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When separation of scales in random media does not hold, the representative volume element (RVE)
of deterministic continuum mechanics does not exist in the conventional sense, and new concepts and
approaches are needed. This subject is discussed here in the context of microstructures of two types –
planar random chessboards, and planar random inclusion-matrix composites – with microscale behavior
of the elastic-plastic-hardening (power-law) variety. The microstructures are assumed to be spatially
homogeneous and ergodic. Principal issues under consideration are yield and incipient plastic flow of
statistical volume elements (SVE) on mesoscales, and the scaling trend of SVE to the RVE response
on the macroscale. Indeed, the SVE responses under uniform displacement (or traction) boundary
conditions bound from above (or below, respectively) the RVE response. We show through extensive
simulations of plane stress that the larger the mesoscale, the tighter are both bounds. However, mesoscale
flows under both kinds of loading do not generally display normality. Also, within the limitations of
currently available computational resources, we do not recover normality (or even a trend towards it)
when studying the largest possible SVE domains.

1. Introduction

For over a century, plasticity of materials has principally been studied from a homogeneous continuum
perspective, where the deterministic response of a Representative Volume Element (RVE) was assumed a
priori. The past two decades have seen an increasing focus on determination of effective plastic response
from micromechanical considerations, albeit without much consideration of the finite-size-scaling to the
RVE, for example, [Castaneda and Suquet 1997]. However, if one considers such a scaling, one must
look at one or both of the following: stochastic responses below the RVE level, and the solution of
plasticity problems where the random field is of finite extent. In the first case, one has to work with a
Statistical Volume Element (SVE) defined over an ensemble of specimens not large enough to be the
RVE, while in the second case one has to revisit various boundary value problems of plasticity (such as
a punch on a half-space) in a random field setting. The RVE is set up on a macroscale, while the SVE is
set up on a mesoscale. Reviews of all these issues have recently been presented by [Ostoja-Starzewski
2005; 2006].

Note that most micromechanics studies aim at determining the effective constitutive properties at the
RVE level without clearly specifying the RVE size. Many studies obviate the entire problem by simply
postulating a fictitious periodic microstructure, and directly identifying the periodic cell as the RVE. To
introduce scale effects, consider Figure 1, which shows two different types of model random media, both
much smaller than the RVE. It is convenient here to use a dimensionless scale parameter δ(= L/d) to
characterize the mesoscale. Here d is the heterogeneity size, that is, an inclusion’s diameter, and L is the
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mesoscale size. As we pass from the mesoscale (δ finite) to macroscale (δ infinite), the RVE is obtained,
and the question is: at what δ does RVE apply? Clearly, δ = ∞ is impractical, but perhaps a response
close to RVE can be attained on a relatively small mesoscale.

In this study we focus on the passage from SVE to RVE. If that passage—effectively, a scale depen-
dence of constitutive response—displays a clear trend in a specified sense, we say that the RVE can be
approximated within a certain error on a specific length scale. Our approach follows the first study in
[Jiang et al. 2001], and is a particular case of a general methodology to assess RVE size [Huet 1990; Sab
1992] in elasticity and inelasticity in the sense of [Hill 1963], and to set up micromechanically-based
random fields of continuum properties [Ostoja-Starzewski and Wang 1989; Ostoja-Starzewski 1994].
This approach has primarily been used in linear elasticity [Hazanov and Huet 1994; Cluni and Gusella
2004; Kanit et al. 2003; Ostoja-Starzewski 1999; 2000], and in new inroads in viscoelasticity [Huet
1995; 1999], elastoplasticity [Jiang et al. 2001; Ostoja-Starzewski 2005], plasticity with damage [Clay-
ton and McDowell 2004], thermomechanics with internal variables [Ostoja-Starzewski 2002], and finite
(thermo)elasticity [Khisaeva and Ostoja-Starzewski 2006]. Related studies in linear thermoelasticity and
Stokesian flow in porous media are currently underway [Du and Ostoja-Starzewski 2006a; 2006b]. For
elastic-perfectly plastic materials, similar results have been obtained by [He 2001] using a mathematically
more rigorous analysis involving gauge functions.

Using this approach, it has already been shown that the effective plastic response of a random material
with a statistically homogeneous and ergodic microstructure can be bounded from above and below by
responses obtained under uniform kinematic and traction boundary conditions, respectively, applied to
finite size domains. This procedure leads to scale-dependent hierarchies of upper and lower bounds,
which converge, as the scale tends to infinity, towards the RVE. In particular, we present a computa-
tional mechanics study of yield and incipient plastic flow of SVE, and the aforementioned trend to the
RVE, for two kinds of model planar random materials in plane stress: a random two-phase chessboard
(Figure 1 (a, b)), and a matrix-inclusion composite (Figure 1 (c, d)). We also examine scale dependence
of the flow rule, to determine whether normality holds. We find that even though each phase alone
possesses normality, the mesoscale flow rule, in general, does not.

2. Model Formulation

2.1. Random material. The formulation of deterministic continuum mechanics involves a tacit assump-
tion—the so-called separation of scales:

d < L � Lmacro, (2–1)

where d is the microscale (e.g., typical grain size), L is the size of RVE, and Lmacro is the macro size
which usually is assumed to be much larger than the RVE. The size of RVE, L , relative to d is not known
a priori. That is why, to be on the safe side, the left inequality in Equation (2–1) is often replaced with
�. Thus, the establishment of L/d for which the RVE may actually be adopted with a certain accuracy
(of, say, 10%), is of key interest. Consistent with the methodology of our previous studies, we use a
dimensionless number

δ = L/d ≥ 1

to denote the mesoscale.
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In two dimensions, we work with square-shaped mesoscale domains, with sides of length L , containing
the microstructure of characteristic microscale d (inclusion diameter); see Figure 1. Following [Huet
1990], we sometimes call the mesoscale properties apparent, and reserve the term effective for the RVE
level.

Specimens Bδ(ω) are drawn from the ensemble B = {Bδ(ω); ω ∈ �}, where � is a sample space. For
any sample Bδ(ω) of size δ taken from �, its properties are deterministic but different from each other due
to the random nature of the medium. All samples Bδ(ω) constitute the ensemble B = {Bδ(ω); ω ∈ �}.

The ergodic property (or hypothesis) of the random field of a specific material property F, such as
the stiffness tensor C , can be described as

F(ω) ≡ lim
L→∞

1
L

∫ L

0
F(ω, x)dx =

∫
�

F(ω, x)d P(ω) ≡ 〈F(x)〉.

Here the overbar indicates the volume average, while 〈 〉 stands for the ensemble average, whereby P(ω)

is the probability measure assigned to the ensemble {F(ω, x); ω ∈ �, x ∈ X}. In practice, we use

F(ω) ≡
1
M

M∑
m=1

F(ω, xm) =
1
N

N∑
n=1

F(ωn, x) ≡ 〈F(x)〉,

where M denotes the finite number of sampling points over one realization ω, and N denotes the finite
number of realizations ωn at one sampling point.

For materials with statistically homogeneous and ergodic properties, the mesoscale properties should
be obtained by taking the ensemble average over B. Usually, the smaller the sample size δ, the larger
the number of samples which should be taken. When the window size δ approaches ∞, the mesoscale
properties of any specimen Bδ(ω) in B should be identical and same as effective properties.

(a) (b)      (c)    (d) 

Figure 1. Realizations of random chessboard and matrix-inclusion materials on two
mesoscales at a nominal volume fraction 35%. Blue pertains to a hard phase, and green
to a soft one. (a) δ = 8, chessboard; (b) δ = 32, chessboard; (c) δ = 6, matrix-inclusion;
(d) δ = 12, matrix-inclusion.
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2.2. Boundary conditions. For linear elastic heterogeneous materials, the necessary and sufficient con-
dition of the equivalence between energetically and mechanically defined effective properties is contained
in the well-known Hill condition [Hill 1963]

σ : ε = σ̄ : ε̄ . (2–2)

[Hazanov 1998] generalized Equation (2–2) to nonlinear heterogeneous materials as∫
σ : dε =

∫
σ̄ : dε̄.

For materials with perfect interfaces and no body forces, Equation (2–2) becomes∫
∂ Bδ

(t − σ̄ · n)·(u − ε̄ · x)d S = 0.

where t is the traction vector, u is the displacement vector on the specimen boundary ∂ Bδ, n is the
exterior unit normal vector, and x is the coordinate vector. The above equation clearly shows that among
the solutions of the Hill condition one can identify three important types of boundary conditions:

(1) uniform kinematic boundary condition (UKBC, also known as displacement, essential or Dirichlet)

u(x) = ε0
· x, for all x ∈ ∂ Bδ, (2–3)

(2) uniform static boundary condition (USBC, also known as traction, natural or Neumann)

t(x)= σ 0
· n, for all x ∈ ∂ Bδ, (2–4)

(3) uniform mixed-orthogonal boundary condition (UMBC)

(t(x)−σ 0
· n) · (u(x)−ε0

· x)=0, for all x ∈ ∂ Bδ. (2–5)

In studies of scale effects thus far, most research has been done in terms of the first two cases since
these provide, respectively, upper bounds and lower bounds for the effective properties. In common en-
gineering practice, however, the UKBC and USBC loadings can be very difficult to realize. Interestingly,
most laboratory and industrial testing is done under loadings closer to the mixed-orthogonal boundary
condition in Equation (2–5).

2.3. Constitutive laws for elastic-plastic-hardening materials. For elastic-plastic-hardening materials,
the constitutive responses of both phases p(= 1, 2) are taken in the form [Hill 1950]

dε′

i j =
dσ ′

i j

2G p
+ h · d f p ·

∂ f p

∂σi j
when f p = cp and d f p ≥ 0,

dε′

i j = dσ ′

i j/2G p when f p < cp, (2–6)

dε = dσ ·
(1 − 2νp)

2G p(1 + νp)
where

(
dε =

dεi i

3
, dσ =

dσi i

3

)
,

where primes indicate deviatoric tensor components. In Equation (2–6) G p is a shear modulus, vp is
a Poisson’s ratio, f p is a yield function, and cp is a material constant. For von Mises–Huber materials
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with associated flow rule and isotropic hardening, the yield surface is defined as

f p =

√
3
2
σ ′

i jσ
′

i j = cp.

As is well known, the von Mises–Huber yield surface in the π-plane is that of a circle, and in the σ1σ2-
plane, is an ellipse. The flow rule (that is, the plastic strain direction) is described as

dε
p
i j = dλ · C ·

∂ f
∂σi j

= dλ ·
3
2

σ ′

i j√
3
2σ ′

klσ
′

kl

. (2–7)

Since f (σi j ) = constant on the yield surface, ∂ f
∂σi j

must be normal to that surface; therefore, the plastic
strain vector is normal to the yield locus.

2.4. Hierarchy of mesoscale bounds of stress/strain response for elastoplastic random materials. Un-
der monotonically increasing loading, the elastoplastic hardening composites can be treated as physically
nonlinear elastic materials. Using the variational principles, one can obtain

〈w(ε0, ∞)〉 ≤ 〈w(ε0, δ)〉 ≤ 〈w(ε0, δ′)〉 ≤ 〈w(ε0, 1)〉 ≡ wV , 1 < δ′ < δ < ∞

〈w∗(σ 0, ∞)〉 ≤ 〈w∗(σ 0, δ)〉 ≤ 〈w∗(σ 0, δ′)〉 ≤ 〈w∗(σ 0, 1)〉 ≡ w∗R, 1 < δ′ < δ < ∞

here w(ε0, δ) and w∗(σ 0, δ) — obtained by Equations (2–3) and (2–4), respectively — represent the vol-
ume average strain energy and complementary energy densities of an arbitrary window of size δ that may
be placed anywhere in the material domain of any random sample. wV and w∗R are the Voigt and Reuss
bounds respectively.

Since the stiffness and compliance tensors are no longer constant any more, we now consider the
tangent stiffness and compliance moduli (CT d

δ or ST t
δ ), which are defined as

dσ = CT d
δ : dε = CT d

δ : dε0
; dε = ST t

δ : dσ = ST t
δ : dσ 0,

where superscript d (or t) indicates that the response is obtained under the displacement (or traction)
boundary condition. Finally, there is a hierarchy of bounds on the effective tangent modulus for a linear
comparison solid: [Jiang et al. 2001; Ostoja-Starzewski 2005]〈

ST S
1

〉−1
≡

〈
ST t

1
〉−1

≤ · · · ≤
〈
ST t

δ′

〉−1
≤

〈
ST t

δ

〉−1
≤ · · · ≤

(
ST

∞

)−1

≡ CT
∞

≤ · · · ≤
〈
CT d

δ

〉
≤

〈
CT d

δ′

〉
≤ · · · ≤

〈
CT d

1
〉

≡
〈
CT T

1
〉
, for all δ′ < δ ≤ ∞,

(2–8)

where 〈sT S
1 〉

−1 and 〈cT T
1 〉 are the Sachs and Taylor bounds, respectively.

2.5. Hierarchy of mesoscale yield surface bounds for elastoplastic random materials. To study the
mesoscale yield surface, one must first define the mesoscale yield condition for a specimen. Due to the
heterogeneity of the material, stress distribution is nonuniform under uniform loading, which leads the
local stress to reach the yield stress level somewhere in the material domain, even though the volume
average stress is far lower than the yield stress of the material. Obviously, it would not be reasonable
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Material parameters ε0 σ0 (MPa) N E (GPa) υ

Soft phase 1.036e-3 75 0.25 72.4 0.33

Hard phase 1.425e-3 295 0.15 207 0.32

Table 1. Material parameters.

to define the yield condition of a sample as the stress level when the first yield occurs in the specimen.
[Dvorak and Bahei-El-Din 1987] proposed a bimodal plasticity theory for heterogeneous composites
where both the fiber and the matrix participate in carrying the applied load. According to this theory, the
overall yield of a sample indicates magnitudes of the overall stress which causes local volume average
stress to satisfy the yield condition in any phase.

For von Mises–Huber materials, the mesoscale yield condition of the composite in the overall stress
space 6 is defined as

Fδ(6) = inf
{
6 ∈ R3×3

| ∃σ (x) with σ̄ = 6, f p(K p6) = cp, for all x ∈ Bδ, p = 1, 2
}
, (2–9)

where K p is the mechanical stress concentration factor, with (6 × 6) matrices, and 6 is treated as a
(6 × 1) vector.

For a rigid-perfectly-plastic material, the hierarchy of inclusions for mesoscale yield surfaces is given
in [Ostoja-Starzewski 2005] as

Dd
1 ⊇ · · · ⊇ Dd

δ′ ⊇ Dd
δ ⊇ · · · ⊇ Dd

∞
≡ Dt

∞
⊇ · · · ⊇ Dt

δ ⊇ Dt
δ′ ⊇ · · · ⊇ Dt

1, for all δ′
= δ/2, (2–10)

where Dδ denotes a domain in stress space bounded by an ensemble average yield surface 〈Fδ〉. Without
proof, we now conjecture that in an elastoplastic problem, the same type of hierarchy holds based on the
definition (2–9). We confirm this conjecture through computations in Section 3.5.

2.6. The flow rule for elastoplastic random materials. The flow rule in Equation (2–7) pertains to ho-
mogeneous materials. However for heterogeneous materials, it is not at all clear that the normality rule
(that is, the associated flow rule) still holds on mesoscales. In fact, it is still an open issue whether the
normality rule is recovered computationally at the RVE level, that is, whether

dε
p
i j = dλ · C ·

∂ f
∂σi j

or dε
p
i j 6= dλ · C ·

∂ f
∂σi j

. (2–11)

3. Computational mechanics of two random materials

3.1. Models of two random materials. We investigated two model two-phase composite materials. The
first is a planar random chessboard, Figure 1 (a-b); the second one is a porous medium generated by
placing circular disks whose centers come from a planar hard-core Poisson point field, Figure 1 (c-d).
In both cases, the volume fraction of hard phases is 0.35. The hard core condition means that no two
disks may touch. In fact, in order to avoid narrow-neck effects in the fluid field, the minimum distance
between disk centers is set at 1.1 times the diameter of the disk.
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(a)   (b)  

(c)   (d)  

Figure 2. Contour plots of equivalent plastic strain for windows shown in Figure 1 (a,
b) under different boundary conditions: (a, c) displacement; (b, d) traction.

A numerical analysis of composite materials shown in Figure 1, in plane stress, is carried out using
ABAQUS. The interface between two phases is assumed to be perfect bonding, i.e. there is no phase-
separation and no slip at interphase boundary. The stress-strain response is characterized by a piece-wise
power law [Dowling 1993]

iσ/σ0 =

{
ε/ε0, if ε ≤ ε0,

(ε/ε0)
N , else.

The material parameters are given in Table 1. The von Mises–Huber yield criterion, with associated
flow rule, is assumed for each phase. Shear loading is applied through one of two types of uniform
boundary conditions:

UKBC: ε0
11 = −ε0

22 = ε, ε0
12 = 0 or USBC: σ 0

11 = −σ 0
22 = σ, σ 0

12 = 0. (3–1)

Here the prescribed stress and strain are ∼ 0.04 and ∼ 1.75e8 Pa, respectively. The UMBC is not being
used.
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(a)   (b)  

(c)   (d)  

Figure 3. Contour plots of equivalent plastic strain for window shown in Figure 1 (c, d)
under different boundary conditions: (a, c) displacement; (b, d) traction.

The mesoscale yield detection condition follows Equation (2–9) and involves an equality between the
average stress of the soft phase and the yield stress of that phase within a 3.5% error.

3.2. Patterns of shear bands. The equivalent plastic strain (PEEQ) contours for differing window sizes
of δ under differing boundary conditions are shown in Figure 2 for chessboard material, and in Figure 3
for the matrix-inclusion composite. Although the shear bands differ somewhat for the two types of
material, clearly, we can see the following common characteristics:

• The shear bands are irregular, but conform to the actual spatial distribution of the material mi-
crostructure.

• The shear bands are roughly 45◦ from the principal axes of tensile loading.

• For a small window size of, say, δ = 8, some shear bands can cross the entire window, but for a
large window size, δ = 32, almost no shear band can do so.
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Figure 4. Comparison of ensemble average stress-strain responses of chessboard com-
posites for various meshes: (a) δ = 8; (b) δ = 16.
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 (a)                         (b)                                 (c)                          (d) 

Figure 5. Comparison of different meshes for matrix-inclusion composites at δ = 6: (a)
coarse mesh, global mesh size = 1.0; (b) fine mesh, global mesh size= 0.5; (c) uniform
grid, mesh 80 × 80; (d) uniform grid, mesh 160 × 160.

• The shear band patterns are different under different boundary conditions, and seem to rank in the
following order for stress concentration factors: displacement and traction.

3.3. Effects of mesh refinement.

3.3.1. Chessboard model. Figure 4 shows that all the stress-strain curves shift down with the increasing
refinement of mesh, because introducing more finite elements furnishes more degrees of freedom. In
particular, we notice that the shift when the mesh changes from 4 × 4 to 8 × 8 for each inclusion is much
smaller than when the mesh changes from 2 × 2 to 4 × 4, which means that the effect of mesh refinement
tends to vanish at 8 × 8.

3.3.2. Matrix-inclusion model. There are two types of mesh in the FE method: uniform and nonuniform.
For uniform mesh, to approximate the complex geometry, a very large number of elements is needed,
which requires more computational resources. Figure 5 (c) and (d) demonstrates grid refinements leading
to improvement in the accuracy of a numerical simulation. The disadvantage of using uniform meshes is
that the number of elements may become so large that, beyond a given window size δ, the computation
becomes impractical.

The advantage of nonuniform mesh is that the mesh density can be adjusted according to a change of
geometry, so it can greatly reduce the number of nodes while maintaining the same solution accuracy.
Comparing the case of 6,400 (80 × 80) elements with that of 25,600 (160 × 160) elements in the uniform
mesh—as shown in Figure 5 (c) and (d)—there are only 3,291 elements of the coarse mesh and 8,564
elements of the fine mesh, (see Figure 5 (a) and (b)). In addition, the nonuniform mesh geometry is more
accurate than the uniform one.

Unlike to the chessboard composites, all the curves shift up with the increased mesh, but the shift is
small and the curves almost overlap; see Figure 6. Since the area of the polygon inscribed into the circle
is always smaller than that of the circle, the volume fraction of inclusions is always a little smaller than
the real one, and this leads to very minor underestimates of material stiffness.

3.4. Ensemble average stress-strain responses. Figures 7 and 8 clearly show that with the increase
in the mesoscale δ, the elastoplastic bounds obtained under kinematic and static boundary conditions
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Stress−strain response of matrix−inclusion for various meshes, ¦Ä= 12

Displacement B.C. Coarse mesh
Traction B.C. Coarse mesh
Mixed B.C. Coarse mesh
Displacement B.C. Fine mesh
Traction B.C. Fine mesh
Mixed B.C. Fine mesh

Figure 6. Comparison of ensemble average stress-strain responses of matrix-inclusion
composites for differing meshes: (a) δ = 6; (b) δ = 12.
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Mixed B.C.,¦Ä=8
Periodic B.C.,¦Ä=8

Figure 7. Ensemble average stress-strain responses for different mesoscales δ under
various boundary conditions for the random chessboard. Responses of both constituent
phases and the Sachs and Taylor bounds are also shown.

become tighter, while the slopes of curves, that is, the tangent moduli satisfy the relation described in
Equation (2–8). For matrix-inclusion composites, one phenomenon we must consider is that the stress-
strain curve can fall outside the Sachs bound, which is impossible for purely elastic materials. We can
explain this by observing that, for the elastoplastic material, the stress concentration causes some local
area or spot to yield which, in turn, softens the material. This is the result of the definition of yield
(Equation (2–9)) employed here.

3.5. Yield surfaces and flow rules. To study the yield surface and the flow rule on mesoscales, we first
introduce two different loading programs: displacement increment control and traction increment control.
For the traction increment control

1T = 16 · n,

where 1T is the increment of traction, and 16 is the increment of volume average stress.
For the displacement increment control

1U = 1E · X,

where 1U is the increment of displacement, 1E is the increment of volume average strain.
For a specific load

E1/E2 = const or 61/62 = const .
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Figure 8. Ensemble average stress-strain responses for different mesoscales δ under
various boundary conditions for the random matrix-inclusion composite. Also shown
are the responses of both constituent phases as well as the Sachs and Taylor bounds.

In both loading programs, we fix the ratio of increment (1E1/1E2 = const or 161/162 = const)
and continue to increase it until the volume average stress 6 satisfies Equation (2–9). We then get one
specific yield point.

The loading paths are shown in Figure 9. For each sample we applied 17 different loading paths
corresponding to 17 different ratios of loading to obtain 17 yield points whose ratios (61/62) vary from
−1 to 1 (but only approximately so for displacement control). These 17 points cover quite densely one
quarter of the yield surface, which, by symmetry arguments, is representative of the entire stress plane.

The loading paths are always linear for the traction increment control. However, for the displacement
increment control, the loading paths are not linear since there are some areas or spots within the specimen
yield due to local stress concentrations, even when the volume average stress is still lower than the yield
stress; see Figure 9. For the chessboard composite, this phenomenon is even stronger than for the matrix-
inclusion composite. Also, we can clearly see that the plastic strain rate is not always normal to the yield
surface and the shape of yield surface is not perfectly elliptical.

Figure 10 depicts the scatter of yield locus of chessboard and matrix-inclusion composite materials
for different window sizes of δ under traction and displacement boundary conditions. Obviously, the
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(a)              (b)  

Figure 9. Yield surfaces and loading paths for one sample of (a) chessboard composite,
δ = 8, and (b) matrix-inclusion composite, δ = 6.

smaller the window size, the higher the scatter; also the shape of the yield locus is more similar to an
ellipse as the window size of δ increases.

Figure 11 shows the ensemble average yield surface on different mesoscales under two different load-
ing controls. It shows that the mesoscale yield surfaces satisfy the hierarchy of inclusions conjectured in
(2–10). Also with the increasing mesoscale δ, the yield surface bounds become tighter under displace-
ment and traction boundary conditions.

Figure 12 shows the departure from normality of the plastic flow rate vector at mesoscale yield surfaces.
We can infer that about 60% of yield surface is characterized by normality of plastic flow. Departure from
normality occurs when the stress ratio 622/611 is around 0.3 ∼ 0.9, and is greater for the chessboard
than for the matrix-inclusion composite.

3.6. Why the loss of normality? We base our understanding of normality in plasticity on the thermo-
mechanics argument of Ziegler [1983], who points out the much more fundamental role played by the
thermodynamic orthogonality in the space of velocities (that is, plastic strain rates). Only when the
dissipation function 8 depends on velocities alone in its arguments will normality carry over to the
space of dissipative stresses. When 8 depends also on other quantities, such as stresses or internal
variables, normality is violated. For a disordered heterogeneous material, 8 is also a function of the
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(a)           (b) 

(c)           (d) 

Figure 10. Scatter of yield locus under different boundary conditions for random materi-
als: (a) chessboard composite at δ = 8, 100 samples; (b) chessboard composite at δ = 16,
30 samples; (c) matrix-inclusion composite at δ = 6, 120 samples; (d) matrix-inclusion
composite at δ = 12, 30 samples.
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(a)                                                                               (b) 

Figure 11. Hierarchy of (ensemble averaged) mesoscale bounds on RVE yield locus for
(a) chessboard composite, and (b) matrix-inclusion composite.

specific microstructure, which may be represented by an internal variable α. This α must be chosen
so that, for homogeneous material, it becomes null and the dependence of 8 on α vanishes. Thus, the
simplest candidate for α may be the ratio of yield limits σ0 of both phases. Other candidates are possible
[Maugin 1998].

Another viewpoint refers to the classical result of nonlinear homogenization where the existence of a
plasticity potential at the microlevel implies the existence of a macro-potential from which the effective
constitutive equations are derived. The macro-potential is the mean value of the local potentials [Suquet
1997], so that the normality is preserved by a scale transition. In our study, according to Equation (2–9),
macroyielding takes place as soon as local plastic flow begins for the first time at some point in the
heterogeneous material. Such a macroyield criterion is not very useful in practical applications, but
even for a more realistic (tolerant) yield criterion, the loss of normality would also persist under scale
transition.
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(a)       (b) 

Figure 12. Departure from normality in mesoscale plastic flow under various boundary
conditions on SVE for (a) chessboard composite and (b) matrix-inclusion composite.

4. Conclusions

We summarize the results of this study as follows:

1) We compute and verify the hierarchy of mesoscale stress-strain responses and the hierarchy of
mesoscale yield surfaces for two models of elastoplastic-hardening random materials. The yield
is studied employing the definition of yield point of [Dvorak and Bahei-El-Din 1987]. With this
definition, mesoscale stress-strain responses under uniform traction boundary conditions may fall
below the Sachs bound, although this occurs over a very small range of loading.

2) We find that mesoscale flow rule departs from normality under both uniform kinematic and traction
boundary conditions. That departure is strongest when the ratio of two in-plane ensemble averaged
principal stresses ranges from 0.3 to 0.9. Given the limitations of available computers, we cannot
establish the expected trend to recover normality as the mesoscale domain (that is, SVE) grows and
tends to the macroscale (RVE).

3) While we focus here on plane stress, very similar results have been found in plane strain.

Although our model materials have distinct and isotropic phases, our approach is also suited to analyze
materials with piecewise-constant domains of anisotropic phases (polycrystals), and smoothly inhomo-
geneous media where no specific phase(s) can be distinguished. Fiber-structured paper is one example
in the latter category [Ostoja-Starzewski and Castro 2003]. An extension to 3D problems is a matter of
a far more extensive computational work.
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