as Equation (37), but the coefficients dn are different. For the cohesive
law Equation (36), the formal relationships between the coefficients will be the same as Equation (41).

Note that the rigid body modes for the present case are no longer represented by Equation (42) and
Equation (43), but are

urigid = u0+ yθ0 = u0+ θ0r sin θ,

vrigid = v0− xθ0 = v0− θ0r cos θ.
(56)

These rigid body modes must be appended to the asymptotic fields above to obtain the complete crack
tip displacements. However, in the analysis of pure mode I crack problems, it is more efficient to use
symmetry conditions along the line of extension of the crack, and set u0 = v0 = θ0 = 0.

5. Applicability of the results to other cohesive-separation diagrams

From the formulation in Section 4, it became clear that the eigenvalues and asymptotic fields are uniquely
defined for traction-free cracks (Section 4.1) and frictionless cohesive cracks with normal cohesion
between their faces (Section 4.2). However, for a crack with normal cohesion and Coulomb friction
(Section 4.3), and a pure mode I cohesive crack (Section 4.4), the eigenvalues and asymptotic fields are
not completely unique. Additional assumptions had to be made to ensure uniqueness. Thus, in Section
4.3 we imposed the additional condition Equation (46) and in Section 4.4 the condition (49). These
conditions however do not lead to any loss of generality.

The derivations above were for a special form of the normal cohesion-separation relation (3), or equiv-
alently, (36), which made the expansion of a power of ŵ in (37) possible, as shown in (38). Since this
relation has five free parameters, it is believed to be able to fit a large amount of experimental data on
many grades of concrete. It was already shown above to represent almost exactly the exponential relation
(1). Below we show that it can equally accurately represent other normal cohesion-separation relations
commonly used for quasibrittle materials.

The widely used linear tension-softening law

σ̂y = 1− ŵ (57)

cannot be used in the previous asymptotic analysis since σ̂y only includes terms corresponding to integer
eigenvalues (see, for example, (29)), and ŵ only includes terms corresponding to noninteger eigenvalues
(see, for example, (34)). However, (57) can be represented by (3) or (36) with nonvanishing coefficients
α1 =−0.2612 and α2 =−1.0215, that is,

σ̂y = 1+α1ŵ
2
3 +α2ŵ

4
3 − (1+α1+α2)ŵ

2.
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Figure 4. Linear tension-softening law.

The correlation coefficient is 1. The linear law Equation (57) is compared with Equation (3) in Figure 4;
they cannot be distinguished on the scale of the figure. Hence results obtained in Section 4 can be used
directly to the linear tension-softening law.

Similarly, the widely used bilinear tension-softening law (Figure 5)

σ̂ =


1− (1− f̂1)

ŵ

ŵ1
, 0≤ σ̂ ≤ f̂1

f̂1

1− ŵ1
(1− ŵ), f̂1 < σ̂ ≤ 1,

(58)

(where f̂1 = f1/ ft and ŵ1 = w1/wc) is also not suitable for the asymptotic analysis in Section 4.

w/wc

tf

σ

1

1
cww1

tf

f1

(1)

(2)

Figure 5. Bilinear tension-softening law.
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However, its two linear parts Equations (1) and (2) can be rewritten into two linear laws as shown in
5. The first part can be written into (57) using a new definition of wc as

wc =
w1

1− f̂1
. (59)

The second part can be written into (57) using a new definition of ft as

ft =
f1

1− ŵ1
. (60)

Then the asymptotic field of the bilinear law can be obtained by the corresponding linear cohesive laws.
Moreover, the procedures are also applicable to cohesion-separation relations in which the power of

ŵ is 2i rather than 2i/3 as in Equation (3) or (36)

σ̂y = 1+
5∑

i=1

αi ŵ
2i
−

(
1+

5∑
i=1

αi

)
ŵ12. (61)

For this relation, the counterpart of (38) becomes

ŵ2i
= d2i

0 r3i
(

1+
N∑

n=1

βinrn
)
, (62)

where

βin =
f (n)i (0)

n!
, fi (r)=

(
1+

N∑
n=1

dnrn
)2i

. (63)

Substitution of Equation (62) into the right hand side of (61) gives

1+
5∑

i=1

αi d2i
0 r3i

(
1+

N∑
n=1

βinrn
)
−

(
1+

5∑
i=1

αi

)
d12

0 r18
(

1+
N∑

n=1

β6nrn
)
.

Collecting the terms with like powers of r and comparing them with (29) results in relationships between
the coefficients similar to (41).

Wecharatana [1990] introduced the softening relationship

σ̂m
+ ŵ2m

= 1 (64)

(where m = 0.27 for concrete with compressive strength fc = 24 MPa and m = 0.2 for concrete with
fc = 83 MPa) to fit his experimental results from uniaxial tests on normal and high strength concrete
using dog-bone-shaped specimens with edge notches (see also [Karihaloo 1995]). This relationship
cannot be used in the asymptotic analysis above as m is not an integer. However, for m = 0.27 in the
range of 0 ≤ ŵ ≤ 0.6, we can fit Equation (64) using (3) or (36) with α1 = −6.9495, α2 = 29.9794,
α3 = −87.2663, α4 = 148.3647, and α5 = −128.84. The correlation coefficient is 1. When ŵ = 0.6,
then σ̂ = 0.005148; when ŵ > 0.6, then σ̂ is negligibly small. As compared in Figure 6, they cannot be
distinguished on the scale of the figure.
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Figure 6. A comparison of cohesive law Equation (64) (m = 0.27) with polynomial
Equation (3) or (36).

For m = 0.2 in the range of 0≤ ŵ ≤ 0.3, Equation (64) can also be fitted using a polynomial in the
form of (36) but including three higher order terms

σ̂y = 1+
8∑

i=1

αi ŵ
2/3i
−

(
1+

8∑
i=1

αi

)
ŵ6, (65)

with

α1 =−25.77925, α2 = 459.7579,

α3 =−5.14083× 103, α4 = 3.51282× 104,

α5 =−1.48405× 105, α6 = 3.86621× 105,

α7 =−5.99122× 105, α8 = 4.99809× 105.

The correlation coefficient is also 1. When ŵ = 0.3, then σ̂ = 0.008155; when ŵ > 0.3, then σ̂ is
negligibly small. They are compared in Figure 7, and cannot be distinguished on the scale of the figure.

The simplest rectangular cohesive law in which the cohesive stress is constant and identical to the
strength of the material ft in the cohesive zone has also been used by some researchers. This law can be
approximated by

σ̂y = 1− ŵ2n (66)

as illustrated in Figure 8. Obviously, the cohesive law Equation (66) is a simplified form of (61) with
coefficients αi = 0. The procedures and results for the cohesive law (61) are therefore correct for the
rectangular law. Alternatively, the rectangular law can be enforced directly by assuming σ̂y in (29) to be a
constant, that is, all coefficients cn (n > 0) vanish and there are no further constraints on the coefficients.
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Figure 7. A comparison of the cohesive law Equation (64) (m = 0.2) with polynomial (65).
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6. Implementation of the asymptotic fields in XFEM/GFEM and examples of mode I cohesive
crack tip fields

In the context of the implementation of the cohesive crack asymptotic fields as enrichment functions in
the XFEM/GFEM, if not only the first term but also the higher order terms are used as in [Liu et al. 2004],
the linear dependence of the coefficients can be enforced in advance, while the nonlinear dependence
of the coefficients can be enforced as constraints in the solution process. It is more convenient to use
only the leading term of the displacement asymptotic field at the tip of a cohesive crack (which ensures
a displacement discontinuity normal to the cohesive crack face) as the enrichment function, as in most
implementations of the XFEM in the literature. The complete implementation with several examples can
be found in [Xiao et al. 2006, in press].
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Figure 9. An unnotched three-point bend beam (TPB).

In the following, a typical mode I cohesive cracking problem of quasibrittle materials — a three point
bend beam without any initial crack (Figure 9) made of a quasibrittle material with the linear softening
law (57) — is analyzed. A state of plane strain is considered. The geometrical parameters are

b = 150 mm, l = 4b, t = b,

where t is the specimen thickness in the out-of-plane direction. The material properties are

E = 36.5 GPa, ν = 0.1, ft = 3.19 MPa, G F = 50 Nm−1,

where E is Young’s modulus, ν the Poisson ratio, and G F the specific fracture energy. The dimensions
for force and length are N and mm, respectively.

The details of simulation are the same as in [Xiao et al. 2006, in press]. Two meshes, as shown in
Figure 10, are used in the analysis. The coarser mesh consists of 50× 100= 5000 rectangular elements,
giving a total of 5151 nodes. The finer mesh consists of 150× 120= 18000 rectangular elements, giving
a total of 18271 nodes. Both meshes are uniformly divided in the x-direction. For the coarser mesh, the
central 50 layers of elements have an identical height (y-direction) of 3 mm; the remaining elements have
an identical height of 9 mm. Therefore, elements in the central zone are 3× 3 mm2 squares. For the finer
mesh, the central 60 layers of elements have an identical height of 1 mm; the remaining elements have
an identical height of 9 mm. Therefore elements in the central zone are 1× 1 mm2 squares. The intention
of using two meshes is to study the mesh size sensitivity of the global responses. The conventional 4-
node bilinear isoparametric Q4 elements are also used as background elements. The first layer of nodes
surrounding the cohesive crack tip (the elements that include the crack tip k are defined as the first layer
elements of the crack tip with enriched nodes; the nodes in the first layer elements are called the first
layer enriched nodes) are enriched with the first term of the asymptotic displacement field (50)–(54) at
the tip of a cohesive crack corresponding to a noninteger eigenvalue that gives a normal displacement
discontinuity over the cohesive-crack faces

u =
r3/2

2µ
a11
[(
κ + 1

2

)
cos 3

2 θ −
3
2 cos 1

2 θ
]
, (67)
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Figure 10. Coarse (a) and fine (b) mesh for half of the specimen.

v =
r3/2

2µ
a11
[(
κ − 1

2

)
sin 3

2 θ −
3
2 sin 1

2 θ
]
. (68)

The potential fracture locus coincides with the specimen’s axis of symmetry. The crack is modelled by
enriching the nodes on the crack faces with jump and branch functions without the double nodes that are
used in the traditional FEM.

As in [Moës and Belytschko 2002], the x-direction of nodes with coordinates (0, 0) and (0, 600 mm)
and the y-direction of the node with coordinates (150 mm, 300 mm) are constrained; the load is distributed
over a length of 6 mm in the coarse mesh (Figure 10a) and 2 mm (2 elements) in the fine mesh (10b).
Since a low Poisson ratio of 0.1 is used, the results are believed to be close to those of Carpinteri and
Colombo [1989], where a plane stress condition is assumed and a concentrated load was considered.

The nondimensional load-midspan deflection curves are shown in 11(a). They agree very well with
the results of Carpinteri and Colombo [1989]. The evolution of the cohesive zone size as the cohesive tip
travels through the beam is shown in Figure 11(b), which agrees very well with [Moës and Belytschko
2002]. It is clear that the results are insensitive to the mesh size.

In order to visualize the cohesive crack tip fields derived in Section 4, it is necessary to determine the
unknown coefficients by fitting the numerically computed crack tip fields with the theoretically obtained
fields. This requires a sophisticated optimization scheme. For the present purpose of illustration, we
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Figure 11. (a) Nondimensional load-midspan deflection curves of the three-point bend
beam (G F = 50 Nm−1); (b) evolution of the cohesive zone size as the cohesive tip travels
through the beam.

will solve a mode I cohesive crack problem shown in Figure 12 using the obtained asymptotic fields and
the numerically computed opening profile of the cohesive crack. The dimensions of the displacement
and length parameters are in millimeters and those of the stresses in megapascals, unless mentioned
otherwise.

We consider the subdomain bounded by broken lines in Figure 12, and assume the length of the cohe-
sive crack is 10.5 mm. The opening profile of the cohesive crack (Figure 13) adopts the computed results
above at the loading stage with the total cohesive crack = 31.5 mm and load/( ft bt)= 0.228. It can be
represented by the expansion Equation (55) corresponding to noninteger eigenvalues with nonvanishing
coefficients

a10 =−0.192, a11 =−5.708 · 10−3, a12 = 1.2339 · 10−5.

From these coefficients, we can obtain parameters β Equation (40) and c (41). The cohesive stress (29)
corresponding to these coefficients c is compared in Figure 14 with the results obtained by the linear
tension-softening relationship Equation (57). The agreement is excellent, with a maximum error less
than 0.5%.

x

y

r
θ

σ y

Figure 12. Illustration of the cohesive crack problem.
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Figure 13. Opening profile of the cohesive crack.

0.8

0.85

0.9

0.95

1

0 2 4 6 8 10
r

σ
y
/f
t

Asymptotic

Tension-softening

relationship

Figure 14. Comparison of the cohesive stress obtained by the tension-softening rela-
tionship Equation (57) and the asymptotic analysis.

The c coefficients also provide relationships between coefficients a1n and b1n for each integer eigen-
value as in Equation (30). In other words, the complete asymptotic fields are known except the co-
efficients a or b corresponding to integer eigenvalues. They are determined from the applied boundary
conditions. Since we have assumed the crack opening profile, we cannot assume the prescribed boundary
conditions again to avoid inconsistency. Therefore some weaker constraints are used instead.

We assume the boundary x =−10.5 is, or is very close to, a traction-free surface. Then the coefficients
a1n or b1n for integer eigenvalues can be determined by assuming the boundary x =−10.5 to be nearly
traction-free. More precisely, we divide the segment x =−10.5, 0≤ y ≤ 10.5 into 100 identical segments,
and minimize the value of σx and τxy at these 101 locations (including corner nodes) using the Minimize
function of Mathcad 11. The convergence and constraint tolerances are chosen as 10−8. The values



ASYMPTOTIC FIELDS AT COHESIVE CRACK TIPS 903

-6.E-06

-4.E-06

-2.E-06

0.E+00

2.E-06

4.E-06

6.E-06

8.E-06

-180 -135 -90 -45 0 45 90 135 180

θ

u

r  = 0.5

-5.E-05

-4.E-05

-3.E-05

-2.E-05

-1.E-05

0.E+00

1.E-05

2.E-05

3.E-05

4.E-05

5.E-05

-180 -135 -90 -45 0 45 90 135 180

θ

v

r  = 0.5

0.3

0.4

0.5

0.6

0.7

0.8

-180 -135 -90 -45 0 45 90 135 180

θ

σ
x

r  = 0.5

2.75

2.8

2.85

2.9

2.95

3

3.05

3.1

3.15

3.2

-180 -135 -90 -45 0 45 90 135 180

θ

σ
y

r  = 0.5

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

-180 -135 -90 -45 0 45 90 135 180

θ

τ
y
x

r  = 0.5

Figure 15. Displacements and stresses along the circle r = 0.5.
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Figure 16. Displacements and stresses along the circle r = 5.
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cohesive crack (θ = 0).

a10 = 1, a11 = 10−3, a12 = −10−5, and a13 = −10−5 are chosen as initial guesses. We obtain the
coefficients for integer eigenvalues as

a10 = 0.9604,

b10 = 0.595,

a11 = 0.0124,

b11 =−0.0107,

a12 =−2.1858 · 10−4,

b12 = 1.9553 · 10−4,

a13 =−1.9741 · 10−5,

b13 = 1.8647 · 10−5,

with very small σx and τxy on the segment x = −10.5, 0 ≤ y ≤ 10.5. Coefficients of the higher order
terms are negligibly small.

The displacements and stresses corresponding to these coefficients along two circles surrounding the
crack tip and the line of extension of the cohesive crack are plotted in Figures 15–17. Away from the
crack tip, the distribution of the displacement and/or stress may be quite different. As expected, the stress
σy at the cohesive crack tip is equal to ft , and no stress at any other locations reaches ft .

These solutions are exact when the displacements or tractions corresponding to them are applied on
the boundary, as in the broken lines shown in Figure 12.
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Near the cohesive crack tip, the maximum values of the main stresses σx and σy occur on the cohesive
crack faces. This is because we have chosen the cohesive crack opening profile (Figure 13) corresponding
to a TPB test. This feature of the stress distribution for this type of specimen has also been noticed by
Planas et al. [2003] and validated by our own numerical analysis.

7. Conclusions and discussion

The asymptotic fields obtained in Section 4 are universal for the prescribed normal cohesion-separation
relation. However, relationships Equation (41) between the coefficients are dependent on the softening
relation of the material. The actual values of the coefficients are dependent on the geometry and bound-
ary/loading conditions of the problem, as in the Williams expansion of a traction-free crack. The cohesive
crack asymptotic fields obtained here can be used as enrichment functions in the extended/generalized
finite element method at the tip of long cohesive cracks, as well as short branches/kinks.

In traction-free cracks, terms in Equations (19)–(23) corresponding to different eigenvalues are inde-
pendent, that is, controlled by independent coefficients. In the cohesive crack tip fields some of the terms
can be dependent and not controlled by independent coefficients. Such a dependence also exists in the
higher order terms of the crack tip fields in elastoplastic power-law hardening materials (see [Xia et al.
1993; Yang et al. 1993; 1996; Chao and Yang 1996] and a review by Karihaloo and Xiao [2003a]).

In this paper, we have applied a complex-function formulation of homogeneous isotropic linear elas-
ticity for simplicity; however, the derivation can be easily extended to bimaterial interfacial cracks (see
[Rice 1988]) and/or anisotropic elasticity. Anisotropy can be treated with the Stroh formalism [Stroh
1958; Suo 1990; Deng 1994].

Appendix: Derivatives of fi (r)

The first five derivatives of fi (r) in Equation (39) are

f (1)i (r)= 2
3 i
(

1+
N∑

n=1
dnrn

) 2
3 i−1 N∑

n=1
dnnrn−1

;

f (2)i (r)= 2
3 i
( 2

3 i − 1
)(

1+
N∑

n=1
dnrn

) 2
3 i−2( N∑

n=1
dnnrn−1

)2
+

2
3 i
(

1+
N∑

n=1
dnrn

)2
3 i−1 N∑

n=2
dnn(n− 1)rn−2

;

f (3)i (r)= 2
3 i
( 2

3 i − 1
)(2

3 i − 2
)(

1+
N∑

n=1
dnrn

)2
3 i−3( N∑

n=1
dnnrn−1

)3

+
6
3 i
( 2

3 i − 1
)(

1+
N∑

n=1
dnrn

)2
3 i−2 N∑

n=1
dnnrn−1

N∑
n=2

dnn(n− 1)rn−2

+
2
3 i
(

1+
N∑

n=1
dnrn

)2
3 i−1 N∑

n=3
dnn(n− 1)(n− 2)rn−3

;
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f (4)i (r)= 2
3 i
( 2

3 i − 1
)(2

3 i − 2
)(2

3 i − 3
)(

1+
N∑

n=1
dnrn

)2
3 i−4( N∑

n=1
dnnrn−1

)4

+
12
3 i
( 2

3 i − 1
)(2

3 i − 2
)(

1+
N∑

n=1
dnrn

)2
3 i−3( N∑

n=1
dnnrn−1

)2 N∑
n=2

dnn(n− 1)rn−2

+
6
3 i
( 2

3 i − 1
)(

1+
N∑

n=1
dnrn

)2
3 i−2( N∑

n=2
dnn(n− 1)rn−2

)2

+
8
3 i
( 2

3 i − 1
)(
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dnrn

)2
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+
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(
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)2
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dnn(n− 1)(n− 2)(n− 3)rn−4

;

f (5)i (r)= 2
3 i
( 2

3 i − 1
)( 2

3 i − 2
)(2

3 i − 3
)(2

3 i − 4
)
×

(
1+

N∑
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dnrn
)2

3 i−5( N∑
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)5
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3 i
( 2

3 i − 1
)(2
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)(2
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)(2
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+
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3 i
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ANALYSIS OF ELECTROMECHANICAL BUCKLING OF A PRESTRESSED
MICROBEAM THAT IS BONDED TO AN ELASTIC FOUNDATION

DAVID ELATA AND SAMY ABU-SALIH

The electromechanical buckling of a prestressed microbeam bonded to a dielectric elastic foundation is
analyzed. It is shown that electrostatic forces can precipitately instigate buckling even when the prestress
in the microbeam is lower than the critical value that would cause mechanical buckling. We show that
electrostatic potential can be used to achieve on/off switching of surface flexures. An analytic solution
of the critical electromechanical state is derived. In addition, an analytic approximation of the initial
postbuckling state is also presented, and is validated numerically.

1. Introduction

Mechanical buckling is a well known phenomenon that occurs in thin elastic structures subjected to
compressive loads. Mechanical buckling develops only if the compressive loads are larger than a critical
value. In most buckled structures, reduction of the compressive load to a subcritical level will eliminate
the buckling deformation. In thin sheet-like elastic solids that are bonded to an elastic foundation, a
compressive stress can cause a dense occurrence of buckling flexures [Hetenyi 1946]. The buckling
phenomenon is a bifurcation transition because the postbuckling state may arbitrarily develop into one
of several modes [Gilmore 1981; Godoy 1999; Nguyen 2000].

A different instability that is prevalent in the field of microelectromechanical systems (MEMS) is
the pull-in phenomenon in electrostatic actuators [Elata et al. 2003; Pelesko and Bernstein 2003]. This
inherent instability is due to the nonlinear nature of electrostatic forces. This instability is known as a
limit point or a fold in the equilibrium state of the electrostatic actuator [Elata et al. 2003; Gilmore 1981;
Godoy 1999; Nguyen 2000], and is not a bifurcation.

However, a bifurcation transition is also possible in electrostatic actuators. A well known example is
the side pull-in in electrostatic comb-drives [Elata et al. 2003; Elata and Leus 2005; Legtenberg et al.
1996]. This instability response is an electromechanical bifurcation because the comb-drive may collapse
in more than one direction.

Recently, the bifurcation response of a clamped-clamped beam that is subjected to both compressive
stress and an electrostatic field was investigated. This bifurcation instability was termed electromechan-
ical buckling (EMB) [Elata and Abu-Salih 2005], because it is a true coupling between mechanical
buckling and electromechanical bifurcation.

In the present study, the EMB response of a prestressed infinite beam, bonded to an elastic foundation,
is analyzed. Specifically it is shown that buckling in this system can be reversibly switched on and off
by application and elimination of a driving voltage.

Keywords: electromechanical buckling, electromechanical instability.
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In the next section the governing equation of the problem is presented. In Section 3 the parameters of
the critical electromechanical buckling state are analytically derived. The initial postbuckling analysis is
presented in Section 4 and includes an approximate analytic solution which is numerically validated.

2. Formulation

In this study we analyze the EMB of an infinite beam. To facilitate the analysis we use the following
strategy. First, we assume that the critical and postbuckling states are both periodic. This assumption will
be later confirmed by numerical simulations. Second, we derive the wavelength of the periodic solution.
For the critical state the wavelength is derived analytically. For the postbuckled state the wavelength is
computed in the following way: we first consider the postbuckled state of a finite beam with periodic
boundary conditions. The length of the finite beam which is associated with the minimal energy per unit
length of the postbuckled state is the correct postbuckling wavelength in the infinite beam. Finally, we
use numerical simulations to confirm that the critical and postbuckling solutions indeed converge to a
periodic waveform.

Consider an infinite beam which is bonded to an elastic foundation as illustrated in Figure 1a. The
beam is conductive, the elastic foundation is an isolating dielectric, and the bottom substrate is a fixed
rigid conductor. The beam is prestressed and is subjected to a potential V , and the substrate is grounded.

The field equation that governs the electromechanical response of the beam is given by

Db
d4 y
dx4 − σbh

d2 y
dx2 − Ebh

(
1
L

∫
L

1
2

(dy
dx

)2
dx
)

d2 y
dx2 + k f by =

ε b V 2

2(g− y)2
. (1)

The four terms on the left hand side of Equation (1) are the distributed load due to bending, residual
stress, membrane stiffening, and elastic foundation. The term on the right hand side is the electrostatic
distributed force.

Here y is the deflection as a function of location x along the beam, D = E∗h3/12 is the bending
rigidity of the beam, b is the beam width, h is the beam thickness, and E∗ = E/(1− ν2) is the effective
bending modulus assuming that the beam is wide, that is, b� h, where E is Young’s modulus and ν is
the Poisson ratio. The variable σ is the prestress (positive in tension), L is the length of the beam, k f

is the elastic modulus of the foundation measured in N/m3, ε is the permittivity of the dielectric elastic
foundation and g is its nominal thickness.

The third term in (1), which includes the beam length L , is correct for L →∞. The equilibrium
equation also holds for a beam of finite length L with periodic boundary conditions. In this case, if L is
equal to an integer number of wavelengths of the periodic solution of the infinite beam, then the solution
of the finite beam is identical to the solution of the infinite beam.

In the third term of (1), it is assumed that the elastic foundation does not constrain the transverse strain
εzz when the beam is in tension. This may be expected when the thickness of the elastic foundation is
greater than the beam width. If, however, the thickness of the elastic foundation is much smaller than
the beam width, then the elastic foundation may constrain the transverse strain εzz when the beam is
subjected to axial tension. In this case the effective elastic modulus in the third term should be replaced
with E∗.
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Conductive prestressed
beam electrode

Conductive
substrate

Dielectric elastic
foundation

(a)

V < Vcr

(b)

V > Vcr

(c)

Figure 1. A prestressed beam bonded to an elastic foundation. (a) When the prestress
in the conductive beam is below the critical value, and no voltage is applied, the beam
remains flat; (b) when a subcritical voltage is applied, the beam deflection is uniform;
(c) when a supercritical voltage is applied, electromechanical buckling occurs.
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The effect of fringing fields is not considered in this work though simplified approximations of this
effect may be added to the analysis [Leus and Elata 2004]. Also, the equilibrium equation (1) is valid
for small rotations, that is, |dy/dx | � 1. If this condition does not hold, additional nonlinear terms must
be included in the governing equation [Brush and Almaroth 1975].

The electrostatic distributed force is approximated by the local parallel-plates model which is valid
for small rotations.

The governing equation may be written in the following normalized form

1
(2π)4

d4 ỹ
d x̃4 +

2β
(2π)2

d2 ỹ
d x̃2 −

g̃2

α

[∫ α

0

1
2

(d ỹ
d x̃

)2
dx̃
]

1
(2π)4

d2 ỹ
d x̃2 + ỹ =

Ṽ 2

(1− ỹ)2
, (2)

where

x̃ =
x
3cr

, ỹ =
y
g
, β =

σ

σcr
, σcr =−

2
√

k f D
h

,

g̃ =

√
12

E
E∗

g
h
, α =

L
3cr

, Ṽ 2
=

ε V 2

2k f g3 , 3cr = 2π
(

D
k f

)1/4

.

Here 3cr and σcr are the wavelength and the stress at the critical buckling state when no voltage is
applied [Abu-Salih and Elata 2005; Hetenyi 1946], β is the normalized prestress parameter and α is the
normalized wavelength [Abu-Salih and Elata 2005].

3. Critical state

When no electrostatic forces are applied, the prestressed beam will not buckle if the prestress is lower
than the critical stress σcr . In this section we investigate the effect of electrostatic forces on the critical
buckling state of the prestressed beam. Specifically, we show that electrostatic forces can induce buckling
in a beam in which the prestress is subcritical (in such a beam buckling will not occur if electrostatic
forces are not applied).

When a voltage is applied to the beam, the beam initially deflects uniformly, similar to a parallel-
plates actuator [Pelesko and Bernstein 2003] (Figure 1b). In this case the dielectric elastic foundation
constitutes both a dielectric substance between the electrodes and the elastic spring of the parallel-plates
actuator.

When the deflection is nearly uniform, the nonlinear term (in square brackets) may be omitted from
the governing equation (2), which reduces to

1
(2π)4

d4 ỹ
d x̃4 +

2β
(2π)2

d2 ỹ
d x̃2 + ỹ =

Ṽ 2

(1− ỹ)2
. (3)

The deflection of the infinite beam is assumed to be periodic and is postulated in the form

ỹ = ỹ0+ B sin
2π x̃
α
, (4)

where ỹ0 is an average value which is equal to the uniform displacement when no buckling occurs, and
B is the amplitude of the structural waves that develop due to the electromechanical buckling response.
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At the verge of buckling, B is small, and therefore the electrostatic force may be approximated by the
following Taylor expansion

Ṽ 2

(1− ỹ)2
≈ Ṽ 2

[
1

(1− ỹ0)2
+

2
(1− ỹ0)3

B sin
2π x̃
α
+ O(B2)

]
. (5)

Now, substituting the postulated deflection (4) and the approximated electrostatic force (5) into the
linear governing equation (3), yields

B
sin(2π x̃/α)

α4

(
α4(1− δ)− 2α2β + 1

)
=

Ṽ 2

(1− ỹ0)2
− ỹ0. (6)

Here δ is the normalized electrostatic stiffness that is given by

δ =
2Ṽ 2

(1− ỹ0)3
. (7)

On the verge of buckling, where B = 0, the solution of (6) is

Ṽ 2
= ỹ0(1− ỹ0)

2. (8)

The deflection of the beam in this case is uniform (ỹ = ỹ0), and the force applied to the beam by the
elastic foundation balances the electrostatic force. For incipient buckling, (8) holds and can be subtracted
from (6) to yield

B
sin(2π x̃/α)

α4

(
α4(1− δ)− 2α2β + 1

)
= 0. (9)

The last equation can be solved for the critical buckling parameters (β, α), and the amplitude B
remains arbitrary, as is usual in linear buckling analysis [Godoy 1999; Timoshenko 1936]. The stability
equation of the beam is given by

α4(1− δ)− 2α2β + 1= 0.

The solution of the this equation is

α =

√
β ±

√
β2− (1− δ)
1− δ

. (10)

The normalized wavelength α must be a real positive value (α > 0), therefore β is restricted by

β ≥
√

1− δ. (11)

Substituting the critical load βcr =
√

1− δ into (10), the critical value of the wavelength is found

αcr =
1
√
βcr
=

1
(1− δ)1/4

=

(
1−

2Ṽ 2

(1− ỹ0)3

)−1/4

.

From this it is clear that when no electrostatic forces are applied (that is, Ṽ = 0) buckling cannot
occur for β < 1 (that is, subcritical stress). The critical normalized wavelength in the case of Ṽ = 0 is
αcr(Ṽ=0) = 1, which proves that 3cr is indeed the wavelength of the critical buckling state [Abu-Salih
and Elata 2005].
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From (11) it is clear that due to the destabilizing effect of the electrostatic forces, buckling can occur
for β < 1 whenever δ > 0. The buckling deflection (4) is therefore due to the combined effect of subcritical
prestress and electrostatic forces. This justifies the term electromechanical buckling.

A schematic illustration of a prestressed beam that is bonded to an elastic foundation is presented
in Figure 1a. When the prestress in the conductive beam is below the critical value, and no voltage
is applied, the beam remains flat (Figure 1b). For the same level of prestress, a sufficient voltage will
precipitately instigate buckling (Figure 1c).

For a given normalized prestress β, the critical switching voltage Ṽcr that instigates buckling is ex-
tracted by solving (7), (8) and βcr =

√
1− δ, to yield

Ṽ 2
cr = 4

1−β2
cr(

3−β2
cr
)3 .

Figure 2 presents the normalized voltage square Ṽ 2
cr , wavelength αcr , and deflection ỹ0, at the critical

states, for various values of normalized prestress β. At the limit of zero prestress, the critical wavelength
becomes infinite and the voltage approaches an asymptotic value. This state is in essence the pull-in
state of an infinite parallel-plates actuator. At this limit the deflection at the critical state is ỹ0 = 1/3.
For such a large reduction of the elastic foundation thickness, the linear model of the foundation may be
unrealistic.

4. Initial postbuckling state

In the postbuckled state, considerable membrane stresses develop and the mechanical response is gov-
erned by the nonlinear equilibrium Equation (2), including the term in square brackets. The periodic
problem is solved for beams with various finite normalized lengths, α. In each of these lengths, it
is assumed that the solution includes one period. The average total potential density (energy per unit
length) associated with each length α is then computed. The solution of the infinite problem is identified
with the periodic solution of the finite-length problem, for which the average total potential density is
minimal.

The periodic boundary conditions of the finite beam are

ỹ(x̃ = 0)= ỹ(x̃ = α),
d ỹ
d x̃

∣∣∣∣
x̃=0
=

d ỹ
d x̃

∣∣∣∣
x̃=α

. (12)

4.1. Approximate analytic solution. As in the previous linear analysis, it is postulated that the postbuck-
ling deflection is of the form

ỹ = ỹ′0+ B ′ sin
2π x̃
α
, (13)

where B ′ is the normalized amplitude of the postbuckling deflection. In initial postbuckled states we
assume that B ′ is small. As in the preceding critical state analysis, for small values of B ′ the electrostatic
force may be approximated by the following Taylor expansion

Ṽ 2

(1− ỹ)2
≈ Ṽ 2

(
1

(1− ỹ′0)
2 +

2
(1− ỹ′0)

3 B ′ sin
2π x̃
α
+ O(B ′2)

)
. (14)
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Figure 2. The critical electromechanical buckling state for different values of prestress
β. (a) Normalized critical voltage squared Ṽ 2

cr . At zero prestress the critical voltage
is the same as for a parallel-plates actuator. (b) Normalized critical wavelength αcr .
At zero prestress the normalized wavelength is infinite and the beam remains flat. (c)
Normalized deflection ỹ0.

Substituting (13) and (14) into the nonlinear equation (2), and considering only small values of B ′,
we further assume that the equilibrium equation holds separately for the average and the periodic parts
of the postulated deflection.

With this assumption, the equilibrium equation (2) reduces to the following

Ṽ 2
= ỹ′0(1− ỹ′0)

2, (15)

B ′
sin(2π x̃/α)

α4

(
α4(1− δ)− 2βα2

+
1
4 g̃2 B ′2+ 1

)
= 0. (16)
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The two assumptions, namely that the postbuckling deflection is of the form (13), and that when B ′

is small the solution of (2) may be substituted by the simultaneous solution of (15) and (16), will be
validated numerically in the next subsection.

The nontrivial solution of (16) is given by

B ′ =
2
g̃

√
2βα2−α4(1− δ)− 1 .

In an infinite beam, the normalized wavelength associated with given values of β and δ is the one that
minimizes the total potential per unit length, of the system. The total potential ψ =UB+UA+Uk f −U∗E
is the sum of four energy components associated with bending UB , axial deformation UA, deformation
of the elastic foundation Uk f , and complementary electrostatic energy U∗E [Elata and Abu-Salih 2005].
Normalizing the strain energy components by the (axial) strain energy at the verge of buckling (Ucr =

σ 2
cr A/2E), yields

ŨB =
g̃2

4(2π)4α

∫ α

0

(
d2 ỹ
d x̃2

)2

dx̃,

ŨA =
g̃4

4α2

(
−

2(2π)2αβ
g̃2 +

1
2

∫ α

0

(
d ỹ
d x̃

)2

dx̃

)2

,

Ũk f =
g̃2

4α

∫ α

0
ỹ2dx̃,

Ũ∗E =
Ṽ 2g̃2

2α

∫ α

0

dx̃
(1− ỹ)

.

The normalized total potential is accordingly given by

ψ̃ = ŨB + ŨA+ Ũk f − Ũ∗E . (17)

Substituting the postulated deflection (13) into the normalized total potential, differentiating the to-
tal potential with respect to α, and setting this derivative to zero, yields a nonlinear equation for the
postbuckling wavelength α. This equation was numerically solved and the results are presented by the
dashed lines in Figure 3, showing α, B ′ and ỹ′0 as function of Ṽ 2/Ṽcr for the parameters ỹ0 = 0.1 (that
is, β = 0.88), g/h = 10 and v = 0.25.

To clarify the notion of minimal energy, the total potential of the system (17) is presented in Figure
4 as a function of voltage and wavelength (for ỹ0 = 0.1 (that is, β = 0.88), g/h = 10 and v = 0.25).
In this figure the flat slopes are the regions in which no buckling occurs (the total energy is only a
function of V ). The first valley describes buckling with a single wavelength in a beam of finite length
with periodic boundary conditions. The second and third valleys are repetitions of this first valley, and
describe buckling into a double and a triple flexure waves for a beam with double and triple length,
respectively (and periodic boundary conditions). The center lines running through the routes of the
valleys describe the same postbuckling wavelength as a function of applied voltage (that is, repetitions
of the same solution). The critical stability states are marked by the solid line on the rims of the valleys
[Abu-Salih and Elata 2005].
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Figure 3. Postbuckling state as a function of applied voltage for ỹ0 = 0.1 (that is, β =
0.88), g/h = 10 and v = 0.25. (a) The normalized wavelength; (b) normalized amplitude
of the sinusoidal component of the deflection; (c) the normalized deflection average.

4.2. Numerical validation. To validate the analytic solution presented in the previous subsection, a
finite-difference numerical code for solving Equation (2) with periodic boundary conditions (12) was
implemented in MATLAB®. For given supercritical voltages (that is, Ṽ 2 > Ṽ 2

cr ), the code numerically
computed the total potential of the system (17) and numerically found the normalized wavelength that
minimizes this potential per unit length.

Figure 5 presents the convergence of the postbuckling deflection parameters as a function of the
number of nodes n in the finite-difference mesh for the conditions β = 0.9, g/h = 10, v = 0.25, and
Ṽ 2/Ṽ 2

cr = 1.35. For these conditions the postbuckling deflection parameters are α = 1.092, ỹ′0 = 0.1288
and B ′ = 0.02771. To verify that the postbuckling deflection is of the functional form (13), the deflection
average was subtracted from the deflection which was then normalized such that its amplitude was in the
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Figure 4. The total potential energy of a finite beam with periodic boundary conditions
and ỹ0 = 0.1 (that is, β = 0.88), g/h = 10 and v = 0.25, as a function of the normal-
ized applied voltage and the postulated wavelength. The flat regions describe states in
which the applied voltage is insufficient to induce buckling for prescribed values of the
postulated wavelength.

range −1≤ ỹ− ỹ′0 ≤ 1. The root-mean-square of the error from a perfect sine wave was then computed
and found to be rms = 6.5 · 10−4.

Similar convergence properties and compliance with the postulated waveform (13) were found when
the response of a beam with lengths L/3cr = 2α and L/3cr = 3α was simulated. In this case the solution
was a double and triple repetition of the solution obtained for a beam of length α.

Last, it was assumed that the postbuckling deflection parameter B ′ is small and that the solution of
(2) may be substituted by the simultaneous solution of (15) and (16). Figure 3 presents the numerically
computed values of α, B ′ and ỹ′0 (‘+’ marks) as functions of Ṽ 2/Ṽcr for the parameters ỹ0 = 0.1 (that
is, β = 0.88), g/h = 10 and v = 0.25. These results are based on a finite-difference solution of (2) with
boundary conditions (12). In these numerical simulations, the functional waveform of the deflection
was not a priori constrained in any way (except for the periodic boundary conditions). The agreement
between the numerically computed values and the analytic approximation verify that for small values of
Ṽ 2/Ṽ 2

cr these assumptions are valid.
Figure 6 presents the value of Ṽ 2/Ṽ 2

cr for which B ′ is 1%, 3%, and 5%. It is clear that for small values
of β the voltage range for which the analysis is applicable is rather limited. However, for β ≥ 0.85, B ′

remains small for a considerable range of Ṽ 2/Ṽ 2
cr .

In a series of numerical simulations (not presented in this manuscript), for different values of prestress
β, the applied voltage was increased up to the pull-in point [Elata and Abu-Salih 2005]. At these simu-
lated pull-in states, not only was the average deflection ỹ′0 considerable (for example, ỹ′0 ≈ 1/3), but also
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Figure 5. Convergence of the postbuckling deflection parameters as a function of the
number of nodes n (for β = 0.9, α = 1.092, Ṽ 2/Ṽ 2

cr = 1.35).

the amplitude of the sinusoidal deflection component, B ′, became rather large such that the deflection
form (13) is no longer a valid approximation. Under these conditions the equilibrium equation becomes
invalid due to the large rotations, and in any case, the high reduction of the elastic foundation thickness
would suggest that a nonlinear foundation response should be considered.

5. Discussion

In this work the electromechanical buckling of a prestressed beam which is bonded to a dielectric elastic
foundation is analyzed. An analytic solution of the critical electromechanical state is derived, and it is
shown that electrostatic forces can precipitately instigate buckling even when the prestress in the beam
is lower than the critical value that would cause mechanical buckling. An analytic approximation of the
initial postbuckling state is also presented, and is validated numerically. The numerical simulations show
that a stable, initial postbuckling state exists.

The analysis presented in this study considers perfect elastic response with no residual strains, for
example, plastic deformation. The work done by the voltage source is invested in elastic strain energy
(of the beam and foundation) and electrostatic potential between the beam and substrate. When the
voltage source is turned off (effectively setting V = 0) the deformed system will return to the original
state with a flat prestressed beam and an unloaded elastic foundation. This suggests that electrostatic
potential can be used to achieve on/off switching of flexure waves in a prestressed beam. Such on/off
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Figure 6. Validity range of the assumption of small B ′.

switching of flexures may be useful in microsystems. For example, it may enable repeated reversible
modification of the optical reflectivity of a microstructure.

Finally, one may always pose the question of how long must an actual beam be to justify its consider-
ation as infinite. Electromechanical buckling may also occur in beams of finite length, and this response
will be affected by the boundary conditions at the edges. In finite but long beams, the postbuckled flexures
in regions that are sufficiently far from either edge (distance measured in number of wavelengths) will
resemble the postbuckled flexures in an infinite beam.
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ON UNIQUENESS IN THE AFFINE BOUNDARY VALUE PROBLEM OF THE
NONLINEAR ELASTIC DIELECTRIC

R. J. KNOPS AND C. TRIMARCO

An integral identity is constructed from properties of the energy momentum tensor and is used to demon-
strate uniqueness of the displacement on star-shaped regions to the affine boundary value problem of the
nonlinear homogeneous elastic dielectric. The method of proof, nontrivially adapted from that of the
corresponding elastic problem, assumes the electric enthalpy function to be rank-one convex and strictly
quasiconvex. Furthermore, for a given displacement gradient, the electric quantities are proved unique
for specified nonaffine and nonuniform electric boundary conditions subject to the electric enthalpy and
strain energy functions satisfying additional convexity conditions.

1. Introduction

This paper considers uniqueness of smooth solutions to certain simple boundary value problems for
the nonlinear homogeneous elastic dielectric in equilibrium and occupying a bounded region of n-
dimensional Euclidean space subject to zero body-force and electric source charges. Uniqueness in corre-
sponding electromagnetic problems is guaranteed by strict convexity of the energy. A similar condition on
the strain energy function also ensures uniqueness to boundary value problems of nonlinear elastostatics,
but several well known counterexamples demonstrate that universal uniqueness is untenable. The coun-
terexamples mean that also for the nonlinear elastic dielectric unqualified uniqueness is unacceptable
and consequently the condition of strict convexity is too restrictive even for ferroelectrics and similar
materials exhibiting phase transitions. But equally, we do not expect there to be universal nonuniqueness
since it is intuitively evident that certain simple problems should possess a unique solution.

In elastostatics, this topic has been treated in [Knops and Stuart 1984] where the notions of strict quasi-
convexity and rank-one convexity of the strain energy function are introduced to establish uniqueness of a
smooth solution to affine displacement boundary value problems on star-shaped bounded regions. Pivotal
to the proof is a Noetherian conservation law [Gelfand and Fomin 1963] which in the context of elasticity
has been separately derived either directly or from properties of the energy-momentum (Eshelby) tensor.
Contributions notably include those by Chadwick [1975], Eshelby [1975], Green [1973], Günther [1962],
Gurtin [2000], Hill [1986], Knowles and Sternberg [1972]. Pohozaev [1965] and Pucci and Serrin [1986]
are among those who have used a similar law in partial differential equations.

The uniqueness proof presented here for the nonlinear elastic dielectric is patterned on that described
in [Knops and Stuart 1984], and therefore is likewise restricted to star-shaped regions. Another appli-
cation of the basic proof is by Mareno [2004] who investigated uniqueness in the second order theory
of nonlinear elasticity. As a consequence of these previous studies, the intrinsic mathematical interest
of the present paper is seen as lying not so much in the details required to extend the proof, but rather

Keywords: elastic dielectric, affine boundary values, uniqueness.
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in the electromagnetic problems under consideration, for which the uniqueness results are new. In this
respect, it is perhaps worth remarking that uniqueness results generally are restricted to the linear theory
and comparatively little information appears available for nonlinear elastic dielectrics. Therefore the
following conclusions are viewed as contributing to a basic understanding of the coupled theory of
elasticity and electromagnetism, with particular relevance for numerical computation and those aspects
concerned with buckling and hysteresis.

For ease of presentation, it is convenient to ignore magnetic effects, although these may also be
included. It is also convenient to conduct the analysis with respect to the reference configuration which
requires the electric fields and the governing Maxwell–Lorentz equations to be appropriately transformed
from their usual formulation in the current configuration. For this purpose, we appeal in part to a vari-
ational procedure in which the strain energy function is replaced by an electric enthalpy regarded as a
function of the deformation gradient, electric field and the polarization referred to the reference config-
uration. The consequent enlarged set of Euler–Lagrange equations contain the transformed Maxwell–
Lorentz equations, and enable certain properties of the energy-momentum tensor to be derived. These
in turn lead to an identity, analogous to the elastostatic conservation law, whose construction, while
nontrivial, appears to be more direct than is usual; compare for example, [Ericksen 2006, to appear;
Maugin 1993; Maugin and Trimarco 1991; 2001, Trimarco 2002; 2003; and Pack and Herrmann 1986].
The Maxwell–Lorentz equations also imply that the electric enthalpy is independent of the polarization,
so that the conditions for the electric enthalpy to be quasiconvex and rank-one convex, both essential for
the proof, need only be defined in terms of the deformation gradient and the electric field. As is well
known, these generalized notions of convexity hold for deformation gradients and electric fields that may
be discontinuous across an internal surface provided both satisfy geometrical compatibility conditions
that characterize coherent phases in solids. This aspect is not developed in what follows. Furthermore, the
generalized convexity notions both reduce to convexity in the usual sense for functions whose arguments
are vectors or scalars. The reduction is pertinent to the concluding discussion regarding uniqueness under
mixed boundary conditions of the electric constituents for a given deformation gradient, which includes
application to a dielectric embedded in a capacitor.

Section 2 assembles essential preliminaries, introduces the electric enthalpy function, states, and, for
completeness, proves the conservation law. The notions of rank-one convexity and quasiconvexity are
introduced in Section 3 which also specifies the affine boundary conditions and constructs the unique-
ness proof. The concluding remarks, given in Section 4, include alternative conditions for uniqueness
in the affine boundary value problem, and a discussion of uniqueness of the electric displacement and
polarization in the affine problem. For completeness, we supplement these results by demonstrating
that for a given deformation gradient the electric field remains unique when the affine electric boundary
conditions are replaced by those of standard nonuniform mixed type. Under these boundary conditions
we also prove uniqueness of the polarization and the electric displacement subject additionally to the
strain energy being rank-one convex with respect to the polarization, a condition possibly too severe
for ferroelectrics but for which uniqueness of the deformation and electric field remains valid. The
conclusions are, of course, not unexpected, although perhaps less so in the nonlinear theory, and merely
reflect the reduction, already remarked, of generalized notions of convexity to that of standard convexity
for functions of vector quantities.
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The direct tensor notation is mainly employed except when greater clarity is achieved by the corre-
sponding suffix notation. Existence of a smooth solution is assumed, but in this respect we note that
under the generalized convexity conditions discussed here, existence of elastostatic weak solutions has
been established by Ball [1976], while Serre [2004] has discussed the corresponding electromagnetic
problem.

2. Notation and other preliminaries

A nonlinear homogeneous elastic dielectric in its reference configuration occupies the bounded region
�⊂ IRn of n-dimensional Euclidean space. The piecewise continuously differentiable boundary ∂� of �
has unit outward normal N and is assumed to be star-shaped with respect to an interior point. Boundary
conditions, precisely stated in the next section, produce an equilibrium deformation of the dielectric
in which a point X ∈ � becomes displaced to the point x , where X, x represent vectors in IRn whose
components with respect to a Cartesian coordinate system are X A and xi . The deformation, supposed
smooth, possesses a gradient expressed by

F =
∂x
∂X

, Fi A =
∂xi

∂X A
, (2–1)

while the inverse is given by

F−1
=
∂X
∂x
, F−1

Ai =
∂X A

∂xi
, (2–2)

and the determinant associated with Equation (2–1) is J = det F . Let Mm×n denote the set of m × n
matrices and suppose that J ∈ Mn×n

+ , the set of square matrices with positive determinant. The transpose
of a tensor A is denoted by AT ; the identity tensor by I ; and the tensorial trace operator by tr . Tensor
and vector multiplication is indicated by juxtaposition, the precise form being clear from the particular
context, while the inner product of tensors AB is given by

AB = tr ABT .

In the deformed dielectric there is an electric field e, an electric displacement d , and a polarization p
per unit deformed volume. These vector quantities satisfy the appropriate time independent Maxwell–
Lorentz equations which in the assumed absence of electric source charges lead to the following the
expressions e = − grad ϕ and d = ε0e+ p, where grad denotes the gradient operator with respect to the
system of current coordinates x , ϕ(x) is a scalar potential function of the variables x , and ε0 is the in
vacuo dielectric constant supposed positive.

It is convenient to develop the subsequent analysis with respect to the reference configuration �. Now,
in terms of the notation

E = FT e, D = J F−1d, P = J F−1 p, (2–3)

it has been shown by, for example, Walker et al. [1965] that the Maxwell–Lorentz equations in the
reference configuration imply the relations

E =−Grad8, (2–4)

D = ε0 J F−1 F−T E + P, (2–5)
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where Grad represents the standard gradient operator with respect to the system of reference coordinates
X , and 8(X) is a scalar potential function of the variable X .

Next, we suppose that the dielectric possesses a strain energy function

W : M (n+1)×n
→ IR

per unit volume of the reference configuration that depends upon both the deformation gradient and the
electric polarization:

W =W (F, F P). (2–6)

Furthermore, we introduce the electric enthalpy function H(F, P, E) [Maugin and Trimarco 1991; Tri-
marco 2002] defined by

H(F, P, E)=W (F, F P)−
1
2
ε0 J E F−1 F−T E − E P, (2–7)

from which the identity immediately follows:

D =−
∂H
∂E

(F, P, E). (2–8)

The complete set of equations governing the deformation of the dielectric may be obtained by consid-
ering the stationary points of the electric enthalpy (2–7) with respect to independent variations of 8, F,
and P . (See, for example, [Trimarco 2002; 2003; Maugin and Trimarco 1991; 2001; Maugin 1993; Pack
and Herrmann 1986; Yu 1995] and the important discussion in [Ericksen 2006, to appear].) This yields
the Euler–Lagrange equations:

Div
∂H
∂F

(F, P, E)= 0, (2–9)

Div D = 0, (2–10)

∂H
∂P
≡
∂W
∂P
− E = 0, (2–11)

where Div denotes the divergence operator with respect to the system of reference coordinates X .
We observe that Equations (2–10) and (2–4) are the usual electrostatics equations in the absence of

electric free charge, and in fact (2–10) implies that d is solenoidal in the current configuration of the
elastic dielectric. The classical electrostatics equations are consequentially recovered. Moreover, the
transformation (2–3) and (2–5) together with (2–10) are consistent with the fundamental requirement
that total electric charge be conserved.

From (2–11) we conclude that H is independent of P so that H(F, E) : M (n+1)×n
→ IR.

A crucial ingredient of the uniqueness proof described in the next section is a conservation law (or
integral identity) that is stated and proved in the following lemma.

Lemma 2.1 [Ericksen 2006, to appear; Maugin 1993; Maugin and Epstein 1991; Trimarco 2002; 2003].
Let �⊂ IRn have smooth boundary ∂� with unit outward normal N . Let (2–4), (2–5) and (2–7) hold, let
(x,Grad 8) be a smooth solution to the equilibrium equations (2–9)–(2–11), and let the electric enthalpy
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satisfy H ∈ C2(M (n+1)×n, IR). Then:

n
∫
�

H(F, E) d X =

∫
∂�

(
(N X)H(F, E)+ tr ∂H(F, E)

∂F
(
x − (X Grad)x

)
+N D(F, E) (8− (X Grad)8)

)
d S, (2–12)

where d X and d S represent respectively the volume and surface elements of integration in the reference
configuration.

Proof. The identity Equation (2–12) may be established by application of the divergence theorem either
to the surface integral on the right and noting that

∂H
∂X
=
∂H
∂F

Grad F − (D Grad)E, (2–13)

or, after rearrangement of the integrand and appeal to (2–9), to the integral identity∫
�

(
X FT Div

∂H
∂F

)
d X = 0. (2–14)

Instead, we prefer to employ the energy-momentum, or Eshelby, tensor B defined by

B = (W − E P)I − FT ∂W
∂F
+ E ⊗ P, (2–15)

where E ⊗ P denotes the tensor product of the vectors E and P . The relation

∂H
∂F
=
∂W
∂F
+ J T F−T , (2–16)

where T is the Maxwell stress tensor given explicitly by

T = ε0(e⊗ e−
1
2

eeI ), (2–17)

enables (2–15) to be alternatively expressed as

B = H I − FT ∂H
∂F
+ E ⊗ D, (2–18)

from which by appeal to (2–9) and (2–10) we may directly prove that

Div B = 0. (2–19)

On following Chadwick’s [Chadwick 1975] or Hill’s [Hill 1986] approach to the corresponding elastic
problem, we have

Div(X B)= tr B

= nH −Div(x
∂H
∂F
−Div(D8), (2–20)

which by integration over � leads to (2–12). �
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3. Uniqueness in the affine boundary value problem

In this section we prove that the affine boundary value problem has a unique smooth solution provided the
electric enthalpy satisfies generalized convexity conditions. The region � is supposed to be star-shaped
with respect to an interior point which without loss may be taken as the origin of coordinates so that

N X > 0, X ∈ ∂�. (3–1)

We commence by considering two distinct smooth equilibrium solutions (x,8) and (y, 9) to the
dielectric Equations (2–9)–(2–11) that satisfy the same boundary conditions in the following sense

x − y = 0, X ∈ ∂�, (3–2)

8−9 = 0, X ∈ ∂�. (3–3)

Then by Hadamard’s lemma [Hadamard 1903] it follows that

Grad(y− x)= λ⊗ N , λ= N Grad(y− x), X ∈ ∂�, (3–4)

Grad(9 −8)= µN , µ= N Grad(9 −8), X ∈ ∂�. (3–5)

The first convexity assumption imposed on the electric enthalpy is that of rank-one convexity. The
precise notion used is defined in the second of the following two related definitions.

Definition 3.1 (Rank-one convexity at a point). The function

H ∈ C(M (n+1)×n, IR)

is (strictly) rank-one convex at F and E if and only if

H(F + ta⊗ b, E + t Q)≤ t H(F + a⊗ b, E + Q)+ (1− t)H(F, E), (3–6)

for all
t ∈ [0, 1], F ∈ Mn×n

+
, E ∈ IRn, Q ∈ IRn, a ∈ IRn, b ∈ IRn,

such that F + ta⊗ b ∈ Mn×n
+ . Strict rank-one convexity at a point holds when the inequality in (3–6) is

strict.

When H ∈ C1(M (n+1)×n, IR), an immediate deduction from (3–6), obtained on taking the limit t→ 0,
is the further inequality

H(F + a⊗ b, E + Q)≥ H(F, E)+
∂H(F, E)

∂F
a⊗ b+

∂H(F, E)
∂E

Q, (3–7)

for all
F ∈ Mn×n

+
, a ∈ IRn, l b ∈ IRn, E ∈ IRn, and Q ∈ IRn+,

such that F + a⊗ b ∈ Mn×n
+ .

Definition 3.2 (Rank-one convexity). The function H(F, E) is (strictly) rank-one convex if and only if
H is (strictly) rank-one convex at F and E for all F ∈ Mn×n

+ , and all E ∈ IRn.

We can now state and prove the first lemma needed in the proof of uniqueness.
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Lemma 3.1. Let � be star-shaped with respect to the origin, and let

H : M (n+1)×n
→ IR

be rank-one convex. Let (x,8) and (y, 9) be distinct pairs of equilibrium smooth solutions to (2–9)–
(2–11) that satisfy the same Dirichlet boundary conditions in the sense of (3–2) and (3–3). When

H ∈ C1(M (n+1)×n, IR),

we have

n
∫
�

(
H(Grad x,−Grad 8)− H(Grad y,−Grad 9)

)
d X

≤

∫
∂�

{
∂H(Grad x,−Grad 8)

∂F
−
∂H(Grad y,−Grad 9)

∂F

}
×{N ⊗ (y− (X Grad) y)} d S

+

∫
∂�

{
N
∂H(Grad x,−Grad 8)

∂E
− N

∂H(Grad y,−Grad 9)
∂E

}
×{−9 + X Grad 9} d S. (3–8)

Proof. The conservation law (2–12) by hypothesis is satisfied by both solutions (x,8) and (y, 9).
Consequently, subtraction of the respective identities and appeal to (3–2)–(3–5) leads to the relation

n
∫
�

(
H(Grad x,−Grad 8)− H(Grad y,−Grad 9)

)
dX

=

∫
∂�

N X
(
H(Grad x,−Grad 8)− H(Grad x + λ⊗ N ,−Grad 8−µN )

)
dS

+

∫
∂�

N X
(∂H
∂F

(Grad x,Grad 8)N ⊗ λ−µN
∂H
∂E

(Grad x,Grad 8)
)

dS

+

∫
∂�

(∂H
∂F

(Grad x,Grad 8)−
∂H
∂F

(Grad y,Grad 9)
)
×
(
N ⊗ (y− X,Grad y)

)
dS

+

∫
∂�

(
N D(Grad x,Grad 8)− N D Grad (y,Grad 9)

)
× (9 − X Grad 9) dS. (3–9)

The first two terms on the right are nonpositive by virtue of the star-shaped assumption (3–1) and
inequality (3–7) for the rank-one convex function H . Consequently, the lemma is proved. �

Remark 3.1. It is apparent from the proof of Lemma 3.1 that rank-one convexity of H is required only
on the set of surface values of Grad(y− x) and Grad(9 −8).

We next restrict our attention to affine boundary conditions. We have as a corollary to Lemma 3.1 the
following lemma:

Lemma 3.2. Let � be star-shaped and let (3–1) be satisfied. Let (x,8) be a smooth equilibrium solution
to (2–9)–(2–11), let the electric enthalpy H be rank-one convex, and let x and 8 satisfy the respective
affine boundary conditions

x = c+ AX, X ∈ ∂�, (3–10)

8= d + bX, X ∈ ∂�, (3–11)
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where A ∈ Mn×n
+ , c ∈ IRn, b ∈ IRn and d ∈ IRn are constant.

Then ∫
�

H(Grad x,−Grad 8) d X ≤
∫
�

H(A,−b) d X. (3–12)

Proof. Consider the affine equilibrium solution pair (y, 9) given by

y = c+ AX, X ∈ �̄, (3–13)

9 = d + bX, X ∈ �̄, (3–14)

where as usual the overbar denotes closure; that is, �̄=�∪ ∂�. It easily follows that (y, 9) satisfies
the boundary conditions (3–10) and (3–11), and also the relationships

Grad y = A, Grad 9 = b, X ∈ �̄, (3–15)

and

y− X Grad y = c, X ∈ �̄, (3–16)

9 − X Grad 9 = d, X ∈ �̄. (3–17)

The proof of the Lemma is completed upon noticing that the right side of Equation (3–8) vanishes by
virtue of (3–15)–(3–17), the divergence theorem, and the equilibrium equations (2–9)–(2–10). �

Uniqueness of the affine solution (3–13) and (3–14) requires the introduction of our second general
convexity assumption defined as follows:

Definition 3.3 (Quasiconvexity). The function H ∈ C(M (n+1)×n, IR) is quasiconvex at (A, b) if and only
if ∫

6

H(A+Grad χ,−b+Grad θ) d X ≥
∫
6

H(A,−b) d X, (3–18)

for every bounded open set 6, and χ ∈W 1,∞
0 (6, IR), θ ∈W 1,∞

0 (6, IR).

Definition 3.4 (Strict Quasiconvexity.). The function H is strictly quasiconvex at (A, b) if and only if H
is quasiconvex at (A, b) and equality holds only when χ = θ = 0.

The relation between rank-one convexity, quasiconvexity, and other notions of convexity is further
discussed in, for example, [Ball 1976] and [Knops and Stuart 1984]. For present purposes, it is sufficient
to note that all generalized notions of convexity reduce to the standard condition of convexity when the
functions concerned are defined only on scalar and vector quantities.

We now proceed to establish uniqueness of the solution to the affine boundary problem. We have:

Proposition 3.1 (Uniqueness). Let� be star-shaped with respect to the origin, and let the affine boundary
conditions be (3–10) and (3–11). Let H ∈ C2(M (n+1)×n, IR) be rank-one convex and strictly quasiconvex
at (A,−b). Then the unique smooth equilibrium solution is

x = c+ AX, X ∈ �̄, (3–19)

8= d + bX, X ∈ �̄. (3–20)
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Proof. Suppose that (x,8) and (y, 9) are equilibrium solutions satisfying the affine boundary conditions
(3–10) and (3–11) such that x 6≡ y ≡ c+ AX and 8 6≡ 9 ≡ d + bX for X ∈ �. Consider the volume
integral on the left of Equation (2–12), which may be rewritten∫

�

H(Grad x,−Grad 8) d X

=

∫
�

H
(
Grad y+Grad(x − y),−Grad9 +Grad(9 −8)

)
d X

=

∫
�

H
(

A+Grad(x − y),−b+Grad(9 −8)
)

d X. (3–21)

By hypothesis, x− y=9−8= 0 for X ∈ ∂�, and consequently strict quasiconvexity of H at (A,−b)
implies that ∫

�

H(Grad x,−Grad8) d X >
∫
�

H(A,−b) d X, (3–22)

which contradicts inequality Equation (3–12) and the Proposition is proved. �

4. Concluding Remarks

This final section provides several remarks that supplement the previous results. In particular, we explore
the implication of Proposition 3.1 for the uniqueness of the electric displacement and polarization, and
consequently the electric free charge density on the surface ∂�. For completeness, we also demon-
strate for a given deformation gradient that the electric constituents are uniquely determined subject to
mixed boundary conditions and a rank-one convex electric enthalpy. The conclusion represents a slight
extension of the familiar property in electrostatics.

We commence with an observation whose validity is evident from an examination of the proof of
Proposition 3.1.

Remark 4.1 (Alternate conditions). The conditions stipulated in Proposition 3.1 for H may be replaced
by the alternative conditions of strict rank-one convexity and quasiconvexity at (A,−b).

Remark 4.2 (Electric displacement and polarization). Suppose for simplicity that the strain energy
function W is convex with respect to P so that (2–11) is invertible to give P uniquely in terms of
E and F . We conclude that the conditions of Proposition 3.1 uniquely determine P to be constant.
Consequently, (2–8) yields a unique constant value for D under the same conditions. Furthermore, the
electric free charge surface density σ(X) for X ∈ ∂� is given by

DN = σ. (4–1)

where from (2–10) it necessarily follows that
∫
∂� σ d S = 0. An appeal to (2–5) and (4–1) shows that σ

is uniquely determined by P, E, and F , and therefore under the stipulated conditions is likewise unique.
On the other hand, when the electric potential is constant on the boundary, it follows as a special

case of Proposition 3.1 that the electric field E vanishes everywhere in �, and by the assumed unique
invertibility of (2–11), that the polarization is also identically zero. (See also Remark 4.4).
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Remark 4.3 (Mixed boundary conditions: electric field). Suppose that

H(F, E) : M (n+1)×n
→ IR

is strictly rank-one convex with respect to E ∈ IRn at each F ∈ Mn×n
+ so that

H(F, t E + (1− t)Q) < t H(F, E)+ (1− t)H(F, Q), (4–2)

for all E ∈ IRn, Q ∈ IRn and t ∈ [0, 1]. Notice, as already observed, that (4–2) is the usual condition for
strict convexity as generalized definitions of convexity reduce to the corresponding standard definitions
for scalar and vector quantities. Now consider the function defined by

I (t)=
∫
�

(
H(F, t E + (1− t)Q)− t H(F, E)− (1− t)H(F, Q)

)
d X, (4–3)

which by inspection and (4–2) possesses the properties

I (0)= I (1)= 0, (4–4)

I (t) < 0, t ∈ (0, 1). (4–5)

Next assume that for each F there exist two distinct electric fields E, Q with potentials 8,9 and corre-
sponding electric displacements D(F, E) and D(F, Q). Instead of the affine boundary condition (3–11)
we suppose nonaffine and nonuniform mixed boundary conditions such that for all F ∈ Mn×n

+ and E 6≡ Q
we have:

8=9, X ∈ ∂�1, (4–6)

D(F, E)N = D(F, Q)N , X ∈ ∂�2, (4–7)

where ∂�= ∂�1 ∪ ∂�2, and

E =−Grad 8, Q =−Grad 9, X ∈�. (4–8)

Let a superposed prime denote differentiation with respect to t . Examination of the graph of I (t) imme-
diately shows that

0> I ′(0)=
∫
�

(∂H(F, Q)
∂E

(E − Q)− H(F, E)+ H(F, Q)
)

d X

=

∫
�

(∂H(F, Q)
∂E

(Grad 9 −Grad 8)− H(F, E)+ H(F, Q)
)

d X

=

∫
�

(
−D(F, Q)(Grad 9 −Grad 8)− H(F, E)+ H(F, Q)

)
d X,

which after an integration by parts and appeal to Equation (2–10) and (4–6) gives∫
�

H(F, E) d X >
∫
�

H(F, Q) d X +
∫
∂�2

D(F, Q)N (8−9) d S. (4–9)
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On noting Equation (4–7) and either by reversing the roles of E and Q, or by evaluating I ′(1) > 0, we
are led to a contradiction and consequently we conclude that

8≡9, X ∈ �̄, (4–10)

and uniqueness of the electric field is established. This is not necessarily constant, unlike the case of the
affine boundary value problem.

Remark 4.4 (Mixed boundary conditions: electric displacement and polarization). The conditions in-
troduced into the previous remark are insufficient to provide uniqueness of the corresponding electric
displacement and polarization vectors, which is not surprising, especially for ferroelectrics and similar
materials. We emphasize, however, that for such materials the argument can easily be modified as follows
to additionally obtain uniqueness of the electric displacement and polarization. Assume the conclusion is
false and that P and R are the distinct respective polarizations. Let the nonaffine and nonuniform mixed
boundary conditions be such that Equations (4–6) and (4–7) hold, and in addition to (rank-one) convexity
of the electric enthalpy (4–2) with respect to E , suppose that the strain energy is strictly (rank-one) convex
with respect to P in the sense that for each given F

W (F, t F P + (1− t)F R) < tW (F, F P)+ (1− t)W (F, F R), (4–11)

for P, R ∈ IRn . The function G(t), defined by

G(t)= ∫
�

(
W (F, t F P + (1− t)F R)− tW (F, F P)− (1− t)W (F, F R)

)
d X, (4–12)

satisfies G(0)= G(1)= 0, and G(t) < 0, 0< t < 1, so that G ′(0) < 0 and therefore by Equation (2–11)
we have ∫

�

(
E(P − R)−W (F, F P)+W (F, F R)

)
d X < 0. (4–13)

But for each F we have shown already that E is uniquely determined, and so by interchange of P and
R we are led to a contradiction and the polarization is unique. It is worth remarking that uniqueness of
P is established here subject to conditions more general than those assumed in Remark 4.2. Uniqueness
of the electric displacement now follows from relation (2–5).
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TWO-WAY THERMOMECHANICALLY COUPLED MICROMECHANICAL
ANALYSIS OF SHAPE MEMORY ALLOY COMPOSITES

JACOB ABOUDI AND YUVAL FREED

A previously established micromechanical model whose capability to analyze and predict the behavior
of thermoinelastic fibrous composites with one-way thermomechanical coupling, in which the temper-
ature is prescribed in advance, was verified. This model is extended herein to incorporate two-way
thermomechanical coupling effects in thermoinelastic composites. As a result of this generalization, the
temperature which is coupled to the mechanical effects, is governed by the energy equation and is in-
duced into the composite’s constituents as a result of the application of mechanical loadings. The model
is applied to predict the behavior of composites that consist of shape memory alloy fibers embedded
in metallic and polymeric matrices. Results exhibit the response of the composites to various types of
loading, and the effect of the two-way thermomechanical coupling that induces temperature deviations
from reference temperatures at which shape memory and pseudoelasticity effects take place at the fibers.

1. Introduction

Shape memory alloy (SMA) materials undergo phase transformation which is caused by the application
of stress and/or change in temperature. At high temperatures, the material behavior is nonlinear and
hysteretic, but, at the end of a mechanical loading-unloading cycle, still yields the original stress-strain-
free state (pseudoelastic behavior). At lower temperatures, a mechanical loading-unloading results in a
residual deformation which can be recovered by a temperature increase (shape memory effect). The latter
effect can be utilized to control the behavior of structures in which SMA materials have been embedded.

There are numerous micromechanical models that can predict the overall (macroscopic) behavior
of composite materials with embedded shape memory alloy fibers. Examples for such micromechanical
investigations are those of Boyd and Lagoudas [1994], Kawai et al. [1999], Carvelli and Taliercio [1999],
Song et al. [1999], Kawai [2000], Gilat and Aboudi [2004] and Marfia [2005]. When thermal effects
in these investigations are involved, they are treated as in thermal stress problems where a prescribed
constant temperature is imposed throughout the composite. The thermomechanical coupling (TMC)
in such thermoelastic problems is referred to as one-way coupling because only the mechanical field
is affected by the temperature. A micro-macro-structural analysis with one-way TMC was recently
employed by Gilat and Aboudi [2006] to investigate the thermal buckling of shape memory reinforced
laminated plates.

In thermomechanical problems with two-way TMC, the temperature and mechanical effects are cou-
pled to each other and the energy equation that governs the temperature field variation in the material
involves the effect of total strain rate, the effect of inelastic strain rate in metallic materials and the effect

Keywords: shape memory alloys, periodic composites, thermomechanical coupling, micromechanics, high-fidelity generalized
method of cells.
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of transformation strain rate in SMA materials. In order to investigate the behavior of the monolithic
SMA material with two-way TMC, appropriate constitutive relations and the energy equation need to be
established. To this end, Auricchio and Petrini [2004b] presented a free-energy function from which the
required two-way TMC constitutive and energy equations were derived. The implementation of these
equations requires the development of a computational algorithm based on an implicit time procedure,
in conjunction with the radial return method [Simo and Hughes 1998].

The purpose of the present paper is two-fold. First, a micromechanical model, referred to as a high-
fidelity generalized method of cells (HFGMC) is generalized to incorporate two-way TMC capability.
The HFGMC with one-way coupling can predict the behavior of multiphase inelastic composites with
periodic microstructure by employing the homogenization technique. Its accuracy and reliability were
demonstrated [Aboudi et al. 2002; 2003] by comparisons with analytical solutions that can be established
in certain cases and with finite element solutions. The method has been employed also for the prediction
of the behavior of viscoelastic-viscoplastic composites [Aboudi 2005], electro-magneto-thermoelastic
composites, and composites that are subjected to large deformations, see the recent review by Aboudi
[2004] (that includes also references to its predecessor GMC micromechanical model). It should be noted
that the HFGMC with one-way TMC has been implemented in the recently developed micromechanics
analysis code MAC/GMC by NASA Glenn Research Center, which has many user friendly features and
significant flexibility; see [Bednarcyk and Arnold 2002] for the most recent version of its user guides. The
predecessor GMC micromechanical model was employed by Williams and Aboudi [1999] to investigate
two-way TMC of metal matrix composites.

As a result of the generalization offered by the HFGMC to incorporate the two-way TMC, macroscopic
constitutive equations that govern the thermomechanical behavior of the composite are established. These
relations are based on the micromechanical derivation of the effective stiffness tensor of the composite
as well as the mechanical, thermal and inelastic concentration tensors and scalars. These concentration
tensors and scalars are established by the homogenization of the periodic composite, in conjunction
with the imposition of the coupled equilibrium and energy equations, and by imposing the continuity
of tractions, displacements, heat fluxes and temperatures at the interfaces between the various materials,
and by the application of the periodic boundary conditions. The latter conditions ensure that the tractions,
displacements, heat fluxes and temperatures are identical at the opposite boundaries of a repeating unit
cell that characterizes the periodic composite. These three types of concentration tensors are interre-
lated due to the TMC effects. In particular, the effective stiffness tensor of the composite involves the
mechanical and thermal concentration tensors.

The second purpose of this paper is the investigation of the overall (macroscopic) behavior of com-
posites consisting of continuous SMA fibers embedded in metallic and polymeric matrices with two-way
TMC effects. In particular, the induced average temperatures that result from the two-way TMC are
computed and presented under various circumstances. To this end, the constitutive two-way modeling
of the SMA fibers of Auricchio and Petrini [2004b] is employed.

Results are given for SMA continuous fiber composites with a metallic (aluminum) matrix and poly-
meric (epoxy) matrix. It is shown that the TMC has little effect on the average stress-strain of the
composite, but has a significant effect on the induced temperature that is generated due to the application
of mechanical loadings. This effect is due mainly to the term that appears in the coupled energy equation
that involves the inelastic strain rate in metallic materials, and to a lesser extent, to the transformation
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strain rate in the SMA fibers. These results are given at two reference temperatures at which shape
memory and pseudoelasticity effects in the SMA fibers take place.

2. Two-way TMC constitutive equations of the monolithic SMA

The fully coupled thermomechanical equations of the monolithic SMA material were presented by Auric-
chio and Petrini [2002; 2004b; 2004a], who extended and improved the thermodynamical model of Souza
et al. [1998]. These equations are briefly presented below. The strain ε is decoupled into a dilatation θ
and deviatoric e parts as follows:

ε =
θ

3
I+ e, (1)

where I is the unit tensor. The free energy function ψ is a function of the dilatation strain θ , the deviatoric
strain e, the transformation strain etr and absolute temperature T , given by

ρψ(θ, e, etr , T )=
1
2

Kθ2
+G||e− etr

||
2
− 3αKθ(T − T0)+β < (T −M f ) > ||etr

||

+
h
2
||etr
||

2
+ (u0− Tη0)+ ρcv

[
T − T0− T log

T
T0

]
+ϒ(etr ), (2)

where ρ, K , G, α, T0, β, M f , h, and ρcv are the mass density, bulk modulus, shear modulus, coefficient
of thermal expansion, reference temperature, slope of the stress-temperature relation, martensite final
temperature, slope of the stress-strain relation during the stress-induced phase transformation and the
heat capacity, respectively. In addition, u0 and η0 are the internal energy and entropy at the reference
state. In Equation (2), ||.|| and < . > denote the Euclidean norm and the positive part of the argument
respectively, and ϒ(etr ) is an indicator function defined as

ϒ(etr )=

{
0 ||etr

|| ≤ εL ,

∞ ||etr
||> εL ,

where εL is the norm of the maximum transformation strain reached at the end of the transformation
during uniaxial test.

The resulting constitutive relations obtained from Equation (2) are given by

p =
∂ψ

∂θ
= K [θ − 3α(T − T0)],

s=
∂ψ

∂e
= 2G(e− etr ),

η = −
∂ψ

∂T
= η0+ 3Kαθ −β||etr

||
< T −M f >

|T −M f |
+ ρcvlog

T
T0
,

X= −
∂ψ

∂etr = s−
[
β(T −M f )+ h||etr

|| +
∂ϒ(etr )

∂||etr ||

]
∂||etr

||

∂etr ,

where p and s are the volumetric and deviatoric parts of the stress σ , η is the entropy and X is the
transformation stress associated with etr .
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The evolution law of etr is

ėtr
= ξ̇

∂F(X)
∂σ

(3)

where the dot denotes a derivative with respect to time t , and F and ξ̇ play the roles of limit function
and plastic consistent parameter, subject to the Kuhn–Tucker conditions. For symmetric SMA behavior,
the function F is given by

F(X)= ||X|| − R ≤ 0, (4)

where R is the radius of the elastic domain.
The resulting coupled energy equation is given by

ρcv Ṫ +5 · q=
[

X+ Tβ
etr

||etr ||

]
: ėtr
− 3 T Kαθ̇, (5)

in conjunction with the Fourier law that relates the heat flux q to the temperature gradient:

q=−k 5 T, (6)

with k being the heat conductivity.
The above nonlinear equations have been treated by Auricchio and Petrini [2002; 2004b; 2004a]

who employed for their solution a computational algorithm based on an implicit time procedure. This
algorithm consists of integrating these equations over a time interval [tn, tn+1] using an implicit backward
Euler scheme. Thus, assuming the knowledge of the solution at time tn , as well as the strain ε at time
tn+1, the stresses are computed using the radial return mapping algorithm [Simo and Hughes 1998].

It should be noted that in the case of standard isotropic materials (for example, metallic materials) the
energy equation is of a form similar to Equation (5) [Allen 1991], but with the term[

X+ Tβ
etr

||etr ||

]
: ėtr

replaced by the rate of inelastic work: ẆI = σ : ε̇ I , where ε I is the inelastic strain which replaces the
transformation strain εtr of the SMA material. In addition, ẆI is usually multiplied by a partition factor
ζ to indicate that only a portion of the inelastic work (about 90%) is transformed into heat [Hunter 1983].
Thus, the final form of the energy equation for conventional isotropic materials is given by

ρcv Ṫ +5 · q= ζσ : ε̇ I
− 3 T Kαθ̇. (7)

As it is shown in the following section, the spatial derivatives can be eliminated. As a result, Equations
(5) and (7) are reduced to an ordinary differential equation in time. Consequently, let us represent (5)
and (7) in the following compact form

[M]Ṫ = [S]T + [Q̇], (8)

where [Q̇] denotes the right side of Equations (5) and (7). The implicit difference in time of Equation
(8) yields [Mitchell and Griffiths 1980]{

[M] −ω1t[S]
}

T n+1
=

{
[M] + (1−ω)1t[S]

}
T n
+ [Q]n − [Q]n−1, (9)
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Figure 1. (a) A multiphase composite with doubly-periodic microstructures defined
with respect to global coordinates (x2, x3). (b) The repeating unit cell is represented
with respect to local coordinates (y2, y3). It is divided into Nβ and Nγ subcells, in the y2

and y3 directions, respectively. (c) A characteristic subcell (βγ ) with local coordinates
ȳ(β)2 and ȳ(γ )3 whose origin is located at its center.

where 1t = tn+1− tn and ω is a parameter (for the Crank–Nicolson scheme: ω = 1/2).

3. Two-way TMC micromechanical analysis

The HFGMC micromechanical model, which is extended herein to a two-way TMC, is used to predict
the fully coupled thermoinelastic behavior of doubly periodic composites with SMA continuous fibers.
For doubly periodic elastoplastic composites with one-way TMC, this theory has been fully described by
[Aboudi et al. 2002; 2003] and by [Bednarcyk et al. 2004] for elastoplastic composites with imperfect
bonding between the constituents. In these publications, the reliability and accuracy of the microme-
chanical predictions were examined by comparisons with analytical solutions that can be established in
some special cases and with a finite element procedure. In this paper, this micromechanical model with
two-way TMC is briefly outlined.



942 JACOB ABOUDI AND YUVAL FREED

This model is based on a homogenization technique for composites with periodic microstructure as
shown in Figure 1(a) in terms of the global coordinates (x2, x3). The repeating unit cell, Figure 1(b),
defined with respect to local coordinates (y2, y3), of such a composite is divided into Nβ and Nγ subcells
in the y2 and y3 directions. Each subcell is labeled by the indices (βγ ) with β = 1, ..., Nβ and γ =
1, ..., Nγ , and may contain a distinct homogeneous material. The dimensions of subcell (βγ ) in the y2

and y3 directions are denoted by hβ and lγ . A local coordinate system (ȳ(β)2 , ȳ(γ )3 ) is introduced in each
subcell whose origin is located at its center, see Figure 1(c).

The local (subcell) constitutive equation of the material which, in general, is assumed to be ther-
moinelastic is given by

σ (βγ ) = C(βγ )(ε(βγ )− ε I (βγ ))−0(βγ )1T (βγ ) (10)

where σ (βγ ), ε(βγ ), ε I (βγ ) and 0(βγ ) are the stress, total strain, inelastic strain and thermal stress co-
efficients tensors in subcell (βγ ). In Equation (10), C(βγ ) is the stiffness tensor of the material in the
subcell (βγ ), and 1T (βγ ) denotes the temperature deviation from a reference temperature. The inelastic
strain ε I (βγ ) is governed by the flow rule (3) for SMA materials, by the Prandtl–Reuss equations of the
classical plasticity or by an appropriate viscoplastic flow rule.

The basic assumption in HFGMC with one-way TMC is that the displacement vector u(βγ ) in each
subcell is expanded into quadratic forms in terms of its local coordinates (ȳ(β)2 , ȳ(γ )3 ), as follows

u(βγ ) = ε̄ · x+W(βγ )
(00) + ȳ(β)2 W(βγ )

(10) + ȳ(γ )3 W(βγ )
(01)

+
1
2

(
3ȳ(β)22 −

h2
β

4

)
W(βγ )
(20) +

1
2

(
3ȳ(γ )23 −

l2
γ

4

)
W(βγ )
(02) (11)

where ε̄ is the externally applied average strain, W(βγ )
(00) is the volume-averaged displacement, and the

higher-order terms
W(βγ )
(mn)

must be determined as discussed below.
In the two-way thermomechanically coupled HFGMC, the unknown temperature deviation 1T (βγ ) in

the subcell is also expanded as follows

1T (βγ )
=1T (βγ )

(00) + ȳ(β)2 1T (βγ )
(10) + ȳ(γ )3 1T (βγ )

(01)

+
1
2

(
3ȳ(β)22 −

h2
β

4

)
1T (βγ )

(20) +
1
2

(
3ȳ(γ )23 −

l2
γ

4

)
1T (βγ )

(02) , (12)

where 1T (βγ )
(00) is the volume-averaged temperature and the higher-order terms 1T (βγ )

(mn) are additional
unknowns.

The unknown terms
W(βγ )
(mn) and 1T (βγ )

(mn)

are determined from the fulfillment of the coupled equilibrium and energy equations, the periodic bound-
ary conditions, and the interfacial continuity conditions of displacements, tractions, temperatures and
heat fluxes between subcells. The periodic boundary conditions ensure that the displacements, tractions,
temperatures and heat fluxes at opposite surfaces of the repeating unit cell (that is, at y2 = 0 and H as
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well as y3 = 0 and L) are identical, see Aboudi [2004] for more details pertaining to the micromechan-
ical analysis with one-way TMC. A requisite in the present micromechanical analysis is that all these
conditions are imposed in the average (integral) sense.

As a result of the imposition of these conditions, a linear system of algebraic equations at the current
time step is obtained which can be represented in the following form

KU= f+ g, (13)

where the matrix K contains information on the geometry and thermomechanical properties of the materi-
als within the individual subcells (βγ ), and the displacement-temperature vector U contains the unknown
displacement and temperature coefficients:

U= [U(11), . . . ,U(NβNγ )], (14)

where in subcell (βγ ) these coefficients, which appear on the right side of Equations (11)–(12), are

U(βγ )
= (W(00),1T(00),W(10),1T(10),W(01),1T(01),W(20),1T(20),W(02),1T(02))

(βγ ). (15)

The mechanical vector f contains information on the applied average (far-field) strains ε̄. The inelastic
force vector g appearing on the right side of Equation (13) contains the inelastic effects given in terms
of the integrals of the inelastic strain distributions. These integrals depend implicitly on the elements of
the displacement-temperature coefficient vector U, requiring an incremental procedure of Equation (13)
at each point along the loading path, see [Aboudi et al. 2003] for more details.

Due to the dependence of the elements of K on the temperature, it is necessary to invert this matrix
at every time step. The solution of Equation (13) at a given time step yields the following localization
expression which relates the average strain ε̄(βγ ) and temperature 1T̄ (βγ ) in the subcell (βγ ) to the
externally applied average strain ε̄ in the form:{

ε̄(βγ )

1T̄ (βγ )

}
=

{
AM(βγ )

AT (βγ )

}
ε̄+

{
VT (βγ )

vT (βγ )

}
+

{
VI (βγ )

v I (βγ )

}
, (16)

where AM(βγ ) and AT (βγ ) are the mechanical and thermal concentration tensors of the subcell (βγ ),
VT (βγ ) and VI (βγ ) are second-order tensors that involve thermal and inelastic effects in the subcell, and
vT (βγ ) and v I (βγ ) are the corresponding scalars. These second-order thermal and inelastic tensors and
the corresponding scalars arise due to the existence of [Q]n−1 in Equation (9) at the previous time step. It
should be noted that in the present case of two-way TMC, the application of the far-field strain ε̄ induces
a temperature deviation from the reference temperature 1T (βγ ) in the subcell.

In order to establish the global (macroscopic) constitutive equation of the composite, we use the
definition of the average stress in the composite in terms of average stress in the subcells:

σ̄ =
1

H L

Nβ∑
β=1

Nγ∑
γ=1

hβlγ σ̄ (βγ ), (17)

where σ̄ (βγ ) is the average stress in the subcell. By substituting Equation (10) and (16) into (17), one
obtains the final form of the effective constitutive law of the multiphase fully coupled thermo-inelastic
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Property Value
E 70 GPa
ν 0.33
k 18 W/(m K)
α 1× 10−6/K
ρcv 5.44 MJ/(m3 K)
h 500 MPa
R 45 MPa
β 7.5 MPa/K
εL 0.03
M f 253.15 K

Table 1. Material properties of the SMA fibers [Auricchio and Petrini 2002]. E , ν
denote the Young’s modulus and Poisson’s ratio. The other parameters were already
defined in Section 2.

composite, which relates the average stress σ̄ , strain ε̄, thermal stress σ̄ T and inelastic stress σ̄ I as follows

σ̄ = C∗ ε̄− (σ̄ T
+ σ̄ I ). (18)

In this equation C∗ is the effective stiffness tensor which is given by

C∗ =
1

H L

Nβ∑
β=1

Nγ∑
γ=1

hβlγ
(
C(βγ )AM(βγ )

−0(βγ )AT (βγ )). (19)

The global thermal stress σ̄ T is determined from

σ̄ T
=−

1
H L

Nβ∑
β=1

Nγ∑
γ=1

hβlγ
(
C(βγ )VT (βγ )

−0(βγ )vT (βγ )). (20)

The global inelastic stress σ̄ I is of the form

σ̄ I
=−

1
H L

Nβ∑
β=1

Nγ∑
γ=1

hβlγ
(
C(βγ )VI (βγ )

−0(βγ )v I (βγ )
− σ̄ I (βγ )), (21)

where the inelastic stress in the subcell is: σ̄ I (βγ )
= C(βγ )ε̄ I (βγ ). Finally, the global average temperature

1T̄ in the composite can be determined from a simple averaging of all temperature deviations 1T̄ (βγ )

in the subcells.

4. Applications

The established two-way TMC micromechanics is applied herein to predict the behavior of SMA com-
posites in various circumstances. Two types of matrices are chosen to illustrate the responses of the
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E (GPa) ν α(10−6/K) σy (MPa) Es (GPa) k(W/(mK)) ρcv(M J/(m3K))
72.4 0.33 22.5 371.5 23 116.7 2.25

Table 2. Elastic, plastic and thermal parameters of the isotropic elastoplastic aluminum
matrix. E , ν, α, σy , Es , k and ρcv denote the Young’s modulus, Poisson’s ratio, coef-
ficient of thermal expansion, yield stress, secondary modulus, thermal conduction and
heat capacity, respectively.

E(GPa) ν α(10−6/K) k(W/(mK)) ρcv(M J/(m3K))
3.45 0.35 54 0.18 1.28

Table 3. Elastic and thermal parameters of the isotropic epoxy polymeric matrix. E ,
ν, α, k and ρcv denote the Young’s modulus, Poisson’s ratio, coefficient of thermal
expansion, thermal conduction and heat capacity, respectively.

composites. In the first case an aluminum alloy is chosen as a matrix. In this case the inelasticity of the
metallic matrix and its two-way TMC are involved (see Equation (7)) in addition to the two-way TMC
of the SMA fibers (see Equation (5)). In the second type, a polymeric matrix (epoxy) is chosen. Here,
the TMC arises due to the existence of the volumetric strain rate θ̇ in Equation (7) only (since ẆI = 0).
The material properties of the SMA fibers and the aluminum and epoxy matrices are given in Tables
1–3. The present results were obtained by dividing the repeating unit cell, Figure 1(b), into Nβ = 3 and
Nγ = 3 subcells with the SMA fiber occupying the central subcell. In all cases the volume fraction of
the SMA fibers is 0.3.

4.1. Monolithic SMA behavior. The uniaxial stress-strain behavior of the monolithic SMA fibers is
shown in Figures 2 and 3 at reference temperatures T0 = 253.15 K and T0 = 285.15 K. At the first
temperature the material is stable in the martensitic phase and the shape memory effect takes place: the
mechanical loading-unloading results in a residual deformation which can be recovered by a temperature
increase. At the second temperature the material is stable in the austenitic phase and the pseudoelasticity
effect takes place: the material behavior is nonlinear and hysteretic but yields the original stress-strain-
free state at the end of the mechanical loading-unloading. The figures show also the induced temperature
deviations due to the TMC. These temperatures are caused mainly by the existence of the term(

X+ Tβ
etr

‖etr‖

)
: ėtr

in the energy Equation (5) which is the counterpart of the rate of the inelastic work ẆI in Equation (7).
Indeed, the standard thermomechanical coupling coefficient

δ =
E(1+ ν)α2T0

(1− 2ν)(1− ν)ρcv
, (22)
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Figure 2. (a) The uniaxial stress-strain response in one cycle of SMA and, (b) the cor-
responding induced temperature deviation. (c) The corresponding uniaxial stress-strain
response of SMA when the TMC is neglected. (d) The uniaxial stress-strain response
in five cycles of SMA and (e) the corresponding induced temperature deviation. In all
cases the reference temperature is T0 = 253.15 K.

that characterizes the amount of coupling in thermoelastic material (that is, the coupling that is caused
by the term 3 T Kαθ̇ in Equation (5)) is equal to 0.2× 10−4 for the considered SMA material, which
is very small. The rate effects in the present SMA material are negligibly small. Figures 2(c) and 3(c)
(which coincide with those given by Auricchio and Petrini [2002]) show the SMA response at these
reference temperatures when the TMC is neglected. It is well observed that the effect of TMC on the
SMA behavior is significant. This is reflected in the change of the stress-strain slope when the phase
transformation takes place due to the induced temperature changes. Figures 2(b) and 3(b) show that there



MICROMECHANICAL ANALYSIS OF SHAPE MEMORY ALLOY COMPOSITES 947
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Figure 3. (a) The uniaxial stress-strain response in one cycle of SMA and, (b) the cor-
responding induced temperature deviation. (c) The corresponding uniaxial stress-strain
response of SMA when the TMC is neglected. (d) The uniaxial stress-strain response
in five cycles of SMA and (e) the corresponding induced temperature deviation. In all
cases the reference temperature is T0 = 285.15 K.

is a residual increase in the temperature (about 1 K) upon a complete uniaxial stress loading-unloading
cycle of the homogeneous SMA material (where neither convection nor adiabatic conditions exist). It
should be noted that the effect of the TMC on the response of the SMA that is depicted in Figure 2(a)
and 3(a), as compared to Figure 2(c) and 3(c), results from the induced temperatures that affect the phase
transformation and not by the generated thermal strains. For the reference temperature T0 = 285.15 K,
for example, the transformation strain at ε = 3% is equal to 0.023 whereas the corresponding thermal
strain is 0.12× 10−4.
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Figure 4. (a) The uniaxial stress-strain response in one cycle of the unreinforced alu-
minum and, (b) the resulting induced temperature deviation when ζ = 1 and 0 in
Equation (7).

Let us investigate the behavior of the SMA material that is subjected to a uniaxial stress cyclic loading.
To this end, the SMA fiber at reference temperatures T0 = 253.15 K and 285.15 K is subjected to five
cycles of strain loading-unloading, and the resulting stress response and induced temperature are shown
in Figure 2(d, e) and Figure 3(d, e). The stress shows a repetitive behavior but the continuously rising
heat generation can be clearly observed.

4.2. SMA/aluminum composite. In order to investigate the behavior of the elastoplastic work-hardening
aluminum matrix that has been characterized in Table 2, the uniaxial stress response of the (unreinforced)
material to a cyclic loading is shown in Figure 4(a). The thermomechanical coupling coefficient δ that
is given by Equation (22) is: δ = 0.027. Therefore it is instructive to exhibit the induced temperature
deviation during this cyclic loading in two different cases. To this end, Figure 4(b) shows the induced
temperature when in Equation (7) ζ = 1 and ζ = 0. In the first case full TMC is taken into account, while
in the second case the heat generated by the rate of plastic work ẆI is neglected while retaining the
coupling caused by the term 3 T Kαθ̇ in this equation (which is accounted for by the coupling coefficient
δ). Figure 4(b) clearly shows that the heat generated by the rate of plastic work is predominant. Except
in Figure 4(b), ζ is taken in all cases to be equal to 1. The effect of TMC on the stress-strain response
is negligibly small. Indeed, under a uniaxial stress loading at a strain of ε = 3%, the resulting inelastic
and thermal strains are given by 0.019 and 0.56× 10−4, respectively.

Let us consider presently a composite in which the aluminum matrix is reinforced by SMA fibers that
are oriented in the 1-direction. Figures 5 and 6 show the average uniaxial stress response σ̄11 to a cyclic
loading of the composite in the axial direction and the resulting induced global temperature deviations
1T̄ at two reference temperatures:

T0 = 253.15 K and 285.15 K.

Although the curves in these figures appear to be quite similar, some differences can be detected which
shows the effects of the SMA behavior at these two different reference temperatures. A comparison
of these figures with the response of the unreinforced aluminum (that has been exhibited in Figure
4) provides further indications about the influence of the SMA fibers. The unreinforced aluminum is
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Figure 5. (a) The uniaxial stress-strain response in one cycle of the SMA/aluminum
composite loaded in the fibers direction and, (b) the resulting induced average tempera-
ture deviation at a reference temperature T0 = 253.15 K.
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Figure 6. (a) The uniaxial stress-strain response in one cycle of the SMA/aluminum
composite loaded in the fibers direction and, (b) the resulting induced average tempera-
ture deviation at a reference temperature T0 = 285.15 K.

modeled as an elastic-plastic material with linear hardening, see Figure 4(a). A comparison of Figure
4(a) with Figure 5(a) and 6(a) shows that due to the existence of the SMA fibers, the linear hardening
behavior is lost. Here too, just like the unreinforced aluminum, the effect of the TMC on the global
stress-strain response of the SMA/aluminum composite is negligible.

It is interesting that the maximum induced temperature by the TMC in the unreinforced aluminum
is greater than that obtained in the SMA/aluminum composite. This observation can be explained by
the fact that the maximum temperature generated in the monolithic SMA is about 12 K (see Figure 2(b)
and 3(b)), while in the monolithic aluminum it is about 23 K (see Figure 4(b)). The reinforcement by
SMA fibers results in a decrease of the dominant effect of the aluminum which decreases the global
temperature that is generated in the composite by the TMC.

The Young’s moduli of the SMA fibers and the aluminum matrix are quite close to each other (70M Pa
and 72.4M Pa, respectively). Consequently the response of the SMA/aluminum in the transverse 2-
direction is quite similar to its response in the axial direction (shown in Figures 5 and 6).
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Figure 8. (a) The transverse shear stress-strain response in one cycle of the
SMA/aluminum composite and, (b) the resulting induced average temperature deviation
at reference temperatures: T0 = 253.15 K and 285.15 K.

A further investigation of the induced temperature due to the two-way TMC can be performed by
subjecting the SMA/aluminum composite to 5 cycles of uniaxial stress loading-unloading in the fibers
direction at a reference temperature T0 = 253.15 K. The resulting average axial stress response of the
composite and the induced average temperature deviation are shown in Figure 7. The corresponding
response to 5 cyclic loadings of the unreinforced aluminum matrix is quite similar (but with higher
amplitude) to the composite response that is exhibited in Figure 7(a) and is not shown. The induced
temperature of the unreinforced aluminum, on the other hand, is shown in Figure 7(b). Figure 7(b)
reveals, as expected, the effect of TMC caused by the inelastic effects that appear in Equation (5) for the
SMA fibers and Equation (7) for the aluminum. The latter effect appears to be predominant.

As a final illustration of the TMC effects in SMA/aluminum, we consider a cyclic transverse shear
loading of the SMA/aluminum composite. Here average transverse shear stress-strain responses σ̄23− ε̄23
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Figure 9. (a) The uniaxial stress-strain response in one cycle of the SMA/epoxy com-
posite loaded in the fibers direction and, (b) the resulting induced average temperature
deviation at a reference temperature T0 = 253.15 K. (c) The uniaxial stress-strain re-
sponse in one cycle of the SMA/epoxy composite loaded in the fibers direction and, (d)
the resulting induced average temperature deviation at a reference temperature T0 =

285.15 K.

of the composite at two reference temperatures:

T0 = 253.15 K and 285.15 K

are shown in Figure 8. In addition, the resulting induced global temperature deviations 1T̄ due to the
TMC effects are also compared. Here too, the induced temperature is generated mainly by the rate of
plastic work of the aluminum matrix. It should be noted that under a pure shear loading, the TMCs which
cause the generation of temperatures in the monolithic SMA and the unreinforced aluminum are due to
the first terms that represent the inelastic effects in the right side of Equation (5) and (7). The second
term 3 T Kαθ̇ in both equations vanishes in this case.

4.3. SMA/epoxy composite. Consider the epoxy matrix whose material parameters are given in Table 3.
Its thermomechanical coupling coefficient is quite small: δ = 0.016. Consequently, due to the absence
of inelastic effects in this polymer, it is expected that the effect of TMC will be weak and the induced
temperature deviation will not be significant. In Figure 9, the uniaxial response to a cyclic loading in the
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Figure 10. (a) The uniaxial stress-strain response in one cycle of the SMA/epoxy com-
posite loaded in the perpendicular direction of to the fibers and, (b) the resulting induced
average temperature deviation at a reference temperature T0 = 253.15 K. (c) The uniaxial
stress-strain response in one cycle of the SMA/epoxy composite loaded in the perpendic-
ular direction of to the fibers and, (d) the resulting induced average temperature deviation
at a reference temperature T0 = 285.15 K.

fibers’ direction of SMA/epoxy composite is shown at two reference temperatures:

T0 = 253.15 K and T0 = 285.15K.

Also shown are the resulting average temperatures that are generated due to the TMC effect. The figure
shows that quite different stress-strain behaviors are obtained by loading-unloading of the composite at
the two reference temperatures, but the induced temperatures are very similar. The Young’s moduli of the
SMA fiber and epoxy matrix are quite different (70G Pa and 3.45G Pa, respectively). Thus the uniaxial
responses of the composite to loading in the axial direction (that is, parallel to the fibers) and transverse
direction (that is, perpendicular to the fibers) should be quite different. This difference can be observed by
comparing Figure 9 with Figure 10 which exhibits the transverse response of the SMA/epoxy composite
at the same reference temperatures.

A careful check of the temperatures that are generated by a uniaxial stress loading-unloading of the
pure SMA, Figures 2(b) and 3(b), reveal that there is asymmetry that can be clearly observed at the final
strain of ε =±3% at which the temperature deviations 1T are not equal. The combined effects of the
(asymmetric) temperature generated by loading-unloading cycle of the SMA fibers and the (symmetric)
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Figure 11. (a) The uniaxial response of the SMA/epoxy composite in 5 cycles loaded
in the fibers direction and, (b) the resulting induced average temperature deviation at a
reference temperature T0 = 253.15 K. Also shown is the corresponding induced temper-
ature deviation in the unreinforced epoxy.

temperature generated in the epoxy matrix that are shown in Figures 9(b), 9(d), 10(b) and 10(d) at a finer
scale, exhibit the resulting asymmetries in the global induced temperatures of the SMA/epoxy composite.

As a final illustration of the SMA/epoxy composite behavior, we present in Figure 11 the response of
the composite to 5 cycles of uniaxial stress loading in the fibers direction at a reference temperature

T0 = 253.15 K.

Of particular interest is the uniform periodic temperature that is induced in the unreinforced epoxy caused
by the TMC (in the absence of any irreversible effects). This is in contrast to the nonuniform and
continuously increasing temperature in the monolithic SMA fiber that was shown in Figure 2(e) which
is caused by the irreversible effects in this material. As a result, the induced temperature 1T̄ caused by
the TMC effects in the SMA/epoxy composite exhibits an irregular pattern as shown in Figure 11(b).

We conclude the paper by mentioning that by subjecting the SMA/epoxy composite to a transverse
shear loading, the amount of the induced temperature is very small implying that the effect of TMC is
negligibly small in this case.

5. Conclusions

A micromechanical model which can predict the behavior of multiphase inelastic composites with one-
way TMC has been generalized to incorporate two-way TMC effects in the presence of SMA phases.
The generalization results in coupled mechanical and energy equations in which the temperature is in-
duced in the phases as a result of the application of far field mechanical loadings. Overall macroscopic
thermoinelastic constitutive equations of composites with two-way TMC have been established. They
represent the global behavior of the SMA fiber composite at every increment of loading. The results
show that two-way TMC must be taken into account when dealing with SMA/metallic composites, and
that it has a minor effect in SMA/polymeric composites. This is due to the inelastic effects that generate
heat in the metallic phase in addition to the portion of heat obtained from the volumetric strain rate.
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Damage effects were not taken into account in the present modeling of the monolithic SMA material
or in the SMA composite. Considerations of such effects is a subject for future research.

The present micromechanical model can be employed to investigate the behavior of SMA compos-
ite structures with two-way TMC. In particular, the induced temperatures that are caused by bending,
buckling, postbuckling and vibrations of a SMA composite structure can be determined by employing
a micro-macro-structural analysis according to which the global constitutive equations that are obtained
from the proposed model are applied at every point of the structure.
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