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ANTIPLANE DEFORMATION OF ORTHOTROPIC STRIPS WITH MULTIPLE
DEFECTS

REZA TEYMORI FAAL, SHAHRIAR J. FARIBORZ AND HAMID REZA DAGHYANI

Stress analysis is carried out in an orthotropic strip containing a Volterra-type screw dislocation. The
distributed dislocation technique is employed to obtain integral equations for a strip weakened by cracks
and cavities under antiplane traction. These equations are of Cauchy singular kind, which are solved
numerically by generalizing a numerical method available in the literature. Several examples are solved
to demonstrate the validity and applicability of the procedure.

1. Introduction

In composite materials, defects in the form of cracks and cavities generate regions of high stress gradient.
These regions are the primary locus of failure in structures, even under moderate applied load. Therefore,
stress analysis in the vicinity of defects is imperative as the first stage of the design process.

Stress analysis in a strip with cracks under antiplane deformation has been investigated frequently.
Here, we review some recent pertinent articles. Zhou et al. [1998] showed that in the vicinity of two
collinear cracks perpendicular to the edges of an isotropic strip, the cracks were symmetrical with respect
to the centerline of the strip and subjected to antiplane traction. Li [2003] obtained a closed-form solution
for orthotropic strips. Stress analysis in an isotropic strip weakened by two collinear cracks situated on
the centerline under antiplane shear was carried out by [Zhou and Ma 1999]. In the above articles,
the application of boundary conditions resulted in a set of integral equations which are solved by the
Schmidt’s method. Wu and Dzenis [2002] obtained closed-form solutions for mode III stress intensity
factors for an interfacial edge crack between two bonded semi-infinite dissimilar elastic strips. Li [2005]
considered an interfacial crack between two bonded dissimilar semi-infinite orthotropic strips where the
crack surface was under antiplane traction. Closed form stress intensity factors were obtained for a strip
with either clamped or traction-free boundaries.

In this study, we perform stress analysis in an orthotropic strip weakened by cracks and cavities under
antiplane deformation. We obtain the solution of Volterra-type screw dislocation by means of Fourier
transformation, and use the solution to derive integral equations for cracks. Cavities are considered as
closed curved cracks without singularity. The integral equations are solved numerically for the dislocation
density function by generalizing the method developed by [Erdogan et al. 1973] to take into account
cavities, embedded cracks, and edge cracks. Finally, we obtain the stress intensity factor for cracks, and
the hoop stress for cavities for several examples.

We regret to inform that Hamid Reza Daghyani passed away in 2006.
Keywords: antiplane deformation, orthotropic strip, multiple defects, Cauchy-type singularity.
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2. Strip with screw dislocation

The distributed dislocation technique is an efficient means of treating multiple curved cracks with smooth
geometries. However, determining stress fields due to a single dislocation in the region has been a major
obstacle to the utilization of this method. We now take up this task for an orthotropic strip containing
a screw dislocation. We consider an orthotropic elastic strip with finite thickness h in the y-direction
and extended infinitely in the x-direction. The x-axis is situated at the distance h1 below the upper edge
of the strip. The only nonzero displacement component under antiplane deformation is the out of plane
component w(x, y). Consequently, the constitutive relationships are

σzy = Gzy
∂w

∂y
, (1)

σzx = Gzx
∂w

∂x
. (2)

In the above equalities, Gzx and Gzy are the orthotropic shear moduli of elasticity of material. The
equilibrium equations σi j, j = 0, in view of Equations (1)–(2), reduce to

Gzx
∂2w

∂x2 +Gzy
∂2w

∂y2 = 0. (3)

The traction-free condition on the strip edges implies that

σzy(x, h1)= 0, σzy(x, h1− h)= 0. (4)

A Volterra-type screw dislocation with Burgers vector δ is situated at the origin of coordinates with
the dislocation line x = 0, y > 0. The conditions representing the dislocation are

lim
|x |→∞

w = 0, (5)

w(0+, y)−w(0−, y)= δH(y), (6)

where H(y) is the Heaviside step function. The conditions of continuity and self-equilibrium of stress
in the strip containing dislocation imply that

w(x, 0−)= w(x, 0+), σzy(x, 0−)= σzy(x, 0+). (7)

Since the problem is symmetric with respect to the y-axis, we may consider only the region x > 0.
Equation (3) is solved by Fourier sine transformation, which for a sufficiently regular function f (x) is
defined as

F(λ)=
∫
∞

0
f (x) sin λx dx . (8)

The inversion of the Fourier sine transform yields

f (x)=
2
π

∫
∞

0
F(λ) sin λx dλ. (9)

The application of Equation (8) to Equation (3) with the aid of Equation (5) leads to a second order
ordinary differential equation, in each region 0 ≤ y ≤ h1 and h1− h ≤ y ≤ 0. The solution satisfying
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Equation (6) is readily known, namely

W (λ, y)=

{
a1eλGy

+ b1e−λGy
+

δ
2λ , 0≤ y ≤ h1,

a2eλGy
+ b2e−λGy, h1− h ≤ y ≤ 0,

(10)

where G =
√

Gzx/Gzy . The application of conditions (4) and (7) to Equation (10) results in

a1 =
δe−2λGh1(e2λGh

− e2λGh1)

4λ(1− e2λGh)
, b1 =

δ(e2λGh
− e2λGh1)

4λ(1− e2λGh)
, (11)

a2 =
δe2λGh(e−2λGh1 − 1)

4λ(1− e2λGh)
, b2 =

δ(1− e2λGh1)

4λ(1− e2λGh)
. (12)

The displacement field in view of Equations (9)–(12) becomes

w(x, y)=
δ

2π

∫
∞

0

(
(e2λGh

− e2λGh1)(eλG(y−2h1)+ e−λGy)

λ(1− e2λGh)
+

2
λ

)
sin λx dλ, 0≤ y ≤ h1, (13)

w(x, y)=
δ

2π

∫
∞

0

(
(e−2λGh1 − 1)(eλG(y+2h)

+ e−λG(y−2h1))

λ(1− e2λGh)

)
sin λx dλ, h1− h ≤ y ≤ 0. (14)

Note that the rigid body motion of strip, that is, the unboundedness of the integrand in Equation (13)
as λ→∞, may cause difficulties in carrying out the above integrations. Consequently, it is expedient to
obtain the displacement field from the stress components instead. Substituting Equations (13)–(14) into

O

i
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i
Y

i

x

y

iL
r

iR
r

i
L

i
R

h

0

0

0
x

Figure 1. Schematic view of the strip with a curved crack.
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Equations (1)–(2) yields

σzy(x, y)=
δGGzy

2π

∫
∞

0

(e2λGh
− e2λGh1)(eλG(y−2h1)− e−λGy)

1− e2λGh sin λx dλ, 0≤ y ≤ h1, (15)

σzx(x, y)=
δGzx

2π

∫
∞

0

(e2λGh
− e2λGh1)(eλG(y−2h1)+ e−λGy)

1− e2λGh cos λx dλ, 0≤ y ≤ h1, (16)

σzy(x, y)=
δGGzy

2π

∫
∞

o

(e−2λGh1 − 1)(eλG(y+2h)
− e−λG(y−2h1))

1− e2λGh sin λxdλ, h1− h ≤ y ≤ 0, (17)

σzx(x, y)=
δGzx

2π

∫
∞

o

(e−2λGh1 − 1)(eλG(y+2h)
+ e−λG(y−2h1))

1− e2λGh cos λxdλ, h1− h ≤ y ≤ 0. (18)

The integrals in Equations (15)–(18) can be evaluated employing contour integration and the residue
theorem. The stress components are obtained in series form which are summed, leading, in the whole
strip region, to

σzy(x, y)=
δGzy sinh κx

4h

(
1

cosh κx − cos κGy
−

1
cosh κx − cos κG(y− 2h1)

)
, (19)

σzx(x, y)=
δGGzy

4h

(
sin κ(y− 2h1)

cosh κx − cos κG(y− 2h1)
−

sin κy
cosh κx − cos κGy

)
, (20)

where κ = π/Gh. Substituting the stress component σzy into Equation (1), integrating the resultant
expression with respect to y, and ignoring the rigid body displacement, the displacement field becomes

w(x, y)=
δ

2π

(
tan−1

(
tan

κGy
2

coth
κx
2

)
− tan−1

(
tan

κG(y− 2h1)

2
coth

κx
2

))
. (21)

The stress components (19)–(20) readily satisfy the boundary conditions in Equation (4). Furthermore,
choosing the proper branch of the multiple-valued function which is the first term in the right-hand side
of Equation (21), it is easy to verify that Equation (6) holds. In the particular case of screw dislocation in
the isotropic half-plane, letting G = 1 and h2→∞ in Equations (19)–(21), the displacement and stress
fields become

w(x, y)=
δ

2π

(
tan−1

( y
x

)
− tan−1

( y− 2h1

x

))
,{

σzx(x, y)
σzy(x, y)

}
=

δ

2π
µ

(
1

(y− 2h1)2+ x2

{y− 2h1

−x

}
−

1
y2+ x2

{ y
−x

})
, for −∞< y ≤ h1,

where µ is the shear modulus of elasticity of the isotropic half-plane. The above solutions are identical
to those in [Weertman and Weertman 1992].

To investigate the behavior of stress fields at the dislocation position from Equation (19) we may
observe that

τzy(x, 0)∼
δGGzy

2πx
as x→ 0.

Note that the above Cauchy-type singularity at the dislocation location is a distinct feature of stress fields
in the two-dimensional regions containing a dislocation.
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3. Orthotropic strip with multiple cracks and cavities

The dislocation solutions accomplished in Section 2 can be used to analyze strips with multiple cracks
and cavities. The cavities are considered as closed-curve cracks without singularity. We consider a strip
weakened by M cavities, N1 embedded cracks, and N2 edge cracks. Henceforth, we designate cavities,
embedded cracks, and edge cracks with the respective subscripts

i ∈ {1, 2, . . . ,M},

j ∈ {M + 1,M + 2, . . . ,M + N1},

k ∈ {M + N1+ 1,M + N1+ 2, . . . , N },

where N = M + N1+ N2 and represents the total number of defects. The stress components on the local
coordinates X i -Yi as seen in Figure 1 located on the surface of i-th crack in terms of stress components
in x-y coordinates become

σzYi = σzy cosϕi − σzx sinϕi , (22)

σzX i = σzx cosϕi + σzy sinϕi , (23)

where ϕi is the angle between X i and x axes. Suppose dislocations with unknown density Bz j are
distributed on the infinitesimal segment dλ j located at a point with coordinates (x j , y j ) on the surface
of the j-th crack. The traction on the surface of i-th crack, due to the above distribution of dislocations,
and using Equations (19), (20), (22), and (23), becomes

σzYi (xi , yi )=
Gzy Bz j dλ j

4h

(cosϕi sinh κ(xi − x j )+G sinϕi sin κG(yi − y j )

cosh κ(xi − x j )− cos κG(yi − y j )

−
cosϕi sinh κ(xi − x j )+G sinϕi sin κG(yi + y j − 2h)

cosh κ(xi − x j )− cos κG(yi + y j − 2h)

)
. (24)

Covering crack surfaces by dislocations, the principle of superposition can be invoked to obtain traction
on a crack surface. We can thus integrate Equation (24) on the crack surfaces and superimpose the resul-
tant tractions. Integration of Equation (24) is facilitated by describing crack configurations in parametric
form xi = xi (s), yi = yi (s), for i = 1, 2, . . . , N , and where −1≤ s ≤ 1. The traction on the surface of
the i-th crack yields

σzYi

(
xi (s), yi (s)

)
=

N∑
j=1

∫ 1

−1
bz j (t)ki j (s, t) dt, (25)

where bz j (t) is the dislocation density on the nondimensionalized length −1 ≤ t ≤ 1. From Equation
(24), the kernel ki j (s, t) is

ki j (s, t)=
Gzy

√(
x ′j (t)

)2
+
(
y′j (t)

)2

4h

(cosϕi (s) sinh κ
(
xi (s)− x j (t)

)
+G sinϕi (s) sin κG

(
yi (s)− y j (t)

)
cosh κ

(
xi (s)− x j (t)

)
− cos κG

(
yi (s)− y j (t)

)
−

cosϕi (s) sinh κ
(
xi (s)− x j (t)

)
+G sinϕi (s) sin κG(yi (s)+ y j (t)− 2h)

cosh κ
(
xi (s)− x j (t)

)
− cos κG(yi (s)+ y j (t)− 2h)

)
. (26)



1102 REZA TEYMORI FAAL, SHAHRIAR J. FARIBORZ AND HAMID REZA DAGHYANI

Substituting the crack angle ϕi (s)= tan−1
(
y′i (s)/x ′i (s)

)
as seen in Figure 1, into Equation (26), the kernel

is recast in the more convenient form

ki j (s, t)=
Gzy

4h

√√√√(
x ′j (t)

)2
+
(
y′j (t)

)2(
x ′i (s)

)2
+
(
y′i (s)

)2

(
x ′i (s) sinh κ

(
xi (s)− x j (t)

)
+Gy′i (s) sin κG

(
yi (s)− y j (t)

)
cosh κ

(
xi (s)− x j (t)

)
− cos κG

(
yi (s)− y j (t)

)
−

x ′i (s) sinh κ
(
xi (s)− x j (t)

)
+Gy′i (s) sin κG(yi (s)+ y j (t)− 2h)

cosh κ
(
xi (s)− x j (t)

)
− cos κG(yi (s)+ y j (t)− 2h)

)
. (27)

Making use of Equation (27) we can conclude that ki j (s, t) has Cauchy-type singularity for i = j as
t→ s. To illustrate this behavior, applying L’Hopital’s rule to Equation (27) gives

ki i (s, t)=
a−1

s− t
+

∞∑
m=0

am(s− t)m as t→ s,

where the coefficient of the singular term a−1 = GGzy/2π . The coefficients am, m = 0, 1, . . . are regular
functions of variable s in the interval −1≤ s ≤ 1 which are too lengthy to be given here. By Bueckner’s
principle, changing the sign of the left-hand side of Equation (25) gives the traction caused by the external
loading on the uncracked strip at the presumed surface of cracks. In Appendix A, we present the Green’s
function solution of applied traction for a self-equilibrating load on strip edges. Using Equations (22)
and (A4), the following traction should be applied on the surface of i-th crack

σzYi

(
xi (s), yi (s)

)
=

τ0

2Gh

(
x ′i (s) sin κG(yi (s)− h)+Gy′i (s) sinh κ

(
xi (s)− x0

)(
cosh κ(xi (s)− x0)+ cos κG

(
yi (s)− h

))√
(x ′i (s)

)2
+
(
y′i (s)

)2

−
x ′i (s) sin κGyi (s)+Gy′i (s) sinh κ

(
xi (s)− x0

)
(
cosh κ(xi (s)− x0)+ cos κGyi (s)

)√(
x ′i (s)

)2
+
(
y′i (s)

)2

)
.

Employing the definition of dislocation density function, the equation for crack opening displacement
across the j-th crack is

w+j (s)−w
−

j (s)=
∫ s

−1

√(
x ′j (t)

)2
+
(
y′j (t)

)2 bz j (t) dt . (28)

The displacement field is single-valued for the surfaces of embedded cracks and cavities. Conse-
quently, the dislocation density functions are subjected to the following closure requirement for j =
1, 2, . . . ,M + N1 ∫ 1

−1

√(
x ′j (t)

)2
+
(
y′j (t)

)2 bz j (t) dt = 0. (29)

The Cauchy singular integral Equations (25) and (29) are solved simultaneously to determine dislo-
cation density functions. Cavities are defined as closed curved cracks with bounded dislocation density
at both ends of the cracks. Thus, for −1< t < 1, j = 1, 2, . . . ,M the dislocation density functions for
cavities are expressed as

bz j (t)= gz j (t)
√

1− t2. (30)
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Stress fields for embedded cracks in orthotropic materials are singular at crack tips with square root
singularity [Delale 1984]. Thus, the dislocation density functions are represented for −1< t < 1, j =
M + 1,M + 2, . . . ,M + N1 as

bz j (t)=
gz j (t)
√

1− t2
. (31)

For edge cracks, taking the embedded crack tip at t =−1, for −1< t < 1, j = M + N1+ 1,M + N1+

2, . . . , N we let

bz j (t)= gz j (t)

√
1− t
1+ t

. (32)

[Liebowitz 1968] gives the stress intensity factors for i-th crack in terms of crack opening displacement
as

kI I I Li =

√
2

4
GGzy lim

rLi→0

w−i (s)−w
+

i (s)
√

rL i

, kI I I Ri =

√
2

4
GGzy lim

rRi→0

w−i (s)−w
+

i (s)
√

rRi

, (33)

for j = M + 1,M + 2, . . . , N , where r is the distance from a crack tip. Setting the points L i and Ri on
the surface of the crack, as shown in Figure 1, yields

rL i =

[(
xi (s)− xi (−1)

)2
+
(
yi (s)− yi (−1)

)2
] 1

2
, rRi =

[(
xi (s)− xi (1)

)2
+
(
yi (s)− yi (1)

)2
] 1

2
. (34)

Substituting Equation (31) into Equation (28), deriving the resultant equations , substituting Equation
(34) into Equation (33), and finally employing L’Hopital’s rule yields the stress intensity factors for
embedded cracks

kI I I Li=
GGzy

2

((
x ′i (−1)

)2
+
(
y′i (−1)

)2
) 1

4 gzi (−1), kI I I Ri=
−GGzy

2

((
x ′i (1)

)2
+
(
y′i (1)

)2
)1

4 gzi (1),

where i = M + 1,M + 2, . . . ,M + N1. Analogously, for an edge crack the stress intensity factor is

kI I I Li = GGzy

((
x ′i (−1)

)2
+
(
y′i (−1)

)2
) 1

4
gzi (−1),

where i = M + N1+ 1,M + N1+ 2, . . . , N .
To calculate hoop stress on the surface of cavities, we employ the definition of dislocation density

function valid for −1≤ s ≤ 1, i = 1, 2, . . . ,M

γzX i

(
xi (s), yi (s)

)
= bzi (s). (35)

From Hooke’s law and Equation (35), for −1≤ s ≤ 1, i = 1, 2, . . . ,M the shear stress (see [Lekhnitskii
1963]) becomes

σzX i

(
xi (s), yi (s)

)
=

Gzx Gzy

Gzx sin2 ϕi +Gzy cos2 ϕi
bzi (s). (36)

Substituting the crack angle ϕi (s)= tan−1(y′i (s)x
′

i (s)) into Equation (36) for−1≤ s ≤ 1, i = 1, 2, . . . ,M
results in

σzX i

(
xi (s), yi (s)

)
=

Gzx

((
x ′i (s)

)2
+
(
y′i (s)

)2
)

(
x ′i (s)

)2
+G2

(
y′i (s)

)2 bzi (s).
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We define the nondimensionalized hoop stress for −1≤ s ≤ 1, i = 1, 2, . . . ,M as

σi (s)=
hσzX i

(
xi (s), yi (s)

)
τ0

,

where h is the strip thickness and τ0 is the point load applied on the strip.

4. Solution of integral equations

The numerical solution of Equations (25) and (29) is carried out for a strip weakened by cavities, em-
bedded cracks, and edge cracks. The numerical procedure developed by [Erdogan et al. 1973] cannot
consider all these defects simultaneously. We have developed a minor generalization of the procedure
to provide the needed results. Expanding the continuous functions gz j (t) in Equations (30), (31), and
(32), respectively, by Tchebyshoff polynomials of first kind Tl(t), second kind Ul(t), and the Jacobi
polynomials P (1/2,−1/2)

l for −1≤ t ≤ 1 leads to

gz j (t)=


∑
∞

l=0 B jlUl(t), j = 1, 2, . . . ,M,∑
∞

l=0 B jl Tl(t), j = M + 1, . . . ,M + N1,∑
∞

l=0 B jl Pl(t)(1/2,−1/2), j = M + N1+ 1, . . . , N .

(37)

Using Equation (37), the integral Equation (25) can be rewritten for −1≤ s ≤ 1, i = 1, 2, . . . , N as

σzYi

(
xi (s), yi (s)

)
=

M∑
j=1

∞∑
l=0

B jl

∫ 1

−1
ki j (s, t)Ul(t)

√
1−t2 dt

+

M+N1∑
j=M+1

∞∑
l=0

B jl

∫ 1

−1
ki j (s, t)

Tl(t)
√

1−t2
dt +

N∑
j=M+N1+1

∞∑
l=0

B jl

∫ 1

−1
ki j (s, t)Pl(t)(1/2,−1/2)

√
1−t
1+t

dt. (38)

Following [Theocaris and Iokimidis 1977] we conclude that at s = sr , r = 1, 2, . . . , n− 1, and s = 1
the following approximations hold∫ 1

−1
ki j (sr , t)

Tl(t)
√

1− t2
dt ≈

π

n

n∑
k=1

ki j (sr , tk)Tl(tk), (39)

∫ 1

−1
ki j (1, t)

Tl(t)
√

1− t2
dt ≈ nπa−1δi j +

π

n

n∑
k=1

ki j (1, tk)Tl(tk), (40)

where δi j is the Kronecker delta, sr = cos(πr/n) for r = 1, 2, . . . , n−1, and tk = cos(π(2k−1)/2n) for
k = 1, 2, . . . , n. These are the zeros of Un−1(sr ) and Tn(tk), respectively. Employing identities for l ∈ N

Ul(t)
√

1− t2 =
Tl(t)− Tl+2(t)

2
√

1− t2
, (41)

Pl(t)(1/2,−1/2)

√
1− t
1+ t

=
0(l + 1/2)
√
πl!

(Tl−1(t)+ Tl(t)− Tl+1(t)− Tl+2(t)

2(1+ t)
√

1− t2

)
, (42)
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and Equations (39)–(40), the remaining integrals in Equation (38) can be estimated as

∫ 1

−1
ki j (sr , t)Ul(t)

√
1− t2 dt ≈

π(1− t2
k )

n

n∑
k=1

ki j (sr , tk)Ul(tk), (43)

∫ 1

−1
ki j (1, t)Ul(t)

√
1− t2 dt ≈

π(1− t2
k )

n

n∑
k=1

ki j (1, tk)Ul(tk), (44)

∫ 1

−1
ki j (sr , t)Pl(t)(1/2,−1/2)

√
1− t
1+ t

dt ≈
π(1− tk)

n

n∑
k=1

ki j (sr , tk)Pl(tk)(1/2,−1/2), (45)

∫ 1

−1
ki j (1, t)Pl(t)(1/2,−1/2)

√
1− t
1+ t

dt ≈
π(1− tk)

n

n∑
k=1

ki j (1, tk)Pl(tk)(1/2,−1/2). (46)

The integral Equations (29) and (38) at the points s = sr , r = 1, 2, . . . , n− 1 and s = 1, by virtue of
Equations (41)–(46), can be expressed as

σzYi

(
xi (sr ), yi (sr )

)
=
π

n

M∑
j=1

n∑
k=1

(1−t2
k )ki j (sr , tk)gz j (tk)+

π

n

M+N1∑
j=M+1

n∑
k=1

ki j (sr , tk)gz j (tk)

+
π

n

N∑
j=M+N1+1

n∑
k=1

(1−tk)ki j (sr , tk)gz j (tk), i = 1, . . . , N , r = 1, . . . , n−1,

σzYi

(
xi (1), yi (1)

)
=
π

n

M∑
j=1

n∑
k=1

(1−t2
k )ki j (1, tk)gz j (tk)+

π

n

M+N1∑
j=M+1

n∑
k=1

ki j (1, tk)gz j (tk)

+
π

n

N∑
j=M+N1+1

n∑
k=1

(1−tk)ki j (1, tk)gz j (tk), i = M+N1+1, . . . , N .

In matrix form the above system of algebraic equations is written


H11 H12 . . . H1N

H21 H22 . . . H2N
...

...
. . .

...

HN1 HN2 . . . HN N




gz1(tp)

gz2(tp)
...

gzN (tp)

=


q1(sr )

q2(sr )
...

qN (sr )

 . (47)
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The matrix and vector components in the system of Equation (47) are

Hi j =


A j1ki j (s1, t1) . . . A j n−1ki j (s1, tn−1) A jnki j (s1, tn)

...
. . .

...
...

A j1ki j (sn−1, t1) . . . A j n−1ki j (sn−1, tn−1) A jnki j (sn−1, tn)
A j1 Bi j (t1) . . . A j n−1 Bi j (tn−1) A jn Bi j (tn)

 ,
gz j =

[
gz j (t1) . . . gz j (tn)

]T
, j = 1, 2, . . . , N ,

qi =
[
σzYi

(
xi (s1), yi (s1)

)
. . . σzYi

(
xi (sn−1), yi (sn−1)

)
0
]T
, i = 1, . . . ,M+N1,

qi =
[
σzYi

(
xi (s1), yi (s1)

)
. . . σzYi

(
xi (sn−1), yi (sn−1)

)
σzYi

(
xi (1), yi (1)

)]T
, i = M+N1+1, . . . , N .

In the above equalities, superscript T stands for the transpose of a vector and A jk and Bi j (t) are

A jk =
π

n


1− tk2, j = 1, . . . ,M,

1, j = M + 1, . . . ,M + N1,

1− tk, j = M + N1+ 1, . . . , N , k = 1, 2, . . . , n,

Bi j (t)=

δi j

√
(x ′i (t))2+ (y

′

i (t))2, i = 1, . . . ,M + N1,

ki j (1, t), i = M + N1+ 1, . . . , N .

Note that the minor enhancement of [Erdogan et al. 1973] does not affect the convergence of numerical
results.

5. Numerical examples and results

The validity of analysis is examined by considering an orthotropic strip with thickness h where the x-axis
coincides with the lower edge of strip. The strip is weakened by a single crack located on the y-axis
extending over a ≤ y ≤ b. The crack is under antiplane traction τ0(s) on its surface. For this example,
the integral Equation (25) simplifies to

τ0(s)=
(b− a)GGzy

4h

∫ 1

−1

sin(πy(t)/h)
cos(πy(t)/h)− cos(πy(s)/h)

bz(t) dt, (48)

where the crack equation for −1≤ s ≤ 1 is

y(s)= 1
2

(
b+ a+ (b− a)s

)
.

The integral Equation (48) is identical to Equation (30) derived by [Li 2005]. This may demonstrate
that our method is valid for numerical analysis of cracks in strips.

For cavities, the formulations and also the numerical solution of integral equations are validated by
considering an infinite isotropic plane weakened by two identical circular approaching cavities. The
plane is under uniform antiplane traction τ0 at infinity. The variation of the nondimensionalized stress
component σzy(d, 0)/τ0 versus the distance between cavities is shown in Figure 2. The results are in
reasonable agreement with those obtained by [Steif 1989]. As a final check of the formulation, we
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Figure 2. Comparison of hoop stress with Steif’s results.
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Figure 3. Variation of stress intensity factor with 2a/d .

analyze an embedded crack located between two approaching elliptical cavities under far field traction
(Figure 3), and show that the curves for k/τ0

√
a versus 2a/d coincide with Isida’s results in [Isida 1973].
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Figure 4. Variations of kI I I /k0 with d/a.

The procedure described in the preceding sections allows consideration of a strip with any number of
cracks and cavities, and with differing orientations. We now furnish four examples to demonstrate the
applicability of this method. In all examples, the ratio of the moduli of elasticity of the orthotropic strip
is taken as G = 1.135 which is representative of that for carbon-carbon plies. Moreover, the strip is under
antiplane point force with magnitude τ0 on the edges. The stress intensity factors become dimensionless
by using the divisor k0 = τ0

√
l/h, where l is the half length of embedded crack. For an edge crack, l is

the crack length.
In the first example, we consider a pair of straight cracks with length 2l = h/3 and an elliptical cavity

with the length of major semi-axis a = h/6 and minor semi-axis b = h/12. The major axis of the
cavity and the cracks are located on the centerline of the strip. Therefore, the problem is symmetric with
respect to the y-axis. Figure 4 shows the variations of nondimensionalized stress intensity factors, k/k0,
of crack tips against d/a for isotropic and orthotropic strips. As the crack tip approaches the elliptical
cavity, k/k0 at the tip L increases rapidly. In the orthotropic strip, weaker material stiffness in the y-
direction compared to that of the x-direction reduces the stress intensity factor. The plot of dimensionless
hoop stress on the elliptical cavity, hσzX/τ0, versus angle θ , where θ is measured from the minor-axis of
elliptical cavity, are shown for the orthotropic strip in Figure 5. A similar trend for dimensionless hoop
stress but with greater magnitude was observed for a cavity in the isotropic strip.

In the second example, we consider a orthotropic strip weakened by an edge crack with length h/4
perpendicular to the upper edge of strip, and a rotating embedded crack with length 2l = h/2. The
plots of dimensionless stress intensity factors, k/k0, versus the crack orientation, angle θ , are shown in
Figure 6. The interaction between cracks is weak, In particular, variation of k/k0 is small for the edge
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Figure 7. Dimensionless hoop stress on the elliptical cavity versus θ for different values
of ψ .

crack. At θ = π/2, the embedded crack experiences some stress due to interaction with the edge crack.
For the isotropic strip, the plots of k/k0 are very similar to those in Figure 6, but with slightly reduced
magnitude.

In the third example, we consider a strip weakened by a stationary inclined edge crack with length
l = h/3 and an elliptical cavity with the length of major semi-axis a = h/8 and minor semi-axis b= h/12.
We let the cavity rotate around its center. Figure 7 shows the plot of dimensionless hoop stress for two
different orientations of cavity, ψ = 0 and π/2, versus the angle θ , where θ is measured from the minor
axis of elliptical cavity. Figure 8 shows dimensionless stress intensity factors, k/k0, for the crack tip
versus the cavity orientation. For all cavity orientations, the magnitude of the stress intensity factor in
the orthotropic strip is higher than that in the isotropic one.

In the fourth and last example, we consider a straight embedded crack with a fixed center, an inclined
edge crack, and a circular cavity with radius R = h/6. The center of the cavity and the embedded crack
are located on the line with distance h/3 from the lower edge of strip. The edge crack is in the radial
direction of the cavity with a length half of the embedded crack. The distance from the center of the
embedded crack to the center of cavity is 4h/3. Figure 9 and shows the stress intensity factors for edge
cracks with changing crack length in isotropic and orthotropic strips, and Figure 10 shows the same
information, but for embedded cracks. The dimensionless hoop stress for the cavity, when l/h = 1, is
shown in Figure 11. Hoop stress is greatest at the points closest to crack tips.



ANTIPLANE DEFORMATION OF ORTHOTROPIC STRIPS WITH MULTIPLE DEFECTS 1111

0 20 40 60 80 100 120 140 160 180

–1.2

–1.18

–1.16

–1.14

–1.12

–1.1

–1.08

–1.06

–1.04

–1.02
isotropic
orthotropic

2/h

2/h

0

0

a b

6/

l

4/h

2/h

–

k I
II
/

k 0

ψ

Figure 8. Variations of kI I I /k0 with ψ .

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9
L
1
,isotropic

L
1
,orthotropic

yd

0

LR

0

l2

d

3/h

3/2h

l

6/h

1L
3/4h

3/

k I
II
/

k 0

d/h

Figure 9. Variations of kI I I /k0 with d/h for the edge crack.



1112 REZA TEYMORI FAAL, SHAHRIAR J. FARIBORZ AND HAMID REZA DAGHYANI

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

–0.7

–0.6

–0.5

–0.4

–0.3

–0.2

–0.1

0

L,isotropic
R ,isotropic
L,orthotropic
R ,orthotropic

yd

0

LR

0

l2

d

3/h

3/2h

l

6/h

1L
3/4h

3/k I
II
/

k 0

d/h

Figure 10. Variations of kI I I /k0 with d/h for the embedded crack.

0 50 100 150 200 250 300 350

– 3

– 2

– 1

0

1

2

3

4
isotropic
orthotropic

yd

0

LR

0

l2

d

3/h

3/2h

l

6/h

1L
3/4h

3/

hσ
zX
/
τ 0

θ (degrees)

Figure 11. Dimensionless hoop stress on the circular cavity inside the strip versus θ for
l = h.



ANTIPLANE DEFORMATION OF ORTHOTROPIC STRIPS WITH MULTIPLE DEFECTS 1113

Appendix A

The Green’s function solution for elasticity problem of a strip under antiplane load may be obtained by
applying the following self-equilibrating traction to the strip edges

σzy(x, h)= τ0δ(x − x0)= σzy(x, 0). (A1)

The application of Fourier transform in x-direction to Equation (3) leads to a second order ordinary
differential equation with the solution

W (�, y)= E(�)e�Gy
+ F(�)e−�Gy . (A2)

The unknown coefficients in Equation (A2) are obtained by taking the Fourier transform of Equation
(A1) and applying them to Equation (A2), yielding

W (�, y)=
τ0

GGzy

cosh�Gy− cosh�G(y− h)
� sinh�Gh

e−i�x0 . (A3)

Employing the inverse Fourier transform of Equation (A3) in conjunction with Equations (1)–(2) give
the stress fields as

σzx(x, y)=
iτ0G
2π

∫
∞

−∞

cosh�Gy− cosh�G(y− h)
sinh�Gh

ei�(x−x0) d�,

σzy(x, y)=
τ0

2π

∫
∞

−∞

sinh�Gy− sinh�G(y− h)
sinh�Gh

ei�(x−x0) d�.

To determine the above integrals, we can use contour integration. The results are

σzx(x, y)=
τ0

2h

( sinh κ(x − x0)

cosh κ(x − x0)+ cos κG(y− h)
−

sinh κ(x − x0)

cosh κ(x − x0)+ cos(κGy)

)
, (A4)

σzy(x, y)=
τ0

2Gh

( sin κGy
cosh κ(x − x0)+ cos κGy

−
sin κG(y− h)

cosh κ(x − x0)+ cos κG(y− h)

)
. (A5)
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SWITCHING DEFORMATION MODES IN POST-LOCALIZATION SOLUTIONS
WITH A QUASIBRITTLE MATERIAL

PIERRE BÉSUELLE, RENÉ CHAMBON AND FRÉDÉRIC COLLIN

Localization in a quasibrittle material is studied using a local second-gradient model. Since localization
takes place in a medium assumed to be initially homogeneous, nonuniqueness of the solutions of an
initial boundary value problem is then also studied. Using enhanced models generalizes the classical
localization analysis. In particular, it is necessary to study solutions more continuous (that is, continuous
up to the degree one) than the ones used in analysis involving classical constitutive equations. Within the
assumptions done, it appears that localization is possible in the second-gradient model if it is possible
in the underlying classical model. Then the study of nonuniqueness is conducted for the numerical
problem, using different first guesses in the full Newton–Raphson procedure solving the incremental
nonlinear equations. Thanks to this method, we are able to simulate qualitatively the nonreproducibility
of usual experiment in the postpeak regime.

1. Introduction

Modeling the degradation of materials is a very challenging task. If the degradation is sufficiently high —
if the material exhibits some softening (here in a vague sense) — it is now well known that some unpleas-
ant features appear both in experiments and in computations.

From the experimental point of view, as soon as the softening is reached, it seems that the behavior is
poorly reproducible or nonreproducible. The first reason is that in main cases strain localization occurs
which means that contrary to current assumptions, laboratory samples are not strained homogeneously
up to the failure. Moreover localization patterns themselves are not easily reproduced. Let us first quote
Desrues and Viggiani [2004], who performed some biaxial tests twice:

[E]very test is somewhat unique as for the patterns of strain localization (location of the shear
band, appearance of nonpersistent and/or multiple bands).

Quite clearly such behavior is related to the loss of uniqueness of the problem (that is, in the reported case
the biaxial test) which allows shear bands to emerge. But, what is clear in [Desrues and Viggiani 2004] is
that there is a large variability in the observed patterns. This means that there is not only one alternative
solution involving a unique localized band. If it is quite clear that if orientation and width of the bands
are easily reproduced, on the contrary the number of bands and their position as well as their persistence
cannot be predicted in advance. This has some consequences for the load versus displacement curves
which can exhibit very different results in their postpeak parts (that is, when some localization can be

P.B. gratefully acknowledges financial support for a two-month stay for at the University of Liège through a Research Fellowship
of the Fonds National de la Recherche Scientifique (FNRS) of Belgium.
Keywords: continuum with microstructure, second gradient, finite element, bifurcation, strain localization, mode switching,

reproducibility.
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expected). This is clearly illustrated in [Desrues and Hammad 1985] or in [Desrues 1984] where the two
curves of duplicate tests are in many cases rather different as soon as the peak value is attained. Other
similar observations about tests performed twice can be found in [Viggiani et al. 2001]. These results are
often interpreted as the consequence of some (unfortunately unknown) initial imperfection in the studied
samples, and based on the deterministic principle, it is argued that if the initial state is completely known
the problem should disappear.

Following the previous ideas, numerical modeling of such postpeak phenomena is usually achieved
by introducing some (deterministic) initial imperfection into the computation, and it is believed that
uniqueness of the solution is restored. Consequently changing the imperfection can change the final
solution of the computation since it is assumed that there is a correspondence between a given imperfec-
tion and the resulting solution. Unfortunately we demonstrated recently that this way of thinking may
be erroneous; see [Chambon and Moullet 2004]. For the same imperfection several (properly converged)
solutions can be found provided an appropriate searching algorithm is used. Recently, introducing an
initial fluctuation of the mechanical properties has been used to deal with this problem, for instance in
[Nübel and Huang 2004]. In the quoted paper the introduction of this initial fluctuation is achieved by
initializing randomly the density for a model sensitive with respect to this parameter. The computations
performed seem very similar to what is usually observed. However, even in this case, it seems that the
author assumes implicitly that uniqueness is restored. Alternative solutions should be searched in order
to clarify this point.

Another way is followed in the numerical experiments detailed in the present paper. We choose to
solve the “perfect” (which means without any intentional imperfection) problem, and we try to exhibit
several solutions for this problem. Usually the method used to find alternative solutions is related to a
spectral analysis of the linearized velocity problem. Numerically this is achieved by searching when the
least eigenvalue of the tangent stiffness matrix related to the velocity discretized problem goes to zero;
see for instance [de Borst 1986] or [Ikeda and Murota 2002]. This method is based on a linearization of
the problem which is completely sound if the nonlinear problem is incrementally linear. Since we use
an elastoplastic model, elastic up to a given threshold and exhibiting a sudden softening as soon as this
threshold is reached, there are many possible linearizations depending on the choice of the unloading
area within the computed domain. Then the drawback of such a method is that the mode corresponding to
the null eigenvalue which allows theoretically to follow the bifurcated solution can correspond for some
point of the studied structure to a constitutive branch (loading or unloading) different to the one used to
compute the linearized stiffness matrix. In this paper we prefer to follow the ideas initially applied in
[Chambon et al. 2001b] where the solution for a time step is searched with a Newton–Raphson method
with different first estimations which can (if the problem has more than one solution) yield different
properly converged solutions.

On the other hand, it is now well known that localizations cannot be properly modeled with classical
media since this implies rupture without energy consumption as proved by Pijaudier-Cabot and Bažant
[1987]. Enhanced models are necessary. However, contrary to what is often believed, the use of an
enhanced model does not guarantee uniqueness of the solution of the corresponding boundary value
problems; this has been demonstrated in [Chambon et al. 1998; Chambon and Moullet 2004], the latter
employing the same model used in this paper. But it seems that the result is more general. Challamel
and Hijaj [2005] also found solutions for the same problem, but using a nonlocal, enhanced model.
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In this paper a second-gradient theory is used in conjunction with the method to search alternative
solutions recalled above. The first section of this paper is devoted to a brief recall of the model used and
of the principle of its numerical implementation.

In order to be able to perform easily different computations, the element has been first implemented in
the general purpose finite element code Lagamine developed at University of Liège [Charlier 1987], and
we checked the accuracy of this implementation using extended tests. This is described in the second
section of this paper.

Then a localization analysis is performed in the third section of the paper. Such an analysis is necessar-
ily different from the original ones of [Rudnicki and Rice 1975] since the type of discontinuity assumed
in the aforementioned reference cannot be used due to the second-order terms.

After briefly recalling the method, the fourth section deals with the numerical experiments of non-
uniqueness and describes computations exhibiting switching modes. Such mode switching has already
been studied by Ikeda et al. [1997] in a different context. It has been made mainly for the incremen-
tally linear comparison solid, which on the one hand allows a sound mathematic treatment, but on the
other discards modes involving a change in the loading branches of the constitutive equations. Here, as
explained above, no assumption is done concerning the behavior but only a numerical treatment of the
problem is made.

As for our notations, a component of a tensor (or vector) is denoted by the name of the tensor (or
vector) accompanied by the indices. All tensorial indices are in lower position, since there is no need
to distinguish between covariant and contravariant components. Upper indices have specific meanings
defined in the text. The summation convention with respect to repeated tensorial indices is used.

2. Local second-gradient models

2.1. A microstructured continuum with kinematic constrains. Models with microstructure descend
from the pioneer works of the Cosserat brothers [Cosserat and Cosserat 1909], via [Toupin 1962],
[Mindlin 1964] and [Germain 1973]. They use an enriched kinematic description of the continuum,
with respect to classical continua, recalled hereafter. In addition to the displacement field, ui , a second-
order tensor, the microkinematic gradient vi j , is introduced. Particular subclasses of enriched models
introduce a constraint on the microkinematic field. For example, Cosserat models can be viewed as a
microstructured model for which the microstrain is vanishing, that is, the symmetric part of the tensor vi j

is zero. In the same spirit, (local) second-gradient models assume that the microkinetic gradient is equal
to the displacement gradient vi j = ∂ui/∂x j , where x j is the spatial coordinate. Recently, such models
have been developed for geomaterials [Chambon et al. 2001a; Matsushima et al. 2002; Chambon and
Moullet 2004] and for metals [Fleck and Hutchinson 1997].

For local second-gradient models, the virtual work principle can be summarized as follows. For every
kinematically admissible virtual displacement fields u?i ,∫

�

(
σi jε

?
i j +6i jk

∂2u?i
∂x j ∂xk

)
dv =

∫
�

Gi u?i dv+
∫
∂�

(
ti u?i + Ti j

∂u?i
∂x j

)
ds, (1)

where σi j is the Cauchy stress, ε?i j is the virtual macrostrain, 6i jk is the dual static variable associated to
the second gradient of the virtual displacement, the so-called double stress; see [Germain 1973]. Further,
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Gi is the body force per unit volume, ti is the traction force per unit surface and Ti j is the double
force per unit surface. However ti and Ti j cannot be taken independently, since u?i and ∂u?i /∂x j are not
independent. More conveniently, the virtual work of external forces can be rewritten using the normal
derivative Dui = nk ∂ui/∂xk on the boundary. Here and in the following nk is the normal to the boundary
(assumed to be regular).∫

�

(
σi jε

?
i j +6i jk

∂2u?i
∂x j ∂xk

)
dv =

∫
�

Gi u?i dv+
∫
∂�

(
pi u?i + Pi Du?i

)
ds, (2)

where pi and Pi are two independent variables which can be prescribed on the boundary.
For such a class of models, the balance equations and boundary conditions yield

∂σi j

∂x j
−
∂26i jk

∂x j ∂xk
+Gi = 0, (3)

σi j n j−nkn j D6i jk−
D6i jk

Dxk
n j−

D6i jk

Dx j
nk+

Dnl

Dxl
6i jkn j nk−

Dn j

Dxk
6i jk = pi , (4)

6i jkn j nk = Pi , (5)

where Dq/Dx j denotes the tangential derivatives of any quantity q:

Dq
Dx j
=
∂q
∂x j
− n j Dq. (6)

2.2. Numerical implementation in a finite element code. A direct application of virtual work principle
(2) to solve equations of a boundary value problem needs to use C1 elements. To avoid this constraint, a
weak form of equation (2) can be introduced with help of a Lagrange multipliers field λi j , which yields,
for any time t and any kinematically admissible virtual fields u?i and v?i j ,∫

�t

(
σ t

i j
∂u?i
∂x t

j
+6t

i jk

∂v?i j

∂x t
k
+ λt

i j

(
∂u?i
∂x t

j
− v?i j

))
dv =

∫
�t

G t
i u
?
i dv+

∫
∂�t

(
pt

i u
?
i + Pi Du?i

)
ds, (7)

and for any virtual field λ?i j , ∫
�t
λ?i j

(
∂ut

i

∂x t
i
− vt

i j

)
dv = 0. (8)

A complete description of the numerical treatment can be found in [Chambon and Moullet 2004].
The problem is discretized in time and for each finite step a full Newton–Raphson is applied to solve the
resulting nonlinear problem. In order to get the equations suitable for Newton–Raphson technique, the
unbalanced quantities are computed after the n-th iteration of the current time step. The same equations
are applied for the n+1-th iteration, assuming these equations are well balanced. Then, by differentiation,
one gets a proper linearization of the set of equations for the Newton–Raphson method. Equations are
written in the actual configuration and the small strain assumption is not made, which introduces some
geometrical terms in the linearized equations.

The finite element is organized with 8 nodes for the displacement field ui , 4 nodes for the displacement
gradient field vi j , and a single node for the Lagrange multipliers field λi j . The element was introduced
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Figure 1. Nodal variables used in the finite element introduced in Lagamine.

in the finite element code Lagamine, initially developed at Liège University in Belgium [Charlier 1987].
The element used in Lagamine to implement our second-gradient model contains in fact 9 nodes each
with 6 possible degrees of freedom. For the present application, some of these are not used (see Figure 1):
only 36 degrees of freedom are activated by element [Bésuelle 2005].

The following algorithm is adopted for computing one time step from t−1t to t .

(1) Initial configuration: stress σ t−1t , double stress 6t−1t , coordinates x t−1t .

(2) Assumption on the final configuration for the first iteration n = 1:
• initialization of the increment of nodal values [1U t,n

node],
• update coordinates: x t,n .

(3) Beginning of the iteration n.

(4) For each element:
• for each integration point:

– compute the strain rate, the rotation rate and the second-gradient rate,
– compute 1σ t,n and 16t,n using the constitutive equations,
– update the stress and the double stress σ t,n

= σ t−1t
+1σ t,n , 6t,n

=6t−1t
+16t,n ,

– compute the consistent tangent stiffness matrices of constitutive laws.
• compute the element stiffness matrix.
• compute the element out of balance forces.

(5) Compute the global stiffness matrix.

(6) Compute the global out of balance forces.

(7) Compute the corrections [δU t,n
node] of the increment of nodal values by solving the Newton–Raphson

linearized system.

(8) Check the accuracy of the computed solution:
• if convergence: go to 9,
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• if no convergence: update the new assumed final configuration, n = n+ 1 and go to 3.

(9) End of the step.

3. Validation

3.1. Constitutive model: a quasibrittle material. The constitutive model used in this paper is the same
as in [Matsushima et al. 2002] and [Chambon and Moullet 2004], and it can be decoupled into two
independent relations. The first is classical, and links the stress to the displacement gradient; it is a Von
Mises elastoplastic law based on the Prandt–Reuss model, with a strain softening regime. The second
relation gives the double stress as a function of the gradient of the field vi j (that is, the second gradient of
the displacement); it is a linear elastic law. Concerning the constitutive equation used here, we emphasize
that the classical part of the model involves no hardening but only sudden softening as soon as a threshold
is attained. Moreover this part is not a hyperelastoplastic model, contrary to the ones used for bifurcation
analyses in [Steinmann et al. 1997; Borja 2002; Ikeda et al. 2003]. From a thermodynamical point of view
it would presumably be better to use the hyperelastoplastic model, but in the second-gradient context it is
then necessary to build up a new theory. This has already been done in [Tamagnini et al. 2001] and [Cham-
bon et al. 2004], but the implementation of such a model in a finite element code has not yet been made.

The classical relation is

σ̇ = 3 K ė,

∇si j =


2 G1 ε̇i j for ‖ε‖ ≤ elim,

2 G1

(
ε̇i j −

G1−G2

G1

skl ε̇kl

‖s‖2
si j

)
for ‖ε‖> elim,

(9)

where ∇si j is the Jaumann rate of the deviatoric Cauchy stress tensor, ε̇i j is the deviatoric strain rates, σ̇ is
the mean stress rate and ė is the mean strain rate. K , G1 and G2 are the bulk modulus, the shear moduli
before peak and after peak, respectively. ‖ε‖ is the second invariant of the Green–Lagrange deformation
tensor, elim is a deformation parameter of the model which corresponds to the deviatoric stress peak.

The bulk modulus K is assumed to be constant. The elastic shear modulus available for unloading is
assumed to be constant, while an exponential function is assumed as follows for the shear modulus after
the yield point so that the material could reach its residual state smoothly:

G2 = Ḡ2 exp
(

Ḡ2

G1elim− σres
(‖ε‖− elim)

)
, (10)

where Ḡ2 is the value of the shear modulus just after yielding and σres is the residual deviatoric stress.
The second-gradient law has been chosen as simple as possible. It is a particular case of the more

general isotropic linear relation derived in [Mindlin 1964], involving six parameters corresponding to
five independent coefficients. The following relation is slightly different from the one in [Matsushima
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Figure 2. Constitutive relations in the one-dimensional case: (left) first grade term;
(right) second grade term.

et al. 2002] and [Chambon and Moullet 2004], in that some inaccuracies have been corrected:

∇

6111
∇

6112
∇

6121
∇

6122
∇

6211
∇

6212
∇

6221
∇

6222


=



D 0 0 0 0 D/2 D/2 0

0 D/2 D/2 0 −D/2 0 0 D/2

0 D/2 D/2 0 −D/2 0 0 D/2

0 0 0 D 0 −D/2 −D/2 0

0 −D/2 −D/2 0 D 0 0 0

D/2 0 0 −D/2 0 D/2 D/2 0

D/2 0 0 −D/2 0 D/2 D/2 0

0 D/2 D/2 0 0 0 0 D





∂v̇11/∂x1

∂v̇11/∂x2

∂v̇12/∂x1

∂v̇12/∂x2

∂v̇21/∂x1

∂v̇21/∂x2

∂v̇22/∂x1

∂v̇22/∂x2


, (11)

where v̇i j is the material time derivative of vi j , and
∇

6i jk is the Jaumann double stress derivative, defined
by

∇

6i jk = 6̇i jk +6l jkωli +6imkωmj +6i j pωpk , where ωli is the spin tensor.

3.2. One-dimensional simulation. In order to validate the implementation of the element in Lagamine,
first a one-dimensional compression is computed. This problem has analytic solutions under the assump-
tion of small strain; see [Chambon et al. 1998]. The bar is 1 meter long. The degrees of freedom u1,
v11, v12 and v21 are blocked at each node, the direction 2 being the direction of compression. In order to
study the symmetrical localized solution composed of a central patch in the softening loading part and
two end patches in the elastic unloading part, two elements at the middle of the bar have a elim-value
reduced by 2%. The constitutive parameters are the same as those used in [Matsushima et al. 2002]:

G1 = 16.875 MPa, Ḡ2 = 0 MPa, elim = 0.082,

K =−7.5 MPa, D = 0.08 MN. (12)
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Figure 3. Comparison of three mesh refinements in one-dimensional simulations: (left)
evolution of the resulting force versus the axial shortening, and (right) displacement
gradient along the bar.

The two constitutive relations are plotted in Figure 2. To observe the influence of the mesh on the
numerical solutions, three mesh refinements are used, with 11, 20 and 50 elements, respectively. The
three solutions are very close (Figure 3), in terms of force versus bar shortening and deformation profile.

3.3. Two-dimensional simulation. A biaxial test is computed in this section as an example of a two-
dimensional problem. Figure 4 shows the initial configuration of the specimen. It is 0.5 m wide and
1 m high (and 1 m thick). The (classical) surface tractions per unit area at both sides of the specimen
are set equal to zero. The external additional double forces per unit area Pi are assumed to be zero all
along the boundaries. At the top there is a smooth rigid plate remaining horizontal. Through this plate
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Figure 4. Initial configuration and boundary condition for biaxial test.
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Figure 5. Classical part of the constitutive relation.

a compressive force Fa is applied. The vertical displacement of this top plate is denoted by ua . At the
bottom, there is another rigid and smooth plate, which remains horizontal too. The central point of the
bottom plate is fixed to avoid rigid body displacement. The classical part of the constitutive relation is
plotted in Figure 5. The parameters are chosen as follows:

G1 = 50 MPa, Ḡ2 =−2 MPa, elim = 0.01,

K = 97.3856 MPa, σres = 0.2 MPa, D = 0.2 kN. (13)

Several meshes are compared: structured meshes with 10×20, 15×30, 20×40 and 40×80 elements,
and an unstructured mesh with 300 elements. The left bottom element of the mesh has a elim-value
reduced of 10% in order to force a localization band in this area. Here, we try to find similar solutions;
that is, we don’t try to find more than one alternative solution contrary to what is done in the following
sections.

The implementation of our element in a general purpose code allows us to go further in the validation
procedure. For example, we can work with unstructured meshes, an impossibility until now. Moreover,
the use of a general code makes it possible to compare more precisely the similarities (and likely the
differences) between different computations. It is often especially difficult to compare solutions of the
same problem obtained with different meshes. In the following computations, in order to determine
the width of the shear band, instead of comparing contours of some variable (often obtained by some
interpolation procedure), we have chosen to look directly at the part of the computed body which loads
plastically (inside the localized band). For this purpose, we have marked by a small open square the
(plastically) loading Gauss points. In the area where there are no such marks the material unloads
elastically.

The localization patterns of solutions (Figure 6) are very close, and the band thickness depends very
little on the mesh size. We want here to emphasize a new result: an unstructured mesh changes neither
the orientation nor the width of the band even if its position seems to be a little shifted. However, we
have to keep in mind that, since we use an imperfection related to an element, the problems solved in
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Figure 6. Comparison of the localization patterns for the four meshes 10× 20, 20× 40,
40× 80 and an unstructured mesh with 300 elements, respectively. The imperfection
is located in the left bottom element. The squares correspond to the integration points
which are in the softening loading part; the other integration points are in the elastic
regime.

the four cases are not exactly the same. The curves of the loading force versus the specimen shortening
(Figure 7) are also very close. The step of band propagation from the imperfection concerns the force
peak zone, and as soon as the band is completely propagated through the specimen, the force decreases.
When the number of elements is sufficiently high (about 300 elements), or, more objectively, when there
are at least about three elements in the band thickness, the curves are perfectly superimposed.
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Figure 7. Comparison of the resulting force versus axial shortening curves for the same meshes.
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4. Nonuniqueness of solutions

The aim of this section is to show that as soon as strain localization is possible, there can exist several
solutions to a boundary value problem, despite of the use of a second-gradient model. Moreover, consis-
tent with experimental observations, it is possible that the computed solutions switch from one pattern
to another.

Generalizing Hill’s uniqueness theorem [Hill 1958], Chambon and Moullet [2004] demonstrated that,
under certain assumptions on the model, local second-gradient models (in the small strain framework)
enjoy a uniqueness property. These results, applied to the biaxial problem, allow us to prove that unique-
ness of solution is preserved in the elastic regime. In the biaxial problem described above, this unique
solution is the homogeneous elastic response for which the response of the second-gradient model is
similar to the response of a classical law. When the state of stress reaches the peak of the law, the
uniqueness theorem cannot be applied, and, consistent with the numerical results in [Chambon et al.
1998] and in [Chambon and Moullet 2004], more than one solution is possible. It is then interesting to
try to generalize the shear band analysis in the spirit of [Rudnicki and Rice 1975].

We present here a bifurcation analysis to search the condition for existence of a localized band. Applied
to the second-gradient model used here, such an analysis is a generalization of the pioneering work of
Rice [1976] and Rudnicki and Rice [1975]. We will show that for second-gradient models, at least when
classical and second-gradient parts are decoupled, the bifurcation analysis is reduced to a bifurcation
analysis on the classical part of the constitutive relation. However, the result is weaker in the sense that
as soon as the criterion is met, localized solutions are possible, but not in all cases. Let us emphasize
this point. This means that the second-gradient model and the underlying classical model have the same
prebifurcation curve since second-gradient effects are only active for inhomogeneous fields. But the
bifurcation point of the second-gradient model is located beyond the bifurcation point of the classical
model, with the difference depending on the size of the modeled sample. It is likely that from the limit
case of an infinite sample, both models have the same bifurcation point. Clearly the postbifurcation
behavior is different for the two models.

The classical part of the rate law is assumed to be bilinear, and the second gradient law linear. We
restrict this analysis by assuming that the so-called small strain assumption holds. So we use the ordinary
material stress rates instead of some objective ones like the Jaumann stress rates:

σ̇i j = K e
i jkl

∂ u̇k

∂xl
or σ̇i j = K ep

i jkl
∂ u̇k

∂xl
depending on

∂ u̇k

∂xl
,

6̇i jk = Ai jklmn
∂2u̇l

∂xm ∂xn
.

The nonhomogeneous solution is assumed to have the form of a planar band with unit normal ni .
Inside and outside the band, the velocity gradient depends only on the position across the band. The
velocity gradient inside and outside the band must have the form

∂ u̇ζi
∂x j
=
∂U̇i

∂x j
+ gζi n j ,
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where ζ = 1 inside the band, and ζ = 0 outside. The displacement gradient ∂U̇i/∂x j is assumed homo-
geneous, and gζi = gζi (α) are arbitrary vectors depending on the position α = xk nk across the band. g1

i
characterizes the strain field inside the band and g0

i corresponds to the near field on each side of the band.
To insure the strain continuity, we assume that

g1
i = g0

i (14)

at the boundaries of the band. This point deserves a discussion. This is a salient difference with the
localization analysis for classical materials. To some extent, we use a second-gradient theory in order
to have more regular solutions. From the theoretical point of view, solutions have to be C1 continuous.
Moreover, contrary to what happens for a classical model, a discontinuity of the strain rate could imply
that some forces are infinite. Consequently a classical shear band analysis cannot apply a priori to the
models used here.

The C1 continuity requirement is not imposed in the localization analysis developed in [Huang et al.
2005; Iordache and Willam 1998]. In this case, a discontinuity of the Cosserat rotation rate is assumed,
which should imply an infinite curvature. However, these studies used pure Cosserat models, which
means that there is no link between microrotation and macrorotation (see for instance [Chambon et al.
2001a] for a study of the difference between the pure Cosserat model and second-gradient Cosserat
model). An analysis allowing discontinuities might be interesting, but an analysis with C1 continuous
fields should be made as well, as we suggested in [Chambon et al. 2001a]. Our opinion is corroborated
by the results of Iordache and Willam [1998]. These authors found that the analysis with discontinuities
gives results corresponding to compaction or extension bands—for the case for which Cosserat effects
are vanishing, which means finally for a classical model.

For simplicity’s sake, we assume that the direction of gζi over the band is constant and then

gζi (α)= gζ (α) mζ
i ,

where gζ (α) are scalar functions and mζ
i are constant unit vectors. To simplify the notation, we consider

that the solutions on each side of the band are the same (symmetry with respect to the band) and we do
not make any difference between the solution on one side and that on the other.

In each point of the body, the stress and double stress fields satisfy conditions of equilibrium in (3).
Because the prebifurcation field is presumed uniform, the stress rate and double stress rate at the onset
of localization satisfy

∂σ̇
ζ
i j

∂x j
−
∂26̇

ζ
i jk

∂x j ∂xk
= 0. (15)

Moreover, at the boundaries of the band, conditions (4) and (5) must be satisfied (the tangential
derivative on the boundaries of the band are zero because the displacement gradient depends only on
α):

σ̇ 0
i j n j −

∂6̇0
i jk

∂x p
n pn j nk = σ̇

1
i j n j −

∂6̇1
i jk

∂x p
n pn j nk, (16)

6̇0
i jkn j nk = 6̇

1
i jkn j nk, (17)

where (·)0 and (·)1 denote quantities outside and inside the band, respectively.
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The equilibrium condition inside and outside the band can be written

K ζ
i jkl n j nl (g

ζ
k )
′
− Ai jklmn n j nknmnn (g

ζ
l )
′′′
= 0, (18)

where (gζk )
′ is the derivative of gζk (α) in the direction orthogonal to the band. It seems reasonable to

assume that K 1
i jkl = K ep

i jkl and K 0
i jkl = K e

i jkl .
The limit conditions at the two boundaries of the band depend on the constitutive relation which is

considered on each side of the interface. For classical constitutive laws, it can be shown that the softer
response (that is, the one corresponding to the tensor Kep) can be considered on each side of the interface
to track the first bifurcation condition (see [Bésuelle and Rudnicki 2004] for a review).

Here, Equation (17) becomes:

Ai jklmn n j nknmnn
(
(g0

l )
′
− (g1

l )
′
)
= 0. (19)

Since function gi (α) is continuous at the boundaries of the band (see Equation (14)) and since the material
is loading inside the band and unloading outside, this means that it undergoes a neutral loading:

K ep
i jkl

∂ u̇0
k

∂xl

∣∣∣∣∣
α=αa or αb

= K e
i jkl

∂ u̇0
k

∂xl

∣∣∣∣∣
α=αa or αb

. (20)

Then the limit condition (16) can be written

K ep
i jkl n j nl

(
g0

k − g1
k
)
− Ai jklmn n j nknmnn

(
(g0

l )
′′
− (g1

l )
′′
)
= 0. (21)

Finally the problem can be summarized as follows:

• outside the band, the following condition, which comes from Equation (15), must be satisfied:

Ke
i j (g

0
j )
′
−Ai j (g0

j )
′′′
= 0; (22)

• inside the band, once more coming from Equation (15), we observe that

K
ep
i j (g

1
j )
′
−Ai j (g1

j )
′′′
= 0; (23)

• there must exist two values αa and αb for which the following conditions are satisfied:

Ai j
(
(g0

j )
′
− (g1

j )
′
)
= 0, (24)

which comes from Equation (19), and

Ai j
(
(g0

j )
′′
− (g1

j )
′′
)
= 0, (25)

which comes from Equation (21),

where K
ep
ik = K ep

i jkl n j nl , Ke
ik = K e

i jkl n j nl and Ail = Ai jklmn n j nknmnn . Note that |αa
−αb
| corresponds

to the band thickness.
Since Equations (22)–(23) are ordinary linear differential equations, one can search solutions of the

form gζi (α)= γζ exp(λζα)mζ
i , where γζ are nonzero constants (if γζ = 0, there is no localization) and

λζ are the two unknowns of the problem. Then one has to solve

(K
ep
i j − (λ1)

2Ai j )m1
j = 0 (26)
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and
(Ke

i j − (λ0)
2Ai j )m0

j = 0. (27)

There is then a solution corresponding to a nonuniform field if

det(Kep
i j −31 Ai j )= 0, (28)

and
det(Ke

i j −30 Ai j )= 0, (29)

where 3ζ = (λζ )2.
A localized solution corresponds to a strain field involving an extremum. Then this implies 31 < 0 for

an harmonic form for g1(α) inside the band (while one expects 30 > 0 outside the band for a hyperbolic
form). In fact, we are also guided in this reasoning by the one dimensional analytical solutions obtained by
Chambon et al. [1998] and by El Hassan [1997], who demonstrated that the hyperbolic form corresponds
to a kind of boundary layer.

Equation (28) is an algebraic equation of degree 3. The third-order term reads det(A) whereas the
zero-order terms reads det(Kep). If 3a , 3b, 3c are the solutions of this equation, then consequently

det(A)3a 3b 3c = det(Kep). (30)

As a consequence of the choice of an isotropic tensor for the second-order part of the model, we have
A = D I, where I is the identity tensor. This can be easily checked for the particular value of Ai jklmn

detailed in Equation (11). So, det(A)= D3.
Before the onset of localization, the roots are expected to be positive (no localized solutions). So

without any additional assumption, the bifurcation condition as in classical (bilinear) constitutive equation
[Chambon et al. 2000] is

det(Kep)≤ 0. (31)

If we assumed the incremental continuity of the classical part of the law, then a necessary and sufficient
condition for the sign of one root to change (that is, to have a vanishing root) is

det(Kep)= 0, (32)

which corresponds to the classical bifurcation condition for a classical bilinear law. In this case the result
can be found directly by inspecting the annulment of the zero-order term of Equation (28). Moreover,
det(Ke) > 0, and so the solution g0

i outside the band is hyperbolic.
As far as the band thickness is concerned, it is given by finding αa and αb that satisfy the double

condition (24)–(25), which can be reduced here to(
(g1)′− (g0)′

)∣∣
α=αa orαb

= 0 and
(
(g1)′′− (g0)′′

)∣∣
α=αa orαb

= 0.

Note that we assume in the particular form (11) that the parameter D is constant and positive. With
other models such as the ones detailed in [Chambon et al. 2001a], plasticity can also occur in the second-
gradient part of the model and in this case, D can evolves during the loading. Since the order of magnitude
of the thickness of the band is given by the inverse of λζ , the evolution of the thickness of the band is
related to the variations of D and of det(Kep) according to Equation (30).
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Coming back to the model defined by Equation (11), where D is assumed to be constant, the thickness
of the emerging band corresponding to condition (32) is infinite and decreases when det(Kep) decreases.
Since an infinite thickness for a finite size boundary value problem is not realistic, the onset of localization
can be somewhat delayed when second-gradient models are used. Consequently this criterion is not
completely similar to the one of classical media. It is a necessary condition of localization, however
since second-gradient models implicitly include an internal length, it is possible that this criterion could
be met but without loss of uniqueness for some ”small” (with respect to the internal length) problems.

For the particular law adopted in Equations (9)–(11), the bifurcation criterion is satisfied after the
deviatoric stress peak.

5. Switching mode of deformation

5.1. Algorithm for nonuniqueness search. When several solutions for a given boundary value problem
exist, it can be difficult to know that they exist and to find the other (or some of the other) solutions,
especially when the boundary value problem is nonlinear.

As we recall from Section 1, it is not satisfactory to search the null space of one eigenvalue of the
tangent stiffness matrix related to the linearized discretized velocity problem. This way is useful for
incrementally linear problems such as the ones induced by using a large strain elastic theory, but is only
a guess for incrementally nonlinear problems arising when a constitutive equation incorporates some
unloading branches.

For numerical computations involving classical constitutive equations, we have developed an algo-
rithm to search several (eventual) solutions to a problem. It takes advantage of the fact that at the
beginning of a time step, for the first iteration, the nodal quantities denoted [1U tn

node] in the algorithm
presented in Section 2.2 can be freely chosen. The standard choice is to use nodal values related to the
ones obtained at the end of the previous time step. Such a choice applied to an initially homogeneous
problem generally (though not in all cases) leads to the homogeneous solution. If a random initialization
is adopted for [1U tn

node], then it is possible to find nonhomogeneous solutions. In fact, for classical
continua, our experience (see [Chambon et al. 2001b]) is that as soon as uniqueness is lost, the duplication
of numerical experiments can yield different solutions, changing only some numerical parameters such
as the time step size or the first guess of a given time step. Since all of them are properly converged,
this means that they are all different solutions of the same initial boundary value problem defined by the
same history of boundary conditions.

Recently, this algorithm has been adapted to second-gradient models [Chambon and Moullet 2004].
It has also been implemented in Lagamine, leading to the following numerical results.

5.2. Numerical loss of uniqueness. We present in Figure 8 several localized solutions (well converged)
found after a few random initializations. The random initialization algorithm has been activated after a
specimen shortening of 0.012 m while the stress peak corresponds to a shortening of 0.01 m. In order to
clearly visualize the localized zones, the (plastically) loading Gauss points are marked with small open
squares. As in experiments, the width of the bands is completely reproducible. On the contrary, the
position, the number, and, more generally, the patterning between several bands are quite different from
one numerical experiment to another.
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Figure 8. Example of localized solutions obtained after a random initialization, showing
solutions with 1, 2 or 3 bands. The squares correspond to the integration points which
are in the softening loading part; the other integration points are in the elastic part.

Figure 9 presents the global curves of the resulting force versus the axial shortening; they are clearly
organized in several packages, each package being characterized by the number of deformation bands.
This observation is similar to what has been seen in the one-dimensional case in [Chambon et al. 1998].
It is clear that the more numerous the bands are, the larger are the areas where plastic loading takes place,
and, consequently, the closer the global curves are to the homogeneous case. We can observe that there
is no difference between the case with bands crossing the specimen directly from a lateral surface to the
opposite one and with band reflection, either on the top or on the bottom rigid plate.
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Figure 9. Comparison of the force versus axial shortening evolution of 10 simulations
after a random initialization at a shortening of 0.012 m. Curves show that the responses
depend on the number of bands. The higher the number of bands, the closer to the
homogeneous response the curve is.
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Figure 10. Comparison of the force versus axial shortening evolution in the postpeak
regime of (converged) solutions with 1 active band, 2 active bands; and solution after
the deactivation of one band. Step A corresponds to the random initialization, and step
B corresponds to an ad hoc initialization in order to deactivate one band.

So, clearly these results show the nonuniqueness of solutions after the stress peak. The position and
the number of bands are not prescribed by this boundary value problem, and we retrieve a variability of
the responses similar to what is observed in experiments.

5.3. Numerical mode switching. From the initial homogeneous problem, after the onset of localization,
several patterns of localization are possible for the numerical problem. The question addressed in this
section is: is a given pattern stable, once activated? In fact, we will show that the pattern can evolve
during the loading. If a solution has several bands which are active during the loading process, a solution
for the next increment of loading is to keep all the bands active, but other solutions with fewer active
bands are also possible. Since the areas outside the bands unload elastically, new bands cannot in fact
appear, but it is possible that at a given time, some existing bands start to unload and become inactive.

To check this possibility, we use a method similar to the random initialization algorithm. The first
guess used to start the Newton–Raphson iterative procedure is an ad hoc set of nodal values [1U tn

node]

corresponding to a deactivation of some bands. An example of such a computation is shown for a two-
band solution in Figure 10. A random initialization has been made for a specimen shortening of 0.012 m
(step A), giving a two band solution, and the ad hoc initialization (step B) has been performed at a
shortening of 0.025 m, to deactivate one of the bands. Then, the curve evolves from the two active band
solutions to the one active band solution. The deformed meshes and the loading zones are shown in
Figure 11 for an axial specimen shortening of 0.04 m. Figure 11, left, shows the result corresponding to
a pattern of two active bands. The right hand side of the figure corresponds to a pattern where a band
(the upper one) has been deactivated at step B. This figure shows clearly that the area corresponding to
the deactivated band is still plastically deformed although it exhibits elastic unloading.
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Figure 11. Pattern of active localization bands after the random initialization and (left)
without deactivation of band, (right) after deactivation of the upper band. Deformed
meshes correspond to the true deformation after a specimen shortening of 0.04 m, with-
out displacement amplification.

6. Conclusion

To properly model localization patterns, the validation of the local second gradient theory has been
extended. Localization analysis for this kind of model has been established. This theory is now mature
and can be used in computation with some confidence. Similarly, the way of (partially) solving the
bifurcation problem by means of different initializations of the Newton–Raphson iteration for a given
time step has been extended to multiple bifurcations.

From a qualitative point of view, we are able to retrieve numerically the main features of observations
made on experimental data. Especially, the great variability of the postpeak behavior of a sample is
modeled realistically. These results have some consequences. First, the postpeak part of the curve
cannot be interpreted as the result of a homogeneous response. Consequently, modeling the degradations
of material needs enhanced models; moreover, the postpeak part of the curve can be used to get some
material parameters only if the complete velocity field is known.

Clearly the results presented here have to be developed. Geomaterials are mainly polyphasic media,
which implies the extension of the present model and methods to poromechanics. This has already been
done; see [Collin et al. 2006] for details. Similarly, it is interesting to apply the methods presented to a
classical constitutive equation less simple (elastic and sudden softening) than the one used here. This is
work in progress [Bésuelle and Chambon 2006].

Finally a question arises. Is the loss of uniqueness observed and modeled for laboratory tests significant
only for those tests for which homogeneity is required? In other words, can we find similar nonuniqueness
problems for engineering situations? Answering such questions is not so easy, but some preliminary
results [Al Holo 2005; Chambon and Al Holo 2006] indicate that for some problems, such as the borehole
stability problem, the loss of uniqueness is important and may indicate poor reproducibility.
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INCREMENTAL MODELING OF T-STUB CONNECTIONS

MINAS E. LEMONIS AND CHARIS J. GANTES

An incremental model for predicting the mechanical characteristics of T -stub steel connections is pre-
sented in this paper. The response is calculated analytically on the basis of a simple beam representation
for the flange and a deformational spring for the bolt. Contact phenomena in the flange are taken into
account, and by means of an incremental procedure it becomes possible to follow the development of
these phenomena throughout the loading history. Material nonlinearity is also accounted for, both in
the flange and the bolt, assuming a bilinear constitutive model. We propose several refinements of the
model, which enhance its effectiveness with respect to intricate characteristics of T -stub behavior, such
as bolt-flange interaction and three-dimensional geometry. The performance of the model is validated
by comparison to experimental results found in the literature and by a parametric study performed in
parallel with three-dimensional finite element analyses.

1. Introduction

Advanced analysis of steel structures requires extensive information regarding the behavior of both the
members and the joints. For the members, well established methodologies exist to account for nonlin-
earities in response. However, for joints, a similar level of methods is not available to predict response
characteristics, and in particular the moment-rotation curve. This shortcoming is mainly due to the com-
plex nature of joints, which are assemblages of multiple parts. Material and geometrical nonlinearities,
contact phenomena, geometrical complexity and multiple typologies which govern the behavior of joints
are an obstacle towards a systematic, theoretical, yet pragmatic treatment of this subject. To subdivide
the problem, one can identify joint components with simplified behavior, and then reproduce the total
response as an assembly of the partial responses of the individual components. In this context, various
mechanical spring assemblies have been proposed for stiffness and strength calculations [Huber and
Tschemmernegg 1998; CEN 2003], while a similar process has been suggested for other characteris-
tics, such as rotational capacity and full moment-rotation curve [Kuhlmann and Kuhnemund 2000; Beg
et al. 2004]. Generally, components of tensile, compressive and shear deformability can be identified in
structural joints. The tensile components of common bolted joints, which provide the major source of
deformability, have the form of equivalent T -stub connections [Yee and Melchers 1986; Weynand et al.
1995; Shi et al. 1996], as shown in Figure 1a.

Numerous research works are dedicated to the analytical estimation of strength and stiffness of T -stub
connections. [Zoetemeijer 1974; Agerskov 1976; Yee and Melchers 1986], among others, contributed
to a basis for the currently established and codified T -stub model [CEN 2003]. Regarding the complete

The research in this paper is part of a project which is cofunded by the European Social Fund (75%) and National Resources
(25%). This contribution is gratefully acknowledged.
Keywords: T-stub connection, T-stub model, steel connections, contact phenomena, nonlinearity.
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Figure 1. (a) T -stub components in a bolted beam-to-column joint and (b) T -stub defi-
nitions and the analytical model (b).

force-displacement curve, available methodologies include the bilinear model of [Jaspart 1991], the
quadrilinear model of [Faella et al. 2000], the incremental model of [Swanson and Leon 2001] and the
finite element beam model of [Girão Coelho et al. 2004]. An alternative approach for prediction of T -stub
response is the advanced finite element modeling. Further contributions have been devoted to this subject
which employ 2D plane elements [Mistakidis et al. 1997] or 3D brick elements [Sherbourne and Bahaari
1996; Bursi and Jaspart 1997; Wanzek and Gebbeken 1999]. The performance of such models is generally
very good, since geometrical characteristics and nonlinearities are adequately modeled. However, the
merit of these models for practical design purposes is limited, due to the special software requirements
they pose, their high computational cost and the large amount of output data they produce.

In this paper we propose an incremental analytical model for the prediction of the complete force-
displacement curve of the T -stub connection. The proposed model is designed for implmentation in a
computer program rather than hand calculation and assumes the following as relevant objectives: credible
results, ease of programming, and minimum dependency on special software. To achieve credible results,
our model is designed for implementation in a computer program rather than hand calculation. Published
methodologies for prediction of the whole force-displacement curve generally require computer imple-
mentation [Faella et al. 2000; Swanson and Leon 2001; Girão Coelho et al. 2004]. In fact, T -stub
behavior is so complicated that implementing a simplified method suitable for hand calculation would
unavoidably compromise the credibility of the model. This becomes an even greater problem for the
whole joint, since multiple components must be analyzed.



INCREMENTAL MODELING OF T-STUB CONNECTIONS 1137

σ

ε

ΕΤ

Ε

fu

fy

εy εu

M

ε

Mu

εy εu

M2

1

3
2

My

(a) (b)

Figure 2. (a) Flange material modeling and (b) corresponding moment-outer fiber strain diagram.

2. Model description

T -stub connections are fairly complex to analyze. Their geometry is three-dimensional, and includes
contact phenomena as well as interaction between the flanges and the bolts. Some compromises are taken
into consideration to circumvent these difficulties. We first adopted a two-dimensional representation of
the problem. This is opposed to the actual geometry which is three-dimensional due to the bolts and
the holes at the flanges. As shown in Figure 1b, the analysis is based on classical beam theory, with
the flanges modeled as beams and the bolts as springs of equivalent stiffness located at the axes of the
physical bolts. Taking advantage of symmetry, we model only one half of the T -stub. The initially
unknown distance of the flange edge, where the symmetry condition is enforced, from the bolt axis, is
L1. The area extending from the bolt spring to the free end is considered as potential contact area where
partial separation might occur. The separation length measured from the bolt axis is L2. Displacement
w is identical to the vertical deflection of the flange mid-thickness at the symmetry plane which passes
along the web.

2.1. Material nonlinearity. Both the flanges and the bolts feature a bilinear material law with strain
hardening, shown in Figure 2a with E and ET denoting the elasticity modulus and the hardening modulus
respectively, εy , εu the yield and ultimate strain and fy , fu the yield and ultimate stress. Figure 2b shows
the bending moment M – the outer fiber strain ε diagram for a rectangular cross section with this type of
material. Point 1 of the diagram denotes the end of the elastic region, when the outer fibers of the cross
section reach their yield strain εy . Beyond this point, and as larger parts of the cross section enter the
plastic region, the curve gradually softens, up to the point of fracture, denoted by point 3 in the diagram.

It is assumed that fracture occurs when the outer fibers of the cross section reach their ultimate strain
εu . Thus, the ultimate moment resistance can be expressed as

Mu =
bt2

f

12

(
3(E − ET )εy + 2ET εu −

(E − ET )ε
3
y

ε2
u

)
, (1)
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where b is the width of the flange, and the other symbols are shown in Figures 1b and 2a. When εu � εy ,
a hypothesis valid for steel, Equation (1) is simplified to become

Mu =
bt2

f

12
( fy + 2 fu). (2)

We introduce an additional simplification regarding nonlinearity of the M − ε curve. This curve is
approximated by a bilinear representation, with the linear segments lying tangential to the original curve
at points 1 and 3. The intersection of the two segments at point 2 in Figure 2b is proven to take place for
a moment equal to

M2 =
bt2

f

4
fy . (3)

The bilinear simplification of the M−ε curve allows one to distinguish the flange beam in parts where the
bending moments have surpassed M2 (and subsequently modulus ET characterizes the material response),
from the remaining parts, which remain elastic.

For the bolt, the bilinear material law results in a bilinear force versus elongation curve, since bolts
are only subjected to tensile loading, so that calculation of the respective characteristics of the curve is
straightforward.

2.2. Contact phenomena. A complex aspect of the T -stub behavior involves the contact of the flange
surfaces. In existing methods [Jaspart 1991; Faella et al. 2000; Swanson and Leon 2001], the location of
prying actions is predetermined and remains constant through the whole loading history. In our model,
we make no assumption regarding the location of the prying actions. Instead, the part of the flange
extending from the bolt location to the free end is considered as the potential contact area where partial
separation might occur. A unique separation point appears somewhere within this area and the beam
length beyond this point remains in complete contact with its base as shown in Figure 1b. Assuming
that the base is infinitely rigid, this part of the beam remains straight, with zero curvature and, thus, zero
moment. Due to continuity of the flange, the same conditions should apply locally to the separation point
through the deformed part as well. Hence, both the rotation and the moment of the flange on both sides
of the separation point should be zero. The calculation process takes advantage of these conditions to
find the location of the separation point, as described later in this section.

The separation length L2 changes during the loading progress, while additional parts of the flange
or the bolt enter the plastic region, and we implement this behavior in the proposed incremental model.
The conditions of zero moment and rotation apply throughout the response. Figure 3 shows the model
used for the calculations, with the state of the total response in step i of the incremental process. The
label A shows the edge near the web, located at a distance L1 from the bolt axis, while B shows the bolt
axis position, where the bolt spring is connected to the flange. Point C i indicates the separation point at
the current step i , with the current separation length L i

2. Figure 3 also shows the incremental response
between steps i and i+1, where the new separation point is indicated by C i+1 and the new separation
length is L i+1

2 . For calculation of the new separation length L i+1
2 , a moment constraint is applied to the

separation point C i+1 which allows for expression of the respective moment reaction as a function of
the unknown L i+1

2 . However, as mentioned earlier, the separation point C i+1 must fulfill zero moment
conditions. Therefore, we obtain an appropriate length L i+1

2 which causes the total moment to edge
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Figure 3. Incremental treatment of contact phenomena.

C i+1 to be zero. Note that the constraint symbol used in Figure 3 at the separation point represents a full
moment support, but it differs from the conventional clamping symbol to signify the zero actual moment
at this point. The enforcement of zero moment at the new separation point C i+1, in the total response of
step i + 1, is given by

MC i+1 = M i (x = L1+ L i+1
2 )+ d MC i+1 = 0⇒ (4)

M i
B L i

2−M i
B L i+1

2 + d MC i+1 L i
2 = 0. (5)

The total moment M i
B is known from the previous step but the incremental moment d MC i+1 is a function

of the new separation length L i+1
2 . Further elaboration of Equation (5) will be given in Section 2.4, where

the required quantities of the response will be available analytically.

2.3. Flange length L1. The modeled flange features a constant cross section. However, near the web,
the real flange cross section gradually increases in height. The critical position for strength calculations,
according to prEN 1993-1-8 [CEN 2003], lies at a distance 0.2r from the start of the flange-to-web fitting.
However, using this length for stiffness calculations leads to overestimation of the response because the
deformability of the remaining part of the fitting is ignored. Therefore, in our proposed model, we take
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Figure 4. Approximation using the analytical model of (a) the flange-to-web fitting, and
(b) definition of the plastified zone in the same region.

into account the total fitting length up to the web face. Because the real fitting has a variable cross
section, an equivalent length Lc of constant cross section as shown in Figure 4a, is used so that the
flexural stiffness of the two is equal as follows:∫ r

0

1
E I (x)

dx =
∫ Lc

0

1
E I

dx⇒ (6)∫ r

0

1
(t f (x))3

dx =
∫ Lc

0

1
t3

f

dx . (7)

The function t f (x) of the cross section height at a distance x from the start of the circular fitting, as
shown in Figure 4a, is

t f (x)= t f + r −
√

r2− x2. (8)

The analytical integration of the left side of (7) is not readily available. Instead the trapezoidal rule can
be applied as

Int=
∫ r

0

1
t f (x)3

dx =
r
2k

(
1
t3

f

+
1

(t f + r)3
+ 2

k−1∑
j=1

1
t3

f, j

)
, (9)

where t f, j = t f
(
x = j r

k

)
and k the number of trapezoids to be used for the approximation. Typically,

values of k equal to 4 or 5 provide sufficient accuracy. The equivalent fitting length should then be
derived from (7) as

Lc = t3
f Int . (10)

Figure 4b illustrates the relevant process of obtaining the plastified flange zone at the flange-to-web
fitting, which will be investigated in the following section.



INCREMENTAL MODELING OF T-STUB CONNECTIONS 1141

0.5dF

L1

ET ET ETE EE

dR

dMA

dFb

A B

L2
i+1

L0
i LpA

i

LpB,2
i

cb
i

Ci+1

dMCi+1

LpB,1
i

Lc

Figure 5. The proposed incremental model with all potential plastification zones in the flange.

2.4. Model response. The model is solved using the force method. As mentioned earlier, the incre-
mental model features a moment constraint at C . Neglecting longitudinal forces, it is twice statically
indeterminate. In Figure 5, the proposed incremental model is depicted in its more general form, with
plastified parts in the flange-to-web fitting of length L i

p A and at the bolt area of lengths L i
pB,1, L i

pB,2
where superscript i indicates the loading step. The resulting quantities of its response were obtained
analytically and are summarized in Table 1. From this table, the incremental prying force d R, bolt force
d Fb as well as moments d MC i+1 , d MA and d MB , which correspond to points C i+1, A and B respectively,
can be calculated for a given value of the applied incremental force d F . Then, the incremental displace-
ment dw of the T -stub can be calculated from the partial displacements dw j=0···2. Section 4.3 provides
details regarding the displacement dws . No special physical meaning is attributed to the parameters
s j=0···2, p j=0···3, q j=0···4, G1, G2 and λ listed in Table 1. These parameters are used to calculate the
aforementioned incremental quantities of the model response, to reduce the complexity of the algebraic
expressions.

Purely elastic response as well as special cases such as plastification near the flange-to-web fitting can
be derived from the expressions of Table 1 by substituting the respective plastification lengths with zero.
This facilitates implementation of the model in computer code by avoiding multiple programming paths.

The plastification length L i
p A is not adjacent to A but allows for a flange length L i

0 to remain elastic.
This compensates for its increased moment resistance. The exact value of length L i

p A and its position is
obtained by solving

|M i (x)| = M2(x), (11)

where M i (x), the total bending moment in the flange during loading step i at distance x from the start
of the fitting, is defined as

M i (x)= M i
A+ 0.5F i (Lc− x). (12)

The moment resistance M2(x) is calculated from Equation (3), where instead of the constant cross section
height t f , we use

t f (x)=

{
t f + r −

√
r2− x2, x > 0,

t f , x ≤ 0.
(13)

If plastification occurs, solution of Equation (11) provides two roots as shown in Figure 4b for the
definition of the length L i

p A. Because part of the distance between the two roots obtained by (11) is
located at the flange-to-web fitting, where the flange height is variable, a correction similar to the one
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d R =
3d F

2
s2(L i+1

2 )2+ s1L i+1
2 + s0

q4(L i+1
2 )4+ q3(L i+1

2 )3+ q2(L i+1
2 )2+ q1L i+1

2 + q0

d MC i+1 =−
d F
2

p3(L i+1
2 )3+ p2(L i+1

2 )2+ p1L i+1
2 + p0

q4(L i+1
2 )4+ q3(L i+1

2 )3+ q2(L i+1
2 )2+ q1L i+1

2 + q0

d Fb =
d F
2
+ d R

d MA =−
d F
2

L1+ d RL i+1
2 + d MC i+1, d MB = d RL i+1

2 + d MC i+1

dw = dw0+ d Rdw1+ d MC i+1dw2
(
+dws

)
dw0 =

d F
6E I

(
L3

1+ λ
((

L i
p A
)3
+
(
L i

pB,1
)3
+ 3L i

p A
(
L1− L i

0
)(

L1− L i
0− L i

p A
))
+

3E I
ci

b

)
dw1 =−

1
2EI

(
L2

1L i+1
2 + λL i+1

2 G1−
2E I
ci

b

)
, dw2 =−

1
2EI

(L2
1+ λG1), dws = 0.5 d F L1

G A

s2 = ci
b
(
L2

1+ λG1
)

s1 =−4E I
s0 =−4E I

(
L1+ λG2

)
+ ci

bλ
(
L i

pB,2
)2(L2

1+ λG1
)

p3 = ci
b
(
L2

1+ λG1
)

p2 =−6E I

p1 =−12E I
(
L1+ λG2

)
+ 3ci

bλ
(
L i

pB,2
)2(L2

1+ λG1
)

p0 =−6E I
(
L2

1+ λ
(
G1−

(
L i

pB,2
)2))
− 2ci

bλ
(
L i

pB,2
)3(L2

1+ λG1
)

q4 = ci
b

q3 = 4ci
b
(
L1+ λG2

)
q2 =−6ci

bλ
(
L i

pB,2
)2

q1 = 12E I + 4ci
bλ
(
L i

pB,2
)3

q0 = 12E I
(
L1+ λG2

)
+ 4ci

bλ
(
L i

pB,2
)3(L1+ λ

(
G2−

3L i
pB,2

4
))

G1 = 2
(
L1− L i

0
)
L i

p A+
(
L i

pB,1
)2
−
(
L i

p A
)2

G2 = L i
p A+ L i

pB,1+ L i
pB,2 λ=

E−ET
ET

Table 1. Analytical expressions for the incremental response from step i to i + 1.



INCREMENTAL MODELING OF T-STUB CONNECTIONS 1143

mentioned in Section 2.3 is required, to correspond to the constant cross section height t f used for the
flange in the model. The only difference is in the computation of the integral in Equation (9), in which
the minimum of two roots should be used as lower boundary and the maximum one as upper boundary.

A similar procedure can be used for determining the plastified lengths L i
pB,1 and L i

pB,2. In this case
however, the flange cross section remains constant, so the computations for the two lengths are more
straightforward.

Substituting d MC i+1 from Table 1 into Equation Equation (5), the separation length L i+1
2 in the new

step can be calculated from the following fifth order polynomial equation:

m5(L i+1
2 )5+m4(L i+1

2 )4+m3(L i+1
2 )3+m2(L i+1

2 )2+m1L i+1
2 +m0 = 0, (14)

where the factors m j=0···5 are:

m5 =−M i
Bq4

m4 = M i
B L i

2q4−M i
Bq3

m3 = M i
B L i

2q3−M i
Bq2− 0.5d F L i

2 p3

m2 = M i
B L i

2q2−M i
Bq1− 0.5d F L i

2 p2

m1 = M i
B L i

2q1−M i
Bq0− 0.5d F L i

2 p1

m0 = M i
B L i

2q0− 0.5d F L i
2 p0

(15)

and the factors q j=0···4, p j=0···3 are the same as in Table 1.
Equation (14) is best solved using a Newton–Raphson scheme since the derivative is easily available.

If the obtained solution from (14) exceeds the physical length n of the T -stub, then no partial contact
occurs in the flange and instead a simple support at the flange edge should be applied. In that case, the
incremental model is once statically indeterminate and its response differs from the one given in Table 1.
The required quantities of the response, with simple support conditions at the flange edge are presented
in Table 2. For a given value of the applied incremental force d F , we calculate the incremental forces d R
and d Fb, moments, d MA and d MB , and subsequently, from the same table, the incremental displacement
dw. As with Table 1, no special physical meaning is attributed to the parameters s j=0···1, q j=0···3, G1,
G2 and λ. Length L i+1

2 in Table 2 is equal to distance n from bolt axis to flange edge. However, the
notation is retained for reasons of uniformity and continuity of the expressions.

Once simple support conditions apply to the edge, the flange rotation ϕC at this location becomes
nonzero. The occurrence of partial contact again, at a later load increment, for example in case of subse-
quent plastification in the flange, should be allowed only after the negation of this previously accumulated
rotation ϕC , together with a solution of (14) for a length L i+1

2 less than the physical length n.

3. Solution process

The objective of the solution process is to generate the load F vs. displacement w curve. The scheme
of the incremental process is shown in Figure 6. At each cycle of the process, an incremental loading
is determined and the incremental response and the new separation length are calculated. Then, the
incremental response of the current load increment is appended to the last total response. At this point the
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d R =
3d F

4
s1L i+1

2 + s0

q3(L i+1
2 )3+ q2(L i+1

2 )2+ q1L i+1
2 + q0

d Fb =
d F
2
+ d R

d MA =−
d F
2

L1+ d RL i+1
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2

dw = dw0+ d Rdw1
(
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)
dw0 =

d F
6E I

(
L3

1+ λ
((
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0
)(
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+
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ci

b
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1
2E I

(
L2
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2 + λL i+1

2 G1−
2E I
ci
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q3 = ci
b
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b
(
L1+ λG2

)
q1 =−3ci
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(
L i

pB,2
)2

q0 = 3E I + ci
bλ
(
L i
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)3
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(
L1− L i

0
)
L i

p A+
(
L i

pB,1
)2
−
(
L i

p A
)2

G2 = L i
p A+ L i

pB,1+ L i
pB,2 λ=

E−ET
ET

L i+1
2 = the distance n from bolt axis to flange edge

Table 2. Analytical expressions for the incremental response with simple support con-
ditions at the flange edge from step i to i + 1.

total bending moments of the flange and the total bolt force are known and therefore decisions regarding
the plastification or failure of flange regions or the bolt can be made. The new flange plastification
lengths and the bolt stiffness are computed before a new cycle starts. The process continues until failure
is detected either in the flange or in the bolt.

4. Model refinements

4.1. Bolt head size. In real T -stubs, the bolt acts on the flange through its head within an extended
region of contact between flange and bolt head. However, in our model bolt action is concentrated at a
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Figure 6. Solution process.

single point of the flange. As shown in Figure 7a, the solution derived from a concentrated bolt action
overestimates the flange bending moment at the bolt location. Assuming a uniform distribution of the
bolt force within a zone of length equal to the bolt head diameter dh , the variation of the moment at the
bolt location, compared to the case of concentrated action, is given by

1MB =
Fbdh

8
. (16)

This variation is taken into account when a decision regarding plastification or failure of the flange at the
bolt location is taken.

Note that no special consideration made of the influence of the hole and the reduced cross section
of the flange on the moment capacity of the flange. In theory, the beneficial action of the uniform
distribution of the bolt force could be compensated by the unfavorable effect of the reduced flange cross
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Figure 7. Influence of bolt head size (a) and definitions for the bolt bending treatment (b).

section. However, the behavior of the flange in the area near the bolt departs from simple bending, it is
characterized by a complex three dimensional stress state, and it is affected by the interaction with the
bolt head. Designation of a reduced moment capacity for the flange at the bolt area, based on its net
cross section, lead to significant underestimate of the strength of the complete T -stub. Therefore, we do
not propose such reduction to the flange moment capacity.

4.2. Bolt bending. The bolt shank of a real T -stub is subjected to combined tension and bending, whereas
in the proposed model only axial tension is considered. This potentially leads to a considerable overesti-
mation of the maximum axial load the bolt can carry. In T -stubs with strong flanges where the bolts are
critical for the ultimate load capacity, a slight overestimation of the bolt resistance can lead to significant
overestimation of the ultimate T -stub displacement.

To prevent this error we assume a revised criterion for the realization of the ultimate bolt state, which
refers to the more stressed fiber of the bolt shank shown in Figure 7b, as

εu > εt + εb, (17)

where εu is the ultimate strain of the bolt material, εt the strain attributed to tensile action and εb the
strain attributed to bending action. The value of εt can be obtained from

εt =
wb

Lb
, (18)

where Lb is the modeled shank length and wb the elongation of the bolt shank, which can be calculated
throughout the incremental process using the current bolt stiffness and the incremental axial bolt force
d Fb. For εb, we assume that the total rotation of the bolt shank axis ϕb, is equal to the flange rotation
at this position (Figure 7b) available analytically at each incremental step. Because the bending of the
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shank is induced through rotation of its edges, constant bending moments along its length is assumed,
and thus strain εb is related to rotation ϕb through

εb =
db/2
Lb

ϕb. (19)

Note that for wide T -stubs the deformation of the flange is not uniform along its width. Near the bolts the
flange deflection and rotation is reduced compared to a uniform deformation, as assumed in the model.
In such cases the criterion in Equation (17) can lead to early failure. We tested our proposed model for
T -stub configurations with b/m ratios up to 2.0∼ 2.5, and obtained acceptable results, as shown in the
following sections. For even wider T -stubs, further study is necessary to make a meaningful estimation
of the bolt rotation.

4.3. Shear deformations. The expressions in Tables 1 and 2 account for the work in the flange due
to bending actions only. This assumption is normally valid for long beams where work due to shear
deformation may be neglected. For T -stubs, the dimensions of the flanges do not justify this simplifi-
cation. Expressions similar to the ones in Tables 1 and 2 can be derived with the shear work included.
However, such expressions are more complicated and are not presented in this paper. Instead, a simple
circumvention is possible, in which we account for the shear work in the calculations of the resulting
displacements only. Thus, the following quantity may be added to the displacements dw in Tables 1
and 2:

dws =

∫ L1

0

0.5d F · 1̄
G A

dx =
d F L1

2G A
. (20)

4.4. Three-dimensional stress and strain state. In our model the flange is treated as a simple Bernoulli
beam. Hence, any secondary stresses are neglected, such as the normal σyy and σzz with y and z axes as
defined in Figure 8. However, this assumption for the stress state is accurate enough only near the two side
edges and for fairly thin flanges. Towards the middle areas of the width b, lateral strain εzz is suppressed,
resembling plane strain conditions. Assuming that εzz = 0 and that σyy also remains practically zero due

x

z

y

b

Figure 8. Flange cross sectional axis definitions.
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to the flange being adequately thin, the three dimensional elastic stress-strain equations lead to

σxx =
E

1− v2 εxx , (21)

σzz =
νE

1− v2 εxx . (22)

Equation (21) suggests adoption of an equivalent modulus of elasticity for the flange

E∗ =
E

1− ν2 . (23)

For Poisson’s ratio ν equal to 0.3, an equivalent modulus E∗ becomes approximately 10% larger than
E . The interaction of normal stress σxx and the nonzero secondary σzz applied in the von Mises yield
criterion leads to an equivalent yield stress:

f ∗y =
fy

√
1− v+ ν2

. (24)

For ν = 0.3, (24) leads to an approximately 13% increase of the equivalent yield stress of the flange.
To determine an equivalent modulus E∗T in the plastic region, we adopt the deformation theory of

plasticity [Chen and Han 1988], which implies a proportional loading history. The plastic strains are a
function of the total stresses

ε p
xx =

ε
p
eff

σeff

(
σxx −

1
2(σyy + σzz)

)
, (25)

ε p
yy =

ε
p
eff

σeff

(
σyy −

1
2(σxx + σzz)

)
, (26)

ε p
zz =

ε
p
eff

σeff

(
σzz −

1
2(σxx + σyy)

)
, (27)

where ε p
eff and σeff are the effective plastic strain and the effective stress, respectively. Imposing εzz = 0

and σyy = 0, the nonzero plastic strains are

ε p
xx =

3
4
ε

p
eff

σeff
σxx , (28)

ε p
yy =−

3
4
ε

p
eff

σeff
σxx , (29)

while for the nonzero total normal stresses

σzz =
1
2
σxx . (30)

The equivalent ultimate stress can be derived from (30) using the von Mises criterion

f ∗u =
2
√

3
3

fu . (31)
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Finally, the equivalent modulus E∗T can be defined as the slope of the line in the stress-strain plane leading
from the equivalent yield state to the equivalent ultimate state

E∗T =
f ∗u − f ∗y

εxx,u − εxx,y
, (32)

where εxx,y is the yielding strain obtained from (21) and εxx,u is the ultimate strain obtained from (21)
and (28) as

εxx,u =
2
√

3
3

fu

E
(1− ν2)+

√
3

2
( fu − fy)

E − ET

E ET
. (33)

4.5. Flange-bolt interaction. In our proposed model, we assume a uniform flange deflection along its
width b. However, in real T -stubs, especially wide ones, this assumption is not appropriate due to the
bolt action which is exerted in a part only of the total width. This discrepancy affects the calculated
displacements of the analytical model. Using an equivalent plate problem, [Faella et al. 2000] proposed
a modified effective width beff for stiffness calculations. The plate features an infinite width which
mainly applies to T -stubs which are considered as components of more complex connections where the
dimensions of the plates are quite large compared to the individual T -stubs. Under these assumptions,
beff is simply derived as

beff = 2.21m. (34)

The length m is shown in Figure 1b and is equal to d − 0.8r . For completeness of the proposed model,
we undertook a similar approach for plates of finite width. In particular, cantilevered plates with varying
values of m/b loaded with a concentrated load in the middle of the free edge, opposite to the clamped
one, were analyzed elastically using 2D plate finite elements. Comparing the numerically calculated
displacements of the plates to those of a simple beam representation, for an equivalent width beff, we
obtained

b
beff
=

{
0.92+ 0.06

(m/b)2 , m/b < 0.87,

1, m/b ≥ 0.87.
(35)

Figure 9 shows a graphical representation of Equation (35) as well as the curve derived from Equation (34)
from [Faella et al. 2000]. Considering that Equation (34) is based on an analysis of infinitely wide plates,
it is expected that for low values of the ratio m/b, the two curves converge. However, for intermediate
values of the ratio m/b, we observe a difference up to 20% in the equivalent width beff.

This equivalent width beff is used to calculate the resulting displacements due to flange deformation
only. Decoupling of the total T -stub displacement w, which is calculated incrementally by means of
Table 1 or 2, to flange and bolt contributions, can be performed at each incremental step since the bolt
elongation is easily obtainable using the current bolt stiffness and the incremental axial force d Fb. The
decoupled flange deflection should then be corrected with the multiplier b/beff from Equation (35), to
better approximate the impact of three-dimensional flange deformation.

5. Model performance

5.1. Comparison with experimental tests. Performance of our proposed model is validated by compar-
ison with results of published experimental tests, as well as by numerical parametric analyses. The
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published tests we used are those for T -stubs T1 and T2 conducted by [Bursi and Jaspart 1997], for
which all the necessary geometrical properties are provided in Table 3. T -stub T1 features a relatively
weak flange which is critical for the response, unlike T -stub T2 which features a stronger flange in which
both the bolts and the flange are critical for the response. With reference to prEN 1993-1-8 [CEN 2003],
those two behaviors correspond to the first and second failure mode, respectively. The bilinear material
approximations applied for the incremental models are shown in Figure 10a and 10b. Engineering values
are adopted since the original undeformed geometrical formulation is used for the calculations. Web
material data are needed because in the experimental setup the displacements were measured at the web.
The web deformability can be easily included in our model through an axially loaded spring of equivalent
stiffness.

In Figures 11a and 11b, the force F vs. displacement w curves for the proposed analytical model and
the experimental tests T1 and T2 are presented. Also, the curves derived by means of 3D finite element
simulation performed with ADINA v.8 [ADINA 2004], as described later in section 5.2, are included in
the same figure. For the finite element analyses, the ultimate state is realized when the von Mises stress
in the critical regions of the flange or at the bolt shank approaches the respective material ultimate value.
Likewise, for our proposed model, the ultimate state is realized when flange moments reach the ultimate
moment Mu or when the criterion (17) regarding combined tension and bending of the bolt is violated.

The performance of the proposed model is shown to be quite satisfactory. For T -stub T1 initial
stiffness, ultimate load, ultimate displacement and the overall curve converge to their experimental coun-
terparts. The knee range is sharper in the proposed model as well as in the 3D finite element model. We
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1.50

2.00

2.50

3.00

0.00 0.25 0.50 0.75 1.00 1.25 1.50

Proposed  model (Eq. 35)

Faella et al (Eq. 34)

b/beff

m/b

Figure 9. Curves for the estimation of the equivalent width beff.

Flange Bolt
b t f r d n db dh Lb

T1 40.0 10.7 15.0 41.45 30.0 12.0 24.0 14.0
T2 40.0 16.0 18.0 40.25 30.0 12.0 24.0 16.0

Table 3. Geometrical characteristics for T -stubs in the parametric study (in mm).
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Figure 10. Bilinear material approximations for T -stubs (a) T1 and (b) T2.
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Figure 11. Force-displacement curves for T -stubs (a) T1 and (b) T2.

attribute this mainly to the bilinear approximation of the moment-curvature relationship for the flange
and to the residual stresses present in the experimental flange. For T -stub T2, [Bursi and Jaspart 1997]
mention that bolt thread stripping was observed and the experimental curve reflects this special failure
type. Nevertheless, the curve of the proposed model lies fairly close to the 3D finite element one, for
which thread detailing is also not modeled. A slight overestimation in the plastic branch can be observed.
This is a result of the bolt bending action, which apart from the ultimate state, is neglected in the proposed
model.

For flange contact, our proposed model for T -stub T2 reproduces simple support conditions at the
flange edge which is validated by the finite element model and the physical test. For T -stub T1 the
variation of the separation length L2 through the loading history for the proposed model is shown in
Figure 12a. After the first plastification in the flange area near the web, the separation length decreases
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Figure 12. Development of flange contact phenomena in the proposed model (a) and in
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Figure 13. Bolt force versus external loading for T -stubs (a) T1 and (b) T2.

initially, but later when the bolt enters the plastic region, it increases. This behavior is confirmed by the
results obtained by 3D finite element analysis shown in Figure 12b, where the contact area of the flange
is plotted for various load levels. Note that the limits of the contact area provided by our model for the
same loading levels are indicated with dashed lines.

In Figure 13, the axial force history for the bolt given by our model is compared to the 3D finite
element results for both tests. The proposed model appears to perform very well in this context, especially
considering the simplified method for including the bolt contribution, as compared to the more complex
finite element method.
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TS-1 TS-2 TS-3

Figure 14. Typical finite element models for the parametric study.

5.2. Comparison through parametric finite element modeling. We also carried out a parametric study
of the performance of our proposed model employing 3D finite element modeling with the software
package ADINA v.8 [ADINA 2004]. The reliability of 3D finite element modeling for the T -stub
connection has been confirmed in [Bursi and Jaspart 1997; Wanzek and Gebbeken 1999; Gantes and
Lemonis 2003]. We validate its reliability here as well, through the comparison with the experimental
tests T1 and T2 mentioned earlier. The flange and the bolts were modeled as separate bodies by means
of eight node brick elements. The contact between them was modeled through 2D contact elements,
equipped with constraint functions to enforce all contact conditions to the corresponding surfaces and
a Coulomb friction coefficient equal to 0.25. In contrast, frictionless contact conditions were applied
between the flange and its base which constitutes a symmetry plane of the whole problem. Through
the thickness of the flange, five brick elements were employed, formulated with incompatible modes in
order to circumvent the shear locking effect. Likewise, for the bolt circumference we implemented a
large number of elements (40 or more). The loading was applied by prescribed displacements on the
upper surface of the web with assumptions of large strains and large displacements globally imposed.
Figure 14 shows the finite element plots for three of the models of the parametric study.

Table 4 lists the geometric properties of the T -stubs of the parametric study, while Table 5 lists the
material properties, which remain unchanged for all T -stubs. The geometrical configurations in the para-
metric study include T -stubs with wide range of flange width and of relative strength between flange and
bolts. The former allows investigation of the influence of the T -stub width to the flange-bolt interaction.
We can also demonstrate the impact of the adopted beam representation in the ability of the model and
its refinements to predict accurately the response of the three-dimensional problem.

Figure 15 shows the plots of force F against displacement w for the proposed analytical and the
corresponding finite element models of the parametric study. In all cases the analytical curve closely
matches the numerical one. The characteristic attributes of initial stiffness, ultimate strength and ultimate
displacement are predicted within a fairly narrow margin of error. Performance is better for strength
estimation than for initial stiffness and ultimate displacement. For the ultimate displacement, which is
the most difficult characteristic to compute analytically, the maximum error does not exceed 30% for any



1154 MINAS E. LEMONIS AND CHARIS J. GANTES

Flange Bolt
b t f r d n db dh Lb

TS-1 50.0 10.0 18.0 66.75 30.0 20.0 34.0 14.0
TS-2 80.0 10.0 18.0 66.75 30.0 20.0 34.0 14.0
TS-3 120.0 10.0 18.0 66.75 30.0 20.0 34.0 14.0
TS-4 50.0 10.0 18.0 66.75 30.0 12.0 24.0 13.0
TS-5 80.0 10.0 18.0 66.75 30.0 12.0 24.0 13.0
TS-6 120.0 10.0 18.0 66.75 30.0 12.0 24.0 13.0
TS-7 50.0 15.0 18.0 65.50 30.0 20.0 34.0 19.0
TS-8 80.0 15.0 18.0 65.50 30.0 20.0 34.0 19.0
TS-9 120.0 15.0 18.0 65.50 30.0 20.0 34.0 19.0

TS-10 50.0 15.0 18.0 65.50 30.0 12.0 24.0 18.0
TS-11 80.0 15.0 18.0 65.50 30.0 12.0 24.0 18.0
TS-12 120.0 15.0 18.0 65.50 30.0 12.0 24.0 18.0

Table 4. Geometrical characteristics for T -stubs in the parametric study (in mm).

of the T -stubs and is much lower for most of them. Table 6 presents the mean value and the standard
deviation of the relative errors in the parametric study for the three characteristic properties. A slight
overestimation of the initial stiffness can be noticed from the results, while for the ultimate strength
and displacement the mean error is very close to zero. Also, the low value of error standard deviation,
observed for all three properties, indicates a consistent performance of the proposed model.

6. Conclusion

A new incremental T -stub model for the prediction of the complete force vs. displacement curve has
been introduced in this paper. The model is designed for implementation in a computer program, and

E ET fy fu

Flange 200000 782 355 510
Bolt 200000 2400 640 800

Table 5. Material properties for T -stubs in the parametric study (in MPa).

Initial stiffness error Strength error Ultimate displacement error

Mean value 0.17 −0.02 0.03
Standard deviation 0.103 0.025 0.147

Table 6. Relative errors for the proposed model in the parametric study.
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Figure 15. Force-displacement curves for the parametric study.
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offers several advantages in this context by avoiding multiple cases and branches. The effectiveness of
the model has been shown to be very satisfactory in evaluations comparing it to both experimental and
numerical results. The solution time for a large number of load increments (500 or more) is negligible.
Overall, the proposed model constitutes a valuable tool for the estimation of T -stub behavior, producing
results comparable to much more complex and costly approaches such as 3D finite element analysis.

7. Notation

A flange cross-sectional area

b T -stub width

beff effective T -stub width used for displacement calculations

cb axial stiffness of the bolt

d distance between web face and bolt axis

db bolt diameter

dh bolt head diameter

d F incremental applied force

d Fb incremental bolt force

d MA incremental bending moment at flange point A

d MB incremental bending moment at flange point B

d MC i+1 incremental bending moment at flange point C i+1

d R incremental prying force

dw incremental transverse T -stub displacement

dw j0···2 parameters for the calculation of incremental displacement

dws incremental transverse T -stub displacement due to shear

E Young modulus

E∗ equivalent Young modulus

ET strain hardening modulus

E∗T equivalent strain hardening modulus

F applied force

Fb bolt force

fu ultimate stress

f ∗u equivalent ultimate stress

fy yield stress

f ∗y equivalent yield stress
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G shear modulus

G1,G2 parameters for the calculation of T -stub incremental response

I moment of inertia

i superscript indicating the loading step number

j index indicating the trapezoid in numerical calculation of Int

Int integral derived from flexural stiffness equivalence in flange-to-web fitting

k number of trapezoids in numerical calculation of Int

L0 flange length from edge A to start of plastification length

L1 flange length from edge A to bolt axis

L2 flange separation length measured from bolt axis to edge C

Lb bolt shank length

Lc equivalent flange-to-web fitting length

L p A plastification length near edge A

L pB,1 plastification length at point B and towards the web

L pB,2 plastification length at point B and towards the flange edge

M flange bending moment

M(x) flange bending moment function of x

M2 flange plastification moment in bilinear representation

M2(x) flange plastification moment function of x

MA bending moment at flange point A

MB bending moment at flange point B

MC i ,MC i+1 bending moment at flange point C i and C i+1

Mu flange ultimate moment

My flange yield moment

m distance between bolt axis and an offset of web face by 0.8r

m j0···5 parameters for the calculation of separation length

n distance between bolt axis and flange edge

p j0···3 parameters for the calculation of T -stub incremental response

q j0···4 parameters for the calculation of T -stub incremental response

R prying force

r fillet radius of the flange-to-web fitting

s j0···2 parameters for the calculation of T -stub incremental response
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t f flange thickness

t f (x) flange thickness function of x in flange-to-web fitting

t f, j flange thickness in trapezoid j

w transverse T -stub displacement

wb bolt shank elongation

ε strain

εb strain at tensile fiber of bolt shank due to bending

ε
p
eff effective plastic strain

εt strain at tensile fiber of bolt shank due to tension

εu ultimate strain

εy yield strain

εxx , εyy, εzz normal strains along axes x , y and z

ε
p
xx , ε

p
yy, ε

p
zz normal plastic strains along axes x , y and z

1MB variation of flange bending moment at bending moment due to distributed bolt action

λ parameter for the calculation of T -stub incremental response

v Poisson’s ratio

σ stress

σeff effective stress

σxx , σyy, σzz normal stresses along axes x , y and z

φB flange rotation at bolt axis

φC flange rotation at flange edge
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EFFECT OF THE ORDER OF PLATES ON THE BALLISTIC RESISTANCE OF
DUCTILE LAYERED SHIELDS PERFORATED BY NONCONICAL IMPACTORS

G. BEN-DOR, A. DUBINSKY AND T. ELPERIN

In our previous studies using the two-term impactor-shield localized interaction model, we derived the
rule determining the order of the plates with different mechanical properties in a multilayer shield that
yields a maximum ballistic limit velocity against conical impactors. In the present study we show that
this rule is valid also for ogive-shaped, nonconical impactors.

1. Introduction

Several topics associated with the investigation of layering and spacing of the shields are extensively
covered in the literature on high-speed penetration mechanics. Many studies have compared ballistic
characteristics of monolithic shields with those of the shields composed of several plates with the same
total thickness and manufactured from the same material. The plates may be in contact or there may be
air gaps between them. Therefore, as alternatives to the monolithic shield, many types of shields with dif-
ferent numbers of plates and different thicknesses of the plates and of the air gaps are feasible. Analyses
of the effect of the order of plates manufactured from different materials on the ballistic characteristics of
the shield have attracted particular interest. The simplest case of this problem is interchanging the plates
in a two-layered shield. In the general case, the number of plates may vary and they may be manufactured
from different materials. The combined effects of changing the order of plates and of using air gaps on
the ballistic performance of the shield and various problems of optimization of the structure of the shield
have also been studied in a number of investigations.

A brief survey of the state of the art presented below (mainly on penetration in metal shields) supports
the assessment of [Radin and Goldsmith 1988] that “only limited results for multiple target materials exist
in the literature. . . , and the results obtained cannot easily be correlated since different target and projectile
materials, nose shapes, impact geometries and striker speeds were used”. Clearly, the latter assessment is
not related to the problem of selecting the best shield among the given set of shields against the impactor
with a given shape. This problem can be often solved experimentally, and the obtained results can be
explained using relatively simple physical reasoning. The problem is to determine a more or less general
law that will enable predicting the change of the ballistic characteristics of the shield by varying the
structure of the shield. This problem has not been solved as yet, although a number of experimental and
theoretical studies have been performed in this direction.

Honda et al. [1930] investigated experimentally the impact of steel plates by conical-nosed projectiles.
It was found that a shield composed of thin plates had a lower ballistic resistance than a monolithic shield

Keywords: impact, layered shield, ballistic limit velocity, optimization, plate.
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with the same thickness. However, a spaced shield with the thicknesses of the plates equal to the half-
thickness of a monolithic shield performed better than a monolithic shield. Marom and Bodner [1979]
conducted a combined analytical and experimental comparative study of monolithic, layered and spaced
thin aluminum shields. They found that the ballistic resistance of a monolithic shield is higher than that
of a multilayered shield with the plates in contact and lower than the ballistic resistance of a spaced shield.
The study by [Radin and Goldsmith 1988] was also based on semiempirical models and experimental
investigations. They found a monolithic aluminum shield to be superior to a layered shield with the
same total thickness for conical-nose and blunt projectiles, while the spaced shields were less effective.
Corran et al. [1983b; 1983a], using experimental results on penetration of mild steel plates by impactors
having “increasingly rounded nose shape”, plotted the curve of perforation energy versus plate thickness
for all considered variants of the shield and found a “kink” in the curve “at about 3.5 mm total thickness”.
The occurrence of the kink was explained by the change of character of energy absorption. The authors
arrived at the conclusions that the order of unequal plate thickness is important. No advantage was found
in using multilayered targets below the kink. Above this point the best combinations may approach the
best-fit line to the single layer tests below the kink. It was found that there is an advantage to placing the
layers in contact.

Nixdorff [1984a; 1984b; 1987] compared the ballistic performance of a monolithic metal shield with
a shield manufactured from the same material, having the same total thickness, and consisting of several
plates in contact. Using the theory developed by Awerbuch and Bodner [1974], Nixdorff showed that
separation of a homogeneous shield into several layers implies a reduction of the ballistic limit velocity
(BLV) of the shield.

Zukas [1996] and Zukas and Scheffler [2001] found, on the basis of numerical simulations with
metallic shields, that layering dramatically weakens thin [b/(2R) < 1] and intermediate thickness [3<
b/(2R) < 10] shields, while thick shields [b/(2R) > 10] show small changes in projectile residual
properties [residual mass and residual velocity] when compared to their monolithic equivalent. Here b
and R are the thickness of the shield and the shank radius of the impactor, respectively.

Madhu et al. [2003] conducted experiments with aluminum plates impacted normally and concluded
that there is no significant change in the ballistic performance due to layering of such intermediate
thickness of plates. They compared a monolithic shield with two- and three-layered shields of the same
thickness. Gupta and Madhu [1997], using experimental results obtained for aluminum and steel plates,
arrived at the same conclusion with respect to relatively thick plates. For thin shields, the layered com-
binations in contact yielded higher residual velocity as compared with a monolithic shield manufactured
from either aluminum or steel. It was also found that for a spaced shield the residual velocity was higher
than in the case of plates in contact, for the same impact velocity.

Weidemaier et al. [1993] conducted experiments and numerical simulations on the perforation of steel
barriers by spherical impactors with a diameter of 17 mm. They studied a monolithic shield with a thick-
ness of 43 mm and shields composed of plates in contact having the same total thickness. It was found
that the ballistic characteristics of layered shields depended strongly on the order of the plates having
different thicknesses and that layering could improve or impair the ballistic performance of the shield.

Almohandes et al. [1996] conducted a comprehensive experimental study on the perforation of mild
steel by standard 7.62 mm bullets. They investigated shields with total thickness in the range of 8–14 mm
that were layered in contact, spaced and monolithic. It was found that single shields were more effective
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than laminated shields of the same total thickness, regardless of the configuration or striking velocity,
and that the difference in performance diminished as the striking velocity increased. Moreover, the
effectiveness of laminated targets—whether in contact or spaced—increased as the number of plates
comprising each target decreased. Ballistic performance of laminated shields is further enhanced by
using the thickest lamina as the rear lamina. The authors also studied shields with different structures
in which fiberglass-reinforced polyester was used as the filler material, and showed that these shields
performed better than weight-equivalent steel targets. The experimental results of Almohandes et al.
[1996] were used by Liang et al. [2005] for validating their approximate penetration model. This model
was used for comparative analysis of shields with different structures. It was concluded that the ballistic
performance was the best for the double shield when the ratio of the thickness of the first layer to the
total thickness was about 0.75, and the worst performance was obtained when this ratio was equal to 0.5.
An air gap slightly influenced the resistance to perforation in multilayered targets.

Elek et al. [2005] developed a simple model to describe the perforation of monolithic and multilayered
thin metallic plates by a flat-ended cylindrical impactor, and used their model for the analysis of the
ballistic properties of multilayered spaced shields. The main results of this study may be summarized
as follows. The suggested model predicted that the monolithic shield will have greater resistance than
any other multilayered shield with standoff distance between the layers and equivalent total mass. The
analysis of penetration in a two-layered shield showed that the maximum resistance could be obtained
for very low (< 20% of total thickness) or very high (> 80% of total thickness) front-layer thickness.
The increase of the number of the spaced layers in a multilayered shield, at constant total mass, caused a
further decrease of the ballistic resistance. Deterioration of the ballistic performance of thin steel shields
against flat-ended cylindrical impactors caused by layering had been noticed earlier by Zaid et al. [1973].

Shirai et al. [1997] investigated experimentally and numerically the impact resistance of reinforced
concrete plates against projectile impact. They found that double-layered plates could be expected to
have higher impact resistance than standard plates.

Park et al. [2005] suggested a multistage procedure for optimization of a two-layered shield. In the first
stage, using numerical simulations to describe penetration into shields with different layer thicknesses
b(1) and b(2), they determined the average temperature of a shield, Tave, the average equivalent plastic
strain εave and the maximum equivalent plastic strain in a critical element of the shield εmax. In the second
stage, the approximate functions describing the dependencies, Tave, εave and εmax vs. b(1) and b(2), were
determined. In the third stage, using a reduction to a single-criterion problem by a linear combination of
criteria, they solved a two-objective optimization problem. The authors considered two variants of the
optimization criterion, Tave or εave and the weight of a shield. The constraints included the upper bounds
or εmax, and constraints on the thicknesses of the plates and the total thickness of a shield.

Aptukov [1985] and Aptukov et al. [1985], using Pontrjagin’s maximum principle, determined the
optimum distribution of the mechanical characteristics of a nonhomogeneous plate. The areal density of
the shield along the trajectory of the impactor until it stopped was used as an optimization criterion, and
cylindrical and cone-nosed impactors were considered. The two-term impactor-shield interaction model
was employed, wherein the assumption about a linear dependence between the coefficients of the model
was used. Using a cylindrical cavity expansion model, Aptukov et al. [1986] solved the discrete problem
of optimization of a layered plate when the shield consisted of several layers of material and the material
itself could be chosen from a given set of materials.
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Figure 1. Notations.

Ben-Dor et al. [1998b; 1998a; 1999b; 1999a; 2000; 2006a] studied analytically the influence of air
gaps between the plates and the order of plates on the BLV of a multilayered shield against conical-
shaped impactors, and the results are summarized in [Ben-Dor. et al. 2006a]. They found that, for the
wide class of impactor-shield interaction models, the ballistic performance of the shield is independent of
the widths of the air gaps and of the sequence of plates in the shield and that it is determined only by the
total thickness of the plates if the plates are manufactured from the same material. Using the two-term
impactor-shield interaction model, they found the criterion (depending on mechanical properties of the
materials of the plates) determining the order of plates in a multilayer shield that provides the maximum
BLV. In the present study we showed that this criterion remains valid for the impactors with a shape
different from conical.

2. Mathematical model and statement of problem

Consider a high speed normal penetration of a rigid sharp striker (a body of revolution) into a ductile
layered shield with a finite thickness. We assume that the conditions of penetration are determined mainly
by the “ductile hole enlargement” model [Backman and Goldsmith 1978]. The basic notations are shown
in Figure 1; and we assume that only the nose part of the cylinder-shaped impactor interacts with the
shield. The coordinate h, the current depth of penetration, is defined as the distance between the leading
edge of the nose of the impactor and the rear surface of the shield. The coordinate ξ is associated with
the shield. In cylindrical coordinates, x, ρ, ϑ , associated with the impactor the surface of the nose is
described by the following equation:

r =8(x, θ), 0≤ x ≤ L , 0≤ θ ≤ 2π, (1)
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Figure 2. Model of the layered shield.

where L is the length of the impactor’s nose, 8(x) is an increasing, convex function. Assume that the
shield consists of N layers (plates in-contact with different mechanical properties) with the thicknesses
b(1), b(2), . . . , b(N ). The plate with a number i is located between the cross-sections ξ = ξ (i−1) and
ξ = ξ (i), where i = 1, 2, . . . , N and ξ (0) = 0. Let b be the total thickness of the shield that equals the
sum of the thicknesses of all plates. It is assumed that the above parameters remain constant when the
impactor penetrates into the shield. Then the part of the lateral surface of the impactor between the
cross-sections x = θ(h) and x =2(h) (see Figure 1) interacts with some layers of the shield (see Figure
2) where

θ(h)=

{
0 if 0≤ h ≤ b

h− b if b ≤ h ≤ b+ L
, 2(h)=

{
h if 0≤ h ≤ L

L if h ≥ L
. (2)

The equation of motion of the impactor, m(d2h/dt2)=−D, can be rewritten as follows:

mv(dv/dh)=−D, (3)

where the velocity of the impactor v is considered to be a function of h, m is the mass of the impactor, and
D is the resistance force. We consider the range of impact velocities vimp when the projectile perforates
the shield. Perforation occurs when the position of the striker is h = b+ L and its residual velocity is
vres. The BLV, vbl , is defined as the impact velocity of the impactor required to emerge from the shield
with zero residual velocity.
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We assume that the impactor-shield interaction at a given location at the surface of the impactor that
is in contact with i-th plate can be represented as follows:

d EF =
[
a(i)2

(
−Ev0
· En0)2

v2
+ a(i)0

]
En0d S, (4)

where d EF is the force acting at the surface element d S of the impactor, En0 is the inner normal unit
vector at a given location on the impactor’s surface, Ev0 the unit vector of the impactor’s velocity, the
parameters a(i)0 and a(i)2 depend on the properties of the material of the shield, and hereafter the superscript
in round brackets indicates the number of the layer. Equation (4) comprises most of the widely used
phenomenological models for homogeneous shields (for details see [Ben-Dor. et al. 2005; 2006a] and
[Recht 1990]. In particular, in the model proposed and validated in the comprehensive experimental
study by [Vitman and Stepanov 1959], a(i)2 and a(i)0 are material density of the shield and “dynamical
hardness”, respectively. The values a(i)0 for some materials may be found in [Vitman and Ioffe 1948]
(see also [Ben-Dor. et al. 2006b]).

In order to adapt Equation (4) for a layered shield let us define a step-functions (ν = 0, 2):

aν(ξ)=



a(1)ν if ξ (0) ≤ ξ < ξ (1)

...

a(i)ν if ξ (i−1)
≤ ξ < ξ (i)

...

a(N )ν if ξ (N−1)
≤ ξ ≤ ξ (N )

. (5)

Then Equation (4) can be rewritten as follows:

d EF =
(

a2(ξ)
(
−Ev0
· En0)2

v2
+ a0(ξ)

)
En0d S. (6)

The total force EF acting on the impactor at some location inside the shield is found by integrating
the local force over the impactor-shield contact surface area, that is, over the portion of the impactor’s
surface S that is determined by the inequalities 0≤ υ ≤ 2π and θ(h)≤ x ≤2(h). Taking into account
the identity:

ξ = h− x, (7)

and using the following formulas of differential geometry:

−Ev0
· En0
=8′/

√
8′2+ 1, d S =

√
8′2+ 1dxdυ, 8′ = d8/dx, (8)

we obtain the following expression for the drag force D:

D = EF · (−Ev0)=

∫∫
S

(
a2(ξ)

(
−Ev0
· En0)2

v2
+ a0(ξ)

)(
−Ev0
· En0)d S

=
m
2
[ f2(h)v2

+ f0(h)],
(9)

where

fν(h)=
4π
m

∫ 2(h)

θ(h)
aν(h− x)8ψν(8′)dx, ψν(z)= z

(
z

√
z2+ 1

)ν
, ν = 0, 2. (10)
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Substituting D from Equation (9) into Equation (3), after some algebra we obtain an ordinary linear
differential equation with respect to v2:

dv2/dh+ f2(h)v2
+ f0(h)= 0. (11)

The solution of Equation (11) with the initial condition v(0)= vimp, which corresponds to the beginning
of the motion of the impactor with the impact velocity vimp, reads [Kamke 1959]:

v2(h)=
1

q(h)
(v2

imp− g(h)), (12)

where

q(h)= exp
(∫ h

0
f2(η)dη

)
, g(h)=

∫ h

0
f0(H)q(H)d H . (13)

Equation (12) yields the following formulas for the residual velocity, vres = v(b+ L), and the BLV, vbl :

v2
res =

1
q(b+ L)

(
v2

imp− g(b+ L)
)
, v2

bl = g(b+ L). (14)

For further analysis it is convenient to rewrite the expression for vbl using the dimensionless variables:

v2
bl = k

∫ b̄+1

0
Q(h̄)dh̄

∫ 2̄(h̄)

θ̄(h̄)
ã0(h̄− x̄)8̄ψ0(8̄′)dx̄, (15)

where L is chosen as a characteristic length, and

k =
4πL3

m
, x̄ =

x
L
, 8̄=

8

L
, 8̄′ =

d8̄
dx̄
, h̄ =

h
L
, b̄ =

b
L
, (16)

Q(h̄)= exp
(

k
∫ h̄

0
d H̄

∫ 2̄(H̄)

θ̄(H̄)
ã2(H̄ − x̄)8̄ψ2(8̄′)dx̄

)
, (17)

ãν(ξ̄ )= aν(L ξ̄ ), ν = 0, 2, (18)

θ̄ (h̄)=

{
0 if 0≤ h̄ ≤ b̄

h̄− b̄ if b̄ ≤ h̄ ≤ b̄+ 1
, 2̄(h̄)=

{
h̄ if 0≤ h̄ ≤ 1

1 if h̄ ≥ 1
. (19)

It is shown by [Ben-Dor. et al. 1999b; Ben-Dor. et al. 1999a; Ben-Dor. et al. 2006a] that the max-
imum BLV of a layered shield against a conical impactor is attained if the plates are arranged in the
increasing order of the parameter χ = a0/a2. This means that if the plates are numbered, the shield must
be constructed by successively adding the plates with the order numbers i1, i2, . . . , iN , that satisfy the
condition χ (i1) ≤ χ (i2) ≤ · · · ≤ χ (iN ), where χ (i) = a(i)0 /a

(i)
2 . The main goal of this study is to validate

the latter result for nonconical impactors.
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3. Ogive-shaped generatrix

Since the main goal of this study is to investigate the effect of deviation from a conical shape on the
ballistic properties of a multilayer shield, the most convenient impactors for this purpose are ogive-shaped
impactors having a generatrix with a constant curvature. Therefore it is natural to employ curvature as
a parameter that characterizes a deviation from a conical shape. Curvature, a reciprocal of the radius of
the largest circle that is tangent to a curve (on its concave side) at a point, is equal zero for a straight line,
that is, a generatrix of a conical impactor.

The equation of the circle having the radius ρ̄∗ (in dimensionless coordinates) with a center in the
point (x̄∗, 8̄∗) reads (see Figure 3):

(x̄ − x̄∗)2+ (8̄− 8̄∗)2 = ρ̄2
∗
, (20)

where the arc of the generatrix must pass through the points (0, 0) and (1, τ ), and the following require-
ments must be satisfied:

0≤ x̄ ≤ 1, 0≤ 8̄≤ τ, 8̄∗ ≤ 0, x̄∗ ≥ 1, τ = R/L . (21)

Omitting algebraic manipulations, let us write the equation of the generatrix in the form:

8̄=
τ

2
−

2β(x̄ − 0.5)2− 2τ(x̄ − 0.5)η− 0.5β(τ 2
+ 1)

η+
√
η2+β2(τ 2+ 1)− 4β2(x̄ − 0.5)2+ 4βτη(x̄ − 0.5)

, (22)

where

η =

√
4

τ 2+ 1
−β2, β =

1
ρ̄∗
, 0≤ β ≤

2 min(1, τ )
τ 2+ 1

. (23)

Equation (22) describes not only a circular arc but also a straight line, 8̄≤ τ x̄ , for a conical impactor.
This formula for generatrix allows us to avoid computational problems arising for small β.

8̄

τ

0

8̄∗

ρ̄∗

1

x̄∗
x̄

Figure 3. Ogive-shaped generatrix.
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Equation (15) is quite involved and, consequently, it is not convenient for calculations and can in-
troduce uncontrollable numerical error. All these problems can be avoided by using piecewise-linear
approximation of the generatrix of a striker.

4. Piecewise-linear approximation of the generatrix

The equation of a piecewise linear generatrix can be written as follows (see Figure 4):

8̄(x̄)=



α1 x̄ +β1 if 0= x̄0 ≤ x̄ ≤ x̄1

· · ·

α j x̄ +β j if x̄ j−1 ≤ x̄ ≤ x̄ j

· · ·

αM x̄ +βM if x̄M−1 ≤ x̄ ≤ x̄M = 1

, (24)

where

α j =
8̄ j − 8̄ j−1

x̄ j − x̄ j−1
, β j =

x̄ j8̄ j−1− x̄ j−18̄ j

x̄ j − x̄ j−1
, j = 1, 2, . . . ,M. (25)

The domain determined by Equation (19) can be represented as a union of N ×M sub-domains S(i)j

(see Figure 5). The parallelogram A(i)j B(i)j C (i)
j E (i)j with the vertices at the points A(i)j (ξ̄

(i−1)
+ x̄ j−1, x̄ j−1),

B(i)j (ξ̄
(i−1)
+ x̄ j , x̄ j ), C (i)

j (ξ̄
(i)
+ x̄ j , x̄ j ) and E (i)j (ξ̄

(i)
+ x̄ j−1, x̄ j−1), bounds the sub-domain S(i)j . The

8̄

8̄M

8̄ j

8̄ j−1 j

x̄0 = 0 x̄ j−1 x̄ j x̄M = 1 x̄

Figure 4. Piecewise linear generatrix.
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Figure 5. Domain of impactor/shield interaction for layered shield and impactor with
linear generatrix.

sub-domains S(i)j are determined as follows:

{
ξ̄ (i−1)

+ x̄ j−1 ≤ h̄ ≤ ξ̄ (i)+ x̄ j

θ̄
(i)
j (h) ≤ x̄ ≤ 2̄(i)j (h)

, (26)

where

θ̄
(i)
j (h)=


0 if h̄ ≤ ξ̄ (i−1)

+ x̄ j−1

x̄ j−1 if ξ̄ (i−1)
+ x̄ j−1 ≤ h̄ ≤ ξ̄ (i)+ x̄ j−1

x̄ − ξ (i) if ξ̄ (i)+ x̄ j−1 ≤ h̄ ≤ ξ̄ (i)+ x̄ j

0 if h̄ ≥ ξ̄ (i)+ x̄ j

, (27)

2̄
(i)
j (h)=


0 if h̄ ≤ ξ̄ (i−1)

+ x̄ j−1

x̄ j−1− ξ̄
(i−1) if ξ̄ (i−1)

+ x̄ j−1 ≤ h̄ ≤ ξ̄ (i−1)
+ x̄ j

x̄ j if ξ̄ (i−1)
+ x̄ j ≤ h̄ ≤ ξ̄ (i)+ x̄ j

0 if h̄ ≥ ξ̄ (i)+ x̄ j

. (28)
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Then the integral in Equation (17) can be represented as sum of integrals over sub-domains S(i)j :

1
k

ln[Q(h̄)] =
∑

1≤i≤N
1≤ j≤M

∫ h̄

0
d H̄

∫ 2̄
(i)
j (H̄)

θ̄
(i)
j (H̄)

ã2(H̄ − x̄)8̄ψ2(8̄′)dx̄

=

∑
1≤i≤N
1≤ j≤M

ã(i)2 ψ2(α j )

∫ h̄

0
d H̄

∫ 2̄
(i)
j (H̄)

θ̄
(i)
j (H̄)

(α j x̄ +β j )dx̄

=

∑
1≤i≤N
1≤ j≤M

ã(i)2 ψ2(α j )
[
�
(i)
j (h̄)−ω

(i)
j (h̄)

]
,

(29)

where

ω
(i)
j (h̄)=

∫ h̄

ξ̄ (i−1)+x̄ j−1

{
0.5α j

[
θ̄
(i)
j (H̄)

]2
+β j θ̄

(i)
j (H̄)

}
d H̄ ,

�
(i)
j (h̄)=

∫ h̄

ξ̄ (i−1)+x̄ j−1

{
0.5α j

[
2̄
(i)
j (H̄)

]2
+β j2̄

(i)
j (H̄)

}
d H̄ .

(30)

The integrals in Equation (30) can be calculated taking into account the definition of functions θ̄ (i)j (h)

and 2̄(i)j (h):

ω
(i)
j (h̄)=



0 if h ≤ ξ̄ (i−1)
+ x̄ j−1,

(0.5α j x̄2
j−1+β j x̄ j−1)(h̄− ξ̄ (i−1)

− x̄ j−1) if ξ̄ (i−1)
+ x̄ j−1 ≤ h ≤ ξ̄ (i)+ x̄ j−1,

(α j/6)
(
(h̄− ξ̄ (i))3− x̄3

j−1

)
+ 0.5β j

(
(h̄− ξ̄ (i))2− x̄2

j−1

)
if ξ̄ (i)+ x̄ j−1 ≤ h ≤ ξ̄ (i)+ x̄ j ,

ω
(i)
j (ξ̄

(i)
+ x̄ j ) if h > ξ̄ (i)+ x̄ j ,

(31)

�
(i)
j (h̄)=



0 if h ≤ ξ̄ (i−1)
+ x̄ j−1,

(α j/6)
(
(h̄− ξ̄ (i−1))3− x̄3

j−1

)
+ 0.5β j

(
(h̄− ξ̄ (i−1))2− x̄2

j−1

)
if ξ̄ (i−1)

+ x̄ j−1 ≤ h ≤ ξ̄ (i−1)
+ x̄ j ,

(α j/6)(x̄3
j − x̄3

j−1)+ 0.5β j (x̄2
j − x̄2

j−1)+ x̄ j (0.5α j x̄ j +β j )(h̄− ξ̄ (i−1) x̄ j )

if ξ̄ (i−1)
+ x̄ j ≤ h ≤ ξ̄ (i)+ x̄ j ,

�
(i)
j (ξ̄

(i)
+ x̄ j ) if h > ξ̄ (i)+ x̄ j .

(32)
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The expression for the BLV, Equation (15), can be rewritten similarly to Equation (29):

v2
bl

k
=

∑
1≤i≤N
1≤ j≤M

∫ ξ̄ (i)+x̄ j

ξ̄ (i−1)+x̄ j−1

Q(H̄)d H̄
∫ 2̄

(i)
j (H̄)

θ̄
(i)
j (H̄)

ã0(H̄ − x̄)8̄ψ0(8̄′)dx̄

=

∑
1≤i≤N
1≤ j≤M

ã(i)0 ψ0(α j )

∫ ξ̄ (i)+x̄ j

ξ̄ (i−1)+x̄ j−1

Q(h̄)
[
�
(i)
j (h̄)−ω

(i)
j (h̄)

]
dh̄.

(33)

Thus, determining the BLV is reduced to calculating one-dimensional integrals.

5. Result of numerical calculations and discussion

In numerical calculations we considered a two-layer shield where “the first” plate and “the second” plate
are manufactured from the soft steel and aluminum, respectively. We used the model given by Equation
(4) with a(1)0 = 1850 MPa, a(1)2 = 7830 kg /m3, a(2)0 = 350 MPa and a(2)2 = 2765 kg/m3, where the values of
the “dynamical hardness” a(i)0 are adopted from [Vitman and Ioffe 1948]. All calculations were performed
for BLVs less than 1000 m/s. The latter constraint approximately determines the range of validity of this
model.

The following numbers are assigned to the materials of the plates. The superscript [1− 2] means that
the order of the plates in the shield is such that the plate manufactured from material #1 (soft steel) is
perforated before the plate manufactured from material #2 (aluminum), the superscript [2− 1] indicates
the reverse order of the plates. Since parameter χ = a0/a2 decreases with the increase of the number of
the material (χ (2) = 0.127 · 106 m2/s2, χ (1) = 0.236 · 106 m2/s2), then v[2−1]

bl ≥ v
[1−2]
bl for conical-nosed

impactors. The goal of our calculations was to estimate the effect of the parameter β, that characterizes
the deviation from the conical shape on the index δ = v[2−1]

bl /v
[1−2]
bl , that quantifies the efficiency of

changing the order of plates on the BLV. Typical results of these calculations are showed in Figures 6-7.
It must be noted that β = 0 for a conical impactor.

In all these figures we showed the dependence δ versus β, and different curves correspond to different
ratios of the thicknesses of the plates in a shield. The curves in Figure 6 are plotted for τ = 0.5, for
τ = 1 in Figure 7. Clearly, in the second case and for relatively large values of β when the shape of
the bluntness is close to spherical, the penetrator is not a sharp-shaped body, and the plots have only a
formal meaning.

Figure 6a corresponds to the dimensionless total thickness of the shield b̄ = 8.0 and k = 0.0004 m3/kg.
The curves of the dependencies δ vs. β are concave, i.e., at the beginning the increase of the curvature
of the generatrix of a striker causes reduction of the index δ, while further increase of β is accompanied
by the increase of the index δ. Notably, for relatively large β, the magnitude of the index δ may become
larger than that for a cone-shaped impactor. When the shape of the impactor is specified (β is given) the
effect of the change of the order of the plates (the magnitude of the index δ) depends essentially upon
the ratio of the thicknesses of the plates. In the considered case for all ogive-shaped impactors this effect
is maximal when b(1)/b ≈ 0.3.

In Figure 6b we showed two sets of plots, the first for k = 0.0007 m3/kg and b̄ = 8.0, and the second
for k = 0.0004 m3/kg and b̄ = 12.0. The first set differs from that in Figure 6a by the increased value
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Figure 6. Influence of the curvature of the impactor’s generatrix on the effect of rear-
ranging the plates in the shield; v[1−2]

bl and v[2−1]
bl are the BLVs for the “direct” and the

“reverse” order of the plates in the shield, respectively; β is the dimensionless curvature
of the impactor’s nose; τ = 0.5.
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Figure 7. Influence of the curvature of the impactor’s generatrix on the effect of rear-
ranging the plates in the shield; v[1−2]

bl and v[2−1]
bl are the BLVs for the “direct” and the

“reverse” order of the plates in the shield, respectively; β is the dimensionless curvature
of the impactor’s nose; τ = 1.0

of k, while in the second set of curves we increased b̄. Comparing the results showed in Figures 6a-6b
demonstrates that increase of the magnitude of each of these two parameters, k and b̄, results in the
increase of the ratio of BLVs, δ, for every β. The effect of k on β is shown explicitly in Figure 6c.

Figure 7a for τ = 1 demonstrates the same dependencies as Figure 6a. In Figure 7b we showed the
effect of the total thickness of the shield for two values of the ratio b(1)/b (0.1 and 0.4) on the dependence
δ = δ(β). Inspection of these plots shows that the increase of the total width b̄ causes the increase of the
ratio δ.

Our calculations demonstrated that replacement of the conical head of the impactor by a convex ogive-
shaped head can be accompanied either by the increase or decrease of the efficiency of changing the order
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of the plates in a shield. However we did not encounter situations in which the optimal order of the plates
in the shield is different for these two different impactor shapes.

6. Energy absorption

Using the relationships for the impact energy and residual energy of the impactor Eimp and Eres, respec-
tively:

Eimp = 0.5 mv2
imp, Eres = 0.5 mv2

res (34)

and Equation (14) rewritten as

v2
res =

1
q∗
[v2

imp− v
2
bl], q∗ = q(b+ L)= Q(b̄+ 1), (35)

yields the following formula for the relative energy absorbed by a shield:

eabs =
Eimp− Eres

Eimp
=

q∗− 1
q∗
+

1
q∗

(
vbl

vimp

)2

. (36)

Assume that Equation (36) is written for the initial shield with a certain plate order. Consider also a
modified shield with an altered plate order where the corresponding parameters in the modified shield
are denoted by a tilde. Since q∗ is independent of the order of the plates in the shield [Ben-Dor. et al.
1999b], we may write equation similar to Equation (36) for the modified shield:

ẽabs =
Eimp− Ẽres

Eimp
=

q∗− 1
q∗
+

1
q∗

(
ṽbl

vimp

)2

. (37)

Then

eabs− ẽ=abs
1
q∗

(
ṽbl

vimp

)2

(µ2
− 1), µ=

vbl

ṽbl
. (38)

Taking into account that
µ2
− 1≡ (µ− 1)2+ 2(µ− 1)≈ 2(µ− 1), (39)

for |µ− 1| � 1, Equation (38) can be rewritten as follows:

eabs− ẽ≈absζ(1−µ), ζ =
2
q∗

(
ṽbl

vimp

)2

. (40)

Since v0
bl ≤ vimp and q∗ > 1, then ζ < 2. Therefore, the model employed in this study predicts that

rearranging the plates in the shield causes a change in the relative magnitude of the absorbed energy that
does not exceed the doubled ratio of the corresponding BLVs.

7. Concluding remarks

Using approximate model for ductile layered shields, we analyzed the effect of re-arranging plates in the
shield against nonconical rigid impactors. We found that the criterion for the optimal arrangement of the
plates in a shield, determined previously for conical impactors, is valid also for nonconical impactors.
The theoretical results we obtained can be employed in further experimental studies on the optimization
of impactors and shields.
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A NUMERICAL INVESTIGATION OF THE EFFECT OF BOUNDARY
CONDITIONS AND REPRESENTATIVE VOLUME ELEMENT SIZE FOR POROUS

TITANIUM

HUI SHEN AND L. CATHERINE BRINSON

To facilitate the design and application of porous titanium and titanium foam, numerical simulation of
their mechanical behavior is essential. The concept of a representative volume element (RVE) is essential
to obtain accurate estimates of the properties. Because of the high contrast between the properties of the
two phases (pore vs. matrix), it is impractical to obtain a single RVE independent of boundary conditions
to provide accurate predictions. We suggest that a set of small domain RVEs can be used instead, as long
as the average of the small domains provides a convergent result. Two mixed boundary conditions
simulating uniaxial proportional loading were designed and implemented on several 2D and 3D finite el-
ement models at different length scales, that is, containing different numbers of pores. The two boundary
conditions provide opposite biased responses. Convergence of both the macroscopic and the microscopic
elastoplastic responses associated with the boundary conditions is demonstrated here. By this approach,
RVEs that are prohibitively large according to Hill’s definition are divided into reasonably small ones
associated with special boundary conditions, and the error of predictions associated with model size can
be estimated.

1. Introduction

Pure titanium and titanium-based alloys exhibit very useful mechanical and biological properties, which
make titanium-based foams potential materials for load-bearing sandwich cores and orthopedic implants
[Banhart 2001; Spoerke et al. 2005; Wen et al. 2002a; Wen et al. 2002b]. In particular, we observe
that as a potential implant material, it is comparable to bone stiffness in that its stiffness as a porous
material drops with the square of relative density, and the open porosity allows complete bone ingrowth
[Gibson and Ashby 1997; Spoerke et al. 2005]. These properties make porous titanium a promising
material to solve the inherent problems of monolithic metallic implants, such as the “stress shielding”
effect [Chang et al. 1996; Dunand 2004; Li et al. 2004; Spoerke et al. 2005; Wen et al. 2002a; Wen et al.
2002b]. However, the porous microstructure of the foam leads to the concentration of stress and strain
near pores under load-bearing conditions, which results in reduced strength and ductility. Finite element
(FE) simulation on a microstructural level is therefore needed to understand and predict the macroscopic
and microscopic responses, to better target and optimize the application of these porous materials.

The titanium foam considered here was processed by a solid-state foaming technique in which in-
dividual high-pressure argon pores expand at elevated temperature and coalesce to form large pores

The authors acknowledge the financial support of the National Science Foundation through grant number DMR-0108342 and
thank Professor Dunand’s group for providing titanium foam and images.
Keywords: representative volume element, titanium foam, microstructure, finite element, boundary condition.
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[Dunand 2004; Murray and Dunand 2003]. When porosity is less than 25%, pores are mostly rounded,
generally equiaxial, and unmerged (see Figure 1 (top)). As higher porosity, small pores coexist with
large pores which have a complex, tortuous shape, as shown in Figure 1 (bottom) [Murray and Dunand
2003]. The microstructures are locally heterogeneous, although sufficiently large experimental samples
behave homogeneously. For such a heterogeneous material, it is fundamental to determine whether a FE
model that simulates a fragment of the heterogeneous microstructure is large enough to be a representative
volume element (RVE) to describe the responses of the titanium foam. The determination of the minimum
size of an RVE relies on basic definitions, which have been developed for the study of heterogeneous
materials. One definition, proposed by [Hill 1963], states that an RVE is “a sample that (a) is structurally
entirely typical of the whole mixture on average, and (b) contains a sufficient number of inclusions for the
apparent overall moduli to be effectively independent of the surface values of traction and displacement,
so long as these values are macroscopically uniform.” Point (a) requires the RVE to include statistically
all possible microstructural configurations, and (b) demands that the effective properties obtained from
the RVE be independent of the uniform displacement and traction boundary conditions (BCs). Regarding
(b), Huet [1990] analytically proved that the effective elastic modulus obtained from an RVE is bounded
by the average apparent responses of finite size domains under uniform displacement boundary condition
(UDBC) and uniform traction boundary condition (UTBC). This conclusion was extended to a nonlinear
elastic heterogeneous material by [Hazanov 1999] and to elastoplastic materials under proportional load-
ing by [Jiang et al. 2001b]. Subsequently, many researchers have shown homogenization convergence
such that as the domain size increases to the minimum RVE, the two bounds converge to the effective
property [Hollister and Kikuchi 1992; Huet 1990; Jiang et al. 2001a; Ostoja-Starzewski 1998; Pecullan
et al. 1999; Terada et al. 2000]. However, the convergence of the two bounds was found to be extremely
slow for heterogeneous materials with soft inclusions in a hard matrix, and the higher the contrast be-
tween the moduli of matrix and inclusions, the slower the convergence [Bouyge et al. 2002; Jiang et al.
2001a; Ostoja-Starzewski 1998; Pecullan et al. 1999]. Given that zero-modulus pores provide extreme
moduli contrast to the titanium matrix for the titanium foam, the minimum RVE according to Hill’s
definition becomes too large for FE analyses, especially for three dimensional (3D) FE analyses, due to
the limitation of computational power.

A more pragmatic definition of RVE was introduced by [Drugan and Willis 1996], which defines
it as “the smallest material volume element of the composite for which the usual spatially constant
‘overall modulus’ macroscopic constitutive representation is a sufficient accurate model to represent
mean constitutive response.” Based on this RVE concept, Drugan and Willis [1996] analytically proved
that it is possible to obtain relatively accurate estimations of elastic constants with small RVEs for a
microstructure with nonoverlapping spherical inclusions. In particular, the effective moduli obtained by
a finite size domain over a length of only two sphere diameters can be close to those obtained by a
domain of infinite length, within a few percent of error, even in cases of void inclusions. This conclusion
contradicts the results obtained according to Hill’s definition. The BC applied on the RVE is the key
factor responsible for the difference. Although the RVE should be independent of BCs according to
Hill’s definition, the right BC is needed for the RVE defined by [Drugan and Willis 1996]. As pointed
out by [Jiang et al. 2001a], the derivation of [Drugan and Willis 1996] for the minimum RVE implied
that the RVE should be associated with periodic BC and that the microstructure is actually periodic. They
verified the RVE theory of [Drugan and Willis 1996] for unidirectional fiber-matrix composites with the
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modulus contrast of inclusion to matrix in a range of 0.001 to 1000. Gusev [1997] numerically verified
that the average of elastic constants of many small RVEs is close to the result for large RVEs for 3D
microstructures with randomly distributed nonoverlapping spherical inclusions under periodic BC. Their
results also indicate that smaller analyzed windows lead to more scattered results.

Following the concept of the RVE defined by [Drugan and Willis 1996] but accounting for the fluctu-
ations of the apparent properties predicted by finite size domains, Kanit et al. [2003] recently proposed a
more quantitative definition. Based on their definition, the concept of one single minimum RVE should
be abandoned and a sufficient number of small domain RVEs should be used to obtain the average linear
properties. While UTBC and UDBC on small domains result in large, oppositely biased errors for the
effective property, a periodic BC gives a smaller error for the same window size. However, it should
be noted that periodic BC requires the continuity of the inclusions on opposite boundaries to ensure the
periodicity of the microstructure. Because such unnatural periodicity is seldom observed in real hetero-
geneous materials, periodic BCs are not appropriate for FE models developed by cutting out fragments
of actual microstructures or by using simulated microstructures based on actual microstructures.

Alternative BCs might be considered which maintain the philosophy of the RVE concept of Kanit
et al. [2003], that is, which emphasize the average of the responses of small domains. Hazanov and
Huet [1994] proved analytically that the elasticity tensor predicted by a model smaller than Hill’s RVE
definition submitted to mixed BCs falls between the predictions associated with UTBC and UDBC. They
concluded that relatively accurate results can be obtained by using small domains under mixed BCs. Jiang
et al. [2001a] numerically verified this conclusion on unidirectional fiber-matrix composites. However,
the kind of mixed BCs to associate with RVEs to obtain accurate estimates for porous microstructure
is still an open question. Because of the extreme contrast in properties between inclusion and matrix,
no satisfactory solution (achievable with reasonable computer power) yet exists for practical RVEs for
porous microstructure.

The objective of this paper is to find reliable and practical RVEs for porous titanium using the homoge-
nization convergence concept and obtaining statistical averages by solving the boundary value problems.
As discussed above, solutions of finite size domains under mixed BCs approach effective properties much
faster than UDBC and UTBC. However, since results from finite size domains under a single mixed BC
approach the effective properties from one side, it is difficult to determine the point where the finite
size domains are large enough. In addition, such a one-side bias can be eliminated only by increasing
the size of analyzed domains. Therefore, we designed two mixed BCs simulating a uniaxial loading
condition providing opposite bias and imposed them on the porous models. This enabled us to determine
the convergence of RVEs and obtain relatively accurate results with small RVEs by averaging the results
associated with the two BCs. By this approach, we trade-off the large RVEs with two mixed BCs and
more small domains. In other words, the prohibitively large RVE of Hill’s definition were divided into
reasonable small ones associated with special BCs. While previous definitions of RVE focused only
on macroscopic linear properties, our current study also aims to verify the convergence of both the
macroscopic and the microscopic elastoplastic responses. The results of this paper elucidate a method
for numerical prediction of the global and local response with small size models for porous materials.

It should be noted that a porosity of 40–50% is generally considered to be an ideal range for orthopedic
applications of porous titanium. This porosity provides reduced stiffness for reduced stress-shielding as
well as sites for bone ingrowth, while simultaneously maintaining mechanical durability. However, the



1182 HUI SHEN AND L. CATHERINE BRINSON

250 µm

(a)

250 µm

(b)Figure 1. Optical micrograph of metallographic cross-section for titanium foam with
14.7% porosity (top) and 50% porosity (bottom).

microstructure at such high porosity is extremely complex (see, for example, Figure 1 (bottom)). Since
we focus on exploring methodology in this current study, we present results for low porosity titanium
foam and discuss implications for a 3D model with a higher porosity of 48%. The RVE for higher
porosity titanium foams will be considered in our future work.

In next sections, 2D and 3D FE models with different sizes are created based on the simulated
microstructure of the experimental material using the methodology presented in our previous work
[Shen et al. 2006]. BCs for the FE simulations are described. Then the uniaxial stress-strain response
is simulated based on the FE models associated with the two mixed BCs. Both macroscopic and micro-
scopic responses are demonstrated for the convergence study.

2. Finite element modeling

2.1. Simulated microstructure. We generated a simulated version of the microstructure of the titanium
foam at 14.7% porosity using the methodology presented in our previous work [Shen et al. 2006]. 3D
pore size and location distribution information was first derived from 2D sections of a sample at 14.7%
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(a)

(b)

(c)

Figure 2. The cubic domain of the 3D-MP-70271 model with side length of 4000µm
and a series of window sizes of 1000µm, 2000µm, 3000µm, and 4000µm (top). Pore
area fraction as a function of the x3 position for the series of windows (bottom left).
Distributions of pore area fraction of each window series (bottom right).

porosity as shown in Figure 1 (top). The location distribution of pores is random. The pore size distribu-
tion follows the Weibull distribution [Tobias and Trindade 1995] in which the density function is denoted
by

f (x)=
m
x

( x
c

)m
e−(x/c)

m
,

where the parameters, m and c, are shape and scale parameters. We obtained m = 2.47 and c = 64.68
for the pore sections observed in 2D sectioning planes, observing an average diameter of 63.3µm. We
derived m = 2.29 and c = 60.52 by stereology study, resulting in 3D average pore diameter of 53.6µm
[Shen et al. 2006]. Based on these data, a 3D simulated microstructure which retains the essential
geometry features of the random microstructure was developed. The microstructure of the foam at higher
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porosity was determined by a geometric simulation of pore growth and movement during the foaming
process.

In the simulated 3D multipore microstructure (3D-MP-70271) at porosity 14.7%, 70,271 spherical
pores were randomly located in a (4000µm)3 cube. No pore impingement was permitted. To simulate the
serial sectioning process, a reliable technique for constructing microstructures [Li et al. 1998], sections
parallel to the x1x2 plane passed through the 3D-MP-70271 model were cut every 10µm along x3 axis.

The distribution of pore area fractions in window sizes of 1000µm, 2000µm, 3000µm, and 4000µm
is shown in Figure 2. We see that as the size of the window increases, the range and variation of the area
fraction decreases and the area fractions converge to the overall porosity of the microstructure.

The simulated microstructure is comprised of two distinct phases: pores and titanium matrix. To
avoid computational difficulties, it was assumed that pores are linear elastic with a very low modulus of
10−7 GPa and Poisson’s ratio of 0.3. The titanium matrix having elastic modulus of 110 GPa, Poisson’s
ratio of 0.33, and yield strength of 275 MPa is representative of CP Ti-40 [ASM 2002]. The matrix
yield surface follows the Von Mises yield criterion with isotropic hardening. All material properties and
simulations are for room temperature.

2.2. 2D and 3D finite element models. 2D and 3D finite element models were created by cutting out
the fragments of the simulated microstructure. To study the convergence of responses of various size
windows, four groups of 2D sections of side length from 1000µm to 4000µm having an area fraction
matching the overall porosity of 14.7% were generated based on the simulated microstructure to construct
2D models. The four groups of 2D finite element models with side lengths of 1000µm, 2000µm,
3000µm, and 4000µm have ratios of model length to the average pore size (L/d) of 15.8, 31.6, 47.4,
and 63.2, respectively. Each model group contains eight models and is labeled with the size, that is, side
length. For example, 2D-1000 refers to the model group with side length of 1000µm. Examples of
these 2D model groups are shown in Figure 3. We see that some pores having a centroid near an edge
are truncated. On average, there are 59 pores and 10,930 elements in the 2D-1000 model; 235 pores
and 39,010 elements in the 2D-2000 model; 542 pores and 88,385 elements in the 2D-3000 model; 943
pores and 159,768 elements in the 2D-4000 model.

Two 3D model groups with side lengths of 170µm and 340µm having porosity of 14.7% were selected
from different locations of the 3D-MP-70271 microstructure. Each group contains four 3D models. The
ratios of model size to the average pore size (L/d) are 3.17 and 6.34, respectively. Models are labeled
with the two sizes as 3D-170 and 3D-340. Examples of the 3D-170 and 3D-340 models are shown in
Figure 4. Again, some pores having a centroid near a face are truncated. On average, the 3D-170 model
contain 12 pores and 15,439 elements; the 3D-340 model 64 pores and 125,536 elements.

One 3D model with higher porosity of 48% in a 340µm cube was created by cutting a block of a high
porosity microstructure. As shown in Figure 5, pores are connected to form large pores which have a
complex, tortuous shape. The model contains 130,552 elements.

All 2D models were meshed with eight-node biquadratic plane strain elements and all 3D models
were meshed with ten-node modified tetrahedral elements with hourglass control to prevent volumetric
lock during plastic deformation [ABAQUS 2004]. All finite element analyses were performed using
ABAQUS software. Mesh convergence was verified based on overall and local stress values. The overall
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(b)

 2000 µm

(c)

 3000 µm

(d)

 4000 µm

(a)

 1000 µm

Figure 3. Geometry of the (a) 2D-1000, (b) 2D-2000, (c) 2D-3000, and (d) 2D-4000 models.

strain and stress are calculated by using volume averages

ε̄i j =
1
V

∫
V
εi j dV =

1∑N
m=1 V (m)

N∑
m=1

ε
(m)
i j V (m),

σ̄i j =
1
V

∫
V
σi j dV =

1∑N
m=1 V (m)

N∑
m=1

σ
(m)
i j V (m).
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(a)

 170 µm

(b)

 340 µm

Figure 4. Geometry of the (a) 3D-170 and (b) 3D-340 models.

The standard deviation of the microscopic stress distribution is weighted by the volume of the element
as follows:

SD =

√√√√∑N
m=1 V (m)(σ

(m)
i j − σ i j )2∑N

m=1 V (m)
,

where V (m) is the volume of element m, N is the total number of elements, and σi j is the Cauchy stress
tensor. The total strain tensor is decomposed into elastic and plastic components. Note that the stress
and strain tensors σi j and εi j are obtained at the centroid of each element.

2.3. Boundary conditions. The experimental procedure to obtain macroscopic stress-strain response for
porous materials is typically a uniaxial compression test, which has been performed for porous titanium
in [Davis et al. 2001] and [Shen et al. 2006]. Our numerical study focuses on the responses of the
titanium foam under uniaxial proportional compressive loading. As discussed in Section 1, one can
obtain accurate estimates of material properties with relatively small RVEs under mixed BCs [Hazanov
and Huet 1994]. Two types of mixed BCs were designed in the numerical simulation as described
in Table 1 in which x2 direction is the loading direction. For boundary condition 1 (BC1), uniform
displacements are imposed on the faces perpendicular to the loading direction without friction. Other
faces parallel to the loading direction are traction free. This boundary condition is used to simulate
the experimental setup in the mechanical test. For boundary condition 2 (BC2), the same conditions
are set for the faces perpendicular to the loading direction; however the faces parallel to the loading
direction remain straight and parallel during deformation to simulate an interior domain compatible with
the surrounding material. Therefore, BC2 is periodic mechanically, but not microstructurally since the
pores on opposing edges are not continuous. The boundaries for 2D models are the same as those applied
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Figure 5. Geometry of the 3D model with porosity of 48% in a 340µm cube.

to the left, right, top, and bottom faces of the 3D models to impose uniaxial compressive loading. Note
that 2D models are restricted to uniaxial and biaxial load cases.

3. Results and discussion

3.1. Macroscopic response. The uniaxial stress-strain responses predicted by the sixteen individual 2D
simulations (eight models deformed along x1 and x2 directions) of the 2D-1000, 2D-2000, 2D-3000, and
2D-4000 models under the two mixed BCs are shown in Figure 6. These collected results reveal that as
2D window size increases from 1000µm to 4000µm, the dispersion of the predicted stress-strain curves
for each BC decreases. The range of the two groups of stress-strain curves associated with BC1 and BC2
also become smaller. The average responses of the sixteen individual 2D simulations under the two BCs

Model Face Boundary Condition 1 Boundary Condition 2
Top (x2 = a) u2 =−0.01a; t1 = t3 = 0 u2 =−0.01a; t1 = t3 = 0
Bottom (x2 = 0) u2 = 0; t1 = t3 = 0 u2 = 0; t1 = t3 = 0
Left (x1 = 0) t1 = t2 = t3 = 0 u1 =−ū1; t2 = t3 = 0
Right (x1 = a) t1 = t2 = t3 = 0 u1 = ū1; t2 = t3 = 0
Front (x3 = a) t1 = t2 = t3 = 0 u3 = ū3; t1 = t2 = 0
Back (x3 = 0) t1 = t2 = t3 = 0 u3 =−ū3; t1 = t2 = 0

Table 1. Boundary conditions (ū1 and ū3 are displacements of the four side faces upon
loading on the top).
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Figure 6. Macroscopic stress-strain responses predicted by the sixteen individual simu-
lations of 2D-1000 (top left), 2D-2000 (top right), 2D-3000 (bottom left), and 2D-4000
models (bottom right) associated with the two mixed boundary conditions.

converge to a common value as the window size increases as shown in Figure 7. The convergence trend
of the two BCs suggests BC1 is slightly underrestrictive which is similar to UTBC, and BC2 is slightly
overrestrictive, which is similar to UDBC. The asymptotic relationship of the average elastic modulus
and overall stress at 1% strain corresponding to the length scale of the window is illustrated in Figure 8.
The overall averages of all thirty-two responses (eight models deformed along x1 and x2 directions under
BC1 and BC2 ) for each model group are shown in Figure 9, and the curves are nearly indistinguishable.

The observations presented in the figures are confirmed in Table 2, which shows the 2D model predic-
tions for elastic modulus and overall stress at 1% uniaxial strain. We see here that under BC1 and BC2
the standard deviation of elastic modulus decreases from 2.34% and 2.12% for the 2D-1000 models to
0.45% and 0.44% for the 2D-4000 models. The overall stress decreases from 3.69% and 3.0% to 1.55%
and 1.44%, respectively. For all thirty-two responses for the two BCs, the standard deviation decreases
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Figure 7. Macroscopic stress-strain responses averaged over the sixteen individual sim-
ulations of 2D-1000, 2D-2000, 2D-3000, and 2D-4000 models associated with the two
mixed boundary conditions.

E (GPa) σ (MPa)
AVG. SD% AVG. SD%

2D-1000
BC1 78.06 2.34 241.37 3.69
BC2 79.08 2.12 254.30 3.00
BC1 2avg 78.57 2.29 247.84 4.23

2D-2000
BC1 77.19 0.97 242.59 2.61
BC2 77.92 0.91 250.1 2.10
BC1 2avg 77.56 1.04 246.27 2.79

2D-3000
BC1 77.67 0.54 243.72 1.92
BC2 78.03 0.51 249.45 1.29
BC1 2avg 77.85 0.57 246.59 1.99

2D-4000
BC1 77.69 0.45 244.04 1.55
BC2 78 0.44 248.15 1.44
BC1 2avg 77.85 0.48 246.09 1.7

Table 2. 2D model predictions for elastic modulus and overall stress in loading direction
at 1% uniaxial strain.
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Figure 8. Apparent modulus (left) and overall average stress (right) at 1% far-field strain
associated with the two mixed boundary conditions as a function of the ratio of the
window size to pore diameter.

Figure 9. Macroscopic stress-strain responses averaged over the thirty-two individual
simulations of 2D-1000, 2D-2000, 2D-3000, and 2D-4000 models.
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from 2.29% to 0.48% for elastic modulus and 4.23% to 1.7% for overall stress. As the scatter of the
data decreases, the overall averages (BC1 2avgs) of each model group under the two BCs remain almost
constant. For example, only 0.71% difference exists between the averages of the overall stresses of the
2D-1000 and 2D-4000 models.

Based on the observations above, we believe that the averages over the individual simulations under
the two BCs should be close to an “exact” solution. We derive this hypothesis from the homogenization
convergence assumption: estimates under different BCs converge to the effective response as the calcu-
lated domain approaches Hill’s RVE for locally heterogeneous but globally homogeneous microstructures
[Hazanov and Huet 1994; Hollister and Kikuchi 1992; Huet 1990; Jiang et al. 2001a; Ostoja-Starzewski
1998; Pecullan et al. 1999; Sab 1992; Terada et al. 2000]. Therefore, we conclude that a number of
small models can obtain convergent results equivalent to larger models. At the same time, since the
averaged stress-strain curves associated with BC1 and BC2 approach the “exact” solution which lies in
between, the error of the predicted result of each BC to the effective one can be estimated. For example,
since 1.7% difference exists between the average stresses at 1% strain for the 2D-4000 models under the
two BCs as shown in Figure 8, the error of the result from each BC to the “exact” solution should be
less than 1.7%, and the error of the average of BC1 and BC2 (BC1 2avg in Table 2) less than 0.85%.
This method suggests that by selecting a certain number of models associated with two selected slightly
underrestrictive and overrestrictive boundary conditions providing opposite bias of the result, both the
convergent result and the degree of accuracy can be estimated.

The fast homogenization achieved here occurs because all the models selected are of fixed porosity
and are subjected to the two mixed BCs. These conditions are different from the findings in [Kanit et al.
2003]. In their work on the determination of the RVE size, small models have large variance of volume
fractions, a fact which leads to large variance in results. They also showed that bias exists for the average
of predictions of a number of small domains associated with one periodic BC, and that the bias decreases
to zero as the size of analyzed domains reaches a certain level. With this one-sided approach, variance
can be eliminated only by increasing domain size.

The study can also be generalized to 3D FE analysis. The uniaxial stress-strain responses predicted
by the twelve individual 3D simulations (four models deformed along the three perpendicular directions)
of the 3D-170 and 3D-340 models under the two mixed BCs are shown in Figure 10. Similar to the 2D
simulations, the scatter of the curves decreases as the size of the 3D models increases. The average stress-
strain curves over the individual simulations associated with BC1 and BC2 for 3D-340 models are closer
than 3D-170 models as shown in Figure 11. The overall averages of the stress-strain responses for each
model group of both the BCs (BC1 2avg) are plotted in Figure 12 and the two curves almost superpose.
The results for elastic modulus and overall average stress at 1% uniaxial strain for the 3D models are
shown in Table 3. For all twenty-four responses for the two BCs, the standard deviation for modulus
decreases from 3.05% for 3D-170 models to 0.97% for 3D-340 models, and from 5.95% to 2.47% for
overall average stress. The two mixed BCs offer biased predictions as in the 2D models. Therefore,
the discussion and conclusions based on the 2D FE analyses above hold true for the 3D FE study. We
presented a detailed comparison between 2D and 3D FE simulations in [Shen and Brinson 2007], and
found that the macroscopic responses predicted by the 3D models are in reasonable agreement with the
experimental and theoretical results. The macroscopic plastic responses predicted by 2D models are
lower than those predicted by 3D models, while the elastic responses are close. 2D models overpredict
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(a) (b)

Figure 10. Macroscopic stress-strain responses predicted by the twelve individual simu-
lations of 3D-170 (left) and 3D-340 (right) models associated with the two mixed bound-
ary conditions.

the probability of high Von Mises stress and equivalent plastic strain and therefore overestimate the
failure probability for porous materials.

It should be noted that the current BCs for the model groups are only appropriate for the simulation of
titanium foam at low porosities (less than 25%) under uniaxial loading conditions. However, this study
elucidates a method to find relatively small RVEs for heterogeneous materials, especially for the difficult
case of high contrast properties between the phases. As the material is foamed to high porosity, pores
are connected to form larger pores complicating the microstructure as shown in Figure 5. The uniaxial
stress-strain responses predicted by the 3D model with higher porosity of 48% (the 3D model deformed

E (GPa) σ (MPa)
AVG. SD% AVG. SD%

3D-170
BC1 80.36 3.26 266.73 5.93
BC2 81.93 2.62 287.91 2.97
BC1 2avg 81.15 3.05 277.32 5.95

3D-340
BC1 80.61 0.91 275.63 1.89
BC2 81.42 0.78 286.66 0.96
BC1 2avg 81.01 0.97 281.14 2.47

Table 3. 3D model predictions for elastic modulus and overall stress in loading direction
at 1% uniaxial strain.
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Figure 11. Macroscopic stress-strain responses averaged over the twelve individual sim-
ulations of 3D-170 and 3D-340 models associated with the two mixed boundary condi-
tions.

Figure 12. Macroscopic stress-strain responses averaged over the twenty-four individ-
ual simulations of 3D-170 and 3D-340 models.
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Figure 13. Macroscopic stress-strain responses predicted by the 3D model of 48%
porosity associated with the two mixed boundary conditions.

along x1,x2 and x3 directions) under the two mixed BCs are shown in Figure 13. The results indicate
a much larger scatter than the 3D-340 models which have the same model size but lower porosity. The
convergent response prediction for titanium foam at high porosity is therefore quite challenging and will
be the focus of our future work. We can expect that more analyzed domains are needed to obtain a
convergent result while using the boundary conditions which provide biased error.

3.2. Microscopic response. Microscopic field variable distributions are very important for failure analy-
sis because failure is a local event rather than a volume averaged event. The Von Mises stress distributions
in the matrices of all the 2D models deformed along x1 and x2 directions under 1% macroscopic strain
are plotted in Figure 14. Since BC1 is less restrictive than BC2, the distributions of Von Mises stress
under BC1 are broader than those under BC2. As with macroscopic responses, as model size increases,
the curves become less dispersed. Both the mean value and standard deviation of the Von Mises stress
distribution converge with increasing model size. For example, the maximum difference of the mean
values of Von Mises stress under BC2 is 8.5% for 2D-1000 models and 4.2% for 2D-4000 models. The
average distribution curves of the sixteen individual simulations of 2D-1000, 2D-2000, 2D-3000, and
2D-4000 models associated with the two mixed BCs converge to a common mean value and a common
standard deviation as shown in Figure 15. The difference between the averaged mean values under BC1
and BC2 for 2D-1000 models is 5.9% and for 2D-4000 models is 1.8%. This common mean value and
common standard deviation of the Von Mises stress distribution is clearly seen in Figure 16, in which the
overall averages of the total thirty-two distribution curves for all the 2D models are plotted. Although
not shown here, the equivalent plastic strain distribution follows a similar convergence trend.

To see the influence of the BCs on the microscopic distributions for models with different sizes, the
equivalent plastic strain distributions predicted by one of the 2D-1000 and 2D-4000 models under 1% far
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(a) (b)

(c) (d)

Figure 14. Von Mises stress distributions predicted by the sixteen individual simula-
tions of (a) 2D-1000, (b) 2D-2000, (c) 2D-3000, and (d) 2D-4000 models associated
with the two mixed boundary conditions.

field strain were plotted in Figure 17. In the 2D-1000 model, plastic strain distributions are influenced
by BCs such that differences exist even in the middle of the analyzed domain. In the 2D-4000 models,
differences in the plastic strain distributions away from the boundaries become negligible. However, the
deficiency of the individual small 2D models can be compensated by averaging results of more models
associated with the two BCs.

The accumulated frequencies of the Von Mises stress of the 2D models are plotted in Figure 18. These
values were obtained by calculating the percentage of all the matrix elements exceeding a certain value
in each model group. As is evident in Figure 18, the results of the Von Mises stress distribution of the 2D
models under BC1 and BC2 also converge in the same manner as the macroscopic stress-strain responses.
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Figure 15. Von Mises stress distributions averaged over the sixteen individual simu-
lations of 2D-1000, 2D-2000, 2D-3000, and 2D-4000 models associated with the two
mixed boundary conditions.

Figure 16. Von Mises stress distributions averaged over the thirty-two individual simu-
lations of 2D-1000, 2D-2000, 2D-3000, and 2D-4000 models.
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Figure 17. Equivalent plastic strain distribution predicted by (a) one of 2D-1000 model
under BC1, (b) the 2D-1000 model under BC2, (c) one of 2D-4000 model under BC1,
and (d) the 2D-4000 model under BC2.

With this frequency averaged over all the 2D simulations under the two BCs, a relatively accurate result
can be obtained by the 2D-1000 model, one which is very close to the prediction of 2D-4000 models as
shown in Figure 19. Therefore the convergence discussion on the macroscopic responses should be still
valid for the microscopic variable statistic distributions.

To generalize the microscopic study to 3D FE analysis, the corresponding results of Von Mises stress
predicted by the twelve individual 3D simulations (four models deformed along the three perpendicular
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Figure 18. Accumulative frequency of Von Mises stress exceeding a certain value pre-
dicted by 2D-1000, 2D-2000, 2D-3000, and 2D-4000 models associated with the two
mixed boundary conditions.

Figure 19. Accumulative frequency of Von Mises stress exceeding a certain value, aver-
aged over the two mixed boundary conditions predicted by 2D-1000, 2D-2000, 2D-3000,
and 2D-4000 models.
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(a)

(b)

Figure 20. Von Mises stress distribution predicted by the twelve individual simulations
of (a) 3D-170 and (b) 3D-340 models associated with the two mixed boundary condi-
tions.

directions) of the 3D-170 and 3D-340 models under the two mixed BCs are shown in Figure 20. Similar
convergence trend can be observed as the size of the 3D models increases. The average responses over
the individual simulations associated with the two BCs are shown in Figure 21. The difference between
the mean Von Mises stress at 1% strain under BC 1 and BC 2 for the 3D-170 models is 8.5% and for
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Figure 21. Von Mises stress distributions averaged over the twelve individual simula-
tions of 3D-170 and 3D-340 models associated with the two mixed boundary conditions.

Figure 22. Von Mises stress distributions averaged over the twenty-four individual sim-
ulations of 3D-170 and 3D-340 models.

3D-340 models is 3.6%. The overall averages of the total responses for each 3D model group are shown
in Figure 22. Although the curves are not as close as 2D models, the convergence trend is similar to the
2D study. The accumulated frequencies of the Von Mises stress of the 3D models are plotted in Figure
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Figure 23. Accumulative frequency of Von Mises stress exceeding a certain value pre-
dicted by 3D-170 and 3D-340 models associated with the two mixed boundary condi-
tions.

23. The frequency averaged over all the 3D simulations under the two BCs is shown in Figure 24. A
similar convergence trend can also been observed. We expect that as the 3D models increase to 640µm,
the individual stress and strain curves would become more convergent. However, due to computational
limitations, it is not practical to analyze the model with a 640µm side length. Since the two BCs are
bounds for the properties, the “exact” effective response should lie in between. In other words, since the
difference between the mean Von Mises stress at 1% strain for the 3D-340 models under BC1 and BC2
is 3.6%, the average should be within 1.8% of the exact solution.

We find that for microscopic response, the 3D models predict higher mean Von Mises stress than 2D
models, but relatively uniform distributions with smaller standard deviation. For example, the distribution
of the Von Mises stress is 357.7±46.7 MPa for 3D-340 models and 298±95.5 MPa for 2D-4000 models.
Our companion work [Shen and Brinson 2007] gives an extensive comparison between the stress and
strain distribution.

4. Conclusions

In this study, we present an approach to determine RVEs of porous titanium. The method adopts the
RVE concept of [Kanit et al. 2003] according to which the RVEs can be small domains as long as the
average of the small domains provides an unbiased result. Since the estimates associated with uniform
traction and displacement BCs provide the lower and higher bounds for the effective properties providing
the largest bias, two mixed boundary conditions are therefore designed to obtain results with a smaller
bias. Four groups of 2D models and two groups of 3D models with various sizes and fixed porosity
were constructed based on a simulated microstructure of an experimental material. As the length scale
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Figure 24. Accumulative frequency of Von Mises stress exceeding a certain value, av-
eraged over the two mixed boundary conditions predicted by 3D-170 and 3D-340 mod-
els.

of the model increases, the individual responses of models become less dispersed. At the same time,
the averages of the estimates associated with the two mixed BCs show opposite bias and converge to a
common value. The error can be estimated and a convergent result can be obtained from relatively small
models by averaging the responses associated with the two mixed BCs. The method developed here can
be used to simulate microstructures of real materials. Although we have studied only a special case for
titanium foam at low porosity under uniaxial loading, this method elucidates an approach for studying
other heterogeneous materials, including those with a higher volume fraction of pores to inclusions. By
choosing appropriate boundary conditions, a convergent result can be achieved by averaging the results
of a number of small analyzed domains. The number of the domains needed will depend on the nature
of the microstructure, the designed boundary, and the domain size.
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DAMAGE IN DOMAINS AND INTERFACES: A COUPLED PREDICTIVE THEORY

FRANCESCO FREDDI AND MICHEL FRÉMOND

In this study, we propose a model coupling damage of domains and damage of interfaces. A predictive
theory of continuum damage mechanics is developed within the framework of the principle of virtual
power. Because damage results from microscopic motions, the power of these microscopic motions is
included in the power of the internal forces. The power of the internal forces we choose depends on
the damage velocity and on its gradient to take into account local interactions. An interaction between
the domain damage and the damage along the interface is introduced. To overcome the insensitivity of
the local interface model to elongation, nonlocal elongation has been considered as a source of damage.
Representative numerical examples confirm that our proposed model can be used to describe various
damage phenomena in agreement with experiments.

1. Introduction

Mechanical degradation of quasibrittle materials is usually traced back to development of micro-cracking
and microvoids. Continuum damage mechanics based upon general principles which govern the evolution
of the variables representative of the material state is an effective tool for analysis of these behaviors,
[Lemaitre 1992; Stumpf and Hackl 2003; Mosconi 2006]. In particular, isotropic damage formulations
are extensively employed in the literature because of their simplicity, efficiency and adequacy for many
practical applications [Voyaiadjis et al. 1998; Lemaitre and Desmorat 2005]. Damage theory has been
used successfully to describe adhesion of solids [Borino and Failla 2005; Alfano and Crisfield 2001;
Zou et al. 2003]. In fact, the interface regions between materials fundamentally governs the strength
and stability of structural elements [Truong Dinh Tien 1990]. Moreover, structural collapse in composite
structures is often caused by the appearance and evolution of different damage phenomena in a narrow
region near the interface [Yao et al. 2005; Aimi et al. 2007; Freddi and Savoia 2006; Gonzalez et al.
2005].

The practical problem is to determine whether the design of a future structure forbids any failure
by surface or volume damage under service loads. Predictive theories must account for these physical
results, including short-term behaviour.

The present work deals with the structural response of quasibrittle domains, for instance pieces of
concrete glued on one another. We take into account both volume and interface damaging behaviors
and their interactions. As a starting point, we used two damage models proposed in [Frémond and
Nedjar 1996; Frémond 2001] for the description of domain and interface behaviour. These models are
based on adaptation of the principle of virtual power. In particular, we assume that damage results from
microscopic motions, and include the power of these motions in the principle of virtual power. This power
contribution is assumed to depend on the strain rate (displacement discontinuity for the interface), the

Keywords: principle of virtual power, domain damage, interface damage, elongation, damage of glued concrete structures.
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rate of damage and the damage gradient (damage discontinuity for the interface). The damage gradient
is introduced to account for the local interaction of the damage at a material point on the damage of
its neighborhood. Correspondingly, we also introduce two new quantities: the internal work of damage
and the flux vector of internal work of damage (adhesion energy and energy flux vector of the contact
surface).

On the contact surface there are local damage interactions between damage at a point and damage in
its neighborhood. Thus there is interaction within the glue as well as interaction between the glue and
the two concrete pieces. These interactions are defined usch that their virtual power involves appropriate
kinematic quantities. For instance, experiments show that elongation may have damaging effects. In this
setting, an elongation is a variation of the distance between two distinct points belonging to the contact
surface. This is a nonlocal quantity which introduces nonlocal contributions in the theory.

The principle of virtual power leads to three sets of equations of motion; the first is the classical
equation of motion and the other two are nonstandard fields representative of the domains and evolution
of interface damage.

The constitutive laws we adopt permit us to control the energy dissipated during degradation and
separation of solids so as to avoid stiffness recovery and cohesive state restoration. Suitable free energies
let us express nonstandard internal forces conjugated to the damage rate and the gradient damage rate.
We then introduce pseudo-potentials of dissipation to characterize the damage evolution. The internal
constraints on the values of damage quantities and on their velocities are taken into account explicitly in
the expressions of the free energy and of the pseudo-potential.

The domain model derived from this formulation is not affected by mesh sensitivity. In fact, the
damage model for the domains overcomes the well-known problem of mesh dependence: a boundary
value problem that governs the evolution of the damage variable instead of the usual local constitutive
law. Moreover, impenetrability between domains is included in the constitutive laws, thus avoiding
the introduction of interface parameters for penalty stiffness, parameters which can create numerical
problems, such as spurious traction oscillations [Alfano and Crisfield 2001]. Numerical simulations are
proposed which correctly determine whether the zone affected by damage is the interface or a narrow
region inside the domains. Specific cases of two concrete elements glued together are considered and
a FRP-concrete delamination test is performed. In some cases, we compare the experimental results
quantitatively and qualitatively to computations.

Several studies have considered the two models separately. For the domain model the behaviour of
concrete structures is correctly predicted in [Frémond and Nedjar 1996] and [Frémond 2001]. Recently,
an extension to elastoplatic-damage model was proposed in [Nedjar 2001] and numerical aspects were
investigated in [Nedjar 2002] and [Ireman 2005].

Moreover, some mathematical results are reported in [Frémond et al. 1998]. Dynamic processes
of adhesive contact with a deformable foundation are considered in [Truong Dinh Tien 1990; Chau
et al. 2004], where the rate of bonding field is assumed to be reversible and irreversible. [Bonetti et al.
2005] obtained the global existence and uniqueness results for two solids glued together and results for
local existence for a damage model in elastic materials were reported in [Bonetti and Schimperna 2004;
Bonetti et al. 2006]. In addition, a model coupling adhesion, friction and unilateral contact is considered
in [Raous et al. 1999] and [Raous and Monerie 2002].
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2. Physical capacities, potentialities and limits of the model

Gluing of structural elements, an attractive assembly method in civil engineering, must always be evalu-
ated with respect to both short- and long-term behavior. In the short term, we must answer the question:
Is the structure designed so that the glued connections and the mechanical elements are strong enough
to support the service loads? Over the long term the question becomes: is the operating structure still
solid, or must it be strengthened?

The predictive theory we present answers the first question by determining the service load. Once the
service load is known, it is possible to predict if the design is such that the future structure will be free of
volume or surface damage which would lead to immediate collapse. The examples of Section 7 clearly
show that the computer program resulting from our model is efficient and versatile enough to deal with
very different structures made of glued parts. Beyond the damage of glued connections, the theory also
predicts coupling with the volume damage which can also endanger structures.

The theory is sparing of parameters (three for each material): a cohesion parameter, an extension
parameter and a viscosity parameter. We think this is the minimum number of parameters to correctly
describe damaging phenomena and answer questions about the damage, such as:

(a) Does damage appear (cohesion parameter)?

(b) Does the damage extend or remain concentrated in thin zones (extension parameter)?

(c) Does the damage evolve slowly or rapidly (viscosity parameter)?

For the glue, we have used the three parameters above and three more extension parameters to describe
nonlocal interactions within the glue and the interaction of the glue with its neighboring materials

For short-term behavior, we have established the capabilities of the predictive theory. Its limitations
are mainly mechanical and are due to the elastic-damaging constitutive law. Let us also note that for
the surface, the constitutive laws which involve nonlocal actions are much richer than needed for some
practical applications.

For long-term behavior, aging theory must be added together with rules to determine the related
parameters. The predictive theory seems a good starting point, and some results are already available
[Bruneaux 2004].

3. State quantities and quantities describing the evolution

In this section we introduce the state quantities E , and the quantities δE describing the evolution or
development of damage. Let us consider a system made of two domains �i , i = 1, 2, in the undistorted
natural reference configuration subjected to mixed boundary conditions and connected by an adhesive
interface 0s = ∂�1 ∩ ∂�2. An example is a system of two pieces of concrete glued on one another.

For the sake of simplicity, we neglect the thermal effects, do not take the temperature into account,
and limit our analysis to small perturbation theory. Note that the equations of motion reported in Section
4 are valid without this restriction.

For each domain �i , the state quantities are the macroscopic damage quantity βi (Ex, t), its gradient
gradβi (Ex, t) and deformation εi (Ex, t). The values of βi (Ex, t) are between 0 and 1, where 1 represents
the undamaged state and 0 the completely damaged one. Damage quantity βi may be understood as the
volume fraction of active links or of undamaged material. The gradient of βi (Ex, t) accounts for local
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interactions of the damage at a point on damage of its neigbourhood. Recall that the deformation εi (Ex, t)
accounts for the local interaction of the displacement at a point on displacement of its neighborhood.

The quantities which describe the evolution in each domain �i are the velocities of the state quantities.
The velocities dβ/dt account for the microscopic velocities at the macroscopic level.

The state quantities on the contact surface ∂�1 ∩ ∂�2 involve quantities which describe the evolution
of the surface, and quantities which describe the macroscopic and microscopic interactions between
domains and surface. The quantities which describe the surface evolution, for instance the glue evolution,
are the surface or glue damage quantity, and its surface gradient, βs(Ex, t), and grads βs(Ex, t) taking into
account the local damage interaction in the surface or in the glue. The macroscopic interactions are
described by the gap as is usual in contact mechanics, and also by the elongation, a new nonlocal state
quantity which describes the variation of the distance of two different points of the surface. Microscopic
interactions are also described by the traces of the domain damage quantities.

The gap Eu2(Ex)− Eu1(Ex) is the difference between two small displacements Eui at the same point Ex of
the surface. Note that even if the gap is 0, the displacements which are not equal at two different points
of the surface would produce a notable damaging action. To account for this property, we introduce the
elongation

g(Ex, Ey)= 2(Ey− Ex) · (Eu2(Ey)− Eu1(Ex)) .

It describes the evolution of the distance between two different points, Ex and Ey, and it may be different
from 0 if the gap is 0.

The quantities describing the evolution of the contact surface are the velocities of the state quantities.
The velocity of the elongation is

D1,2( EU1, EU2)(Ex, Ey)= 2(Ey− Ex) · ( EU2(Ey)− EU1(Ex)).

where EUi = d Eui/dt are the macroscopic velocities.
Let us note that this velocity is 0 in any rigid system velocity, that is, a set of velocities which do not

change the form of the system. It is easy to check that rigid system velocities satisfy

EU1(Ex)= EA+ EB× x,

EU2(Ex)= EA+ EB× Ex,

dβ1

dt
=

dβ2

dt
=

dβs

dt
= 0.

These rigid velocities do not change the form of the system because the gap does not change on the contact
surface. Moreover, since the damage velocities are 0, the microscopic velocities which are responsible
for their evolutions are 0.

Remark 1. The velocity of the elongation is the time derivative of the square of the distance of two
points

D1,2( EU1, EU2)(Ex, Ey)= 2(Ey− Ex) · ( EU2(Ey)− EU1(Ex))=
d
dt
(Ey− Ex)2.

We find that within the small deformation assumption, the elongation g(Ey, Ex) is the variation of the
square of the distance of the two points. The physical properties of the internal force associated with the
elongation may be understood with this property.
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To sum up, the state quantities E and the quantities describing the evolution are, in �1 and in �2,

E1 = {ε1, β1, grad β1} , δE1 =

{
dε1

dt
,

dβ1

dt
, grad

dβ1

dt

}
,

E2 = {ε2, β2, grad β2} , δE2 =

{
dε2

dt
,

dβ2

dt
, grad

dβ2

dt

}
,

where dεi/dt are the classical strain rates.
On the contact surface ∂�1 ∩ ∂�2

Es =
{
Eu2− Eu1, βs, grads βs, β1−βs, β2−βs

}
,

Es,1,2 = {g(Ex, Ey)= 2(Ey− Ex) · (Eu2(Ey)− Eu1(Ex)) , βs(Ex), βs(Ey)} ,

δEs =

{
EU2− EU1,

dβs

dt
, grads

dβs

dt
,

dβ1

dt
−

dβs

dt
,

dβ2

dt
−

dβs

dt

}
,

δEs,1,2(Ex, Ey)=
{

D1,2( EU1, EU2)(Ex, Ey),
dβs

dt
(Ex),

dβs

dt
(Ey)
}
,

where βi −βs is the discrete analog of the gradient.

4. Equations of motion

The equations of motion result from the principle of virtual power which involves the powers of the
internal forces, the exterior forces, and the acceleration forces and which yield the introduction of new
internal forces which describe the evolution and interaction of damage variables.

4.1. Virtual power of the internal forces. Both volume damage and surface damage result from mi-
croscopic motions whose power is taken into account in the power of the internal forces. We have
chosen the velocities dβ/dt to account for the microscopic velocities at the macroscopic level. Assuming
EV = ( EV1, EV2) and γ = (γ1, γ2, γs) to be macroscopic and microscopic virtual velocities, the virtual power
of the internal forces, which is a linear function of the virtual velocities, is chosen to be

Pint =−

∫
�1

σ1 : D( EV1)d�−
∫
�1

B1γ1+ EH1 · grad γ1d�

−

∫
�2

σ2 : D( EV2)d�−
∫
�2

B2γ2+ EH2 · grad γ2d�

−

∫
∂�1∩∂�2

ER( EV2− EV1)d0−
∫
∂�1∩∂�2

Bsγs + EHs · grads γs + B1,s(γ1− γs)+ B2,s(γ2− γs)d0

+

∫
∂�1∩∂�2

∫
∂�1∩∂�2

M(Ex, Ey)D1,2( EV1, EV2)(Ex, Ey)d0(Ex)d0(Ey)

+

∫
∂�1∩∂�2

∫
∂�1∩∂�2

Bs,1(Ex, Ey)γs(Ex)+ Bs,2(Ex, Ey)γs(Ey)d0(Ex)d0(Ey),
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where

(D( EV ))i, j =
1
2
(
∂Vi

∂x j
+
∂V j

∂xi
)=

1
2
(Vi, j + V j,i )

are the classical strain rates. The different quantities which contribute to the power of the internal forces
are products of kinematic quantities by internal forces. Kinematic quantities are those which intervene in
the motion we intend to describe. Their choice is of paramount importance to the predictive capability of
the theory. They are chosen following the experimental phenomena of volume and surface deformations
together with volume and surface damage, that is, microvoiding and microcracking. Thus the model
includes quantities with surface and volume densities which depend on the quantities we have chosen to
describe the evolutions or the deformations of the system. Some are classical and others are new. Also,
most are local but a few are nonlocal because there is a nonlocal kinematic quantity. Let us comment on
the different power densities:

• The usual strain rate D introduces the stress σ .

• The damage velocity, dβ/dt is a scalar, thus the associated internal force is also a scalar, B. It is a
mechanical work, specifically, the internal damage work which is responsible for the evolution of
the damage in the volume and in the surface.

• The gradient of the damage velocity, grad(dβ/dt) is a vector, thus the internal force is a vector,
EH . It is a work flux vector which is responsible for the interaction of the damage at a point on the

damage of its neighborhood. Its physical meaning is to be given by the boundary condition of the
equation of motion just as the physical meaning of the stress is given by the boundary condition of
the equation of motion.

• The gap velocity EU2− EU1 on the contact surface introduces the classical macroscopic interaction
force ER.

• The difference between the damage velocities dβi/dt − dβs/dt introduces a damage work flux on
the surface Bi,s , which describes the influence of the volume damage on the surface damage.

• The nonlocal elongation velocity, D1,2( EU1, EU2)(Ex, Ey) introduces a nonlocal scalar M(Ex, Ey) internal
force. It describes the effects of the elongation, and results in the equations of motion as a classical
force. The interaction macroscopic mechanical force has a nonlocal part and a classical local part,
the force ER (see Equation (5)). Since we are going to assume the internal force M(Ex, Ey) depending
on the surface damage βs , it is wise to add an extra nonlocal power depending on damage velocity
dβs/dt . It describes the effect of damage at point Ex on damage at point Ey. The internal forces
Bs,i (Ex, Ey) have the same effect than M : they introduce a nonlocal internal source of damage work.
The microscopic mechanical force has a nonlocal part and three local parts, Bs due to the glue and
the two Bi,s due to the interactions which the volumes (see Equation (7) below).

Note that even if the internal forces are numerous and some are unusual, they are all simple and
precisely chosen to take into account a particular aspect of the coupling of volume and surface, and of
the microscopic and macroscopic evolution of the system.

4.2. Virtual power of the exterior forces. We assume no exterior microscopic surfacic or volumic source
of damage, such as radiative, electrical or chemical damaging actions. Thus the power does not depend
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on γ , and we have

Pext =

∫
�1

Ef1 EV1d�+
∫
∂�1\(∂�1∩∂�2)

Eg1 EV1d0+
∫
�2

Ef2 EV2d�+
∫
∂�2\(∂�1∩∂�2)

Eg2 EV2d0,

where the Ef and Eg are the body and surface exterior forces.

4.3. Virtual power of the acceleration forces. For the sake of simplicity, we assume a quasistatic prob-
lem. Thus

Pacc = 0.

4.4. The principle of virtual power and the equations of motion. The principle of virtual power

Pacc = Pint +Pext , for all EV1, EV2, γ1, γ2, γs,

gives three sets of equations of motion. By choosing convenient virtual velocities, we obtain

div σi + Efi = 0, in �i , (1)

−Bi + div EHi = 0, in �i , (2)

σi ENi = Egi , in ∂�i\(∂�1 ∩ ∂�2), (3)

EHi ENi = 0, in ∂�i\(∂�1 ∩ ∂�2), (4)

where the ENi are the outward normal to the �i . Equations (1)–(4) are the volume equations of motion
accounting for macroscopic and microscopic effects. The equation of motion (3) gives the physical
meaning of the stress tensor. In the same way, the equation of motion (4) gives the physical meaning of
vector EH : its scalar product with vector EN is the amount of work which is provided to the domain with
exterior normal EN by microscopic motions. These microscopic motions may be due either to macroscopic
deformations (as in the examples given below), or to radiative, electrical, chemical, and optical actions.

On surface ∂�1 ∩�2, the boundary conditions for the volume equations of motion (1) and (2), as well
as the surface equation of motion, involve nonlocal forces. For the volume equations of motion (1), the
boundary conditions are

σ1 EN1(Ex)= ER(Ex)+
∫
∂�1∩∂�2

2(Ex − Ey)M(Ex, Ey)d0(Ey), Ex ∈ ∂�1 ∩ ∂�2,

σ2 EN2(Ey)=− ER(Ey)+
∫
∂�1∩∂�2

2(Ey− Ex)M(Ex, Ey)d0(Ex), Ey ∈ ∂�1 ∩ ∂�2. (5)

As already mentioned, the stress σi ENi on the contact surface has a local part ER and a nonlocal part∫
∂�1∩∂�2

(−1)i 2 (Ey− Ex)M(Ex, Ey)d0(Ex).

The boundary conditions for the equation of motions (2) in ∂�1 ∩ ∂�2 are

EH1 EN1 =−B1,s, EH2 EN2 =−B2,s, (6)
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and a surface equation of motion with a boundary condition on the boundary of the contact surface
∂(∂�1 ∩ ∂�2),

−Bs(Ex)+divs EHs(Ex)+B1,s(Ex)+B2,s(Ex)−
∫
∂�1∩∂�2

Bs,1(Ex, Ey)+Bs,2(Ey, Ex)d0(Ey)=0, in ∂�1∩∂�2,

EHs Ens = 0, in ∂(∂�1 ∩ ∂�2), (7)

where divs is the surface divergence and Ens is normal vector to the boundary ∂(∂�1 ∩�2). As already
mentioned, the internal source of damage on the contact surface has three local parts −Bs(Ex) due to the
glue and B1,s(Ex), B2,s(Ex) due to the two neighboring volumes, and a nonlocal part∫

∂�1∩∂�2

Bs,1(Ex, Ey)+ Bs,2(Ey, Ex)d0(Ey).

Of course, the opposite of the damage work B1,s(Ex) and B2,s(Ex) which are provided to the glue by the
two neighboring volumes, are provided by the glue to the volumes by Equations (6) and (7).

Constitutive laws are needed for the numerous interior forces. As usual, we choose to define them
with free energies 9 depending on state quantities E and pseudo-potential of dissipation 8 depending
on velocities δE .

5. The constitutive laws

Since the thermal phenomena are not taken into account, the second law of thermodynamics for the
domains and the interface are [Frémond 2001]

d9i

dt
(Ei )≤ σi D

(
EU1

)
+ Bi

dβi

dt
+ EHi grad

dβi

dt
, in �i , (8)

d9s

dt
(Es)≤ ER

(
EU2− EU1

)
+ Bs

dβs

dt
+ EHs grads

dβs

dt

+ B1,s

(
dβ1

dt
−

dβs

dt

)
+ B2,s

(
dβ2

dt
−

dβs

dt

)
, in ∂�1 ∩ ∂�2 , (9)

d9s,1,2

dt

(
Es,1,2

)
(Ex, Ey)≤−M(Ex, Ey)D1,2

(
EU1, EU2

)
(Ex, Ey),

− B1,s(Ex, Ey)
dβs

dt
(Ex)− B2,s(Ex, Ey)

dβs

dt
(Ey) , in (∂�1 ∩ ∂�2)× (∂�1 ∩ ∂�2) . (10)

We use Equations (8)–(10) to define the constitutive laws with pseudo-potential of dissipation. The + or
− sign appearing in the constitutive laws results from the + or − sign in the right sides of the inequalities,
and right sides are the opposite of the densities of the virtual powers.
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The free energy and pseudo-potential of dissipation of the domains are, respectively,

9i (Ei )=9i (εi , βi , grad βi ) ∈ wi (1−βi )+
ki

2
(grad βi )

2
+ I (βi )+

βi

2

{
λi (tr εi )

2
+ 2µiεi : εi

}
,

8i (δEi )=8i

(
dβi

dt

)
=

ci

2

(
dβi

dt

)2

+ I−

(
dβi

dt

)
,

where λi and µi are the Lamé parameters. The quantities wi are initial damage thresholds expressed in
terms of volumetric energies. They are equivalent to the initial thresholds expressed in terms of damage
forces or stresses [Lemaitre 1992; Voyaiadjis et al. 1998; Lemaitre and Desmorat 2005]. The quantities
ci are the viscosity parameters of damage and ki measure the local influences of a material point on
its neighborhood. The ci quantities control the velocity of the phenomena. If they are large, damage
evolution is slow and if they are small, damage evolution is very fast. The values of ci can be measured
with experiments performed at different velocities. The extension parameters ki control the size of the
transition zone between sound material and damaged material. If the ki are large, damage is diffuse and
spread in the whole domain. If the ki are small, the damage is concentrated in thin zones which may
represent fractures. The values of ki can be measured with structure experiments, but not with sample
experiments where the state quantities are homogeneous.

The functions I and I− are the indicator functions of the intervals [0, 1], (I (γ )= 0, if 0≤ γ ≤ 1,
and I (γ )=+∞, if γ /∈ [0, 1]), and of [−∞, 0] = R−, (I−(γ )= 0, if γ ≤ 0 and I−(γ )=+∞, if γ > 0)
(see [Moreau 1966]).

The free energies and pseudo-potentials are the most simple energies coupling elasticity and damage.
They give the constitutive laws

σi =
∂9i

∂εi
= βi {λi tr εi 1+ 2µiεi } ,

Bi =
∂9i

∂βi
+

∂8i

∂(dβi/dt)

∈ −wi +
1
2

{
λi (tr εi )

2
+ 2µiεi : εi

}
+ ∂ I (βi )+ ci

(
dβi

dt

)
+ ∂ I−

(
dβi

dt

)
,

EHi =
∂9i

∂ (gradβi )
= ki gradβi .

where 1 is the identity matrix.
In the previous formula, ∂ I and ∂ I− are the subdifferential sets or the sets of the generalized derivatives

of the indicator functions I , (∂ I (β)={0}, if 0<β < 1; ∂ I (0)=R−; ∂ I (1)=R+= [0,+∞[; ∂ I (β)=∅,
if β /∈ [0, 1]) and I−, (∂ I−(x)= {0}, if x < 0 and ∂ I−(0)= [0,+∞[). These generalized derivatives are
the reactions to the internal constraints 0≤ βi ≤ 1 and dβi/dt ≤ 0. The latter internal constraint accounts
for the irreversibility of damage. The reactions are different from 0 only for the extreme values of the
inequalities.
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The free energy and pseudo-potential of the glued contact surface are

9s(Es)=9s
(
Eu2− Eu1, βs, grads βs, β1−βs, β2−βs

)
= ws(1−βs)+

ks

2

(
grads βs

)2
+ I (βs)+ I−

(
(Eu2− Eu1) · EN2

)
+
βs k̂s

2
(Eu2− Eu1)

2
+

ks,1

2
(β1−βs)

2
+

ks,2

2
(β2−βs)

2 ,

8s(δEs)=8s(
dβs

dt
)=

cs

2

(
dβs

dt

)2

+ I−

(
dβs

dt

)
,

where ks is the local surface extension or interaction coefficient, ws the Dupré’s energy accounting
for the glue cohesion, cs the viscosity of the adhesive evolution, ks,1 and ks,2 are the surface-volume
interaction parameters, and k̂s represents the rigidity of the bonds between the two solids. The function
I−((Eu1− Eu1) · EN2) takes into account the impenetrability of the two domains on their contact surface and
function I−(dβs/dt) implies irreversibility of damage.

The expressions of the free energy and pseudo-potential of dissipation are the simplest to give a model
where damage is coupled with elasticity. They account for elastic, viscous and damage properties. The
resulting constitutive laws are

ER =
∂9s

∂(Eu2− Eu1)
∈ βs k̂s (Eu2− Eu1)+ ∂ I−

(
(Eu2− Eu1) · EN2

)
EN2,

Bs =
∂9s

∂βs
+

∂8s

∂(dβs/dt)
∈ −ws +

k̂s

2
(Eu2− Eu1)

2
+ ∂ I (βs)+ cs

dβs

dt
+ ∂ I−

(
dβs

dt

)
,

EHs =
∂9s

∂
(
grads βs

) = ks grads βs,

B1,s =
∂9s

∂(β1−βs)
= ks,1 (β1−βs) ,

B2,s =
∂9s

∂(β2−βs)
= ks,2 (β2−βs) .

The force ∂ I−((Eu2− Eu1) · EN2) EN2 is the impenetrability reaction. Note that it is active only when there is
actually contact, that is, when (Eu2− Eu1) · EN2 = 0.

The nonlocal free energy on the glued contact surface is

9s,1,2(Es,1,2(Ex, Ey))=
ks,1,2

2
g2(Ex, Ey) (βs(Ex)βs(Ey)) exp(−

|Ex − Ey|2

d2 ),

with

g(Ex, Ey)= 2(Ey− Ex) · (Eu2(Ey)− Eu1(Ex)).

The exponential function with distance d, describes the attenuation of nonlocal actions with distance
|Ex − Ey| between points Ex and Ey. Assuming no dissipation with respect to δEs,1,2(Ex, Ey), we have the
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constitutive law

−Bs,1(Ex, Ey)=
∂9s,1,2(Es,1,2(Ex, Ey))

∂βs(Ex)
=

ks,1,2

2
g2(Ex, Ey)βs(Ey) exp

(
−
|Ex − Ey|2

d2

)
,

−Bs,2(Ex, Ey)=
∂9s,1,2(Es,1,2(Ex, Ey))

∂βs(Ey)
=

ks,1,2

2
g2(Ex, Ey)βs(Ex) exp

(
−
|Ex − Ey|2

d2

)
,

−M(Ex, Ey)=
∂9s,1,2(Es,1,2(Ex, Ey))

∂g(Ex, Ey)
= ks,1,2g(Ex, Ey)(βs(Ex)βs(Ey)) exp

(
−
|Ex − Ey|2

d2

)
.

The state quantities we use have dimension. The time and length scales related to the classical quanti-
ties are those of solids mechanics, in particular, of civil engineering. The new length scales are related to
the gradient of damage, which corresponds to the size of the influence zone of damage (a few centimeters
in our examples), and to the effect of damage elongation (on the order of millimeters in our examples).
The first length scale is already known. To measure it, structure experiments have to be performed; in our
case we used four point bending experiments. The second length scale has also been estimated with the
four point bending experiments. Systematic research is under way at the Laboratoire Central des Ponts et
Chaussées to estimate the amplitude of the variations of these parameters related to the durability of glued
structures. Moreover, the parameters ci may be seen as the characteristic times of the processes. They
can be identified by performing experiments at different loading velocities, specifically, small velocities
to remain in a quasistatic situation.

Let us note that all the constitutive laws involve the reactions to the internal constraints when needed,
which are clearly non linear relationships, and linear relationships between the forces and the state
quantities and velocities. Thus they are simple and we think that they have to account for the main
phenomena: non linear constitutive laws are to be chosen only to make the results more adapted but
the linear relationships have to be sufficient in a first step to capture the basic physical features. More
complicated constitutive law has been considered in [Nedjar 2001; 2002]. For the sake of simplicity, we
assume the simplest case of dissipation that is, only the dissipation with respect to the dβ

/
dt’s and not

the dissipation with respect to the gradient of the dβ
/

dt’s. This assumption minimizes the number of
the parameters of the predictive theory, and it is sufficient to ensure both mechanical and mathematical
coherency [Bonetti et al. 2006; Bonetti and Schimperna 2004; Bonetti et al. 2005; Frémond and Nedjar
1996].

6. The equations

The principle of virtual power and a proper use of the constitutive laws leads to three sets of equations of
motion; the first one is the classical equation of motion and the others are nonstandard partial differential
equations describing domains and interface damage evolution.

6.1. In the domains. The equations of the evolution of damage for the domains obtained by using the
constitutive laws and equilibrium equations are

div(βi {λi trεi (Eui )1+ 2µiεi (Eui )})+ Efi = 0, (11)
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ci
dβi

dt
− ki1βi + ∂ I (βi )+ ∂ I−

(dβi

dt

)
3 wi −

1
2

{
λi (trεi )

2
+ 2µiεi : εi

}
, (12)

with initial conditions

βi (x, 0)= β0
i (x), in �i ,

βs(x, 0)= β0
s (x), in ∂�1 ∩ ∂�2,

and boundary conditions

σi ENi = Egi , in ∂�i\(∂�1 ∩ ∂�2),

ki
∂βi

∂Ni
= 0, in ∂�i\(∂�1 ∩ ∂�2),

where the Efi and Egi are the exterior body forces and surface traction.
The elements ∂ I (βi ) and ∂ I−(∂βi

/
∂t) contain reactions which forces βi to remain between 0 and 1

and ∂βi
/
∂t to be negative, to account for the irreversibility of damage. The source of damage in the

right-hand side of (12) is a deformation energy that well agrees with experimental results. This model is
sufficient to describe the damage phenomena during multi-axial loading and unloading without changing
the sign of exterior actions. In case the exterior actions change sign, a slightly more sophisticated theory
is to be used following [Frémond and Nedjar 1996; Frémond 2001]. It involves the positive and negative
parts of the deformations. The positive and negative part of a tensor are obtained after diagonalization
(see [Frémond and Nedjar 1996] for details), implying the evaluation of the principal deformations. This
is a linear algebra result which holds for symmetric matrices. In particular, considering the positive (or
negative) part of the strain tensor leads to an elastic-damage model that exhibits dissymmetric behaviors
between tension and compression. The threshold of damage in compression is greater than the one in
tension due to a different source term in Equation (12) (see [Frémond and Nedjar 1996]).

6.2. On the contact surface. With the previous constitutive laws, the damage evolution law for the
cohesive interface reads, [Freddi and Frémond 2005]

cs
dβs

dt
− ks1sβs + ∂ I (βs)+ ∂ I−

(dβs

dt

)
3 ws −

k̂s

2
(Eu2− Eu1)

2
− ks,1 (βs −β1)− ks,2 (βs −β2)

−

∫
∂�1∩∂�2

ks,1,2

2
(g2(Ex, Ey)+ g2(Ey, Ex))βs(Ey) exp

(
−
|Ex − Ey|2

d2

)
d0(Ey), (13)

where 1s is the surface Laplace operator. The last term is not 0 when Eu2 = Eu1, and is responsible for the
damage resulting from elongation. The glue damage source in the right hand side results from the gap
between the two solids, from the elongation (the nonlocal effect) and from the flux of damaging work
coming from the concrete. This flux is proportional to the difference of damage between the concrete and
the glue (see Figure 1). Thus it is more difficult to damage the glue when the concrete is not damaged.
In this case, Equation (13) may be interpreted with a glue threshold equal to ws + ks,1+ ks,2, whereas it
is ws when the concrete is completely damaged. Indeed, in some experiments intended to separate two
adhering pieces, damage of the pieces is produced to facilitate surface damage. The contact boundary
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Figure 1. Local interaction between the damage at a material point on the damage on
its neighborhood (arrows in the domain), and the damage interaction between domain
and interface (arrows in the interphase).

conditions on the glued contact surface ∂�1 ∩ ∂�2 are

σ1 EN1(Ex) ∈ βs k̂s(Eu2− Eu1)+ ∂ I−((Eu2− Eu1) · EN2) EN2

−

∫
∂�1∩∂�2

2(Ex − Ey)ks,1,2g(Ex, Ey)
(
βs(Ex)βs(Ey)

)
exp

(
−
|Ex − Ey|2

d2

)
d0(Ey) (14)

for Ex ∈ ∂�1 ∩ ∂�2,

σ2 EN2(Ey) ∈ −βs k̂s(Eu2− Eu1)− ∂ I−
(
(Eu2− Eu1) · EN2

)
EN2

−

∫
∂�1∩∂�2

2(Ey− Ex)ks,1,2g(Ex, Ey)(βs(Ex)βs(Ey)) exp
(
−
|Ex − Ey|2

d2

)
d0(Ex) (15)

for Ey ∈ ∂�1 ∩ ∂�2,

k1
∂β1

∂N1
= ks,1(βs −β1), k2

∂β2

∂N2
= ks,2(βs −β2), ks

∂βs

∂Ns
= 0 ∈ ∂

(
∂�1 ∩ ∂�2

)
. (16)

For the sake of simplicity, we neglect in the numerical simulations the nonlocal mechanical effect
in surface stresses (14) and (15) because it is negligible compared to the local effect. The values of
parameters k̂s � ks,1,2 of the constitutive laws we choose in the sequel agree with this assumption (see
Table 1). Thus the stress on the interface 0s becomes the sum of the reaction to the noninterpenetration
condition (Eu2− Eu1) · EN2 ≤ 0 and of the elastic interaction βs k̂s (Eu2− Eu1), with rigidity proportional to βs ,
the fraction of undamaged bonds between the two solids.

Boundary condition (16) means that the damaging energy flux in the concrete is proportional to the
difference of damage between the glue and the concrete. Parameter ks,i quantifies the importance of
the interaction of the volume and surface damages. When ks,1 = 0 there is no influence of the volume
damage on the surface damage. The damage equations are uncoupled and the interface acts as a damage
barrier (see the four point bending test in Section 7).
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L (mm) 400
l (mm) 300
h (mm) 50
d (mm) 100
t (mm) 100
E (MPa) 38000
ν 0.2
c (MPa· s) 2× 10−3

k (mm) 0.3
w (MPa) 2× 10−5

Pone
max (kN) 14.3

P two
max (kN) 18.2

k̂‖s (MPa · mm−1) 1.9× 103

k̂⊥s (MPa · mm−1) 1.9× 103

cs (MPa · mm· s) 7.2× 10−2

ks (MPa · mm2) 0.1
ws (MPa · mm) 1.1× 10−2

ks,1 (MPa · mm) 0.1
ks,2 (MPa · mm) 0.1
d (mm) 10
ks,1,2 (MPa/mm) 20

Table 1. Left: Geometrical, mechanical parameters of the two concrete pieces and max-
imum loads for four-point bending tests of Figure 2. Right: Glue parameters for the
same tests.

In the classical interface problem (that is, one without damaging materials) it is possible to obtain a
bilateral connection simply by imposing k̂s ∼=∞. However, in the case we consider — the damaging
phenomena of the two materials — a perfect interface is obtained by imposing not only k̂s ∼=∞ but also
ks,1 ∼= ∞ and cs = ws = ks ∼= 0, in order to have the continuity of damage and of its flux across the
interface.

As a test to underline the physical meaning of the damage interaction parameters, we consider two
square pieces of concrete [0, 0.05 m]2 connected by a cohesive interface in a pure traction test, that is,
where opposite vertical tractions are applied along the horizontal sides of the two bodies. We suppose
that the interface is very strong such that no damage appears along the contact surface. Normally, with
the two bodies subjected to nearly uniform traction, a diffused damage should involve the whole domains.

Figure 2. Four point bending test for sample of thickness t . See Table 1 for parameter
values for numerical and experimental results.
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Figure 3. Damage evolution in pure-traction test: ks,1 = ks,2 = 0.05. Note the (green)
less damaged zone due to the strong glue connecting the two specimen. The left figure
represents an initial damaged state while the right figure shows the complete damaged
state. The glue acts as a reinforcement for the material.

    

  

Figure 4. Damage evolution in pure-traction test: ks,1 = ks,2 = 0.2. The left figure
represents an initial damaged state while the right figure shows the complete damaged
state. The (green) less damaged zone is more important when the interaction parameters
ks,i are large. The glue acts like a reinforcement for the material, but is stronger than the
case shown in Figure 3.
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Instead, as shown in the Figures 3 and 4, the interaction between the glue and the materials determines the
presence of more resistant zones next to the interface. Particularly, the zone is larger and the phenomenon
more pronounced for higher ks,1 and ks,2 values.

In view of the examples and experiments investigated in the sequel, we define three models which
differ by their surface properties:

• Model a: uncoupled without elongation effects where ks,1 = 0, ks,2 = 0, ks,1,2 = 0;

• Model b: coupled without elongation effects where ks,1,2 = 0;

• Model c: coupled with elongation effects, that is, the complete model with every physical action.

All other quantities are not zero in any of the models.

7. Numerical simulations and some experimental results

The proposed model has been implemented in the finite element code CESAR-LCPC, [Humbert et al.
2005]. The coupled damage-mechanics model is solved in a semicoupled fashion. Given a time incre-
ment, the motion equation (11) is solved first assuming that the damage variables are constants. This
equation is solved with a quasi-Newton method. Moreover, in order to deal with the unilateral boundary
conditions an ad hoc Uzawa algorithm has been implemented. Afterwards, the damage equations (12)
and (13) are solved via a Cranck-Nicholson scheme, and boundary conditions (16) are included explicitly.

Actually, mathematical results concerning the existence of the solution, the proof that the problem is
well posed, and numerical verification will appear in a forthcoming paper [Bonetti et al. 2006].

In the following simulations the loads applied are always monotonic and do not change in sign. In
particular, all the analysis have been carried out under displacement control. An explicit linear relation-
ship between the time and the imposed displacement is introduced. Moreover, plain strain hypothesis is
assumed. Finally, the interface stiffness matrix k̂s is composed by normal k̂⊥s and tangential component
k̂‖s with respect to the surface orientation. It should be mentioned that the damage scale in each iso-value
picture is always represented by green-to-red variation, but it is representative of different damage values
and the deformation scale for horizontal and vertical displacement is adapted to numerical results.

7.1. Four-point bending test. The goal of this analysis is to validate the model and to evaluate the
influence of the enhancements to it that we introduced: the coupling between the damage in the domains
and the damage in the interface and the nonlocal elongation contribution to interface damage evolution.
In particular, this test shows the importance of the interaction parameters ks,1 and ks,2 which couple the
damages of solids 1 and 2. When solid 1 becomes damaged in the neighborhood of solid 2, solid 2 also
becomes damaged. Also the test shows that it is more difficult to damage the glue when the concrete is
not damaged than when the concrete is damaged. As already noted, the glue cohesion or threshold is
ws + ks,1+ ks,2 when the concrete is not damaged whereas it is ws when concrete is completely damaged
in the two solids.

7.1.1. Test setup and experimental results. Figure 2 on page 1218 shows a classical four-point bending
test. Experimental tests performed by Thaveau [2005] have been considered. We used two different test
configurations: one concrete specimen, and two concrete specimens connected with via epoxy glue. The
maximum loads obtained, the geometrical and mechanical properties of the specimens are reported in
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Figure 5. Experimental tests: one specimen on the left; two glued specimens on the
right [Thaveau 2005].

Table 1. It should be noted that the maximum load is greater for the glued concrete specimen. Figure 5
show clearly the failure mechanism for the two configurations. In both cases, a vertical fracture in the
middle of the specimens appears which propagates from the bottom to the upper face of the beam.

7.1.2. Numerical results. The load versus displacement curves obtained from the numerical simulations
for single and double specimens are shown in Figure 6. In particular, the case of the uncoupled model

� ���� ���� ����

u (mm)

�

�

�

� �
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Experimental max Load

One specimen

Two specimen glued

Figure 6. Load versus displacement curves for single and double glued specimens in
four point bending tests. The short dashed line is the curve for one specimen, while
the red line, the long dashed line, and the straight line are the load versus displacement
curves for two glued pieces of concrete obtained with models a, b and c, respectively.
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Figure 7. Four point bending test. Damage field at displacement u = 0.03 mm for model
a (uncoupled damage without elongation effect), model b (coupled damage model for
concrete and glue without elongation effect), and model c (coupled damage model for
concrete and glue with elongation effect). At the beginning, the contact surface acts as a
damage barrier.

presents a very strange hill in the softening branch. This unrealistic behavior completely vanishes when
we consider model c with both enhancements, and it is less pronounced in the coupled model b where the
nonlocal elongation effect is neglected. The horizontal paths in load versus displacement curves represent
structural effects and interplay between surface and volume damage. A similar effect is exhibited in
experiments [Gonzalez et al. 2005]. Moreover, for large displacement values the hypothesis of small
deformation is no longer sufficient fully to completely describe the failure phenomena [Nedjar 2002].

The damage fields of the two concrete domains for the damage models uncoupled (model a), coupled
(model b) and coupled with the nonlocal elongation contribution (model c) are shown in Figures 7–8
for different displacement values: 0.03, 0.045, 0.06 mm. These figures clearly show the inability of the
uncoupled model to describe correctly the physical failure phenomenon. In fact, the interface acts as a
barrier to the damage propagation, causing the entire damaging of the inferior specimen. On the contrary,
the coupling between damages allows correct description of the damage evolution inside the domains.
Additional comments are reported in captions. The interface damage evolutions for models b and c are
reported in Figure 9.

For model b, the damage of the interface is almost incomplete (that is, βs 6= 0) even if the fracture has
already crossed the glue thickness. To capture the correct behavior, in the coupled model it is necessary
to introduce also the nonlocal elongation contribution. In this test, model a presents no glue damage at
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Figure 8. Four point bending test. Damage field at displacement u = 0.045 mm (top)
and u = 0.06 mm (bottom) for model a (uncoupled damage without elongation effect),
model b (coupled damage model for concrete and glue without elongation effect), and
model c (coupled damage model for concrete and glue with elongation effect).
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Figure 9. Four point bending test. Left: Surface damage field βs along the interface
for model b (coupled damage model for concrete and glue without elongation). Right:
Surface damage field βs along the interface for model c (coupled damage model for
concrete and glue with elongation). The effect of the elongation is to enlarge the damage
zone of the glue, which is completely broken in the middle of the specimen.

Figure 10. Four point bending test. Horizontal displacement field evaluated at different
equilibrium points (ū = 0.03, 0.045, 0.06 mm) for model c. The displacement disconti-
nuity of the horizontal displacement accounts for the fracture in the middle of the sample
(see experimental results of Figure 5).



DAMAGE IN DOMAINS AND INTERFACES 1225

Figure 11. Pull test. The load P is applied on the right and produces displacement u.

L (mm) 400
h (mm) 50
Eup (MPa) 40000
Edw (MPa) 35000
ν 0.2
c (MPa· s) 2× 10−3

k (mm) 0.3
wup (MPa) 2× 10−3

wdw (MPa) 2× 10−5

k̂‖s (MPa· mm−1) 2.× 102

k̂⊥s (MPa· mm−1) 5.× 102

cs (MPa· mm· s) 7.2× 10−3

ks (MPa · mm2) 0.1
w

strong
s (MPa · mm) 10.3× 10−3

wweak
s (MPa · mm) 5.15× 10−3

ks,1 (MPa · mm) 0.1
ks,2 (MPa · mm) 0.1
d(mm) 5
ks,1,2 (MPa/mm) 10

Table 2. Left: Geometrical, mechanical parameters of the two concrete pieces in Figure
11. Right: Glue parameters for the two pull tests in the same.

all because Eu1− Eu2 ∼= 0. Horizontal displacement fields are shown in Figure 10 for different values of
applied vertical displacement ū = 0.03, 0.045, 0.06 mm. The discontinuity of the displacement clearly
shows the fracture propagation in the middle of the specimen.

7.2. Pull test. A vertical force is applied to the free right corner of the upper piece of concrete, Figure
11. The relative stiffness of the concrete and of the glue governs the behavior of the structure. The
geometrical and mechanical properties of the specimens of two tests are reported in Table 2. If the glue
is strong and the concrete is weak, damage occurs in concrete just under the contact surface (Figure
12), in full agreement with experimental results [Theillout 1983]. On the other hand, if the glue is weak
and the concrete is solid, separation of the two pieces occurs on the contact surface and the concrete is
not damaged (Figure 13). Interface damage evolution is reported in Figure 14. Observe that even if the
global structural response for the two simulations is very similar (see Figure 15) the failure mechanisms
are completely different.
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Figure 12. Delamination with strong glue. Top: Damage field at displacement (a)
u = 0.0625 mm, and (b) u = 0.3 mm. A thin damaged zone appears under the inter-
face. Bottom: Deformed configurations at displacement (a) u = 0.0625 mm and (b)
u = 0.3 mm. The concrete breaks just under the contact surface while the glue remains
intact. In this simulation no damage appears in the interface, so βs = 1.

7.3. FRP-concrete delamination test. External bonding of fiber-reinforced polymer (FRP) plates or
sheets has recently emerged as a popular method for strengthening reinforced concrete (RC structures).
The behavior of such FRP-strengthened RC structures is often controlled by the behavior of the interface
between FRP and concrete, which is commonly studied through a pull test in which an FRP sheet or plate
is bonded to a concrete prism and is subjected to tension. Figure 16 shows a typical configuration for a
pull-pull delamination test, [Point and Sacco 1996]. Left and bottom sides of the specimen have been
fixed in order to have no displacements in the direction normal to the surface and free displacements
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Figure 13. Delamination with weak glue. Top: Deformed configurations at displace-
ment (a) u = 0.0625 mm and (b) u = 0.3 mm. The glue breaks progressively and there
is almost no damage within the concrete. The straight lines connecting the two pieces of
concrete represent the gap. Eu2− Eu1.

tangent to it. Existing studies reported in [Yao et al. 2005] suggest that the main failure mode of FRP-
to-concrete bonded joints in pull tests is concrete failure under shear which occurs generally at a few
millimeters from the adhesive layer as shown in Figure 17 (see [Ferracuti et al. 2006]).
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Figure 14. Delamination with weak glue. Damage interface evolution of the glue. The
damage field βs(x/ l, t) is plotted at different times t .
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Figure 15. Pull test. Load versus displacement curves obtained for different stiffness
values. It is important to observe that even if the global structural response for the two
simulations is very similar, the failure mechanisms are completely different, as outlined
from the previous Figures 12, 13, and 14.

The geometrical and mechanical properties of the specimens are reported in Table 3. The numerical
simulation (Figures 18 and 19) clearly shows a thin damaged zone in the concrete as well as large
displacements. The damaged zone corresponds to a small layer of concrete which remains glued on the
FRP in the experiments.

L (mm) 100
d(mm) 100
h (mm) 50
E (MPa) 33640
ν 0.2
c (MPa· s) 2× 10−3

k (mm) 0.2
w (MPa) 4× 10−5

t (mm) 1.016
E (MPa) 230000
ν 0.3
c (MPa· s) 2× 10−3

k (mm) 0.1
w (MPa) 2× 10−2

k̂‖s (MPa· mm−1) 5.× 102

k̂⊥s (MPa· mm−1) 1.× 103

cs (MPa· mm· s) 7.2× 10−2

ks (MPa · mm2) 0.1
ws (MPa · mm) 10.3× 10−4

ks,1 (MPa · mm) 0.1
ks,2(MPa · mm) 0.2
d (mm) 5
ks,1,2 (MPa/mm) 20

Table 3. Geometrical, mechanical parameters of the concrete for the pull-pull test (left),
the FRP (middle), and the FRP-concrete pull-pull test (right).
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Figure 16. FRP-concrete pull-pull delamination test [Freddi and Savoia 2006].

Figure 17. FRP-concrete pull-pull delamination test: experimental failure mode [Yao
et al. 2005].

8. Conclusions

The predictive model which has been derived with the continuum mechanics theory involves only macro-
scopic quantities. The few parameters of the model can be measured with sample and structure ex-
periments. The numerous results concerning different structures and experiments show the ability of
the model to deal with engineering problems and predict failure modes. As outlined in the examples,
once the damage is diffused and very low load bearing capacity remains, large displacement values may
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Figure 18. FRP-concrete pull-pull delamination test. Damage evolution. A thin zone is
damaged under the reinforcement.

appear such that the hypothesis of small deformations may no longer be sufficient to describe the failure
phenomena completely [Nedjar 2002]. In this case, large deformation theory should be considered.

Finally, this model is applicable to the design of concrete structures as well as other composite struc-
tures.
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Figure 19. FRP-concrete pull-pull delamination test. Deformed configurations. The
thin damaged zone under the reinforcement results in large deformation. The displace-
ment scale is different in each deformed mesh.
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ELASTIC FLEXURAL-TORSIONAL BUCKLING OF CIRCULAR ARCHES
UNDER UNIFORM COMPRESSION AND EFFECTS OF LOAD HEIGHT

MARK ANDREW BRADFORD AND YONG-LIN PI

A circular arch with in-plane radial loads uniformly distributed around the arch axis is primarily sub-
jected to uniform compression. Under this action, the arch may suddenly deflect laterally and twist out of
the plane of loading and fail in a flexural-torsional buckling mode. In most studies of the elastic flexural-
torsional buckling of arches under uniform compression, the directions of the uniformly distributed loads
are assumed to be unchanged and parallel to their initial directions during buckling. In practice, arches
may be subjected to hydrostatic or to uniformly distributed directed radial loads. Hydrostatic loads
always remain normal to the tangent of the deformed arch axis, while uniformly distributed directed
radial loads always remain directed toward a specific point during buckling. These uniform radial loads
may act at a load height, such as at the top surface of the cross-section. In this case, the radial loads
produce an additional torsional moment during buckling which affects the flexural-torsional buckling
of the arch. This paper uses both virtual work and static equilibrium approaches to study the elastic
flexural-torsional buckling, effects of the load height on the buckling of circular arches under uniform
compression (that is, produced by uniformly distributed dead or by directed radial loads), and closed
form solutions for the buckling loads are developed.

1. Introduction

An arch with in-plane radial loads q at a load height yq , uniformly distributed around the axis of a circular
arch, is primarily subjected to a uniform compression force Q = q(R− yq), as shown in Figure 1a, where
R is the radius of the initial curvature of the arch and2 is the included angle of the arch. Under this action,
the arch may suddenly deflect laterally and twist out of its plane of loading and fail in a flexural-torsional
buckling mode (Figure 1b). The elastic flexural-torsional buckling of arches under uniform compression
has been studied by a number of researchers. The static equilibrium approach was used by Vlasov
[1961], while an energy approach was used by other researchers [Timoshenko and Gere 1961; Yoo 1982;
Papangelis and Trahair 1987; Yang and Kuo 1987; Rajasekaran and Padmanabhan 1989; Kang and Yoo
1994; Bradford and Pi 2002]. With the exception of [Vlasov 1961], these studies conventionally assumed
that the directions of the uniformly distributed radial loads do not change and remain parallel to their
initial directions during buckling (Figure 1b (i)); this load case is called radial dead loads in this study
for convenience. In addition to the radial dead loads, the uniform compression in a circular arch may also
be assumed to be produced by hydrostatic or uniformly distributed directed radial loads, for example in
the case of submerged arches. In the case of hydrostatic loads (Figure 1b (ii)), the loads always remain

This work has been supported by a Federation Fellowship, an Australian Professorial Fellowship, and a Discovery Project
awarded to the first author by the Australian Research Council.
Keywords: buckling, circular arch, directed radial loads, flexural-torsional, hydrostatic loads, effect of load height, uniform

compression.
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compression

(b) Flexural-torsional buckling

Figure 1. Flexural-torsional buckling of arches under uniform compression.

normal to the tangent of the deformed arch axis during buckling. As proved by Bolotin [1963], when both
normal and tangential displacements at the boundaries vanish, hydrostatic loads are conservative because
they have potentials. Hence, hydrostatic loads acting on pin-ended or fixed arches, whose radial and axial
displacements vanish, are conservative. Timoshenko and Gere [1961] analyzed the in-plane buckling of
circular ring and arches under the hydrostatic loads, while Vlasov [1961] studied the flexural-torsional
buckling of circular arches under the hydrostatic loads. It is worth pointing out that Vlasov’s result
has been referenced by a number of researchers as being the result for uniformly distributed radial dead
loads [Yoo 1982; Papangelis and Trahair 1987; Yang and Kuo 1987; Rajasekaran and Padmanabhan 1989;
Kang and Yoo 1994; Bradford and Pi 2002]. In the case of uniformly distributed directed radial loads
(Figure 1b (iii)), the loads are always directed to a specific point, such as the center of the initial curvature
of the arch during buckling. A load directed to a certain point during deformation has also been proved
to be conservative [Timoshenko and Gere 1961; Simitses 1976; Ings and Trahair 1987] because it also
has a potential. Ings and Trahair [1987] investigated the stability of beams and columns under directed
loading. Simitses [1976] and Simitses and Hodges [2006] studied the in-plane buckling of arches that
are subjected to uniformly distributed radial dead loads, uniformly distributed loads always directed to
the arch curvature center, and to hydrostatic loads. Simitses and Hodges [2006] also studied the flexural-
torsional buckling for end-loaded cases. Timoshenko and Gere [1961] investigated the flexural-torsional
buckling of arches with a narrow rectangular cross-section under the radial loads directed to the center of
the initial curvature of the arch. In the buckled configuration, hydrostatic loads and uniformly distributed
loads that are directed to the initial arch curvature center have lateral components in the opposite direction
to that of the lateral buckling displacements. These lateral components increase the resistance of the arch
to flexural-torsional buckling, and thus their effects on the flexural-torsional buckling of the arch have to
be considered in the buckling analysis. The uniform radial loads that produce uniform axial compression
in an arch do not necessarily act at the centroid, and they may act at a load height such as at the top
surface of the cross-section. In this case, the radial loads produce an additional torsional moment during
buckling which affects the flexural-torsional buckling behavior of the arch, and so the effects of the load
height on the flexural-torsional buckling of arches under uniform compression warrant investigation.
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Trahair and Papangelis [1987] and Trahair [1993] investigated effects of the load height on the flexural-
torsional buckling of arches under uniform compression produced by uniformly distributed radial dead
loads. However, comprehensive studies of the elastic flexural-torsional buckling of arches under uniform
compression produced by dead or directed uniformly distributed radial loads or by hydrostatic loads, and
of the effects of the load height on the flexural-torsional buckling, do not appear to have been reported.

The purpose of this paper is to use both virtual work and static equilibrium approaches to study the
elastic flexural-torsional buckling and the effects of the load height on the buckling of circular arches
under uniform compression produced by dead, or directed uniformly distributed radial loads, or by hy-
drostatic loads, and to derive the buckling loads in closed form. The principle of virtual work will lead to
the equilibrium equations in weak form, while the static equilibrium approach will lead to the differential
equilibrium equations directly.

2. Curvatures and strains

2.1. Rotations and curvatures. The basic assumptions used in this investigation are:

(1) Euler–Bernoulli bending theory and Vlasov’s torsion theory are used, so the cross-sections are as-
sumed to remain rigid in their plane (that is, not to distort during deformation), and local buckling
and/or effects of distortion of the cross-section are excluded;

(2) the arches are circular and of doubly symmetric uniform cross-section, so the centroid of the cross-
section coincides with its shear center;

(3) the height D of the cross-section is much smaller than both the length S and the radius R of the
initial curvature of the arch, that is, D/S� 1 and D/R� 1.

A body-attached curvilinear orthogonal axis system oxys is defined as follows. The axis os passes
through the locus of the centroids of the cross-section of the undeformed arch, and the axes ox and oy
coincide with the principal axes of the cross-section, as shown in Figures 1 and 2. In the undeformed
configuration, the axis oy is toward the center of the arch. After the deformation, the origin o displaces
laterally u, radially v, and axially w to o1 and the cross-section rotates through an angle φ, and so the
body-attached curvilinear orthogonal axis system oxys moves and rotates to a new position o1x1 y1s1, as
shown in Figures 2 and 3. In the axis system oxys, the initial curvature κx0 of the centroidal axis os of a
circular arch about the major principal axis ox is defined as positive (that is, in the direction of the minor
principal axis oy of the cross-section), and so κx0 = − 1/R for arches with the upward rise as shown in
Figure 1. This definition for the initial curvature is consistent with the definition of the curvature after
deformation.

A unit vector ps in the tangent direction of the axis os, and unit vectors px and py in the direction
of the axes ox and oy (Figures 2 and 3) are used as the fixed reference basis. They do not change with
the deformation, but their directions change from point to point along the arch axis os. In the deformed
configuration, a unit vector qs is defined in the tangent direction of the axis o1s1 of the axis system
o1x1 y1s1, and unit vectors qx and qy are defined in the principal axes o1x1, o1 y1 of the rotated cross-
section at o1, as shown in Figure 2. The unit vectors qx , qy , qs are attached to the arch and move with
it during the deformation with the vector qs , being normal to the cross-section at all times.
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Figure 2. Kinematics during buckling.

The rotation from the basis vectors px , py , ps in the undeformed configuration to the basis vectors qx ,
qy , qs in the deformed configuration (Figures 2 and 3) can be expressed [Pi and Bradford 2004] using a
rotation matrix R as qx

qy
qs

=
Rxx Rxy Rxs

Ryx Ryy Rys

Rsx Rsy Rss

px
py
ps

 , (1)

where

Rxx = (1− λû′2)C − λû′v̂′S, Rxy =−(1− λû′2)S− λû′v̂′C, Rxs = û′,

Ryx = (1− λv̂
′2
)S− λû′v̂′C, Ryy = (1− λv̂

′2
)C + λû′v̂′S, Rys = v̂

′
,

Rsx = − û′C − v̂′S, Rsy = û′S− v̂′C, Rss = ŵ
′
,

in which C ≡ cosφ, S ≡ sinφ, û′ = u′/(1+ ε), v̂′ = ṽ′/(1+ ε), ŵ′ = (1+ w̃′)/(1+ ε), ṽ′ = v′−wκx0,
w̃′ = w′+ vκx0, ( )′ ≡ d( )/ds, (1+ ε)=

√
(u′)2+ (ṽ′)2+ (1+ w̃′)2, λ= 1/(1+ ŵ′).

The rotation matrix R in Equation (1) belongs to a special orthogonal rotation group denoted SO(3)
because it satisfies the orthogonality and unimodular conditions that RRT

= RT R= I and det R=+1
[Burn 1985].

It can be shown [Pi and Bradford 2004] that the material curvatures in the deformed configuration can
be obtained from the rotation matrix R as

(1+ ε)K= RT dR
ds
+RT K0R, (2)
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where

K0 =

0 0 0
0 0 −κx0

0 κx0 0

= 1
R

0 0 0
0 0 1
0 −1 0

 and K=

 0 −κs κy

κs 0 −κx

−κy κx 0

 , (3)

in which κx and κy are the material curvatures about the unit vectors qx and qy , that is, about the positive
direction of the axes o1x1 and o1 y1, and κs is the material twist per unit length about the unit vector qs ,
that is, about the positive direction of the o1s1 axis in the deformed configuration.

Substituting Equation (1) and the first equation of Equation (3) into Equation (2) leads to the curvatures
κx and κy and the twist κs , expressed explicitly as

κx =
{
û′′S− v̂′′C − λŵ′′(û′S− v̂′C)+

[
λ(1− û′2− ŵ′2)C − λû′v̂′S+ ŵ′C

]
κx0
}
(1+ ε)−1,

κy =
{
û′′C + v̂′′S− λŵ′′(û′C + v̂′S)−

[
λ(1− û′2− ŵ′2)S+ λû′v̂′C + ŵ′S

]
κx0
}
(1+ ε)−1,

κs =
[
φ′+ λ(û′′v̂′− û′v̂′′)+ û′κx0

]
(1+ ε)−1.

2.2. Strains and displacements of load points. The position vector a0 of an arbitrary point P(x, y) on
the cross-section in the undeformed configuration can be expressed as a0 = r0+ xpx + ypy (see Figure
3), where r0 is the position vector of the centroid o, related to the unit vector ps by ps = dr0/ds, and the
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initial gradient tensor F0 in the undeformed configuration can be expressed as

F0 =

(∂a0

∂x
,
∂a0

∂y
,
∂a0

∂s

)
. (4)

The position of the point P(x, y) in the deformed configuration is determined based on the assumption
that the total displacement of a point P results from two successive motions: translation and rotation of
the cross-section, and a superimposed warping displacement along the unit vector qs in the deformed
configuration. The position vector a of the point P in the deformed configuration can be expressed as
a= r+ xqx + yqy −ω(x, y)κsqs (see Figure 3), in which ω(x, y) is the warping function and r is the
position vector of the centroid o1 in the deformed configuration and is given by r= r0+upx+vpy+wps .

The deformation gradient tensor F can then be expressed as

F=
( ∂a
∂x
,
∂a
∂y
,
∂a
∂s

)
=

( ∂a
∂x
,
∂a
∂y
, (1+ ε)

∂a
∂s1

)
, (5)

and so the strain tensor can be expressed in terms of the initial and deformation gradient tensors as εxx
1
2γxy

1
2γxs

1
2γyx εyy

1
2γys

1
2γsx

1
2γsy εss

= 1
2

(
FT F−FT

0 F0

)
. (6)

Substituting Equations (4) and (5) into Equation (6) yields

εxx = εyy = γxy = 0, (7)

εss = w̃
′
+

1
2 u′2+ 1

2 ṽ
′2
− xκy + yκx −ωκ

′

s +
1
2

(
x2
+ y2) κ2

s = w̃
′
+

1
2 u′2+ 1

2 ṽ
′2

− x(u′′ cosφ+ ṽ′′ sinφ− κx0 sinφ)+ y
(

u′′ sinφ− ṽ′′ cosφ+
(
cosφ− 1− 1

2 u′2
)
κx0

)
−ω(φ′′+ u′′κx0)+

1
2

(
x2
+ y2)(φ′+ u′κx0)

2, (8)

γsx =−

(
y+

∂ω

∂x

)
κs =−

(
y+

∂ω

∂x

)
(φ′+ u′κx0), (9)

γsy =

(
x −

∂ω

∂y

)
κs =

(
x −

∂ω

∂y

)
(φ′+ u′κx0), (10)

where εss is the longitudinal normal strain and γsx and γsy are the uniform torsional shear strains at an
arbitrary point P(x, y) on the cross-section.

It is assumed that the uniform radial loads q are acting at a load position (0, yq), where yq is the radial
coordinate of the point of application load q . The displacements of the load point at the position (0, yq)

are given by uq

vq

wq

=
u
v

w

+R

 0
yq

0

−
 0
−yq

0

≈
u− yq

(
φ− 1

2 u′ṽ′
)

v− 1
2 yq

(
φ2
− ṽ′

2)
w̃+ yq ṽ

′

 , (11)

where the third and higher-order terms have been ignored.
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3. Virtual work approach

3.1. Virtual work and equilibrium equations. Because all three load cases are conservative, the problem
can be treated using energy methods such as the minimum potential energy method or virtual work
method [Simitses 1976; Guran 2000; Simitses and Hodges 2006]. The principle of virtual work is used
in this paper. When the uniform radial load q acts at a load height yq , the principle of virtual work for
the equilibrium of the arch in the buckled configuration can then be stated as

δ5=

∫
V
(Eεssδεss +Gγsxδγsx +Gγsyδγsy) dV −

∫ S

0
(qexδuq + qeyδvq)

R− yq

R
ds = 0, (12)

for all kinematically admissible sets of infinitesimal virtual displacements {δu, δv, δw, δφ}, where the
compatible strains εss , γsx and γsy are given by Equations (8)–(10) and the compatible displacements uq

and vq of the load point are given by Equation (11), and where V indicates the volume of the arch, E
and G are the Young’s and shear moduli of elasticity, qex and qey are the lateral and radial components
of the uniform load q, as shown in Figure 4, and δ( ) denotes the Lagrange operator of simultaneous
variations.

During flexural-torsional buckling, the in-plane deformations are constant and thus the variations of
the in-plane deformations vanish, so that δv = δv′ = δv′′ = δw = δw′ = δw′′ = 0. By substituting
Equations (7)–(11) into Equation (12), and considering that the initial curvature κx0 =−1/R, that the
bending moment M = 0 under uniform compression, and that the axial stress resultant N =

∫
A EεssdA=

−Q=−q(R− yq), the statement for the principle of virtual work given by Equation (12) can be expressed

x1 yqφ

q

y1

φ

q

oo1

u

yq

y

u

yq cosφ = yq

o1

x1
yqφ

qe y

x

q
u
R

q

y1 y

φ

C

o
yq

q

R

u

yq cosφ = yq
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qφ
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φ

yqφ
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qe y

q

y
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q

y1

(a) (b) (c)

Figure 4. Lateral and radial components of uniform loads. (a) Radial dead loads (load
case I); (b) radial loads directed toward arch center (load case II); (c) hydrostatic radial
loads (load case III).
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as

δ5=

∫ S

0

(
E Iy

(
u′′+

φ

R

)(
δu′′+

δφ

R

)
+G J

(
φ′−

u′

R

)(
δφ′−

δu′

R

)
+ E Iw

(
φ′′−

u′′

R

)(
δφ′′−

δu′′

R

)
− Q

(
u′δu′+ r2

0

(
φ′−

u′

R

)(
δφ′−

δu′

R

))
+
(
qey yqφδφ− qex(δu− yqδφ)

) R− yq

R

)
ds = 0, (13)

where Iy is the second moment of area of the cross-section about its minor principal axis, J is the
Saint-Venant torsion constant, Iw is the warping constant of the cross-section, and the term(

−Qr2
0 (φ
′
− u′/R)(δφ′− δu′/R)

)
,

represents the virtual work due to Wagner effects [Hodges 2006] with the cross-sectional radius of gyra-
tion r0 being defined by r0 =

√
(Ix + Iy)/A.

Integrating Equation (13) by parts leads to the differential equilibrium equations for the flexural-
torsional buckling(

E Iy

(
u′′+

φ

R

))′′
+

(
G J

(
φ′−

u′

R

) 1
R

)′
−

(
E Iw

(
φ′′−

u′′

R

) 1
R

)′′
+

(
Q
(

u′− r2
0

(
φ′−

u′

R

) 1
R

))′
− qex

R− yq

R
= 0, (14)

E Iy

(
u′′+

φ

R

) 1
R
−

(
G J

(
φ′−

u′

R

))′
+

(
E Iw

(
φ′′−

u′′

R

))′′
+

(
r2

0 Q
(
φ′−

u′

R

))′
+ (qey yqφ+ qex yq)

R− yq

R
= 0, (15)

and to the static boundary conditions at both ends of the arch (s = 0 and s = S)((
E Iy

(
u′′+

φ

R

))′
+

(
G J

(
φ′−

u′

R

) 1
R

)
−

(
E Iw

(
φ′′−

u′′

R

) 1
R

)′
+Qu′−Q

(
φ′−

u′

R

)r2
0

R

)
δu= 0, (16)

((
E Iy

(
u′′+

φ

R

))
−

(
E Iw

(
φ′′−

u′′

R

) 1
R

))
δu′ = 0, (17)

(
G J

(
φ′−

u′

R

)
−

(
E Iw

(
φ′′−

u′′

R

))′
− Qr2

0

(
φ′−

u′

R

))
δφ = 0, (18)

E Iw
(
φ′′−

u′′

R

)
δφ′ = 0. (19)

In addition, the kinematic boundary conditions for pin-ended arches, such that

u = φ = 0 at s = 0 and s = S, (20)
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also need to be satisfied. For a laterally pin-ended arch, the buckling deformations u′′ = φ′′ = 0 at its
boundaries and the variations δu = δφ = 0, so that the static boundary conditions given by Equations
(16)–(19) are satisfied.

Three cases of the uniformly distributed loads q are considered. In the case of radial dead loads (load
case I), it is assumed that the directions of the loads do not change during buckling and that the loads
remain parallel to their initial directions, as shown in Figure 4a. In this case, the loads q have lateral and
radial components, qey and qex , given by

qex = 0, qey = q =
Q

R− yq
. (21)

This case has been studied by a number of researchers [Timoshenko and Gere 1961; Yoo 1982; Papangelis
and Trahair 1987; Yang and Kuo 1987; Rajasekaran and Padmanabhan 1989; Kang and Yoo 1994;
Bradford and Pi 2002].

In the case of directed radial loads (load case II), the loads q are assumed to be always directed toward
the center of the initial curvature of the arch as shown in Figure 4b during buckling. In this case, the
loads q have lateral and radial components, qey and qex , given by

qex ≈−
qu
R
=−

Qu
R(R− yq)

, qey ≈ q =
Q

R− yq
. (22)

In the case of hydrostatic loads (load case III), the loads q are assumed to be mechanically hydrostatic,
that is, the loads q change their directions slightly but always remain normal to the tangent of the de-
formed arch axis (that is, remain in the direction of the axis o1 y1 of the cross-section) during buckling,
as shown in Figure 4c. In this case, the hydrostatic loads q have the lateral and radial components, qex

and qey , given by

qex =−q sinφ ≈−qφ =−
Qφ

R− yq
, qey = q cosφ ≈ q =

Q
R− yq

, (23)

where sinφ ≈ φ and cosφ ≈ 1, since the buckling displacements φ are infinitesimally small.
It can be seen from Figure 4 and from Equations (22) and (23) that during buckling, the lateral com-

ponents qex of directed radial loads and of hydrostatic loads acting on an arch are in opposite directions
to the lateral buckling displacements. The lateral components qex are expected to produce combined
torsion and lateral bending actions that oppose the flexural-torsional buckling, so the flexural-torsional
buckling loads of the arch will increase.

3.2. Solutions for flexural-torsional buckling loads. The n-th mode buckled shapes of a laterally pin-
ended arch can be assumed to be given by

u
um
=
φ

φm
= sin

nπs
S
, (24)

which satisfies the kinematic boundary conditions given by Equation (20), and where um and φm are the
maximum lateral displacement of the centroid and the twist angle of the cross-section during buckling,
and n is the number of buckled half waves. Substituting Equations (21), (22) or (23), and Equation (24)
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into Equations (14) and (15) leads to [
k11 k12

k21 k22

] [
um

φm

]
=

[
0
0

]
, (25)

where the coefficients k11, k12, k21, and k22 are given by

k11 =


(

1+ a2
nb2

n −
(
1+ a2

nb2
n

Pyn
Psn

) Q
Pyn

)
Pyn, for load case I,(

1+ a2
nb2

n −
(
1− a2

n + a2
nb2

n
Pyn
Psn

) Q
Pyn

)
Pyn, for load case II,(

1+ a2
nb2

n −
(
1+ a2

nb2
n

Pyn
Psn

) Q
Pyn

)
Pyn, for load case III,

(26)

k12 =


−
(an

bn
+ anbn − anbn

Pyn
Psn

Q
Pyn

)
Mysn, for load case I,

−
(an

bn
+ anbn − anbn

Pyn
Psn

Q
Pyn

)
Mysn, for load case II,

−

(
an
bn
+ anbn −

(an
bn
+ anbn

Pyn
Psn

) Q
Pyn

)
Mysn, for load case III,

(27)

k21 =


−
(an

bn
+ anbn − anbn

Pyn
Psn

Q
Pyn

)
Mysn, for load case I,

−

(
an
bn
+ anbn −

(
anbn

Pyn
Psn
−

an
bn

yq
R

) Q
Pyn

)
Mysn, for load case II,

−
(an

bn
+ anbn − anbn

Pyn
Psn

Q
Pyn

)
Mysn, for load case III,

(28)

k22 =


(

1+ a2
n

b2
n
−
( Pyn

Psn
−

yq

Rb2
n

) Q
Pyn

)
r2

0 Psn, for load case I,(
1+ a2

n
b2

n
−
( Pyn

Psn
−

yq

Rb2
n

) Q
Pyn

)
r2

0 Psn, for load case II,(
1+ a2

n
b2

n
−

Pyn
Psn

Q
Pyn

)
r2

0 Psn, for load case III.

(29)

In Equations (26)–(29), Pyn is the n-th mode elastic flexural buckling load of a pin-ended column of
length S under uniform compression about the minor principal axis of its cross-section, Psn is the n-th
mode elastic torsional buckling load of a pin-ended column of length S under uniform compression, and
Mysn is the n-th mode elastic flexural-torsional buckling moment of a simply supported beam of length
S under uniform bending. It is well known that Pyn , Psn and Mysn are given by [Trahair 1993; Trahair
and Bradford 1998]

Pyn =
(nπ)2 E Iy

S2 , Psn =
1
r2

0

(
G J +

(nπ)2 E Iw
S2

)
, Mysn =

√
r2

0 Pyn Psn, r2
0 =

Ix + Iy

A
.

The parameters an and bn are defined as

an =
S

nπR
, bn =

nπMysn

Pyn S
.

Equation (25) has nontrivial solutions for um and φm when the determinant of its coefficient matrix
vanishes, that is, when k11k22− k12k21 = 0, which leads to the generic equation for the elastic flexural-
torsional buckling load of a pin-ended arch under uniform compression produced by uniformly distributed
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radial loads,

A1

( Q
Pyn

)2
+ B1

Q
Pyn
+C1 = 0, (30)

where the coefficients for load cases I, II, and III are, respectively,

A1 =
Pyn

Psn
−

(
1+ a2

nb2
n

Pyn

Psn

) yq

Rb2
n
,

B1 = −

((
1+

a2
n

b2
n

)
+

(
1− a2

n

)2 Pyn

Psn
− (1+ a2

nb2
n)

yq

Rb2
n

)
,

C1 = (1− a2
n)

2
;

(31)

A1 =
Pyn

Psn
−

yq

Rb2
n
,

B1 = −

(
1+

a2
n

b2
n
+ (1− a2

n)
Pyn

Psn
−

yq

Rb2
n

)
,

C1 = 1− a2
n;

(32)

A1 = 1,

B1 = −

( Psn

Pyn
+ (1− a2

n)
)
,

C1 = (1− a2
n)

Psn

Pyn
.

(33)

It can be seen from Equations (31) and (32) that the load height yq affects the flexural-torsional buckling
of an arch in the cases of dead or directed uniformly distributed radial loads (load cases I and II). However,
Equation (33) indicates that the load height yq of hydrostatic loads (load case III) has no effect on the
flexural-torsional buckling of an arch. When the radial loads act at the centroid (yq = 0), it can be
demonstrated that for the same arch, the buckling load for load case III given by Equations (30) and (33)
is the highest, while the buckling load for load case I given by Equations (30) and (31) is the lowest.

4. Static equilibrium approach

A static equilibrium approach is used in this section to investigate the flexural-torsional buckling and
the effects of the load height on the buckling of arches under uniform compression, and to verify the
solutions obtained by the virtual work approach in the previous section. In the buckled configuration,
the axial compressive force Q in the axis os has an axial compressive component Qes ≈ Q in the axis
o1s1 (see Figure 5a) which produces a torsional moment action Mes given by

Mes = r2
0 Qesκs = r2

0 Qes

(
φ′−

u′

R

)
= r2

0 Q
(
φ′−

u′

R

)
.
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The uniform torsional resistance Miu about the axis o1s1 and the bimoment resistance Bi of the cross-
section are given by

Miu = G Jκs = G J
(
φ′−

u′

R

)
, Bi =−E Iwκ ′s =−E Iw

(
φ′′−

u′′

R

)
.

It is well known that the bimoment resistance Bi induces a warping torsional resistance Miw as Miw =

dBi/ds [Vlasov 1961; Trahair and Bradford 1998]. The total torsional resistance Mis can be obtained
by combining the uniform and warping torsional resistances Miu and Miw as

Mis = Miu +Miw = G J
(
φ′−

u′

R

)
− E Iw

(
φ′′′−

u′′′

R

)
.

In a straight member, the torsional action is in equilibrium with the torsional resistance. However, in
an arch, the torsional action couples with the lateral bending action while the torsional resistance also
couples with the lateral bending resistance. Hence, the resultant of the torsional action and resistance at
a cross-section of an arch does not vanish. The resultant torsional moment at the cross-section is then

Ms = Mes −Mis = r2
0 Q
(
φ′−

u′

R

)
−G J

(
φ′−

u′

R

)
+ E Iw

(
φ′′′−

u′′′

R

)
, (34)

where the first term is historically called the trapeze effect, the bifilar effect, Wagner’s term, or Buckley’s
term; the second term is St. Venant torsion moment; and the third term is the warping torsion moment
(Vlasov’s term) [Hodges 2006].

In the buckled configuration, the axial compressive force Q in the axis os also has a lateral component
Qex in the axis o1x1 given by Qex =−Qu′ (see Figure 5a). The resultant lateral bending moment at the
cross-section is then equal to the lateral bending resistance Miy of the cross-section about the axis o1 y1

Qex o
u

u′
Qes

x
x1

s
s1

Q o1

H + d H
x1

R R

dθ

qex
Qex + d Qex

ds o1

dsyq
s1

H

Qex

y1

(a) components of compressive force (b) lateral force equilibrium

Figure 5. Lateral force equilibrium.
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and is given by

My = Miy =−E Iy

(
u′′+

φ

R

)
. (35)

The differential equilibrium equations in the buckled configuration can be established by considering
the lateral and torsional equilibrium of a free body of a differential element ds of the arch, as shown in
Figures 5 and 6. For lateral force equilibrium, it can be shown from Figure 5b that

H + dH − H + Qex + dQex − Qex + qex dssq = 0, (36)

where dssq = [(R− yq)/R] ds and H is the internal lateral shear force. From Equation (36),

dH
ds
= −

dQex

ds
− qex

R− yq

R
. (37)

For lateral moment equilibrium, it can be shown from Figure 6 that

(My + dMy)−My + 2Ms sin
dθ
2
+ Qx ds = dMy +

Ms

R
ds− Hds = 0, (38)

from which

H =
dMy

ds
+

Ms

R
. (39)

Substituting Equation (39) into Equation (37) yields the differential equilibrium equation for the lateral
buckling deformation

d2 My

ds2 +
dMs

ds
1
R
+

dQex

ds
+ qex

R− yq

R
= 0. (40)

Ms

H + d H
x1

y1
RR R

H

s1

Ms + d Ms

My + d My

mes

dθ

ds o1

dsyq

My

Figure 6. Lateral and torsional moment equilibrium.
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Figure 7. Comparison of buckling loads for load case I without effects of load height
with the results of other researchers.

For torsional moment equilibrium, it can be shown from Figure 6 that

(Ms + dMs)−Ms − 2My sin
dθ
2
+msdssq = dMs −

My

R
ds+mes

R− yq

R
ds = 0,

which gives the differential equilibrium equation for the torsional buckling deformation

dMs

ds
−

My

R
+mes

R− yq

R
= 0. (41)

Here the distributed torques mes produced by the lateral and radial components qex and qey of the loads
q at the load height yq are given by

mes = qey yqφ+ qex yq . (42)

Substituting the expressions for Qex , Ms , My , and mes given by Equations (34)–(35) and (42) into
Equations (40) and (41) leads to the same differential equilibrium equations as those given by Equations
(14) and (15).
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Figure 8. Effects of load height on buckling loads for load case I.

5. Numerical examples and comparisons

5.1. Comparison with solutions by other researchers for load case I. A number of researchers [Yoo
1982; Papangelis and Trahair 1987; Yang and Kuo 1987; Rajasekaran and Padmanabhan 1989; Kang and
Yoo 1994; Bradford and Pi 2002] have obtained closed form solutions for the flexural-torsional buckling
load for arches under uniform compression when the uniformly distributed radial dead loads act at the
centroid (the load case I). In this case, the load height yq = 0 and the solution for the buckling load given
by Equations (30) and (31) become( Q

Pyn

)2
−

((
1+

a2
n

b2
n

) Psn

Pyn
+

(
1− a2

n

)2
)

Q
Pyn
+ (1− a2

n)
2 Psn

Pyn
= 0, (43)

the same results as those obtained by Bradford and Pi [2002].
Solutions for the first mode flexural-torsional buckling load of arches under uniform compression

given by Equation (43) are compared with the solutions by other researchers in Figure 7 for arches
with an Australian I-section 1200WB249 (A = 31700 mm2, Ix = 6380× 106 mm4, Iy = 87× 106

mm4, J = 4310× 103 mm4, Iw = 28500× 109 mm6, E = 200, 000 MPa, ν = 0.3) [BHP 2000] and
with the length S = 5000 mm. Because the length S is constant, the curvature 1/R increases with an
increase of the included angle 2. It can be seen that there are some differences between the results.
In particular, the result of Yoo [1982] (based on the method of a forced analogy of curved members
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Figure 9. Comparison of effects of load height on buckling loads with results of FE and
other results for load case I.

to straight members) diverges substantially from those of the others. It is worth pointing out that the
solution methods used by most of these researchers [Papangelis and Trahair 1987; Yang and Kuo 1987;
Rajasekaran and Padmanabhan 1989; Kang and Yoo 1994; Bradford and Pi 2002] are correct. The
minor discrepancies between the results are due to the fact that some small differences in the terms
of the strain-displacement relationship were obtained when different methods of derivation were used.
Researchers such as [Papangelis and Trahair 1987; Yang and Kuo 1987; Rajasekaran and Padmanabhan
1989; Kang and Yoo 1994; Bradford and Pi 2002] have also presented comparisons and analyses of these
discrepancies.

5.2. Effects of load height. Solutions for the first mode flexural-torsional buckling loads of arches sub-
jected to radial dead loads (load case I) and acting at the top, the centroid, and the bottom of the cross-
section are compared in Figure 8. These arches have an Australian steel I-section 250UB25 (A = 3270
mm2, Ix = 35.4× 106 mm4, Iy = 2.55× 106 mm4, J = 67.4× 103 mm4, Iw = 36.7× 109 mm6

E = 200, 000 MPa and Poisson’s ratio ν = 0.3) [BHP 2000] and the length S = 2000 mm. It can be
seen that when the radial loads act at the centroid, the buckling load is lower than when the radial loads
act at the bottom of the cross-section, but it is higher than when the radial loads act at the top of the
cross-section. The difference between these buckling loads increases with an increase of the included
angle of the arch, and then decreases with a further increase of the included angle of the arch.
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Figure 10. Effects of load height on buckling loads for load case II.

Trahair and Papangelis [1987] and Trahair [1993] studied the effects of load height on the flexural-
torsional buckling of arches under uniform compression for case I. Trahair [1993] used diagrams to
show the effects without giving analytical solutions, while Trahair and Papangelis [1987] obtained an
analytical solution. The solutions of Equations (30)–(31) for load case I are compared with their solutions
in Figure 9. Also shown in Figure 9 are results which were are obtained by an eigenvalue analysis using
the 8-noded shell elements of the FE package [Strand7 1999] to verify the solutions Equations (30)–(31).
The FE results agree with the solutions of Equations (30)–(31) very well. Trahair and Papangelis [1987]
ignored the small term r2

y/R2, and their results are slightly lower than the FE results, while for bottom
flange loading, their results are slightly higher than the FE results. However, the differences between
them are very small and so the solutions of [Trahair and Papangelis 1987] are also accurate.

Figure 10 compares solutions for the first mode flexural-torsional buckling loads of arches subjected
to radial loads that are always directed towards the arch center during buckling (the load case II) and
are acting at the top, at the centroid, and at the bottom of the cross-section for arches with an I-section
250UB25 and length S = 2000 mm. It can be seen that when the radial loads act at the centroid, the
buckling load is lower than that when they act at the bottom of the cross-section, but it is higher than
when the radial loads act at the top of the cross-section. The difference between these buckling loads
increases with an increase of the included angle of the arch, and then decreases with a further increase
of the included angle of the arch.
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Figure 11. Comparison of effects of load height on buckling loads for load cases I and II.

Figure 11 compares the effects of the load height on the buckling loads of arches subjected to radial
loads always directed to the arch center (load case II), given by Equations (30) and (32), with those for
arches subjected to radial dead loads (load case I), given by Equations (30) and (31); in the figure, Q0 is
the buckling load when the loads act at the centroid. It can be seen that the effects of load height on the
buckling loads only differ in a visible way when the loads act below the centroid (that is, yq is positive
as shown in Figures 1 and 4). In this case, the arches subjected to uniformly distributed radial dead loads
experience higher buckling load increases, particularly for larger yq values.

5.3. Comparison with Vlasov’s solution for load case III. Solutions for the first mode of flexural-
torsional buckling load of arches with an I-section 250UB25 and length S = 2000 mm under hydrostatic
loads given by Equations (30) and (33) are compared in Figure 12 with the solution of [Vlasov 1961].

It can be seen from Figure 12 that the solution of [Vlasov 1961] is slightly lower than the present
results, because he did not consider the coupling term contributed by the torsional moment Mes to the
differential equilibrium equation for lateral deformations.

5.4. Arches with a narrow rectangular cross-section. Timoshenko and Gere [1961] investigated the
flexural-torsional buckling of an arch with a narrow rectangular cross-section for the load cases I and II,
but without considering the Wagner effects and warping. In this case, the virtual work(

−Qr2
0 (φ
′
− u′/R)(δφ′− δu′/R)

)
,
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Figure 12. Comparison with Vlasov’s solution for load case III.

due to Wagner effects, and
E Iw

(
φ′′− u′′/R

) (
δφ′′− δu′′/R

)
,

due to warping in the virtual work statement given by Equation (13), are equal to zero, and accordingly
the Wagner terms and warping torsion moments (Vlasov terms) in the differential equilibrium equations
(14) and (15) vanish. The flexural-torsional buckling load for an arch with a narrow rectangular section
can then be obtained from Equations (14) and (15), by considering the components of qex and qey of the
load q being given by Equations (21)–(23) respectively, as

Q
Pyn
=


(1−a2

n)
2

1+a2
n/b2

n
, for the case of radial dead loads,

1−a2
n

1+a2
n/b2

n
, for the case of directed radial loads,

1− a2
n, for the case of hydrostatic loads.

(44)

The solutions given by Equation (44) are the same as those of [Timoshenko and Gere 1961].

6. Conclusions

This paper has used both virtual work and equilibrium approaches to investigate the elastic flexural-
torsional buckling of circular arches under uniform compression produced by uniformly distributed radial
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dead loads, by hydrostatic loads or by uniformly distributed directed radial loads. The effects of the load
height on the buckling loads have also been studied, and solutions for the buckling loads for these loading
cases, including the effects of the load height, have been obtained in closed form. It was found that the
buckling load under hydrostatic loading is highest while the buckling load under uniform radial dead
loading is the lowest. The lateral components of the uniformly distributed radial loads that are always
directed toward the center of the initial curvature of the arch and those of the hydrostatic loads, too,
increase the flexural-torsional buckling resistance of an arch under uniform compression. The buckling
load increases as the load height below the centroid of the cross-section increases, while the buckling
load decreases as the load height above the centroid of the cross-section increases.
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TRANSIENT ANALYSIS OF A SUDDENLY-OPENING CRACK IN A COUPLED
THERMOELASTIC SOLID WITH THERMAL RELAXATION

LOUIS MILTON BROCK AND MARK TODD HANSON

For a semiinfinite crack that opens in an unbounded thermoelastic solid initially at rest under uniform
plane-strain tension at uniform temperature, the governing equations contain as special cases the Fourier
model, and two thermal relaxation models with, respectively, one and two relaxation times. Integral
transforms reduce the initial/mixed boundary value problem to a Wiener–Hopf equation. Its solution
produces analytical expressions for temporal transforms of normal stress and temperature change near
the crack edge. For 4340 steel, numerical inversions allow comparisons of the crack edge stress for the
three thermoelastic models with the isothermal result, and temperature change at the crack edge for the
two thermal relaxation models with the Fourier model result. Calculations indicate that thermoelasticity
has a mild relaxation effect on the stress, and that temperature changes for the thermal relaxation model
are much larger than those that arise for the Fourier model just after the crack opens. After a time
interval in the order of a nanosecond, however, the Fourier changes are larger, although the deviation is
minuscule.

Introduction

Thermal waves appear as a feature of heat conduction when thermal relaxation times are introduced into
the classical Fourier law [Joseph and Preziosi 1989]. The modified heat equation is in turn incorporated
in the coupled equations of thermoelasticity [Chandrasekharia 1986; Sharma and Sharma 2002] in a
fashion similar to that used for the Fourier model [Chadwick 1960].

Fracture analysis, however, is often based on the Fourier model with partial or complete uncoupling
of the heat and momentum balance equations, for example, [Rice and Levy 1969; Sumi and Katayama
1980; Noda et al. 1989; Rizk and Radwan 1993]. Such models can be justified on various grounds, as
follows:

• For equilibrium or slow-moving cracks under thermal loading only or static mechanical loading,
inertial effects may well be negligible.

• Heat production near a crack edge is controlled by plastic energy when yield occurs [Freund and
Hutchinson 1985].

• The Fourier law is adequate for describing temperature fields measured near a crack edge [Mason
and Rosakis 1993].

• Calculations for fluids [Fan and Lu 2002] suggest that thermal relaxation effects are highly transient.

Keywords: transient analysis, thermoplastic crack, thermal relaxation, dynamic stress intensity.
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• Asymptotic analyses of dynamic steady-state fracture [Brock 2004; 2006] show that, even for high
crack speeds, solution behavior can be described by the Fourier model, except very near the crack
edge.

For more insight into thermal effects in dynamic fracture, in this paper we consider the canonical
situation of a semiinfinite crack that opens suddenly in an unbounded solid. The solid is initially at rest
at a uniform temperature in a uniform plane-strain tension field, and plastic yield is ignored. To ascertain
the importance of thermal relaxation effects, we investigated a general form [Sharma and Sharma 2002]
of the coupled thermoelastic equations which contains as special cases thermal relaxation models with
one [Lord and Shulman 1967] and two [Green and Lindsay 1972] relaxation times, as well as the Fourier
model [Chadwick 1960].

We use multiple integral transforms and a Wiener–Hopf technique, and analytically obtain the temporal
transforms of normal stress and temperature change in the crack plane. By numerical inversion we then
obtain calculations for 4340 steel that allow us to gauge thermal effects on stress at the crack edge and
thermal relaxation effects on temperature change at the crack edge.

Governing equations

Consider governing equations for an isotropic, homogeneous linear coupled thermoelastic solid initially
at uniform (absolute) temperature T0 of the form

∇
2u+m∇1− uss −αv∇D2θ = 0, (1a)

h∇2θ −
ε

αv
D1s − D1θs = 0, (1b)

1
µ

S=
[
(m− 1)1−αvD2θ

]
I+∇u+ u∇, (1c)

where (u,1, θ, S, I) are, respectively, the displacement vector, dilatation, temperature change, and stress
and identity tensors. In terms of (1, θ, r), decomposition of Equation (1a) gives

a∇21−1ss −αvD2∇
2θ = 0, ∇

2r − rss = 0, (2)

where (∇2,∇) are, respectively, the Laplacian and gradient operators, where r is the rotation tensor.
For the single- and double-relaxation time model 1 [Lord and Shulman 1967] and 2 [Green and Lindsay

1972], and Fourier model F [Chadwick 1960], respectively, it is understood that

(1) : D2 = 1, D = D1 (2) : D = D2 (F) : D = D1 = D2 = 1, (3)

where the thermal relaxation operators are

D1 = 1+ h1( )s D2 = 1+ h2( )s . (4)

The operator ( )s signifies differentiation with respect to temporal variable s = vr× (time). Note that the
additional relaxation time in model 2 serves to introduce thermal relaxation explicitly into constitutive
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Equation (1c). In (1)–(4) dimensionless parameters are defined as

m = 1
1−2ν

, a = 2
(

1−ν
1−2ν

)
, ε =

µT0
ρcv

α2
v, (5)

and thermoelastic characteristic lengths (h, h1, h2) and rotational wave speed vr are defined as

h =
K

cv
√
µρ
, h1 = vr t1, h2 = vr t2, vr =

√
µ

ρ
, (6)

where material constants t1> t2≥ 0 are thermal relaxation times, and (ν, µ, ρ, αv, cv, K ) are, respectively,
Poisson’s ratio, shear modulus, mass density, coefficient of volumetric thermal expansion, specific heat
at constant volume, and thermal conductivity.

For many materials [Chadwick 1960; Achenbach 1973; Sharma and Sharma 2002]

vr ≈ O(103)m/s, m ≥ 2, ε ≈ O(10−2), (7a)

h ≈ O(10−9)m, (t1, t2),≈ O(10−13) s. (7b)

In view of (6), these values suggest that h� h1 > h2.

Crack problem

When at s = 0 a semiinfinite crack (y = 0, x < 0) forms, an unbounded solid is motionless at uniform
temperature T0 in a state of plane strain generated by the biaxial tension field(

σ 0
x , σ

0
xy, σ

0
yz, σ

0
zx
)
= 0,

(
σ 0

y , σ
0
z
)
= (σ, νσ ), (8)

where (x, y, z) are Cartesian coordinates and σ is a positive constant. We invoke symmetry to study the
crack problem in half-space y > 0 as the superposition

u = uC
+ u0, θ = θC , (9)

where u0 corresponds to (8) and (uC , SC , θC) are governed by (1)–(6) in the plane-strain limit, that is,

uC
= uC(x, y, s)= (uC

x , uC
y ), SC

= SC(x, y, s)= (σC
x , σ

C
y , σ

C
z , σ

C
xy), θC

= θC(x, y, s).

In addition, for y > 0 initial conditions are

s ≤ 0 :
(
uC , SC , θC)

≡ 0. (10)

For s > 0, boundary conditions are

y = 0 : σC
y =−σ (x < 0), uC

y = 0 (x > 0),
(
σC

xy,
∂θC

∂y

)
= 0. (11)

For y > 0 and finite s ≥ 0, (uC , SC , θC) must also be bounded above as
√

x2+ y2→∞. The condition
on θC in (11) means that no heat is assumed to flow across the crack plane.
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Initial/mixed boundary value problem

We adopt a Wiener–Hopf technique [Noble 1958] whereby the mixed conditions in (11) are replaced for
s > 0 by the unmixed set

y = 0 : σC
y =−σH(−x)+6+(x, s)H(x), uC

y = V−(x, s)H(−x), (12)

where H( ) is the Heaviside function, (6+) is the the unknown traction ahead of the crack edge, and
(V−) is the unknown crack opening displacement. The function 6+(x, s) must be integrable for x ≥ 0
and bounded and continuous for x > 0, while V−(x, s) must be bounded and continuous for x < 0, and
vanish as x→ 0.

Unilateral [Sneddon 1972] and bilateral [Van der Pol and Bremmer 1950] Laplace transforms over
temporal and spatial variables (s, x) are defined, respectively, as

f̂ (x)=
∫
∞

0
f (x, s)e−psds, f̃ =

∫
∞

−∞

f̂ (x)e−pqx dx, (13)

where the transform variables (p, q) are real and imaginary, respectively, with p > 0. Application
of (13) to (1)–(6) in view of the boundary conditions in (10), (12), the unmixed conditions in (11),
the boundedness of (6+, V−) and (uC , SC , θC) produces a coupled set of linear ordinary differential
equations. For y > 0, these yield the transforms

ũC
x

ũC
y

ap
αvd2

θ̃C

=
 q q B

−A+ −A− q

k2
0 − k2

+
k2

0 − k2
−

0


U+e−p A+y

U−e−p A−y

UBe−pBy

 , (14a)


σ̃C

x

σ̃C
y

σ̃C
z

σ̃C
xy

= µp


1− 2A2

+
1− 2A2

−
2q B

T T −2q B

T − 2A2
+

T − 2A2
−

0

−2q A+ −2q A− −T


U+e−p A+y

U−e−p A−y

UBe−pBy

 , (14b)

where U± and UB are arbitrary functions of (p, q), and

A± =
√

k2
±− q2, B =

√
1− q2, T = 1− 2q2 (15a)

k± =
k0

2
√

hp

(√
(
√

hp+
√

ad1)2+ εd ±
√
(
√

hp−
√

ad1)2+ εd
)
, k0 =

1
√

a
, (15b)

(1) : d = d1, (2) : d = d2, (F) : d = d1 = 1. (15c)

The thermal relaxation factors (d1, d2) in (15c) are defined by(
k2

0 − k2
+

)
(k2

0 − k2
−
)=−k4

0
εd
hp
, d1 = 1+ h1 p, d2 = 1+ h2 p. (16)
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For positive real p, (14a) and (14b) are bounded above for y →∞ only when branches Im(q) = 0,
|Re(q)| > (k±, 1) are introduced, so that Re(A±, B) ≥ 0 in the corresponding cut planes. For positive
real p,

k+ > k0 > k−, k− < 1 (17a)

hp ≤
m+ ε

m(1− l1)− εl
: k+ ≥ 1 (17b)

hp ≥
m+ ε

m(1− l1)− εl
: k+ ≤ 1 (17c)

(1) : l = l1 =
h1

h
(2) : l =

h2

h
, l1 =

h1

h
(F) : l = l1 = 1. (17d)

Thus, the value of positive real p defines the relative position of the branch points of (A+, B). Using
(12) and the unmixed conditions in (11) in view of (14a) and (14b) gives

(U+,U−)=
T
µR

(A−,−A+)
(
6̃+−

σ

p2q

)
, (18a)

UB =
2q A+A−
µR

(k−− k+)
(
6̃+−

σ

p2q

)
, (18b)

R =
(
k2

0 − k2
−

)
A−R+− (k2

0 − k2
+
)A+R−, R± = 4q2 A±B2

+ T 2, (18c)

subject to the constraint
A+A−
µpR

(k2
−
− k2
+
)
(
6̃+−

σ

p2q

)
= Ṽ−. (19)

We solve Equation (19), which is of the Wiener–Hopf type, using (13) such that transforms (6̃+, Ṽ−)
are analytic in the overlapping regions Re(q) > 0− and Re(q) < 0+, respectively, of the q-plane for
positive real p.

Wiener–Hopf solution

In light of (15a) and (17), the term A+A− can be written as the product of factors
√

k++ q
√

k−+ q
and
√

k+− q
√

k−q that are analytic for positive real p in the overlapping regions Re(q) > −k− and
Re(q) < k−. Equation (18c) gives a Rayleigh function that for positive real p has branch cuts Im(q)= 0,
|Re(q)|> k− and isolated real roots at q =±kR (0< kR < k−), and is given as

R
q2 A−

≈ 2(k2
+
− k2
−
)(k2

0 − 1) (|q| →∞). (20)

It follows that the function
G =

R
2(k2
+− k2

−)(k
2
0 − 1)A−(q2− k2

R)
(21)

has branch cuts Im(q) = 0, k− < |Re(q)| < max(1, k+) but no isolated roots or poles, is integrable at
q =±k−, and approaches unity for |q| →∞. It can therefore be written as the product G+G−, where
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G± are analytic in overlapping regions Re(q) >−k− and Re(q) < k−, respectively. For positive real p,
we apply a standard technique [Noble 1958] for case (17b) and (17c) of the form, respectively,

ln G±(q)=−
1
π

∫ 1

k−

ψbdt
t ± q

+
1
π

∫ k+

1

ψdt
t ± q

,

ln G±(q)=−
1
π

∫ k−

1

ψcdt
t ± q

+
1
π

∫ k+

k−

ψdt
t ± q

,

(22)

where

ψb = tan−1

√
t2− k2

−

(k2
+− k2

0)T
2

(
4(k2
+
− k2
−
)t2 B+ (k2

0 − k2
−
)

T 2

A+

)
,

ψc = tan−1 4(k2
+
− k2
−
)t2 A+A−

√
t2− 1

T 2[(k2
0 − k2

−)A−− (k
2
0 − k2

+)A+]
,

ψ = tan−1 T 2

A+

(k2
0 − k2

−
)
√

t2− k2
−

4(k2
+− k2

−)
√

t2− 1
√

t2− k2
−
+ (k2

0 − k2
+)T 2 A+

.

(23)

Because (G±,G) are all analytic at q = 0, (21) and (22) also yield the Rayleigh root as

kR =
1

G0

√
k2
++ k2

−+ k+k−− k2
0

2k−(k++ k−)(1− k2
0)
, G0 = G+(0)= G−(0) (24)

We can perform multiplication of (19) and rearrange terms to produce an equation whose sides are single-
valued in overlapping regions Re(q) > 0− and Re(q) < 0+. We then render the sides analytic in their
respective regions by appropriate addition and subtraction of the residues of poles at q = (0+,−

√
kR)

that remain after multiplication and factorization. The result is

2(k2
0 − 1)G−(q)

q − kR
√

k+− q
Ṽ−+

σ

µp3

√
k+

kRG+(0)q

=
σ

µp3q

( √
k+

kRG+(0)
−

√
k++ q

G+(q)(q + kR)

)
−
6̃+

µp

√
k++ q

G+(q)(q + kR)
. (25)

Here the left and right sides are analytic for Re(q) < 0+ and Re(q) > 0−, respectively, and must be
analytic continuations of a bounded entire function in the q-plane. That V− must vanish continuously as
x→ 0− implies, in light of (13), that

pqṼ−→ 0 (|q| →∞). (26)
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Thus, the left-hand side of (25) vanishes as |q|→∞, such that the entire function vanishes, and Equation
(25) becomes

6̃+ =
σ

p2q

( √k+G+(q)
G+(0)

√
k++ q

q + kR

kR
− 1

)
(27a)

Ṽ− =
σ

2µ(1− k2
0)p

3

√
k+
√

k+− q
G+(0)G−(q)kR(q − kR)q

. (27b)

We then combine Equation (14a), (18) and (27) to obtain the temperature change transform

θ̃C
=
−εσ

2µαvm
d

hp3d2

(
1

A+
−

1
A−

) √
k+
√

k+− q
G+(0)G−(q)kR(q − kR)

1
(k2
+− k2

−)q
, (28a)

(1) : d = d1, d2 = 1, (2) : d = d2, (F) : d = d2 = 1, (28b)

for y = 0, where (18) holds.

Transient response ahead of a crack

In view of (14a) and (14b), (18) and (27) we can construct an exact transform solution for uC . The
dynamic stress intensity factor for the total field u, however, can be studied directly using (27a). The
bilateral Laplace transform [Van der Pol and Bremmer 1950] has the inverse

f̂ (x)=
p

2π i

∫
f̃ epqx dq, (29)

where p is real and positive, and for 6̃+ integration can be along the positive real side of the entire Im(q)
axis. However the first and second terms in (27a) exhibit, respectively, only the branch cut Im(q) =
0,Re(q) <−

√
k+ and the pole q = 0. The integrand in (29) decays exponentially as |q| → 0 for x > 0

in the same region, so that residue theory can be used to give the temporal transform

6̂+ =−
σ

p
+

σ

πp2

√
2(1− k2

0)

√
k+k−(k++ k−)

k2
++ k2

−+ k+k−− k2
0

∫
∞

k+

G−(u)(kR − u)
u
√

u− k+
e−pux du. (30)

Integrating over positive real u, and using (24),we eliminate the product kRG+(0). For x→ 0+ we
find an asymptotic form for the integral in (30) analytically. Then, in view of (8), (9), (13), (15), (16)
and (28) the temporal transform of the normal traction ahead of the crack edge (y = 0, x ≈ 0+) is

σ̂y =

√
2(1−k2

0)

πx
σ

p3/2

√
k+k−(k++k−)

k2
++k2

−+k+k−−k2
0
+ O(x). (31)
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Study of (28) shows that we can find a similar analytic solution for positive real p in the q−plane.
Thus, for y = 0, x ≈ 0+, and using (9) and (29),

θ̂ =
−εσ

µαv

k2
0d

hp3d2

k+k−
k+−k−

1
k2
++k2

−+k+k−−k2
0

+
εσ

µαv

d
hd2(k+−k−)p3/2

√
k+k−

(k2
++k2

−+k+k−−k2
0)(k++k−)

1√
π(1−k2

0)x
+ O(x). (32)

In light of (22) and (23), (31) and (32) are insensitive to any formal distinction between cases (17b), and
(17c). Equations (16) and (28b) again govern parameters (d, d2). The isothermal result corresponding
to (31) is extracted from work by Achenbach [1973] and inverted to give

σ i
y = 2σ

√
2(1−k2

0)

π
√

a

√
s
x
+ O(x) (y = 0, x ≈ 0+). (33)

We can compare transient isothermal and thermoelastic crack edge stresses by examining the dimen-
sionless ratio of the transform inversions of the singular terms in (31) with those in (33), that is,

σy

σ i
y

∣∣∣∣
(y=0,x≈0+)

=

(
K1

Ki
,

K2

Ki
,

KF

Ki

)
, (34)

where Ki , K1, K2, and KF are coefficients of the dynamic stress intensity factors for respectively, the
isothermal model, the thermal relaxation models 1 and 2, and the Fourier model. The coefficient for the
isothermal model is defined as

Ki =
2

a1/4

√
s
π
. (35)

By (15) the temporal transforms for K1, K2, and KF are

K̂1 =

(
(
√

hp+
√

ad1)
2
+ εd1

)1/4

p3/2
√

aε
√

d1+
√

ahp
, aε = a+ ε,

K̂2 =
d1/4

1

(
(
√

hp+
√

ad1)
2
+ εd2

)1/4

p3/2
√

ad1+ εd2+
√

ahpd1
,

K̂F =

(
(
√

a+
√

hp)2+ ε
)1/4

p3/2
√

aε +
√

ahp
.

(36)

Similarly, transient temperature changes at the crack edge for the thermal relaxation and Fourier mod-
els can be compared in terms of the dimensionless ratios

θ

θF

∣∣∣∣
(y=0,x≈0+)

=

(
K T

1

K T
F
,

K T
2

K T
F

)
, (37)
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where K T
1 , K T

2 and , K T
F are coefficients of the singular terms in (32). Their temporal transforms are

K̂ T
1 =

d1

p3/2[(
√

hp+
√

ad1)2+ εd1]1/4

1√
(
√

hp−
√

ad1)2+ εd1
√

aε
√

d1+
√

ahp
, (38a)

K̂ T
2 =

d1/4
1

p3/2[(
√

hp+
√

ad1)2+ εd2]1/4

1√
(
√

hp−
√

ad1)2+ εd2
√

ad1+ εd2+
√

ahpd1
, (38b)

K̂ T
F =

1
p3/2[(

√
hp+

√
a)2+ ε]1/4

1√
(
√

hp−
√

a)2+ ε
√

aε +
√

ahp
. (38c)

Some numerical results

To demonstrate the behavior of (34) and (37), consider 4340 steel initially at rest at room temperature
(294 K) with elastic properties [Brock 2006]

ν =
1
3
, ρ = 7834 kg/m3, µ= 75 GPa,

and thermal properties

cv = 448 J/kgK, αv = 88.2(10−6) 1/K, K = 34.6 W/mK,

t1 = 0.75(10−13) s, t2 = 0.5(10−13) s.

The ratios in (36) and (38) are actually functions of dimensionless parameter s/h. In light of (6), the
following correspondence holds:

s
h
= 1.0 : 1.233(10−12) s. (39)

we use a standard procedure [Weeks 1966] to carry out numerical inversion of (36) and (38).
For fluids, thermal relaxation effects may be most prominent near a disturbance (here, the crack edge)

for extremely short times after the disturbance arises [Fan and Lu 2002]. Therefore, our calculations of
(34) and (37) are given in Table 1 for values s/h� 1 and s/h� 1 that correspond to the nano-second
range.

For the stress field ratios of Equation (34), all three thermoelastic models serve to relax the isothermal
crack edge stress, but by margins of less than 1%. For s/h � 1 some variation exists between the
thermoelastic models. The result of the Fourier model is closer to the isothermal model than either of
the thermal relaxation models. In addition, for s/h� 1 the differences between results of the isothermal
and thermoelastic models decrease with time. For s/h � 1, however, all three thermoelastic models
produce essentially the same constant deviation from the isothermal result.

For transient temperature changes at the crack edge of (37), much more transient behavior is seen
for s/h � 1. Crack edge temperature changes for models 1 and 2 exceed the Fourier model change.
For model 1 the deviation is orders of magnitude larger, but for both relaxation models, the deviations
themselves diminish with s/h. This domination by model 1 can be predicted by noting that transforms
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(38a), (38b) are proportional to (d1, d1/4
1 ), respectively. In light of (16)

K̂ T
1

K̂ T
2

≈ O(p3/4) (p→∞). (40)

Therefore it is not surprising that an asymptotic analysis gives

K T
1

K T
2
≈ O

(
h
s

)
,

(
s
h
→ 0

)
. (41)

For s/h� 1 the crack edge temperature changes for models 1 and 2 are essentially identical. They fall
below the Fourier model change, but the deviation is almost negligible and decreases with s/h. In view
of (39) it is less than 0.1% at times after crack opening of nano-second order.

Discussion and conclusions

In this article we treat the transient problem of a semiinfinite crack that opens instantaneously in an
isotropic, homogeneous solid that is initially at rest at uniform temperature in a state of uniform plane
strain. The coupled thermoelastic governing equations for the solid included as special cases thermal
models with one [Lord and Shulman 1967] and two [Green and Lindsay 1972] relaxation times, as well
as the classical Fourier model [Chadwick 1960].

To solve the initial/mixed boundary value problem, we used integral transforms and a Wiener–Hopf
technique. We obtained exact expressions for the temporal transforms of the normal stress and tempera-
ture change near the crack edge. Numerical inversion for 4340 steel gave dimensionless ratios of crack
edge stress for the three thermoelastic models with the isothermal result, and temperature change at the
crack edge for the two thermal relaxation models with the Fourier model.

Calculations for crack edge stress showed that all three thermoelastic models relaxed the isothermal
crack edge stress, but by less than 1%. Moreover, within time intervals on the order of a nanosecond after
a crack opens, the deviations of the three thermoelastic models were essentially the same, and constant.

Calculations for temperature change at the crack edge showed pronounced transient behavior within
a time interval of orders magnitude less than a nanosecond after a crack opens. Then, temperature
changes at the crack edge for both thermal relaxation models exceeded values for the Fourier model.
Indeed, deviation for the single-relaxation time model was by orders of magnitude. The deviation of
both models did decrease with time. Within times on the order of a nanosecond, thermal relaxation
changes were essentially identical, with values less than the Fourier results. However, the deviation was
by a fraction of 1% in both cases. This behavior indicates that explicit inclusion of thermal relaxation
in the constitutive equation [Green and Lindsay 1972] can serve to moderate short-time temperature
change.

In summary, our results indicate that thermoelasticity may have a small effect on crack edge stress,
and one that quickly becomes time-invariant and insensitive to thermal relaxation.Temperature changes
at the crack edge, however, are highly transient early on, at which time thermal relaxation effects are
dominant. By times of nano-second order, the Fourier model gives the larger changes, but the deviation
is both negligible and decreasing.
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s
h
� 1

K1

Ki

K2

Ki

KF

Ki

K T
1

K T
F

K T
2

K T
F

0.0001 0.9982 0.9988 0.9998 1522 1.416
0.001 0.99818 0.99875 0.9993 151 1.401
0.01 0.99813 0.99867 0.9978 13.739 1.258
s
h
� 1

100 0.99687 0.99687 0.9532 0.9915 0.9915
1000 0.99688 0.99687 0.9831 0.9968 0.9968

10,000 0.9969 0.9969 0.9969 0.9989 0.9989
100,000 0.9969 0.9969 0.9969 0.9996 0.9996

Table 1. Dimensionless ratios of crack edge stress and temperature change versus di-
mensionless time

(
s/h = 1 : 1.233(10−12) s

)
.

As a dynamic fracture model, the canonical problem treated here is especially idealized because plas-
tic yield is neglected, and the crack opens instantaneously along its entire length. Nevertheless, both
the relative insensitivity of crack edge stress to thermoelasticity, and the highly transient temperature
changes at the crack edge, which are sensitive to thermal relaxation seen here, may be worth noting
when considering a less idealized situation.
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3D GREEN’S FUNCTIONS FOR A STEADY POINT HEAT SOURCE
INTERACTING WITH A HOMOGENEOUS IMPERFECT INTERFACE

X. WANG AND L. J. SUDAK

The image method is applied to derive the three-dimensional temperature field induced by a steady
point heat source interacting with a homogeneous imperfect interface. Our approach is a straightforward
extension of that of Sommerfeld who addressed the half-space Green’s function for a steady point heat
source at the beginning of the last century. Both weakly and highly conducting type imperfect interface
conditions are considered. It is found that the temperature field for both types of imperfect interface is
only dependent on the two-phase conductivity parameter and another parameter measuring the interface
“rigidity”. As an application, we discuss the Coulomb force on a static point electric charge due to its
interaction with the imperfect interface. It is possible to find an equilibrium position for the electric
charge interacting with an imperfect interface. In addition, the equilibrium position is stable provided
the interface is weakly conducting whereas the equilibrium position is unstable if the interface is highly
conducting.

1. Introduction

Recently, Ang et al. [2004] calculated the steady state two-dimensional temperature field in a thermally
isotropic bimaterial with a homogeneous imperfect interface. They derived a special Green’s function
for a steady line heat source in two bonded half-planes with an imperfect interface so as to devise a
boundary element method (BEM) which does not require the interface to be discretized. As discussed
in [Ang et al. 2004], the problem is two-dimensional, in that the temperature is independent of a certain
coordinate (say, the z-coordinate) and the imperfect interface is a weakly conducting one. The weakly
conducting interface is based on the assumption that the normal component of heat flux is continuous
but that the temperature across the interface is discontinuous. More precisely, the jump in temperature
is proportional to the normal component of heat flux. Discussions on weakly conducting interface can
also be found in the works of [Benveniste and Miloh 1986; Ru and Schiavone 1997; Chen 2001], among
others. For a highly conducting interface, the temperature is continuous across the interface, whereas
the normal component of the heat flux has a discontinuity across the interface which is proportional
to a certain differential expression of the temperature (see [Miloh and Benveniste 1999; Chen 2001;
Benveniste 2006] among others).

At the beginning of the last century, [Sommerfeld 1926; 1978] derived the half-space Green’s function
for a steady point heat source by using the image method. As stated by Ochmann [2004], “Sommerfeld
[1978] treated the half-space problem by writing the total thermal field as a superposition of an original

This work is supported by the Natural Sciences and Engineering Research Council of Canada through NSERC Grant No.
249516.
Keywords: imperfect interface, point heat source, image method.
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Figure 1. A steady point heat source in two imperfectly bonded half-spaces.

heat source, a mirror source and a line integral combined of single thermal sources placed at the z-axis
below the mirror source”. We note that Sommerfeld’s technique has been recently extended to address
the sound field caused by a monopole source above an impedance plane by means of the complex image
method [Ochmann 2004; Taraldsen 2005b; Taraldsen 2005a]. Sommerfeld’s method can guide us on
the matter of how to conceive the Green’s functions for a steady heat source in two imperfectly bonded
half-spaces. Here we write the total temperature field in the upper half-space, in which the heat source
is located at (0, 0, h), (h > 0), as a superposition of the original heat source, a mirror source, and a
line integral combined of single thermal sources placed at the z-axis below the mirror source. On the
other hand, we write the temperature field in the lower half-space as a line integral combined of single
thermal sources placed at the z-axis above the location of the original heat source. We find that by using
this method, we can arrive at the Green’s function for both a weakly conducting interface and a highly
conducting one.

The objective of the present work is to seek the possibility of deriving the corresponding three-
dimensional Green’s functions for a steady point heat source in two bonded half-spaces with a weakly
or highly conducting interface. The expressions of the derived Green’s functions should be as simple as
possible in order to conveniently incorporate them in BEM.

2. Preliminaries

In a fixed Cartesian coordinate system (x, y, z), we consider the upper and the lower half-spaces, S1 : z≥ 0
and S2 : z ≤ 0, in which the conductivity of each phase is denoted by k1 and k2, as shown in Figure 1.
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The two half-spaces are separated by the imperfect interface z = 0. Let T be the temperature field and
the heat fluxes are given by qx =−kT,x , qy =−kT,y , qz =−kT,z . A steady point heat source of strength
H is located at the point (0, 0, h), (h > 0) in the upper half-space. Under steady state conditions, the
temperature obeys the three-dimensional inhomogeneous Laplace equation

∂2T
∂x2 +

∂2T
∂y2 +

∂2T
∂z2 =−

H
k1
δ(x)δ(y)δ(z− h), in S1 and S2, (1)

where δ(∗) is the Dirac delta function.
For a weakly conducting interface, the normal heat flux is continuous, whereas the temperature field

undergoes a discontinuity which is proportional to the normal heat flux as

k1
∂T1

∂z
= k2

∂T2

∂z
= α(T1− T2), (z = 0), (2)

where the nonnegative interface parameter α is defined by

α = lim
t→0

k0→0

k0

t
, (3)

and where k0 and t are respectively the interphase conductivity and its thickness. The case where α→∞
corresponds to a perfectly bonded interface whereas α = 0 stands for adiabatic contact. In this work we
assume that α is constant (that is, the imperfection is uniformly distributed over the interface).

For a highly conducting interface, the temperature field is continuous whereas the normal heat flux
undergoes a discontinuity of the type

T1 = T2, k2
∂T2

∂z
− k1

∂T1

∂z
= β1s T1 = β1s T2, (z = 0), (4)

where

1s T1 =
∂2T1

∂x2 +
∂2T1

∂y2

is the operator of the surface Laplacian and the nonnegative interface parameter β is defined by

β = lim
t→0

k0→∞

k0t. (5)

The case where β = 0 corresponds to a perfectly bonded interface, whereas β→∞ describes contact
with a medium of infinite conductivity. In writing Equation (4), it has been assumed that β is a constant.

Following the idea of [Sommerfeld 1978] who treated half-space problems of heat conduction, let us
write the total temperature field in the upper half-space as a superposition of the original heat source at
(0, 0, h), a mirror source at (0, 0,−h) and a line integral combined of single thermal sources placed at
the z-axis below the mirror source. By contrast, let us write the temperature field in the lower half-space
as a line integral combined of single thermal sources placed at the z-axis above the location of the original
heat source. Thus, the distribution of temperature in the upper and lower half-spaces can be expressed
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as

T1 =
H

4πk1

(
1√

x2+ y2+ (z− h)2
+

A√
x2+ y2+ (z+ h)2

− B
∫
+∞

0

exp(−γ η)√
x2+ y2+ (z+ h+ η)2

dη
)
, (z ≥ 0), (6)

T2 =
HC

4πk1

∫
+∞

0

exp(−γ η)√
x2+ y2+ (z− h− η)2

dη, (z ≤ 0), (7)

where A, B, C and γ are unknowns to be determined.

3. A point heat source interacting with weakly conducting interface

Let us first consider a point heat source interacting with a weakly conducting interface described by
Equation (2). Inserting Equations (6) and (7) into the interface condition (2) for a weakly conducting
interface and using the following relations∫

+∞

0

exp(−γ η)√
x2+ y2+ (z+ h+ η)2

dη = exp[γ (z+ h)]
∫
+∞

z+h

exp(−γ q)√
x2+ y2+ q2

dq,

∫
+∞

0

exp(−γ η)√
x2+ y2+ (z− h− η)2

dη =− exp[−γ (z− h)]
∫
−∞

z−h

exp(γ q)√
x2+ y2+ q2

dq,

(8)

we arrive at the following set of linear algebraic equations

A = 1,

k1 B = k2C,

k1 B = 2α,

k1 Bγ = α(B+C).

(9)

Consequently, the unknowns A, B, C and γ can be uniquely determined and given by

A = 1,

B = 2α
k1
,

C = 2α
k2
,

γ = α
k1+k2
k1k2

.

(10)
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Thus, the explicit expressions for the temperature field in the two half-spaces are

T1 =
H

4πk1

(
1√

x2+ y2+ (z− h)2
+

1√
x2+ y2+ (z+ h)2

−
2α
k1

∫
+∞

0

exp
(
−α k1+k2

k1k2
η
)√

x2+ y2+ (z+ h+ η)2
dη
)
, (z ≥ 0), (11)

T2 =
αH

2πk1k2

∫
+∞

0

exp
(
−α k1+k2

k1k2
η
)√

x2+ y2+ (z− h− η)2
dη, (z ≤ 0). (12)

Here it should be mentioned that the line integrals in Equations (11) and (12) are convergent due to the
fact that

γ = α
k1+ k2

k1k2
> 0.

The distribution of temperature along the z-axis can be concisely given as

T̃ =


1
|z̃−1|

+
1

z̃+1
−

2−0
z̃+1

f
(
λ1

z̃+1
2

)
, (z̃ ≥ 0),

0

1− z̃
f
(
λ1

1− z̃
2

)
, (z̃ ≤ 0),

(13)

where

T̃ =
4πhk1

H
T,

z̃ =
z
h
,

0 =
2k1

k1+ k2
,

λ1 = αh
k1+ k2

k1k2
,

(14)

and f (λ), which falls in the range between 0 and 1, is defined by [Fan and Wang 2003]

f (λ)= 2λ exp(2λ)E1(2λ), (15)

with E1(2λ) being the exponential integral function defined as follows [Abramovitz and Stegun 1972]:

E1(2λ)=
∫
∞

2λ

exp(−t)
t

dt . (16)

Expression (13) indicates that the distribution of temperature along the z-axis is totally reliant on the
two-phase conductivity parameter 0, (0≤ 0 ≤ 2) and λ1, which measures the interface “rigidity” [Fan
and Wang 2003]. Figure 2 demonstrates the distribution of temperature along the z-axis for a weakly
conducting interface under various values of λ1 with 0= 1.2. It is observed that temperature is continuous
across the interface z = 0 only when λ1 = ∞ for a perfect interface, otherwise the temperature will
be discontinuous across the weakly conducting interface. The influence of the interface imperfections
on the temperature distribution is especially apparent for those points very close to the interface. The
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Figure. 2 Figure 2. Distribution of the temperature along the z-axis for a weakly conducting in-
terface with 0 = 1.2.

temperature in the positive z-axis is always higher than the corresponding one for a perfect interface,
while the temperature in the negative z-axis is always lower than the corresponding one for a perfect
interface.

4. A point heat source interacting with highly conducting interface

In this section, let us consider a point heat source interacting with a highly conducting interface, as
described by Equation (4). Because the temperature field satisfies Laplace’s Equation (2), the interface
conditions for a highly conducting interface can be equivalently expressed as

T1 = T2, k1
∂T1

∂z
− k2

∂T2

∂z
= β

∂2T1

∂z2 = β
∂2T2

∂z2 , (z = 0). (17)
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Inserting Equations (6) and (7) into the above interface conditions and using Equation (8), we arrive
at the following set of linear algebraic equations

A = − 1,

B+C = 0,

2k1 = −βB,

k1+ k2 = βγ.

(18)

Consequently, the unknowns A, B, C and γ can be uniquely determined and given by

A =−1, B =−
2k1

β
, C =

2k1

β
, γ =

k1+ k2

β
. (19)

Thus, the explicit expressions for the temperature field in the two half-spaces are

T1 =
H

4πk1

(
1√

x2+ y2+ (z− h)2
−

1√
x2+ y2+ (z+ h)2

+
2k1

β

∫
+∞

0

exp
(
−

k1+k2
β
η
)√

x2+ y2+ (z+ h+ η)2
dη
)
, (z ≥ 0), (20)

T2 =
H

2πβ

∫
+∞

0

exp
(
−

k1+k2
β
η
)√

x2+ y2+ (z− h− η)2
dη, (z ≤ 0). (21)

Here it should mentioned that the line integrals in Equations (20) and (21) are convergent due to the fact
that

γ =
k1+ k2

β
> 0.

The distribution of temperature along the z-axis can also be concisely given by

T̃ =


1
|z̃−1|

−
1

z̃+1
+

0

z̃+1
f
(
λ2

z̃+1
2

)
, (z̃ ≥ 0),

0

1− z̃
f
(
λ2

1− z̃
2

)
, (z̃ ≤ 0),

(22)

where T̃ , z̃, 0 have been defined by Equation (14) and

λ2 =
h(k1+ k2)

β
. (23)

Expression (22) indicates that the distribution of temperature along the z-axis is totally reliant on 0 and
λ2 which also measures the interface “rigidity” as λ1. Figure 3 illustrates the distribution of temperature
along the z-axis for a highly conducting interface under various values of λ2 with 0 = 1.2. It is observed
that temperature is always continuous across the highly conducting interface z = 0. The temperature
along the total z-axis is always lower than the corresponding one for a perfect interface. By comparing
Figures 2 and 3 we observe that the distributions of the temperature in the negative z-axis (z ≤ 0) are the
same for the two kinds of imperfect interface conditions when λ1 = λ2. In fact, by comparing Equation
(12) with Equation (21), we find that the distribution of the temperature in the lower half-space is always
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Figure 3. Distribution of the temperature along the z-axis for a highly conducting inter-
face with 0 = 1.2.

exactly the same for the two types of imperfect interface conditions when λ1 = λ2, or equivalently when
αβ = k1k2.

5. An application

Besides the incorporation of the present solution in BEM which does not require the discretization of
the imperfect interface, another interesting application is that of a static point electric charge Q located
at (0, 0, h), (h > 0) in two imperfectly bonded half-spaces with dielectric constants ε1 and ε2. (Since
the differential equations for the electrostatic problem and for the heat conduction problem are identical,
the results for the heat conduction problem obtained in the previous two sections can be applied directly
to the electrostatic problem considered in this section). The Coulomb force F on the electric charge due
to its interaction with a weakly conducting interface is

F =
Q2
(

1− 2λ1(2−0)
(
1− f (λ1)

))
16πε1h2 , (24)

where

0 =
2ε1

ε1+ ε2
and λ1 = αh

ε1+ ε2

ε1ε2
.
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Here the boundary conditions on the weakly conducting interface are

ε1
∂φ1

∂z
= ε2

∂φ2

∂z
= α(φ1−φ2), (z = 0), (25)

where φ is the electric potential, α is a nonnegative constant interface parameter.
Similarly, the Coulomb force F on the electric charge due to its interaction with a highly conducting

interface is

F =
Q2
(

2λ20
(
1− f (λ2)

)
− 1

)
16πε1h2 , (26)

where

λ2 =
h(ε1+ ε2)

β
.

Here the boundary conditions on the highly conducting interface are

φ1 = φ2, ε2
∂φ2

∂z
− ε1

∂φ1

∂z
= β1sφ1 = β1sφ2, (z = 0), (27)

where β is a nonnegative constant interface parameter.
In Equations (24) and (26) the Coulomb force F is in the z-direction due to the fact that all the image

charges are distributed at the z-axis. A positive value of the force means that the electric charge is repelled
from the interface whereas a negative value means that the electric charge is attracted to the interface.
By applying the following asymptotic expansion

1− f (η)∼=
1

2η
−

1
2η2 + o

(
1
η3

)
, when η→∞, (28)

the Coulomb force F on the electric charge due to its interaction with a perfect interface (λ1, λ2→∞)

is

F =
(0− 1)Q2

16πε1h2 . (29)

The above indicates that the electric charge will be repelled from the perfect interface when 0 > 1 and
it will be attracted to the perfect interface when 0 < 1. The situation in which F = 0 occurs only when
0= 1 or ε1= ε2. In other words, there is no equilibrium position, F = 0, for an electric charge interacting
with a perfect interface separating two half-spaces with different dielectric properties.

On the other hand, it follows from Equation (24) that it is possible to find a situation in which the
Coulomb force F on the electric charge due to its interaction with a weakly conducting interface is zero,
if the following condition is satisfied

f (λ1)= 1−
1

2λ1(2−0)
. (30)

It can be easily observed from (24) that

F =
Q2

16πε1h2 > 0,
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0 λ1 0 λ2

0 0.7798 2 0.7798
0.1 0.8788 1.9 0.8788
0.2 1.004 1.8 1.004
0.3 1.1671 1.7 1.1671
0.4 1.3873 1.6 1.3873
0.5 1.6999 1.5 1.6999
0.6 2.1754 1.4 2.1754
0.7 2.9792 1.3 2.9792
0.8 4.6095 1.2 4.6095
0.9 9.563 1.1 9.563
0.95 19.534 1.05 19.534
1 ∞ 1 ∞

Table 1. The pairs of 0 and λ1 (left side) that satisfy Equation (30). The pairs of 0 and
λ2 (right side) that satisfy Equation (31).

if h→ 0 (or equivalently λ1→ 0) and

F =
Q2(0− 1)
16πε1h2 < 0,

if h→∞ (or equivalently λ1→∞) and 0 < 1. Consequently, the equilibrium position determined by
Equation (30) is a stable one. Table 1 (left side) presents the pairs of 0 and λ1 that satisfy (30). We find
that only when 0 < 1 (or equivalently ε1 < ε2, when the upper half-space is less conducting than the
lower half-space) does an equilibrium position for the electric charge exist.

Similarly, it follows from Equation (26) that it is possible to find a situation in which the Coulomb
force F on the electric charge due to its interaction with a highly conducting interface is zero if the
following condition is satisfied

f (λ2)= 1−
1

2λ20
. (31)

It can also be easily observed from Equation (26) that

F =−
Q2

16πε1h2 < 0,

if h→ 0 (or equivalently λ2→ 0) and

F =
Q2(0− 1)
16πε1h2 > 0,

if h→∞ (or equivalently λ2→∞) and 0 > 1. Consequently, the equilibrium position determined by
Equation (31) is an unstable one. Table 1 (right side) presents the pairs of 0 and λ2 that satisfy (31). We
find that only when 0 > 1 (or equivalently ε1 > ε2, the upper half-space is more conducting than the
lower half-space) does an equilibrium position for the electric charge exist.
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The physical implication of the phenomenon of the existence of an equilibrium position for the electric
charge interacting with the imperfect interface is that a properly chosen imperfect interface “shields” the
charge located in the upper half-space from the interference of the lower half-space which has a different
dielectric constant than the one in which it is embedded. The shielding is achieved by a compensation
effect that the imperfect interface introduces. This, in a sense, is similar to the so-called neutral inho-
mogeneities which may be rendered “invisible” through some properly chosen imperfect interface (see
[Benveniste and Miloh 1999], and [Milton 2003, Section 7.11]). In the present case, the lower half-space
is the neutral inhomogeneity. In other words, as far as the point charge is concerned, its effect has been
made neutral through the presence of a suitably chosen imperfect interface.

6. Conclusions

We have presented in Equations (11) and (12) the Green’s function for a steady heat source interacting
with a weakly conducting interface. Similarly, Equations (20) and (21) present the Green’s function for
a steady heat source interacting with a highly conducting interface. In particular, the temperature along
the z-axis for both kinds of imperfect interface conditions can be concisely expressed in terms of the
exponential integral function. We have also tried to derive the Green’s function for a steady point heat
source interacting with the following interface model of [Bövik 1994]

T1− T2 =
t
2

(
k1

k0
− 1

)
∂T1

∂z
+

t
2

(
k2

k0
− 1

)
∂T2

∂z
,

k2
∂T2

∂z
− k1

∂T1

∂z
=

t
2
(k0− k1)1s T1+

t
2
(k0− k2)1s T2,

(z = 0), (32)

which can reduce to a weakly conducting interface, Equation (2), by letting t → 0 and k0→ 0. Also
(32) can be reduced to a highly conducting one, (4), by letting t→ 0 and k0→∞. Unfortunately, the
image method adopted here is invalid in treating this more general kind of imperfect interface. More
specifically, the assumption of Equation (6) and (7) with four undetermined constants A, B, C and γ for
the temperature field in the two half-spaces is not sufficient to satisfy Equation (32).
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THE SHEAR RESPONSE OF METALLIC SQUARE HONEYCOMBS

FRANÇOIS COTE, VIKRAM S. DESHPANDE AND NORMAN A. FLECK

Stainless steel square honeycombs have been manufactured by slotting together steel sheets and then
brazing the assembly. Their out-of-plane shear response is measured as a function of the relative density
of the honeycomb and of the direction of shearing with respect to the material axes of the square honey-
comb. The response is nearly isotropic with the shear strength and reasonably insensitive to the loading
direction. In contrast to the out-of-plane compressive response, the shear response is monotonically
hardening and the shear strength scales linearly with relative density. A simple analytical model based
upon uniform deformation of the cell walls is in good agreement with the measured shear behavior at low
shear strains, and predicts the onset of wrinkling of the cell walls to reasonable accuracy. Finite element
(FE) calculations are accurate up to large values of shear strain, and reveal that the shear strength of
the square honeycombs is relatively insensitive to the ratio of honeycomb height to cell size. The shear
strength of square honeycombs compares favorably with other competing sandwich core topologies such
as pyramidal and corrugated truss cores.

1. Introduction

The development of metallic micro-architectured materials for application as the cores of sandwich struc-
tures is of current academic and industrial interest. Three classes of core architecture have been proposed:
prismatic cores, 3D trusses, and honeycombs. The most suitable choice of sandwich core architecture
depends upon the specific application. For example, trusses with their open celled architecture are ideal
for multifunctional applications involving heat transfer in addition to load carrying capacity [Evans et al.
2001]. On the other hand, these sandwich cores have a low in-plane stretching strength. Thus, for
load-bearing, honeycomb cores are superior to the truss cores. Traditionally, hexagonal honeycombs
have been extensively employed in sandwich construction [Gibson and Ashby 1997]. Similar to the
truss cores, these hexagonal honeycombs suffer from the drawback of low in-plane stretching strength.
Square honeycombs overcome this drawback, at least for loadings along the directions of the cell walls,
and thereby have promise for sandwich construction. The out-of-plane shear properties of stainless
steel square honeycombs are the focus of this study. The out-of-plane loading direction is of particular
importance in sandwich beams and plates since the core functions by carrying shear loads while the face
sheets carry bending loads.

The authors are grateful to ONR for their financial support through US-ONR IFO grant number N00014-03-1-0283 on The
Science and Design of Blast Resistant Sandwich Structures. FC acknowledges support from the Cambridge Commonwealth
Trust and the Fonds Québécois de la Recherche sur la Nature et les Technologies.
Keywords: honeycombs, wrinkling, shear strength, sandwich panels.
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Honeycombs usually comprise hexagonal cells and are manufactured by either an expansion or corru-
gation process. For example, see the Hexcel Composites1 honeycomb data sheet [Hexcel 1999]. Hexag-
onal honeycombs are routinely employed as the cores for lightweight sandwich panels and as energy
absorbers. They are typically manufactured from aluminum (Al) alloys and have a relative density ρ̄
(that is, the ratio of the density of the honeycomb treated as a homogeneous continuum to the density
of the solid) of less than 3%. Experiments and simple analyses have shown that their out-of-plane
elastic properties scale linearly with the relative density ρ̄ [Kelsey et al. 1958; Zhang and Ashby 1992].
In out-of-plane crushing, these honeycombs exhibit a stress peak followed by large stress oscillations
associated with the formation of a succession of plastic folds in each cell. Similarly the out-of-plane
peak shear strength is governed by cell wall buckling [Werren and Norris 1950; Zhang and Ashby 1992].
Once the wrinkles have formed, the shear stress drops and subsequently remains approximately constant
until failure occurs by the fracture of the cell walls. Experimental studies illustrating this behavior have
been presented by [Doyoyo and Mohr 2003; Mohr and Doyoyo 2004b] and the corresponding numerical
simulations of the shear response of Al hexagonal honeycombs by [Mohr and Doyoyo 2004a] . Most
experimental studies are restricted to relative densities ρ̄ < 0.08, since debonding of the honeycombs
from the plates of the single-lap shear fixture has been observed for both metallic [Hexcel 1999] and
nonmetallic honeycombs [Werren and Norris 1950; Zhang and Ashby 1992] at higher relative densities.

Recent studies [Fleck and Deshpande 2004; Xue and Hutchinson 2004] suggest that square honeycomb
cores having a high relative density (ρ̄ > 0.05) are preferable for high-severity loadings such as blasts and
shocks because of their high out-of-plane crushing resistance and high in-plane stretching strength. We
expect enhanced performance of square honeycombs constructed from solids of high strain hardening,
such as stainless steels. An experimental investigation into the out-of-plane compressive response of stain-
less square honeycombs by [Côté et al. 2004] over a relative density range 0.03< ρ̄ < 0.2 confirmed that
the honeycombs exploit the strain hardening behavior of the stainless steel. Peak compressive strength is
set by the axial torsional plastic buckling of the square honeycomb cells. In fact, no progressive folding
of the cell walls was observed by [Côté et al. 2004]. This difference in compressive response between
aluminum and stainless steel honeycombs is attributed to differences in the strain hardening response of
the parent materials.

The objectives of the present study are to investigate the effects of the relative density ρ̄, shear loading
direction, and cell aspect ratio (that is, the ratio of cell height-to-cell size) on the out-of-plane shear
response of stainless steel square honeycombs. First, we describe the procedure used to manufacture
stainless steel square honeycomb and our test protocol. Second, we report the observed the out-of-
plane shear behavior, including the effects of relative density and loading direction. We compare these
experimental measurements with a simple analytical model and 3D finite element simulations. Finally,
we compare the shear response of the square honeycombs with that for commercially available aluminum
hexagonal honeycombs, as well as three other alternative core topologies.

2. Experimental method

2.1. Specimen manufacture and test protocol. Since metallic square-honeycombs are not yet commer-
cially manufactured, we manufactured them by electro-discharge machining and brazing as described

1Hexcel Composites, Duxford, Cambridge, CB2 4QD, United Kingdom.
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below. Square honeycombs were manufactured from AISI type 304 stainless steel sheets of thickness
t = 0.30 mm, using the slotting technique of [Côté et al. 2004; Côté et al. 2006]. The sheets were cropped
into long strips of height H . Cross-slots of width 0.305 mm and spacing l in the range 6 to 17.5 mm
were cut by electro-discharge machining (EDM). To first order in t/ l, the relative density ρ̄ of the square
honeycomb is ρ̄ = 2t/ l. Four relative densities of square honeycomb specimens were manufactured and
tested by varying the cell size l.

The square honeycombs were assembled by slotting together the sheets as shown in Figure 1a. A
clearance of 5µm between sheet and slot facilitated assembly while providing a sufficiently tight fit to

unit cell

l

l

t

ω

t l

h

x1

x2

x3

x1

x2

n

(a)

(b)

Figure 1. (a) Sketch of the square honeycomb manufacturing technique. (b) Schematic
of the unit cell employed in the finite element analysis, including the coordinate system
adopted and the loading direction n.
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L

25 mm

x1

x2

x3

ω n

Figure 2. Photograph of aρ̄ = 0.05 square honeycomb specimen slotted into one of the
faces of the single-lap shear test fixture. This specimen is loaded in the ω = tan−1(1/4)
direction.

assure stability. To ensure good bonding between the square honeycomb specimens and the shear test
fixture, slots of width 0.31 mm and depth 4 mm were electro-discharge machined into 25 mm thick steel
sheets. These steel sheets served as the test fixtures. The cross-slotted square honeycomb specimens
were then assembled onto the test fixtures as shown in Figure 2. Consequently, the net height of the
honeycomb was h = H − 8 mm.

After assembly of the honeycomb core into the single-lap shear test fixture, the braze alloy Ni-Cr
25-P10 (wt.%) was applied uniformly over the sheets of the square honeycombs and the inner surfaces
of the test fixture. The whole assembly was then brazed together in a vacuum furnace at 1075◦ C in
a dry argon atmosphere at 3–10 Pa. Capillarity forces were sufficient to draw the braze into the joints,
resulting in an excellent bond. After brazing, the wall thickness was measured to be t = 0.32 mm. In all
tests performed in this study the cell aspect ratio of the square honeycomb specimens was h/ l = 1.

The quality of the braze joints was assessed by optical microscopy and SEM/EDX dot mapping tech-
niques. The surface of a typical square-honeycomb joint was prepared by successive grinding steps and a
final polish with 1µm diamond paste. The polished surface was then etched using a solution comprising
74% hydrochloric acid and 1.3% hydrogen peroxide. An optical photograph of a polished and etched
brazed joint is shown in Figure 3 and confirms the good overall bonding at the joints. A closer inspection
however reveals the presence of two phases in the joint. The composition of those phases was obtained
by EDX dot mapping analysis. The first phase has approximately the composition of stainless steel, that
is, Fe, Ni, and Cr, while the second phase contains phosphides and are expected to decrease the ductility
of the joint [Zhuang and Eagar 1997].

We defined x3 as the out-of-plane direction, and n as the unit vector in the x1−x2 plane at an angle ω to
the x1-direction, as sketched in Figure 1b. Then, the out-of-plane shear response τ3n − γ3n was measured
using the single-lap shear set-up, with selected values of ω. All tests were performed in accordance
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phosphides

Fe, Ni, Cr

wallsbraze

x
2

x
1

0
.3

2
 m

m

Figure 3. Photograph of a polished braze joint showing the effect of diffusion bonding
on the microstructure of the joint. The zoom area reveals the presence of two phases in
the joint.

with [ASTM 2000] for shear tests on sandwich cores. The standard demands a specimen aspect ratio of
L/h ≥ 12, where L is the length of the specimen. The example shown in Figure 2 is for a ρ̄ = 0.05
square honeycomb specimen, loaded in the ω = tan−1(1/4) direction.

The shear tests were performed on a 150 kN screw driven test machine at an applied macroscopic
nominal shear strain-rate of 10−4 s−1. The load was measured by the load cell of the test machine and
was used to define the nominal shear stress. A clip gauge mounted on the single-lap shear test fixture
was employed to measure the relative displacement between the two faces of the square honeycomb
specimens, thereby giving the applied shear strain. A photograph of the overall single-lap shear test

L

40 mm

x3

h

n

Figure 4. Photograph of the single-lap shear test fixture, with aρ̄ = 0.05 square honey-
comb specimen loaded in the ω = π/4 direction.
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fixture with a ρ̄ = 0.05 square honeycomb specimen loaded in the ω = 45◦ direction is shown in Figure
4. For sake of clarity, the clip gauge is not shown on the Figure 4 but was mounted during the experiments
using a standard arrangement for a single-lap shear test [Kelsey et al. 1958].

2.2. Properties of the parent material. Tensile specimens of dog-bone geometry were cut from the 304
stainless steel sheets and subjected to the same brazing cycle as that used to manufacture the square
honeycombs. The measured true tensile stress versus logarithmic strain response, shown in Figure 5,
can be approximated as elastic, linearly hardening with a Young’s modulus E = 210 GPa, yield strength
σy = 210 MPa and post-yield tangent modulus Ey = 2.1 GPa.

3. Shear response of square honeycombs

3.1. Measurements. The measured transverse shear stress τ31 versus shear strain γ31 (ω = 0◦) response
of four selected relative densities of the square honeycomb are plotted in Figure 6. In all cases, the shear
stress versus strain response displays a hardening character with no stress drop.

A montage of photographs of the ρ̄ = 0.04 specimen at selected levels of applied shear strain γ31

is given in Figure 7. The deformation of the cell walls is essentially uniform for shear strains γ31 <

0.02. Wrinkling of the cell walls is observed at larger strains, with typically two folds in each cell
wall. Visual observations on the four tests plotted in Figure 6 indicate that wrinkling commenced at
γ31 = 0.02, 0.04, 0.8 and 0.11 for ρ̄ = 0.04, 0.05, 0.08 and 0.11, respectively. The observed onset of
wrinkling is marked by solid circles in Figure 6.

The effect of the loading angle ω on the shear stress τ3n versus γ3n response of the square honeycombs
is shown in Figure 8. The shear strength increases with ω for 0≤ω≤ π/4. Note that half of the cell walls
carry nearly no load when ω = 0◦ while all cell walls are equally loaded when ω = π/4. The increase in
shear strength also occurs because wrinkling of the cell walls is delayed for loading with ω > 0◦. Visual
observations suggest that wrinkling of the cell wall parallel to the x1 commences at γ3n = 0.04, 0.05, 0.06
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Figure 5. The measured tensile stress versus strain curve of the as-brazed 304 stainless
steel. Tensile response was measured at an applied strain rate of 10−4 s−1.
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Figure 6. The measured response, and the FE and analytical predictions of the shear
stress τ31 versus shear strain γ31 response for square honeycomb specimens of differing
relative density ρ̄ with ω = 0◦ of (a) ρ̄ = 0.04, (b) ρ̄ = 0.05, (c) ρ̄ = 0.08 and (d)
ρ̄ = 0.11. The onset of wrinkling, as observed in the experiments, and as predicted by
the FE calculations, are marked as filled and open circles, respectively.

and 0.07 for loading along ω = 0◦, tan−1(1/4), tan−1(1/2) and π/4, respectively. Again, the observed
onset of wrinkling is marked by the solid circles in Figure 8.

Note that the shear test fixture applies a prescribed shear strain γ3n , and the measured shear traction
is the component along the n-direction. For ω 6= 0oor 45o the straining direction is not aligned with
symmetry axes of the honeycomb, and a finite shear traction perpendicular to the n-direction is also
generated. This component of shear traction has not been measured in the current study.

3.2. Analytical predictions. Assuming uniform straining of the cell walls of the square honeycombs,
the applied shear strain γ3n is related to the shear strains γw1 and γw2 in the cell walls parallel to the x1

and x2 axis, respectively via
γw1 = γ3n cosω, (1a)
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Figure 7. Photographs showing the deformation mode of the ρ̄ = 0.04 square honey-
comb specimen loaded in the ω = 0◦ direction.

γw2 = γ3n sinω. (1b)

The honeycomb responds with a shear traction τw1 in the cell wall parallel to the x1-direction and with
a shear traction τw2 parallel to the x2-direction. The measured shear stress τ3n , for 0≤ ω ≤ π/4, is

τ3n =
(
τw1 cosω+ τw2 sinω

) ρ̄
2
. (2)

In general, the traction (τw2 cosω− τw1 sinω)ρ̄/2 transverse to the shearing direction does not vanish.
Consider first the elastic response of the honeycomb. For an applied shear strain γ3n , the wall stresses

are
τw1 = Gγ3n cosω, (3a)

τw2 = Gγ3n sinω, (3b)

where G is shear modulus of the cell wall material. The out-of-plane shear modulus G3n of the square
honeycombs is isotropic, due to its 4-fold symmetry about the x3 axis. Combining Equation (2) and
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Figure 8. The measured response and the FE and analytical predictions of the shear
stress τ3n versus shear strain γ3n response of the ρ̄ = 0.05 square honeycombs specimens
loaded in the (a) ω = 0◦, (b) ω = tan−1(1/4), (c) ω = tan−1(1/2) and (d) ω = π/4
directions. The onset of wrinkling as observed in the experiments and predicted by the
FE calculations are marked as filled and open circles, respectively.

Equations (3a) and (3b), the shear modulus G3n of the square honeycombs becomes

G3n =
E

4(1+ ν)
ρ̄,

where E and ν are the Young’s modulus and Poisson ratio of the isotropic solid parent material, respec-
tively. Moreover, isotropy of elastic response dictates that the shear traction (τw2 cosω− τw1 sinω)ρ̄/2
transverse to the shearing direction vanishes.

We proceed to develop an analytical model for the shear strength τ p
3n of the square honeycombs made

from an elastic, ideally plastic material with a Young’s modulus E , Poisson’s ratio ν and yield strength
σy . With the cell walls modeled as thin clamped plates under shear loading, the maximum allowable
shear stress of the square honeycomb is set by either elastic buckling or plastic yielding of cell walls.
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The elastic shear buckling strength of a clamped plate is given by [Timoshenko and Gere 1963] as

τc =
kπ2 E

12(1− ν2)

( t
l

)2
, (4)

where k varies from 8.99 to 12.28 [Timoshenko and Gere 1963], depending on the aspect ratio h/ l. Note
that for a honeycomb with aspect ratio h/ l = 1 and clamped edges along x3 = 0 and x3 = h, k = 12.28.
For elastic behavior, Equation (3) dictates that the wall stresses are related by

τw2 = τ
w
1 tanω (5)

and consequently, with τw1 set equal to τc the elastic buckling stress of the square honeycomb is

τ
p

3n =


kπ2 E

96 cosω(1−ν2)
ρ̄3, if ω ≤ 45◦,

kπ2 E
96 sinω(1−ν2)

ρ̄3, 45◦ < ω ≤ 90◦.
.

In contrast, when the cell walls undergo plastic deformation, Equation (5) is no longer valid. With both
the cell walls assumed to be at a state of shear yield, the plastic shear strength of the square honeycomb
is obtained by substituting τw2 = τ

w
1 = σy/

√
3 into Equation (2). Here we assume that the tensile yield

strength of the solid is related to its shear yield strength via the usual von Mises relation.) Thus, the
maximum allowable shear stress of the square honeycomb made from an elastic, ideally plastic solid
follows as

τ
p

3n =


kπ2 E

96 cosω(1− ν2)
ρ̄3, if ρ̄ <

√
48(1− ν2)σy cosω
√

3kπ2 E(cosω+ sinω)
σy

2
√

3
ρ̄(cosω+ sinω), otherwise,

(6)

for 0 ≤ ω ≤ 45◦. The corresponding strength for loading in the 45◦ < ω ≤ 90◦ direction follows by
interchanging sinω and cosω in Equation (6).

Alternatively, consider parent material response for rigid strain hardening. Here we develop an an-
alytical expression for the shear stress versus strain response of the square honeycomb prior to the de-
velopment of wrinkles (that is, when the constituent sheets are in a uniform state). We assume uniform
deformation of the cell walls, and write the uniaxial tensile stress versus plastic strain response of the cell
wall material as σ(ε). With the macroscopic shear strain γ3n related to the shear strains in the cell walls
via Equations (1a) and (1b), the shear stress versus strain response (τ3n versus γ3n) of the honeycombs
follows as

τ3n =

[
σ
(
εref

1
)

cosω+ σ
(
εref

2
)

sinω
] ρ̄

2
√

3
, (7)

where εref
1 ≡ γ3n cosω/

√
3 and εref

2 ≡ γ3n sinω/
√

3.
Experimental measurements by [Gerard 1948] on the shear of clamped plates suggest that employing

the secant shear modulus Gs ≡ τ/γ in Equation (4) gives good agreement with measured results. Thus,
we estimate the plastic shear buckling stress of clamped plates as

τ p
c =

kπ2Gs

6(1− ν)

( t
l

)2
.
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Here, Gs ≡ τ/γ = σ/3ε is the shear secant modulus derived from the true tensile stress versus logarith-
mic strain curve of the parent material and evaluated at σ =

√
3τ p

c . Assuming collapse of the square
honeycomb when either the wall parallel to the x1 axis or x2 axis plastically buckles, the shear strength
of the square honeycomb is

τ
p

3n =


(√

3τ p
c cosω+ σ

(
εref tanω

)
sinω

) ρ̄

2
√

3
, if ω ≤ 45◦,(

σ
(
εref cotω

)
cosω+

√
3τ p

c sinω
) ρ̄

2
√

3
, 45◦ < ω ≤ 90◦,

(8)

where εref is the tensile strain of the solid material at a tensile stress
√

3τ p
c .

We emphasize that this analysis assumes uniform deformation of the cell walls of the square hon-
eycomb and only provides an upper bound to the shear stress versus strain response. The analytical
prediction for the shear stress versus strain response, Equation (7), is valid up to the onset of wrinkling
and has been added to the measurements plotted in Figures 6 and 8, with the curves truncated at the
plastic buckling stress (Equation (8)). The analytical model is in good agreement with the measurements
but predicts the onset of wrinkling slightly before that observed in the experiments.

4. Finite element predictions of the shear response

Finite element (FE) calculations of the shear response were performed using the general purpose finite
element package ABAQUS Standard (Hibbitt, Karlsson & Sorensen, Inc.). All simulations reported here
were performed on the unit cell shown in Figure 1b (as a cruciform section), including the nonlinear
effects of large displacements. Additional calculations on larger repeating units comprising two and four
unit cells gave nearly identical results to those presented here and are omitted for the sake of brevity.

The unit cell of the square honeycomb was modeled using linear 3D shell elements (S4R in the
ABAQUS notation). Periodic boundary conditions were specified on the boundaries x1 = ±l/2 and
x2 = ±l/2 by specifying that all degrees of freedom (both translational and rotational) on the edges
xi =−l/2 are equal to the corresponding ones on the edge xi =+l/2, where the subscript i ranges from
1 to 2. The nodes on the plane x3 = 0 were fully clamped. Loading was specified by prescribing the
displacements u1 = δ cosω and u2 = δ sinω, where δ is the applied displacement and ω is the loading
angle2, to all nodes on the plane x3 = h. The displacements u3 of all nodes on the plane x3 = h were
constrained to be equal. The rotational degrees of the nodes on the planes x3 = h and x3 = 0 were set to
zero to simulate the constraint imposed by the honeycomb joint at the loading platens. These boundary
conditions imply that the strain ε33 of the square honeycomb specimens is unconstrained with the average
traction T3 = 0 The single-lap shear tests discussed above provide negligible constraint to straining in
the 3-direction, so the assumed boundary conditions described here are representative. Typically, the
model comprised 30 shell elements in each of the x1, x2 and x3-directions, giving a total of 1800 linear
shell elements. Convergence studies revealed that increasing the number of elements above 1800 did not
change the results appreciably.

2 The applied displacements in the FE calculations are consistent with the experiments, where the shear test fixture prevents
displacements in the x1 and x2 plane orthogonal to the ω direction.
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Figure 9. FE predictions of the shear stress τ31 versus shear strain γ31 response of the
ρ̄ = 0.05 square honeycombs for three choices of the initial imperfection mode (shown
in the inset). The nondimensional imperfection magnitude was taken to be ζ = 0.05 in
all cases.

The uniaxial true stress versus logarithmic plastic strain was tabulated in ABAQUS using the exper-
imentally measured response (Figure 5). J2 flow-theory was adopted. Initial imperfections were intro-
duced into the unit cell in the form of selected elastic eigenmodes of the structure. The three imperfection
modes adopted are shown in the inset of Figure 9. Mode I is the lowest frequency mode, while mode
II is the next harmonic. Mode III contains the first 2 eigenmodes, with an equal maximum deflection
for each mode. The maximum transverse deflection of the webs of the honeycomb for each mode is set
to w = ζ t , where ζ is a prescribed nondimensional imperfection amplitude. The FE predictions of the
ω = 0◦ shear stress versus strain response of the ρ̄ = 0.05 square honeycombs are plotted in Figure 9
for the three selected modes of the initial imperfection with ζ = 0.05. These calculations show that the
response is relatively insensitive to the shape of initial imperfection. Scoping studies also revealed that
the response is reasonably insensitive to the magnitude of the imperfection for ζ ≤ 0.1. In all calculations
reported subsequently, we employed the mode I imperfection of Figure 9, with ζ = 0.05.

4.1. Comparison with measurements. The FE predictions of the shear stress versus strain response of
the square honeycombs are included in Figures 6 and 8, in which the predicted onset of wrinkling is
marked by open circles. In all cases, the FE predictions agree with the experimental measurements to
within about 10%. The onset of wrinkling is also accurately predicted by the FE calculations. The
discrepancy between the measurements and FE predictions is greatest for the ρ̄ = 0.11 honeycombs
(Figure 6d) and is attributed to tearing of the cell walls in the experiments. This was not accounted for
in the FE calculations.

A comparison between the measurements and the predictions of both the analytical model and FE
calculations is summarized in Figure 10. In Figure 10a, measurements and predictions are given for the
normalized shear strength τ y

31/(ρ̄σy) versus ρ̄, where τ y
31 is the shear stress at a shear strain γ31 = 0.05,
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Figure 10. Comparison of the measured and predicted shear strengths. (a) The shear
strength τ y

31 at a shear strain γ31 = 0.05 versus the honeycomb relative density ρ̄, for
ω = 0; (b) the shear strength τ y

3n at a shear strain γ3n = 0.05 versus the loading angle ω,
for ρ̄ = 0.05.

with ω = 0. The value of 0.05 was selected for comparison purposes since the initial yield is difficult
to define. Good agreement between the predictions and measurements is observed for the three lower
values of ρ̄, but as discussed above, tearing of the cell walls results in an over-prediction of the shear
strength for the ρ̄ = 0.11 honeycomb. The FE calculations predict a sharp drop in the shear strength for
ρ̄ < 0.03. At these low relative densities, elastic buckling of the cell walls is expected to control the shear
strength of the square honeycombs. Note that experiments at such low relative densities are impractical
for usual laboratory testing: for wall thickness of, for example, t = 0.30 mm, the cell size of a ρ̄ = 0.03
honeycomb is 20 mm. Figure 10b shows a comparison between the measurements and predictions of
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Figure 11. Finite element predictions of the deformation mode of the ρ̄ = 0.05 square
honeycomb at a shear strain γ3n = 0.4 for loading in the (a) ω = 0◦, (b) ω = tan−1(1/4),
(c) ω = tan−1(1/2), and (d) ω = π/4 directions.

the shear strength τ y
3n at a shear strain γ3n = 0.05 for the ρ̄ = 0.05 square honeycombs, as a function of

the loading angle ω. We observed excellent agreement between the measurements and both the FE and
analytical predictions.

Figure 11 shows the FE predictions of the deformation modes of the ρ̄ = 0.05 square honeycomb at
an applied shear strain γ3n = 0.4 for the four loading directions studied experimentally. Consistent with
the experimental observations, the degree of wrinkling of the cell walls parallel to the x2 axis increases
with increasing ω as the applied load is more evenly distributed between the cell walls of the square
honeycomb.

In the FE calculations we assumed that the traction T3 vanishes, with unconstrained straining of the
specimen in the x3-direction. Specimen end effects in the single-lap shear test configuration mean that this
boundary condition is not satisfied over the full length of the test specimens. To assess the significance of
the constraint to straining in the 3-direction imposed in the single-lap shear configuration, we compare
the measurements and FE predictions of the strain ε33 for the ρ̄ = 0.04 square honeycomb specimen
tested in the ω = 0◦ direction. The strain ε33 from experiments was evaluated from photographs taken
at selected levels of applied shear strain. Figure 12 shows a plot of ε33 versus the applied shear strain
γ31. Good agreement between the FE predictions and measurements suggests that the T3 = 0 boundary
condition employed in the FE calculations is adequate to model our single-lap shear experiments.

4.2. Parametric finite element study. The FE model captures the experimental measurements within
reasonable accuracy. Limitations on the specimen manufacturing and testing capabilities meant that we
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Figure 12. FE predictions and measurements of the through-thickness strain ε33 versus
shear strain γ31 for a ρ̄ = 0.04 honeycomb loaded in the ω = 0◦ direction.

did not investigate the effect of cell aspect ratio h/ l on the shear response. Also, the effect of loading
direction ω upon shear response was measured for a single value of relative density ρ̄.

Figure 13a shows the FE predictions of the shear strength τ y
3n at a shear strain γ3n = 0.05 as a function

of the cell aspect ratio h/ l for three choices of loading angle ω, with ρ̄ fixed at 0.05. The shear strength
is only weakly dependent on h/ l, with τ y

3n decreasing by about 10% when h/ l increases from 0.25
to 4. Note that the analytical model of Equation (7) predicts no dependence of τ y

3n on h/ l, which is
why Figure 13a does not include these predictions. The effect of loading angle on the normalized shear
strength τ y

3n/(ρ̄σy) is illustrated in Figure 13b for three choices of relative density ρ̄. The FE calculations
and analytical predictions of Equation (7) suggest that the shear strength is reasonably insensitive to the
loading direction sover the range of density ρ̄ considered.

5. Comparison of the square honeycomb with competing sandwich cores

It is instructive to compare the shear strength of the stainless steel square honeycombs with competing
cores. We were able to compare the measured shear strength of our stainless steel square honeycombs
with data for commercially available aluminum hexagonal honeycombs, and with data for competing
micro-architectured sandwich cores also made from stainless steel.

The normalized shear strength τ y/(ρ̄σy) of 5052 H39 aluminum alloy hexagonal honeycombs manu-
factured by Hexcel Composites is plotted against relative density ρ̄ in Figure 14a for loadings in two
orthogonal directions. We assumed that the tensile yield strength of the parent aluminum is σy = 255 MPa,
as reported by [Bhat and Wang 1990]. Our experimental measurements for the shear strength of the
stainless steel square honeycombs are included in Figure 14a as well. Recall that we tested four relative
densities for loading in the ω = 0◦ direction, while the ρ̄ = 0.05 square honeycomb was tested in
the ω = π/4 direction. The shear strength τ y is defined as the peak shear strength of the aluminum
honeycombs. However, the stainless steel square honeycombs display no peak shear strength, so the
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Figure 13. FE predictions of the shear strength of the stainless steel square honeycombs.
(a) Shear strength τ y

31 at a shear strain γ31 = 0.05 versus cell aspect ratio h/ l, for selected
values of the loading angle ω, and ρ̄ = 0.05. (b) Shear strength τ y

3n at a shear strain
γ3n = 0.05 versus loading angle ω, for selected values of ρ̄.

shear strength τ y is defined as the shear stress at a shear strain γ = 0.05. The normalized shear yield
strength τ y/(ρ̄σy) of the stainless steel honeycombs is approximately equal to the Voigt upper bound
value of 0.5 (assuming the Tresca yield criterion) over the full range of relative densities investigated
here. The aluminum hexagonal honeycombs are clearly weaker especially for ρ̄ < 0.06.

Figure 14b illustrates the effect of the core topology upon out-of-plane shear strength τ y . In the figure,
the dependence of τ y/(ρ̄σy) upon the relative density ρ̄ is given for the following cores:

• the stainless steel square honeycombs of the present study loaded in the ω = 0◦ direction;

• stainless steel corrugated cores [Côté et al. 2006];
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Figure 14. Comparison between the measured nondimensional shear strengths
τ y/(ρ̄σy) of competing sandwich cores as a function of the relative density ρ̄. (a) Com-
parison of aluminum hexagonal honeycombs with the stainless steel square honeycombs
of the present study, and (b) comparison of stainless steel micro-architectured sandwich
core topologies.

• AL6XN stainless steel pyramidal cores [Zok et al. 2004; Côté et al. 2007];

• aluminum hexagonal honeycomb data (ω = π/2) from Figure 14a; and

• aluminum alloy metal foams [Ashby et al. 2000].

The corrugated cores sheared in the longitudinal direction and the square honeycombs display no peak
shear strength. Therefore, the shear strength τ y in these cases is defined as the shear stress at a shear strain
γ = 0.05. All other cores display a peak shear strength. In these cases we define τ y as the peak strength.
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The longitudinal shear strength of the corrugated core is comparable to that of the square honeycomb
with τ y/(ρ̄σy) and is approximately equal to the upper bound value of 0.5 (assuming the Tresca yield
criterion). In transverse shear, the corrugated and diamond cores are weaker than the square honeycomb.

6. Concluding remarks

We manufactured square honeycombs with a cell aspect ratio h/ l = 1 by slotting together sheets of 304
stainless steel and then brazing the assembly. We then tested four relative densities of these honeycombs
in out-of-plane shear in four loading directions. The measurements reveal that shear strength of the square
honeycombs scales approximately linearly with the relative density ρ̄ of the honeycomb. Moreover, the
shear strength of these honeycombs is nearly isotropic.

A simple analytical model based upon uniform deformation of the cell walls is in good agreement
with the measurements prior to wrinkling of the cell walls. A plastic buckling analysis predicts the onset
of wrinkling with reasonable accuracy. FE calculations of the shear response of the square honeycombs
agree with the test measurements, and show that the shear strength of the square honeycombs is relatively
insensitive to the cell aspect ratio for aspect ratios in the range 0.5≤ h/ l ≤ 4.

The square honeycomb design exploits the strain hardening behavior of the parent material extremely
efficiently in both out-of-plane compression [Côté et al. 2004] and in out-of-plane shear. In fact, the
shear strength of these honeycombs is equal to that of the corrugated core sheared in the longitudinal
direction. Unlike the corrugated core, which has a low transverse shear strength [Côté et al. 2006],
the shear strength of the square honeycombs is nearly isotropic. Thus, square honeycombs have great
potential for application in sandwich construction.
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