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EFFECT OF TIP PROFILE ON CUTTING PROCESSABILITY OF A
TRAPEZOIDAL CUTTING BLADE INDENTED TO AN ALUMINUM SHEET

SEKSAN CHAIJIT, SHIGERU NAGASAWA, YASUSHI

FUKUZAWA, MITSUHIRO MURAYAMA AND ISAMU KATAYAMA

This paper is an investigation of detaching phenomena of a trapezoidal cutting blade on a wedged surface
of a thin work sheet. To study critical conditions for cutting off an aluminum sheet, the wedged profile of
the work sheet was experimentally studied by varying the tip thickness of the trapezoidal cutting blade,
which simulated a crushed bevel blade. To analyze the detached condition and separation force of the
wedged sheet, an elastoplastic finite element program was used to analyze wedge indentation to the work
sheet. The following results were obtained: (i) the deformation of the wedged sheet can be classified in
four patterns; (ii) the critical condition for cutting off the work sheet depends on the ratio of tip thickness
by sheet thickness w/t ; (iii) the separation of the work sheet occurred statistically for w/t = 0.13 ∼ 0.28;
and (iv) the separation line force can be used to explain the necking mode and the detached condition.

1. Introduction

A cutting method in which a center bevel blade cuts into sheet material on a counter plate is widely
used in the packaging or printing industry, for example, diecutting of paperboard, labels, laminated resin
sheets, ductile metal film, and other similar materials [Inaba 1998; Hesse and Tenzer 1963; Tanaka and
Akamatsu 2001]. However, many problems that affect product quality are caused by the variation of
blade tip such as crushing or abrasion of the wedge profile during the cutting process. These problems
occur because in a flatbed type cutting machine, the cutting blade moves reciprocally and contacts with
the counter plate without any stopper. [Grebe and Hofer 1973] experimentally studied the relationship
between the blade abrasion and its cutting force variance for both paperboards and corrugated boards.
[Nagasawa et al. 2001; Nagasawa et al. 2004] investigated experimentally and numerically how the tip
profile of a normal blade was crushed during cutting of a white-coated paperboard. It was shown that
the cutting blade tip became trapezoidal (as a crushed form) when the cutting blade tip contacted with
the counter plate. [Nagasawa et al. 2002] also reported on the effects on tip shape when string-like
dust occurs, and on the relationship between breaking characteristics of paperboard and cutting force
responses. These results indicated to us that study of the processability of the trapezoidal cutting blade
would be of interest.

Several theoretical works [Grunzweig et al. 1954; Hill 1953] on wedge indentation into an isotropic
plastic body are useful to understand the influence of friction, apex angle of the bevel blade, thickness
of the work piece, and yield stress of the work piece on the indentation force. However, these traditional
models were not sufficient to explain the profile effect of the crushed tip on the die cutting process.
[Murayama et al. 2003; 2004] have reported on the load response of wedge indentation into a thin

Keywords: shear cutting, detaching, elastoplastic FEM, separation force, wedge indentation, upsetting.
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aluminum sheet, by using a trapezoidal cutting blade having a flat region on the tip to simulate crushing.
In that study, Murayama et al. found the second necking mode through FEM simulation and experimental
cutting of an aluminum sheet, where the ratio of tip thickness w of the blade and the thickness t of the
work sheet was w/t = 0.013 ∼ 0.23. That result contributed to an explanation of how burrs of an
aluminum sheet occur beneath the blade tip. The mechanism that generates the aluminum burrs seems
to be similar to the one which generates string-like chips on white-coated paperboard. The occurrence
of necking on the bottom surface of the worksheet depended on w/t .

When w/t becomes relatively large (w/t � 0.1), the sliding surface of the wedge blade is prone to
detach from the deformed work sheet, and the blade tip generally pushed the work sheet in an upsetting
mode. However, the critical condition for wedge separation from the work sheet was not analyzed
sufficiently for w/t > 0.3. However, thinner sheets, that is, those less than 15µm thickness with respect
to the tip thickness of 5µm, are often required in pattern diecutting of resin sheets or thin metal sheets. In
addition, the detaching condition on the sliding surface of the trapezoidal bevel blade, and the separation
force of the wedged sheet were not covered.

In this paper, therefore, we analyzed the trapezoidal blade indentation into an aluminum sheet both
numerically and experimentally for the range of 0.036 < w/t < 0.64. To investigate the variance of
cutting processability of the blade indented on the work sheet and the critical condition for cutting off
the work sheet, we focused on the final separation stage of the worksheet in the pushing shear process.
In addition, the detaching phenomenon between the blade surface and the deformed work sheet has also
been discussed with respect to the separation line force. It seems that the critical condition and the
detaching mechanism would be useful for designing a new blade profile or modifying the crushed blade
tip.

This paper is laid out as follows: Section 2 describes the experimental method and the simulation
conditions. Section 2.1 includes details of the experimental method and the material properties of speci-
men, and Section 2.2 includes details about the finite element modeling and its conditions. A simulation
model and several parameters with respect to the detaching phenomena are also introduced. Section 3
presents results and discussion regarding wedge indentation to the work sheet. Section 3.1 covers the
relationship between the resistance of blade indentation and w/t . Section 3.2 presents corresponding
results for the deformation shape and the separation probability of the aluminum work sheet through
varying w/t . Section 3.3 and Section 3.4 cover the detaching phenomena on the sliding surface of the
wedge blade, and the effect of friction coefficients, respectively. Section 3.5 gives the stress distribution
around the blade tip on the final stage of indentation. Section 3.6 presents critical conditions and work-
sheet deformation patterns that were derived both from detaching phenomena on the wedge surface, and
from the load response. Section 3.7 covers numerical results regarding the separation line force of the
wedged worksheet. Finally, in Section 4, we draw conclusions.

Nomenclature

B Width of specimen, mm
D Lower crosshead displacement, mm
E Young’s modulus, GPa
F The plastic coefficient, MPa
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Fv Force applied in vertical to the cuter blade, kN
Kv Equivalent spring constant of the apparatus, kN/m/mm
L Length of specimen in the rolling direction, mm
V Lower crosshead velocity, mm/min
ac Contact length, mm
ad Detached length, mm
d Indentation depth , d = (D − Fv/Ka), mm
dco Upper-bound position depth of the detaching phenomena in the complete open position
dso Lower-bound position depth of the detaching phenomena in an open start position.
k Shearing yield stress (≈ σ0.2/

√
3)

n Work-hardening exponent
p Probability of separation, %
pm Normal pressure on the wedge surface of the cutting blade
t Thickness of work sheet, mm
w Tip thickness of cutting blade, µm
f Cutting line force, f = Fv/B, kN/m
f1 First inflection of cutting line force
f ′

1 First inflection of cutting line force for w/t > 0.23
fs Lateral component of the applied line force, called as the separation line force , kN/m
α Bevel apex angle, degrees
σ0.2 Proof stress of the work sheet, MPa
σB Ultimate tensile strength of the work sheet, MPa
τmax Maximum shear stress, MPa
σpmax Maximum principal stress, MPa
µC Friction coefficient between the cutter blade and the work sheet
µP Friction coefficient between the work sheet and the counter plate

Subscripts

B denotes breaking
c denotes contact condition
d denotes detached condition
max denotes maximum
n denotes necking
s denotes separation line force
u denotes the local minimum point after breaking

2. Experimental and simulation methods

Since the cutting mechanism of the pushing shear process is assumed to be primarily characterized by
the ratio of tip thickness to the sheet thickness w/t , the cutting line force f kN/m, which is applied
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Figure 1. Schematic of experimental apparatus.

vertically to the cutting blade, and the contact condition on the blade surface or on the counter plate were
investigated by varying the ratio of the indentation depth and the sheet thickness d/t with respect to w/t .

2.1. Experimental method and specimen. For the indentation experiment, we used a commercially
available aluminum sheet (JIS-A1050P) of 0.39 mm thickness. Specimens were rectangle sheets with
length in the rolling direction L = 50 mm and width B = 20 mm. Tensile properties of the sheet ma-
terials for both the longitudinal and transverse direction are shown in Table 1. The work hardening
characteristic, that is, the stress-strain relation of the material, was approximated by the power law
expression σ = Fεn , where F is the plastic coefficient, ε is the equivalent plastic strain and n is the
work-hardening exponent. In this study, we mainly considered the rolling direction of the material’s
behavior. The trapezoidal bevel blades had a length of 40 mm, thickness S = 0.9 mm, bevel apex angle
α = 42 degree, and tip hardness of 600 HV. The tips of the blades we used were filed using emery papers
to tip thicknesses w = 14, 31, 54, 71, 92, 129, 166, 200 and 250µm. Non-filed cutters had an average
thickness of w = 5µm.

Properties RD CD

Young’s modulus E [GPa] 76 76
Proof stress σ0.2 [MPa] 115 140
Ultimate tensile strength σB [MPa] 125 150
Plastic coefficient F [MPa] 160 224
Work-hardening exponent n 0.07 0.08

Table 1. Mechanical properties of aluminum sheet (A1050P). RD is the rolling direc-
tion; CD the cross direction.
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Figure 1 shows a schematic of the experimental apparatus. Measurements were carried out five times
for each thickness w. The position of the cutter blade was vertical to the surface of the aluminum sheet,
while the cross-angle between the rolling direction of the aluminum sheet and the longitudinal direction
of the cutting blade was 90 degrees. On the experimental apparatus (universal testing equipment) the
upper crosshead had a trapezoidal bevel center blade mounted on a load cell with maximum load of
5 kN.

Each specimen of the aluminum sheet was placed onto the counter plate fixed on the lower crosshead.
The lower crosshead moved upward with a velocity V = 0.05 mm/min. The indentation depth of the
cutting blade into the specimen was estimated using the relation d = (D − Fv/Kv), where Kv kN/m/mm
is an equivalent spring constant of the apparatus, D mm is the lower crosshead displacement, and Fv kN/m
is the line force applied in vertical to the cutting blade.

To ensure nonlubricated contact between the specimen and the counter plate, the tool surface was
washed with alcohol before indenting. A previous experiment [Murayama et al. 2004] revealed that with
the horizontal method based on JIS-P8147 the average friction coefficient µC between the cutting blade
and the specimen was 0.20 (max .0.28 ∼ min .0.18), and the average friction coefficient µP between the
specimen and the counter plate was 0.25 (max .0.28 ∼ min .0.20).

2.2. Simulation method. A commercial finite element program, MSC.MARC [MSC 2003], using an
updated Lagrange procedure and large strain was used to simulate the trapezoidal cutting blade indenta-
tion on an aluminum sheet. Figure 2a shows a schematic illustration of the simulation model, in which
the aluminum sheet was considered as a deformable body and modeled as the right-hand half symmetry
of a rectangle of 4.0 mm in length. The cutting blade and the counter plate were modeled as rigid contact
bodies. The finite element meshes of the deformed body consisted of 17,000 four-node quadrilateral
elements with minimum side length of 5µm. The element type was considered to be plain-strain quadri-
lateral with four-point Gaussian integration. The coulomb friction model was assumed for each contact
surface, since no sticking slip was observed clearly during the simulation of blade indentation into the
aluminum sheet. The deformable body was assumed to be an isotropic, elastoplastic material obeying
the isotropic hardening power law σ = Fεn . The value of F = 160 MPa and n = 0.07 were chosen as
described in previous section. Because of locally large deformation during the pushing process, a globally
automatic re-meshing criterion with overlay meshing method was used. Elements were assumed to have
no crack and no fracture during the cutting process. For the tip profile of the trapezoidal cutting blade
and the friction coefficients, we chose parameters as shown in Table 2. Corner radii were assumed to be

Tip thickness: w = 0, 10, 30, 50, 70, 90, 120, 150, 180, 200, 250µm
Sheet thickness: t = 0.4 mm.
Bevel apex angle: α = 42◦

Friction coefficient of trapezoidal blade: µc = 0, 0.1, 0.2, 0.4
Friction coefficient of counter plate: µp = 0, 0.1, 0.2, 0.4

Table 2. Simulation parameters for blade indentation.
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Figure 2. Simulation model with respect to detaching phenomena on the wedge surface.

5µm on both sides. From the experimental result of friction coefficients µC , µP , dispersion was roughly
0.1. therefore, the friction coefficients µC , µP were initially assumed to be 0.2.

Figure 2b schematically illustrates a deformed sheet with respect to the occurrence of a detached
surface. When the blade was indented on the work sheet, a detached length ad and a contact length ac

on the sliding surface of the blade were evaluated as shown in Figure 2. Where, ad is defined as the
projection length on the blade surface which is detached from the work sheet, while ac is defined as the
projection length on the blade surface which contacts with the worksheet.

3. Results and discussion
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3.1. Relationship between resistance of blade indentation and tip thickness. Figure 3a–b shows the
experimental and FEM simulation of the relationship between the line force f and the normalized in-
dentation depth d/t for w/t = 0.14, 0.24, 0.33, 0.43, 0.51 and 0.64. The tendency of the load response
in the FEM simulation was very similar to that of the experiment result. Figure 4a illustrates a force
response model that includes cutting characteristics of Figure 3, where fn is an inflection point of f and
fu is a local minimum point of f , as defined in [Murayama et al. 2004]. The maximum load point is
denoted by ( fmax, dmax/t), where fmax is the line force, and dmax is the corresponding indentation depths
of the blade.

Figure 5a shows the dependency of fmax, fn and fu on normalized tip thickness w/t in the experiment,
while Figure 5b shows the dependency of fmax, fn and fu on normalized tip thickness w/t in the FEM
simulation for µP = µC = 0.2.

Since fmax was roughly linear to the variance of w/t , approximations of fmax by the least squares
method were derived as follows:

fmax = 36.4(w/t)+ 52.8 kN/m (experiment) (1)

fmax = 43.4(w/t)+ 44.3 kN/m (FEM). (2)

The linear correlation coefficient R of (1) and (2) was 0.98 and 0.999, respectively. We supposed that
the difference between (1) and (2) is mainly due to the assumption of the coulomb friction model. It
is known that fmax decreases [Murayama et al. 2004] as µC decreases. Comparing the experimental fn

with Prandtl’s theory fn = 2k(1 +π/2)w [Hill 1983], where the shearing yield stress k was assumed to
be σ0.2/

√
3, fn can be estimated as a flat punch indentation (Prandtl’s solution) for w/t < 0.23, but not

for w/t > 0.23, due to the Hill’s critical thickness.
When the blade indentation increased, after passing through the maximum load point, the aluminum

sheet separated into two pieces; otherwise the aluminum sheet only showed a locally minimum line force
without any separation. In particular, for d/t > dmax/t for w/t ≥ 0.13, the reduction stage of f had an
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inflection point (dn/t, fn) and a local minimum point (du/t, fu) as shown in Figure 4a. For w/t < 0.23,
[Murayama et al. 2004] defined the height of necking hn and necking deformation as shown in Figure
4b. The inflection point (dn/t, fn) corresponds to the maximum height of necking (hn = hnmax).

Figure 6 shows the first inflection line force f1 and f ′

1. The first inflection point was tentatively
classified as f1 and f ′

1 from the disappearance condition of the second inflection point, depending on
the critical thickness w/t = 0.23. Since fn was almost equal to f1 from both the experiment and the
FEM simulation, and considering that they could be estimated by the Prandtl’s theory for a flat punch
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indentation into a semi-infinite body [Hill 1983], we assumed that the wedge effect decreased and the
upsetting effect increased at the inflection point (dn/t, fn). In other words, the detaching phenomenon
on the wedge surface of the blade seemed to occur at that time.

When f was equal to fu , the bottom of the first necking zone contacted with the counter plate com-
pletely. When w/t < 0.13, f decreased for d/t without the local minimum point (du/t, fu). The local
minimum point of fu corresponded to hn = 0, the occurrence of the second necking zone, and also
the upsetting on the burr. When w/t > 0.28, the second necking did not occur, but the first necking
mode altered directly into the upsetting mode. Also, the local minimum point (du/t, fu) corresponded
to detaching the wedge surface from the worksheet and upsetting with the blade tip. The correlation
between (dn/t, fn) and (du/t, fu) was confirmed experimentally using the following approximations for
0.51>w/t > 0.13:

fu = (0.36(w/t)+ 0.75) fn (3)

du = (0.46(w/t)+ 0.99)dn. (4)

The linear correlation coefficient R for relations (3) and (4) were 0.815 and 0.926, respectively. When
w/t > 0.5, the line force response does not include a sharply breaking down flow process. This tendency
may be due to detaching of the wedge surface of the blade.

So far, detachment of the wedge surface under upsetting, the local minimum load point, and the
inflection load point with the second necking on the second half stage (d > dmax) are important for
estimating wedging separation of the aluminum worksheet. However, in past studies, the position of any
inflection points on the second half stage and a transformation mechanism from the second necking to
upsetting were not discussed with respect to the detaching condition. Therefore, in the following sections,
we shall discuss the deformation mode and the detaching condition.

3.2. Effect of deformations of a wedged sheet and tip thickness on the final stage. The contact condi-
tion between the sliding surface of the trapezoidal cutting blade and the deformed aluminum work sheet
on the second half stage (d/t > dmax/t) is analyzed here by observing both experimental photographs of
the wedged aluminum sheet, and deformation in the FEM simulation. Figure 7 shows SEM micrographs
of the wedged profile of the aluminum work sheet near the local minimum load point for w = 14, 92, 129
and 200µm, t = 0.39 mm, and α = 42 degrees. By examining the bottom surface of specimens for
w/t = 0.013 ∼ 0.079, we observe that the first necking mode occurred near the blade tip, and the
aluminum sheet successfully separated into two pieces without any burr.

In the experiment, where 0.28 > w/t > 0.13, second necking mode was observed after occurrence
of the first necking mode. A burr occurred near the local minimum load point without final bursting
of the worksheet in the region between the blade tip and the counter plate Figure 7b. However, for
w/t = 0.13 ∼ 0.28, by increasing the line force to the breaking line force fu B , the burr was likely to
be broken, or the aluminum worksheet frequently separated into two pieces. fu B was roughly equal to
fn at w/t = 0.14, whereas it was nearly fmax at w/t = 0.24. Throughout the experiment, we confirmed
that the aluminum worksheet was not completely separated for w/t > 0.28 when the indentation depth
exceeded the local minimum load point. Under these conditions, only the upsetting deformation of the
worksheet occurred beneath the blade tip, even when applying a line force f larger than fmax.
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(a)w/t = 0.036, d/t = 0.9 (b)w/t = 0.24, d/t = 0.9

(c)w/t = 0.33, d/t = 0.9 (d)w/t = 0.51, d/t = 0.7

Figure 7. Wedged profile of aluminum worksheet (experiment).

Figure 8 shows an example of a wedged worksheet burst at fu B = 42 kN/m on w/t = 0.18. Here,
there was a round-shaped surface on both sides Figure 8b. There were two kinds of surfaces: the sheared
zone and the drawing zone. The sheared zone is flat and seems to be formed by copying the profile of
the blade edge. The drawing zone is round-shaped and seems to be formed by the extrusion effect of
the blade tip pressure. Since this extrusion effect causes material flow in the outward lateral direction,
we consider that the detached zone occurs beneath the wedge surface. We observed similar surfaces for
w/t > 0.24( Figure 7b–d). Therefore, the surface of the wedge corner is considered to be detached from
the deformed worksheet. On the other hand, when w/t = 0.036, the wedged surface of the worksheet
appeared to be in contact with the blade edge. For w/t = 0.33 and d/t = 0.75, the second necking
mode was not observed. Only the upsetting deformation was generated beneath the tip blade. When
w/t = 0.51, d/t = 0.7, the wedge surface of the blade is completely detached from the work sheet and
the upsetting flow occurred beneath the blade tip without any necking of the bottom surface.

Figure 9 shows the probability of the occurrence of separation of the wedged aluminum sheet. Ex-
periments were carried out on 10 specimens for each tip thickness w of the blade. The indentation of
the blade was stopped at the breaking line force fu B , which exceeded the local minimum load point
(du/t, fu), but was less than the maximum line force fmax. The experimental probability p of separation
was 100% for w/t < 0.079, but an intermediate value (0< p < 100%) for 0.14<w/t < 0.23. When the
worksheet was separated as 0< p < 100% for 0.14<w/t < 0.23, the separated edge of the worksheet
had a burr, as shown in Figure 8a.
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Figure 8. Wedged profile of aluminum worksheet (w/t = 0.18, fu B = 42 kN/m in experiment).

Figure 10 shows a section profile of the wedged worksheet in the FEM simulation for w = 10, 90, 130
and 200µm. Comparing Figure 10 with Figure 7, the simulated deformation of the worksheet shows
good agreement with experimental observation.

By referring to this figure, we can confirm the following four main points. First, for w/t = 0.025, only
the first necking mode was observed for d/t = 0.7, 0.9. Second, for w/t = 0.23, the first necking mode
at d/t = 0.7 altered to the second necking mode at d/t = 0.9. Third, when w/t = 0.33, the first necking
mode at d/t = 0.6 altered to the upsetting mode without the second necking at d/t = 0.85. Fourth,
when w/t = 0.5, only the upsetting deformation was generated beneath the blade tip for d/t = 0.6, 0.7.
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d/t = 0.7 d/t = 0.9 d/t = 0.7 d/t = 0.9
(a)w/t = 0.025 (b)w/t = 0.23

d/t = 0.6 d/t = 0.85 d/t = 0.6 d/t = 0.7
(c)w/t = 0.33 (d)w/t = 0.5

Figure 10. Wedged profile of worksheet on simulation.

In addition, the deformed surface of the worksheet was completely detached from the wedge surface of
the blade near the inflection point (dn/t, fn) for w/t = 0.33 and w/t = 0.5. Where w/t = 0.33 and
w/t = 0.5, upsetting flow of the worksheet was generated beneath the blade tip without any separation
in the final stage. Therefore, we confirmed that both the detached condition on the sliding surface and
the probability of separation of the blade depend on w/t .

3.3. Effect of detached/contact length and indentation depth on an edge of cutting blade. As men-
tioned in the previous section, the occurrence of a detached zone relates to the possibility of wedge
separation. We investigate here the effect of detached length ad and contact length ac on the wedge
surface as defined in Figure 2b. The detached length ad and the contact length ac were considered to
be the projected length of the free surface on which pm = 0, and the pressurized surface on which
pm 6= 0, respectively. pm is defined as the normal pressure on the wedge surface of the cutting blade.
The complete-open condition is that which occurs when the wedge surface is completely detached from
the work material. After reaching the complete open condition, the detached length ad is redefined as
the projected length from the blade’s edge to the end of the wear zone of the work sheet.

Figure 11 shows the normalized detached length ad/(t/ cos(α/2), which was numerically calculated,
and the normalized contact length ac/(t/ cos(α/2) obtained by varying d/t with respect to w/t = 0.13.
The closed square symbols show normalized contact length ac/(t/ cos(α/2)), while the open round sym-
bols show normalized detached length ad/(t/ cos(α/2)). In Figures 11–12, the symbol a denotes the total
contact and detached length (ac + ad), contact length ac, or detached length ad . The solid line represents
the normalized total projection of contact and detached length (ac + ad) cos(α/2)/t , while the dashed
line is the ideal indentation depth (d/t). The normalized total projection length (ac + ad) cos(α/2)/t ,
which excludes the wear curve on sliding surface, is slightly smaller than that of the ideal indentation
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depth. We defined the first half stage d/t = 0 ∼ 0.55, as the contact zone, since only the contact part was
observed on the wedge surface. When ac reaches the maximum peak value acmax, the detached length ad

began to appear at d/t = dso/t and increased with increasing indentation depth. We define the contact +
detached zone as that which ac then decreases to zero. From these relations, we found that the position
of acmax is nearly equal to the starting position of the detached zone. In addition, the maximum height
of the first necking hnmax was observed at d/t = 0.76, and with respect to w/t = 0.13, the bottom of
the necking zone started to contact with the counter plate at d/t = 0.88 (hn = 0 at this point). As the
height hn of the first necking mode decreased, the values of ad and ac were almost constant. When
ac reaches zero at d/t = dco/t , the wedge is completely detached from the deformed worksheet. Thus
far, we denote the critical depth dso as the lower-bound position of the detaching phenomenon, and the
critical depth dco as the upper-bound position of the detaching phenomenon.

Assuming n = 0.08 and F = 224 MPa (Table 1), we considered the transverse direction model in the
FEM simulation. Comparing the FEM simulation in the transverse direction of the material worksheet
with that in the longitudinal direction, we confirmed that the detaching phenomena characterized by
ad , ac was almost the same with respect to w/t and d/t , except for the magnitude of the cutting line
force.

Figures 12a and b show the effect of w/t on variation of the contact length and detached length. When
w/t < 0.1, the wedge surface is contacted with a specific sliding surface area of the deformed aluminum
sheet. However, we did not observe an inflection point of ac for w/t > 0.4. This is because the upsetting
flow only occurred beneath of the blade tip without the second necking mode.

3.4. Effect of friction coefficients on cutting load response and detached condition. The effect of line
force f , indentation depth d/t , and the corresponding contact/detached length ac, ad on the wedge
surface are analyzed here by varying the friction coefficients µP , µC for w/t = 0.13. Figure 13a
shows the relationship between f and d/t for friction coefficients µP = 0.0, 0.1, 0.2, and 0.4, with
µC = 0.2. Figure 13b shows the relationship between ac, ad , and d/t . Similarly, Figure 13c shows the
relationship between f and d/t for µP = 0.0, 0.1, 0.2, and 0.4, with µP = 0.2, while Figure 13d shows
the relationship between ac, ad and d/t .

From these figures, we observe that fmax and acmax depend on the variation of µC , µP , as shown in
the approximations

fmax = 18.6µP + 46.1 for µC = 0.2

acmax = 0.234µP + 0.464 for µC = 0.2

fmax = 43.8µC + 40.3 for µP = 0.2

acmax = 0.282µC + 0.455 for µP = 0.2. (5)

The linear correlation coefficients of (5) were larger than 0.99. The inflection position (hn = hnmax)

and the lower/upper-bound position dso, dco almost did not depend on µP , while the dso, dco depended
on µC . The responses of ac and ad with d/t also depended on µC , µP , except for the complete open
condition. Therefore, we can confirm that the variation of µC , µP affects the line force and also the
detached condition. Furthermore, the effect of variance of µC was relatively large.
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Figure 13. Effect of friction coefficient for load response and detached condition on simulation.

3.5. Stress distribution in the necked zone on the final stage. As mentioned in section 3.2, the prob-
ability of the occurrence of separation had the intermediate experimental value (0 < p < 100%) for
0.14 < w/t < 0.23. In this section, we discuss the stress distribution around the blade tip. Figure 14
shows contour bands of maximum principal stress σpmax beneath the blade tip at d/t = 0.9, while Figure
15 shows those of maximum shear stress τmax at d/t = 0.9 by the FEM simulation. Figure 16 illustrates
selected vectors of principal stresses chosen near the necked zone. When w/t = 0.13, the maximum stress
as the principal component was roughly σpmax = 320 MPa (tensile) in the second necking zone, where the
minimum dimension was roughly 17% of the chip height. For w/t = 0.23, the minimum dimension of
the necked zone was roughly 102% of the chip height. The absolute value of σpmax was relatively small
(less than 100 MPa) in the necked zone but increased remarkably as a compressive component beneath
blade tip.

Figure 17 shows the distribution of σpmax along the specified nodes path X ′
− X , at d/t = 0.9. Here,

the arc distance aL was measured as the distance from the corner of the blade tip to the necked surface
for w/t = 0.13, 0.18, and 0.23, while the aL was considered from the corner of the blade tip to the
bottom surface of the work sheet for w/t = 0.3 and 0.5. When w/t = 0.13, the maximum value of σpmax
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Figure 14. Calculated contour bands of maximum principal stress in wedged worksheet
at d/t = 0.9.

was roughly 320 MPa and the τmax was larger than σ0.2/
√

3 in the necked zone. Applying the maximum
tensile strength of the aluminum sheet to σB , σpmax ≈ 2σB , the worksheet would actually be separated.
When w/t increased, σpmax was intensively compressive near the corner of the blade tip, and its absolute
value was less than 50 MPa for w/t > 0.3. Therefore, it seemed that the aluminum worksheet could not
be separated for w/t > 0.23. This result was in good agreement with experimental results.
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Figure 15. Calculated contour bands of maximum shear stress in wedged worksheet at
d/t = 0.9.
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3.6. Relationship between critical indentation depth of the detached condition and tip thickness. Fig-
ure 18 shows the lower bound detaching position dso/t , and the upper bound detaching position dco/t
derived from the detached length of the wedged surface by FEM simulation. Schematics of the deformed
worksheet are also illustrated, showing four deformation modes: first necking, second necking, the tran-
sition state and the upsetting mode. The open squares and circles show experimental results dmax/t and
du/t obtained by varying w/t , while the closed squares and triangles show the numerically derived dso/t
and dco/t , respectively. Comparing these values, we confirm that the position of the maximum load point
dmax/t corresponds to the initial detached position of dso/t , while the position of the local minimum load
point du/t is related to the complete-detached position dco/t . Therefore, the position of the maximum
line force fmax and the position of the local minimum line force fu are useful for estimating the detached
position dso/t and dco/t , respectively.

For w/t = 0 ∼ 0.28, dso/t was nearly constant at 0.55. When w/t > 0.28, dso/t began to decrease
linearly as

dso/t = −0.914(w/t)+ 0.81for w/t > 0.28 (6)

When w/t > 0.13, dco/t decreases with w/t as
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dco/t = −1.198(w/t)+ 1.103 for w/t > 0.13. (7)

Only if w/t < 0.13 does the wedge surface always contact some part of the deformed aluminum sheet.
From the above discussion of Figure 18, we classified the pushing shear condition of the aluminum

worksheet into the following four features derived from both the detached length on the wedge surface
and from the load response:

1) When 0<w/t < 0.13, the first necking mode was observed and the wedge surface was in contact in
some area of the aluminum sheet. In this stage, the work material is completely separated without
any burrs.

2) When 0.13<w/t < 0.28, the second necking mode of the bottom surface occurred in the second
half stage (d/t > dmax/t), while the first necking mode was generated in the first half stage (d/t <
dmax/t). Lower-bound detaching on the wedge surface and upper-bound detaching on the wedge
surface are observed under this condition. The blade is statistically able to separate the worksheet
with a burr.

3) When 0.28<w/t < 0.4, upsetting deformation is generated after occurrence of the transient first
necking mode. The wedge surface is always detached from work material in the final stage.

4) When w/t > 0.4, the plain upsetting mode without any necking always occurred beneath the tip
blade. Specifically, the apex angle of the wedge is not effective to cut off the worksheet.

3.7. Relationship between separation line force and indentation depth in the simulation. Figure 19
describes the numerically calculated relationship between a separation line force fs and the normalized
indentation depth d/t obtained by varying the tip thickness w/t . fs is a lateral component of the applied
line force to the worksheet. It was obtained using a line integral of the normal stress σxx (the horizontal
component) on the center line, from the bottom surface of the work material to the blade tip surface.
Figure 19 shows three peaks, or inflection points ( fsmax, dsmax/t), ( fsn, dsn/t), and ( fsu, dsu/t). When
fs = fsmax, d/t was almost constant (approximately 0.55 for w/t < 0.25), while it decreased for w/t >
0.25. The position dsmax/t corresponded to the lower-bound detaching position of depth dso/t . When
hn = hnmax, fs became the local minimum fsn , and when hn = 0, fs became the second peak position
fsu which corresponds to the upper-bound detaching position.

However, the two peaks or inflection points fsn , fsu were not observed for w/t > 0.4, which corre-
sponded to the dissipation of the first necking mode. The position depth of dsn/t and dsu/t correspond
to the position hn = hnmax and the position hn = 0, respectively. In Figure 19, the cross point of the
x-axis of the fs curve corresponds to the complete open position. For w/t < 0.13, fs does not intersect
with the x-axis at the final stage of indentation. That is, the separation force is always positive at the
final stage.

4. Conclusions

Indentation of the trapezoidal cutting blade to an aluminum sheet was carried out experimentally and
numerically to investigate the separation mechanism and its critical processability. The trapezoidal blade
simulates the crushed wedge of a 42 degree center bevel blade. The detaching condition of the wedge
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Figure 19. Relationship between separation line force fs and d/t (simulation).

surface and the separation force were analyzed to explain the mechanism and the critical conditions
which enable successful separation of a thin work sheet. Features of the deformation mechanism after
occurrence of the detaching phenomenon were revealed as follows:

1) The wedged profile of the worksheet under the pushing shear can be classified into four patterns in
terms of normalized tip thickness w/t . The first pattern is under sharp and fine conditions. When
w/t < 0.13, the worksheet is successfully cut off without burrs or string-like chips. The second
pattern is in the transition state of cutting. When 0.13 < w/t < 0.28, a burr is generated and
separation of the wedged sheet is statistically successful, although the probability of separation
depends on w/t . The third pattern, where (0.28<w/t < 0.4) and the fourth pattern, where (w/t >
0.4) ,occur under unsuccessful cutting conditions. Due to the upsetting flow beneath the blade tip,
the wedge surface detaches from the deformed work sheet. The third pattern includes the transient
first necking mode in the first half stage of indentation, while the fourth is always in upsetting mode.

2) The maximum load point ( fmax, dmax/t) and the local minimum (or inflection) load point ( fu, du/t)
are characterized by the initial detaching and the complete-open condition. The detachment on the
wedge surface of the blade occurs in the transition state from the lower bound point, also called the
initial detaching point, through the upper-bound point, or complete open state.

3) It is useful to observe the separation line force to explain necking of the wedged zone and detachment
on the wedge surface of the blade.

4) Maximum contact length occurs near the initially detached position of indentation depth.
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5) In the second necking mode, for the duration of the decrease in height of the necking root, the
contact length ac and the detached length ad remain almost constant. The separation line force also
remains approximately constant.
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A ONE-DIMENSIONAL VARIATIONAL FORMULATION FOR QUASIBRITTLE
FRACTURE

CLAUDIA COMI, STEFANO MARIANI, MATTEO NEGRI AND UMBERTO PEREGO

Besides efficient techniques allowing for the finite-element modeling of propagating displacement dis-
continuities, the numerical simulation of fracture processes in quasibrittle materials requires the defini-
tion of criteria for crack initiation and propagation. Among several alternatives proposed in the literature,
the possibility to characterize energetically the discontinuous solution has recently attracted special in-
terest. In this work, the initiation and propagation of cohesive cracks in an inhomogeneous elastic bar,
subject to an axial body force is considered. The incremental finite-step problem for the evolving discon-
tinuity is formulated accounting for progressive damage in the cohesive interface. For assigned loading
conditions, it is shown that the equilibrium of the system and the position where the crack actually forms
can be obtained from the minimality conditions of an energy functional including the bulk elastic energy
and the crack surface energy. The subsequent step-by-step propagation of the cohesive crack is also
obtained from the minimality conditions of an energy functional defined for each step. The issue of the
algorithmic selection of the energetically more convenient solution is briefly discussed.

1. Introduction

Computational finite element approaches to the simulation of crack inception and propagation in brit-
tle and quasibrittle solids can be subdivided into the broad categories of smeared and discrete crack
descriptions.

Smeared crack approaches, based on the simulation of damage growth in the bulk material, are par-
ticularly suited for the description of the initial phase of strain localization and consequent material
degradation, but lack of physical foundation in the late stage of material separation and, in general,
require a finer discretization to accurately resolve the localization band.

Conversely, discrete crack approaches, by their very nature, do not incorporate information on the
initial stage of formation of microdamage in the bulk, but are particularly suited for the description of
the propagation of displacement discontinuities in the material.

In the past, the simulation of a propagating discontinuity in a finite element mesh was one of the main
problems involved with the discrete crack approach. Nowadays, computationally effective techniques are
available, for example, adaptive remeshing [Askes and Sluys 2000; Rodrı́guez-Ferran and Huerta 2000;
Pandolfi and Ortiz 2002], the strong discontinuity approach (SDA) [Simo et al. 1993; Oliver et al. 2002;
Oliver et al. 2003], the extended finite element method (X-FEM) [Moës et al. 1999; Wells and Sluys

Keywords: cohesive crack, variational formulation, finite-step problem.
This work has been carried out within the context of MIUR-PRIN 2003 contract 2003082105_003 on Interfacial damage failure
in structural systems: applications to civil engineering and emerging research fields.
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2001; Moës and Belytschko 2002; Mariani and Perego 2003], which, in conjunction with the adoption
of cohesive crack models, have greatly improved the accuracy and efficiency of the simulation.

If attention is restricted to the case of a cohesive crack propagating in an elastic medium, one of the
main issues still open in the finite element implementation is the definition of a criterion for initiation and
propagation. In a portion of the mesh which is not yet crossed by a crack, the displacement discontinuity
does not exist until it is introduced according to a pre-defined criterion which is either local (that is, based
on some measure of the local stress or strain state) or global (for example, based on some measure of
the energy or other averaged quantities).

In the case of propagation, another problem is the definition of the correct shape and length of the
incremental discontinuity corresponding to the assigned load increment. This is usually solved in an
iterative way by assigning a tentative length of propagation, solving the problem with the augmented
crack extension, and then verifying a posteriori whether at the new tip the propagation condition is still
satisfied.

Variational approaches, in which the shape of the crack increment is chosen so as to minimize an
energy functional, have attracted considerable attention in recent times in view of their strong mechani-
cal foundation. Both numerical [Bourdin et al. 2000; Negri 2003; Angelillo et al. 2003] and theoretical
results [Francfort and Marigo 1998; Dal Maso and Toader 2002; Chambolle 2003] have been presented
for perfectly brittle materials, employing a potential given by the sum of elastic and fracture energies.
In this framework, the propagation history is obtained as a quasistatic evolution, defined by means of a
minimizing sequence: the time interval is discretized with a finite increment 1t and the configuration at
the end of each time step is given by a minimizer, with suitable irreversibility constraints. In this kind
of model the main source of mathematical difficulties is related to the convergence of the fracture sets
as 1t → 0. In the case of brittle materials this technical problem has been solved in different ways
in [Dal Maso and Toader 2002; Chambolle 2003] and in [Francfort and Larsen 2003]. For cohesive
energies some results have been obtained in [Dal Maso and Zanini 2007], assuming a priori the path of
propagation, while the general case is still an open problem. A numerical application has been presented
in [Dumstorff and Meschke 2005], without addressing, however, the convergence issue. In the one-
dimensional framework, these kinds of difficulties are not encountered and more general forms of the
fracture energy can be considered (see for instance [Braides et al. 1999; Del Piero and Truskinovsky
2001]). This is the setting adopted in the present work.

A linear elastic bar, constrained at both ends, subjected to a uniformly distributed axial load and to an
imposed displacement at one end is considered. The material has a limit strength with a cohesive fracture
energy depending on the position. The axial force transmitted through the cohesive crack decreases with
the crack opening and the loading-unloading behavior of the interface is governed by a nondecreasing,
damage-like internal variable. The solution of the associated incremental problem is shown to be a local
minimizer of the potential energy. Following [Braides et al. 1999], it is shown that a single crack is
energetically more convenient than multiple cracks at the first crack initiation. This is also shown to
be true for subsequent time steps, provided that the algorithmic criterion proposed for the selection of
feasible solutions is adopted. The position of the first fracture and the amplitude of its jump are again
determined by enforcing minimality. The resulting evolution is quasistatic and satisfies the loading-
unloading conditions in Kuhn–Tucker form.
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2. Problem definition

A bar of unit cross section, constrained at both ends and subject to a body force b(x) directed along its
axis, is considered. The reference configuration of the bar is represented by the interval I = (0, L). In
order to account for fractures, the admissible configurations are assumed to belong to a space of (possibly)
discontinuous displacement fields u satisfying the boundary conditions u(0)= 0 and u(L)= η. The set of
points where u is discontinuous, denoted by Su , is not prescribed a priori and may contain the endpoints
of the bar. Interpenetration is ruled out by the constraint [u] ≥ 0, [u] denoting the jump of u. A cohesive
softening model is assumed for the opening crack. This means that the fracture energy, necessary to
create the crack, is progressively released as the jump [u] grows, until the critical value [u]crit is reached,
beyond which no tractions can be transmitted across the discontinuity.

In the bulk, that is, at points belonging to I \ Su , the current state of the bar is governed by the
following equations for compatibility, equilibrium with nonzero body forces b(x), and elastic (bulk)
behavior, respectively,

ε =
du
dx
,

dσ
dx

+ b = 0, σ = Eε,

where ε is the longitudinal strain, σ the axial stress and E the Young’s modulus. On the other hand, for
every crack point z ∈ Su we have conditions for compatibility at the interface and equilibrium across the
crack

[u](z)= u+(z)− u−(z)≥ 0, σ+(z)= σ−(z).

The bar behaves elastically as long as the axial stress σ(x) is below a threshold p̄(x), which is assumed
to vary along the bar. The cohesive crack model is assumed to obey a nonreversible damaging law (see
Figure 1). The accumulated damage is taken into account by a nondecreasing kinematic internal variable
ξ , depending on the material point x . The traction p which can be transmitted across the crack is governed
by a softening function g(ξ), with dg

dξ ≤ 0, and the maximum p̄ of p is such that p̄(x)= a(x)g(0), where
a(x) accounts for the variation of the resistance along the bar.

The inelastic potential G(ξ) for ξ ≥ 0 is defined as

G(ξ)=

∫ ξ

0
g(µ)dµ.

In this way, the softening function g(ξ) is interpreted as the static internal variable conjugate to the
damage ξ through the state equation

g(ξ)=
dG(ξ)

dξ
,

where, for ξ = 0, dG(ξ)
dξ should be intended as the right derivative of G(ξ). The quantity G(ξ = [u]crit)

is commonly referred to as fracture energy and is a material property.
For increasing opening displacement [u], following the softening branch a(z)g(ξ) the traction de-

creases until the limit opening [u]crit is reached. For displacement jumps [u] > [u]crit no traction is
transmitted across the crack (Figure 1). For decreasing opening displacement, a linear unloading path is
followed, with slope a(z)g(ξ)/ξ depending on the current value of damage. Upon reloading, the same
linear path is followed until the current traction threshold p̄(z)= a(z)g(ξ) is reached, then the softening
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Figure 1. Traction-displacement discontinuity law for cohesive damaging crack.

branch is followed again. The traction-crack opening displacement relation is

p(z) ∈ [0, p̄(z)] for ξ = 0,

p(z)= a(z)
g(ξ)
ξ

[u](z) for ξ > 0,

and the loading-unloading conditions are

p − a(z)g(ξ)≤ 0, (p − a(z)g(ξ))ξ̇ = 0 for ξ̇ ≥ 0, (1)

while the consistency condition p − a(x)g(ξ)≤ 0 must be satisfied everywhere in the bulk.
These definitions imply that, for a crack at z ∈ Su ,

ξ(t, z)= max
τ≤t

[u](τ, z).

Note that the standard form of time-independent inelastic constitutive laws requires also the definition
of an inelastic multiplier and of an evolution equation for the internal variable ξ . In the particularly
simple damage law here adopted for the cohesive interface, the rate of the internal variable and the
inelastic multiplier coincide. To simplify the notation, the rate of the internal variable has been directly
introduced into the loading-unloading conditions (1) instead of the inelastic multiplier.

The “local” fracture energy, that is, the energy necessary to create the discontinuity in the point z, is
defined as

G f (z)= lim
[u]→[u]crit

a(z)G([u]) <∞.

Note that cohesive models with [u]crit → ∞ are also feasible as long as G f (z) remains bounded.
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Stable global response (that is, no snap-back) of the bar is assumed under the imposed end displace-
ment η. It is easy to show that a snap-back response is ruled out if

L <−
E

a(z) dg
dξ

, for 0 ≤ ξ ≤ [u]crit.

3. Finite-step problem

In view of the nonreversible nature of the crack evolution, the analysis of the bar response to an assigned
history η(t), with t ∈ [0, T ], of the imposed displacement, requires the definition of a step-by-step time
marching procedure. The structural response un+1 at time tn+1 = tn +1t satisfies in the bulk

εn+1 =
dun+1

dx
, σn+1 = Eεn+1,

dσn+1

dx
+ b = 0, (2)

and in the crack points

[u]n+1(z)= u+

n+1(z)− u−

n+1(z)≥ 0, σ+

n+1(z)= σ−

n+1(z)= pn+1(z).

Knowing the configuration at time tn , the following stepwise-reversible behavior is assumed for the
cohesive cracks

ξn+1 = ξn +1ξ, pn+1 = a(z)
g(ξn+1)

ξn+1
[u]n+1, for ξn+1 > 0, (3)

pn+1 − a(z)g(ξn+1)≤ 0, (pn+1 − a(z)g(ξn+1))1ξ = 0, for 1ξ ≥ 0, (4)

where the second equation in (3) is the traction-crack opening displacement relation, and the relations
in (4) represent the loading-unloading conditions. Note that the above defined finite-step problem can
be conceived as resulting from a backward-difference integration of the incremental problem, while the
original (continuous) problem will be recovered for 1t → 0.

It is therefore possible to define an energy G̃([u], ξn) associated to the reversible finite-step law

G̃([u], ξn)=

{
g(ξn)

2ξn
[u]

2, for [u] ≤ ξn,

G([u])− G(ξn)+
ξn g(ξn)

2 , for [u] ≥ ξn.
(5)

For ξn = 0, one has G̃([u], ξn)= G([u]). The adopted cohesive finite-step law with the associated energy
is shown in Figure 2a at initiation and in Figure 2b in correspondence of a generic time-step.

For η = ηn+1, the following functional is defined for the current time-step

U η(u, ξn)=
1
2

∫
I

E
(du

dx

)2
dx +

∑
z∈Su

a(z)G̃([u](z), ξn(z))−
∫

I
bu dx . (6)

In the expression of the functional, ξn plays the role of an assigned parameter. At the end of each step,
the internal variable is updated and the functional changes its expression. The updating procedure is
schematically shown in Figure 3 where numbered dots denote the value of the functional at the end of
the step, before updating, while dots with starred numbers denote the corresponding updated value.
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Figure 2. Finite-step cohesive law at initiation (a), at a time-step tn (b).

Let u′ denote the (distributional) derivative of u, that is,

u′
=

du
dx

dx +

∑
z∈Su

[u](z)δz, (7)

where δz denotes the Dirac delta concentrated in z. We assume that u′ is a bounded measure, that is,∣∣u′
∣∣(I )=

∫
I

∣∣∣du
dx

∣∣∣dx +

∑
z∈Su

|[u]|<∞.

Following [Braides et al. 1999] let B(x) be a primitive of b(x) vanishing in zero. Integrating by parts
the body force work, the functional can be rewritten as

U η(u, ξn)=
1
2

∫
I

E
(du

dx

)2
dx +

∑
z∈Su

a(z)G̃([u](z), ξn(z))+
∫

[0,L]

Bu′
− B(L)η.

Taking into account the definition of the distributional derivative in Equation (7), one obtains

U η(u, ξn)=

∫
I

du
dx

(
1
2 E

du
dx

+ B
)

dx +

∑
z∈Su

(
a(z)G̃([u](z), ξn(z))+ B(z)[u](z)

)
− B(L)η. (8)

Remark 1. Such functionals have been widely studied in the recent mathematical literature on free
discontinuity problems (see, for instance, [Braides et al. 1999]). In this framework the potential energy
would be defined in the space SBV (0, L) of special functions with bounded variation (for a definition of
SBV spaces, see for example, [Ambrosio et al. 2000]), that is, for the displacements u whose distribu-
tional derivative is a bounded measure which can be written as in Equation (7). Existence of minimizers
(local and global) in SBV will be discussed in the next section.
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Figure 3. Updating procedure for energy functional. Numbers refer to end of step.
Starred numbers refer to updated values of functional.

A displacement un+1 at the end of the finite-step is considered a local minimizer of U η defined in
Equation (6) if U η(v, ξ)≥ U η(u, ξ) for every v ∈ SBV (0, L) such that∫

I
|v− u| dx ≤ α,

for some α sufficiently small. In the following sections it will be shown that the discrete evolution defined
by a sequence of local minimizers of Equation (6) satisfies the governing equations (2)-(4). To proceed
in the discussion, it is convenient to consider separately the crack initiation problem (ξn = 0) and the
subsequent crack opening problem (ξn 6= 0).

4. Crack initiation problem

The following crack initiation problem is considered. The bar is subject to an assigned body force b(x),
whose intensity is such that the tensile strength p̄(x) is not exceeded in any point of the bar. Then a
growing positive displacement η is imposed at x = L until the threshold value η̄ is reached for which, at
a position z̄, the stress σ reaches its limit value p̄(z̄). The value of η̄ depends on the strength of the bar
and on the body force.

Following the path of reasoning proposed by Braides, Dal Maso and Garroni [Braides et al. 1999],
first we prove that the minimizers (both local and global) have a single fracture. Assume that two cracks
are activated at z1 and z2, with jumps w1 and w2 respectively. Let w = w1 +w2 and let ai = a(zi ),
Bi = B(zi ). Let H([u]) be the energy associated to the discontinuity in Equation (8), that is,

H([u])=

∑
z∈Su

{a(z)G̃([u](z), ξn(z))+ B(z)[u](z)} .
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Noting that at crack initiation (ξn = 0) one has G̃ ≡ G and considering z1, z2 and w as fixed, we can
write H and its second derivative as a function of w1 alone as

H(w1)= a1G(w1)+ B1w1 + a2G(w−w1)+ B2(w−w1),

d2 H(w1)

dw2
1

= a1
dg(w1)

dw1
+ a2

dg(w−w1)

d(w−w1)
,

for 0 ≤ w1 ≤ w. As dg/dwi ≤ 0 and ai > 0, it follows that H is concave and thus its minimum, in the
interval [0, w], is in the endpoints. This means that either w1 = w and w2 = 0 or w1 = 0 and w2 = w.
Hence in one of the points zi there is no jump. Since the bulk energy does not depend on w, following
the previous reasoning it is not hard to see that a minimizer can have only one fracture point. We will
denote it by z̄.

Remark 2. Note that by a similar argument it follows that the minimization problem in SBV is well
posed even if the relaxed functional would be defined in the whole BV (see [Braides et al. 1999] and the
references therein).

Denoting for notation convenience U η→η̄+

= limη→η̄+ U η, the following proposition holds.

Proposition 3. Starting from an elastic state with ξn = 0, for an assigned value η of the imposed
displacement, the governing equations can be obtained from the stationarity conditions of U η. The
position z̄ of the activated crack can be obtained from the minimality of U η→η̄+

(u, 0).

Proof. Assume that u is a stationary point of U η and consider the variations of the form u +λv, where
λ is a scalar variable and v : [0, L] → < a suitable test function. As u + λv must satisfy the boundary
conditions, we assume that v(0)= v(L)= 0. Moreover, v may have a unit jump in Sv , which we denote
by [v] = 1. Since interpenetration is not allowed, we must assume that [u] + λ[v] ≥ 0 for λ sufficiently
small. The stationarity condition is given, in terms of the first variation of U η, by the inequality

lim
λ→0+

1
λ

(
U η(u + λv, 0)− U η(u, 0)

)
= lim
λ→0+

1
2λ

∫
I

[
E
(du

dx
+ λ

dv
dx

)2
− E

(du
dx

)2]
dx

+ lim
λ→0+

1
λ

∑
z∈Su∪Sv

(
a(z)G

(
[u + λv](z)

)
− a(z)G

(
[u](z)

))
−

∫
I

bv dx

=

∫
I

(
E

du
dx

)dv
dx

dx + lim
λ→0+

1
λ

∑
z∈Su∪Sv

(
a(z)G

(
[u + λv](z)

)
− a(z)G

(
[u](z)

))
−

∫
I

bv dx ≥ 0. (9)

In general, the configuration u + λv may have two jumps, at Su = {z̄} and Sv = {zv}. If Su = Sv, then
Su+λv = Su . In this case, the second term in Equation (9) can be written as

lim
λ→0+

1
λ

(
a(z̄)G

(
[u + λv](z̄)

)
− a(z̄)G

(
[u](z̄)

))
= a(z̄)g([u](z̄))[v] ≥ 0.
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If Su 6= Sv, then Su+λv = Su ∪ Sv and the previous condition becomes

lim
λ→0+

1
λ

(
a(z̄)G

(
[u + λv](z̄)

)
+ a(zv)G

(
[u + λv](zv)

)
− a(z̄)G

(
[u](z̄)

))
= lim
λ→0+

1
λ

(
a(z̄)G

(
[u](z̄)

)
+ a(zv)G

(
[λv](zv)

)
− a(z̄)G

(
[u](z̄)

))
= lim
λ→0+

1
λ

a(zv)G
(
[λv](zv)

)
= a(zv)g(0)[v] ≥ 0.

Now we consider some particular variations v in order to obtain the governing equations.

• Assume first that Su = ∅ and that v(z̄) = 0. Integrating by parts the first integral in Equation (9),
the inequality becomes

E
du
dx
v

∣∣∣∣z̄
0
−

∫ z̄

0

(
E

d2u
dx2 + b

)
v dx + E

du
dx
v

∣∣∣∣L
z̄

−

∫ L

z̄

(
E

d2u
dx2 + b

)
v dx

= −

∫ z̄

0

(
E

d2u
dx2 + b

)
v dx −

∫ L

z̄

(
E

d2u
dx2 + b

)
v dx ≥ 0,

which gives (E d2u
dx2 + b)= 0, a.e. in [0, L]. This is the condition of equilibrium in the bulk.

• Consider now a variation v such that v(z̄)+ = v(z̄)− 6= 0. Taking into account that (E d2u
dx2 + b)= 0,

Equation (9) then becomes (
E

du
dx

)−

v−
−

(
E

du
dx

)+

v+
≥ 0,

which gives easily σ+(z̄)= σ−(z̄). This is the condition of equilibrium across the crack.

• Now we can choose a variation v having a unit discontinuity at zv ∈ [0, L]. According to this
definition [v](zv)= 1 and

∫ L
0

dv
dx dx = −[v](zv)= −1. Let us consider first the case z̄ 6= zv . Making

reference to the expression in Equation (8) of the energy, the stationarity condition can be written
as ∫

I

(
E

du
dx

+ B
)dv

dx
dx + B(zv)[v] + a(zv)g(0)[v] ≥ 0. (10)

Note that, in view of the bulk equilibrium (E d2u
dx2 +b = 0), the stress σ η = E du

dx + B, which depends
on the imposed boundary displacement η, is constant along x . Therefore, one can write

−σ η + B(zv)+ a(zv)g(0)≥ 0. (11)

Taking into account that σ η − B(z) = σ(z) is the stress in the bar due to the dead load and the
imposed boundary displacement and that a(zv)g(0)= p̄(zv), one has

σ − p̄ ≤ 0 for zv 6= z̄. (12)

When Su = Sv, that is, for zv = z̄, since [u]> 0 a perturbed configuration of the form u − λv can
be considered (as for λ small enough [u − λv](z̄)≥ 0). Computing again the limit for λ→ 0+, and
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combining with Equation (10), the stationarity requires that∫
I

(
E

du
dx

+ B
)dv

dx
dx + B(z̄)[v] + a(z̄)g([u](z̄))[v] = 0. (13)

Since ξn ≡ 0 at crack initiation, 1ξ(z̄)= [u](z̄) at the end of the step and the traction p in the crack
follows the softening branch. Therefore, equation Equation (13) becomes

σ − p = 0 for zv = z̄.

It is now easy to see that the governing equations (2)–(4) are all satisfied. �

Finally, we remark that the position z̄ of the crack may depend on the amplitude of the time-step of
the incremental solution, as it will be further discussed in Section 6. The correct position is recovered
for 1t → 0 or equivalently for η→ η̄+, where η̄ is the critical value of the imposed displacement for
which p(z̄)= p̄(z̄). For η = η̄, the crack will activate at a position z̄ where the stress σ(z)= σ η̄ − B(z)
reaches for the first time the critical value σ(z̄) = p̄(z̄), which implies that B(z̄)+ p̄(z̄) = σ η̄. At all
other points, one has σ(z)= σ η̄ − B(z)≤ p̄(z), which implies that B(z)+ p̄(z)≥ σ η̄. One can conclude
that the position z̄ of the crack is a minimizer of the function B(z)+ p̄(z). If now one considers the case
η→ η̄+, since [u] → 0 in correspondence of the crack initiation, G([u]) behaves like g(0)[u]. Thus the
energy given by Equation (8) can be written as

U η→η̄+

(u, 0)=

∫
I

du
dx

(1
2

E du
dx

+ B
)

dx + ( p̄(z)+ B(z))[u].

As the elastic energy does not depend on the position of cracks, it is clear that a minimizer of U η→η̄+

(u, 0)
will concentrate the jump [u] in a point where ( p̄(z)+ B(z)) reaches its minimum.

5. Crack opening problem

The same problem defined in Section 4 is considered at time tn for an imposed displacement η > η̄.
However, this time the crack remains fixed in the position z̄ of the first activation for η = η̄, since healing
is not permitted by the assumed model, and the opening of a new crack is not energetically convenient, in
the sense that will be specified in Section 6. A load step is considered where the imposed displacement
is incremented by a quantity 1η. The functional defined in Equation (6) is considered for ξn > 0. The
following proposition holds.

Proposition 4. For fixed crack position z̄, consider an evolutionary problem, discretized in time steps
with finite increment 1t . The displacement un+1 at time tn+1 = tn + 1t solution of the finite-step
problem presented in Equations (2)–(4), is obtained minimizing the energy U η(u, ξn) with the boundary
conditions u(0)= 0 and u(L)= η. Note that, with the simple one dimensional cohesive law here adopted,
the incremental problem is explicit with respect to the internal variable ξ, therefore this variable can be
updated independently at the end of the step, when un+1 is known.

Proof. Assume that u is a stationary point of U η(u, ξn) and consider the variations of the form u +

λv, where λ is a scalar variable and v : [0, L] → < a test function, satisfying homogeneous boundary
conditions, which may have a jump in zv ∈ Sv. The stationarity condition is given in terms of the first
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variation of U η(u, ξn) by the inequality

lim
λ→0+

1
λ

(
U η(u + λv, ξn)− U η(u, ξn)

)
= lim
λ→0+

1
2λ

∫
I

[
E
(du

dx
+ λ

dv
dx

)2
− E

(du
dx

)2]
dx

+ lim
λ→0+

1
λ

∑
z∈Su∪Sv

(
a(z)G̃

(
[u + λv], ξn

)
− a(z̄)G̃([u], ξn)

)
−

∫
I

bv dx ≥ 0.

Making use of the same arguments discussed in the previous section, the previous condition can be
rewritten as ∫

I

(
E

du
dx

)dv
dx

dx + a(zv)
dG̃([u], ξn)

d[u]
[v] −

∫
I

bv dx ≥ 0.

Now we consider some particular variations v in order to obtain the governing equations.

• Assuming [v] = 0, following the same path of the previous section one can obtain equilibrium
conditions in the bulk and across the interface in z̄.

• Now we can choose a variation v having a unit discontinuity at z̄. Consider again the form of the
functional given in Equation (8) obtained by integrating by parts the body force integral. Taking
into account the bulk equilibrium, the stationarity conditions of Equation (8) read

−σ η + B(z̄)+ a(z̄)
dG̃([u], ξn)

d[u]
≥ 0. (14)

Accounting for the definition of G̃([u], ξn) in Equation (5) and noting that σ η − B(x̄)= σ(z̄)= p
is the stress acting on the crack, from Equation (14) one obtains

−p + a(z̄)
g(ξn)

ξn
[u] ≥ 0, for [u] ≤ ξn, (15)

−p + a(z̄)g([u])≥ 0, for [u] ≥ ξn. (16)

When [u] = 0 < ξn, condition in Equation (15) gives p ≤ 0, meaning that, if the crack has been
already activated (ξn > 0), a complete closure of the crack ([u] = 0) corresponds to zero or negative
stress. Assume now [u]> 0, in this case also a perturbation u − λv is admissible for small λ, and
inequalities opposite to Equations (15)–(16) are obtained. Therefore one has

p = a(z̄)
g(ξn)

ξn
[u], for [u] ≤ ξn, (17)

p = a(z̄)g([u]), for [u] ≥ ξn. (18)

From Equation (17) one obtains

p ≤ a(z̄)g(ξn), for [u] ≤ ξn. (19)

• Consider a variation v having a unit discontinuity in zv /∈ Su . Having in mind that, for x 6= z̄,
[u](x)= ξn(x)= 0, one has

a(zv)
dG̃([u](zv), ξn(zv))

d[u]
= a(zv)g(0)= p̄(zv)
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and the stationarity conditions simply give the consistency condition in the bulk −σ(x)+ p̄(x)≥ 0.

Noting that, by definition, at the end of the step 1ξ = 0 if [u] ≤ ξn while 1ξ = [u]− ξn if [u] ≥ ξn,

one obtains that : (i) Equations (17) and (18) define the traction-crack opening displacement relation (3);
(ii) Equations (18) and (19) can be rewritten in the Kuhn–Tucker form seen in Equation (4) and thus
provide the finite-step loading-unloading conditions for the cohesive crack. �

6. Algorithmic aspects

One of the important features of the present finite-step formulation is that the governing equations and
the nonreversibility of damage growth are enforced only at the end of the step. In view of the nonconvex
character of the energy functional, this implies that solutions may exist which minimize the energy but
could not be reached in a continuous process due to the existence of energy barriers. These solutions
appears to be an artifact of the algorithmic formulation of the finite-step problem and does not reflect
the physical behavior. Therefore, it seems necessary to complement the algorithm with criteria for the
exclusion of nonphysical solutions.

Let us consider first the crack initiation problem. At the end of Section 4, it has been proven that
for η → η̄+, the position of the first crack minimizes the functional U η→η̄+

(u, 0). We now consider
the more general case where η can assume arbitrary values with respect to η̄. The solution of the step
problem is sought by searching for minimizers of the energy U η(u, 0). A classical approach consists of
computing first an elastic trial, that is, a tentative solution assuming unlimited elastic behavior. If this is
not a minimizer, then a better solution is found minimizing the energy along a descent direction, defined
by the local gradient. The procedure is repeated until a minimizer is found.

Let utr be the elastic (trial) solution, that is, the minimizer of U η restricted to the space of admissible
displacements without cracks. Equilibrium in the bulk is clearly satisfied, that is, (E(utr )′ + B)′ =

(σ η,tr )′ = 0; hence for every admissible variation v with jump [v](zv) > 0, from Equation (10) one has

lim
λ→0+

1
λ

(
U η(utr

+ λv, 0)− U η(utr , 0)
)
=
(
− σ η,tr + B(zv)+ a(zv)g(0)

)
[v]. (20)

If the variation of U η given in Equation (20), computed in utr and with respect to every variation v,
is positive, that is, if

lim
λ→0+

1
λ

(
U η(utr

+ λv, 0)− U η(utr , 0)
)
≥ 0,

then utr is a local minimizer. As discussed in Section 4, (Equations (11) and (12)), since [v](zv) > 0,
from Equation (20) it follows that −σ η,tr + B(zv)+ a(zv)g(0) > 0 and thus σ η,tr (zv) < p̄(zv). This
means that the stress associated to utr is everywhere below the limit strength and therefore un+1 = utr

will be the solution of the step. On the contrary, if there exists a variation v such that

lim
λ→0+

1
λ

(
U η(utr

+ λv, 0)− U η(utr , 0)
)
=
(
− σ η,tr + B(zv)+ a(zv)g(0)

)
[v]< 0, (21)

then a new solution un+1 6= utr will be computed along a descent direction. From the physical point of
view it seems reasonable to consider that a fracture could appear in any of the points zv where the limit
strength is exceeded, that is, where Equation (21) holds (for a variation v with a single discontinuity in
zv).
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In Section 4 it has been shown that for crack initiation (that is, for η= η̄) it is energetically convenient to
open just one crack. It is shown below that the same result is obtained also in a computational procedure
starting from the trial solution. Let us assume to be using a solution algorithm capable to deal with
multiple cracks. Starting from the trial solution, it may happen that for a suitable variation v with two
jumps in z1

v and z2
v, we get

lim
λ→0+

1
λ

(
U η(utr

+ λv, 0)− U η(utr , 0)
)

=
(
− σ η,tr + B(z1

v)+ a(z1
v)g(0)

)
[v](z1

v)+
(
− σ η,tr + B(z2

v)+ a(z2
v)g(0)

)
[v](z2

v) < 0

with (
− σ η,tr + B(z2

v)+ a(z2
v)g(0)

)
> 0. (22)

This means that a solution with multiple cracks may appear as energetically convenient with respect
to the trial solution, and therefore reachable along a descent direction, even if at one of the points of
activation (z2

v in this case) a local energy barrier (that is, a local stress below the limit strength) prevents
the actual opening of the crack. Such a solution seems not acceptable from a physical point of view and
since fracture is a phenomenon governed by the local state of the material, it seems more reasonable to
exclude from the search those locations where Equation (22) holds. Therefore, starting from the trial
solution, only those points zv where(

− σ η,tr + B(zv)+ a(zv)g(0)
)
< 0, (23)

that is, points where the trial stress exceeds the local strength, will be considered as possible locations
of the cracks in the search algorithm. Note that this argument in general does not exclude solutions
with multiple cracks. There may be cases where solutions with multiple cracks can be reached along
descending paths where condition in Equation (23) is satisfied at each crack location. These solutions
are ruled out by the minimality, as for the crack initiation problem the concavity of the inelastic potential
G([u]) makes it convenient to open only one crack. Its correct position z̄ can be obtained searching for
the solution along the steepest descent direction v from utr , that is, looking for the lowest value of the
derivative of U η computed in utr . It can be readily seen that this is obtained when the crack position
minimizes the quantity B(zv)+ a(zv)g(0).

Let us consider now the crack opening problem. Assume that at time tn only the first crack at z̄ is
open. A displacement η > ηn be assigned at the bar end.

As in the previous case, let utr be the “elastic” trial solution. Since a damage model is used for
the description of the cohesive crack behavior, it is appropriate to compute the trial solution using a
secant elastic modulus. This allows to obtain the exact solution in the case of unloading. The following
unlimited elastic behavior is assumed for the active cohesive crack (see Figure 4):

ptr (z̄)= a(z̄)
g(ξn)

ξn
[utr

](z̄).

In this case, given η > ηn we have [utr
]> ξn and

ptr (z̄)= σ η,tr − B(z̄) > a(z̄)g
(
[utr

](z̄)
)
. (24)
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Figure 4. Unlimited elastic cohesive law used for computing the trial solution.

Hence, utr is not stable with respect to variations v with [v](z̄) > 0. Indeed

lim
λ→0+

1
λ

(
U η(utr

+ λv, ξn)− U η(utr , ξn)
)
=
(
− σ η,tr + B(z̄)+ a(z̄)g([utr

](z̄))
)
[v](z̄) < 0. (25)

A possible minimizer has to be sought within one of the following situations that may arise: (i) the
crack at z̄ closes and one or more new cracks open; (ii) the crack at z̄ grows and one or more new cracks
initiate; (iii) the crack at z̄ remains constant and one or more new cracks initiate; (iv) the crack at z̄ grows
and no other cracks initiate.

As done for the crack initiation case, the physical feasibility of possible solutions is tested considering
variations with a single jump. Variations v which close the crack, that is, with [v](z̄) < 0, lead to a positive
derivative in Equation (25) and therefore are not energetically convenient with respect to the trial solution.
For this reason, case (i) can be ruled out and only displaced configurations such that [u](z̄) ≥ [utr

](z̄)
will be considered henceforth.

Now we will show that, starting from the trial solution, both closing the active crack and/or initiating
new cracks are energetically less convenient than further opening the existing crack (that is, situation
(iv)). Let us consider first the situation (ii). According to the criterion in Equation (21) of negative
derivative for the selection of possible locations zv 6= z̄ of new cracks, variations with [v](zv) > 0 lead to
the local condition σ η,tr > a(zv)g(0)+ B(zv). Denote by w1 ≥ 0 the incremental opening of the crack at
z̄, that is, [u](z̄)= [utr

](z̄)+w1, and by w2 = [v](zv)=w−w1 ≥ 0 the opening of a new crack at zv 6= z̄,
w being the total incremental opening with respect to the trial solution. As G̃([utr

](z̄)+w1, ξn(z̄)) is
concave in the variable w1, the argument used in Section 4 allows to state that a single active fracture
(corresponding to w1 = 0 or w2 = 0) is always energetically more convenient, which rules out case (ii).

It remains to show that the minimizer is given by w2 = 0 and hence that also case (iii) can be ruled
out. Assume by contradiction that u is a minimizer with w1 = 0, so that

[u](z̄)= [utr
](z̄) and [u](zv)= w2 = w > 0.
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In this case, the total energy (see Equation (8)) would be given by

U η(u, ξn)=∫
I

du
dx

(
1
2 E

du
dx

+B
)

dx+a(z̄)G̃([utr
](z̄), ξn(z̄))+B(z̄)[utr

](z̄)+a(zv)G(w2)+B(zv)w2−B(L)η. (26)

In view of the results of Proposition 4, assuming that u is a minimizer implies that equilibrium has to
be satisfied. Imposing equilibrium we obtain a(zv)g(w2)+ B(zv)= a(z̄)g([utr

](z̄))+ B(z̄)= σ η. Being
a(zv)g(w)+ B(zv) a nonincreasing function, in the variable w, we get

a(zv)g(w2)+ B(zv)= a(z̄)g([utr
](z̄))+ B(z̄)≥ a(z̄)g([utr

](z̄)+ ŵ1)+ B(z̄), (27)

for every choice of ŵ1 ≥ 0. Taking ŵ1 = w2, one has

a(zv)G(w2)+ B(zv)w2 =

∫ w2

0

(
a(zv)g(w)+ B(zv)

)
dw ≥

∫
[utr

](z̄)+w2

[utr ](z̄)

(
a(z̄)g(w)+ B(z̄)

)
dw

= a(z̄)
(

G([utr
](z̄)+w2)− G([utr

](z̄))
)

+ B(z̄)w2.

By this inequality and taking into account that from Equation (5) one has G([utr
](z̄)+w2)−G([utr

](z̄))=
G̃([utr

](z̄)+w2, ξn(z̄))−G̃([utr
](z̄), ξn(z̄)), it turns out that the total energy corresponding to the opening

w2 = w concentrated in the first crack, that is, with [u](z̄)= [utr
](z̄)+w and [u](zv)= 0, is

U η(u, ξn)=

∫
I

du
dx

(
1
2 E

du
dx

+ B
)

dx + a(z̄)G̃([utr
](z̄)+w2, ξn(z̄))+ B(z̄)([utr

](z̄)+w2)− B(L)η,

and is smaller than the energy in Equation (26). This proves that the situation (iv) is the one which
minimizes the energy.

In conclusion, provided that criterion in Equation (23) is used at each step to assess the feasibility
of a point as location of a new crack, it can be stated that also in the present finite-step computational
approach, for monotonically increasing imposed displacement, it is always energetically more convenient
to open only one crack.

7. An explicit computation

The quasistatic evolution, defined in terms of local minimizers of the potential energy, is verified on a
simple one-dimensional example whose step-by-step solution can be obtained analytically.

Consider a bar of length L = 10 mm and uniform elastic modulus E = 1 MPa, subject to a constant
body force b = 0.2E/L and a monotonically increasing imposed displacement η(t). The bar is assumed to
have a fracture strength p̄(x)= a(x)g(0)= a(x)ḡ varying along the bar with a(x)= 1+100(x/L −1/2)2

and p̄(L/2)= ḡ = 0.1E . Denoting by w the displacement discontinuity, a linear cohesive crack model
is considered

g(w)=

{
ḡ
(
1 −

1
wcrit

w
)
, for w ≤ wcrit,

0, for w >wcrit,
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where wcrit = 0.15L is the critical opening beyond which no traction can be transmitted across the crack.
The potential G(w) is then given by

G(w)=

{
ḡ
(
w−

1
2wcrit

w2
)
, for w ≤ wcrit,

ḡwcrit
2 , for w ≥ wcrit.

Let A(η,w) be the set of displacements such that u(0)= 0, u(L)= η and [u]=w. Assuming a holonomic
process (ξ = 0) and imposing equilibrium in the bulk, one can express the displacements along the bar
in terms of the assigned end displacement η, the crack opening w and the crack position z̄. Equivalently
one can minimize U η with respect to u ∈ A(η,w), thus obtaining the energy function U(η,w, z̄)

U(η,w, z̄)= min{U η(u, 0) : u ∈ A(η,w)}. (28)

For this simple example the solution u(x) can be explicitly computed and is given by

u(x)=

−
b

2E x2
+

(
η−w+

bL2

2E

)
x
L , for x < z̄,

−
b

2E x2
+

(
η−w+

bL2

2E

)
x
L +w, for x > z̄.

(29)

The energy function is then obtained substituting Equation (29) into Equation (8) and working out the
integrals

U(η,w, z̄)=
E (η−w)2

2L
+

b(2wz̄ − L (η+w))

2
−

b2L3

24E
+

[
1 + 100

( z̄
L

−
1
2

)2]
G(w). (30)

Note that U(η,w, z̄) is differentiable with respect to w and z̄. Local minimizers are found from

∂U

∂w
= −

E (η−w)

L
+

b(2 z̄ − L )
2

+

[
1 + 100

( z̄
L

−
1
2

)2]
g(w) = 0,

∂U

∂ z̄
= bw+

100
L

(2z̄
L

− 1
)

G(w)= 0.

(31)

The second stationarity condition reflects the requirement that the crack must initiate in a position
which minimizes the potential energy. At crack initiation (w→ 0+), G(w) behaves like g(0)w and the
second condition in Equation (31) requires that

b +
100
L

(2z̄
L

− 1
)

g(0)= 0,

which is solved for z̄ = 0.49L . From the first condition in Equation (31), for z̄ = 0.49L and w = 0, one
obtains the value η̄ = 0.099L of the imposed displacement at crack initiation.

Figure 5a shows the plot of U as a function of the crack position and opening displacement for η = η̄

(for representation convenience values of U>0.2 have been cut in this plot). It should be noted that for
η = η̄ , z̄ = 0.49L is the position of the point where the curve representing the stress along the bar is
tangent to the curve representing the fracture strength p̄(x)= ḡ[1 + (x −

1
2 L)2], see Figure 5b.

For η > η̄ the minimizers of Equation (30) give a position of the crack different from z̄ = 0.49L , which
is not feasible for the real problem: once the material is broken at a certain position it cannot heal and
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Figure 5. (a) Energy function for η = η̄; (b) crack position.

the crack position cannot change. In this case, the solution has to be sought solving the first condition
of Equation (31) for z̄ = 0.49L .

The history of the assigned end displacement is shown in Figure 6a together with the corresponding
computed crack opening. After initiation, the crack position is kept fixed at z̄ = 0.49L . The damage
variable ξ is updated at the end of each step. The solution at each step is computed analytically mini-
mizing the updated functional U η(u, ξn) according to the step-by-step procedure outlined in Section 5.
Since in each step the bar is either monotonically loaded or unloaded, the computed and exact solutions
coincide. The computed history of cohesive traction is shown in Figure 6b. The values of the crack
opening displacement and the explicit expressions of the energy functionals to be minimized at each step
are reported in Table 1.

Contour plots of the minimized functionals are shown in Figure 7. The computed solutions are denoted
by a white dot. As expected, the dots do not coincide with the absolute minimum of the functionals, since
the crack position has to remain fixed.

The optimal value of the energy U as a function of the imposed displacement η is plotted in Figure 8.
The curve from point 0 to point 1 represents the bulk energy, while the curve from 1 to 2 corresponds to

step η [mm] functional to be minimized w [mm]

1 0.99 U η=0.99(u, ξ = 0)= bulk energy +a(z̄)G(w) 0.00

2 1.20 U η=1.20(u, ξ = 0)= bulk energy +a(z̄)G(w) 0.64

3 0.90 U η=0.90(u, ξ = 0.64)= bulk energy +a(z̄) g(0.64)
2·0.64 w

2 0.48

4 1.30 U η=1.30(u, ξ = 0.64)= bulk energy +a(z̄)
(
G(w)−G(0.64)+0.64 g(0.64)

2

)
0.95

Table 1. Energy functionals to be minimized at each step.
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Figure 6. (a) History of assigned end displacement and corresponding computed crack
opening; (b) history of cohesive traction across the crack.
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the sum of bulk and surface energies, defined only for η ≥ η̄. The picture shows clearly how, for η ≥ η̄,
it becomes energetically more convenient to activate the crack at z̄. When η2 = 1.2 mm is reached, the
functional is modified updating damage and its value passes from point 2 to point 2*. The dashed curve
from 1 to 2* represents the exact solution corresponding to continuous increase of damage ξ , as it occurs
in the real process. As already pointed out, the computed and exact solution coincide at the end of the
step, after damage updating. From 2* to 3, the imposed displacement decreases (unloading) while from
3 to 4 further loading occurs.

8. Conclusions

The problem of a bar constrained at both ends and subject to an axial body force and an imposed dis-
placement at one end has been studied. A linear elastic bulk material with limited strength, varying
along the bar axis, has been assumed. When the axial stress exceeds the material strength at a point, a
cohesive damaging crack opens producing a localized displacement jump. The possibility of a variational
characterization of the solution has been investigated leading to the following results.

Assuming an ideally reversible material behavior (the material heals upon unloading and crack clo-
sure), it has been shown that the problem solution minimizes the total potential energy, which includes a
bulk term (elastic energy) and a surface term (cohesive fracture energy). It has also been shown that the
position of crack initiation can be obtained from a minimality condition for zero crack opening.

If the evolution problem is approximated as a sequence of finite holonomic steps, where the nonde-
creasing damage internal variable is updated only at the end of each step, it is shown that the finite-step
solution can be obtained from the minimum conditions of a suitable functional.

The issue of the opening of multiple cracks has also been addressed. In the finite-step formulation, after
crack initiation it is not possible to state that the opening of multiple cracks is not energetically convenient.
However, solutions with multiple cracks appear to be a consequence of the finite-step context, and not
reachable in a continuous process. An algorithmic criterion has been proposed for the exclusion of
solutions which are classified as unphysical. If solutions which do not satisfy this criterion are excluded,
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then it has been shown that the energy is always minimized by opening only one crack. In our opinion, this
discussion may provide a useful insight also in view of possible extensions of the present computational
approach to 2 or 3-dimensional problems, where, however, the appropriate underlying mathematical
setting is still debated in the current literature on the subject. A simple example with a uniform axial
body force has been used to illustrate the theoretical results obtained.
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DYNAMIC BUCKLING OF IMPULSIVELY LOADED PRISMATIC CORES

ENRICO FERRI, EMILIO ANTINUCCI, MING Y. HE, JOHN W.
HUTCHINSON, FRANK W. ZOK AND ANTHONY G. EVANS

When sandwich panels with prismatic cores are impulsively loaded, the stresses imposed by the core on
the front face, as well as those transmitted through the core govern the response metrics, especially the
center displacement, resistance to tearing, and loads transmitted to the supports. This article presents
a basic study of the dynamic response with emphasis on the I-core. A prior assessment revealed buck-
lewaves induced because of inertial phenomena accompanying the rapid compression of the members.
The development of these waves is an integral aspect of the dynamic response. One objective of this
investigation is to ascertain the characteristics governing such waves in I-core configurations through a
combined experimental and numerical study. A particular emphasis is on the influence of manufacturing
imperfections in the core members on the formation and propagation of the buckles. A second goal is
to examine the stresses associated with the dynamic compression of the core, again through a combined
experimental and numerical investigation.

The investigation is conducted for stainless steel I-core panels supported at the back face and sub-
jected to a constant velocity at the front. Imperfections to be included in the numerical study have been
ascertained by comparing buckle patterns with those found experimentally over the relevant velocity
range. The simulations reveal that the stresses induced differ on the front and back faces. On the front
they are higher and velocity dependent. On the rear they are velocity invariant and scale with the relative
density and material yield strength. The duration of the stress pulses, which is essentially the same on
both faces, scales linearly with the core height. It correlates with the time needed for bucklewaves to
propagate through the core to the back face. After the pulse terminates, the core continues to compress
at a stress level about an order of magnitude smaller.

1. Introduction

Insights regarding the response of metallic sandwich panels to water blast have been gained by recent
assessments of the fluid/structure interaction (FSI). Most crucial has been the discovery of soft and
strong core responses, dependent on such factors as the dynamic strength of the core, its thickness, and
the magnitude of the impulse [Liang et al. 2007]. When a soft response can be elicited through the
appropriate design of the core, the performance metrics are beneficially affected. In particular, the forces
transmitted to the supports, the center deflection, and the strains induced in the faces are all reduced.
This happens because the time required to crush the core exceeds that needed for the plastic deformation
to propagate laterally from the supports to the center of the panel. However, the soft design must assure

Keywords: dynamic buckling, impulse loads, prismatic core.
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that the front face does not slap into the back. Otherwise the performance inverts and the metrics become
adversely affected.

Fundamental mechanics guiding the selection of soft cores (while averting slapping) has been devised
for cores that crush at constant dynamic strength (such as foams and multilayer truss configurations)
[Fleck and Deshpande 2004; Tilbrook et al. 2006; Wei et al. 2007]. The situation differs for prismatic
cores such as I-, X-, Y- and Z- cores because these do not exhibit constant dynamic crush strength
[Radford et al. 2007]. The purpose of this article is to contribute to the understanding of the dynamic
crushing of prismatic cores with the eventual goal of using this knowledge to distinguish between soft
and strong responses.

Progress toward the objective of understanding the dynamics of core compression has been made by
examining the response of slender columns to a velocity, v0, abruptly imposed at one end [Abrahamson
and Goodier 1966; Vaughn et al. 2005; Vaughn and Hutchinson 2006]. Short wavelength buckles have
been shown to form (Figure 1) having wavelength that depends on v0 as well as the slenderness of the
members. These bucklewaves influence the strains that can be induced in the members, as well as the
stresses transmitted into the supporting structure. Building upon the insights provided by the bucklewave
analysis, a combined experimental and numerical investigation is pursued in this article.

Since transitions between soft and strong responses can be induced in I-cores [Liang et al. 2007],
this geometry provides a convenient test bed to examine the concepts. In the present study, cores are
fabricated from stainless steel and tested under conditions that impose a constant velocity at one end.

Figure 1. Buckle waves generated in free standing slender columns subject to a constant
velocity at one end (the left). The plot indicates the terminal value of the nominal plastic
strain [Vaughn and Hutchinson 2006].
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Since the response is sensitive to the buckling modes, as well as to the wavelength and amplitude of
imperfections, one focus of the experiments is on a classification of the preferred dynamic modes. For
this purpose, a high speed camera is used to monitor the bucklewaves. Thereafter, the classification is
used to select the modes relevant to realistic numerical simulations conducted using ABAQUS Explicit.

Ultimately, the stresses transmitted through the members are most relevant to the assessment of pris-
matic sandwich structures. These stresses are measured using a Hopkinson bar and the results used to
validate the numerical simulations. Thereafter, simulations are used to provide basic understanding of the
stress wave propagation and buckling phenomena, and of the magnitude and duration of the transmitted
pressure pulse. The results provide the insight needed for analytic models.

To achieve the preceding objectives, this article is organized in the following manner. In Section 2,
the experimental methods are described. In Section 3, the measurements and observations are presented.
In Section 4, the dynamic modes are ascertained and the sensitivity of the simulations to imperfections is
established. The buckle patterns are also determined. In Section 5, the dynamic stresses are characterized
and related to such variables as the imposed velocity, core thickness and its relative density, as well as the
strain-rate sensitivity of the material. Comparisons between measurements and simulations are presented
in Section 6.

2. Test protocol

All test specimens were fabricated from 304 stainless steel. To produce the test configurations, an array
of slotted strips was assembled in a rectangular wine box configuration (Figure 2). The web dimensions
were h = 0.25 mm and H = 25 mm, with slenderness characterized by H/h = 100 and relative density
ρ̄ = h/L1 = 0.02. Once assembled, the core members were attached to top and bottom face sheets
(each 1.5 mm thick) by placing small amounts of braze material at the intersection points (a mixture of

Figure 2. Schematic of core assembly method and pertinent dimensions.
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Figure 3. Quasistatic and dynamic flow characteristics of 304 stainless steel.

Figure 4. Quasistatic compressive response of I-core specimen.
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Nicrobraz Cement 520 and Nicrobraz 31 braze powder, provided by Wal Colmonoy, Madison Heights,
MI) and heating the assembly in vacuum for 2 hours at 1075◦ C. Specimens were cut from the panels
using electro-discharge machining. Each was 32 mm square and contained three parallel web members,
spaced 12.5 mm apart. Regions containing the transverse, widely spaced, web members were discarded
(these members were used solely to provide support to the longitudinal members during assembly and
brazing).

Dynamic through-thickness compression tests were performed in a gas gun using cylindrical Al 7075-
T6 projectiles 45 mm in diameter and 50 mm long. The test specimens were mounted onto a 2.6 m
long Hopkinson bar, instrumented with two 350 strain gauges in a half Wheatstone bridge configuration,
positioned at mid-length. The event window was ∼ 500µs, dictated by the time required for the incident
pulse to reflect off the back surface and return to the gauge location. This duration is significantly greater
than that needed for core crushing under the test conditions employed. The impact velocity was measured
by three pairs of laser diodes at the end of the gun barrel. It was varied between 75 and 160 m/s. For
comparison, quasistatic compression tests were also performed, at a nominal strain rate of 10−4 s−1.

Images obtained using a high speed camera (Imacon 200, DRS Technologies) were used for two
purposes: (a) the sequences confirmed that the imposed velocity was constant over the relevant time
period and consistent with that measured by the laser diodes, and (b) buckling patterns were recorded at
periodic time intervals and subsequently used for assessment of the numerical simulations.

The quasistatic and dynamic plastic properties of the alloy were obtained from previous studies [Stout
and Follansbee 1986; Xue and Hutchinson 2006; Zok et al. 2005] and are reproduced in Figure 3. The
rate sensitivity of the initial yield stress is characterized by

k ≡ σy(ε̇p)/σ
o
y = 1 + (ε̇p/ε̇0)

m, (1)

where σ o
y is the quasistatic yield stress (200 MPa), ε̇p is the plastic strain-rate, ε̇0 = 4, 920 s−1 and

m = 0.154. The rate-independent, quasistatic limit has ε̇P/ε̇0 → 0, or, equivalently, k = 1. The hardening
rate is strain rate independent. Additionally, in the domain εp > 0.05, the hardening rate is constant,
characterized by a tangent modulus ET ≈ 2 GPa.

3. Experimental results

Results from a representative quasistatic compression test (Figure 4) reveal a stress maximum and sub-
sequent rapid softening caused by elastic buckling. The peak value (1.5 MPa) correlates well with that
predicted by the Euler buckling formula (assuming clamped ends) and well below the predicted yield
stress: σY ρ̄ ≈ 4 MPa. Moreover, the buckling pattern (shown in the inset) is consistent with the shape of
the fundamental mode.

In contrast, the dynamic buckling response involves short wavelength buckles, typically an order of
magnitude smaller. Two representative sets of images of the buckling sequence are presented in Figure 5.
In one case, the specimen is viewed parallel to the plane of the web members; in the other, the viewing
direction is at 20◦ to this plane, thereby revealing the faces. These complementary views show the
progression of short wavelength buckles, initiating near the impacted face and propagating as a wave
towards the opposite face. For the projectile velocity employed (95 m/s), the time required for this
bucklewave to reach the back face is about 30µs. In the inclined orientation, the images also reveal the
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(a)

(b)

Figure 5. Buckle wave formation in I-cores at imposed velocity v0 = 95 m/s. Specimens
viewed (a) parallel to, and (b) at 20◦ to the web members. In both sequences, the pro-
jectile just makes contact with the right side of the specimen in the first frame (labeled
t = 0).
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presence of transverse buckles, manifested as undulations normal to the direction of imposed velocity.
This feature highlights the three-dimensional nature of the bucklewaves and motivates the subsequent
numerical investigation.

Additional features of the bucklewaves are gleaned from detailed comparisons of the buckle patterns
(when viewed on-edge) at various time intervals. Representative profiles for three web members for
an incident velocity of 95 m/s are plotted on Figures 6a—6c. In each case, the buckle pattern at short
times exhibits 4—5 peaks. As buckling proceeds, some of the buckles grow more rapidly than oth-
ers, essentially consuming adjacent buckles of smaller amplitude (examples indicated by open circles).
One manifestation of this process is an apparent reduction in bucklewavelength with increasing time.
Eventually, at large strains, only one or two buckles survive. These features are also apparent from the
crushed samples, which exhibit only one or two dominant folds in each web member. The implications
are twofold. First, the bucklewavelength at prescribed velocity is not ordained, but rather evolves with
time. Similar features emerge from the numerical simulations presented in the next section as well as
from an analytical model for bucklewave evolution [Vaughn and Hutchinson 2006]. Second, postmortem
examinations of crushed specimens provide no information on the evolution of buckle patterns, especially

(b)(a) (c)

(d)

Figure 6. (a)–(c) Buckle patterns obtained from high speed photography at imposed
velocity v0 = 95 m/s at several times after impact. The circles show examples of buckles
that were well defined in the early stages but were subsequently consumed by the growth
of adjacent buckles. (d) Simulations corresponding to experimental measurements. Inset
shows detail of the buckle pattern at the earliest time.
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those that were present in the early stages of crushing and dominated the loading response. In situ
observations are crucial in this regard.

The corresponding back face response is characterized by three stages (Figure 7a): (i) a rapid rise, peak,
and decay in stress over a period of about 30µ s, coincident with the time for bucklewave propagation;
(ii) an extended irregular plateau at significantly reduced stress level, accompanying the large scale
collapse of the web members; and (iii) a rapid hardening domain as the compressive strain approaches
unity, characterized by v0t/H ≈ 1. The initial peak is essentially independent of the imposed velocity
(over the range 75–165 m/s), but exceeds the quasistatic stress by a factor of about 5 (Figure 7b). This
elevation is attributable to both strain rate sensitivity of the plastic response and inertial stabilization of
long wavelength buckles at high velocities [Vaughn et al. 2005; Vaughn and Hutchinson 2006; Wei et al.
2007]. These effects will become apparent in the ensuing numerical assessment.

4. Establishing the buckling modes

(a)

(b)

Figure 7. Dynamic compressive response of I-core specimen.
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4.1. Geometry and boundary conditions. The geometric variables used in the numerical investigation
are depicted in Figure 8. A unit cell is defined with periodic boundary conditions. In most cases the cell
is square in plan view, such that L1 = L2 = L , and has cross sectional shape with fixed ratio of edge
length L , to core height H (specified as H/L = 2). Most calculations use a slenderness H/h = 100,
with relative density ρ̄ = h/L ≡ 2h/H = 0.02. In some instances, the slenderness is varied in the range
50 ≤ H/h ≤ 400 (while retaining the shape H/L = 2).

4.2. Finite element method. The unit cell has been analyzed by the commercial code, ABAQUS/Expli-
cit. Four-node shell elements (S4R) with five integration points through the thickness are used to model
both the faceplates and the core members. Manufacturing imperfections are incorporated into the calcu-
lations. Periodic boundary conditions are applied, except at the front and back faces. A uniform velocity
boundary condition is imposed on the front. To encompass the responses of interest, the parameter ranges
have been selected in accordance with the following four considerations. First, in typical panels subject
to water blast, front face velocities up to v0 = 100 m/s are induced [Fleck and Deshpande 2004; Xue and
Hutchinson 2004]. Velocities from 10 to 500 m/s capture most of the realistic possibilities. Unless stated
otherwise, the results are for 100 m/s. Second, the core thickness, H , is varied between the small values
used for the experiments (25 mm) to the large values expected for actual panels (0.3 m). Unless stated
otherwise, the thickness is taken to be H = 0.2 m. Third, within the slenderness range 50 ≤ H/h ≤ 400,
the core relative density is varied over 0.005 ≤ ρ̄ ≤ 0.04, thereby spanning the transition from soft to
strong responses. Unless stated otherwise, the results are for H/h = 100(ρ̄ = 0.02). Fourth, the responses
are somewhat dependent on the strain rate sensitivity of the material. Most results include this sensitivity.
In a few cases, where fundamental insights are needed, a strain rate insensitive material has been used.

In most cases, to be as close as possible to the experimental arrangement, the back face is placed on
a rigid foundation. This support will cause the responses to differ from those for a free back face, such
as the center of a panel subject to blast.

4.3. Buckling modes. Before embarking on detailed dynamic calculations, the distribution of imper-
fections capable of duplicating the experimentally measured buckle patterns over the complete velocity

Figure 8. Cell model used in finite element calculations.



1354 E. FERRI, E. ANTINUCCI, M. Y. HE, J. W. HUTCHINSON, F. W. ZOK AND A. G. EVANS

Figure 9. Examples of the buckle patterns calculated for four eigenmodes (1, 2, 10, 68).

range (from quasistatic to the highest velocity, v0 = 500 m/s) must be ascertained, commencing with
insight gained from the experimental observations (Figures 4 and 5). The following three steps have
been undertaken.

(i) The eigen-modes have been ascertained and those having features similar to the experiments are
identified. Four selected modes are summarized on Figure 8. Evidently, among these, mode 68
exhibits buckle patterns most similar to the dynamic bucklewaves, including both axial and lateral
wavelengths. This combination of orthogonal wavelengths provides a sufficient number density of
imperfections that the dynamic modes are reproduced with acceptable fidelity.

(ii) Dynamic calculations of the stresses transmitted into the back face are performed using various
modes, incorporating a range of imperfection amplitudes. The salient results are summarized on
Figure 10. Note that all imperfections have a dramatic influence on the stress, so that calculations
without imperfections are inadequate. Once imperfections are introduced, thereafter the effects
are less pronounced. The perspective taken for this investigation is that, since the amplitudes of
imperfections present in actual I-core panels are difficult to specify or measure, a realistic choice
is made that gives acceptable agreement with the present experimental observations. Thereafter,
the amplitudes are held constant. An independent, more detailed, investigation of the influence of
imperfection amplitude will be reported elsewhere.

(iii) To adequately encompass the buckling response over the full velocity range, it is not sufficient
to use modes that provide buckle patterns representative of the highest velocities, because these
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(a)    (b) 

Figure 10. Effects of imperfection mode on (a) quasistatic and (b) dynamic response.
(Imperfection amplitude ξ = 0.15).

do not reproduce the quasistatic response, and vice versa. For instance, for quasistatic loading
(Figure 10a), the mode 1 imperfection yields the lowest buckling stress (at 1.2 MPa comparable to
the measurements) and a buckling mode consistent with that observed experimentally. In contrast,
under dynamic conditions, to capture the buckle patterns (Figure 9) and peak stresses (Figure 10b),
higher modes are required. Consequently, to embrace all possible responses, several representative
modes are combined. But, before proceeding, the sensitivity of the buckling response is ascertained,
both to the modes selected and the way in which they are combined. The objective is to assure that
the calculations have generality and are insensitive to the specific choices. Overall, the results reveal
that the most important to include are mode 1 plus one high mode (such as 68). For smooth trends
with velocity, two intermediate modes (2 and 10) are also included in subsequent simulations.

To be consistent with the nature of manufacturing imperfections, the amplitude δ corresponding to
each mode is taken to be proportional to the respective longitudinal wavelength. For instance, if the
amplitude for mode 1 is selected as ξ ≡ δ/h = 1, the amplitude for mode 68 is δ/h = 1/7 (refer to
the buckle pattern on Figure 9), and so on. Using this approach, the bucklewavelengths emerging from
the calculations at the highest velocity are smaller than those associated with the highest eigen-mode
(compare, for example, the buckle pattern at 500 m/s in Figure 11 with the mode 68 imperfection in
Figure 9). Visually, these modes appear similar to those found experimentally at comparable velocity
(Figures 5 and 7). The ability of ABAQUS to select the short wavelengths is attributed to the through-
width variation in buckle shape associated with the highest modes (Figure 9). This variation provides
an infinite number of permutations in available wavelength in any direction. These results provide some
assurance that the dynamic modes selected are not excessively constrained by the initial imperfections.

In all ensuing calculations, combined imperfections are used. The stress/strain curves used as input are
those applicable to 304 stainless steel, plotted on Figure 3 and described by Equation (1). In a few cases,
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Figure 11. Buckle waves induced at several imposed velocities. Note that the wave-
lengths at the highest velocities are shorter than those of the initial imperfections (Figure
9). (H = 25 mm, ρ̄ = 0.02).

to gain insight, the strain rate dependence has been excluded. With a Young’s modulus E = 200 GPa and
a mass density ρ = 7, 800 kg/m3, the elastic wave speed through this material is cel =

√
E/ρ ≈ 5, 000 m/s.

All calculations are performed by imposing a constant velocity v0 at one end.

4.4. Stress wave propagation. Stress wave propagation down the core members is characterized by per-
forming calculations without imperfections, because the members remain straight (no buckling) up to
large strains (Figure 10). The plastic strain distribution at various times after the velocity is imposed
is presented in Figure 12 (H = 25 mm). Results determined for the rate-independent material (Figure
12a) reveal the propagation of a plastic front with velocity vpl ≈ 800 m/s and constant strain in the wake.
The response is similar to that reported for annealed Cu [Von Karman and Duwez 1950], except that the
velocity and plastic strain are higher.

When the elastic wave reaches the back face, at t = H/cel ≈ 5µs, a secondary plastic front with small
plastic strain emerges from the back face and advances towards the incident front. Neglecting the short
time associated with the transmission of the elastic wave, the time for convergence of the plastic fronts
is tpl ≈ H/2vpl . Convergence of the two waves causes a slight increase in the plastic strain in the wake
of the incident front. Significant elevations in plastic strain develop only after the incident plastic front
reaches the back face, at t = H/vpl ≈ 40µs. Repeating the calculations with a rate-dependent material
(Figure 12b) indicates that the plastic front is now much more diffuse, with a broader distribution of
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(a)    (b) 

Figure 12. Temporal variation in plastic strain distribution calculated for a core without
imperfections (to suppress buckling) subject to velocity v0 = 100 m/s. (a) Rate indepen-
dent material, and (b) Comparison between rate dependent and rate independent materi-
als.

plastic strain. Moreover, the plastic front propagates more rapidly than in the rate insensitive material.
If a plastic strain of 1% is specified to define this front, its velocity is computed to be vpl ≈ 1, 800 m/s.
The consequences will become apparent when the stresses are discussed below.

4.5. Buckle wavelengths. When imperfections are present, bucklewaves become evident in the wake of
the plastic front shortly after the velocity is imposed (Figure 11). Their subsequent evolution, charac-
terized by lateral displacement profiles, is illustrated in Figure 6d for one specific case. In the early
stages (≤ 20µs after the velocity is imposed), the profile exhibits about 10 peaks with an average
wavelength Lc/h ≈ 10. Thereafter, the number of peaks diminishes as some peaks are consumed by
growth of adjacent ones. For instance, after 100µs, only 3 or 4 peaks remain with an average wavelength
Lc/h ≈ 20 − 30.

For comparison, the wavelengths predicted from a free-flight model are calculated [Vaughn and
Hutchinson 2006]. The model predicts that Lc scales with the length Lo of a clamped plate at the
onset of buckling when compressed quasistatically into the plastic range. Tangent-modulus theory gives
Lo as:

Lo

h
= π

√
ET

3σ
. (2)

In the present context, σ is taken as the dynamic stress in the plastic region prior to buckling. For a
rate-independent material with bilinear stress/strain characteristics, this stress is uniform over the length
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and is accurately described by the relation [Vaughn and Hutchinson 2006]:

σ

σY ρ̄
≈ 1 +

√
ET

E

(
v0

celεY
− 1

)
. (3)

Upon combining Equations (2) and (3), the critical length becomes:

Lo

h
= π

{
3σy

ET

[
1 +

√
ET

E

(
vo

celεy
− 1

)]}−1/2

.

For vo = 100 m/s, the predicted wavelength is Lo/h ≈ 3. The corresponding wavelength ascertained
from the numerical simulations (Figure 7d) at the same incident velocity is initially Lo/h ≈ 10, increasing
to 30 in the later stages of buckling. The discrepancy between the analytic and numerical results is an
indication of the highly nonlinear nature of the problem and the consequent difficulties in obtaining an
accurate analytic solution.

5. Dynamic stresses

5.1. General observations. Representative results for the computed stress/time response in the presence
of imperfections are plotted in Figure 13. The following general features emerge:

(i) The front face stress achieves a peak σ f
max almost instantaneously and remains at this level for

a characteristic pulse time, tpulse, before dropping abruptly to a much lower steady-state plateau
(Figure 13a).

(a)    (b) 

Figure 13. The temporal dependence of the stresses induced on the back and front face
when a velocity v0 = 100 m/s is imposed at one end. (Imperfection amplitude ξ = 1).
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(ii) The back face exhibits similar features, with two notable exceptions. First, the initial plateau stress,
σ b

max, is achieved after a short delay, due to the time for transmission of the pressure pulse through the
core, given by t = H/cel . Second, this plateau is lower than the peak on the front face (σ b

max <σ
f

max).
Otherwise, the pulse time tpulse and the steady-state plateau stress are comparable on both faces.

(iii) The imperfection magnitude has minimal effect on the peak stresses on both faces. However, tpulse

is altered, decreasing as the imperfections become large (Figure 13b).

The governing phenomena and their dependence on core characteristics, material behavior and imposed
velocity are elucidated below.

5.2. Front face stresses. The maximum front face stress attained at short times, σ f
max, increases linearly

with imposed velocity (Figure 14a). Comparisons of σ f
max with the result in (Equation (3)) for a rate-

independent material affirms the fidelity of the analytic model (Figure 14b). Upon incorporating strain
rate sensitivity, the stress increases, but when normalized by the appropriate σY , at ε̇ = v0/H , Equation
(3) retains accuracy adequate for most purposes.

5.3. Transmitted stresses and pulse duration. Stresses induced on the back face determined over a wide
range of velocity, core thickness, and core member slenderness have the characteristics presented in
Figures 15–17. Comparison with and without strain-rate sensitivity (Figure 15) reveals two differences.
The rate dependence increases σ b

max by about a factor 2 (from 5 to 10 MPa) and decreases the pulse
duration (from 30 to 20µs). The former is attributed to the strain rate sensitivity while the latter is
associated with the more rapid propagation of the plastic front (Figure 12b). Hereafter, to provide a
common basis for comparison, the temporal coordinate is normalized by the core height t/H . In some

(a)    (b) 

Figure 14. A comparison of the peak front face stress obtained from the numerical
simulations with the value estimated from the analytic formula.
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plots, the actual stress is used. In others, the stress is normalized: σ/ρ̄σY , where σY is again the yield
strength at the nominal strain rate (ε̇ = v0/H). The key observations are as follows:

Figure 15. The temporal dependence of the stresses induced on the back face when a
velocity v0 = 100 m/s is imposed at one end, including comparison between rate depen-
dent and rate independent materials. Note that the former results in a higher stress but
shorter pulse duration.

(a)    (b) 

Figure 16. The temporal trends in the stress pulse transmitted through the core, with
time coordinate normalized by the core height. (a) Effect of imposed velocity at fixed
core height. (b) Effects of core height at fixed velocity.
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(a)    (b) 

Figure 17. The influence of core member slenderness on the stress pulse transmitted
through the core. (a) Imperfection amplitude scaled with the member thickness: δ/h = 1.
(b) Constant imperfection amplitude, δ = 1 mm.

(i) For fixed core thickness, the plateau stress and pulse duration are independent of velocity for rate-
independent materials (Figure 16a). Moreover, when rate sensitivity is included, the amplitude is
larger and the duration shorter (Figure 15).

(ii) Upon varying the core thickness at fixed velocity and slenderness (Figure 16b), the pulse durations
become coincident when the time is core thickness normalized. That is, tpulse scales with H . In
contrast, σ b

max is almost independent of H .

(iii) The effects of slenderness at fixed velocity and core height depend on the scaling used for the im-
perfection amplitude. The issues are elucidated by two sets of simulations. One set uses amplitudes
that scale linearly with member thickness, δ/h = 1 (Figure 17a), while the other uses amplitudes
independent of the slenderness (Figure 17b). In all examples, the normalized peak stress, σ b

max/ρ̄σY ,
is unaffected. But there are effects on the pulse duration, tpulse/H . When the imperfection ampli-
tudes are scaled, tpulse/H is almost invariant with slenderness, decreasing slightly for the most
slender members. However, when the amplitudes are fixed, tpulse/H decreases systematically with
slenderness.

5.4. Interpretation. That the pulse duration scales linearly with core thickness indicates a phenomenon
dictated by a wave front propagating through the core. To reveal the source, contours of plastic strain are
plotted in a time sequence after the imposition of the velocity (Figures 19). These reveal the propagation
of a diffuse plastic front from the end exposed to the velocity, as well as the formation of an opposing front
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Figure 18. Montage of deformed core members at different times after impact. The
colors refer to levels of plastic strain. (Imperfection amplitude: ξ = 1).

after the elastic wave reflects from the back face. This is consistent with the behavior obtained for the
straight (imperfection-free) core (Figure 12). The bucklewave behind the outgoing plastic front initiates
in regions where the strain has exceeded about 10%. These waves propagate at velocity, vbw ≈ vpl and
reach the back face at time, tbw = H/vbw. Inspection of the figures indicates that the stresses remain
at the plateau level on both front and back faces, even when bucklewaves are in evidence. That is,
buckling near the top face does not immediately cause a reduction in the stresses. Additionally, the
pulse terminates approximately at a time when the bucklewave front essentially reaches the back face,
at t ≈ tbw (Figure 14a). The associated wave velocity is vbw ≈ 800 m/s for the rate independent material
and vbw ≈ 1, 200 m/s for the rate dependent material. These values are consistent with the velocities of
the plastic front (Figure 12). They suggest an approximate scaling for pulse duration of the form

tpulse = λ(δ/h) H/vpl,

where λ(δ/h) is a nondimensional parameter of order unity.
In an attempt to provide additional insight into the pulse duration, the evolution of the buckles is

monitored by evaluating the spatial variations in the nominal compressive strain along a line parallel to
the imposed velocity (Figure 19). The results re-affirm that the buckles become prominent (manifested
in large strain undulations) while the stress on the back face is still at its plateau level (see, for example,
point A in Figures 18 and 19). However, there is no apparent change in the buckling features at the
moment the stress drops from the plateau, between points C and D.
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Figure 19. Distribution of plastic strains at various durations after the velocity is im-
posed. Labels correspond to points in Figure 18.

An understanding of the role of imperfection amplitude and the details of the critical event that triggers
the stress drop awaits further numerical investigations. The results of these investigations will be reported
elsewhere.

6. Comparison with measurements

An assessment of the numerical results has been made by comparison with the experimental measure-
ments, using the actual test geometries in the simulations. The metrics for this assessment include the
peak back face stress, the peak duration and the buckle patterns.

Simulated stress/time curves are presented in Figure 20. Upon comparison with the measurements
(Figures 7a), both the peak stress and the pulse duration are captured well, with predicted values of
σ b

max ≈ 9 − 10 MPa and tpulse ≈ 30µs. Moreover, the simulations predict a velocity independent peak in
accord with the measurements (Figure 7b). However, a discrepancy exists in the rise time of the initial
peak. That is, the simulations predict that the rise should be almost instantaneous (over time � 1µs)
whereas the measured values are typically 10–20 µs. The difference can be attributed to nonuniform
loading during the early stages of contact, caused by a small degree of projectile misalignment. For
instance, a 1◦ misalignment at typical velocities would create a 10µs delay between the point of first
contact and that at which contact is complete. Such misalignment is also expected to reduce the peak
stresses. Indeed, the measured values fall slightly below the predictions (Figure 7b).

The predicted buckle patterns are compared with the measured ones in Figure 6. When viewed at
the same resolution as the measurements, the initial computed profile (at 15µs) exhibits about 5 peaks:
comparable to the measurements. In contrast, when magnified (inset in Figure 6d), the profile exhibits
about twice as many peaks. For longer times, the number of peaks diminishes, as some peaks are con-
sumed by growth of adjacent ones. Overall, the predicted buckle evolution is deemed to be a reasonably
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Figure 20. Simulated response of tested I-core specimens (H = 25 mm, h = 0.25 mm,
ξ = 1).

accurate representation of that observed experimentally. The inherent variations in the observed patterns
(Figures 6a–c) preclude a more rigorous quantitative assessment.

7. Conclusions

Combined measurements and simulations have been used to characterize the response of stainless steel
I-core panels supported at the back face and subjected to a constant velocity at the front. Finding a
means to incorporate appropriate imperfections has been a major aspect of the assessment. The preferred
method combines several prominent buckling modes and assigns imperfection amplitudes proportional
to wavelengths. The procedure has been motivated and substantiated by comparing buckle patterns with
those found experimentally over the relevant velocity range.

The simulations reveal that the stresses induced differ on the front and back faces. The push-back stress
exerted by the core members on the front face are higher and velocity dependent. They are consistent
with an analytical formula for straight (nonbuckling) columns. The stresses transmitted through the core
to the back face are velocity invariant. They also scale linearly with the product of the relative density
and material yield strength. The latter has been substantiated by experimental measurements.

The duration of the stress peak tpulse has been assessed. This duration is essentially the same on
both faces, and independent of the incident velocity. Moreover, it scales linearly with the core height
H , indicative of a wave propagation phenomenon. Inspection of the numerical results indicates that the
pulse terminates when the bucklewave, propagating at velocity vbw, reaches the back face. Accordingly,
the pulse time is related to core thickness and bucklewave velocity, such that tpulse = H/vbw. After the
pulse terminates, the core continues to compress at a stress level about an order of magnitude smaller.
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AXIALLY SYMMETRIC CONTACT PROBLEM OF FINITE ELASTICITY AND
ITS APPLICATION TO ESTIMATING RESIDUAL STRESSES BY CONE

INDENTATION

HAO TIAN-HU

We discuss the axially symmetric contact problem of finite elasticity (theory of small deformation on
initial stress body) and its application to estimating residual stresses by cone indentation. In particular,
we determine the relation among the penetration depth, the contact radius and the residual stress.

1. Introduction

The residual stress problem is very important in engineering. Suresh and Giannakopoulos [1998] have
pointed out that in the classical theory of elasticity the penetration depth, contact radius, and contact
pressure are all independent of the residual stress and, thus, cannot be used to determine it. This inde-
pendence can be explained as follows. In the linear theory of elasticity two independent solutions can
be superposed to form a new solution according to the principle of superposition. Therefore, the cone
indentation stress solution without residual stress and the residual (homogeneous) stress solution can be
superposed to form a new solution. This new superposed solution is for the cone indentation stress field
with residual stress and is unique due to the uniqueness of the linear theory of elasticity. It is apparent
that the cone indentation stress field is independent of the residual stress in this solution. Therefore, the
residual stress cannot be determined from it. In order to avoid this independence one has to deviate from
the classical theory of elasticity. The theory of finite elasticity, that is, the theory of small deformations
with initial stress body, is nonlinear so that two independent stress fields cannot be superposed. On the
basis of it, one can deal with the residual stress. Naturally, the theory of plasticity is also nonlinear.
However, according to it one can deal with the problem of unloading, that is, tension residual stress and
indentation, which is difficult to discuss. Therefore, the results in this paper are only an initial effort in
studying the plasticity behavior. Further developments will be discussed in another paper.

Here we address the theory of small deformation with initial stress body, which has been studied for
a long time [Southwell 1913; Green and Shield 1951; Ericksen 1953; Bernstein and Toupin 1960; Payne
and Weinberger 1961; Truesdell 1961; Hayes and Rivlin 1961; Pearson 1950; Holden 1964; Beatty
1971; Savwers and Rivlin 1973; 1977; 1978; Lurie 1990, Chapter 8; 1986; Hwang 1989]. Lurie [1990]
and Hwang [1989] summarize the known results prior to 1989. On the basis of the theory of finite
elasticity, that is, the theory of small deformations with initial stress body, we discuss in this paper the
axially symmetric contact problem. Its application to estimating residual stresses by cone indentation

Keywords: finite elasticity, axially symmetric, residual stress, cone indentation.
Thanks to Professors B. L. Wang, Chuanzeng Zhang and Shen Ziyuan for their valuable help on English. This work has been
supported by the National Natural Science Foundation of China.
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is considered. Specifically, we have determined the relation among the penetration depth, the contact
radius, and the residual stress.

2. Axially symmetric deformation and strain energy function

For the axially symmetric case let (x1, x2) be the position of a point before the deformation, where x1 = z,
x2 = r , and (y1, y2) after the deformation. λ1, λ2, λθ denote the initial stretches due to residual stress
with y j = λ j x j + u j , for j = 1, 2. For comparison, in the classical theory, y j = x j + u j . Then,

Fi j =
∂yi

∂x j
= λiδ j i + ui, j , (uθ = 0),

where there is no sum over i , ui, j = ∂ui/∂x j and |ui, j | = O(ε)� 1.
Consider the components λθ and Fθθ . Since λθ is the length after the initial deformation (residual

stress) divided by the length before the deformation, and Fθθ is the same ratio after the deformation, one
has

λθ =
λ2x2θ

x2θ
= λ2, Fθθ =

(λ2x2 + u2)θ

x2θ
=
λ2x2 + u2

x2
= λ2 +

u2

x2
.

For the deformation tensor components Ci j we have

Ci j =
∂yk

∂xi

∂yk

∂x j
= λ j u j,i + λi ui, j + λiλ jδi j + O(ε2),

no sum over i or j implied.
Expanding Ci j = Ci j 0 + δCi j + O(ε2) one has

Ci j 0 = λiλ jδi j and δCi j = λ j u j,i + λi ui, j .

For the deformation tensor component Cθθ ,

Cθθ = Cθθ 0 + δCθθ = λ2
2 + 2λ2

u2

x2
,

Cθθ 0 = λ2
2,

δCθθ = 2λ2
u2

x2
,

δCθk = 0 (θ 6= k),

Ckk = λ2
r + λ2

1 + λ2
θ + δC11 + δC22 + δCθθ ,

Ckk 0 = λ2
r + λ2

1 + λ2
θ = 2λ2

r + λ2
1.

According to Lurie [1990], the strain energy function can utilize a variety of materials, for example,
the Money material, the Monahan material, the Blats–Ko material, semi-linear material, the neo-Hook
material, and others. It must be pointed out that Ranht et al. [1978] used the neo-Hook material for
the incompressible case. This result can only be considered as a preliminary attempt to deal with the
plasticity behavior, which we will discuss in another paper. Here, for convenience, we use the semi-linear
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material as follows:

W =
1
8λ(Ckk − 3)2 +

1
4µ(Ci j − δi j )(Ci j − δi j ), W (λi = 1, u j = 0)= 0,

where λ and µ are material constants to be discussed later.
Setting λ1 = λ2 = λθ = 1, one has

δCi j = λi ui, j + λ j u j,i + O(ε2)= ui, j + u j,i + O(ε2)= 2εi j ,

δCθθ = 2λθ
ur

x2
= 2

ur

x2
= 2εθθ ,

Ci j 0 = δi j ,

Cθθ 0 = 1,

(Ckk − 3)= δkk + 2εkk − 3 = 2εkk = 2(ε11 + ε22 + εθθ ),

(Ci j − δi j )= δi j + 2εi j − δi j = 2εi j ,

W =
1
8λ(Ckk − 3)2 +µ1

4(Ci j − δi j )(Ci j − δi j )

=
1
2λ(ε11 + ε22 + εθθ )

2
+µ(ε2

11 + ε2
22 + ε2

θθ + ε12ε12 + ε21ε21).

This coincides with the classical theory. In it µ is the shear modulus and λ= Eν/
(
(1 + ν)(1 − 2ν)

)
is

Lamé’s constant, where E is the Young’s modulus and ν is the Poisson ratio.

3. Stresses and equilibrium

The Piola stress is given by

σi j = 2
∂yi

∂xk

∂W
∂Ck j

, σθθ = 2
(
λθ +

ur

x2

)
∂W
∂Cθθ

.

It is not symmetric, but on the basis of moment equilibrium satisfies the identity

σk2
∂x1

∂yk
= σk1

∂x2

∂yk
(k = 1, 2).

Using the Taylor series expansion f (a + δ)= f (a)+ f ′(a)δ+ O(δ2), one has

∂W
∂Ck j

= Wk j + Wk jlmδClm + O(ε2),

where Wi j = (∂W/∂Ci j )0, Wi jkl = (∂2W/∂Ci j∂Ckl)0. Here the notation ( )0 means that W is a function
of the initial stretches λi due to residual stress, but not a function of δClm .

The expansion of σi j is given by

σi j = σi j 0 + δσi j , σi j 0 = 2λi Wi j , δσi j = 2Wk j ui,k + 2λi Wi jklδCkl,

σθθ = σθθ 0 + δσθθ , σθθ 0 = 2λθWθθ , δσθθ = 2Wθθu2,2 + 2λθWθθklδCkl .
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In order to clarify the stress components, we now turn to the coefficients Wi j and Wi jkl . Since we are
interested in the axially symmetric case, λθ = λ2, uθ = 0, and u1, u2 are functions of x1, x2. Altogether,
the coefficients are

Wi j =

(
∂W
∂Ci j

)
0
, Wi jkl =

(
∂2W

∂Ci j∂Ckl

)
0
,

W11 =
1
4λ(λ

2
2 + λ2

1 + λ2
θ − 3)+ 1

2µ(λ
2
1 − 1),

W22 = Wθθ =
1
4λ(λ

2
2 + λ2

1 + λ2
θ − 3)+ 1

2µ(λ
2
2 − 1),

W12 = W21 = W1θ = Wθ1 = W2θ = Wθ2 = 0,

W1111 = W2222 = Wθθθθ =
1
4λ+

1
2µ, W2211 = Wθθ11 = W22θθ =

1
4λ,

W1212 = W2121 = W1θ1θ = Wθ1θ1 = W2θ2θ = Wθ2θ2 =
1
2µ.

Since the surface of the half plane is free of traction before the press of the cone, the stress component
σ11 0 must be zero. Therefore, one has

σ11 0 = 2λ1W11 =
1
2λ1

(
λ(2λ2

2 + λ2
1 − 3)+ 2µ(λ2

1 − 1)
)
= 0.

Setting W11 = 0 and solving for λ1 we get

λ2
1 = 1 − 2λ

(
λ2

2 − 1
λ+ 2µ

)
. (1)

Similarly, one can obtain the relation between λ2 and the residual stress σR = σ22 0:

σR = σ22 0 = λ2µ(λ
2
2 − 1)

(
3λ+ 2µ
λ+ 2µ

)
or λ3

2 − λ2 = σ22 0

(
λ+ 2µ

3λµ+ 2µ2

)
. (2)

The homogeneous residual stress σR leads to residual stresses σx = σy = σR when the xy plane is parallel
to the surface.

Let us now look at the stress components σi j , σθθ . Using λ2 = λθ , uθ = 0 and the fact that u1, u2 are
functions of x1, x2, one obtains

σθθ = λ2µ(λ
2
2 − 1)

(
3λ+ 2µ
λ+ 2µ

)
+ 2

u2

x2

(
λ

4
(λ2

2 + λ2
1 + λ2

θ − 3)+
µ

2
(λ2
θ − 1)

)
+ 2λθ

((λ
2

+µ
)
λθ

u2

x2
+
λ

4
(2λ2u2,2 + 2λ1u1,1)

)
,

σθθ 0 = λ2µ(λ
2
2 − 1)

(
3λ+ 2µ
λ+ 2µ

)
,
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δσθθ =

(
λ

2
(2λ2

2 + λ2
1 − 3)+µ(λ2

2 − 1)+ λ2
2(λ+ 2µ)

)
u2

x2
+ λ2λ(λ2u2,2 + λ1u1,1);

σ22 = λ2

(
λ

2
(2λ2

2 + λ2
1 − 3)+µ(λ2

2 − 1)
)

+ u2,2

(
λ

2
(2λ2

2 + λ2
1 − 3)+µ(λ2

2 − 1)
)

+ λ2

(
(λ+ 2µ)λ2u2,2 + λ

(
λ1u1,1 + λ2

u2

x2

))
,

σ22 0 = λ2

(
λ

2
(2λ2

2 + λ2
1 − 3)+µ(λ2

2 − 1)
)
,

δσ22 =

(
λ

2
(2λ2

2 + λ2
1 − 3)+µ(λ2

2 − 1)+ λ2
2(λ+ 2µ)

)
u2,2 + λλ2

(
λ1u1,1 + λ2

u2

x2

)
,

σ11 =

(
λ

2
(2λ2

2 + λ2
1 − 3)+µ(λ2

1 − 1)+ λ2
1(λ+ 2µ)

)
u1,1 + λλ1

(
λ2u2,2 + λ2

u2

x2

)
,

σ11 0 = 0,

δσ11 =

(
λ

2
(2λ2

2 + λ2
1 − 3)+µ(λ2

1 − 1)+ λ2
1(λ+ 2µ)

)
u1,1 +λλ1λ2

(
u2,2 +

u2

x2

)
;

σ21 = 2λ2W21 + 2u2,1Wzz + 2λ2W2121δC21 = λ2µ(λ2u2,1 +λ1u1,2),

σ21 0 = 0, δσ21 = λ2µ(λ2u2,1 + λ1u1,2);

σ12 = 2u1,2W22 +

(
λ1

λ2

)
σ21, σ12 0 = 0, δσ12 = 2u1,2W22 +

(
λ1

λ2

)
δσ21. (3)

We also have the equilibrium equations

∂σ22

∂x2
+
∂σ21

∂x1
+
σ22 − σθθ

x2
= 0 and

∂σ12

∂x2
+
∂σ11

∂x1
+
σ12

x2
= 0 for σ12 6= σ21.

Using the equalities σ22 0 = σθθ 0 and σ12 0 = σ21 0 = 0, and the fact that the components σi j 0 are not
functions of x1 and x2, we have

∂δσ22

∂x2
+
∂δσ21

∂x1
+
δσ22 − δσθθ

x2
= 0 and

∂δσ12

∂x2
+
∂δσ11

∂x1
+
δσ12

x2
= 0 for δσ12 6= δσ21.

Substituting the expressions for σθθ0, σ220 and σ21 into the first equilibrium equation, we obtain

A∇
2u2 −

(
A − λ2

2µ
)
u2,11 +(λ+µ)λ2λ1u1,12 −A

(
u2

x2
2

)
= 0, (4)

where A = (2λ+ 3µ)(λ2
2 − 1)+ λ

2
(λ2

1 − 1)+ λ+ 2µ and ∇
2 f = f,22 + f,2 /x2 + f,11. Introduce the

function 8 such that

u2 = −C821 and u1 = A∇
28− B811, (5)

where B = A − λ2
2µ and C = (λ+µ)λ2λ1. Then (4) is satisfied automatically.
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Using the equalities

δσ12 = 2u1,2W22 + (λ1/λ2)δσ21,

δσ21 = λ2µ(λ2u2,1 + λ1u1,2),

δσ11 =
(
2W11 + λ2

1(λ+ 2µ)
)
u1,1 + λzλ(λ2u2,2 + λ2u2/x2),

the second equilibrium equation becomes

D∇
2u1 + C

(
u2,12 +

u2,1

x2

)
+
(
2W11 − 2W22 + (λ+µ)λ2

1
)
u1,11 = 0, (6)

where D = (λ+ 2µ)(λ2
1 − 1)/2 + (λ+µ)(λ2

2 − 1)+µ.
We can rewrite the above equation substituting (5) into (6) and considering Equations (4)–(6) with the

result
D A∇

48− DB∇
2811 − C2

∇
2811 + C281111 + E A∇

2811 − E B81111 = 0, (7)

where E = 2W11 − 2W22 + (λ+µ)λ2
1.

Using the Hankel transform of zeroth order, one obtains

D Aξ 4G(ξ, x1)+ (DB − E A − 2D A + C2)ξ 2G(ξ, x1)11 + (−E B + D A − DB + E A)G(ξ, x1)1111 = 0,

where G(ξ, x1) =
∫

∞

0 x2 J0(ξ x2)8dx2 and J0(ξ x2) is the zeroth order Bessel function. The subscript
notation used here means G11 = d2G/dx2

1 .
Letting G(ξ, x1)= F(ξ)eH(ξ)x1 we can rewrite this as a quadratic equation in H 2/ξ 2:

p1 +
p2 H 2

ξ 2 +
p3 H 4

ξ 4 = 0, (8)

where p1 = D A, p2 = (DB − E A − 2D A + C2), and p3 = (−E B + D A − DB + E A).
For the classical case λ j = 1, the characteristic equation becomes

H 4

ξ 4 −
2H 2

ξ 2 + 1 = 0. (9)

When the determinant 1 = p2
2 − 4p1 p3 of (8) vanishes, the equation has two equal positive roots.

One can consider that λ j = 1 + δ j , 1→ 0 but 1< 0 or 1> 0 and the equation has two complex roots
(1 < 0) or two positive real roots (1 > 0). Now one only deals with the case with two different real
positive roots r2

1 and r2
2 , where r1 > 0 and r2 > 0. The other cases will be discussed in detail in Section

A1, page 1376. In the limit x1 → ∞, G → 0, we have

G(ξ, x1)= N1(ξ)e−r1ξ x1 + N2(ξ)e−r2ξ x1 . (10)

In what follows we write N1(ξ) and N2(ξ) simply as N1 and N2, respectively.
Now we turn our attention to the stress component δσ21. Using Equations (27) and (30) from the

Appendix as well as (10), one has

δσ21 = λ2µP
∫

∞

0
ξ 4(N1(r2

1 +w)e−r1ξ x1 + N2(r2
2 +w)e−r2ξ x1

)
J1(ξ x2) dξ, (11)
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where
P = λ2C + λ1 B − λ1 A and w = λ1 A/(λ2C + λ1 B − λ1 A).

With x1 = 0 and δσ21 = 0, the above equation simplifies to

δσ21 = λ2µP
∫

∞

0
ξ 4(N1(r2

1 +w)+ N2(r2
2 +w)

)
J1(ξ x2) dξ = 0, (12)

which gives

N2 = −

(
r2

1 +w

r2
2 +w

)
N1. (13)

Substituting (13) into (10), we get

G(ξ, x1)= N1(e−r1ξ x1 − Qe−r2ξ x1), (14)
where

Q =
r2

1 + λ1
(

A/P
)

r2
2 + λ1

(
A/P

) .
Let us now discuss the stress component δσ11 and displacement component u1. Substituting (14) into

(10), one obtains
δσ11 = R(A∇

281 − B8111)− Cλλ2λ1(∇
281 −8111), (15)

where
R =

1
2λ(2λ

2
2 + λ2

1 − 3)+µ(λ2
1 − 1)+ λ2

1(λ+ 2µ)= 2W11 + λ2
1(λ+ 2µ).

The zeroth order Hankel transform of (15) is∫
∞

0
x2 J0(ξ x2)δσ11dx2 = (R A − RB)G111 + (Cλλ2λ1 − R A)ξ 2G1. (16)

Similarly, the zeroth order Hankel transform of u1 in (9) is∫
∞

0
x2 J0(ξ x2)u1dx2 = (A − B)G11 − Aξ 2G. (17)

Setting x1 = 0 and using Equations (14), (16) and (17), one has

δσ11 =
(
−(R A − RB)(r3

1 − Qr3
2 )− (Cλλ2λ1 − R A)(r1 − Qr2)

) ∫ ∞

0
ξ 4 J0(ξ x2)N1dξ,

u1 =
(
(A − B)(r2

1 − Qr2
2 )− A(1 − Q)

) ∫ ∞

0
ξ 3 J0(ξ x2)N1dξ.

The boundary conditions are(
(A−B)(r2

1−Qr2
2 )−A(1−Q)

) ∫ ∞

0
ξ 3 J0(ξ x2)N1dξ = [u1(x2)]x1=0, x2 ≤ a,∫

∞

0
ξ 4 J0(ξ x2)N1dξ = 0, x2 > a,

where a is the radius of contact area, which will be discussed in detail later.
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Setting ξa = p, x2 = aρ, p3 N1 = f (p), and

a4
[u1(x2)]x1=0 =

(
(A − B)(r2

1 − Qr2
2 )− A(1 − Q)

)
g(ρ),

one has ∫
∞

0
f (p)J0(pρ) dp = g(ρ), 0 ≤ ρ ≤ 1,∫

∞

0
f (p)pJ0(pρ) dp = 0, ρ > 1.

(18)

Let g(ρ)=
∑

∞

n=0 Anρ
n(0 ≤ ρ ≤ 1). Then from [Sneddon 1951] the solution of (18) is

f (p)=
1

√
π

∞∑
n=0

An

(
cos p + p

∫ 1

0
un+1 sin(pu) du

)
0(1 + n/2)
0(3/2 + n/2)

, (19)

where 0 is the gamma function (recall that 0(1)= 1 and 0(3/2)=
√
π/2).

We can write
[u1(ρ)]x1=0 = b + a cotα(1 − ρ)

for 0 ≤ ρ ≤ 1 and g(ρ) = A0 + A1ρ, where α is the angle of the circular cone (the angle between the
asymmetric axis Ox1(Oz) and the mother line of the surface of the circular cone). Then, one has

a4
[u1(x2)]x1=0 =

(
(A − B)(r2

1 − Qr2
2 )− A(1 − Q)

)
(A0 + A1ρ),

where

A0 =
(b+a cotα)a4

(A−B)(r2
1−Qr2

2 )−A(1−Q)
, A1 =

−a5 cotα
(A−B)(r2

1−Qr2
2 )−A(1−Q)

.

Considering that An = 0 for n ≥ 2, from Equation (19), we get

f (p)= 2
(

A0

π
+

A1

2

)
sin p

p
+A1

(cos p−1)
p2 ,

δσ11 =
(
−(R A−R B)

(
r3

1−Qr3
2
)
−
(
Cλλ2λ1−R A

)(
r1−Qr2

))
×

(( 2A0

π
+A1

)
a−5

∫
∞

0
J0(pρ) sin pdp+A1a−5

∫
∞

0
J0(pρ)

(cos p−1)
p

dp
)
.

Since the integral
∫

∞

0 J0(p) sin p dp is divergent, to make sure the stress component δσ11 is finite at
the edge of the punch we require (2A0/π + A1)= 0, which means b = a cotα(π/2 − 1) and

[u(z, x2)]x1=0,x2=0 =
π

2
a cotα, f (p)= A1

cos p − 1
p2 . (20)

Noting that ∫
∞

0
J0(pρ)

cos p − 1
p

dp = −cosh−1(1/ρ),
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we get

δσ11 =
(
(R A − RB)(r3

1 − Qr3
2 )+ (Cλλ2λ1 − R A)(r1 − Qr2)

) A1

a5 cosh−1(1/ρ). (21)

We prove in the Appendix (see (59)) that the compressive force T is given by

T = a2 π(R A−RB)
(

p1 +w
(
−p2 +

√
p1 p3

))
−π(Cλλ2λ1−R A)

(√
p1 p3 −wp3

)(
(A − B)w+ A

)(
−p2 p3 + 2p1/2

1 p3/2
3

)1/2 , (22)

where the p j are the coefficients in the characteristic equation (8).
The contact radius a is therefore

a =

(
T tanα

(
(A − B)w+ A

)(
− p2 p3 + 2p1/2

1 p3/2
3

)1/2

π(R A−R B)p1 +π(R A−RB)w
(
−p2 +

√
p1 p3

)
−π(Cλλ2λ1−R A)

(√
p1 p3 −wp3

))1/2

. (23)

By (20), the penetration depth [u1(x1, x2)]x1=x2=0 equals (π/2)a cotα, that is,

u1(x1, x2)
∣∣
x1=x2=0

=
π

2

(
T cotα

(
(A − B)w+ A

)(
−p2 p3 + 2p1/2

1 p3/2
3

)1/2

π(R A−R B)p1 +π(R A−RB)w
(
−p2 +

√
p1 p3

)
−π(Cλλ2λ1−R A)

(√
p1 p3 −wp3

))1/2

. (24)

Using Equations (1) and (2), we can solve for λ1 and λ2 given the constants µ, λ and the residual stress
σ22 0. We can then find the values of coefficients A, B,C, D, E, p1, p2, p3, P, w, Q, R using Equations
(4)–(8), (11), (14) and (15). We can find the contact radius a and penetration depth [u(x1, x2)]x1=0,x2=0

with the help of (23) and (24).
We have obtained the relation between the residual stress, the contact radius and the penetration depth.

As a result, we can determine the residual stress from the contact radius or the penetration depth.
We now look at a numerical example. The result for λ = 30–50 GPa, µ = 60–80 GPa, T = 0.23 kg

and α = π/12 according to (23), is plotted in Figure 1.

 Contact areaπ a
2 µ m

2    

         4.2                             m=30, n=60 

         3.7 

         3.2                               

         2.7                                   m=50, n=80 

         2.2                                    Residual stress Mpa 

          1E5    0.5E5     0     -0.42E5     -0.84E5 

Figure 1. Relation between the area and residual stress: λ= m GPa and µ= n GPa. The
Poisson ratio is ν = m/(2n + 2m) and Young’s modulus is E = (2n + 3m)µ/(n + m).
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Contact areaπ a
2 µ m

2    

         4.0                                     m=30, n=60          

         3.4 

         2.8                                     m=50, n=80 

         2.2 

         1.6                                    compressive force T  kg 

           0.15       0.18       0.21       0.23 

Figure 2. Relation between contact area and compressive force for zero residual stress:
λ= m GPa, µ= n GPa, ν = m/(2n + 2m), E = (2n + 3m)µ/(n + m).

We see that a body under tensile residual stress behaves like a string under tension. That leads to
a decrease of the contact area so that it is smaller than without the stress. However, for compressive
residual stress the opposite effect is obtained. These results coincide with those obtained in [Hao 1986].

To check the numerical results, consider the case of zero residual stress. For λ = 30–50 GPa, µ =

60–80 GPa, and α = π/12 the relation between the contact area and the compressive force T for zero
residual stress is given in Figure 2. We see that it agrees with the numerical results in Figure 1.

4. Concluding remarks

We have studied the axially symmetric contact problem in the framework of the theory of finite elasticity,
that is, the theory of small deformation on initial stress body. We have also considered its application
to estimating residual stresses by cone indentation. In particular, we have been able to determine the
relation among the penetration depth, the contact radius and the residual stress. Further study must focus
on the more general method to solve the residual stress problems and consider the plasticity behavior.

Appendix

A1. The complex root case. We consider the complex root case, where

H 2
= ξ 2(r ± is)= ξ 2ηe±

iϑ , = ±ξη1/2(cosϑ/2 ± i sinϑ/2)−π ≤ ϑ ≤ π with cosϑ/2> 0,

G(ξ, x1)= K (ξ)eξη
1/2(cosϑ/2+i sinϑ/2)x1 + L(ξ)eξη

1/2(cosϑ/2−i sinϑ/2)x1

+M(ξ)e−ξη1/2(cosϑ/2+i sinϑ/2)x1 + N (ξ)e−ξη1/2(cosϑ/2−i sinϑ/2)x1 .

The case x1 ≥ 0 is considered, where x1 → ∞ and u, σi j → 0:

G(ξ, x1)= Me−ξη1/2(cosϑ/2+i sinϑ/2)x1 + Ne−ξη1/2(cosϑ/2−i sinϑ/2)x1 . (25)

For convenience, M(ξ) and N (ξ) are replaced by M and N but they are functions of ξ .
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It is apparent that G(ξ, x1) is real; therefore,

G(ξ, x1)= Me−ξdx1 + Me−ξ d̄x1, (26)

where d = η1/2(cosϑ/2 + i sinϑ/2) and d̄ = η1/2(cosϑ/2 − i sinϑ/2).
Next we deal with the stress component δσ21:

σ21 = λ2µ(λ2ur ,1 +λ1u1,2 )= λ2µ
(
− λ2C8211 + λ1(A∇

28− B811)2
)

= λ2µ
(
− (λ2C + λ1 B)8211 + λ1(A∇

28)2
)

(27)

From Equation (54) in the Appendix, one knows that

− (λ2C + λz B)λ2µ

∫
∞

0
x2 J1(ξ x2) d811 + λ1 Aλ2µ

∫
∞

0
x2 J1(ξ x2) d∇

28

= (λ2C + λz B)λ2µξ

∫
∞

0
811x2 J0(ξ x2) dx2 − λ1 Aλ2µξ

∫
∞

0
∇

28x2 J0(ξ x2) dx2. (28)

Hence∫
∞

0
x2 J1(ξ x2)δσ21dx2 = λ2µ

∫
∞

0
x2 J1(ξ x2)

(
−(λ2C + λz B)8211 + λ1(A∇

28)2
)

dx2

= −(λ2C+λz B)λ2µ

∫
∞

0
x2 J1(ξ x2)8211dx2 + λ1 Aλ2µ

∫
∞

0
x2 J1(ξ x2)(∇

28)2 dx2

= −(λ2C+λz B)λ2µ

∫
∞

0
x2 J1(ξ x2) d811 + λ1 Aλ2µ

∫
∞

0
x2 J1(ξ x2) d∇

28

= (λ2C + λz B)λ2µξ

∫
∞

0
811x2 J0(ξ x2) dx2 − λ1 Aλ2µξ

∫
∞

0
∇

28x2 J0(ξ x2) dx2

= λ2µ(λ2C + λ1 B)ξ(d2/dx2
1)G(ξ, x1)− λ2µλ1 Aξ(d2/dx2

1 − ξ 2)G(ξ, x1)

=
(
λ2µ(λ2C + λ1 B)− λ2µλ1 A

)
ξG(ξ, x1)11 + λ2µλ1 Aξ 3G(ξ, x1), (29)

which leads to

δσ21 =

∫
∞

0
ξ 2(λ2µPG(ξ, x1)11 + λ2µλ1 Aξ 2G(ξ, x1)

)
J1(ξ x2) dξ,

G(ξ, x1)= G(ξ, x1)= Me−ξdx1 + Me−ξ d̄x1, G(ξ, x1)11 = ξ 2(Md2e−ξdx1 + Md̄2e−ξ d̄x1). (30)

When x1 = 0, one obtains, denoting by Mre the real part of M ,

G(ξ, 0)= M + M = 2Mre, [G(ξ, z)11]x1=0 = ξ 2(Md2
+ Md̄2),

δσ21 =

∫
∞

0
ξ 2(λ2µPξ 2(Md2

+ Md̄2)+ 2λ2µλ1 Aξ 2 Mre
)
J1(ξ x2) dξ.
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When x1 = 0, δσ21 = 0 (x1 = z, x2 = r), one obtains (Md2
+ Md̄2)+ 2wMre = 0, leading to

Mre(d2
+ 2w+ d̄2)+ i Mim(d2

− d̄2)= 0,

M = Mre

(
1 − (d2

+ 2w+ d̄2)

(d2 − d̄2)

)
=

−2Mre(d̄2
+w)

(d2 − d̄2)
,

M = Mre

(
1 + (d2

+ 2w+ d̄2)

(d2 − d̄2)

)
=

2Mre(d2
+w)

(d2 − d̄2)
; (31)

G(ξ, x1)=
2Mre

(
−(d̄2

+w)e−ξdx1 + (d2
+w)e−ξ d̄x1

)
(d2 − d̄2)

,

G1 =
−2Mreξ

(
−(d̄2

+w) de−ξdx1 + (d2
+w)d̄e−ξ d̄x1

)
(d2 − d̄2)

,

G11 =
2Mreξ

2
(
−(d̄2

+w) d2e−ξdx1 + (d2
+w)d̄2e−ξ d̄x1

)
(d2 − d̄2)

,

G111 =
−2Mreξ

3
(
−(d̄2

+w) d3e−ξdx1 + (d2
+w)d̄3e−ξ d̄x1

)
(d2 − d̄2)

. (32)

Now the stress component δσ11 and displacement component u1 are discussed. On the basis of equations
(16)–(17), one obtains

δσ11 =

∫
∞

0
ξ J0(ξ x2)

(
(R A − RB)G111 + (Cλλ2λ1 − R A)ξ 2G1

)
dξ, (33)

u1 =

∫
∞

0
ξ J0(ξ x2)

(
(A − B)G11 − Aξ 2G

)
dξ. (34)

For x1 = 0, one has

G(ξ, x1)= 2Mre,

G1 = −2Mreξ
−(d̄2

+w)d + (d2
+w)d̄

d2 − d̄2
= 2Mreξ

(d̄d −w)(d − d̄)
d2 − d̄2

= 2Mreξ
d̄d −w

d + d̄
,

G11 = 2Mreξ
2 −(d̄2

+w)d2
+ (d2

+w)d̄2

d2 − d̄2
= −2Mreξ

2w,

G111 = −2Mreξ
3 −(d̄2

+w)d3
+ (d2

+w)d̄3

d2 − d̄2
= −2Mreξ

3 d̄2d2(d − d̄)+w(d3
− d̄3)

d2 − d̄2

= −2Mreξ
3 d̄2d2

+w(d2
+ d̄d + d̄2)

d + d̄
.

(35)
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Substituting these into Equations (33)–(34), one obtains

δσ11 =

∫
∞

0
ξ J0(ξ x2)

−(R A−RB)2Mreξ
3
(
d̄2d2

+w(d2
+d̄d+d̄2)

)
d + d̄

+
(Cλλ2λ1−R A)ξ 22Mreξ(d̄d−w)

d + d̄
dξ

= − 2(R A−R B)
d̄2d2

+w(d2
+d̄d+d̄2)

d + d̄

∫
∞

0
ξMre J0(ξ x2)ξ

3dξ

+ 2(Cλλ2λ1−R A)
d̄d −w

d + d̄

∫
∞

0
ξMre J0(ξ x2)ξ

3dξ

=
−2(R A−R B)

(
d̄2d2

+w(d2
+d̄d+d̄2)

)
+ 2(Cλλ2λ1−R A)(d̄d−w)

d + d̄

∫
∞

0
ξMre J0(ξ x2)ξ

3dξ ; (36)

u1 =

∫
∞

0
ξ J0(ξ x2)

(
−(A − B)2Mreξ

2w−2Aξ 2 Mre
)

dξ =
(
−(A − B)2w−2A

) ∫ ∞

0
ξ J0(ξ x2)Mreξ

2dξ.

(37)
The boundary conditions are(

−(A − B)2w− 2A
) ∫ ∞

0
ξ J0(ξ x2)Mreξ

2dξ = [u1(x2)]x1=0, x1 = 0, 0 ≤ x2 ≤ a,∫
∞

0
ξ 4 J0(ξ x2)Mredξ = 0, x1 = 0, x2 > a,

(38)

where a is the radius of the contact area, which will be discussed later.
Let ξa = p, x2 = aρ, a4

[u1(x2)]x1=0 = −2
(
(A − B)w+ A

)
g(ρ), p3 Mre = f (p). Then∫

∞

0
f (p)J0(pρ)dp = g(ρ), 0 ≤ ρ ≤ 1,∫

∞

0
f (p)pJ0(pρ)dp = 0, ρ > 1.

(39)

Let g(ρ)=
∑

∞

n=0 Anρ
n , with 0 ≤ ρ ≤ 1; by Sneddon 1951, the solution of the equations is

f (p)= π−1/2
∞∑

n=0

An

(
cos p + p

∫ 1

0
un+1 sin(pu) du

)
0(1 + n/2)
0(3/2 + n/2)

. (40)

Let [u1(ρ)]x1=0 = b + a cotα(1 − ρ) with 0 ≤ ρ ≤ 1; that is, g(ρ)= A0 + A1ρ, so

− 2
(
(A − B)w+ A

)(
A0 + A1ρ

)
= a4

[u1(ρ)]x1=0 = a4(b + a cotα(1 − ρ)
)
,

A0 = −a4(b + a cotα)/2
(
(A − B)w+ A

)
,

A1 = a4a cotα/2
(
(A − B)w+ A

)
. (41)

On the basis of equation (40), one obtains

f (p)= 2(A0/π + A1/2)
sin p

p
+ A1

cos p − 1
p2 ; (42)
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hence

δσ11 =
−2(R A−R B)

(
d̄2d2

+w(d2
+d̄d+d̄2)

)
+ 2(Cλλ2λ1−R A)(d̄d−w)

d + d̄

∫
∞

0
ξ 4 Mre J0(ξ x2) dξ

=
−2(R A−R B)

(
d̄2d2

+w(d2
+d̄d+d̄2)

)
+ 2(Cλλ2λ1−R A)(d̄d−w)

a5(d + d̄)

∫
∞

0
p f (p)J0(pρ) dp

=
−2(R A−R B)

(
d̄2d2

+w(d2
+d̄d+d̄2)

)
+ 2(Cλλ2λ1−R A)(d̄d−w)

a5(d + d̄)

×

∫
∞

0
p
(
(2A0/π + A1)

sin p
p

+ A1
cos p − 1

p2

)
J0(pρ) dp

=
−2(R A−R B)

(
d̄2d2

+w(d2
+d̄d+d̄2)

)
+ 2(Cλλ2λ1−R A)(d̄d−w)

d + d̄

×

(
2A0/π + A1

a5

∫
∞

0
J0(pρ) sin p dp +

A1

a5

∫
∞

0
J0(pρ)

cos p−1
p

dp
)
. (43)

As the integral
∫

∞

0 J0(p) sin p dp is divergent, for the finiteness of stress component δσ11 at the edge
of the punch, we have (2A0/π + A1)= 0, that is, b = a cotα(π/2 − 1). Hence

u(x1, x2)x1=0,x2=0 = b + a cotα =
π

2
a cotα, f (p)= A1

cos p − 1
p2 , (44)

δσ11 =
−2(R A−R B)

(
d̄2d2

+w(d2
+d̄d+d̄2)

)
+ 2(Cλλ2λ1−R A)(d̄d −w)

a5(d + d̄)
A1

∫
∞

0
J0(pρ)

cos p − 1
p

dp

=
−2(R A−R B)

(
d̄2d2

+w(d2
+d̄d+d̄2)

)
+ 2(Cλλ2λ1−R A)(d̄d −w)

a5(d + d̄)
A1 cosh−1(1/ρ), (45)

T = − 2π
∫ a

0
[δσ11]x1=0x2dx2

= −2π
−2(R A−R B)

(
d̄2d2

+w(d2
+d̄d+d̄2)

)
+ 2(Cλλ2λ1−R A)(d̄d −w)

a5(d + d̄)
A1∫ a

0

(
cosh−1(a/x2)x2

)
dx2. (46)

The integral on the right is equal to∫
∞

1/a

cosh−1(av)
v3 dv = a2

∫
∞

1

cosh−1 u
u3 du = a2

∫
∞

0

w sin hw
(coshw)3

dw =
a2

2
;

therefore

T = −πa2 −2(R A−RB)
(
d̄2d2

+w(d2
+d̄d+d̄2)

)
+ 2(Cλλ2λ1−R A)(d̄d −w)

a5(d + d̄)
A1. (47)
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Substituting the value of A1 from (41), we obtain

T = πa2 (R A−R B)
(
d̄2d2

+w(d2
+d̄d+d̄2)

)
− (Cλλ2λ1−R A)(d̄d −w)

d + d̄
cotα

(A − B)w+ A
. (48)

The contact radius a is thus

a =

(
P tanα

(
(A − B)w+ A

)
(d + d̄)

π(R A − RB)
(
d̄2d2 +w(d2 + d̄d + d̄2)

)
−π

(
Cλλ2λ1 − R A

)
(d̄d −w)

)1/2

. (49)

The penetration depth is

[u(x1, x2)]x1=0,x2=0 =
π

2
a cotα, (50)

where a is given by the previous equation.
Using the equalities d̄2d2

= p1/p3 and d̄2
+ d2

= p2/p3, we obtain successively

d̄d =
√

p1/p3, d̄ + d =

√
−p2/p3 + 2

√
p1/p3, d2

+ d̄d + d̄2
= −p2/p3 +

√
p1/p3. (51)

With this one can find the value of a in (49).

A2. About Q. It is known that Q = (r1
2
+w)/(r2

2
+w), wherew=λ1 A/(λ2C +λ1 B−λ1 A). Therefore,

1 − Q = 1 −
r1

2
+w

r2
2 +w

=
r2

2
− r1

2

r22 +w
,

r1 − Qr2 = r1 − r2
r1

2
+w

r22 +w
=
(r2 − r1)(r1r2 −w)

r22 +w
,

r1
2
− Qr2

2
=
(r2

2r1
2
+wr1

2)− (r1
2r2

2
+wr2

2)

r22 +w
= w

r1
2
− r2

2

r22 +w
,

r1
3
− Qr2

3
=

r1
3(r2

2
+w)− r2

3(r1
2
+w)

r22 +w
=
(r1 − r2)r1

2r2
2
+w(r1

3
− r2

3)

r22 +w

= (r1 − r2)
r1

2r2
2
+w(r1

2
+ r1r2 + r2

2)

r22 +w
,

(52)

A3. Research on some integrals. When the integrals∫
∞

0
x2 J1(ξ x2)d811 and

∫
∞

0
x2 J1(ξ x2)d∇

28

are calculated, it is supposed that

x2 J1(ξ x2)811 → 0 and x2 J1(ξ x2)∇
28→ 0

by letting (x1
2
+ x2

2)1/2 = r → ∞.
It is known that

x � 1 Jn(r)→ O(r−1/2) and x2 J1(ξ x2)→ O(r1/2).
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In our problem, u1 and u2 → 0 when r → ∞. In [Sneddon 1951], it is found that u1 and u2 → O(1/r)
when r → ∞.

On view of the relation between the displacements u j and the function 8,

u2 = − C821,

u1 = A∇
28− B811,

one can deem that 8→ O(r); that is to say,

811 → O(1/r) and ∇
28→ O(1/r).

From this, one obtains

x2 J1(ξ x2)811 → O(1/r−1/2) and x2 J1(ξ x2)∇
28→ O(1/r−1/2). (53)

Therefore

−(λ2C + λz B)λ2µ

∫
∞

0
x2 J1(ξ x2)d811 + λ1 Aλ2µ

∫
∞

0
x2 J1(ξ x2)d∇

28

= −(λ2C + λz B)λ2µ

(∫
∞

0
dx2 J1(ξ x2)811 −

1
ξ

∫
∞

0
811 dξ x2 J1(ξ x2)

)
+ λ1 Aλ2µ

(∫
∞

0
dx2 J1(ξ x2)∇

28−
1
ξ

∫
∞

0
∇

28dξ J1(ξ x2)x2

)
= (λ2C + λz B)λ2

µ

ξ

∫
∞

0
811 dξ x2 J1(ξ x2)− λ1 Aλ2

µ

ξ

∫
∞

0
∇

28dξ J1(ξ x2)x2

= (λ2C + λz B)λ2µξ

∫
∞

0
811x2 J0(ξ x2)dx2 − λ1 Aλ2µξ

∫
∞

0
∇

28x2 J0(ξ x2)dx2, (54)

because d
(
v J1(v)

)
= v J0(v)dv.

A4. Force on the cone, contact radius and penetration depth. For the compressive force T on the cone,
from (21), one obtains

T = −2π
∫ a

0
[δσ11]x1=0x2 dx2

= −2π
(
(R A − R B)(r1

3
− Qr2

3)+
(
Cλλ2λ1 − R A

)
(r1 − Qr2)

) A1

a5

∫ a

0
(cosh−1(a/x2)x2)dx2

= −πa2((R A − R B)(r1
3
− Qr2

3)+
(
Cλλ2λ1 − R A

)
(r1 − Qr2)

) A1

a5

= πa2 (R A − R B)
(
r1

3
− Qr2

3
)
+
(
Cλλ2λ1 − R A

)
(r1 − Qr2)

(A − B)(r12 − Qr22)− A(1 − Q)
cotα. (55)

The contact radius a is thus

a =

(
T tanα

(
(A − B)(r1

2
− Qr2

2)− A(1 − Q)
)

π(R A − RB)(r13 − Qr23)+π(Cλλ2λ1 − R A)(r1 − Qr2)

)1/2

, (56)
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and we know from (20) that the penetration depth is given by

[u1(x1, x2)]x1=0,x2=0 =
π

2
a cotα. (57)

For convenience, r1, r2 and Q will be replaced by the coefficients of the characteristic equation. First
the expressions in Q are replaced by by expressions in r1, r2, using (52). We obtain

T = a2 π(R A−RB)
(
r1

2r2
2
+w(r1

2
+r1r2+r2

2)
)
−π(Cλλ2λ1−R A)(r1r2−w)(

(A − B)w+ A
)
(r2 + r1)

cotα,

a =

(
T tanα

(
(A − B)w+ A

)
(r2 + r1)

π(R A−RB)
(
r12r22 +w(r12+r1r2+r22)

)
−π(Cλλ2λ1−R A)(r1r2 −w)

)1/2

,

(58)

from which we also obtain the penetration depth via (57).
From (8), one knows that p j are the coefficients of characteristic equation; therefore, the relations

between p j and r1, r2 are exactly as in Equation (51), with r1, r2 replacing d, d̄ .
Substituting this into (58), one obtains

T = a2 π(R A−R B)
(

p1/p3 +w
(
−p2/p3 +

√
p1/p3

))
−π(Cλλ2λ1 − R A)

(√
p1/p3 −w

)
((A−B)w+ A

)(
−p2/p3 + 2

√
p1/p3

)1/2 cotα

= a2 π(R A−R B)
(

p1 +w
(
−p2 +

√
p1 p3

))
−π(Cλλ2λ1−R A)

(√
p1 p3 −wp3

)(
(A − B)w+ A

)(
−p2 p3 + 2p1/2

1 p3/2
3

)1/2 ,

a =

(
T tanα

(
(A − B)w+ A

)(
−p2 p3 + 2p1/2

1 p3/2
3

)1/2

π(R A−R B)
(

p1 +w
(
−p2 +

√
p1 p3

))
−π(Cλλ2λ1−R A)

(√
p1 p3 −wp3

))1/2

(59)

and
[u(x1, x2)]x1=0,x2=0 =

π

2
a cotα.
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CRACK INITIATION PREDICTION FOR V-NOTCHES UNDER MIXED-MODE
LOADING IN BRITTLE MATERIALS

JIA LI AND XIAO-BING ZHANG

In this work, crack initiation from a notch tip in elements subjected to a mixed mode loading was studied.
Two phenomenological criteria, based on a concept of Leguillon, were proposed and applied to predict
crack initiation from a V -notch tip in a brittle or quasibrittle material. The first criterion, called in this
paper the G-σ criterion, makes use of the critical strain energy release rate and the ultimate tensile
stress as the main parameters of fracture. It requires calculations of strain energy release rate after
an infinitesimal crack kinking. By means of some numerical effort, we established the indispensable
relationships between the strain energy release rate after crack kinking and the remote mixed mode loads.
These relationships enabled us to apply directly the proposed criterion to mixed-mode loaded notches.
We also modified the strain energy density criterion proposed by Sih on the basis of Leguillon’s concept
to form a criterion capable of predicting the crack initiation from a V -notch tip. This criterion, which we
call the S-σ criterion, benefits from its simplicity in applications. Confrontation with experimental data
shows that both the criteria enable reasonably accurate prediction of fracture in elements with V -notches
subjected to mixed mode loading. Consequently, they can be effectively applied in practical engineering
applications.

1. Introduction

In engineering applications, the failure prediction of a structure depends not only on the strengths of the
materials with which it is built, but also on the local stress concentrations [Bazant 2000]. For brittle
or quasibrittle elastic materials, it is clear that the crack initiation from a stress concentration area is a
critical moment in the structure service life. In the case where a V -shaped notch exists in a structure
component, the crack initiation from the notch tip requires careful analyses because the stress field near
the notch tip is a singular one and therefore this area is a potential origin of the crack initiation.

Different crack initiation criteria for V -notches have been reported in the literature. A fairly obvious
choice consists in establishing notch fracture criteria on the basis of the critical values of the notch stress
intensity factors [Reedy and Guess 1995; Dunn et al. 1997b; Dunn et al. 1997a]. Recently, attention has
been focused on finite-fracture based criteria in which a finite-length crack or a finite damage zone is
introduced. In general, these criteria have been drawn from the work of [McClintock 1958] on crack
growth in ductile materials. The initial idea of McClintock was that in order to avoid the singularity
of the near-tip fields, one can choose the normal strain εθθ at some small distance l measured from the
crack tip as a fracture parameter: the crack propagates once it reaches its critical value. Subsequently,
numerous variants of this criterion were reported in the literature. For crack propagations, several criteria
were proposed by choosing the normal tensile stress σθθ [Ritchie et al. 1973; Kosai et al. 1993] or the

Keywords: fracture criteria, brittle fracture, v-shaped notches, mixed mode loading, crack initiation.
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tensile stress σθθ and the shear stress σrθ [Mroz and Seweryn 1998], at a finite distance l from the crack
tip as fracture parameters. For crack onset from a notch tip, similar criteria were established (see the
summary made in [Seweryn and Lukaszewicz 2002]). Apart from these criteria, the strain energy release
rate at a virtually created crack tip of a finite length l and the strain energy density factor S have also
been introduced into the fracture criteria [Palaniswamy and Knauss 1972; Seweryn and Lukaszewicz
2002]. In all these criteria, the finite length l is an inevitable parameter that enables us to deal with stress
singularities different from −1/2. However, the physical interpretation of this length is rather vague. It
was often considered as a material parameter related to the microstructure of the material, as in the grain
size in metals. In common practice, this characteristic length is often calculated by the Irwin concept
[Irwin 1968] which gives rise to formulas such as l = EGc/σ

2
c , with E being the Young modulus, Gc

the critical value of strain energy release rate, σc the limit failure stress.
[Leguillon 2002] pointed out that if the concept of the finite fracture mechanics is applicable to the

crack initiation analysis, the finite characteristic length l is not only a material-dependent constant. In
fact, it depends also on the stress distribution in the structure, that is, on the structure geometry and the
remote loading. In his analysis of crack onset at a V -notch tip, he argued that an admissible length l can
be determined by l = EGc/(K̄σ 2

c ), where K̄ depends on the notch opening angle. This analysis enabled
him to propose a crack onset criterion, in which both the tensile stress and the incremental strain energy
release rate at a finite distance l should reach their critical values σc and Gc simultaneously. This criterion
is self-consistent. In fact, these conditions are sufficient to determine both the characteristic distance l
and the critical remote loads. This criterion provides good results in the prediction of crack onset in
V -notched structures under pure mode I loading [Leguillon 2002; Leguillon and Yosibash 2003].

In this paper, we apply the concept developed by Leguillon to the crack onset analysis for V -notched
plates subjected to mixed-mode loading. A criterion based on the calculation of the strain energy re-
lease rate at a virtual crack tip issued from the notch tip and the tensile stress at the same point in the
configuration without the virtual crack, named in this paper the G-σ criterion, is first proposed. The
main difficulty in the application of this criterion is to evaluate the strain energy release rate. Important
numerical effort has been made to this end.

In order to avoid too much numerical computation, another crack onset criterion, which we designate
the S-σ criterion, is here proposed on the basis of the strain energy density criterion of Sih [Sih 1974].
The main idea is to modify Sih’s criterion by using the Leguillon concept in order to deal with stress
singularities different from −1/2. This criterion provides a simpler technique to the prediction of crack
initiation from a notch tip. Comparing with the experimental data, both criteria give satisfactory predic-
tions for the limit loads as well as for the crack deviation angles. Finally, the efficiency of these criteria
is discussed at the end of this paper.

2. Experimental basis

Numerous experimental studies have been published in the topic of evaluating structure failures with
V -shaped notches [Broughton et al. 1990; Seweryn et al. 1997; Bansal and Kumosa 1998]. In this work,
the experimental results obtained by [Seweryn et al. 1997] were chosen to verify the efficiency of the
proposed criteria. In [Seweryn et al. 1997], symmetric plane specimens with V -shaped notches were
made of polymethyl metacrylate (PMMA). The selection of the PMMA material was essentially due
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to its brittle characteristics, since it allows the possibility of cutting notches of a small radius (about
0.01 mm). The mechanical properties of the material are as follows:

(i) Young’s modulus: E = 3300 MPa;

(ii) Poisson ratio: ν = 0.35;

(iii) limit failure stress: σc = 102.8 MPa;

(iv) critical strain energy release rate: Gc = 0.384 MPa·mm.

The geometry of the specimens is shown in Figure 1. Imposed displacements were applied at two ends
of the specimens by using a specially designed device. The mode mixity was adjusted by varying the
proportion of the horizontal and vertical displacement components, that is, the ratio of shear to tensile
forces.

3. Leguillon’s and modified Sih’s criteria for notches under mode-I loading

In this section, we first review the crack onset criterion proposed by [Leguillon 2002]. Then the Leguillon
concept is used to modify the criterion of Sih in order to form another crack onset criterion for a V -shaped
notch under pure tensile loading. Finally, the critical loads for crack onset predicted by using these criteria
are compared with the experimental data.

Consider first a plane sharp notch in a linear elastic medium with vertex angle 2α and a polar coordinate
system (r, θ) with the origin at the tip of the notch (Figure 2). The dominant displacements ui and stresses
σi j near the notch tip can be written as follows:

ui =
k1rλ1

2µ(2π)1−λ1
ũ1i (θ)+

k2rλ2

2µ(2π)1−λ2
ũ2i (θ)

σi j =
k1

(2πr)1−λ1
σ̃1i j (θ)+

k2
(2πr)1−λ2

σ̃2i j (θ),

(1)

P

5 mm 

M

M

T

T

50 mm

2β

100 mm 
gripping
area

gripping
area

47 mm

200mm

P

Figure 1. Geometry of specimens with V -notches.
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notch β

(r*,θ*)

α

y
y*

θ

l

x*

x

Figure 2. Notch geometry, virtual crack and coordinate systems.

where µ is the shear modulus, ũ1i (θ), ũ2i (θ), σ̃1i j (θ) and σ̃2i j (θ) are trigonometric functions of θ . The
exponents λ1 and λ2 describe the near-tip stress singularities and are given by the characteristic equations

λ1 sin 2α+ sin 2λ1α = 0,

λ2 sin 2α− sin 2λ2α = 0.
(2)

The coefficients k1 and k2 are the so-called notch stress intensity factors, defined as

k1 = lim
r→0

(2πr)1−λ1σθθ (r, θ = 0),

k2 = lim
r→0

(2πr)1−λ2σrθ (r, θ = 0).
(3)

Among these components, we give the explicit expression of σθθ that is useful in later formulations:

σθθ =
k1

(2πr)1−λ1C1

(
cos(1 + λ)α cos(1 − λ)θ − cos(1 − λ)α cos(1 + λ)θ

)
+

k2(1 + λ)

(2πr)1−λ2C2

(
− sin(1 − λ)α sin(1 + λ)θ + sin(1 + λ)α sin(1 − λ)θ

)
(4)

with
C1 = cos(1 + λ1)α− cos(1 − λ1)α,

C2 = (1 + λ2) sin(1 − λ2)α− (1 − λ2) sin(1 + λ2)α.

In general, λ1 and λ2 are larger than 0.5, therefore, the singularities at a V -shaped notch tip are weaker
than that at a crack tip. As a consequence, the criteria for crack growth, such as the strain energy release
rate criterion, are not directly applicable. Moreover, the criteria usually used for nonsingular stresses
such like the maximum tensile stress criterion are not appropriate. Special criteria have to be developed
for this class of problems.

3.1. Leguillon’s criterion. Leguillon [2002] proposed a criterion to predict the crack initiation from a
notch tip. In fact, under pure tensile loading, the incremental strain energy release rate of a newly created
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crack originated from the notch tip can be developed in the form

Ḡ = −
W
l

= ck2
1l2λ1−1

+ . . . , (5)

where l is the crack length, W is the potential strain energy needed to create the crack, c is a constant
depending on the notch-opening angle and the material parameters. Its values have been tabulated by
Leguillon [2002]. The crack onset condition, according to the incremental Griffith criterion, requires that

Ḡ = ck2
1l2λ1−1

≥ Gc. (6)

It is clear that Ḡ tends to zero if l is infinitesimally small. Therefore, there must be a jump from 0 to l
when crack onset occurs. From Equation (6), the length of this jump must satisfy the condition

l2λ1−1
≥

Gc

ck2
1
. (7)

On the other hand, under pure tensile loading, the tensile stress at the point (r = l, θ = 0) is, according
to (4),

σθθ = k1(2πl)λ1−1. (8)

It is clear that the tensile stress tends to the infinity when l tends to zero. According to the maximal
tensile stress criterion, we have, for small l,

σθθ = k1(2πl)λ1−1
≥ σc, (9)

which leads to

(2πl)1−λ1 ≤
k1

σc
. (10)

For a small load represented by k1, the conditions (7) and (10) are incompatible. When the load
increases monotonically, it reaches a critical value kc for which both the conditions (7) and (10) hold.
This leads us to determine the increment length:

l =
1

(2π)2−2λ1

Gc

cσ 2
c
. (11)

Once the incremental length l determined, the critical remote load kc can be calculated from either (6)
or (9).

3.2. Modified Sih’s criterion. Sih [1974] assumed that the crack bifurcation direction from a crack tip
is determined by the minimum value of strain energy density factor S, and the crack propagation occurs
once the strain energy density factor reaches a critical value Sc. In a polar coordinate system with the
origin at the crack tip, the elastic strain energy dU stored in the elementary volume dV = rdθdr is given
by the relation

dU
dV

=
1
2

(
σrrεrr + σθθεθθ + 2σrθεrθ

)
. (12)

The factor S is defined as

S =
dU
dV

r. (13)
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The critical value of S can be related to the critical strain energy release rate Gc [Sih 1974], namely

Sc =
κ − 1
κ + 1

1
π

Gc, 0, (14)

where {
κ = (3 − ν)/(1 + ν) for plane stress,

3 − 4ν for plane strain.

Therefore Sih’s criterion for crack propagation can be written as follows:

• the crack bifurcation direction ϕ is determined by

∂S
∂θ

∣∣∣∣
θ=ϕ

= 0,
∂2S
∂θ2

∣∣∣∣
θ=ϕ

> 0; (15)

• the crack propagates once
S ≥ Sc. (16)

Consider now a V -shaped notch under pure tensile loading. According to Equation (13), the strain
energy density factor takes the form

S = k2
1(2πr)2λ1−1 S̃(θ), (17)

where S̃(θ) is a dimensionless angular function that can easily be determined by means of Equations (1)
and (12). In the case of pure tensile loading, the crack initiation angle from the notch tip is ϕ = 0. In
such a case, S̃(0) becomes a constant K depending on the notch-opening angle. For plane stress, for
example, we can write

K =
1−2νσ+σ 2

4πE

σ =
(3−λ1) cos(1+λ1)α+(1+λ1) cos(1−λ1)α

(1+λ1)
(
cos(1+λ1)α−cos(1−λ1)α

) .

(18)

It is clear that limr→0 S(r, 0)= 0. In order to be able to use Sih’s criterion, we adopt a nonlocal length
r = l, at this distance the crack onset condition (16) becomes

S(l)= K k2
1(2πl)2λ1−1

≥ Sc. (19)

Therefore
(2πl)2λ1−1

≥
Sc

K k2
1
. (20)

Consider now the tensile stress at the ligament. According to the maximum tensile stress criterion,
Equation (9) must hold.

Similarly to Leguillon’s criterion, both Equations (20) and (9) must hold for a crack onset. Therefore
we can obtain the crack onset length l as

l =
1

2π
Sc

Kσ 2
c

(21)

and the critical remote load, represented by k1, can easily be determined from either (19) or (9).
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Figure 3. Failure load versus notch opening angle for V -notched plates under pure ten-
sile loading

Figure 3 illustrates the comparison between the critical loads at fracture of the specimens recorded in
the experimentation [Seweryn et al. 1997] and those predicted by using respectively Leguillon’s criterion
and modified Sih’s criterion. It is shown that both criteria provide good agreement with respect to the
experimental data.

4. The G-σ criterion for mixed-mode loaded notches

The concept developed by Leguillon is physically reasonable and self-consistent. The main difficulty
remains the evaluation of the incremental strain energy release rate Ḡ. Consider the V -notch illustrated
in Figure 2 with a crack of length l issued from the notch tip in an arbitrary direction θ . The incremental
strain energy release rate Ḡ during the creation of this crack is the average work done by the stresses in
front of the crack on the displacements of the crack edge:

Ḡ = −
1
l

∫ l

0

(
σθθ (r, θ)u∗

θ (l − r, π)+ σrθ (r, θ)u∗

r (l − r, π)
)

dr. (22)

However, the evaluation of Ḡ is associated with considerable computational difficulties. A basic
problem is to determine displacements along the edges of an assumed crack. In the original work of
Leguillon [2002], the evaluation of Ḡ is relied on the possibility of its expansion in an asymptotic series
involving the crack length l. In the present work, we will not attempt to perform such an asymptotic
analysis, and a different method is adopted.

Let us consider the same V -shaped notch. We assume that under mixed mode loading, there exists
a small crack issued from the notch tip and characterized by its length l and its orientation θ . The
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assumption of this finite-length crack can be justified as follows [Seweryn and Lukaszewicz 2002]: due
to large stresses, intensive microcracking occurs near the notch tip. This microcrack network can be
replaced by an equivalent crack in order to produce a mathematically manageable model. The size of
this equivalent crack is essentially within a mesoscopic scale (about several tens of microns for the used
PMMA). In brittle materials, the instable propagation of this equivalent crack leads to a macroscopic
crack onset.

The energy release rate of this virtual crack is defined by

G = − lim
1
1l

∫ 1l

0

(
σ ∗

θθ (0)u
∗

θ (π)+ σ
∗

rθ (0)u
∗

r (π)
)

dr, (23)

where (r∗, θ∗) are the polar coordinates with an origin at the crack tip and σ ∗

θθ , σ
∗

rθ , u∗

θ and u∗
r are the

stress and displacement components in the above coordinates. Taking into consideration only the first
terms of the asymptotic expansion of the stress and displacement fields near the crack tip, one obtains

G =
K 2

I + K 2
I I

E ′
, (24)

where K I and K I I are the stress intensity factors at the newly created crack tip, with

E ′
=


E for plane stress,

E
1 − ν2 for plane strain.

(25)

A criterion of a macroscopic crack initiation can therefore be established on the basis of the energy
release rate at the tip of the virtual crack. By adopting the Leguillon’s concept, this criterion can be
described as follows:

Crack onset occurs from the notch tip if at a neighboring point (ϕ, l),

(i) the circumferential tensile stress reaches the material critical strength σc;

(ii) the strain energy release rate of a virtual crack, emanated from the notch tip to this point, reaches
the critical toughness Gc;

(iii) the strain energy release rate reaches a maximal value among all possible crack onset directions.

Therefore, the application of this criterion consists in evaluating the crack initiation angle ϕ, the crack
onset length l and the critical remote load F from the relationships

σθθ (F, l, ϕ)= σc

G(F, l, ϕ)= Gc

∂G(F, l, ϕ)
∂ϕ

= 0, ∂G2(F, l, ϕ)
∂ϕ2 < 0.

(26)

This criterion is called hereafter the G-σ criterion.
The key factor in applying this criterion is to evaluate the strain energy release rate for the virtual crack

emanating from the V -notch tip. To this end, we write, from a dimensional analysis, the relationships
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between the stress intensity factors (k1, k2) at the V -notch tip and (K I , K I I ), those at the virtual crack
tip, for infinitesimal l:

K I = b11k1lλ1−
1
2 + b12k2lλ2−

1
2 ,

K I I = b21k1lλ1−
1
2 + b22k2lλ2−

1
2 ,

(27)

where bi j are dimensionless functions depending on the crack deviation angle ϕ.
From Equations (24) and (27) we obtain

E ′G = c1(ϕ)k2
1l2λ1−1

+ c2(ϕ)k1k2lλ1+λ2−1
+ c3(ϕ)k2

2l2λ2−1, (28)

where c1(ϕ), c2(ϕ) and c3(ϕ) result from combination of bi j and therefore are ϕ-dependent functions. In
order to determine these functions, we carried out detailed numerical calculations by establishing finite
element models. The idea is to mesh carefully a notched plate with a branched crack. Then we calculate
accurately the strain energy release rates at the crack tip by varying the crack length, the crack direction,
and the mode mixity of the remote loads. These numerical data are correlated with Equation (28) by
using a least square procedure in order to determine accurately the functions ci (ϕ). This approach seems
to be somewhat onerous and lacking in elegance. However, with the extraordinary capacity of actual
computers and finite element codes, a linear elastic calculation is quite rapid. Combining this with an
automatic meshing procedure, the entire computational work is not extensively time-consuming.

In the numerical simulations, the specimens used in [Seweryn et al. 1997] were meshed as illustrated
in Figure 4. The lower specimen edge was fixed while along the upper specimen edge the enforced
displacements were prescribed in the direction of y-axis for tension and x-axis for shear. The tensile
and shearing load components P and T were calculated by integrating the resulting stresses across the

Figure 4. Typical meshing of the specimens and the zoom around the branched crack.
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specimen width. Therefore the resulting force F is related to P and T by

F =

√
P2 + T 2, P = F cosψ, T = F sinψ, (29)

where ψ denotes the application angle of the resulting force. The notch stress intensity factors k1 and k2

are related to the remote loading by

k1 = ξ1 P = ξ1 F cosψ

k2 = ξ2T = ξ2 F sinψ,
(30)

where the coefficients ξ1 and ξ2 for these specimens have been computed and tabulated by [Seweryn and
Lukaszewicz 2002].

A highly accurate method, the so-called G-2 method [Destuynder et al. 1983; Suo and Combes-
cure 1992] and implemented in the finite element code CAST3M (software edited by the Commissariat
d’Énergie Atomique of France), was used to calculate the strain energy release rates for branched cracks.
To be precise, 30 values of G were calculated for each crack initiation angle with 5 crack lengths, varying
from 0.05 mm to 0.5 mm, and 6 load mixities, varying from pure tension to pure shear. These values
of G were then input into a least square program to obtain ci (ϕ). An example of the fitting procedure
is given in Figure 5 that shows the correlation between the numerical values of G and Equation (28)
for a 60◦ notch under pure mode I loading. In this Figure, the circles represent the FE results, and the
line represents the fitting curve according to (28). We can see that the fitting is highly accurate. This
accuracy can be obtained for nearly all the cases we treated. Consequently, we can confirm that the
present numerical correlation method is suitable.

The numerical values of ci (ϕ) are plotted in Figures 6 and 7. For reasons of symmetry, i.e. c1(ϕ)=

c1(−ϕ), c2(ϕ)= −c2(−ϕ), c3(ϕ)= c3(−ϕ), only ci (ϕ) in the interval [−α, 0] are presented. From these
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Figure 5. Correlation between the numerical values of G and Equation (28).
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results, the strain energy release rate for any branched crack from the notch tip of a small length can
easily be calculated from Equation (28).

By introducing Equations (4), (28) and (29) into Equation (26), we rewrite explicitly the conditions
in the G-σ criterion:
ξ1 · F cosψ
(2πl)1−λ1C1

(
cos(1 + λ)α cos(1 − λ)θ + cos(1 − λ)α cos(1 + λ)θ

)
+
ξ2.F sinψ(1 + λ)

(2πl)1−λ2C2

(
− sin(1 − λ)α sin(1 + λ)θ + sin(1 + λ)α sin(1 − λ)θ

)
= σc,

F2
(
(ξ1 cosψ)2c1(ϕ)l2λ1−1

+ ξ1ξ2 cosψ sinψc2(ϕ)lλ1+λ2−1
+ (ξ2 sinψ)2c3(ϕ)l2λ2−1

)
= Gc,

(ξ1 cosψ)2c′

1(ϕ)l
2λ1−1

+ ξ1ξ2 cosψ sinψc′

2(ϕ)l
λ1+λ2−1

+ (ξ2 sinψ)2c′

3(ϕ)l
2λ2−1

= 0,

(ξ1 cosψ)2c′′

1(ϕ)l
2λ1−1

+ ξ1ξ2 cosψ sinψc′′

2(ϕ)l
λ1+λ2−1

+ (ξ2 sinψ)2c′′

3(ϕ)l
2λ2−1 < 0.

(31)

These transcendent equations can be resolved by using numerical methods such like the Newton–
Raphson method.

5. The S-σ criterion for mixed-mode loaded notches

The modified Sih criterion is attractive by its simplicity in applications. Under mixed mode loading, this
criterion, named the S-σ criterion hereafter, can be described as follows: crack onset occurs from the
notch tip if at a neighbouring point (ϕ, l),

(i) the circumferential tensile stress reaches the material critical strength σc;

(ii) the strain energy density factor reaches the critical value Sc;

(iii) the strain energy density factor reaches a minimal value among all possible crack onset directions.

In plane stress, the strain energy density factor S is given by

S =
1
2
(
σrrεrr + σθθεθθ + 2σrθεrθ

)
r

=
1

2E
(
σ 2

rr + σ 2
θθ − 2νσrrσθθ + (1 + ν)σ 2

rθ
)
r.

(32)

At a characteristic distance l from the notch tip, the strain energy density can be written as follows:

S(l, θ)= d1(θ)k2
1l2λ1−1

+ d2(θ)k1k2lλ1+λ2−1
+ d3(θ)k2

2l2λ2−1, (33)

where the angular functions d1(θ), d2(θ), and d3(θ) can readily be calculated from Equation (1). The
direction of crack propagation angle ϕ is defined by

∂S
∂θ

∣∣∣∣
θ=ϕ

=

(
d ′

1(θ)k
2
1l2λ1−1

+ d ′

2(θ)k1k2lλ1+λ2−1
+ d ′

3(θ)k
2
2l2λ2−1

)
θ=ϕ

= 0

∂2S
∂θ2

∣∣∣∣
θ=ϕ

=

(
d ′′

1 (θ)k
2
1l2λ1−1

+ d ′′

2 (θ)k1k2lλ1+λ2−1
+ d ′′

3 (θ)k
2
2l2λ2−1

)
θ=ϕ

> 0.

(34)
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Consequently, the S-σ criterion is explicitly written as follows:
Find (ϕ, l, F) satisfying

ξ1 ·F cosψ
(2πl)1−λ1C1

(
cos(1 + λ)α cos(1 − λ)θ + cos(1 − λ)α cos(1 + λ)θ

)
+
ξ2.F sinψ(1+λ)

(2πl)1−λ2C2

(
− sin(1 − λ)α sin(1 + λ)θ + sin(1 + λ)α sin(1 − λ)θ

)
= σc

F2((ξ1 cosψ)2d1(ϕ)l2λ1−1
+ ξ1ξ2 cosψ sinψd2(ϕ)lλ1+λ2−1

+ (ξ2 sinψ)2d3(ϕ)l2λ2−1)
= Sc

(ξ1 cosψ)2d ′

1(ϕ)l
2λ1−1

+ ξ1ξ2 cosψ sinψd ′

2(ϕ)l
λ1+λ2−1

+ (ξ2 sinψ)2d ′

3(ϕ)l
2λ2−1

= 0

(ξ1 cosψ)2 d ′′

1 (ϕ)l
2λ1−1

+ ξ1ξ2 cosψ sinψd ′′

2 (ϕ)l
λ1+λ2−1

+ (ξ2 sinψ)2 d ′′

3 (ϕ)l
2λ2−1 > 0

(35)

We solved these nonlinear equations by using the Newton–Raphson method.

6. Results and discussions

The results obtained for the prediction of the failure loads of V -notched plates subjected to mixed loading
by using the above-mentioned criteria were compared with the experimental data in [Seweryn et al. 1997].
Since the material used, the PMMA, is of brittle character, initiation of a macrocrack often leads to global
failure of the element. As a consequence, a critical load to initiate a crack was considered as the fracture
load of the plate.

Figures 8 and 9 presents the variation of the direction of crack initiation angles ϕ versus the load
application angle ψ for different values of the notch-opening angle β. Experimental data were marked
by points and the predicted results were presented by continue lines with points. From these figures
we can observe that the predicted crack initiation directions by both the criteria agree well with the
experimental results for small opening angles β ≤ 30◦. However, the predicted results are less accurate
for specimens with a notch opening angle β = 40◦.

In Figures 10 and 11, we plot the ratios of the critical mixed mode loads Fc to the critical tensile
load Pc determined from both the criteria as function of load application angle ψ . Experimental results
are also represented for comparison. These figures show that both the criteria provide us with good
prediction if the notch opening angle β > 10◦. For β = 10◦, the S-σ criterion still agrees quite well
with the test data, while the G-σ criterion gives somewhat conservative predictions when the shear loads
dominate.

A common advantage of both the proposed criteria is that they are all self-consistent. No additional
conditions are required in their application. This differs from the early-proposed local criteria such as
the RKR criterion [Ritchie et al. 1973] or McClintock’s criterion [McClintock 1958] in which a virtual
process distance from the crack tip was introduced but can’t be determined by the criteria themselves.
This distance, however, is clearly defined with the criteria used in the present work. In general, it depends
not only upon the material mechanical properties (strength and toughness), but also upon the structure
configuration (geometry, loading). In the present notch cases, this characteristic length varies from
0.02 mm to 0.035 mm.
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Figure 8. Direction of crack initiation versus application angle of resulting force: (top)
β = 10◦; (bottom) β = 20◦.
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Figure 9. Direction of crack initiation versus application angle of resulting force: (top)
β = 30◦; (bottom) β = 40◦.
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Figure 10. Critical values of Fc/Pc versus application angle of resulting force: (top)
β = 10◦; (bottom) β = 20◦.



1402 JIA LI AND XIAO-BING ZHANG

0

0,5

1

1,5

2

2,5

3

3,5

0 10 20 30 40 50 60 70 80 90

Application angle of the resulting force (degree)

r
C

citi
f

o 
s

e
ul

a
v l

a
P/

c
F

c
G-sigma criterion

S-sigma criterion

Test (Seweryn et al., 1997)

0

1

2

3

4

5

6

0 10 20 30 40 50 60 70 80 90

Application angle of the resulting force (degree)

r
C

f
o 

s
e

ul
a

v l
a

citi
/

c
F

P
c

G-sigma criterion

S-sigma criterion

Test (Seweryn et al., 1997)

Figure 11. Critical values of Fc/Pc versus application angle of resulting force: (top)
β = 30◦; (bottom) β = 40◦.
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7. Concluding remarks

In this work, the crack initiation from a notch tip under mixed loads was considered. Two phenomenolog-
ical criteria were applied to predict the crack initiation. These two criteria, namely the G-σ criterion and
the S-σ criterion, were established by using the concept proposed by [Leguillon 2002], in which both
the stress and the energy balances are taken into consideration in the simulation of the crack initiation.
The common advantage of the criteria is their self-consistency.

The G-σ criterion was established on the analysis of up and low bounds of the critical loading, as a
consequence, is physically reasonable. In the present work, by means of an important numerical effort,
we have established the indispensable relationships between the strain energy release rate after a crack
kinking and the remote loads for a V -notch under mixed mode loading. These relationships enable us to
apply the G-σ in a straightforward manner.

The strain energy density criterion was proposed for crack propagation and bifurcation with successful
applications. In the present work, this criterion was modified on the basis of Leguillon’s concept to form a
criterion capable to predict the crack initiation from a V -notch tip. Even though its physical interpretation
is less evident, this criterion benefits from its simplicity in applications.

Confrontation with experimental data shows that both the criteria enable reasonably accurate predic-
tion of fracture in elements with V -notches subjected to mixed mode loading. Consequently, they can
be effectively applied in practical engineering applications.
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A CLOSED-FORM SOLUTION FOR A CRACK APPROACHING AN INTERFACE

BORIS NULLER, MICHAEL RYVKIN AND ALEXANDER CHUDNOVSKY

A closed-form solution is presented for the stress distribution in two perfectly bonded isotropic elastic
half-planes, one of which includes a fully imbedded semi-infinite crack perpendicular to the interface.
The solution is obtained in quadratures by means of the Wiener–Hopf–Jones method. It is based on the
residue expansion of the contour integrals using the roots of the Zak–Williams characteristic equation.
The closed-form solution offers a way to derive the Green’s function expressions for the stresses and the
SIF (stress intensity factor) in a form convenient for computation. A quantitative characterization of the
SIF for various combinations of elastic properties is presented in the form of function the c(α, β), where
α and β represent the Dundurs parameters. Together with tabulated c(α, β) the Green’s function provides
a practical tool for the solution of crack-interface interaction problems with arbitrarily distributed Mode I
loading. Furthermore, in order to characterize the stability of a crack approaching the interface, a new
interface parameter χ , is introduced, which is a simple combination of the shear moduli µs and Poisson’s
ratios νs (s = 1, 2) of materials on both sides of the interface. It is shown that χ uniquely determines
the asymptotic behavior of the SIF and, consequently, the crack stability. An estimation of the interface
parameter prior to detailed computations is proposed for a qualitative evaluation of the crack-interface
interaction. The propagation of a stable crack towards the interface with a vanishing SIF is considered
separately. Because in this case the fracture toughness approach to the material failure is unsuitable an
analysis of the complete stress distribution is required.

1. Introduction

Determining the stress field in the vicinity of a crack tip approaching a bimaterial interface has important
applications for layered elastic materials. Zak and Williams [1963] proposed the first formulation and
solution of the problem for a semi-infinite crack perpendicular to a bimaterial interface with the crack
tip at the interface. Khrapkov [1968] offered a closed-form solution for the problem of a finite crack
with its tip at the interface. Cook and Erdogan [1972] and Erdogan and Biricikoglu [1973] derived the
integral equations and provided the numerical solutions for fully imbedded semi-infinite and finite cracks,
and for cracks either terminating at or crossing the material interface. A similar dislocation approach
was employed by [Wang and Stahle 1998] for the study of stress fields in the vicinity of a finite crack
approaching the interface. Using the exact solution obtained for Mode III as a prototype, Atkinson [1975]
introduced an asymptotic solution for the SIF with respect to a small distance ε between the crack tip and
the interface. Here the SIF is presented as K I = ε p1−1/2 f (α, β), with p1, α, and β representing the first
root of the Zak–Williams characteristic equation and the Dundurs parameters respectively. Later, He and
Hutchinson [1989] considered a set of more general problems related to crack arrest and to penetration
through or deflected by the interface.

Keywords: stress intensity factor, crack stability, bimaterial plane, analytic function.
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Employing the amplitude factor k1 for the boundary value problem with a crack terminating at the
interface, He and Hutchinson were able to improve the representation of K I to

K I = k1ε
p1−1/2c(α, β),

where the function c(α, β) is a solution of a system of singular integral equations. Romeo and Ballarini
[1995] evaluated the function c(α, β) and applied the results to finite and semi-infinite cracks. For certain
values of α and β, however, the evaluation of the function c(α, β) results in an uncertainty of 0 · ∞ type
that cannot be resolved numerically. Leguillon et al. [2000] investigated of the competition between three
fracture scenarios – primary crack growth, interface debonding, and a new crack nucleation beyond the
interface – by means of asymptotic analysis.

In this paper we construct a closed-form solution for the problem of a semi-infinite crack perpendicular
to an interface between two isotropic elastic half-planes under Mode I loading by the Winner–Hopf–Jones
method [Noble 1958]. While Nuller et al. [2001] summarized some of the results earlier, here we present
the complete solution along with an analysis of the closed-form representation of the function c(α, β).
For convenience of application, the values of the function c(α, β) are computed and reported in Table 2.
Romeo and Ballarini’s results coincide with the closed-form solution only in the case when α = β = 0
and diverge significantly when α approaches ±1.

In Section 2 we present the general formulation and closed-form solution of an auxiliary problem on
a crack fully imbedded in the left half-plane and perpendicular to the interface, which is conjugate (the
same Wiener–Hopf equation) to the problem considered by [Khrapkov 1968]. Using this solution in
Section 3, we evaluate the Green’s function for the SIF. Section 4 is dedicated to an assessment of crack
stability through an analysis of the asymptotic expression of the SIF. We introduce a new parameter of
the interface, χ , to characterize the stability of a crack approaching the interface. The parameter χ is
a simple combination of shear moduli and Poisson’s ratios on both sides of the interface. Addressed
separately is the case of stable crack propagation when the SIF concept of fracture mechanics does not
apply.

The first root of the Zak–Williams characteristic equation p1 is a cornerstone of crack stability analysis
and, as such, of the asymptotic representations of the solution. A proof of the existence and uniqueness
of the p1 value in the strip 0 < Re p < 1 of the complex plane of the Mellin transform parameter p
for all possible values of elastic constants is presented in Appendix A. The dependence of the first root
location on the real axis upon the interface parameter χ is also analyzed there.

2. General formulation

Consider a semi-infinite crack perpendicular to the interface between two perfectly bonded dissimilar
elastic half-planes Figure 1. The distance of the crack tip from the interface is ε. The elastic properties
of the materials are defined by the shear moduli µs and Poisson’s ratio’s νs . The values of the index
s = 1, 2 correspond to the uncracked and the cracked half-planes respectively. We introduce the system
of polar coordinates R, θ in which the origin lies at the intersection of the crack axis and the interface
such that the crack is located along the line θ = π . Formulating the problem with the non-dimensional
radial coordinate r = R/ε, the crack tip is associated with the point r = 1, θ = π .
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Figure 1. Perpendicular to the interface crack, fully imbedded in the left half-plane.

We assume that the loading corresponds to the Mode I, the stress field vanishes at r → ∞, and the
the local strain energy is bounded in the crack tip vicinity. Using the apparent symmetry, we formulate
the boundary value problem for the upper half-plane 0< θ < π, 0< r <∞ as follows. The radial and
angular displacements u(r, θ), v(r, θ) and the stresses σθ (r, θ) satisfy the continuity conditions at the
interface

[v(r, π/2)] = [u(r, π/2)] = 0; [σθ (r, π/2)] = [τrθ (r, π/2)] = 0, 0< r <∞, (1)

where [ f (r, θ)] denotes the jump of f (r, θ) in the θ direction. At the boundary of the half-plane

v(r, 0)=0 , τrθ (r, 0)= τrθ (r, π)= 0 , 0< r <∞ , (2)

v(r, π)=v(r) , 0< r ≤ 1 , (3)

σθ (r, π)=σ(r) , 1< r <∞ . (4)

Here the function σ(r) represents the applied load and v(r) ≡ 0 for the problem under consideration.
However, we write condition in Equation (3) in a more general form for future consideration. We seek
the solution as Papkovich–Neuber functions presented in the form of the Mellin integrals

2µsv(r, θ)=
1

2π i

∫
L0

[As(p)(p − κs) sin(p + 1)θ + Bs(p)(p − 1) sin(p − 1)θ+

+ Cs(p)(p − κs) cos(p + 1)θ + Ds(p)(p − 1) cos(p − 1)θ ]r−pdp , (5)

2µsu(r, θ)=
1

2π i

∫
L0

[As(p)(p + κs) cos(p + 1)θ + Bs(p)(p − 1) cos(p − 1)θ−

− Cs(p)(p + κs) sin(p + 1)θ − Ds(p)(p − 1) sin(p − 1)θ ]r−pdp , (6)



1408 BORIS NULLER, MICHAEL RYVKIN AND ALEXANDER CHUDNOVSKY

where the integration path L0 is a contour parallel to the imaginary axis of the plane of the complex
Mellin transform parameter p, and κs = 3 − 4νs . The subscript s = 1, 2 denotes the quantities related
to the right (0 < θ < π/2) and left (π/2 < θ < π) quadrants respectively. The unknown functions
As, Bs,Cs, Ds are to be defined from the boundary conditions.

Using Jones method [Noble 1958] we introduce “−” and “+” transforms

v−(p)=

∫
∞

1
v(r, π)r p−1dr , σ+(p)=

∫ 1

0
σθ (r, π)r pdr ,

which are analytical in the respective left and right half-planes separated by the contour L0. Other
functions analytical in these half-planes will be also denoted by the superscripts “+” and “−”. The
boundary conditions given by Equations (3) and (4) may now be presented as

v(r, π)=
1

2π i

∫
L0

[v−(p)+ v+(p)]r−pdp , 0< r <∞ (7)

σθ (r, π)=
1

2π i

∫
L0

[σ−(p)+ σ+(p)]r−p−1dp , 0< r <∞ (8)

σ−(p)=

∫
∞

1
σ(r)r pdr , v+(p)=

∫ 1

0
v(r)r p−1dr . (9)

Substitution of Equations (5) and (6) into the boundary conditions in Equations (1), (2), (7) and in Equa-
tions (1), (2), (8) yields two systems of eight linear algebraic equations, each with coefficients aik(p) with
respect to the unknowns A1(p), B1(p), ..., D2(p). In both systems the first seven equations are identical
and homogeneous. The only nonhomogeneous equations are the last ones obtained from conditions in
Equations (7) and (8). Denoting the determinants of the first and second systems as Nv(p) and Nσ (p)
respectively, the expression for the function A1(p) may be presented in the following alternative forms

A1(p)=
[v−(p)+ v+(p)]M(p)

Nv(p)
, A1(p)=

[σ−(p)+ σ+(p)]M(p)
Nσ (p)

, (10)

where M(p) is the cofactor of the element a81(p), which is the same in both systems, and where

Nv(p)= µ−1
2 b0b1b2(1 − p)2 sin2 πp , Nσ (p)= 2p(1 − p)2 sinπpN (p) , (11)

N (p)= 2b1(b2 cosπp + b3 p2)+ b4 , (12)

where

b0 = 1 + κ2, b1 = 1 + κ1µ, b2 = µ+ κ2, b3 = 2(µ− 1),

b4 = −2κ1µ
2
− (κ1 − 1)(κ2 − 1)µ+ κ2

2 + 1, µ=
µ2

µ1
.

Equating the right hand sides of Equations (10) we obtain the Wiener–Hopf equation

σ−
+ σ+

= K (p)[v−(p)+ v+(p)] , K (p)=
Nσ (p)
Nv(p)

, p ∈ L0, (13)

for the two unknown functions σ+(p) and v−(p). The solution is constructed using the technique devel-
oped by [Nuller 1976]. The function K (p) can be presented in the form of a product K (p)= K1(p)K2(p),
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where

K1(p)= 4µ2b−1
0 p cotπp , K2(p)=

2b1(b2 cosπp + b3 p2)+ b4

2b1b2 cosπp
.

Factorization with respect to the contour L0, which is taken to be the imaginary axis, yields

Km(p)=
K +

m (p)
K −

m (p)
, m = 1, 2.

For the function K1(p), the factorization is trivial. For the function K2(p) the factorization is carried out
by the use of the Cauchy-type integrals, see [Gakhov 1966] and can be performed due to the following
properties of this function on L0: (1) it is Hölder continuous; (2) it has no zeros, see Appendix A; (3) it
has zero index; and (4) ln K2(p) decays exponentially as |p| → ∞, which follows from the asymptotic
relation K2(i t)∼ 1+ O[t2 exp(−π |t |)], as |t | → ∞. Hence, the factorization K (p)= K +(p)[K −(p)]−1

is given by

K +(p)=
4µ20(p + 1)
b00(p + 1/2)

K +

2 (p),

K −(p)=
0(1/2 − p)
0(1 − p)

K −

2 (p) ,

K ±

2 (p)= exp
[
−

1
2π i

∫ i∞

−i∞

ln K2(t)dt
t − p

]
, p∈̄L0

K ±

2 (p)= K ±1/2
2 (p) exp

[
−

1
2π i

∫ i∞

−i∞

ln K2(t)dt
t − p

]
, p ∈ L0,

(14)

where 0(p) is the Gamma function.
Now the Wiener–Hopf Equation (13) can be rewritten in the following form

σ−(p)+ σ+(p)
K +(p)

=
v−(p)+ v+(p)

K −(p)
, p ∈ L0. (15)

Let the external conditions be given by the power form expressions

σ(r)= ar−γ−1 , v(r)= br δ, (16)

with γ > 0, δ > 0, and a < 0, which corresponds to Mode I loading. For this case Equations (9) yield

σ−(p)=
−a

p − γ
, v+(p)=

b
p + δ

, (17)

and the nonhomogeneous Wiener–Hopf Equation (15) can be factorized as follows

σ+(p)
K +(p)

+
a

p − γ

[ 1
K +(γ )

−
1

K +(p)

]
−

b
(p + δ)K −(−δ)

=

v−(p)
K −(p)

+
b

p + δ

[ 1
K −(p)

−
1

K −(−δ)

]
+

a
(p − γ )K +(γ )

. (18)

Both parts of the last equality are analytical in their respective half-planes separated by the contour L0

and decrease at least as p−1 or faster when |p| → ∞. Employing now Liouville’s theorem, we conclude
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that each side of Equation (18) is equal to zero. Consequently, we find the stress transform to be

σ+(p)= K +(p)
[ b
(p + δ)K −(−δ)

−
a

(p − γ )K +(γ )

]
+

a
p − γ

. (19)

The asymptotic stress distribution at the crack tip is defined by the stress transform behavior for large
|p|. From Equations (14) and (19) it is evident that for |p| → ∞

σ+(p)∼ −
4µ2

1 + κ2

[ a
K +(γ )

−
b

K −(−δ)

]
p−1/2 . (20)

As a result,

σθ (r, π)∼ −
4µ2

1 + κ2

[ a
K +(γ )

−
b

K −(−δ)

] 1
√
π(1 − r)

, r → 1 − 0 .

In view of the accepted length scale normalization, the actual displacements v(R) are obtained from
the scaled displacements derived in the solution by multiplying by ε, that is, v(R)= εv(r). Consequently,
the relation between the scaled and the non-scaled stresses is

σ(R, θ)=
σ(r, θ)
ε

. (21)

3. Green’s function for SIF

The study of crack stability near the interface requires solutions for arbitrarily distributed loads, which
can be obtained using the Green’s function of the particular problem, namely the solution for the two
unit forces P = 1 applied to the crack faces symmetrically at some point R = H ; see Figure 1. This
solution is defined by the boundary conditions in Equations (1), (2) and (4) with

σθ (r)= −δ(r − h) ,

where δ(r) is the delta function and h = H/ε.
Through the superposition principle this problem may be considered as the sum of the following two

problems. The first is the problem seen in Equations (1), (2) and (4) with σθ (r)=−δ(r −h) for 0< r <∞.
The second is a mixed problem defined by the conditions given in Equations (1)–(4) with σ(r)= 0 and
v(r)= −vδ(r), where vδ(r) represents the displacements obtained in the first problem. The solution of
the first problem clearly has no singularity at the point of interest r = 1, θ = π as the stresses σ(r, θ) are
equal to zero for 0< r < 1. Therefore the singularity at this point for the Green’s function of the initial
problem is completely defined by the stress field of the second problem.

In the first problem the transforms of the applied loading are given by σ+(p)= 0 , and σ−(p)= −h p.
Consequently, from Equations (10) and (11) we obtain

vδ(r)= −
1

2π i

∫
L0

Q(p)h p

N (p)r p dp, Q(p)=
b0b1b2 sinπp

2pµ2
.

Employing the residue theorem and closing the integration path to the left of the contour L0 we find that
for r < 1

vδ(r)=

∞∑
k=1

Q(−pk)r pk

N ′(−pk)h pk
. (22)
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Here p = −pk are the roots of the Zak–Williams characteristic equation, see Equation (12):

N (p)= 0 (23)

which are located in the left half-plane Re p< 0. The numbering is in accord with the increasing distance
from the imaginary axis.

It follows from Equations (9), (16), (17), and (22) that for the second problem

v+

δ (p)= −

∞∑
k=1

Q(−pk)

N (−pk)(p + pk)h pk
.

Taking into account that σ−(p)= 0 and reapplying the procedure (17)–(20), we obtain

σ+(p)∼ 2b1b2

[
∞∑

k=1

sinπpk

pk N ′(−pk)K −(−pk)h pk

]
p−1/2 , |p| → ∞ . (24)

Consequently, the asymptote of the singular stresses in the initial problem that also defines the Green’s
function for the SIF K I is given by

σθ (r, π)∼ 2b1b2

[
∞∑

k=1

sinπpk

pk N ′(−pk)K −(−pk)h pk

]
1

√
π(1 − r)

, r → 1 − 0 . (25)

The Cauchy-type integral representing the function K −(−pk) converges exponentially. The series in the
brackets of Equation (25) has the same type of convergence due to the multiplier h−pk and because the
remaining terms have the order O(

√
pk). The values pk can be found from the characteristic equation

(23) by the Newton’s method using the asymptotics

pk = k ± i
2
π

ln k + O(1)

for large k. In order to obtain the non-scaled form of the above result we have to replace r and h by R/ε
and H/ε respectively and use the relation in Equation (21).

An asymptotic expression for the SIF Green’s function for the problem at hand proceeds from the
asymptotic representation given by Equation (25) of the hoop stress component:

K I = c(α, β)H−p1ε p1−1/2 . (26)

Here c(α, β) is a smooth and finite function of the Dundurs parameters α and β:

c(α, β)=
2
√

2b1b2 sinπp1

p1 N ′(−p1)K −(−p1)
, (27)

α =
µ(κ1 + 1)− κ2 − 1
µ(κ1 + 1)+ κ2 + 1

, β =
µ(κ1 − 1)− κ2 + 1
µ(κ1 + 1)+ κ2 + 1

.

When ε → 0, the SIF K I apparently behaves as ε p1−1/2 and, depending on the value of p1, tends to 0
or ∞. The values of the first root p1(α, β) and the function c(α, β) for various combinations of α and
β are presented in Tables 1 and 2. From these values the asymptote of the SIF for arbitrary material
parameters combination can be obtained by interpolation. The values of p1 agree with the graphical
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α \ β −0.45 −0.4 −0.3 −0.2 −0.1 0.0 0.1 0.2 0.3 0.4 0.45

−0.95 0.872 0.803 0.717 0.661 0.622 0.592
−0.9 0.868 0.799 0.713 0.657 0.618 0.589
−0.8 0.789 0.704 0.650 0.611 0.583
−0.7 0.777 0.694 0.641 0.604 0.576
−0.6 0.764 0.683 0.631 0.5951 0.568 0.548
−0.5 0.670 0.621 0.586 0.560 0.540
−0.4 0.656 0.609 0.575 0.550 0.532
−0.3 0.641 0.595 0.563 0.540 0.522
−0.2 0.624 0.580 0.550 0.528 0.512 0.5
−0.1 0.564 0.535 0.515 0.5 0.489

0.0 0.545 0.519 0.5 0.486 0.477
0.1 0.524 0.5 0.483 0.471 0.463
0.2 0.5 0.479 0.464 0.453 0.447 0.443
0.3 0.454 0.441 0.433 0.428 0.426
0.4 0.427 0.416 0.409 0.405 0.405
0.5 0.395 0.386 0.381 0.379 0.380
0.6 0.357 0.351 0.347 0.347 0.349 0.355
0.7 0.308 0.306 0.307 0.311 0.318
0.8 0.255 0.254 0.256 0.261 0.268
0.9 0.183 0.183 0.185 0.189 0.195 0.200

0.95 0.130 0.130 0.132 0.135 0.140 0.144

Table 1. Values of the first root p1 of the Zak–Williams characteristic equation; see
Equations (23) and (12).

results of [Romeo and Ballarini 1995] and with the results for several specific material pairs reported by
[Cook and Erdogan 1972].

4. Stability analysis

Based on the analysis presented in Appendix A, we see that the Zak–Williams Equation (23) always
possesses a single first root p1 in the strip 0 ≤ Re p ≤ 1 which is simple and real. Furthermore,
0< p1 < 1/2 when

χ =
µ1κ2

µ2κ1

the combination of elastic coefficients of both materials is less than unity.
Consequently, if χ < 1 then, in view of Equation (26), limε→0 K I = ∞, and the crack is unstable in

the vicinity of the interface. Similarly, when χ > 1 then 1/2< p1 ≤ 1, limε→0 K I = 0, and the crack is
stable. In this paper we consider only linear crack propagation. The stability of a crack with curvilinear
path was investigated by [Gunnars et al. 1997]. We refer to the above combination of elastic coefficients
“χ” as the crack stability factor (CSF). From the structure of the CSF we can see that the stability of the
crack in the vicinity of an interface depends on the combination of Poisson ratios ν1 and ν2 as well as
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α \ β −0.45 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.45

−0.95 0.330 0.406 0.466 0.487 0.492 0.487
−0.9 0.352 0.425 0.481 0.5004 0.504 0.498
−0.8 0.467 0.514 0.5285 0.529 0.521
−0.7 0.513 0.549 0.5592 0.556 0.546
−0.6 0.564 0.588 0.5926 0.587 0.574 0.555
−0.5 0.630 0.6288 0.619 0.604 0.583
−0.4 0.675 0.6678 0.655 0.636 0.613
−0.3 0.724 0.7098 0.693 0.672 0.646
−0.2 0.774 0.7546 0.734 0.711 0.683 0.651
−0.1 0.8021 0.778 0.753 0.723 0.689

0 0.8519 0.826 0.798 0.767 0.731
0.1 0.9035 0.876 0.846 0.814 0.777
0.2 0.9565 0.928 0.898 0.865 0.828 0.784
0.3 0.982 0.953 0.921 0.884 0.840
0.4 1.038 1.010 0.980 0.944 0.902
0.5 1.095 1.070 1.042 1.009 0.970
0.6 1.152 1.131 1.108 1.079 1.044 1.000
0.7 1.194 1.176 1.153 1.125 1.088
0.8 1.260 1.248 1.232 1.211 1.185
0.9 1.333 1.326 1.318 1.307 1.292 1.283

0.95 1.376 1.373 1.369 1.363 1.354 1.349

Table 2. Values of c(α, β); see Equation (27).

the ratio of shear moduli µ1/µ2. Since the stress state in the problem under consideration is completely
defined by the Dundurs parameters it is useful to exhibit the stability/instability zones in the plane (α, β);
see Figure 2. It is clear that the stability condition α > 0 employed by [Leguillon et al. 2000] holds true
only for the specific case when β = 0.

The effect of the Poisson ratios ν1 and ν2 on crack stability at the interface is often overlooked. Typ-
ically the crack stability is determined on the basis of the shear moduli ratio only. If the crack exists in
a more rigid material and approaches an interface with the softer material (µ2 > µ1 in Figure 1), it is
regarded as unstable, see [Romeo and Ballarini 1995]. Consider, however, the case when the crack is in
the more rigid material, µ1/µ2 = 2/3, ν1 = 0.4, and ν2 = 0.2. Calculation of the CSF for the plane strain
case (κs = 3 − 4νs, s = 1, 2) yields χ > 1. Hence, in contrast to the conclusion based on µ1/µ2 < 1,
the crack is stable. In the (α, β) plane the points corresponding to the material combinations possessing
the above property are located within the lower sector generated by the lines α = β and α = −β; see
Figure 2. Examples of the corresponding engineering materials combinations can be identified using the
data presented by [Suga et al. 1988].

As we noted at the beginning of the previous section, the stresses between the crack tip and the interface
are non-zero only in the second problem taking part in the superposition. Their transform σ(r, π) can
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Figure 2. Crack stability and instability regions in the α, β plane. The dashed line
corresponds to the equal shear moduli of the materials on both sides of the interface.

be determined in the same way we derived the asymptote in Equation (24). Hence,

σθ (r, π)=
1

2π i

∫
L0

K +(p)
∞∑

k=1

Q(−pk)

(p + pk)K −(−pk)N ′(−pk)h pk
r−p−1dp .

After closing the integration path to the left of the contour L0 we employ the residue theorem which leads
to the formula for the stresses in front of the crack. In view of Equation (21) and using the nonscaled
variables, we obtain

σθ (R, π)= −
1
πε

∞∑
n=1

∞∑
k=1

(−1)nn sinπpk N (−n) K −(−n)(R/ε)n−1

pk(pk − n) N ′(−pk) K −(−pk)(H/ε)pk
, 0< R < ε . (28)

The stress distribution between the crack tip and the interface is depicted in Figure 3. As an illustration,
consider the aluminum-epoxy composite. The material parameters needed for the computations are
provided in Table 3. The dashed curves represent the inverse square root asymptotes obtained from

Table 3. Material properties.

Young modulus E (GPa) Poisson ratio ν

Epoxy 3 0.345
Aluminum 70 0.333

Boron 380 0.2
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Figure 3. Hoop stress distribution between the crack tip and the interface in the
aluminum-epoxy composite for the crack located in the epoxy (left) and in the aluminum
(right). The dashed lines denote the inverse square root asymptotes.

Equation (25) and correspond to the case of a homogeneous plane. In the first case (Figure 3, left)
the crack is imbedded in the soft (epoxy) constituent and is stable (χ = 22.7 > 1). As expected, the
stresses the near tip are less than for a crack in a homogeneous plane. Somewhat surprisingly, however,
the stresses near the interface increase and are nonmonotonic. The quantitative analysis of the results
reveals that: (1) the inverse square root asymptote agrees well with the exact solution only within about
0.1ε from the crack tip; (2) within roughly 0.7ε the asymptote has the same trend as the exact solution; (3)
the asymptote underestimates by approximately 30% the value of stress at the interface (R = 0), where
the hoop stress reaches the local maximum. When the materials are reversed (Figure 3, right) the crack
is located within the aluminum and is unstable (χ = 1/22.7). In this case: (1) the inverse square root
asymptote also agrees well with the exact solution within about 0.15ε from the crack tip; (2) however, the
asymptote increasingly overestimates stresses as the distance from the crack tip grows, reaching about
30% at R = 0.7ε; and (3) it grossly overestimates the values of stresses near the interface (R = 0). The
observed stress distributions agree with the data reported by [Wang and Stahle 1998] who investigated
the crack approaching the interface by means of the semi-analytical dislocation approach.

The actual size of the K-dominance zone, which is proportional to ε, decreases for the crack approach-
ing the interface. Thus at some point it becomes comparable to the fracture process zone of the cracked
material. As a result, the standard fracture toughness criterion of crack propagation becomes invalid even
for brittle materials and a nonasymptotic analysis of the stress field in the crack tip vicinity is required.
This point is discussed in detail in [Ryvkin et al. 1995] and is illustrated in [Ryvkin 2000] in the problem
of a crack close to a bimaterial interface. In the case of an unstable crack, which has no reason to stop
after it begins to move for some finite value of ε, the above remark probably does not apply. The stable
crack, on the other hand, may be arrested for vanishingly small ε. Consequently, the analysis of the
complete stress distribution in front of a stable crack is of primary interest.

The influence of the elastic mismatch (the aluminum-epoxy and the boron-epoxy composites) on the
stress distribution in front of a stable crack is illustrated in Figure 4.
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Figure 4. Stresses in front of the crack in the aluminum-epoxy and boron-epoxy com-
posites. The dashed line is associated with the stresses in front of a crack in a homoge-
neous material.

For reference, the stress distribution for the crack in a homogeneous material is also shown by a
dashed line. As expected, a greater mismatch of the materials leads to decrease in the stress. In spite of
the fact that the stiffness of boron is greater than aluminum, the difference in stresses is nominal. This
is attributable to the large mismatch between the epoxy and both of the above materials. Therefore the
difference between them is of secondary importance and the bimaterial systems approach the limiting
case of the epoxy half-plane bonded to a rigid substrate.

In order to examine the stress distribution on both sides of the interface, we need to derive the expres-
sion for the stress σ(r, 0) in the uncracked material. In contrast to the stress σ(r, π) here we have to
superpose the stresses in both problems formulated in the beginning of the previous section. After some
manipulation and employing the residue theorem, we obtain for 0< r < 1

σθ (r, 0)=
1
π

∞∑
n=1

∞∑
k=1

(−1)nn sinπpk U (−n) K −(−n)rn−1

pk(pk − n) N ′(−pk) K −(−pk)h pk
,

where
U (p)= (1 + κ2)[κ2(2p − 1)− 1 − 2p −µ(1 + κ1 − 2p + 2κ1 p)].

The nonscaled expression is determined in a manner similar to Equation (28). The stresses in the ε
vicinity of the interface in the aluminum-epoxy composite are depicted in Figure 5. As before, the
dashed line corresponds to the crack in a homogeneous material.

In accord with the continuity of the hoop strain component, the stresses beyond the interface in the
relatively stiff aluminum jump to a value higher than that in the epoxy. For some material combinations
this phenomenon may lead to a new crack nucleation within the stiff constituent, see [Leguillon et al.
2000].

As noted above, the SIF vanishes in the case of a stable crack approaching the interface. However, this
does not suggest that the stable crack can not reach the interface. In order to examine this opportunity, a
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Figure 5. Stresses in the ε-vicinity of the interface.

critical stress-based criterion such as the Neuber–Novozhilov criterion [Neuber 1937; Novozhilov 1969]
or the criterion indicated in [Cook and Erdogan 1972] needs to be employed rather than the fracture
toughness criterion. After a crack has reached the interface, further crack propagation is defined by the
competition between two possibilities: the penetration of the interface or deflection into it, see [He and
Hutchinson 1989]. The need for a stress-based criterion is supported by the fact that the leading term
in the expression given by Equation (28) for the stresses in front of a crack is proportional to ε p1−1 and
becomes unbounded when ε→ 0. Consequently, when the crack approaches the interface the stresses
in the interface vicinity increase. Two opposite trends in the dependence of the stresses upon ε near the
crack tip and near the interface are illustrated in Figure 6. Unlike the previous graphs, the coordinate
system located at the crack tip is employed as shown in the insert.

Therefore the crack tip is associated with the left side of the graph and the crack propagation cor-
responds to the different positions of the interface denoted in the figure by the dashed lines. Since the
results for several crack locations are depicted, the parameter employed for the length scale normalization
here is H and not ε as it was previously. The stress distributions for three different distances between
the crack tip and the interface (ε/H = 0.1, 0.05 and 0.02) are presented. The limiting values of stress
at the interface are derived in an accurate manner from a simple formula given by the first term of the
infinite sum in Equation (28). Thus,

σθ (0, π)=
1
πε

sinπp1 N (−1) K −(−1)
p1(p1 − n) N ′(−p1) K −(−p1)(H/ε)p1

.

These values are denoted in the figure by the circles. As the distance between the crack tip and the
interface decreases, so does the stress singularity in the crack tip vicinity. On the other hand, the non-
monotonic stress behavior becomes more pronounced and the stresses near the interface increase, which
at some point may lead to nucleation of a new microcrack located on the crack line and terminating at
the interface.
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Figure 6. Stress distribution for the different distances between the tip of a stable crack
and the interface.

The above approach is numerically very efficient. In order to reach less than one percent accuracy,
100 terms of the series in n and 3 terms of the series in k need to be taken into account. This is not
surprising since, as it was noted, the series in k converges exponentially.

5. Conclusion

In this paper, we obtained a closed-form solution for the stress distribution in two perfectly bonded
isotropic elastic half-planes with a fully imbedded semi-infinite crack orthogonal to the interface under
Mode I loading by means of the Winner–Hopf–Jones method. The Green’s functions for the stresses and
the SIF are constructed using auxiliary problems solved in quadratures. The closed-form solution of the
problem offers a way to express the result in a form convenient for computation. A quantitative char-
acterization of the SIF for various combinations of elastic parameters via the function c(α, β) provides
a practical tool for the solution of crack-interface interaction problems for arbitrarily distributed Mode
I loading. The values of the function c(α, β) computed from the closed-form solution reported herein,
when compared with those obtained previously by the numerical solution of singular integral equations
[Romeo and Ballarini 1995], suggest an error in the later procedure.

In order to characterize the stability of a crack approaching the interface, we introduced a new interface
parameter, χ , which is a simple combination of the shear moduli µs and the Poisson ratios νs (s = 1, 2) of
the materials on both sides of the interface. The crack stability or instability in the vicinity of the interface
is associated with a decrease or increase of the energy release rate, that is, SIF with ε → 0. Since K I

behaves as ε p1−1/2, the crack stability or instability depends on p1 being greater or less than 1/2. This
result agrees with the former asymptotic investigations of the problem, but we established here for the
first time the exact condition of crack stability in terms of material parameters. The interface parameter χ
uniquely determines the sign of inequality for the first root p1 of the Zak–Williams characteristic equation
and thus indicates the asymptotic behavior of the SIF. An estimation of the interface parameter prior to
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detailed computations may serve as a qualitative evaluation of the strength of the stress singularity in the
vicinity of the interface.

It appears that the propagation of a stable crack cannot be predicted in the framework of the SIF
approach. In this case the critical stress criterion can be employed in conjunction with the solution
obtained.

Appendix A: Study of the first root of Zak–Williams characteristic equation

The dependence of the stress distribution and the SIF on the material properties in two perfectly bounded
isotropic elastic half-planes with a crack approaching the interface is conventionally expressed in terms
of the Dundurs parameters α and β.

α =
µ(κ1 + 1)− κ2 − 1
µ(κ1 + 1)+ κ2 + 1

, β =
µ(κ1 − 1)− κ2 + 1
µ(κ1 + 1)+ κ2 + 1

.

The crack stability in the vicinity of the interface is determined by the value of the first root p = p1 of
the Zak–Williams characteristic equation [1963]. Specifically, the crack is stable when 1/2< p1 < 1 or
unstable when 0 < p1 < 1/2. In what follows we analyze the value of p1 and the dependence of the
crack stability on the material properties of both sides of the interface. The Zak–Williams equation can
be presented in terms of the function N(p) in Equation (23). According to Equation (12) N (p) can be
explicitly written as

N (p)= 2(1 + κ1)[(µ+ κ2) cosπp + 2(µ− 1)p2
] − 2κ1µ

2
− (κ1 − 1)(κ2 − 1)µ+ κ2

2 + 1 . (29)

Therefore it may be considered as a function of one complex variable p and three real variables κ1, κ2,
and µ : N (p)≡ N (ω, p), ω = (κ1, κ2, µ). Let us denote

p = η+iξ, η= Re p, ξ = Im p; N (p)=U (p)+iV (p), U (p)= Re N (p), V (p)= Im N (p). (30)

The expressions of the material parameters through the Poisson ratios and shear moduli κs = 3−4νs, s =

1, 2 , and µ= µ2/µ1 indicate the limits 1< κs < 3 , 0<µ<∞. Consequently, we assume that ω ∈�,

where �= {ω : 1< κs < 3, 0< µ< M} is a 3–dimensional parallelepiped and M is an arbitrary large
number. Furthermore, we define a rectangle domain D = Re p ∈ (0, 1), Im p ∈ (−q, q) in the complex
plane with the boundary 0. The barred symbols �̄ and D̄ denote the closed sets and �× D represents
the Cartesian product.

Lemma 1. The function N (ω, p) does not vanish on the imaginary axis Re p = 0 for any ω ∈ �̄.

Proof. In view of Equations (29) and (30) we obtain

U (0)=µ(1 + κ1 + κ2 + κ1κ2)+ (κ2 + 1)2 > 0 ,

∂U (iξ)
∂ξ

=2(1 + κ1µ)[π(µ+ κ2) sinhπξ − 4(µ− 1)ξ ] ≥ 2(1 + κ1µ)[π
2(µ+ κ2)ξ − 4(µ− 1)ξ ]

=2(1 + κ1µ)[(π
2
− 4)µ+ κ2π

2
+ 4]ξ ≥ 0 , ξ ≥ 0.

Since U (0) > 0 and ∂U (iξ)/∂ξ ≥ 0 for ξ ≥ 0, the function U (iξ) increases monotonically for positive
ξ and U (iξ) > 0 for ξ ≥ 0. From the evenness of function U (iξ) it follows that N (iξ) > 0 for any ξ . �
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Lemma 2. The function N (ω, p), ω ∈ �̄, does not vanish on the line p = 1 + iξ for any ω ∈ �̄.

Proof. For µ 6= 1 and |ξ | > 0 we have V (1 + iξ) = 8(1 + κ1µ)(µ− 1)ξ 6= 0. Taking into account that
κ1, κ2 ∈ [1, 3], for µ= 1 and |ξ | 6= 0 we the have

U (1+ iξ)= −2(1+κ1)(1+κ2) coshπξ−2κ1 −(κ1 −1)(κ2 −1)+κ2
2 +1<−8 coshπξ−2+κ2

2 +1< 0 .

For the case when ξ = 0, ω∈ �̄ we find U (1)=µ(1+κ1)(1−3κ1)+(κ2−1)2−4 ≤µ(1+κ2)(1−3κ1)< 0.
Consequently, N (1 + iξ) 6= 0 for all ξ ∈ (−∞,∞). �

Lemma 3. It is possible to find a positive number c defined by the following condition: the function
N (ω, p), ω ∈ �̂, is not vanishing on the segments Re p ∈ [0, 1], Im p = ±q for any q > c.

Proof. The lower bound for c may be easily found by estimating the function cosπp by the first three
terms of the Maclaurin series expansion in the rectangular domain 0 ≤ η ≤ 1, −c ≤ ξ ≤ c. �

Lemma 4. For the case when κ1 = κ2 and µ = 1, function N (ω, p) has the only zero p1 = 1/2 in the
strip Re p ∈ [0, 1].

Proof. For this case N (ω, p)= (1 + κ1)
2 cosπp. �

Theorem 1. The function N (ω, p), ω ∈ �̄ has a single, simple and real zero in the strip 0 ≤ Re p ≤ 1.

Proof. For any ω ∈ �̂ the function N (ω, p) of the complex variable p is analytic for p ∈ D, is continuous
with its derivative on 0, and, following Lemmas 1–3, does not vanish on this contour. Therefore, in accord
with the principle of the argument, an integral along the closed contour 0

I (ω)=
1

2π i

∫
0

N ′
p(ω, p)

N (ω, p)
dp (31)

is equal to the total number (with regard to multiplicity) of zeros of the function N (ω, p) in D.
Changing the elastic parameters along some path in �, let us assume that for some point ω∗ an r-

order zero of the function N (ω, p) appears (or disappears) in D. Then the function I (ω) will have a
finite r -units discontinuity at this point. However, the integrand in Equation (31) is continuous in �̄×0

since the absolute values of its partial derivatives with respect to p and ω are bounded in this domain.
Therefore the integral I (ω), ω ∈ �̄ also represents a continuous function of ω.

The above contradiction leads to the conclusion that for any ω ∈� the function N (ω, p) has the same
number of zeros in D, that is, I (ω)= const = n. Since Lemma 4 implies that for ω = ω0 = (κ1, κ2, 1)
there is the only simple zero is p1 = 1/2, we then find that n = 1. Clearly this single zero can not become
complex valued for some ω because in that case the conjugate number p̄1 also satisfies Equation (29).

Finally, since q > 0 is unbounded, the above result obtained for p ∈ D holds for the entire strip
0 ≤ Rep ≤ 1.

Since for every ω ∈� corresponds some value of the first zero p1 of the function N (ω, p), (ω, p) ∈

�̄× D̄, we can consider an implicit function p = f (ω), ω ∈ �̄. This function must fulfill the equation
N (ω, p)= 0, (ω, p) ∈ �̂× D̂ and, in accord with Lemma 4, meet the condition f (ω0)= 1/2. �

Remark 1. Theorem 1 can be now formulated as follows: The function p = f (ω), ω ∈ �̄ exists, it is
real valued, and it varies in a domain P ⊂ (0, 1).
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Remark 2. The function N (ω, p) and its derivative ∂/∂p[N (ω, p)] do not vanish simultaneously in any
point of the domain �̄× D̄.

Proof. The existence of such a point implies that function N (ω, p) has a multiple zero at this point,
which violates Theorem 1. �

Theorem 2. The implicit function p = f (ω), ω ∈ �̄ defined by the equation N (ω, p) = 0, (ω, p) ∈

�̄× D̄ and condition f (ω0)= 1/2 exists. It is unique, continuous, and has continuous bounded partial
derivatives.

Proof. In accord with Theorem 1 there exists a unique implicit function p = f (ω), ω ∈ �̄ which is defined
by a zero of the function N (ω, p) for a given ω. Since the partial derivatives of the function N (ω, p)
of the first and second order in any bounded domain are bounded, function N (ω, p) and its derivative
are continuous in the 4-dimensional parallelepiped �̄× [0, 1]. Furthermore, following Remark 2, the
functions N (ω, p) and ∂/∂p[N (ω, p)] do not vanish simultaneously. The theorem of implicit functions
then establishes that function p = f (ω) is continuous and its first derivatives

∂p
∂µ

= −
∂N (ω, p)
∂µ

[
∂N (ω, p)

∂p

]−1

,
∂p
∂κs

= −
∂N (ω, p)
∂κs

[
∂N (ω, p)

∂p

]−1

, s = 1, 2 (32)

exist and are continuous and bounded. �

Lemma 5. Consider a surface S in� defined by the equation κ1µ−κ2 =0. Then every point (ω, 1/2), ω∈

S from �̄× [0, 1] is zero of the function N (ω, p) and for the points with ω⊂̄S, N (ω, 1/2) 6= 0.

Proof. The proof is obvious from the relation N (ω, 1/2)= (κ2 − κ1µ)(µ+ κ2). �

Lemma 6. For arbitrary fixed κ1, κ2 ∈ [1, 3] the function p = f (κ1, κ2, µ) represents a decreasing
function of µ in the vicinity of the point µ1 = κ2/κ1.

Proof. In accord with Theorem 2, the partial derivatives of the function N (ω, p) in �̄× D̄ exist and are
bounded. At the point (ω1, 1/2), ω1 = (κ1, κ2, κ2κ

−1
1 ), the partial derivatives are negative:

∂N (ω1, 1/2)
∂µ

= −κ2(1 + κ1) < 0 ,

∂N (ω1, 1/2)
∂p

= 2(1 + κ2)κ
−1
1 [π(1 + κ1)κ2 − 2(κ2 − κ1)]< 2(1 + κ2)κ

−1
1 (4 − 2π) < 0 .

Recalling Equation (32) we conclude that ∂ f (ω1)/∂µ < 0 and the function f (ω) decreases with respect
to µ at the point ω1. The surface S separates the parallelepiped �̄ into two parts: �̄− for µ < κ2κ

−1
1 and

�̄+ for µ > κ2κ
−1
1 . �

Theorem 3. If ω ∈ �̄+, then f (ω) < 1/2. If ω ∈ �̄−, then f (ω) > 1/2.

Proof. Let us assume the opposite, that is, for some point ω2 = (κ1, κ2, µ) from �̄+ p2 = f (ω2)≥ 1/2.
Lemma 5 states that the case of equality is impossible since ω2 /∈ S, so we consider the case when
p2 > 1/2. We connect the points ω1 = (κ1, κ2, κ2κ

−1
1 ) and ω2 by a line segment γ and consider the

function p = f (ω)= ϕ(µ) on γ . By Lemma 6 this function is deceasing in the vicinity of the point ω1.
By Lemma 5 ϕ(µ1) = 1/2. Consequently, there is a point µ3 where p3 = ϕ(µ3) < 1/2. Continuous
in accord with Theorem 2, the function ϕ(µ) takes on the segment (µ3, µ2) all the intermediate values
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between p3 and p2. Therefore the point µ4 ∈ (µ3, µ2) exists where ϕ(µ4) = 1/2. But this results in
a contradiction with Lemma 5 since the point (κ1, κ2, µ4) ∈ �̄+ is not located on S and cannot be a
zero of the function N (ω, 1/2). The proof of the second part of the theorem is carried out in a similar
manner. �

Summary. Initially we sought zeros of the function N (ω, p) in the 5-dimensional domain �× D charac-
terized by five real valued parameters two of which (µ and ξ ) are unbounded. Answering the question on
the existence of zeros and their number, Theorem 1 reduced substantially the range of possible locations
for p1. Theorem 2 and Lemma 5 provided the foundation for developing a simple iterative procedure
with respect to µ based on the continuous dependence of p1 upon all the parameters ω(κ1, κ2, µ) and
the known initial value p1 = 1/2 for µ= κ2κ

−1
1 . Finally, Theorem 3 allows us to answer the question of

whether the crack will be stable (µ<κ2κ
−1
1 , χ > 1, p1> 1/2) or unstable (µ>κ2κ

−1
1 , χ < 1, p1< 1/2)

for ε→ 0 a priori, without any calculations. We only need to know the elastic parameters of the composite
body, namely, the ratio µ= µ2/µ1 and κs = 3 − 4νs .
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STATISTICAL STRENGTH OF A TWISTED FIBER BUNDLE: AN EXTENSION
OF DANIELS EQUAL-LOAD-SHARING PARALLEL BUNDLE THEORY

PANKAJ K. PORWAL, IRENE J. BEYERLEIN AND S. LEIGH PHOENIX

In this work, we extend the statistical strength model of Daniels for a parallel fiber bundle to a twisted
bundle with an ideal helical structure. The bundle is clamped at each end in such a way that it has
no slack fibers in the unloaded state. The fibers are linearly elastic and continuous, and have random
strengths following a Weibull distribution with Weibull shape parameter ρ. We calculate the stress
redistribution from failed to surviving fibers according to a twist-modified equal load sharing (TM-ELS)
rule, introduced here. The effect of the twist is modeled analytically by two approaches, one called
geometrical averaging, in which the fiber helix angles are averaged, and the other called statistical
averaging, in which the fiber failure probabilities are averaged. In both probability models, the bundle
strength distributions remain asymptotically Gaussian, as in Daniels’ original model; however, the asso-
ciated mean and standard deviation are additionally altered by the surface twist angle. To validate these
theories, a Monte Carlo model is developed to simulate fiber break initiation and progression within a
cross-sectional plane under tension. For all values of surface twist angle αs, ρ and bundle size studied,
the simulated strength distributions are shown to be strongly Gaussian. Transitions in failure mode from
diffuse, across the bundle cross-section, to localized near the center of the bundle occur when αs and ρ
increase and the bundle size decreases, in spite of application of a diffuse-type loading sharing rule, TM-
ELS. Both analytical models provide similar results which are in excellent agreement with the simulated
results. For the most part, we consider the bundle to be short enough that interfiber friction plays no
role in the stress redistribution. However, to demonstrate its importance in long bundles, we mimic the
effects of interfiber friction by considering a chain of such bundles where the bundle length is chosen to
approximate the characteristic length of unloading around breaks.

1. Introduction

Yarns, ropes, and cables, generically called twisted mechanical structures, have been used for centuries as
load-bearing structures. When fabricated from ultrastrong, high-performance polymer-based or carbon-
based fibers, such as Kevlar, PBO, graphite, and even carbon nanotubes (see, for example, [Vigolo
et al. 2000; Zhang et al. 2004]) such structures can be made with superior strengths and can possibly
be used in many technically advanced aerospace and defense applications. Like traditional fibers, such
as wool, cotton and polyester, these advanced fibers exhibit a substantial variation in strength as well

Keywords: twisted fiber bundle or yarn, Monte Carlo simulation, statistical strength, twist modified equal load sharing
(TM-ELS), ideal helical structure, interfiber friction, chain-of-bundles model.
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as size (length and number of fibers) effects. Consequently the strength of the twisted structure made
from such fibers will also exhibit similar characteristics, although it may be much weaker depending
on the extent of variability and the stiffness of the fibers. Thus, there is a need for structural strength
predictions, particularly in the high reliability regime, that is, only one failure out of thousands or millions
of specimens under a design load. In other words, an average strength determined from a few tests will
not be sufficient. Such predictive capability, however, is not in place for these twisted structures.

In these structures, the local material strengths vary from point to point and from fiber to fiber within
the bundle. As a consequence, the failure processes can be quite random and the strengths can statistically
vary among twisted bundles of otherwise identical descriptions. As the bundle volume increases (either in
diameter or length) the likelihood of finding a weak region or defect that can lead to failure will increase
as well, leading to a lower average strength among many specimens. Fiber strengths are commonly
described by the Weibull distribution, an empirical statistical model that was built upon weakest-link
concepts [Phoenix and Beyerlein 2000]. However, the strength distribution and size effect for a twisted
fiber bundle are generally more complicated and unknown.

These twisted structures are also heterogeneous in microstructure. To see this, envision fibers in layers
following concentric helical paths about the central axis of the fiber ‘bundle’ (for example, yarn, rope,
cable) with helical angles varying from zero, for the central fiber, to αs, for fibers at the surface. Under the
action of an applied load, the stresses or strains sustained by individual fibers differ depending on their
helical angle with respect to the loading direction and the angles of the surrounding fibers. In addition,
their stresses will depend on the actual distribution of neighboring fiber breaks.

Unlike the initial or elastic modulus, the strength of a heterogeneous material cannot be predicted by a
rule-of-mixtures type calculation. Strength is best predicted by considering failure mechanisms involving
various initiation phenomena and subsequent propagation behavior to catastrophic collapse. The two
primary mechanisms in a twisted fiber bundle are fiber failure and fiber slipping (for example, unraveling),
which may occur simultaneously. This interplay of failure mechanisms is a favorable situation, which
can theoretically lead to optimal strengths without compromising ductility.

In this work, we develop analytical models for bundle strength based only on the first mechanism,
fiber breaks and load redistribution. They allow for a stochastic progression of fiber breaks within a
cross-sectional plane of an ideal helical structure. Under the initial application of strain or stress, breaks
occur first in the weakest or most highly stressed fibers. As the stress level increases, breaks increase in
number until an unstable pattern of breaks and the maximum stress that can be sustained, is achieved.

To validate the simplifying assumptions made in the analytical models, a Monte Carlo computational
model is developed. This computational model simulates more accurately the ‘true’ failure progression
in many replications, sufficient for generating empirical statistical strength distributions. This useful tool
provides insight into the mathematical form of the bundle strength distributions, characteristics of the
failure modes, and dependencies on statistical fiber strength properties and surface twist angle, αs. In this
work, both the Monte Carlo and analytical models consider Weibull fiber strengths and a nonlocalized
load sharing rule among broken and intact fibers called the twist-modified equal load sharing (TM-ELS)
rule. In TM-ELS, failed fibers carry zero stress and surviving fibers share the applied bundle load but
carry individual stresses depending on their radial positions in the bundle. As a consequence, fiber breaks
will propagate based not only on their strengths and the total number of breaks, but on their helix angle
as well. Like the conventional ELS rule, no direct enhancements result from the relative proximity of
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one break to another. Pure ELS is well known to apply to dry bundles of parallel fibers when there
is negligible friction between the fibers, which causes load build-up from the fiber ends to be rather
inefficient. For a twisted bundle, however, we show that in spite of the TM-ELS assumption, the Monte
Carlo model forecasts transitions in failure mode from ductile-like to brittle-like due to the twist angles
and fiber strength variation.

While very important, incorporating the effects of friction and slipping is beyond the scope of the
current work and will be considered in a sequel. Nonetheless, as a preview of the expected behavior we
perform a simple chain-of-bundles calculation, using results of [Alexander 1952] for the stress recovery
length around a fiber discontinuity in terms of yarn tension and twist. However, in the actual yarn the
stress transfer length around a broken fiber depends on its radial position because the radial pressure
distribution is nonuniform.

2. Theoretical background

Most theories for yarns, ropes, and cables operate within a deterministic strength paradigm with the
goal of determining the optimal surface twist angle at which the highest bundle strength is achieved. In
fact, fiber manufacturers often apply twist to varying degrees (not necessarily the same from one lot
to the next) to determine fiber strength to meet some acceptance criteria or minimum standard. The
optimal twist angle is generally related to a single-valued fiber strength, fiber diameter and length, and
the magnitude of frictional forces in shear acting along fibers to resist sliding. For an excellent summary
of the earlier, classical theoretical and experimental works, we refer the reader to [Hearle et al. 1969].
Other more recent attempts in this category, including work on impregnated yarns, can be found in [Naik
et al. 2001], where the strength of impregnated yarn was estimated using an effective shear traction and
fiber obliquity factor.

On the other hand, most statistical strength models treat a parallel array of fibers rather than a twisted
bundle. These models generally focus on the influence of fiber strength, bundle length, bundle size, fiber
packing, and interface properties, in the case when matrix is present in the parallel fiber bundle. For
a recent review of these parallel bundle theories, we refer the reader to [Phoenix and Beyerlein 2000].
Among these we mention only the classical theory of Daniels [1945], which is relevant to this work.
Through a long and complicated proof, Daniels showed that when the load from fiber breaks is redis-
tributed equally among the remaining intact fibers (ELS), the strength of a large bundle asymptotically
approaches a Gaussian distribution. He derived expressions for the asymptotic mean µD and standard
deviation γD as a function of the underlying strength distribution of the fibers and bundle size in terms
of number of fibers.

There are, however, a few notable statistical strength theories for twisted fiber bundles [Phoenix 1979;
Pan 1993]. Although using different approaches, they both have extended Daniels’ parallel bundle theory.
Phoenix [1979] in particular studied the influence of slack as a result of incomplete migration, that is,
the deviation of fibers from an ideal helical path, that occurs after the twisting process. He proposed a
statistical model for random fiber slack, which has two characteristic parameters reflecting the extent and
uniformity of the migration process, and applied it to an ideal helical structure where the fiber strength
itself followed a Weibull distribution. An asymptotically Gaussian distribution for the strength of the
twisted yarn was argued to apply, as in Daniels’ case, and the associated mean and standard deviation
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were derived. We compare the results of [Phoenix 1979] to that of the present work. Pan [1993] derived
and directly applied an orientation efficiency factor to Daniels’ mean µD and standard deviation γD to
account for the effect of an average twist. Up to now, twisted bundle strength studies have not used Monte
Carlo simulation to investigate the nature of the yarn strength distribution or to validate the Gaussian form
of the distribution, which had been assumed upfront to apply to twisted structures and in fact many other
structures outside of the parallel ELS bundle.

3. Modeling approach

3.1. Parallel bundle. Our models for the strength of a twisted bundle will build upon Daniels’ well-
known theory for a parallel ELS bundle. His model is briefly reviewed here.

Daniels [1945] considered n parallel fibers that are evenly clamped at each end and have the same
cross-sectional area A and linear elastic constitutive law with Young’s modulus Ef. The fiber strengths
X1, X2, . . . , Xn (in units of stress) are independent and identically distributed (i.i.d.) random variables
following a cumulative distribution function (cdf) F(s), s ≥ 0, where s is the stress in the fiber along
the direction of loading. When the fibers are parallel to the direction of loading, s is also the axial stress
in the fibers. The corresponding strain to failure of fiber i , ξi , is simply ξi = X i/Ef.

A nominal stress σ is uniformly applied to this n-sized bundle, and as σ is increased, the fibers start
to break whenever and wherever the fiber stress exceeds the fiber strength. Due to the strength variation,
fiber breaks tend to initiate and spread in a random manner. According to the ELS rule of Daniels’ model,
when a fiber breaks, its lost load is instantaneously redistributed in equal portions to all surviving fibers.
Consequently, the individual axial stresses, denoted here as s, in the remaining intact fibers will be equal,
and will be higher than σ for the bundle. If Nb is the current number of breaks in the bundle, then
according to ELS, s is

s =

( n
n − Nb

)
σ.

The strength of the bundle S is the maximum stress borne by the bundle, and is given by

S = max
{

X1,n,
(n − 1

n

)
X2,n, ...,

(1
n

)
Xn,n

}
,

where X1,n ≤ X2,n ≤ . . .≤ Xn,n are the order statistics of the strengths of the n fibers. Daniels proved
that S asymptotically follows a Gaussian (that is, normal) distribution, with probability density function
(pdf) gn(s) given by

gn(s)=
1√

2πγD2
exp

{
−
(s −µD)

2

2γD2

}
, (1)

where µD is the mean and γD is the standard deviation of the bundle strength.
In general the bundle can be loaded in a stress-controlled or strain-controlled manner. In the latter,

with increasing strain εy on the bundle, the resulting bundle stress fluctuates randomly. For a large bundle
(that is, n → ∞) σ(s), the nominal bundle stress as a function of s asymptotically approaches the function
µ(s) given by

µ(s)= s[1 − F(s)], s ≥ 0.
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The µD in Equation (1) is the maximum of µ(s), formally called the asymptotic mean strength, and is

µD = max
s

{µ(s) : s ≥ 0}. (2)

µ(s)= µD occurs when s = s∗, that is, s∗
= {s : µ(s)= µD}. The variance function for the bundle stress

is given by

6(s)= s2 F(s)[1 − F(s)], s ≥ 0,

and the asymptotic standard deviation γD of the bundle strength is

γD =
s∗

√
n

√
F(s∗)[1 − F(s∗)]. (3)

Note that the asymptotic value µD is independent of n. Smith [1982] derived a correction factor for
µD that depends on n to improve the accuracy of µD for relatively small bundles. The correction factor
is given by

1∗

n =
0.996
n2/3

{
F ′(s∗)2s∗4

2F ′(s∗)+ s∗F ′′(s∗)

}1/3

, (4)

where prime means derivative. This factor is added to µD, to yield µ∗

D = µD +1∗
n . Later, McCartney

and Smith [1983] derived an improved asymptotic standard deviation of bundle strength, which is

γ ∗

D = γD

√
1 − 0.320

(1∗
n

γD

)2
.

In the remainder of this work, F(T ) for fiber strength will follow a Weibull distribution

P(X ≤ T )= F(T )= 1 − exp
{
−

( T
σδ

)ρ}
,

where T is fiber stress along its axis, and σδ and ρ are the Weibull scale and shape parameters, respectively.
The corresponding µD and γD in Equations (2) and (3) are

µD = σδ(ρe)−1/ρ, γD =

(
σδ
√

n

)
ρ−1/ρ

√
e−1/ρ(1 − e−1/ρ), (5)

and the correction factor in Equation (4) becomes

1∗

n =
0.996µD

n2/3

(e2/ρ

ρ

)1/3
. (6)

The improved µ∗

D and γ ∗

D, according to [Smith 1982; McCartney and Smith 1983], become

µ∗

D = µD

{
1 +

0.996
n2/3

(e2/ρ

ρ

)1/3
}
, γ ∗

D = γD

√
1 − 0.317

(µD

γD

)2(e2/ρ

n2ρ

)2/3
. (7)
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n Filaments

αs

(a) (b)
Figure 1. (a) Yarn segment and (b) Cross-sectional view of concentric packing.

4. Strength of twisted fiber bundles

4.1. Helical yarn geometry. The most commonly analyzed geometry of a twisted fiber bundle or yarn
is the one in which the fibers lie in concentric cylindrical layers. Within each layer, fibers follow ideal
helical paths with the same helix angle, as shown in Figure 1a, but the angle differs from layer to layer.
In this idealization, fibers in different layers necessarily must have different lengths to be strain-free yet
without slack. This implies that between two yarn cross-sections, fibers (other than the center fiber) will
have lengths (when straight) equal to their helical path lengths, and thus, will be longer than the distance
between these cross-sections.

Consider an ideal helical structure with l layers, numbered 1, . . . , k, . . . , l, of fibers with diameter df.
The l layers have respective helix angles α1, . . . , αk, . . . , αl , and are located at radii r1, . . . , rk, . . . , rl

from the center of the bundle axis. Note that rk is the distance from the center of the yarn to the center
of the fiber in layer k. Also the radius of the yarn, R is taken as rl .

(a) (b)

Figure 2. Square and hexagonal packing.
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Note also that in the cross-sectional view, the fibers are arranged in concentric layers, which we call
concentric packing. Concentric packing is different from other commonly used fiber packing models,
such as square packing Figure 2a or hexagonal packing Figure 2b. We also assume that the gap between
the layers is negligible compared to the diameter of the fiber. Under these assumptions rk , approximately
becomes rk ≈ (k − 1)df. If we also assume complete filling of the layers, that is, a fiber will occupy
any void in a concentric layer that is large enough to accommodate it, the number of fibers in the kth

concentric layer, nk , is approximately

nk ≈

⌊
2πrk

df

⌋
≈ 2π(k − 1), for k ≥ 2, (8)

where n1 = 1 and where bxc means the largest integer less than or equal to x . As expected, nk does not
depend on df. The total number of fibers in the bundle n with l layers is n = n1 + ...+ nl , but can be
approximated as n ≈ 1 +π(l − 1)l.

As illustrated in Figure 1a, the helix angle of the outer layer αl is especially important and is denoted
as αs, the surface helix angle. From the yarn twisting process, the helix angle αk for concentric layer k
depends on its radius rk (being approximately proportional to it) and the surface helix angle, αs. From
the geometry of the helix illustrated in Figure 3 we have

αk = tan−1
(2πrk

h

)
, αs = tan−1

(2πR
h

)
,

where the second equation is for the surface layer, located at rl = R. Here h is the height, along the yarn
axis, of one turn of twist Figure 3.

2πrk 2πR

αk αs

h h

Figure 3. The variation of helix angle.
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We assume that all layers have the same axial height of one turn of twist, h, which applies when there
is no initial tensile strain or slack in any fiber. Thus,

αk = tan−1
(rk tanαs

R

)
(9)

in terms of αs. In later calculations we will need αf,i , the helix angle for an individual fiber i . Let ℵk be
the set of fibers in layer k, then αf,i can be defined as

αf,i = αk, i ∈ ℵk and k = 1, ..., l.

We note that this ideal twisted structure is not common in practice. In a long untwisted yarn all fibers
begin with equal lengths, and thus, accomplishing the varying path lengths in different layers during
twisting under tension must lead to varying slack or compression in some fibers and uneven strains in
others. The yarn attempts to equalize its fiber lengths by the phenomenon called migration. Over a
yarn length segment less than or equal to some modest multiple of the yarn diameter, fibers stay within
their layer, that is, they do not ‘migrate’. Beyond this length scale, fibers ‘migrate’ to different layers to
equalize fiber lengths. If migration is incomplete, there will exist some slack visible as buckling in the
fibers due to inefficient migration of fibers, which can lead to inefficiencies in the bundle load-carrying
capacity and reductions in strength [Phoenix 1979].

In this paper, we do not model specifically the process of migration. It is assumed that it is complete
so that an ideal helical structure is achieved over some bundle length suitable for analysis. Study of the
effects of incomplete migration beyond that considered already in [Phoenix 1979] will be left for future
work.

4.2. Transformation of strains. In this work, we frequently need to transform fiber strains between the
individual fiber axis and the bundle axis along which the load is applied. The relationship between the
applied bundle strain, εy, and the axial strain, εf, in a fiber of layer k is taken from basic yarn mechanics
[Hearle et al. 1969] and is given by

εf(αk)= εy(cos2 αk − ν sin2 αk). (10)

In the above, ν is the Poisson’s ratio of the yarn. For simplicity we assume ν = 0, and thus, neglect any
changes in the radial dimension of the yarn under axial loading.

4.3. Twist-modified equal load-sharing (TM-ELS) rule. In the case of a parallel fiber bundle, ELS is
straightforward and does not violate any of the equilibrium conditions. To modify ELS to apply to a
twisted bundle, we simplify the problem greatly by satisfying load equilibrium conditions only in the
yarn axis direction. Our general scheme is to model the failure process as progressing in discrete steps
t = 0, 1, 2, . . . in the following way:

(i) in any particular step, t , the axial stresses of the surviving fibers are calculated and then compared
with the assigned fiber strengths X i (as in the case of a parallel fiber bundle);

(ii) from this comparison, any fiber whose axial stress exceeds its assigned strength is considered break-
ing in this step. The pre-break stress components in these fibers are resolved along the bundle
axis;
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(iii) these resolved components are then redistributed equally to the stress components of the surviving
fibers also acting along the yarn axis, and the stresses of these survivors acting along their own
respective axes are recalculated;

(iv) the stresses in these newly broken fibers are then set to zero.

Formulating this approach mathematically, at step t we denote the stress in fiber i acting along its own
axis (not the yarn axis) as T (t)

f,i as in (i) in the above. T (t)
f,i is considered as composed of two components:

The first is the stress carried by the fiber T ε(t)
f,i due to the applied load as if all the fibers are intact and

the second component is the sum of the additional stress portions inherited from the broken fibers T r(t)
f,i .

Summing these, for fiber i we have

T (t)
f,i =

{
T ε(t)

f,i + T r(t)
f,i , for T (t)

f,i < X i ,

0, otherwise,

where X i is its tensile strength. From Equation (10) with ν = 0, we have

T ε(t)
f,i = Efεf,i = Efε

(t)
y cos2 αf,i .

At each step we recalculate Tf,i according to

T (t+1)
f,i =

T ε(t+1)
f,i + T r(t)

f,i +

∑nb
j=1 cosαf,b( j)Xb( j)

(n−Nb) cosαf,i
, for T (t+1)

f,i < X i ,

0, otherwise,
(11)

where b( j) is the index number of the j th failed fiber (that is, the j th failed fiber is fiber b( j) in the yarn),
nb is the number of new broken fibers when going from step t to t + 1, and Nb is the total number of
broken fibers at t + 1. In this equation, we see a stress enhancement effect in the benefactor fiber (along
its axis) that results when it has a larger helix angle compared to the fiber that failed.

The TM-ELS rule is embodied in the RHS of Equation (11), which has three terms: the first term is
the stress carried by the fiber as if all the fibers are intact, the sum of the first and second terms is the
stress in (i) on page 1432, the numerator of the third term comes from (ii) and (iii), and the denominator
in the third term accounts for (iv). We note that t does not necessarily correspond to an increment in the
applied loading; the index t is increased either

(a) when we increase the external load level, or

(b) when at a given external load level, the redistribution of stresses leads to failure of more fibers.

4.4. Bundle stress. The cross-sectional area of the bundle (neglecting void space between fibers) is given
by

A =

l∑
k=1

nk A
cosαk

=

n∑
i=1

A
cosαf,i

, (12)

where A is the fiber cross-sectional area perpendicular to the fiber axis. The nominal bundle stress σ
is the sum of the fiber force components resolved along the bundle axis divided by the bundle area A
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(a) (b)

α1 = 0
α2 αl−1 αs ᾱ

Figure 4. Simplified yarn geometry. (a) Layer configuration with multiple
angles, (b) simplified geometry where all layers have the same helix angle,
ᾱ = cos−1(

∑l
k=1 nk cos(αk)/n), which is the mean helix angle in the general case. The

dashed lines indicate the yarn axis direction.

[Phoenix 1979]

σ =

∑n
i=1 Tf,i A cosαf,i

A
. (13)

Substituting Equation (12) into Equation (13), we have

σ =

∑n
i=1 Tf,i cosαf,i∑l

k=1
nk

cosαk

=

∑n
i=1 Tf,i cosαf,i∑n

i=1
1

cosαf,i

. (14)

Note that the stresses in individual surviving fibers will be larger than σ especially when some fibers
have failed.

4.5. Analytical model based on geometrical averaging. In this section, we develop a probabilistic bun-
dle strength model that averages the fiber helical paths across the bundle to obtain a uniform bundle
geometry. In doing so, we define a mean helix angle, ᾱ, for the ideal helical structure given as

ᾱ = cos−1
(∑l

k=1 nk cosαk

n

)
, (15)

so that ᾱ is weighted by the fraction of all the fibers in each layer nk/n, which increases when traveling
from center to the surface of the bundle. In essence, this model considers all the fibers to follow the same
helical path with ᾱ then the TM-ELS rule of Equation (11) reduces to

T (t+1)
f,i =

T ε(t+1)
f,i + T r(t)

f,i +

∑nb
j=1 Xb( j)

(n−Nb)
, for T (t+1)

f,i < X i ,

0, otherwise,
(16)

T (0)
f,i = T (0)

= Efε
(0)
y cos2 ᾱ, (17)



STATISTICAL STRENGTH OF A TWISTED FIBER BUNDLE 1435

where the second line gives the initial stress at t = 0 and where ε(0)y is the initially applied bundle strain.
Combining Equations (16) and (17) shows that all intact fibers will sustain the same stress along the

fiber axis, that is,

T (t+1)
f,i =

{
T for T (t+1)

f,i < X i ,

0 otherwise.
(18)

In Equation (14), replacing cosαf,i by cos ᾱ given in Equation (15), the nominal bundle stress along
the bundle axis becomes

σ =

∑n
i=1 Tf,i cos2 ᾱ

n
,

and by Equation (18), when there are Nb failed fibers, σ becomes

σ =

(n − Nb

n

)
T cos2 ᾱ. (19)

The instantaneous fiber stress component acting along the bundle axis is s = T cos2 ᾱ, whereby Equation
(19) simplifies to

s =

( n
n − Nb

)
σ,

which is the well-known ELS expression for s as a function of σ , n, and Nb.
The idea of a mean angle ᾱ and an equivalent stress T for all fibers may well represent the condition

of complete migration, which occurs over a short yarn length scale. In this case, a fiber resides in a
particular layer only over a very short distance along the yarn axis. Thus, its local tension at a particular
cross section is more reflective of the average helix angle than the helix angle of the layer in which it
currently resides.

For Weibull fibers under stress T along its axis, the corresponding fiber failure cumulative probability
distribution function (cdf) F(T ) is

F(T )= 1 − exp
{
−

( T
σδ

)ρ}
. (20)

As in Daniels’ bundle theory, we cast F(T ) in terms of s, the fiber stress acting along the bundle axis.
Substituting s = T cos2 ᾱ into Equation (20) yields

F(s)= 1 − exp
{
−

( s
cos2 ᾱσδ

)ρ}
.

Following geometric averaging, the strength of a twisted bundle corresponds to that for a parallel
bundle of fibers whose strengths follow a Weibull distribution with the same shape parameter ρ but
a ‘modified’ scale parameter σδ,α = cos2 ᾱσδ. Hence, the asymptotic distribution function for bundle
strength will be Gaussian with mean µG and standard deviation γG given by

µG = σδ,α(ρe)−1/ρ
= µD cos2 ᾱ, γG =

(σδ,α
√

n

)
ρ−1/ρ

√
e−1/ρ(1 − e−1/ρ)= γD cos2 ᾱ,

where µD and γD are the mean strength and standard deviation of a Daniels parallel fiber bundle given
by Equation (5).
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Using the [Smith 1982; McCartney and Smith 1983] corrections we obtain improved estimates, µ∗

G
and γ ∗

G, for the mean and standard deviation:

µ∗

G = µD cos2 ᾱ

{
1 +

0.996
n2/3

(e2/ρ

ρ

)1/3
}
, γG

∗
= γD cos2 ᾱ

√
1 − 0.317

(µD

γD

)2(e2/ρ

n2ρ

)2/3
.

4.6. Analytical model based on statistical averaging. In this section, we develop a second probability
model for bundle strength, based on statistical averaging, where we average the failure probabilities of
the fibers across the layers in an ideal helical structure. In doing so, we find it convenient to change to a
continuous description of the bundle geometry. We let r̄ = r/R, that is, the radial distance normalized by
yarn radius, so that r̄ = 0 is the yarn axis and r̄ = 1 corresponds to the yarn radius. The fiber helix angle
α(r̄) is taken as a continuous function of r̄ . Accordingly, α(r̄ = 0)= 0 and α(r̄ = 1)= αs. Likewise we
let nr (r̄) be the number of fibers within a cylinder of radius r̄ , taking it to be a continuous function of
r̄ . Thus nr (r̄ = 0) = 0 and nr (r̄ = 1) = n. Therefore dnr (r̄)/n is the fraction of fibers between r̄ and
r̄ + dr̄ .

As mentioned earlier, the fiber stresses Tf,i are generally a sum of the stress generated from the applied
loading, assuming no fiber breaks, T ε

f,i , and the stress components transferred from broken fibers, T r
f,i .

The former stresses are distributed nonuniformly depending on the fiber helix angles, whereas the latter
additional stresses transferred from fiber breaks will resolve to have same components acting along
the yarn axis according to the TM-ELS rule described above. As fiber failures accumulate, these latter
contributions, T r

f,i , typically greatly exceed the nonuniform contributions T ε
f,i . In this case, the component

of Tf,i acting along the yarn axis can be reasonably considered equal for all fibers, and thus, taken as
s = Tf,i cos2 α(r̄), as defined earlier. Accordingly, the probability of failure F(Tf,i ) for fiber i , with helix
angle α(r̄), in terms of s is

F(s)= 1 − exp
{
−

(
s

σδ cos2 α(r̄)

)ρ}
.

The assumption that the component of stress along the yarn axis, s, is equal for all fibers greatly simplifies
the calculation of average failure probability across the yarn cross-section. Denoting this average as F̄(s),
we have

F̄(s)=

∫ αs

α=0

[
1 − exp

{
−

(
s

σδ cos2 α(r̄)

)ρ}] dnr (r̄)
n

. (21)

The functions nr (r̄) and α(r̄) are calculated from the bundle packing density ν(r̄). As in [Phoenix
1979], for large bundles we take

ν(r̄)=
φ(∞)

π
cosα(r̄), φ(∞)

=
1
2(1 + secαs), (22)

for 0 ≤ r̄ ≤ 1. Equation (22) assumes that the fiber packing density is uniform in the yarn cross-section,
that is, the void fraction is constant with respect to radial position. (Actually, the void fraction may be
expected to decrease slightly as r decreases, since the radial pressure in the yarn increases from yarn
surface to the yarn center. Nevertheless, such effects are difficult to model, and little is believed to be
lost with the uniform packing assumption.) Since ν(r̄) satisfies∫ 1

0
ν(r̄)2π r̄dr̄ = 1,
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the fraction of all fibers within a cylinder of radius r̄ can be written as

nr (r̄)
n

=

∫ r̄

0
ν(r̄)2π r̄ dr̄ .

Upon differentiating this equation with respect to r̄ , we get

dnr (r̄)
n

=
φ(∞)

π
cosα(r̄) 2π r̄dr̄ . (23)

Substituting Equation (23) into Equation (21), the ‘average’ probability distribution for fiber failure can
be rewritten in terms of α(r̄) only as

F̄(s)=

∫ αs

α=0

[
1 − exp

{
−

(s sec2 α(r̄)
σδ

)ρ}]φ(∞)

π
cosα(r̄) 2π r̄dr̄ . (24)

For an ideal yarn geometry we have

tanα(r̄)=
2π r̄

h̄
, (25)

where h̄ = h/R and at the surface of the yarn

tanαs =
2π
h̄
. (26)

From Equation (25) we get

sec2 α dα =
2π
h̄

dr̄ . (27)

Substituting Equations (24)–(27) into Equation (21) yields

F̄(s)=
2φ(∞)

tan2 αs

∫ αs

α=0

[
1 − exp

{
−

(s sec2 α

σδ

)ρ}]
tanα secα dα

= 1 −
2φ(∞)

tan2 αs

∫ αs

α=0
exp

{
−

(s sec2 α

σδ

)ρ}
tanα secα dα

= 1 −
2φ(∞)

tan2 αs

∫ secαs

1
exp

{
−

( s
σδ

)ρ
x2ρ
}

dx

= 1 −
φ(∞)

ρ tan2 αs

( s
σδ

)−1/2
∫ (s/σδ)ρ sec2ρ αs

(s/σδ)ρ
e−y y1/2ρ−1dy, (28)

where in the third line we made the change of variables secα = x , and again in the fourth line as
y = (s/σδ)ρ x2ρ . The integral in Equation (28) can be written in terms of upper incomplete Gamma
functions [Abramowitz and Stegun 1964] as shown below

F̄(s)= 1 −
φ(∞)

ρ tan2 αs

( s
σδ

)−1/2
[
0
( 1

2ρ
,

{
s
σδ

}ρ )
−0

( 1
2ρ
,

{
s
σδ

}ρ
sec2 αs

)]
.

In statistical averaging, the problem for a twisted bundle reduces to that for a parallel fiber bundle with
fiber strength probability distribution given by F̄(s). As a result, the bundle strength is asymptotically
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normal where the asymptotic bundle mean strength and standard deviation are given by

µS = s∗
[1 − F̄(s∗)], γS =

s∗

√
n

√
F̄(s∗)[1 − F̄(s∗)],

where s∗ is the point where the maximum of µ(s) occurs. The final result according to statistical aver-
aging is calculated by applying corrections due to [Smith 1982; McCartney and Smith 1983]. Thus, the
improved estimates for the mean and standard deviation, µ∗

S and γ̄S
∗ are

µ∗

S = µS + 1̄∗

n, γS
∗
= γS

√
1 − 0.320

(1̄∗
n

γS

)2
,

where

1̄∗

n =
0.996
n2/3

{
F̄ ′(s∗)2s∗4

2F̄ ′(s∗)+ s∗ F̄ ′′(s∗)

}1/3

.

5. Simulation algorithms

We now discuss the Monte Carlo simulation algorithm for the failure of a twisted bundle of Weibull fibers
having shape parameter ρ, and scale parameter σδ. These fibers are assumed to have identical diameter,
cross-sectional area, and Young’s modulus, and are arranged in l layers having ideal helical structure.
For a given twisted bundle surface helix angle, αs, the helix angle of each layer can be determined using
Equation (9). The number of fibers in each layer, nk , can be determined using Equation (8) and the total
number of fibers n is the sum.

For a given set of values of the above parameters, we first assign a Weibull strength to each of the n
fibers. We assume that these fibers are twisted without tension so the fibers do not have any pre-stress
or pre-strain. For a given set of parameter values, the number of replications performed by the Monte
Carlo simulation is ns .

Starting from zero, we can either apply a monotonically increasing uniform stress or strain. Both algo-
rithms are described briefly below. These two algorithms yield the same empirical probability distribution
and mean strength results except that the stress-strain curves obtained by these two algorithms exhibit
different characteristics. In a stress-controlled experiment failure is sudden and the external load drops
from the maximum to zero. In a strain-controlled experiment, the bundle stress starts from zero, attains
a maximum defined as the strength, and then decreases to zero while the bundle strain is monotonically
increased indefinitely.

5.1. Stress-controlled experiment. In a stress-controlled experiment the stress is increased incremen-
tally in predetermined small steps. Whenever a step encounters a fiber for which its axial stress exceed
its strength, the fiber is broken and then its stress is distributed equally among the intact fibers according
to TM-ELS. The algorithm then checks to see if the additional loads on the survivors would result in
any of their assigned strengths being exceeded, and if so, these fibers are then broken and their updated
loads are redistributed. If not, equilibrium has been achieved at that step in which case new incremental
steps in external load are applied until some survivors have their strengths exceeded. These fibers are
then broken and the stress redistribution process is repeated.
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Eventually we reach bundle collapse whereby all remaining fibers fail with no further increase in the
applied stress. The threshold external stress beyond which all the fibers fail is recorded as the bundle
strength.

5.2. Strain-controlled experiment. In a strain-controlled experiment we do not have to explicitly redis-
tribute the load from broken fibers to intact ones. At each increment in applied bundle strain we calculate
fiber strains for each layer. If the strain of a fiber in some layer exceeds its failure strain then that fiber
becomes broken and the external bundle load and stress for that bundle strain is recalculated. The bundle
stress at increment number t is then given by

σ (t) =

∑n
i=1 Efε

(t)
f,i cosαf,i∑n

i=1
1

cosαf,i

, ε
(t)
f,i =

{
εf,i for εf,i < ξi ,

0 otherwise,

where ξi is the failure strain of fiber i . The bundle strength is given by strength = maxt {σ
(t)

}.

6. Results and discussion

In this section, we discuss and compare the theoretical and Monte Carlo simulation results for the strength
of a twisted fiber bundle.

6.1. Validation of simulation algorithm. As a form of validation we performed Monte Carlo simulation
for the case of a parallel fiber bundle, that is, αs = 0. In Figure 5 the simulated bundle mean strength
and asymptotic standard deviation normalized by σδ are compared with corrected Daniels’ values, µ∗

D
and γ ∗

D, normalized by σδ, given by Equation (7), as ρ varies from 2 to 10. Note that all estimates for
the mean and standard deviation in Figure 5 are normalized by σδ . We achieve good agreement between
the parallel bundle theory and simulation for the entire range of ρ and both bundle sizes considered,
n = 130 and n = 1185. If corrections by [Smith 1982; McCartney and Smith 1983] are not applied,
then µD slightly underestimates and γD overestimates the corresponding simulated values. The means
for different bundle sizes differ only slightly because of the correction to the Daniels’ value. Likewise
the standard deviation values will collapse almost onto one curve when scaled by

√
n (not shown in the

figure).

6.2. Failure behavior. From the simulation results we have noticed that both αs and ρ clearly affect the
nature of failure. In the case of low αs and low ρ the fiber breaks are spread randomly across the cross-
section of the bundle. Also the fraction of failed fibers when the maximum bundle stress is achieved
is relatively high, indicative of a ductile-type failure process. In the case of high αs and high ρ there
are relatively fewer failed fibers when the peak bundle stress is reached, and these are more likely to
concentrate near the center of the bundle, indicative of a brittle-type failure.

The observed transitions in failure mode are a consequence of the interaction of ρ and the strain
distribution among the layers, which depends on αs. As the variation in fiber strength increases (ρ
decreases) failure progression becomes dominated by the widely dispersed fiber strengths. It is more
dispersed for lower αs, as the variation in fiber strains across the bundle is mild. As the variation in fiber
strength decreases (ρ increases) failure progression becomes dominated by the fiber strain distribution.
In this case, as we increase αs the gradient in strain between the highly strained center and less strained
surface layers steepens, promoting failure to be localized towards the center.
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Figure 5. Normalized mean and asymptotic standard deviation for bundle strength ob-
tained from Monte Carlo simulation (ns = 10000) as compared with the corresponding
corrected Daniels’ values given by Equation (7).

6.3. Stress-strain curves. Figure 6 shows average stress-strain curves (average of 500 runs) for bundles
with 62 and 1185 fibers, respectively, but otherwise the same parameter values αs = 12o, ρ = 2 and
8. Also shown are sample stress-strain curves for three successive realizations. For the smaller bundle
with only 62 fibers the sample stress-strain curves show significant deviation from the average behavior
reaching 5-10% near the peak stress. This implies that for a long chain of such bundles one might expect
the chain to be much weaker than the average bundle strength as the strength would be governed by the
weakest bundle. On the other hand, for the 1185 fiber bundle the deviations are much smaller being 1–2%,
so a long chain of such bundles would be much closer to the average bundle strength. The fluctuations
in the bundle strength grow as the variation in fiber strength increases, such as when ρ = 8 decreases to
ρ = 2.

Figure 6 shows that the initial bundle modulus is independent of ρ. This high initial modulus occurs
because of the initiation of a relatively few randomly dispersed breaks. After further straining, the slope
of the stress-strain curve decreases at a rate which depends on ρ, since this controls the variability and
thus, the rate at which weak fibers are encountered as strain increases. Eventually the peak stress is
reached when loss of fibers through breakage outweighs the increased stresses occurring in the survivors
with increasing strain, these being different from fiber to fiber. (In the stress-controlled experiment
this corresponds to the stress (and strain) at which instability is reached and sudden collapse occurs.)
Concomitantly the stress drops with further straining at a rate which also depends on ρ, becoming more
abrupt and brittle-like as ρ increases.

6.4. Cumulative probability density functions. Figure 7 shows the simulated cumulative probability
distribution function for the strength of a twisted fiber bundle on normal probability paper, namely,
erf−1(2Gn − 1) vs. S/σδ, where we recall that Gn is the bundle strength cumulative distribution func-
tion. The linearity of the distributions suggests that in all cases the strength distribution is virtually
normal. Figure 7a displays its dependence on the surface helix angle αs, (αs = 0o, 6o, 12o, 18o, 24o)
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for the case of ρ = 6 and n = 1185. Figure 7b shows its dependence on bundle size n, (n = 130, 653,
1185) for ρ = 4 and αs = 12o. From Figure 7a we find that the strengths decrease substantially as αs

increases, while the standard deviation (inversely related to the slope of the curves) stays more or less
independent of αs and Figure 7b shows that the bundle size n has its most significant impact on the
bundle standard deviation, which is approximately inversely proportional to n. Also shown in Figure 7
are the corresponding predictions from the model based on statistical averaging. In general, we find that
when αs < 18o the model achieves very good agreement with the simulation result. For larger values of
αs, the model provides a conservative estimate.
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Figure 6. Thin lines are sample stress strain curves and thick lines are average (of 500
runs) stress strain curves for given values of ρ, αs, and n.
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Figure 7. Distribution functions on normal probability paper (erf−1(2Gn − 1) versus
S/σδ) for 10000 replications. The parameters used for these plots are (a) n = 1185,
ρ = 6 and αs = 0◦, 6◦, 12◦, 18◦, 24◦; (b) ρ = 4, αs = 12◦ and n = 130, 653, and 1185.
Here S is the strength of the bundle obtained either from the simulation or size corrected
statistical averaging theory.
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6.5. Strength and standard deviation efficiency, and coefficient of variation. To study the dependence
of the mean bundle strength on αs and ρ, we calculate the strength efficiency of the fiber bundle, Eµ,
which is the ratio of mean bundle strength to mean fiber strength,

Eµ =
µ∗

E(X)
,

where µ∗ is the mean bundle strength for given n obtained either using one of the theories (corrected for
n) or a simulation and E(X) is the mean strength of the fiber. For Weibull fibers, E(X)= σδ0(1 + 1/ρ),
where 0( ) is the Gamma function. For instance, in the case of geometrical averaging, the strength
efficiency for a very large bundle (not requiring a size correction) is the closed form expression

E(∞)
µ =

cos2 ᾱ σδ(ρe)−1/ρ

σδ0(1 + 1/ρ)
=

cos2 ᾱ (ρe)−1/ρ

0(1 + 1/ρ)
,

which depends only on the mean helix angle, ᾱ, and Weibull shape parameter, ρ.
Another useful quantity for reflecting variability in the bundle strength is the coefficient of variation,

(CV), which is the ratio of the standard deviation to the mean, expressed as

CV =
γ ∗

µ∗
. (29)

For a measure of the statistical variation in bundle strength compared to that of a single fiber, we define
the transfer efficiency of the variability as the ratio of the bundle standard deviation to the fiber standard
deviation, that is

Eγ =
γ ∗

√
Var(X)

, (30)

where Var(X) is the variance of fiber strength X . Again the bundle γ ∗ and µ∗ are calculated for a given n
either from one of the three theories (corrected for n) or simulation. In the case of geometrical averaging,
Equations (29) and (30) for a large bundle (not requiring a size correction) become

CV(∞)
=

√
1 − e−1/ρ

n e−1/ρ , E(∞)
γ =

cos2 ᾱ ρ−1/ρ
√

e−1/ρ(1 − e−1/ρ)√
n
[
0(1 + 2/ρ)−02(1 + 1/ρ)

] .
In all theories CV, Eµ, and Eγ are independent of σδ.

Figure 8 compares simulation and theoretical predictions for Eµ vs. αs for different values of ρ.
Generally Eµ decreases as ρ decreases (that is, the variability in the fiber strength increases) and αs

increases. As αs increases, more fibers in the bundle become misaligned with the direction of loading.
As ρ decreases, a higher proportion of weaker fibers exists in the bundle. Figure 8 shows that all theories
capture the effects of ρ and αs on the strength efficiency of the twisted fiber bundle very well. For
both n = 130 and 1185 and smaller αs (up to 18o) there is almost no difference between theory and
simulation. However, for higher values of αs there are slight differences, which diminish as ρ decreases,
that is, the variability increases and a rather diffuse-type of failure mode occurs. TM-ELS translates to a
diffuse failure pattern when αs and ρ are low, but not when they are both high. Therefore the discrepancy
between theory and simulation at high ρ and high αs is attributed to the fact that under these conditions
the failure is more or less localized near the center of the yarn, up to the point of collapse.
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Figure 8. Strength efficiency, Eµ, versus surface helix angle, αs. Dashed and solid
lines correspond to theories based on geometrical averaging and statistical averaging,
respectively. Dotted lines are obtained using the theory of [Phoenix 1979]. The marker
points are simulation results.

Figure 9 depicts the behavior of the CV for n = 1185. The simulation results show that it is independent
of αs with the exception of a slight drop in CV at a high value of αs (≈ 25o). The latter drop can
again be attributed to less variability in the failure patterns from one bundle to another, as αs increases.
The agreement between the theories and simulation is very good. In cases of smaller ρ, the statistical
averaging model performs better than the other theories discussed earlier. For smaller bundles, n = 130
and lower ρ < 4 the discrepancies between the asymptotic theories and simulation increase as shown in
Figure 10. The thick lines in Figure 10 are the CV predictions with corrections applied to both the mean
and standard deviation, that is, CV =µ∗/γ ∗, as in Figure 9. Again in these cases, the statistical averaging
model outperforms the others. The thinner lines in Figure 10 correspond to the CV calculations when
correcting the mean only, CV = µ∗/γ , which is shown to provide a conservative estimate.

Figure 11 shows the dependence of Eγ on ρ and αs. While γ and the CV increase as the variability
in fiber strength increases (ρ decreases), the Eγ decreases (improves). As shown, the theories provide
equally good agreement for n = 1185, but for n = 130, the statistical averaging model consistently
provides values closer to the simulation results. Also, given in Table 1 are dimensional values of bundle
strength mean and standard deviation to show how they compare.

7. Effect of friction and chain-of-bundles calculation

Beginning with the model for the failure of a single bundle as introduced earlier in the paper, we outline a
basic framework for predicting the strength of a twisted yarn of length L . For this, we apply the chain-of-
bundles (COB) model, where the strength of weakest bundle in the chain is the strength of the chain. The
COB model requires defining the length of each bundle or link in the chain, that is, a “characteristic stress
transfer length”, which is appropriately defined by the fiber length needed for the fiber to recover the
stress away from a break. This length depends on the interfiber friction as well as the contact pressures
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Figure 9. Coefficient of variation scaled with bundle size,
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nCV, vs surface helix angle,
αs for n = 1185, and ρ= 2, 4, 6, 8, and 10. Dashed and solid lines correspond to theories
based on geometrical averaging and statistical averaging, respectively. Dotted lines are
obtained using the theory of [Phoenix 1979]. The marker points are simulation results.
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strength mean only. Dashed and solid lines correspond to theories based on geometrical
averaging and statistical averaging, respectively. Dotted lines are obtained using the
theory of [Phoenix 1979]. The marker points are simulation results.
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between the fibers caused by twisting. A rigorous analysis of friction effects and their impact on this
characteristic link length are beyond the scope of this work and are treated in a sequel.

For a simple demonstration of the COB model, we employ a friction length given by [Alexander 1952]

lf =
βAdf

(1 −φA) f sin2 αA
,

where f is the friction coefficient, φA and βA are two adjustable parameters, taken by Alexander to be
1/2, and αA is the corresponding helix angle satisfying tanαA = βA tanαs. We define the characteristic
length of a bundle in terms of the friction length, with φA = βA = 1/2, as

δc = 2lf cosαA =
2 df cosαA

f sin2 αA
= δc(αs)=

4df
√

4 + tan2 αs

f tan2 αs
, (31)

where we have rewritten it in terms of αs. According to Equation (31), the characteristic length decreases
as αs increases. The number of bundles in the yarn of length L is m(αs) = L/δc(αs), and this number
increases with αs.

Figure 12 clearly shows that the strength rises, as αs increases, up to a maximum around 30◦. However,
the αs corresponding to optimal strength is much higher than what is typically observed, though not very
different from what [Alexander 1952] obtained for a staple yarn. In an actual yarn with continuous
filaments twisting introduces fiber slack in inner fibers that must be relieved by periodic fiber migration
along the yarn. Such migration becomes increasingly difficult as the twist angle increases and thus contact
forces increase. For this reason the yarn strength peaks prematurely as slack effects cause uneven fiber
load distribution, thus reducing the strength beyond the effect of twist discussed earlier in the paper. On
the other hand, in a staple yarn that has discontinuous fibers, these slack effects are easily eliminated by
fiber sliding and thus strength peaks at a twist angle much closer to our values. Based on the weakest
link concept, it is expected that the strength of the longer yarn with L = 0.1 meters would be smaller
than that of the shorter yarn with L = 0.01 meters. Results in Figure 12, which plots normalized mean
strength versus surface helix angle, show the reverse because of the much smaller normalization strength
µ0 for the longer yarn with L = 0.1 meters.

8. Conclusions

Monte Carlo simulation and analytical models are developed for the statistical strength of twisted fiber
bundles having Weibull fibers. We see important effects like the approximate normality of the bundle

Strength mean (GPa) Strength standard deviation (GPa)

Fiber 2.78 0.540
Bundle (αs = 0◦) 1.88 0.023

Bundle (αs = 30◦) 1.61 0.020

Table 1. Typical bundle strength mean and standard deviation values for a fiber with
σδ = 3 GPa, ρ = 6, and n = 1185.
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strength distribution, decrease in strength with number of fibers in bundle, transition from a ductile, for
small αs and ρ, to brittle failure mode for large αs and ρ. We further use a simple chain-of-bundles
model showing the presence of an optimal twist angle that gives maximum strength. However, a more
detailed study, which considers pressure development in the bundle and stress build up in fibers from
broken ends, is required to fully understand the effects of friction on bundle strength and optimal αs.
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CONTACT STRESS ON A ROTATING ELASTIC BAND SAW BLADE USING THE
THEORY OF A COSSERAT SURFACE

M. B. RUBIN AND E. TUFEKCI

The value of the contact stress between a band saw blade and the driving wheel is modeled using the
theory of an elastic Cosserat surface. Specifically, we use nonlinear Cosserat theory to model the bend-
ing of an elastic plate into a rotating right circular cylindrical tube with associated end moments. The
resulting equations are then linearized, the end moments are relieved and the reference length of the plate
is adjusted to cause contact of the blade with the wheel. The results indicate that the nonuniformity in
the deformed shape of the saw blade significantly influences the predictions of the value and distribution
of the contact stress between the blade and the wheel even though the blade is thin. This is in addition
to the influence of a crowned wheel, and the deformed shape due to the tensioning process, which are
typically used to help control tracking of the blade on the wheel. Also, we showed that the value of
this contact stress predicted by a simple Lamé type solution remains about 50% of that predicted by the
Cosserat solution and that the effect of the rotational speed of the wheel is negligible for typical operating
conditions of thin wood-cutting saws.

1. Introduction

A typical band saw blade is a thin steel strip that has been bent into a cylindrical shell with gullets cut out
on one of the edges to create teeth. The blade is positioned over two rotating wheels that are separated
by a controlled distance. To prevent catastrophic damage to the teeth and the wheel, the blade is only in
partial contact with each wheel so that the teeth can hang freely over the edge of the wheel (Figure 1).
Tension in the blade can be controlled by adjusting the positions of the wheels. Although in practice the
force between the band wheels is controlled, the model used here treats the distance between the wheels
as displacement controlled instead of load controlled.

A recent review of mechanical problems relating to aluminum-cutting high-speed band saws in [Gen-
draud et al. 2003] describes problems which reduce the quality of the surface of the material being cut,
reduce the precision of the dimensions of the cut, and shorten the life of the saw blade. In other studies,
attention has been focused on saw vibrations [Mote Jr. 1965; Mote and Naguleswaran 1966; Le-Ngoc
and McCallion 1999; Damaren and Le-Ngoc 2000; Gendraud et al. 2003; Kong and Parker 2005] and
tracking of the blade on the wheels [Wong and Schajer 1997; Wong and Schajer 2002; Barcik 2003].
Tracking of the blade can be significantly influenced by the contact stress distribution between the blade
and the wheel. In practice, contact stress is modified by using a crowned wheel and by a roll tensioning
process which changes the unloaded shape of the blade. Two narrow crowned rollers are used to squeeze
the blade, causing plastic deformations and residual stresses. These residual stresses cause the unloaded
blade to attain a deformed shape that can be optimized to help control tracking on the wheel. [Lister and

Keywords: band saw blade, Cosserat surface, contact stress, elastic.
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Figure 1. Sketch of the geometry of the saw blade and wheel.

Schajer 1993] analyzed this effect using plate theory. Complete elastic-plastic analysis of a saw blade
remains a difficult problem because the blade experiences finite rotations and is only in partial contact
with the wheels. The objective of this study is to analyze the contact stress and deformations of the
rotating band saw blade. Here, a formulation is proposed which can be used to model the effects of a
crowned wheel and the tensioning process. Although these effects are significant, we first concentrate
on the contact stress distribution caused by nonuniform shape of the blade when a plate is deformed
elastically and joined at its edges to form the blade.

In the analysis of contact stress, the straight portions of the blade are ignored and the blade is modeled
as a circular cylindrical shell that is stretched and placed in partial axial contact with a circular wheel
(Figure 1). The blade is considered to be a plate in its stress-free reference configuration. This plate is
then deformed into an axisymmetric shell which is joined perfectly at its seam. The deformation causes
circumferential tension near the blade’s outer surface and circumferential compression near its inner
surface. If the deformed plate (blade) were to remain a right-circular cylinder then the Poisson effect
would require nonzero moments to be applied to the axial edges of the blade. However, when these edge
moments are relieved and the surfaces and edges of the blade are stress-free, the blade deforms so that
its mean radius is not uniform along its axes of symmetry. Consequently, the contact stress between
the blade and the wheel is influenced by this prestressed state. These nonuniform deformations are in
addition to those that are caused by the tensioning process described earlier. Also, the effect of the
angular velocity of the wheel is shown to be negligible for typical operating conditions of wood-cutting
saws.
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To model the finite deformation of the plate into the axisymmetric shell and the finite rotations of the
deformed blade it is necessary to use a nonlinear shell theory. Moreover, it is well known that contact
problems of thin structures need to use enhanced theories which model normal extension, that is, changes
in thickness, and shear deformation of the structure (for example, [Naghdi and Rubin 1989]). Here, the
blade is modeled using the theory of a Cosserat surface of [Naghdi 1972; Rubin 2000]. However, to
determine the deformed shape of the blade and the distribution of contact stress the nonlinear equations
are linearized about a finitely deformed state.

An outline of this paper is as follows. Section 2 is a brief summary of the nonlinear Cosserat equations,
and Section 3 describes a simple finite deformation solution. Section 4 develops approximate equations
linearized about the solution in Section 3, and Section 5 describes the procedure used to obtain an
analytical solution of these linear equations. Section 6 is a discussion of the results, Appendix A includes
further details of the solution and Appendix B shows a Lamé type solution.

Throughout the text, bold-faced symbols are used to denote vector and tensor quantities. Also, I
denotes the unity tensor; tr(A) denotes the trace of the second order tensor A and AT denotes the
transpose of A. The scalar a · b denotes the dot product between two vectors a, b; the scalar A · B =

tr(ABT ) denotes the dot product between two second order tensors A, B; the vector a × b denotes the
cross product between a and b; and the second order tensor a ⊗ b denotes the tensor product between
a and b. The usual summation convention over repeated lower cased indices is implied. The range of
Latin indices is (1, 2, 3) and Greek indices is (1, 2). A glossary of notation is included at the end of this
paper.

2. A brief summary of the nonlinear Cosserat equations

The theory of a Cosserat surface, which is a model for a shell-like body, has been described in detail
in [Naghdi 1972]. This theory is sufficiently general to model normal extension and shear deforma-
tion. Here, we make use of the formulation and notation presented in [Rubin 2000]. Specifically, the
kinematics of the shell’s stress-free reference configuration are characterized by{

X(θα), D3(θ
α)
}
,

where X locates a material point relative to a fixed origin, the director vector D3 models a material fiber
through the shell’s thickness, and θα, (α = 1, 2), are convected Lagrangian coordinates. Similarly, the
kinematics of the shell’s present deformed configuration are characterized by{

x(θα, t), d3(θ
α, t)

}
,

where t denotes time. Also, the tangent vectors Dα, dα, and the directors D3, d3 are defined such that

Dα = X,α , D1/2
= D1 × D2 · D3 > 0,

dα = x,α , d1/2
= d1 × d2 · d3 > 0,

where a comma denotes partial differentiation with respect to θα . Moreover, it is convenient to introduce
the reciprocal vectors Di and di by the expressions

Di
· D j = δi

j , di
· d j = δi

j ,
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where δi
j is the Kronecker delta symbol. For elastic shells it is convenient to define the additional kine-

matic variables

F = di ⊗ Di , C = FT F, E =
1
2(C − I), βα = F−1d3,α − D3,α,

where F is similar to a deformation gradient, E is similar to a Lagrangian strain tensor and βα are
measures of inhomogeneous deformation.

Using the direct approach to the Cosserat theory [Rubin 2000, p. 91], the equations of motion of the
shell can be written in the forms

m(v̇ + y3ẇ3)= mb + tα,α, (2–1a)

m(y3v̇ + y33ẇ3)= mb3
− t3

+ mα
,α, (2–1b)

where a superposed dot denotes material time differentiation holding θα fixed. Here, (2–1a) represents
the balance of linear momentum and (2–1b) represents the balance of director momentum which can be
related to a weighted average over the thickness of the shell of the three-dimensional balance of linear
momentum. The balance of angular momentum is satisfied by the constitutive equations which require a
second order tensor T to be symmetric. Also, m is related to the mass of the shell, {y3, y33

} are constant
director inertia coefficients, the velocity v and director velocity w3 are defined by

v = ẋ, w3 = ḋ3,

the quantities {b, b3
} are assigned fields due to body force and contact stresses on the shell’s major

surfaces, and constitutive equations need to be supplied for the quantities {t i ,mα
}.

For the problem under consideration in this paper the stress-free reference configuration of the shell
is taken to be a flat plate of uniform thickness H , with length L and width W defined by

X = θ1e2 + θ2ez, D3 = D3
= e1, ez = e3,

θ2
= Z , 0 ≤ θ1

≤ L , −
W
2 ≤ Z ≤

W
2 ,

D1 = D1
= e2, D2 = D2

= ez, A1/2
= D1/2

= 1,

where ei are rectangular Cartesian base vectors and the directions are specified for later convenience in
describing the deformed axisymmetric shell.

Now, for a plate made from a uniform homogeneous elastic material the inertia quantities are specified
by [Rubin 2000, p. 167], as

m = ρ∗

0 H, y3
= 0, y33

=
H2

π2 ,
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where ρ∗

0 is the reference mass density of the material, and the strain energy function, from [Rubin 2000,
pp. 168-169] is

m6 =
µ∗H

1 − 2ν∗
(ν∗(E · I)2 + (1 − 2ν∗)E · E)+ 1

2 H Kαβ
· (βα ⊗ ββ),

K 11
=

H 2µ∗

12

(( 2
1 − ν∗

)
e2 ⊗ e2 + ez ⊗ ez

)
,

K 12
=

H 2µ∗

12

(( 2ν∗

1 − ν∗

)
e2 ⊗ ez + ez ⊗ e2

)
,

K 21
=

H 2µ∗

12

(
e2 ⊗ ez +

( 2ν∗

1 − ν∗

)
ez ⊗ e2

)
,

K 22
=

H 2µ∗

12

(
e2 ⊗ e2 +

( 2
1 − ν∗

)
ez ⊗ ez

)
,

where the constants {µ∗, ν∗
} are the shear modulus and the Poisson’s ratio of the elastic material in the

small deformation limit, respectively. The constitutive equations become

mα
= H Kαβββ,

t i
=

µ∗H
1 − 2ν∗

F
(
ν∗(E · I)I + (1 − 2ν∗)E

)
Di

− mα(d3,α · di ).

For the problem under consideration the body force is neglected, the outer surface of the deformed shell
remains traction free, and its inner surface is free to slip over the wheel but is subjected to a normal
contact stress q, which is positive in compression, in regions that make contact with the wheel. Under
these conditions the assigned fields {b, b3

} are specified by [Rubin 2000, p. 167], now modified to include
the function fr (Z) associated with a localized moment, to model effects of the tensioning process as

mb = q
(
x −

H
2 d3

)
,1 ×

(
x −

H
2 d3

)
,2 ,

mb3
=

q H
2

(
x −

H
2 d3

)
,1 ×

(
x −

H
2 d3

)
,2 + fr (Z)er ,

Next, the plate is deformed into an axisymmetric shell such that the deformed kinematics are

x = r(Z)er (θ)+ z(Z)ez, θ =
θ1

R
+ωt,

R =
L

2π
,

d3 = φr (Z)er (θ)+φz(Z)ez,

v̇ = −rω2er ,

ẇ3 = −φrω
2er ,

(2–2)
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where θ is the angular coordinate defining the cylindrical polar base vectors

er (θ)= cos θe1 + sin θe2,

eθ (θ)= − sin θe1 + cos θe2,

ez = e3,

ω characterizes the angular velocity of the blade, and the functions {r, z, φr , φz} of Z need to be deter-
mined.

Using these expressions it can be shown that

F = di ⊗ Di
=

( r
R

eθ
)

⊗ e2 +

( dr
d Z

er +
dz
d Z

ez

)
⊗ ez + (φr er +φzez)⊗ e1,

E · I =
1
2

(
φ2

r +φ2
z +

( r
R

)2
+
( dr

d Z

)2
+
( dz

d Z

)2
− 3

)
,

β1 =

(φr

r

)
e2, β2 =

( dφr
d Z

dz
d Z −

dφz
d Z

dr
d Z

)
e1 +

(
−

dφr
d Z φz +

dφz
d Z φr

)
ez( dz

d Z φr −
dr
d Z φz

) ,

m1
=

H 3µ∗

12

(( 2
1 − v∗

)(φr

r

)
+
( 2v∗

1 − v∗

)(− dφr
d Z φz +

dφz
d Z φr

)( dz
d Z φr −

dr
d Z φz

) )
R
r

eθ ,

m2
=

H 3µ∗

12

(( 2ν∗

1 − ν∗

)(φr

r

)
+

( 2
1 − ν∗

)(−dφr
d Z φz +

dφz
d Z φr

)( dz
d Z φr −

dr
d Z φz

) )
(−φzer +φr ez)

( dz
d Z φr −

dr
d Z φz)

,

t1
= µ∗H

(( 2v∗

1 − 2v∗

)
(E · I)+

( r
R

)2
− 1

)
r
R

eθ −
φr

r
m1,

t2
= µ∗H

(( 2ν∗

1 − 2ν∗

)
(E · I)

)( dr
d Z

er +
dz
d Z

ez

)
+µ∗H

(( dr
d Z

φr +
dz
d Z

φz

)(
φr er +φzez

)
+

(( dr
d Z

)2
+

( dz
d Z

)2
− 1

)( dr
d Z

er +
dz
d Z

ez

))
−
(−φz

dφr
d Z +φr

dφz
d Z )

( dz
d Z φr −

dr
d Z φz)

m2,

t3
= µ∗H

(( 2ν∗

1 − 2ν∗

)
(E · I)

)(
φr er +φzez

)
+µ∗H

((
φ2

r +φ2
z − 1

)(
φr er +φzez

)
+

(
φr

dr
d Z

+φz
dz
d Z

)( dr
d Z

er +
dz
d Z

ez

))
−
( dz

d Z
dφr
d Z −

dr
d Z

dφz
d Z )

( dz
d Z φr −

dr
d Z φz)

− m2,

mb = q
(

r
R

−
H
2
φr

R

)(( dz
d Z

−
H
2

dφz

d Z

)
er −

( dr
d Z

−
H
2

dφr

d Z

)
ez

)
,

mb3
= −

q H
2

(
r
R

−
H
2
φr

R

)(
dz
d Z

−
H
2

dφz

d Z

)
er

+
q H
2

(
r
R

−
H
2
φr

R

)(
dr
d Z

−
H
2

dφr

d Z

)
ez + fr (Z)er ,

(2–3)
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where tα are forces and mα are couples, both measured per unit of deformed length of the blade’s edges.

3. A simple finite deformation solution

In this section a simple solution is obtained where the plate is finitely deformed into a right-circular
cylindrical shell and the effect of tensioning is neglected, that is, [ fr = 0 in (2–3)]. Specifically, for this
solution the functions {r, z, φr , φz} are

r = c1 R,

z = c2 Z ,

φr = c3,

φz = 0,

(3–1)

where {c1, c2, c3} are constants. Now, substituting these functions into the expressions in (2–3), it can
be shown that

m1
=

µ∗H 3

6(1 − ν∗)

(
c3

c2
1

)
1
R

eθ ,

m2
=
µ∗H 3ν∗

6(1 − ν∗)

(
c3

c1c2

)
1
R

ez,

t1
= µ∗H

(( ν∗

1 − 2ν∗

)
(c2

1 + c2
2 + c2

3 − 3)+ (c2
2 − 1)

)
c1eθ −

µ∗H 3

6(1 − ν∗)

(
c2

3

c3
1

)
H 2

R2 eθ ,

t2
= µ∗H

(( ν∗

1 − 2ν∗

)
(c2

1 + c2
2 + c2

3 − 3)+ (c2
2 − 1)

)
c2ez,

t3
= µ∗H

(( ν∗

1 − 2ν∗

)
(c2

1 + c2
2 + c2

3 − 3)+ (c2
3 − 1)

)
c3er .

Moreover, in the absence of contact stress q , the equations of motion (2–1) reduce to(( ν∗

1 − 2ν∗

)
(c2

1 + c2
2 + c2

3 − 3)+ (c2
1 − 1)

)
−

1
6(1 − ν∗)

(
c2

3

c4
1

)
H 2

R2 =
ρ∗

0 R2ω2

µ∗
,(( ν∗

1 − 2ν∗

)
(c2

1 + c2
2 + c2

3 − 3)+ (c2
3 − 1)

)
+

1
6(1 − ν∗)

(
1
c2

1

)
H 2

R2 =
ρ∗

0 H 2ω2

µ∗π2 .

(3–2)

In addition, for this solution it is assumed that the edges Z = ±W/2 are free of resultant force (t2
= 0)

so that (
ν∗

1 − 2ν∗

)(
c2

1 + c2
2 + c2

3 − 3
)
+ (c2

2 − 1)= 0. (3–3)

Next, by introducing the auxiliary constants

B1 =
ν∗

1 − ν∗
,

B2 =
1

6(1 − ν∗)

H 2

R2 ,
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the solution of (3–2) and (3–3) is obtained by solving the equation

(2B1 + 1)c8
1 −

(
(2B1 + 1)+

ρ∗

0 R2ω2(B1 + 1)
µ∗

− B1
ρ∗

0 H 2ω2

µ∗π2

)
c6

1

−

(
B2(2B1 + 1)+ B2

ρ∗

0 H 2ω2

µ∗π2

)
c2

1 + B2
2 = 0,

for the positive real root of c1 near unity, and substituting the solution into the equations

c2
3 − 1 = −

(
B1

B1 + 1

)
(c2

1 − 1)−
(

B2

B1 + 1

)(
1
c2

1

)
+

(
1

B1 + 1

)
ρ∗

0 H 2ω2

µ∗π2 ,

c2
2 − 1 = −B1

(
c2

1 + c2
3 − 2

)
,

for positive real values of {c3, c2} near unity. In particular, note that since the value of m2 is nonzero it is
necessary to specify a moment on the edges Z = ±W/2 to maintain the right circular cylindrical shape
of the deformed plate.

4. Linearized equations

To develop simplified equations for determining the contact stress between a deformed saw blade and the
wheel, nonlinear equations associated with the kinematic assumption (2–2) are linearized about the finite
deformation solution (3–1). Also, the function fr associated with tensioning is assumed to be small. For
these linearized equations the kinematics of the steady state deformations are specified by

r = c1 R + ur (Z),

z = c2 Z + uz(Z),

φr = c3 + δr (Z),

φz = δz(Z),

and quadratic terms in the displacements and the contact stress
{
ur , uz , δr , δz , q

}
are neglected.

Straightforward algebraic manipulations yield expressions for the constitutive equations

t1
= t1

θ eθ

= µ∗H

(((
c2

1 − c2
2
)
c1 −

c2
3

6(1 − ν∗)c3
1

H 2

R2

)
+

((
c2

1 − c2
2
)
+

2(1 − ν∗)

(1 − 2ν∗)
c2

1 +
c2

3

2(1 − ν∗)c4
1

H 2

R2

)ur

R

+

( 2ν∗c1c3

(1 − 2ν∗)
−

c3

3(1 − ν∗)c3
1

H 2

R2

)
δr +

(2ν∗c1c2

1 − 2ν∗

)duz

d Z
−
( ν∗c3

6(1 − ν∗)c2
1c2

H
R

)
H

dδz

d Z

)
eθ ,



CONTACT STRESS ON A ROTATING ELASTIC BAND SAW BLADE 1457

t2
= t2

r er + t2
z ez = µ∗H

(
c2c3δz + c2

3
dur

d Z

)
er

+2µ∗H

(( ν∗c1c2

1 − 2ν∗

)ur

R
+

( ν∗c2c3

1 − 2ν∗

)
δr +

((1 − ν∗)c2
2

1 − 2ν∗

)duz

d Z
−

( ν∗c3

12(1 − ν∗)c1c2
2

H
R

)
H

dδz

d Z

)
ez,

t3
= t3

r er + t3
z ez = µ∗H

((
c2

3 − c2
2
)
c3 +

(2ν∗c1c3

1 − 2ν∗

)ur

R
+

((
c2

3 − c2
2
)
+

2(1 − ν∗)c2
3

1 − 2ν∗

)
δr

+

(2ν∗c2c3

1 − 2ν∗

)duz

d Z

)
er +µ∗H

(
(c2

3)δz + (c2c3)
dur

d Z
−

( ν∗

6(1 − ν∗)c1c2

H
R

)
H

dδr

d Z

)
ez,

m1
= m1

θ eθ = µ∗H 2

(( c3

6(1 − ν∗)c2
1

H
R

)
−

( c3

3(1 − ν∗)c3
1

H
R

)ur

R

+

( 1
6(1 − ν∗)c2

1

H
R

)
δr +

( ν∗

6(1 − ν∗)c1c2

)
H

dδz

d Z

)
eθ ,

m2
= m2

r er + m2
z ez = µ∗H 2

(
−

( ν∗

6(1 − ν∗)c1c2

H
R

)
δz

)
er

+µ∗H 2

(( ν∗c3

6(1 − ν∗)c1c2

H
R

)
−

( ν∗c3

6(1 − ν∗)c2
1c2

H
R

)ur

R

+

( ν∗

6(1 − ν∗)c1c2

H
R

)
δr −

( ν∗c3

6(1 − ν∗)c1c2
2

H
R

)duz

d Z
+

( 1
6(1 − ν∗)c2

2

)
H

dδz

d Z

)
ez,

mb = q
(

c1c2 −
c2c3 H

2R

)
er ,

mb3
= −q H

(c1c2

2
−

c2c3

4
H
R

)
er + fr er . (4–1)

Then, the linearized equations of motion for the steady state deformations become

0 = q
(

c1c2 −
c2c3 H

2R

)
+µ∗

((
−
(
c2

1 − c2
2
)H

R
−

2(1 − ν∗)c2
1

1 − 2ν∗

H
R

−
c2

3

2(1 − ν∗)c4
1

H 3

R3 +
ρ∗

0 H Rω2

µ∗

)ur

R

+

(
−

2ν∗c1c3

1 − 2ν∗

H
R

+
c3

3(1 − ν∗)c3
1

H 3

R3

)
δr −

(2ν∗c1c2

1 − 2ν∗

H
R

)duz

d Z

+

(
c2c3 +

ν∗c3

6(1 − ν∗)c2
1c2

H 2

R2

)
H

dδz

d Z
+ (c2

3)H
d2ur

d Z2

)
,

(4–2a)
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0 =
d

d Z

(( ν∗c1c2

1 − 2ν∗

)ur

R
+

( ν∗c2c3

1 − 2ν∗

)
δr +

((1 − ν∗)c2
2

1 − 2ν∗

)duz

d Z

−

( ν∗c3

12(1 − ν∗)c1c2
2

H
R

)
H

dδz

d Z

)
,

(4–2b)

0 = −q
(c1c2

2
−

c2c3

4
H
R

)
+µ∗

((
−

2ν∗c1c3

1 − 2ν∗
+

c3

3(1 − ν∗)c3
1

H 2

R2

)ur

R

+

(
−(c2

3 − c2
2)−

2(1 − ν∗)c2
3

1 − 2ν∗
−

1
6(1 − ν∗)c2

1

H 2

R2 +
ρ∗

0 H 2ω2

µ∗π2

)
δr

−

(2ν∗c2c3

1 − 2ν∗

)duz

d Z
−

( ν∗

3(1 − ν∗)c1c2

H
R

)
H

dδz

d Z

)
+ fr ,

(4–2c)

0 = − (c2
3)δz +

(
−c2c3 −

ν∗c3

6(1 − ν∗)c2
1c2

H 2

R2

)dur

d Z

+

( ν∗

3(1 − ν∗)c1c2

H
R

)
H

dδr

d Z
−

( ν∗c3

6(1 − ν∗)c1c2
2

H
R

)
H

d2uz

d Z2

+

( 1
6(1 − ν∗)c2

2

)
H 2 d2δz

d Z2 .

(4–2d)

Moreover, the radial gap 1 of blade’s inner surface relative to the radius of the wheel is defined by

1=

(
c1 R −

H
2

c3

)
+

(
ur −

H
2
δr

)
− RW . (4–3)

The effects of tensioning on the stiffness and frequencies of vibration of the blade have been studied
by [Lister and Schajer 1993] using a model based on deformations of a plate. The linearized equations
(4–2a)–(4–2d) and (4–3) can be used to determine the influence of both tensioning and different crowned
shapes of the wheel on contact stress q by specifying forms for the tensioning function fr (Z) and the
wheel radius RW (Z). For the general case, portions of the blade are in contact with the wheel and other
portions are free of contact. For a specified form of the tensioning function fr (Z) the equations (4–2)
are solved for {ur , uz, δr , δz} with q = 0 in the free regions. In contact regions 1, as defined in (4–3)
vanishes and the equations (4–2) and (4–3) are solved for {ur , uz, δr , δz, q}. Consequently, the tensioning
function fr influences the functional form of the radial displacement ur which in turn controls the shape
of the blade in free regions and influences the contact stress q in contact regions.

Here, the effects of tensioning and the crowned shape of the wheel are omitted by specifying fr = 0
and a constant value for RW and attention is focused on assessing the influence of elastic deformations
caused by bending a plate into a circular cylindrical shell. Specifically, the wheel is taken to have a
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uniform radius, with the blade and wheel specified by

E∗
= 200 GPa, µ∗

=
E∗

2(1 + ν∗)
, ν∗

= 0.3,

ρ∗

0 = 7.85 Mg/m3, H = 0.0016 m, W = 0.20 m, RW = 0.8 m.
(4–4)

These values are typical dimensions for wide saw blades used in industrial wood cutting band saws. For
other possible values see [Lister and Schajer 1993; Chung and Sung 1998; Damaren and Le-Ngoc 2000].
Using a normalized axial coordinate

α =
Z
W
, (4–5)

the wheel’s edge is specified by
α = αW = 0.4, (4–6)

indicating that 10% of the blade hangs over the wheel’s edge (Figure 1). The portion of the blade
weakened by the gullets which form the blade’s teeth is assumed to provide negligible strength. Also,
the reference length of the blade is specified by the normalized misfit of the blade η defined so that

R −
H
2

= RW + ηH. (4–7)

This formula treats the deformed blade as a right circular cylindrical shell with an inner radius larger
than the wheel’s radius by the amount of ηH .

Details of the solution will be presented in the next section. However, here qualitative aspects are
presented in order to discuss the nature of the boundary conditions. Specifically, attention is focused on
the following three cases:

Case 1: ω = 0; η ≥ η1 : 1 free region

Free region: − 0.5 ≤ α ≤ 0.5,

Case 2: ω = 0; η3 ≤ η ≤ η2 : 2 free regions and 1 contact region with α2 < αW

Free regions: − 0.5 ≤ α ≤ α1, α2 ≤ α ≤ 0.5,

Contact region: α1 ≤ α ≤ α2 < αW ,

Case 3: ω = 0; η ≤ η3 : 2 free regions and 1 contact region with α2 = αW

Free regions: − 0.5 ≤ α ≤ α1, α2 = αW ≤ α ≤ 0.5,

Contact region: α1 ≤ α ≤ αW .

The cases are characterized by three values of η

η3 < η2 < η1,

and two values of α
−0.5< α1 < α2 ≤ αW < 0.5.

For Case 1 the blade is free and contact first begins at the two points α=α1 and α=α2 =−α1 when η=η1.
For η between the values η1 and η2, the solution is characterized by multiple free and contact regions.
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The solutions in this range of η are complicated and are not particularly significant from an engineering
point of view since the contact stresses remain quite low. Therefore, they will not be analyzed in this
paper. When η = η2 these complications disappear and the solution is characterized by Case 2 with two
free regions and one contact region α1 ≤ α ≤ α2 = −α1 and with the blade separating from the wheel
before it reaches the wheel’s edge (α2 < αW ). Case 3 is also characterized by two free regions and one
contact region which now extends to the wheel’s edge (α2 = αW ).

In the context of the present theory it is possible to specify three boundary conditions at each edge.
It can be seen from (4–1) that the equation of motion (4–2b) requires the axial component of force per
unit length to be constant

t2
z = constant . (4–8)

The boundary conditions at the edges α = ±0.5 and the continuity conditions at the boundaries of the
free and contact regions are specified by

t2
r = 0, (4–9a)

t2
z = 0, (4–9b)

m2
z = 0, for α = −0.5, (4–9c)

{
ur , uz, δr , δz, t2

r , t2
z
}

are continuous for α = αi (i = 1, 2), (4–9d)

uz = 0, for α = αW , (4–9e)

t2
r = 0, m2

z = 0, for α = 0.5. (4–9f)

Here, {t2
r , t2

z ,m2
r ,m2

z } correspond, respectively, to the shear force, the axial force, a pinching moment,
and a bending moment, each measured per unit length of the blade’s edge. The conditions (4–9a), (4–9b),
(4–9c), (4–9f) together with the result (4–8) indicate that the edges α = ±0.5 are nearly traction free.
The theory is not general enough to ensure that the pinching moment m2

r vanishes at these edges or that it
is continuous at the boundaries (α1, α2). Also, (4–9d) requires continuity of the normal strain δr instead
of continuity of the bending moment m2

z . This means that the geometry of the blade will be continuous
at the boundaries (α1, α2) but that the moments {m2

r ,m2
z } can experience jumps there. Furthermore, the

condition (4–9e) removes rigid body translation and requires the same material point on the blade to
remain at the wheel’s edge.

The locations (α1, α2) of the boundaries of the contact regions are determined by the condition that
the contact stress q in the contact region vanishes at these boundaries and that it is positive in the interior
of the contact region. Therefore, this condition requires

Case 2: q = 0, for α = α1, α2, (4–10a)

Case 3: q = 0, for α = α1. (4–10b)

In particular, in Case 3 the contact stress at the wheel’s edge (α = αW ) can suddenly decrease from a
positive value in the contact region to zero in the free region. Also, to discuss the results presented below
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Figure 2. Plots of the radial gap 1 normalized by the thickness H and the circumferen-
tial stress σθ as functions of the normalized axial coordinate α for the onset of contact
with the normalized misfit of the blade η = η1 and no angular velocity ω = 0.

it is convenient to approximate the Cauchy circumferential stress σθ in the band saw blade as

σθ =
t1
θ

c3 H
, (4–11)

where t1
θ is the force per unit present length, and c3 H is the present thickness.

Using the solution we present in the following section, we can show that

η1 = 1.8171E − 2, η2 = −2.6268E − 04, η3 = −1.4676E − 1 for ω = 0. (4–12)

Figure 2 shows results for Case 1 with η = η1 and ω = 0 which causes the blade to just make contact
with the wheel. Figure 2a shows the deformed inner surface of the blade 1 (4–3) and Figure 2b shows
the circumferential stress σθ , both as functions of the normalized axial coordinate α. In Figure 2a note
that the edges α = ±0.5 experience localized bending due to the relief of the edge moments that must be
applied to the simple solution of Section 3. In Figure 2b note that the circumferential stress has a shape
similar to the radial gap 1 in Figure 2a, with the center region being compressive (negative values) and
the edges being tensile (positive values).

5. Solution procedure

In view of the conditions (4–8), (4–9b),and (4–9d), the expression for t2
z in (4–1) can be solved for δr in

both the free and contact regions to obtain

δr = −

(c1

c3

)ur

R
−

((1 − ν∗)c2

ν∗c3

)duz

d Z
+

( (1 − 2ν∗)

12(1 − ν∗)c1c3
2

H
R

)
H

dδz

d Z
. (5–1)
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Equation (4–2c) for the contact stress can now be rewritten as

q
(

c1c2 −
c2c3 H

2R

)
= µ∗

((
4c1c3 +

2c1(c2
3 − c2

2)

c3
+

(c2
1 + 2c2

3)

3(1 − ν∗)c3
1c3

H 2

R2 −
2ρ∗

0 H 2ω2c1

µ∗π2c3

)ur

R

+

(4c2c3

ν∗
+

2(1 − ν∗)(c2
3 − c2

2)c2

ν∗c3
+

c2

3ν∗c2
1c3

H 2

R2 −
2ρ∗

0 H 2ω2(1 − ν∗)c2

µ∗π2ν∗c3

)duz

d Z

+

(
−

2ν∗

3(1 − ν∗)c1c2
−
(1 − 2ν∗)(c2

3 − c2
2)

6(1 − ν∗)c1c3
2

−
c2

3

3c1c3
2

−
(1 − 2ν∗)

36(1 − ν∗)2c3
1c3

2

H 2

R2 +
ρ∗

0 H 2ω2(1 − 2ν∗)

6µ∗π2(1 − ν∗)c1c3
2

)H 2

R
dδz

d Z

)
. (5–2)

Next, using (5–1) and (5–2) the remaining equations of motion (4–2a), (4–2d) become(
4c1c3 +

2c1(c2
3 − c2

2)

c3
−
(
3c2

1 − c2
2
)H

R
+

(c2
1 + 2c2

3)

3(1 − ν∗)c3
1c3

H 2

R2

−
(2c2

1 + 3c2
3)

6(1 − ν∗)c4
1

H 3

R3 +
ρ∗

0 H Rω2

µ∗
−

2ρ∗

0 H 2ω2c1

µ∗π2c3

)
ur

R

+

(
4c2c3

ν∗
+

2(1 − ν∗)(c2
3 − c2

2)c2

ν∗c3
+ 2c1c2

H
R

+
c2

3ν∗c2
1c3

H 2

R2

−
c2

3ν∗c3
1

H 3

R3 −
2ρ∗

0 H 2ω2(1 − ν∗)c2

µ∗π2ν∗c3

)
duz

d Z

+

(
c2c3 −

(6ν∗
− 1)c2

2 + (3 − 4ν∗)c2
3

6(1 − ν∗)c1c3
2

H
R

+
ν∗c3(c2

2 − c2
1)

6(1 − ν∗)c2
1c3

2

H 2

R2

−
(1 − 2ν∗)

36(1 − ν∗)2c3
1c3

2

H 3

R3 +
(1 − 2ν∗)c3

36(1 − ν∗)2c4
1c3

2

H 4

R4 +
ρ∗

0 H 2ω2(1 − 2ν∗)

6µ∗π2(1 − ν∗)c1c3
2

H
R

)
H

dδz

d Z

+{c2
3}H

d2ur

d Z2 = 0, (5–3a)

{c2
3}δz +

(
c2c3 +

ν∗(2c2
1 + c2

3)

6(1 − ν∗)c2
1c2c3

H 2

R2

)
dur

d Z
+

(
ν∗c3

6(1 − ν∗)c1c2
2

+
1

3c1c3

)
H 2

R
d2uz

d Z2

−

(
1

6(1 − ν∗)c2
2

+
ν∗(1 − 2ν∗)

36(1 − ν∗)2c2
1c4

2

H 2

R2

)
H 2 d2δz

d Z2 = 0. (5–3b)

Now, for free regions the contact stress q vanishes and the equations of motion (5–2) and (5–3) can
be rewritten as six first order equations in the matrix form

6∑
j=1

(
A f

i j

dy f
j

d Z
+ B f

i j y f
j

)
= 0, (5–4)
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in terms of the vector

y f
i =

(
ur , uz, δz,

dur

d Z
,

duz

d Z
,

dδz

d Z

)
, (5–5)

where the components of the {A f
i j , B f

i j } are recorded in Appendix A. The characteristic equation for the
eigenvalues λ associated with (5–4) becomes

λ
(
a f

2 λ
4
+ a f

1 λ
2
+ a f

0

)
= 0, (5–6)

where a f
i are real constants given in (A–1). It then follows that (5–4) represents a fifth order system with

eigenvalues that take the forms

λ= ±λ
f
1 ,±λ

f
3 , 0; λ

f
1 =

(
λ

f
R1 ± iλ f

I 1

)
, λ

f
3 =

(
λ

f
R3 ± iλ f

I 3

)
, (5–7)

where {λ
f
R1, λ

f
I 1, λ

f
R3, λ

f
I 3} are real positive numbers and i =

√
−1. The five independent eigenfunctions

φ
f
j ( j = 1, 2, . . . , 5) are, for (−W/2 ≤ Z ≤ α1W ),

φ
f

1 (Z)= Re
(

Y f
1 j exp

(
λ

f
1 (Z −β)

))
,

φ
f

2 (Z)= Im
(

Y f
1 j exp

(
λ

f
1 (Z −β)

))
,

φ
f

3 (Z)= Re
(

Y f
3 j exp

(
λ

f
3 (Z −β)

))
,

φ
f

4 (Z)= Im
(

Y f
3 j exp

(
λ

f
3 (Z −β)

))
,

φ
f

5 = (0, 1, 0, 0, 0, 0),

β =
1
2

(
−

1
2 +α1

)
W for −

W
2 ≤ Z ≤ α1W,

β =
1
2

(
1
2 +α2

)
W for −α2W ≤ Z ≤

W
2 ,

(5–8)

where α1 and α2 represent the boundaries of the free region in consideration, β is the average of the
these boundaries, Re(x) and Im(x) represent the real and imaginary parts of the complex quantity x , and
{Y f

1 j , Y f
3 j } are the eigenvectors which satisfy the equations

6∑
j=1

(
A f

i jλ
f
1 + B f

i j

)
Y f

1 j = 0,
6∑

j=1

(
A f

i jλ
f
3 + B f

i j

)
Y f

3 j = 0. (5–9)

Then, the solution in the free region takes the general form

y f
i (Z)=

5∑
j=1

c f
j φ

f
j (Z), (5–10)

where c f
j are real constants to be determined by the boundary conditions. Moreover, for this solution δr

is obtained by (5–1).
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In the contact regions the value of δr in (5–1) is restricted so that 1 in (4–3) vanishes, which yields(
1 +

c1

2c3

H
R

)ur

R
+

((1 − ν∗)c2

2ν∗c3

)H
R

duz

d Z
−

( (1 − 2ν∗)

24(1 − ν∗)c1c3
2

)H 3

R2

dδz

d Z
= −

(
c1 −

H
2R

c3 −
RW

R

)
. (5–11)

For the contact regions the contact stress q in (5–2) is required to remain positive (except at the boundaries
of the regions) and the equations of motion (5–11) and (5–3) can be rewritten as six first order equations
in the matrix form

6∑
j=1

(
Ac

i j

dyc
j

d Z
+ Bc

i j yc
j

)
= Cc

i , (5–12)

in terms of the vector

yc
i =

(
ur , uz, δz,

dur

d Z
,

duz

d Z
,

dδz

d Z

)
, (5–13)

where the components of {Ac
i j , Bc

i j ,Cc
i } are given in Appendix A. The solution in the contact region is

obtained in a manner similar to that in the free regions. Specifically, the characteristic equation for the
eigenvalues λ associated with the homogeneous solution of (5–12) becomes

λ
(
ac

2λ
4
+ ac

1λ
2
+ ac

0
)
= 0, (5–14)

where ac
i are real constants given in (A–2). It then follows that (5–14) represents a fifth order system

with eigenvalues that take the forms

λ= ±λc
1,±λ

c
3, 0; λc

1 =
(
λc

R1 ± iλc
I 1
)
, λc

3 =
(
λc

R3 ± iλ f
I 3

)
, (5–15)

where {λ
f
R1, λ

f
I 1, λ

f
R3, λ

f
I 3} are real positive numbers. The five independent eigenfunctions

φc
i (i = 1, 2, . . . , 5)

are specified in the forms

φc
1(Z)= Re

(
Y c

1i exp
(
λc

1(Z −β)
))
, φc

2(Z)= Im
(

Y c
3i exp

(
λc

1(Z −β)
))
, (5–16)

φc
3(Z)= Re

(
Y c

3i exp
(
λc

3(Z −β)
))
, φc

4(Z)= Im
(

Y c
3i exp

(
λc

3(Z −β)
))
, (5–17)

φc
5 = (0, 1, 0, 0, 0, 0), β =

1
2 W

(
α1 +α2

)
, (5–18)

where {Y c
1i , Y c

3i } are the eigenvectors which satisfy the equations

6∑
j=1

(
Ac

i jλ
c
1 + Bc

i j
)
Y c

1 j = 0,
6∑

j=1

(
Ac

i jλ
c
3 + Bc

i j
)
Y c

3 j = 0. (5–19)

In addition, the equations (5–12) require a specific solution of the form

ycP
1 =

Bc
55Cc

4

Bc
41 Bc

55 − Bc
45 Bc

51
, ycP

2 = −

(
Bc

51Cc
4

Bc
41 Bc

55 − Bc
45 Bc

51

)
Z , (5–20)

ycP
5 = −

(
Bc

51Cc
4

Bc
41 Bc

55 − Bc
45 Bc

51

)
, ycP

3 = ycP
4 = ycP

6 = 0. (5–21)
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Then, the solution in the contact region takes the general form

yc
i (Z)=

5∑
j=1

cc
jφ

f
j (Z)+ ycP

i (Z), (5–22)

where cc
j are real constants to be determined by the boundary conditions. Moreover, for this solution δr

is obtained by (5–1) and the contact stress q is determined by (5–2).
The specification (5–1) for δr satisfies the condition that t2

z vanishes so that boundary conditions on t2
z

in (4–9) are automatically satisfied. The solutions (5–10) and (5–22) show that there are five constants
to be determined in each of the free and contact regions as well as the boundary values of αi . For the
three cases we present, unknowns and equations are given by:

Case 1:
Unknowns: 5 values of c f

j ;
Equations: (4–9a), (4–9c), (4–9e), (4–9f);

Case 2:
Unknowns: 10 values of c f

j , 5 values of cc
j , {α1, α2};

Equations: (4–9a), (4–9c), 10 Equations (4–9d), (4–9e), (4–9f), 2 Equations (4–10a);

Case 3:
Unknowns: 10 values of c f

j , 5 values of cc
j , {α1};

Equations: (4–9a), (4–9c), 10 Equations (4–9d), (4–9e), (4–9f), 1 Equation (4–10b).

6. Discussion

The equations of the previous section were solved for the problem characterized by (4–4) and (4–6).
Figures 3 and 4 plot values of (a) the radial gap 1 (4–3), (b) the circumferential stress σθ (4–11), and
(c) and (d) the contact stress q as functions of the normalized axial coordinate α in (4–5) for ω = 0 and
different values of misfit η (4–7). Specifically, Figure 3 shows the solution for Case 2 associated with
the largest value of η = η2 (4–12) for which the blade has a single contact region with the wheel and
Figure 4 shows the solution for Case 3 associated with the largest value of η = η3 (4–12) for which the
blade has a single contact region that extends to the edge (α = αW ) of the wheel. Figure 5 shows plots
of the following values: the radial gap 1 (Figure 5a,b); the circumferential stress σθ (Figure 5c); and
the contact stress q (Figure 5d–f) for a high value of tension of η = −2.5 and ω = 0. Also, these figures
include the predictions of the Lamé solution discussed in Appendix B.

Figure 3a, b, Figure 4a, b and Figure 5a,c show that the plots of circumferential stress σθ have the
same shapes as those of the radial gap 1. This means that the circumferential tension is dominated by
the radial displacement of the saw blade. Figure 5b shows that even for the case of high tension, the
end of the blade near α = −0.5 is separated from the wheel. Figures 3c and 4c show two spikes in the
contact stress which occur near the regions where the free saw blade has the smallest radius, as shown in
Figure 2. For Cases 2 and 3 the shape of the contact stress curve in these regions is symmetrical (Figure
3d and Figure 4d). As Figure 5d–f shows, when the tension is high enough to cause the edge α = αW to
be in contact with the saw blade, the contact stress is no longer symmetrical with the maximum contact
stress occurring near the edge α = αW of the wheel. In particular, the maximum contact stress near the
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Figure 3. Plots of the radial gap 1 normalized by the thickness H , the circumferential
stress σθ and the contact stress q as functions of the normalized axial coordinate α for
the onset of a single contact region with the normalized misfit of the blade η = η2 and
no angular velocity ω = 0.

edge α = αW is more than three times that near the edge α = α1 for η = −2.5. Also, Figure 5f shows
that the contact stress exhibits a small decrease from the value q = 0.9 MPa to zero at the edge α = αW .

Moreover, from Figure 5d–f it can be seen that the Lamé solution predicts a uniform contact stress of
about 2 MPa which significantly underpredicts the value of maximum contact stress as well as the value
in the nearly uniform region in the center of the wheel. This means that for an accurate prediction of
the contact stress it is essential to include an analysis of the nonlinear deformation associated with the
formation of the saw blade from a flat plate. In practice, the tensioning process is used to change the
deformed shape of the saw blade by applying controlled plastic deformations. Although the analysis of
plastic deformations is outside of the scope of the present paper, the results presented here suggest that
this process should be carefully analyzed since it could significantly affect the resulting distribution of
contact stress.

The speed of a band saw is often measured in terms of its translational velocity. For example, a
velocity of 2800 m/min is typical for an industrial wood cutting blade [Lunstrum 1981; 1984]. Also see
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Figure 4. Plots of the radial gap 1 normalized by the thickness H , the circumferential
stress σθ and the contact stress q as functions of the normalized axial coordinate α for the
point at which a single contact region reaches the edge of the wheel with the normalized
misfit of the blade η = η3 and no angular velocity ω = 0.

[Eklund 2000; Murata et al. 2002] for velocities associated with other saws. An estimate of the influence
of rotation on the contact stress can be obtained by equating this translational velocity with the velocity
vW of the blade at the surface of the wheel

ω =
vW

RW
. (6–1)

Calculations were performed for vW = 2800 m/min, which corresponds to ω = 58.33 rad/s for η = η3

(Figure 6). The results show that the rotating blade has a higher circumferential stress σθ , a lower contact
stress q and a smaller contact region. The decrease in the contact stress near the blade’s center (α = 0) is
about 0.07 MPa. This is somewhat larger than the magnitude 0.03 MPa predicted by the Lamé solution
(B–7). The decrease in the peak value of the contact stress is about 0.5 MPa. However, even for this
relatively low tension (σθ ≈ 60 MPa) in this thin blade the maximum effect of inertia is insignificant.
Since the effect of inertia remains relatively constant for a given rotational speed, the effect is even more
insignificant for higher tension (that is, for smaller values of η).
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coordinate α for the point at which a single contact region reaches the edge of the wheel
with the normalized misfit of the blade η = η3 and with different angular velocities ω.

One of the difficulties in designing band saw blades is ensuring proper tracking of the blade on the
wheel. As previously mentioned, the tensioning process and a crowned wheel are used to help control
blade tracking [Lister and Schajer 1993; Wong and Schajer 1997; 2002]. The elastic effects of bending
a plate into a circular cylindrical shell analyzed here also should influence tracking. It may be possible
to exploit the facts that when the blade is free of contact it has a deformed shape (Figure 2a) and that
this deformed shape causes stress concentrations when the blade is in contact (Figure 4c and Figure
5d). Specifically, if the wheel were crowned with slight curvature then it may be possible to adjust the
curvature so that the blade would tend to hug the wheel (see Figure 7). The equations of Section 4 include
a model for the tensioning process through the function fr (Z) and allow the wheel to have a crowned
shape. Future research could explore the relative importance of these effects combined with the elastic
effect that has been analyzed in this paper.

In conclusion, in this paper we model a band saw blade as an elastic plate that has been bent into a
circular cylinder. Due to the Poisson effect, axial tension develops on the outer surface of the blade and
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axial compression develops on its inner surface. Consequently, end moments are required to maintain
a right-circular cylindrical shape. The nonlinear equations of a Cosserat surface used to describe this
process have been linearized and the resulting end moments are relieved, causing nonuniform deforma-
tion of the blade. It has been shown that this nonuniformity significantly influences the predictions of
the value and distribution of the contact stress between the blade and the wheel even though the blade is
thin. Also, it has been shown that the value of contact stress predicted by a simple Lamé-type solution
is inaccurate and that the effects of the rotational speed of the wheel are negligible for typical operating
conditions of thin wood-cutting saw blades.

Appendix A. Details of the solutions in the free and contact regions

The nonzero coefficients of {A f
i j , B f

i j } associated with the free region are

A f
11 = A f

22 = A f
33 = 1,

A f
54 = (c2

3 H),

A f
65 =

( ν∗c3

6(1 − ν∗)c1c2
2

+
1

3c1c3

)H 2

R
,

A f
66 = −

( 1
6(1 − ν∗)c2

2
+

ν∗(1 − 2ν∗)

36(1 − ν∗)2c2
1c4

2

H 2

R2

)
H 2,
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and

B f
14 = B f

25 = B f
36 = −1,

B f
41 =

(
4c1c3 +

2c1(c2
3 − c2

2)

c3
+

(c2
1 + 2c2

3)

3(1 − ν∗)c3
1c3

H 2

R2 −
2ρ∗

0 H 2ω2c1

µ∗π2c3

)
1
R
,

B f
45 =

(
4c2c3

ν∗
+

2(1 − ν∗)(c2
3 − c2

2)c2

ν∗c3
+

c2

3ν∗c2
1c3

H 2

R2 −
2ρ∗

0 H 2ω2(1 − ν∗)c2

µ∗π2ν∗c3

)
,

B f
46 =

(
−

2ν∗

3(1 − ν∗)c1c2
−
(1 − 2ν∗)(c2

3 − c2
2)

6(1 − ν∗)c1c3
2

−
c2

3

3c1c3
2

−
(1 − 2ν∗)

36(1 − ν∗)2c3
1c3

2

H 2

R2 +
ρ∗

0 H 2ω2(1 − 2ν∗)

6µ∗π2(1 − ν∗)c1c3
2

)
H 2

R
,

B f
51 =

(
4c1c3 +

2c1(c2
3 − c2

2)

c3
− (3c2

1 − c2
2)

H
R

+
(c2

1 + 2c2
3)

3(1 − ν∗)c3
1c3

H 2

R2

−
(2c2

1 + 3c2
3)

6(1 − ν∗)c4
1

H 3

R3 +
ρ∗

0 H Rω2

µ∗
−

2ρ∗

0 H 2ω2c1

µ∗π2c3

)
1
R
,

B f
55 =

(
4c2c3

ν∗
+

2(1 − ν∗)(c2
3 − c2

2)c2

ν∗c3
+ 2c1c2

H
R

+
c2

3ν∗c2
1c3

H 2

R2

−
c2

3ν∗c3
1

H 3

R3 −
2ρ∗

0 H 2ω2(1 − ν∗)c2

µ∗π2ν∗c3

)
,

B f
56 =

(
c2c3 −

(6ν∗
− 1)c2

2 + (3 − 4ν∗)c2
3

6(1 − ν∗)c1c2

H
R

+
ν∗c3(c2

2 − c2
1)

6(1 − ν∗)c2
1c3

2

H 2

R2

+
(1 − 2ν∗)

36(1 − ν∗)2c3
1c3

2

H 3

R3 +
(1 − 2ν∗)c3

36(1 − ν∗)2c4
1c3

2

H 4

R4 +
ρ∗

0 H 2ω2(1 − 2ν∗)

6µ∗π2(1 − ν∗)c1c3
2

H
R

)
H,

B f
63 = (c2

3),

B f
64 =

(
c2c3 +

ν∗(2c2
1 + c2

3)

6(1 − ν∗)c2
1c2c3

H 2

R2

)
.

The coefficients a f
i in the characteristic Equation (5–6) are

a f
0 =

(
B f

41 B f
55 − B f

45 B f
51

)
B f

63,

a f
1 = A f

65

(
B f

46 B f
51 − B f

41 B f
56

)
+ A f

66

(
B f

41 B f
55 − B f

45 B f
51

)
− A f

54 B f
45 B f

63 +
(
B f

45 B f
56 − B f

46 B f
55

)
B f

64,

a f
2 = A f

54

(
A f

65 B f
46 − A f

66 B f
45

)
.

(A–1)

The nonzero coefficients of (Ac
i j , Bc

i j ,Cc
i ) associated with the contact region are
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Ac
i j = A f

i j , Bc
i j = B f

i j (except for i = 4),

Bc
41 =

(
1 +

c1

2c3

H
R

) 1
R
, Bc

45 =

((1 − ν∗)c2

2ν∗c3

)H
R
,

Bc
46 = −

( (1 − 2ν∗)

24(1 − ν∗)c1c3
2

)H 3

R2 , Cc
4 = −

(
c1 −

H
2R

c3 −
RW

R

)
.

The coefficients ac
i in the characteristic Equation (5–14) are

ac
0 =

(
Bc

41 Bc
55 − Bc

45 Bc
51
)
Bc

63,

ac
1 = Ac

65
(
Bc

46 Bc
51 − Bc

41 Bc
56
)
+ Ac

66
(
Bc

41 Bc
55 − Bc

45 Bc
51
)

− Ac
54 Bc

45 Bc
63 +

(
Bc

45 Bc
56 − Bc

46 Bc
55
)
Bc

64,

ac
2 = Ac

54
(

Ac
65 Bc

46 − Ac
66 Bc

45
)
.

(A–2)

Appendix B. Lamé solution

Within the context of small axisymmetric deformations relative to a coordinate system rotating with
angular velocity ω, the steady state equations of motion can be written as

dT ∗

R R

d R∗
+

T ∗

R R − T ∗

θθ

R∗
= −ρ∗

0ω
2 R∗,

dT ∗

Z Z

d Z
= 0. (B–1)

For generalized plane stress the displacements are given by

u∗

R = u∗

R(R
∗), u∗

θ = 0,

and the constitutive equations for the nonzero stresses and the axial strain eZ Z yield

T ∗

R R =
2µ∗

(1 − ν∗)

(du∗

R

d R∗
+ ν∗

u∗

R

R∗

)
,

T ∗

θθ =
2µ∗

(1 − ν∗)

(
ν∗

du∗

R

d R∗
+

u∗

R

R∗

)
, T ∗

Z Z = 0,

eZ Z = −

( ν∗

1 − ν∗

)(du∗

R

d R∗
+

u∗

R

R∗

)
.

In these equations a superposed (∗) is used to denote that the quantities are associated with the exact
three-dimensional linearized theory.

The boundary conditions for a cylinder of mean radius R and thickness H to be in contact with a
wheel of radius RW with a free outer surface can be expressed as

u∗

R = RW − R1, (B–2)

qL = −T ∗

R R, for R∗
= R1 = R

(
1 −

H
2R

)
, (B–3)

T ∗

R R = 0, for R∗
= R2 = R

(
1 +

H
2R

)
, (B–4)
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where qL is the contact stress predicted by this Lamé solution and R is specified by (4–7). It can easily
be seen that the equations of motion (B–1) are satisfied provided that

d2u∗

R

d R∗2 +
1

R∗

du∗

R

d R∗
−

u∗

R

R∗2 = −

(ρ∗

0ω
2(1 − ν∗)

2µ∗

)
R∗, (B–5)

which admits the general solution

u∗

R =

(1 − ν∗

1 + ν∗

)
A1 R∗

+ A2
R2

1

R∗
−

((1 − ν∗)�2

(3 + ν∗)

) R∗3

R2
1
,

T ∗

R R = 2µ∗

(
A1 − A2

R2
1

R∗2 −�2 R∗2

R2
1

)
,

T ∗

θθ = 2µ∗

(
A1 + A2

R2
1

R∗2 −

((1 + 3ν∗)

(3 + ν∗)

)
�2 R∗2

R2
1

)
,

�2
=
ρ∗

0ω
2(3 + ν∗)R2

1

16µ∗
,

(B–6)

where the constants {A1, A2} are determined by the boundary conditions (B–2)

A1 =

( (1 + ν∗)

(1 − ν∗)+ (1 + ν∗)(R2/R1)2

)( RW

R1
− 1

)
+

((1 + ν∗)

(3 + ν∗)

)((1 − ν∗)+ (3 + ν∗)(R2/R1)
4

(1 − ν∗)+ (1 + ν∗)(R2/R1)2

)
�2,

A2 =

( (1 + ν∗)(R2/R1)
2

(1 − ν∗)+ (1 + ν∗)(R2/R1)2

)( RW

R1
− 1

)
−

((1 − ν∗)

(3 + ν∗)

)((−(1 + ν∗)+ (3 + ν∗)(R2/R1)
2
)
(R2/R1)

2

(1 − ν∗)+ (1 + ν∗)(R2/R1)2

)
�2.

It then follows that the contact stress is

qL = 2µ
( (1 + ν∗)

(
(R2/R1)

2
− 1

)
(1 − ν∗)+ (1 + ν∗)(R2/R1)2

)(( RW

R1
− 1

)
− 2

((1 − ν∗)+ (3 + ν∗)(R2/R1)
2

(1 + ν∗)(3 + ν∗)

)
�2
)
. (B–7)

Nomenclature

a f
0 , a f

1 , a f
2 coefficients of the characteristic equation in the free regions

ac
0, ac

1, ac
2 coefficients of the characteristic equation in the contact region

A1/2 scalar related to the shell’s reference area

A f
i j matrix of the derivatives in the free regions

Ac
i j matrix of the derivatives in the contact region

Ai constants in the Lamé solution

B1 auxiliary variable



1474 M. B. RUBIN AND E. TUFEKCI

B2 auxiliary variable associated with the normalized thickness

B f
i j matrix of the linear coefficients in the free regions

Bc
i j matrix of the linear coefficients in the contact region

c1 circumferential stretch

c2 axial stretch

c3 radial stretch

c f
j coefficients of the eigenfunctions in the contact region

C right Cauchy–Green deformation tensor

Cc
i vector in the contact region

d1/2 scalar associated with the present configuration

D1/2 scalar associated with the reference configuration

dα tangent vectors to the shell’s present surface

d3 director in the present configuration

di reciprocal vectors to the present directors di

Dα tangent vectors to the shell’s reference surface

D3 reference director which models a material fiber through the shell’s thickness

Di reciprocal vectors to the reference directors Di

c f
j coefficients of the eigenfunctions in the free regions

ei rectangular Cartesian base vectors

er , eθ , ez cylindrical polar base vectors

eZ Z axial strain in the Lamé solution

E∗ Young’s modulus associated with small deformations

E Lagrangian strain tensor

fr (Z) function associated with the localized moment which models the tensioning process

F deformation gradient

H reference thickness (in the e1 direction) of the rectangular plate

i
√

−1

I unit tensor

Kαβ second order tensors associated with the energy of bending and torsion

L referenced length (in the e2 direction) of the rectangular plate

m mass per unit reference area

mb assigned force due to body force and contact stresses on the shell’s major surfaces
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mb3 assigned director couple due to body force and contact stresses on the shell’s major

surfaces

mα contact resultant couples on the shell’s edges

m1
θ circumferential value of m1

m2
r radial value of m2

m2
z axial value of m2

q normal contact stress (positive for compression) between the blade and wheel

qL contact stress in the Lamé solution

r deformed radius of the shell’s reference surface

R auxiliary variable associated with the deformed radius of the cylindrical shell

R∗ radial coordinate in the Lamé solution

R1, R2 radii in the Lamé solution

RW radius of the wheel

t time

tα contact resultant forces on the shell’s edges

t3 intrinsic director couple

t1
θ circumferential value of t1

t2
r radial value of t2

t2
z axial value of t2

T ∗

R R , T ∗

θθ , T ∗

Z Z stress components associated with the Lamé solution

ur radial displacement

uz axial displacement

u∗

R radial displacement in the Lamé solution

u∗

θ circumferential displacement in the Lamé solution

v velocity vector

vW blade’s translational velocity

w3 director velocity

W reference width (in the ez direction) of the rectangular plate

x location of a material point in the present configuration

X location of a material point in the reference configuration

y f
i variables in the free regions

yc
i variables in the contact region
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ycP
i vector associated with the particular solution in the contact region

y3 director inertia coefficient

y33 director inertia coefficient

Y f
1 j , Y f

3 j eigenvectors in the free regions

Y c
1 j , Y c

3 j eigenvectors in the contact region

z deformed axial position of the shell’s reference surface

Z reference axial coordinate

α normalized axial coordinate

α1 value of α(< 0) where the blade looses contact with the wheel

α2 value of α(> 0) where the blade looses contact with the wheel

αW normalized axial location of the wheel’s edge

β auxiliary variable

βα inhomogeneous deformation vectors

δr radial director displacement

δz axial director displacement

δi
j Kronecker delta symbol

1 radial gap of the blade’s inner surface relative to the wheel

η normalized misfit of the inner radius of the cylindrical shell relative to that of the wheel

η1 value of η for which the blade first contacts the wheel

η2 largest value of η for which the blade first experiences two free regions and one contact

region

η3 smallest value of η for which the blade first experiences two free regions and one contact

region with the edge of the contact region being the edge of the wheel α2 = αW

θ angular coordinate

θα convected Lagrangian coordinates

λ eigenvalue

λ
f
1 , λ f

3 eigenvalues in the free regions

λ
f
R1, λ f

R3 real parts of the eigenvalues in the free regions

λ
f
I 1, λ f

I 3 imaginary parts of the eigenvalues in the free regions

λc
1, λc

3 eigenvalues in the contact region

λc
R1, λc

R3 real parts of the eigenvalues in the contact region

λc
I 1, λc

I 3 imaginary parts of the eigenvalues in the contact region
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µ∗ shear modulus associated with small deformation

ν∗ Poisson’s ratio associated with small deformations

ρ∗

0 reference mass density (mass per unit volume)

σθ approximate value of the circumferential stress

6 strain energy of the shell per unit reference area

φr radial component of the deformed director d3

φz axial component of the deformed director d3

φ
f
j eigenfunctions in the free regions

φc
i eigenfunctions in the contact region

ω angular velocity of the saw blade

� normalized angular velocity of the saw blade
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A DIRECT ONE-DIMENSIONAL BEAM MODEL FOR THE
FLEXURAL-TORSIONAL BUCKLING OF THIN-WALLED BEAMS

GIUSEPPE RUTA, MARCELLO PIGNATARO AND NICOLA RIZZI

In this paper, the direct one-dimensional beam model introduced by one of the authors is refined to
take into account nonsymmetrical beam cross-sections. Two different beam axes are considered, and
the strain is described with respect to both. Two inner constraints are assumed: a vanishing shearing
strain between the cross-section and one of the two axes, and a linear relationship between the warping
and twisting of the cross-section. Considering a grade one mechanical theory and nonlinear hyperelastic
constitutive relations, the balance of power, and standard localization and static perturbation procedures
lead to field equations suitable to describe the flexural-torsional buckling. Some examples are given to
determine the critical load for initially compressed beams and to evaluate their post-buckling behavior.

1. Introduction

The flexural-torsional buckling of so-called thin-walled beams is an interesting problem in the field of
the elastic stability of structural elements. This phenomenon was first investigated in [Wagner 1929]
and [Kappus 1937], and since the publication of these pioneering works, many further studies have
appeared on the subject, including [Vlasov 1961; Epstein 1979; Reissner 1983; Simo and Vu-Quoc
1991]. More recently, [Di Egidio et al. 2003] investigated modelization aspects, and [Anderson and
Trahair 1972; Casciaro et al. 1991; Lanzo and Garcea 1996] presented a search of numerical results for
standard elements. It is remarkable that most of the beam models presented in the literature are derived
by projection of the results of three-dimensional continuum models on shell models (as in Vlasov 1961)
or beam models (as in Simo and Vu-Quoc 1991).

In recent years, the authors have considered the direct one-dimensional beam model, originally in-
troduced in [Tatone and Rizzi 1991; Rizzi and Tatone 1996]. This model describes the kinematics of
the beam through the placement of the points of the beam axis, the rotation of the beam cross-sections
(which are assumed to be plane in the reference configuration), and a coarse description of the warping
of the beam cross-sections. Using a mechanical theory of grade one (see, for example Germain 1973a
and 1973b, and Di Carlo 1996), the interaction of the beam with the surrounding environment is defined
as a linear function of the velocities and of their first-order spatial approximations. In this way, the
mechanical actions naturally appear as dual to the kinematic fields. In particular, actions which spend
power on the warping velocity and on its spatial derivative are interpreted as bi-shear and bi-moment,
respectively. As is customary in the literature, two inner constraints are assumed to hold: the shearing

Keywords: thin-walled beams, direct one-dimensional models, flexural-torsional buckling.
Giuseppe C. Ruta gratefully acknowledges the financial support of the Progetto giovani ricercatori (2002) of the Università La
Sapienza of Rome.
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strain between the axis and the cross-section is assumed to vanish, and the coarse warping measure is
directly proportional to the measure of twist.

In previous papers [Rizzi and Tatone 1996; Pignataro and Ruta 2003; Pignataro et al. 2004], field
equations in terms of the components of the displacement were obtained, and some flexural-torsional
buckling cases were investigated. For this purpose, nonlinear hyperelastic constitutive relations were
adopted. However, since no clear distinction was made between the position of the centroid and of the
shear center in the plane of the cross-section, it turns out that the results obtained in the above mentioned
papers are precise only for beams with symmetric cross-sections.

The aim of this paper is to overcome this drawback by presenting a refined beam model suitable for
describing the flexural-torsional buckling of beams with generic, nonsymmetric cross-sections. We will
describe the strain measures with respect to two beam axes (one passing through the centroids, and the
other through the shear centers of the cross-sections). Then, we suitably decompose the power expended
by inner actions, to distinguish clearly between actions applied at each of the two places. Introducing
the same inner constraints as in the papers cited above generates reactive terms that must be added to
the determined part of the contact actions, and those terms account for the geometry of nonsymmetric
cross-sections. In this way, we are able to obtain field equations which are more general than those
found by authors of previous studies. To test the validity of the proposed model, we present some simple
examples of flexural-torsional buckling and post-buckling phenomena. The results coincide with those
in the literature, for example [Timoshenko and Gere 1961; Grimaldi and Pignataro 1979].

2. A direct one-dimensional beam model

Let E be the standard three-dimensional Euclidean ambient space. The vector space of the translations
of E, here denoted U, is assumed to be equipped with the standard Euclidean norm and scalar (dot)
product. Let us consider in E a smooth curve Co and a prototype region R belonging to a plane P. We
then attach a copy of R to each point of Co, always in correspondence to the same place o ∈ P. The
region of E occupied by this construction represents the beam. The curve Co corresponds to the axis of
the beam, and the copies of R are the beam cross sections. With no loss of generality, and only from the
point of view of introducing constitutive relations, we can imagine that the place o ∈ P is actually the
centroid of the cross-section. Hence, the axis Co is a centroidal axis. Of course, the beam can be equally
described using an analogous construction starting from a different curve Cc in E. Again, with no loss
of generality, one can imagine that the place c ∈ P is actually the shear center of the cross-sections. For
the time being, we ignore the question of whether this is the shear center according to Timoshenko or
Trefftz. Indeed, for open thin-walled beams the question is immaterial since either definition provides
the same place (see, for example, [Andreaus and Ruta 1998; Ruta 1998]). In this way, we can call the
curve Cc the shear axis, or the axis of the shear centers.

A change of placement is described by the placement of the axes, the rotation of each cross-section with
respect to the attitude in the first placement, and a warping superposed to these two. The transformations
of the axes and the rotations of the cross-sections can be described exactly, but we will limit ourselves
with a coarse description of the warping by using a single scalar parameter. We can suitably define
this parameter as a (possibly weighted) average of the warping over the cross-section, or as the value
of the warping at a particular place of (plane of) the cross-section. A motion is naturally defined as a
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one-parameter family of changes of placements, t ∈ [0,+∞] being the evolution scalar real parameter
(the time, for instance).

Let us consider a motion and let S0 be the shape of the beam at t = 0. This may be assumed, with no
loss of generality, to be the reference configuration. It is always possible to assume that S0 is such that
the copies of the prototype plane region R remain plane, that is, the cross-sections undergo no warping.
Once a place in E is chosen as origin, the axes of the beam in S0 are described by the regular enough
position vector fields

qo : ρ ∈ [0, l] → qo(ρ) ∈ U, qc : ρ ∈ [0, l] → qc(ρ) ∈ U,

where ρ is a curvilinear abscissa along one of the axes compatible with the Euclidean metric of the
ambient space E. The unit vector fields tangent to the axes of the beam are

q′

o(ρ), q′

c(ρ),

where the prime denotes derivation with respect to ρ. With no loss of generality, one can assume that in
S0 the relative position of the places o and c in the planes containing the cross-sections does not depend
on ρ, so that

q′

o(ρ)= q′

c(ρ), for all ρ ∈ [0, l]. (1)

Let St be the configuration assumed by the beam in the motion we are considering at the present value
t of the evolution parameter. Such a configuration is described by:

• a vector field po(ρ, t) (or, equivalently, pc(ρ, t)), providing the position of the substantial point
identified by qo(ρ) (or, equivalently, qc(ρ)) in S0;

• a proper orthogonal tensor field R(ρ, t), providing the rotation of the cross-sections when passing
from S0 to St ;

• a scalar field α(ρ, t), providing a coarse description of the cross-sections’ warping superposed to
displacements induced by the rotation R(ρ, t).

The tensors R(ρ, t) are required to be proper orthogonal to prevent reflections of the cross-sections.
Henceforth, the fields po, pc, R, α will be assumed to be regular enough for the analytical developments
we adopt. Also, for the sake of simplicity of notation, and when no confusion may arise, in the following
the dependent variables of the indicated fields will be understood and hence omitted, as well as the
measures of integration in the integrals.

The tangent vector fields to the axes of the beam in the present configuration are given by

p′

o(ρ, t), p′

c(ρ, t).

The derivative of a field with respect to t is denoted by a superimposed dot, and skw(U ⊗ U) denotes
the space of skew tensors on U.

The velocity fields for the beam are

wo = ṗo ∈ U, wc = ṗc ∈ U,

W = ṘR>
∈ skw(U ⊗ U), ω = α̇ ∈ R.

(2)
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A rigid, or neutral, change of placement is one such that the rotation of the cross-sections is uniform with
respect to ρ, any vector out of the plane of the cross-sections (for example, either p′

o or p′
c) is rotated

according to this uniform rotation, and the warping remains identical to zero.
Hence, in a rigid change of placement

R = R0, p′

o = R0q′

o,

p′

c = R0q′

c = R0q′

o, α = 0.
(3)

Deformation is the difference between the considered change of placement and a rigid one, and must
vanish if evaluated for a neutral change of placement. Suitable strain measures, pulled back to S0, are

E = R>R′, α, η = α′,

eo = R>p′

o − q′

o, ec = R>p′

c − q′

c = eo + Ec, (4)

where the skew tensor field E provides the change of curvature of one of the beam axes when passing
from S0 to St . The vector fields eo and ec represent the differences between the tangent to the axes in
St , pulled back to S0, and the tangent to the axes in S0. The vector c defines the position of the place c
with respect to o in the plane of the cross-sections in S0, and c is uniform with respect to ρ because of
(1). When the change of placement is neutral, the relations given in (3) imply that the quantities defined
by (4) vanish. The strain measures given by (4) are invariant under a change of observer.

With no loss of generality, let S0 be a set of parallel cross-sections orthogonal to the beam axes, each
of which is assumed to be a rectilinear segment of length l. Let us fix a system of orthogonal Cartesian
coordinates with the x1 axis parallel to the beam axes in S0 (ρ ≡ x1). Furthermore, let us consider an
orthonormal right-handed vector basis (i1, i2, i3) for U adapted to the introduced coordinate system such
that

i1 = q′

o = q′

c.

With respect to the introduced basis, consider the decompositions

E = χ1i2 ∧ i3 +χ2i3 ∧ i1 +χ3i1 ∧ i2,

eo = ε1i1 + ε2i2 + ε3i3,

ec = ε1ci1 + ε2ci2 + ε3ci3 = (ε1 +χ2c3 −χ3c2)i1 + (ε2 −χ1c3)i2 + (ε3 +χ1c2)i3,

(5)

where χ1 is the torsion curvature (or twist), χ2 and χ3 are the bending curvatures, ∧ is the exterior product
between vectors of U which provide skew tensors on U, ε1 is the elongation of the axis of the centroids,
ε2 and ε3 are the shearing strains between the axis of the centroids and the cross-sections, and c2 and
c3 are the components of c. Equation (5)3 provides, with respect to the shear axis, quantities similar to
those provided by (5)2. In addition, it expresses these last in terms of the components of E and eo (see
(4)5).

It is useful to write the strain measures in terms of the displacement field u of the axis of the centroids
starting from S0 as

u = po − qo = u1i1 + u2i2 + u3i3,

and to decompose the rotation R as
R = R3 R2 R1, (6)
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where R1 is a rotation of amplitude ϕ1 about i1, R2 is a rotation of amplitude ϕ2 about R1i2 (that is, the
ϕ1-transformed of i2), and R3 is a rotation of amplitude ϕ3 about R2R1i3 (that is, the ϕ2 ◦ϕ1-transformed
of i3). It can be proved (see [Di Carlo and Tatone 1980]) that the matrix representation (R)0 of R with
respect to the basis (i1, i2, i3) is

(R)0 = (R1)0(R2)1(R3)2, (7)

where (R1)0 is the matrix representation of R1 with respect to the reference basis (i1, i2, i3), (R2)1 is
the matrix representation of R2 with respect to the ϕ1-transformed of the reference basis, and (R3)2 is
the matrix representation of R3 with respect to the ϕ2 ◦ϕ1-transformed of the reference basis.

Equations (4)–(7) yield expressions of the components of the strain measures in terms of the com-
ponents of the displacement of the axis of the centroids starting from the reference configuration S0

as
ε1 = (1 + u′

1) cosϕ2 cosϕ3 + u′

2(cosϕ1 sinϕ3 + sinϕ1 sinϕ2 cosϕ3)

+ u′

3(sinϕ1 sinϕ3 − cosϕ1 sinϕ2 cosϕ3)− 1,

ε2 = − (1 + u′

1) cosϕ2 sinϕ3 + u′

2(cosϕ1 cosϕ3 − sinϕ1 sinϕ2 sinϕ3)

+ u′

3(sinϕ1 cosϕ3 + cosϕ1 sinϕ2 sinϕ3),

ε3 = (1 + u′

1) sinϕ2 − u′

2 sinϕ1 cosϕ2 + u′

3 cosϕ1 cosϕ,

χ1 = ϕ′

1 cosϕ2 cosϕ3 +ϕ′

2 sinϕ3,

χ2 = −ϕ′

1 cosϕ2 sinϕ3 +ϕ′

2 cosϕ3,

χ3 = ϕ′

1 sinϕ2 +ϕ′

3.

3. Balance of power and balance equations

Let us assume that the interaction of the beam with the environment in its present configuration St is
quantified, for each test velocity field attainable by the beam, using a linear functional of the velocity
fields, which we will call the external power Pe. Standard representation theorems of linear forms in
finite-dimensional vector spaces equipped with a scalar product then let us express external power as

Pe
=

∫ l

0
(b · wc + B · W +βω)+

∣∣∣∣t · wc + T · W + θω

∣∣∣∣
0−

+

∣∣∣∣t · wc + T · W + θω

∣∣∣∣
l+
, (8)

where the integral term quantifies the power expended by bulk actions, and the boundary terms quantify
the power expended by contact actions. The vector fields b and t represent external force density (bulk
and contact, respectively), the skew tensor fields B and T represent external couple density (bulk and
contact, respectively), and the scalar fields β and θ represent the bulk and contact actions density, respec-
tively, which exert power on the warping. It is essential and will be fundamental henceforth that in the
representation of Pe the velocity used is that of the points of the shear axis.

If we move in the frame of a mechanical theory of grade one (see, for example [Di Carlo 1996]),
let us assume that the behavior of any substantial point on the (axis of the) beam is influenced by the
substantial points contained in one of its neighborhoods. The interaction among different parts of the
beam is then quantified for each test velocity field attainable by the beam, using a linear functional of the
velocity fields and of their first derivatives with respect to x1. This functional, denoted P i , is also called
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the internal power. The theorems we used to represent external power Pe enable us to express P i as

P i
=

∫ l

0

(
c0 · wc + C0 · W + γ0ω+ c1 · w′

c + C1 · W′
+ γ1ω

′
)
, (9)

where the vector fields c0 and c1 represent self-force and internal force densities, respectively, the skew
tensor fields C0 and C1 represent the self-couple and internal couple densities, respectively, and the
scalar fields γ0 and γ1 represent the self-action and the internal action densities which spend power on
the warping and on its spatial rate, respectively.

It is natural to assert that P i
≡ 0 for any change of placement leaving the beam mechanical state

unaltered, and that is the situation for a the change of placement induced by a neutral velocity field.
Substituting (3) into (2) and then into (9), the generality of the kinematic fields present in the integrand
leads to the following reduced expression for the internal power

P i
=

∫ l

0

(
c1 · w′

c − (p′

c ∧ c1) · W + C1 · W′
+ γ0ω+ γ1ω

′
)
. (10)

Hence, in this beam model the self-force density necessarily vanishes, while the self-couple density is
actually the moment of the internal force density with respect to the shear center, as expressed by the
term containing the wedge product in the integrand of Equation (10).

Let us postulate that for any test velocity field attainable by the beam the interactions of the beam with
the environment and of the parts of the beam with each other are such that at any value of the evolution
parameter t the total power vanishes (see [Germain 1973a; 1973b; Di Carlo 1996]), or equivalently,

Pe
= P i . (11)

From (11), standard localization procedures under suitable regularity hypotheses yield the law of
action and reaction∣∣∣∣t · wc + T · W + θω

∣∣∣∣
x−

1

= −

∣∣∣∣t · wc + T · W + θω

∣∣∣∣
x+

1

, for all x1 ∈ [0, l]. (12)

As a consequence of (12), the boundary terms for the expression of external power (8), can be compacted
with respect to the actions on the positive side of the cross-sections. Applying the fundamental theorem
of integral calculus, the balance of power (11) becomes∫ l

0
[
(
t′ + b

)
· wc +

(
T′

+ p′

c ∧ c1 + B
)
· W +

(
β + θ ′

− γ0
)
ω

+ (t − c1) · w′

c + (T − C1) · W′
+ (θ − γ1) ω

′
] = 0. (13)

For generality of the velocity fields and their first spatial derivatives contained in the integrand, (13)
yields

c1 = t, C1 = T,

t′ + b = 0, T′
+ p′

c ∧ t + B = 0,

γ0 = τ = β + θ ′, γ1 = µ= θ.

(14)
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Equations (14)1,2 represent two identification equations and tell us that in this beam model the inter-
nal action densities c1 and C1 actually coincide with contact force and couple densities, respectively.
Equations (14)3,4 express the local balance of force and torque. By torque we mean an action which
spends power on an angular velocity, and is hence expressed both by a couple and the moment of a
force. Equation (14)5 is an auxiliary equation for γ0, henceforth denoted τ and interpreted as bishear
[Vlasov 1961]. Equation (14)6 is an auxiliary equation for γ1, henceforth denoted µ and interpreted as
a bimoment [Vlasov 1961].

The equations in (14) were obtained by the balance of power in the present configuration. In any case,
neither the identities in (14)1,2 nor the scalar auxiliary (14)5,6 depend on the configuration. It seems
advisable, however, to pull back the local balance equations (14)3,4 to the reference configuration. Let
us then propose

s = R>t, S = R>TR, a = R>b, A = R>BR,

where s,S, a, and A are the contact and bulk action densities pulled back to S0. Taking into account the
definitions of ec, E, and Equation (4), the local balance equations (14)3,4, become

s′
+ Es + a = 0,

S′
+ ES − SE +

(
q′

c + ec
)
∧ s + A = 0,

(15)

while the reduced expression of the internal power (10), and the balance of power (11), become

P i
=

∫ l

0

(
s · ėc + S · Ė + τω+µω′

)
= Pe. (16)

We decompose the contact action densities in S0 as

s = Q1i1 + Q2i2 + Q3i3, S = M1i2 ∧ i3 + M2i3 ∧ i1 + M3i1 ∧ i2. (17)

We now express the strain with respect to the shear axis ec in terms of the strain with respect to the
centroidal axis e, according to (4)3. Then, we can write the full expression of the internal power (16),
taking into account the decompositions in (17), as∫ l

0

(
Q1ε̇1 + Q2ε̇2c + Q3ε̇3c + M1χ̇1 + (M2 + c3 Q1)χ̇2 + (M3 − c2 Q1)χ̇3 + τω+µω′

)
. (18)

Equation (18) shows that Q1, interpreted as normal force, spends power on the speed of elongation of the
centroidal axis, while Q2 and Q3, interpreted as shearing forces, spend power on the speed of shearing
between the cross-sections and the shear axis. That is, we imagine the normal force to be applied at the
centroid of the cross-section, while the shearing forces are applied at the shear center of the cross-section.
The twisting couple M1 spends power on the speed of twisting, while the bending torques M2 + c3 Q1

and M3 − c2 Q1, which are composition of a couple and of the moment of a force, respectively, spend
power on the speed of bending. Also, note that the bending torques introduced are thus evaluated with
respect to the centroid of the cross-section.

Substituting (5)3 and (17) into (15), and assuming the bulk actions to vanish as is customary, we
obtain the components of the local balance equations for contact force and torque, with all the kinematic
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quantities written with respect to the centroid of the cross-sections, as

Q′

1 +χ2 Q3 −χ3 Q2 = 0,

Q′

2 +χ3 Q1 −χ1 Q3 = 0,

Q′

3 +χ1 Q2 −χ2 Q1 = 0,

M ′

1 +χ2 M3 +χ3 M2 + (ε2 −χ1c3)Q3 − (ε3 +χ1c2)Q2 = 0,

M ′

2 +χ3 M1 +χ1 M3 + (ε3 +χ1c2)Q1 − (1 + ε1 +χ2c3 −χ3c2)Q3 = 0,

M ′

3 +χ1 M2 +χ2 M1 + (1 + ε1 +χ2c3 −χ3c2)Q2 − (ε2 −χ1c3)Q1 = 0.

4. Inner constraints and constitutive relations

If the beam is made of homogeneous and elastic material, standard axioms of the constitutive theory
[Truesdell and Noll 1965] state that the most general material response function assumes the reduced
expression

S = Ŝ(e, E, α, η), (19)

where S represents each of the components of s and S, and τ and µ.
Let us now introduce some inner constraints. The first takes into account a standard assumption in

the literature, that is, that warping actually depends on the other strain measures, and vanishes when no
strain is present, as

α = α̂(e, E), α̂(0, 0)= 0, (20)

where α̂ is a scalar function independent of the frame of reference, since both e and E are likewise
independent. On the basis of the literature, it seems natural to postulate the particular expression for
Equation (20)

α = ξχ1, ξ ∈ R, η = ξχ ′

1, (21)

where ξ is a numerical constant [Vlasov 1961; Reissner 1983; Simo and Vu-Quoc 1991; Tatone and Rizzi
1991; Rizzi and Tatone 1996]. In particular, with reference to [Simo and Vu-Quoc 1991], a possible
kinematic interpretation for α is that of a suitably weighted average of out-of-plane displacement of the
points initially lying on the same plane cross section.

Furthermore, let us assume that the shearing strains between the cross-sections and the axis of the cen-
troids vanishes. This implies that in a neighborhood of the centroid, the cross section remains orthogonal
to the axis of the centroids, as

e = ε1q′

o = ε1e1 ⇒ ε2 = ε3 = 0. (22)

Note that this assumption does not imply that the whole of the cross-section remains orthogonal to the
beam axes. Indeed, ε2c and ε3c do not vanish, as is easily obtained from (4)3.

According to the principle of determinism for constrained materials [Truesdell and Noll 1965], in-
troducing constraints implies that the contact actions consist of the sum of two contributions. One of
these is determined by the motion according to a constitutive relation (19), but the other is not. For
this reason, the former is called active and the latter reactive. The reactive part of the contact actions
is here denoted by the subscript r and is characterized, for so-called smooth constraints [Truesdell and
Noll 1965], by spending no power on any velocity field compatible with the introduced constraints. In
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our case, the introduced constraints are those between warping and twist (21), and of vanishing shearing
strain between the cross-sections and the centroidal axis (22). Characterization of smooth constraints
yields

0 =

∫ l

0

(
sr · ėc + Sr · Ė + τr α̇+µr η̇

)
=

∫ l

0

(
Q1r ε̇1 + (M1r − c3 Q2r + c2 Q3r + ξτr )χ̇1

+ (M2r + c3 Q1r )χ̇2 + (M3r − c2 Q1r )χ̇3 +µrξ χ̇
′

1
)
, (23)

where we used the reduced expression for the internal power (16) and the decompositions of the strain
measure (4)3 and of the contact actions (17). For generality of the velocity fields and of the domain of
integration in (23), we obtain

Q1r = 0, Q2r , Q3r ∈ R,

M1r = c3 Q2r − c2 Q3r − ξτr , M2r = M3r = 0,

τr ∈ R, µr = 0.

(24)

Thus, the normal force, the bending couples and the bi-moment are entirely determined by the motion
(that is, their reactive part vanishes). On the other hand, the shearing forces and the bi-shear have a
reactive part entirely undetermined by the motion. If, as is standard in the literature, the shearing force
is assumed to depend only on the shearing strain, the inner constraint on the shearing strain makes the
shearing force purely a constraint reaction which is altogether undetermined by the motion. Analogous
reasoning can be produced for the bi-shear, to yield

Q2 = Q2r , Q3 = Q3r , τ = τr . (25)

Thus, some actions are purely active, others purely reactive. The exception is the twisting couple, which
has an active part and a reactive one. The reactive part takes into account reactive bi-shear and shearing
forces, which are considered to be applied at the shear center. The presence of bi-shear as a reactive
component of the twisting couple is well known in the literature, and was first reported by [Vlasov
1961], where it arises from the inner constraint of vanishing shearing strain of the cross-section middle
line in its own plane.

To study possible cases of bifurcations of elastic equilibrium, we use a static perturbation technique
[Budiansky 1974]. Let us suppose that the contact actions derive from an elastic potential, thus remaining
within the limits of the standard theory established in [Koiter 1945]. Let us further assume that the
material of the beam is hyperelastic. Then, we adopt nonlinear constitutive relations for the active part
of the contact actions, that is, those determined by the motion. These are denoted by the subscript a and
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are

Q1a = Q1 = aε1 +
1
2

dχ2
1 ,

M1a = (c + dε1 + f2χ2 + f3χ3 + gη)χ1,

M2a = M2 = b2χ2 +
1
2

f2χ
2
1 ,

M3a = M3 = b3χ3 +
1
2

f3χ
2
1 ,

µa = µ= hη+
1
2

gχ2
1 ,

(26)

where the coefficients a, b j ( j=2, 3), c, h represent the rigidities in extension, bending, torsion, warping,
respectively, and d, f j ( j =2, 3), and g take into account the couplings between extension and torsion,
bending and torsion, warping and torsion, respectively [Truesdell and Noll 1965; Møllmann 1986]. In
(26), only those contact actions which are not entirely reactive have been characterized. Furthermore,
the consequences of (24) have been considered, and the coincidence of some of the contact actions with
their active part has been put into evidence.

If the bulk action β vanishes, which is a standard assumption in continuum mechanics, the Equations
(14)5,6, (21), (24)3,5,6, (25), and (26) yield

µ= hξχ ′

1 +
1
2

gχ2
1 ⇒ τ = µ′

= hξχ ′′

1 + gχ1χ
′

1,

M1 = M1a + M1r = (c + dε1 + f2χ2 + f3χ3)χ1 − hξ 2χ ′′

1 + c3 Q2 − c2 Q3.

Comparing Equation (V.1.10)3 in [Vlasov 1961] and our Equation (21)3 we can make the following
correspondences:

a = E A, b j = E I j ( j = 2, 3), c = G Ic,

d = E Id , f j = E I f j ( j = 2, 3), hξ 2
= E Iω,

where E and G are the elasticity moduli in extension and shear, respectively, A is the area of the cross-
section, I j ( j = 1, 2) are the centroidal, principal moments of inertia of the cross-section, Ic is the torsion
inertia factor for thin-walled cross-sections, Id is the polar moment of ineria of the cross-section with
respect to the shear center, Iω is the warping inertia (the second moment of the sectorial area with respect
to the area of the cross-section), and I f j =

∫
R x jr2 ( j = 2, 3), where x j is the coordinate of a point of

the cross-section with respect to the centroid and r the distance of the same point from the shear center.

5. Buckling of compressed beams

Let us consider a beam compressed by a dead load (that is, a force constant in magnitude, direction and
sign) of magnitude λ. It is very easy to see by means of elementary considerations that one solution of
the elastic static problem, called the fundamental equilibrium path, is described by the following fields,
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denoted by the superscript f:

uf
= −

λ

a
x1i1, Rf

= I, αf
= 0,

ef
= −

λ

a
i1, Ef

= 0, ηf
= 0,

sf
= − λi1, Sf

= 0, τ f
= 0, µf

= 0.

A possible different solution of the same problem, called the bifurcated path, is denoted by the superscript
b, and is then described by the fields

ub
= u −

λ

a
x1i1, Rb

= R + I, αb
= α,

eb
= e −

λ

a
i1, Eb

= E, ηb
= η,

sb
= s − λi1, Sb

= S, τ b
= τ, µb

= µ.

(27)

From Equation (27) on, symbols of fields without superscripts denote the differences between quantities
as evaluated in the bifurcated and in the fundamental paths, that is,

(·) := (·)b − (·)f.

In other words, the strain measures, local balance and auxiliary equations and constitutive relations
henceforth will be written in terms of differences. Differences will also be assumed to depend,with
regularity sufficient to our scope, on a scalar parameter σ , as

(·)= (·)(σ ), σ ∈ [0, 1], (·)|σ=0 = 0,

that is, the differences are assumed to vanish in the fundamental path, where σ = 0.
Since we are using a static perturbation procedure, let us perform a formal σ -power series expansion

of the fields of interest and of the load multiplier λ in a neighborhood of σ = 0. The field equations at
the first order of such a formal expansion are

aū1 = 0

b3ū′′′′

2 + λ
(a − λ

a

)
ū′′

2 − λc3ϕ̄
′′

1 = 0

b2ū′′′′

3 + λ
(a − λ

a

)
ū′′

3 + λc2ϕ̄
′′

1 = 0

hξ 2ϕ̄′′′′

1 +

(dλ− ac
a

)
ϕ̄′′

1 + λ(c2ū′′

3 − c3ū′′

2) = 0

≡ Di j v̄ j = 0, (28)

where a superimposed bar indicates the first-order increment of the indicated quantities with respect to
the perturbation parameter σ . Equation (28) has been written both in extended and in compact form,
with v̄ j = (ū1, ū2, ū3, ϕ̄1) and Di j a symbolic linear differential operator.

Equation (28)1 is independent of Equations (28)2−4, while these last constitute a coupled system of
ordinary differential equations with constant coefficients. The equations in (28), along with suitable
boundary conditions, form an eigenvalue problem which provides the critical values λci , for i = 1, 2, 3
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of the load multiplier and the mode shapes of the linearized displacement components ū2, ū3, ϕ̄1. In the
following sections, we consider two benchmark examples, one for a simply supported beam, and one for
a clamped beam.

5.1. Simply supported beam. In this case the linearized boundary conditions we considered are

x1 = 0 : ūi = M̄i = 0, i = 1, 2, 3; µ̄= 0,

x1 = l : ū2 = ū3 = ϕ̄1 = Q̄1 = M̄2 = M̄3 = µ̄= 0.
(29)

Note that the hinge at x1 = 0 does not inhibit warping, while the support at x1 = l permits axial displace-
ment and warping and inhibits transverse displacement and torsion rotation of the cross-section.

The solution of (28)1 is not interesting from the point of view of finding a linearized bifurcated path.
With the relevant boundary conditions in (29) it is immediately evident that ū1 = 0. On the other hand,
nontrivial solutions of equations (28)2−4, with the relevant boundary conditions of (29), of the form

ū2 = V sin
(πx1

l

)
,

ū3 = W sin
(πx1

l

)
,

ϕ̄1 =8 sin
(πx1

l

)
,

(30)

where V , W , and 8 are arbitrary integration constants, exist under the condition

det


b3

(π
l

)2
− λ+

λ2

a
0 λc3

0 b2

(π
l

)2
− λ+

λ2

a
−λc2

λc3 −λc2 hξ 2
(π

l

)2
−

dλ
a

+ c

= 0. (31)

Equation (31) expresses an eigenvalue problem which provides the searched critical load multipliers. It
coincides, modulo the necessary identifications of the constitutive coefficients, with the result provided
in [Grimaldi and Pignataro 1979], which was obtained starting from a shell model inspired by [Vlasov
1961]. By writing (31) explicitly, we obtain the characteristic equation of the bifurcation problem, which
turns out to be a third-order polynomial in terms of the load multiplier λ. The real solutions of such an
equation provide the critical values of the load multiplier, and the relevant eigenmodes are the buckling
modes. It is apparent from (31) that the critical loads and the buckling modes depend on the material
properties of the beam, but are also strongly influenced by the shape of the cross-sections. In particular,
symmetries of the cross sections are of particular importance.

When the cross-section of the beam exhibits two axes of symmetry, the centroid coincides with the
shear center, that is, c2 = c3 = 0. Then, it is apparent that the left hand side of (31) reduces to the product
of three distinct factors. Hence there are three real and distinct eigenvalues of the characteristic equation
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λc1 =
ac
d

(
1 +

hξ 2π2

cl2

)
,

λc2 =
a
2

(
1 −

√
1 −

4b3π
2

al2

)
,

λc3 =
a
2

(
1 −

√
1 −

4b2π
2

al2

)
.

(32)

The three pertaining buckling modes (two purely flexional, one purely torsional) occur separately. These
results coincide with those in [Grimaldi and Pignataro 1979] and also those in [Timoshenko and Gere
1961; Pignataro and Ruta 2003]. When a → ∞, the two flexional critical loads in (32) reduce to the
standard Euler flexional buckling loads, and no torsional buckling appears. This result can be inferred
from [Timoshenko and Gere 1961] as well. Indeed, in a nonextensible beam with the centroid coincident
with the shear center, a compressive dead load cannot produce, even in a buckled shape, a torsion couple
inducing twist. Only flexional buckling modes are possible.

When the cross-section of the beam exhibits one axis of symmetry, for instance, x3, it necessarily
follows that c2 = 0. Then, the left hand side of (31) is the product of two factors. One provides the
same flexional buckling load λc3 as in (32)3. However, the only real root of the other factor has a
really complicated expression which is not reported here for the sake of simplicity. Instead we present a
simplified expression, obtained from this complicated one by considering a nonextensible beam, that is,
letting a → ∞, yielding

λc1 = λc2 =
1

2c2
3

(√
c + hξ 2π

2

l2

√
c + hξ 2π

2

l2 + 4b3c2
3
π2

l2 −

(
c + hξ 2π

2

l2

))
. (33)

Hence we deduce two very interesting results for beams with cross-sections exhibiting one axis of sym-
metry. First, there are two only possible buckling modes. One is purely flexional and Euler-like, in the
plane described by the axis of the beam and the axis of symmetry of the cross-section (in this case, ū3).
The other is a coupled flexural-torsional mode (in this case, a combination of ū2 and ϕ̄1). Second, since
the centroid does not coincide with the shear center, even for nonextensible beams, a torsional (or more
exactly, a flexural-torsional) buckling mode is present. This result clearly coincides with the original one
provided in [Grimaldi and Pignataro 1979].

When the cross-section exhibits no symmetries, the presence of both coordinates of the shear center
in the characteristic equation (31), yields a single real-valued critical load, providing flexural-torsional
buckling, and the three modes ū2, ū3, ϕ̄1 are coupled and occur together. That is, under the critical load
the beam bends in both transverse directions and twists. The expression of the critical load, even in the
case of nonextensible beams, is cumbersome and is not reported here for the sake of simplicity. This
result also clearly coincides with that in [Grimaldi and Pignataro 1979].

5.2. Clamped beam. In this case the considered linearized boundary conditions are

x1 = 0 : ūi = ϕ̄i = 0, i = 1, 2, 3; ϕ′

1 = 0,

x1 = l : Q̄i = M̄i = 0, i = 1, 2, 3; µ̄= 0. (34)
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That is, all the displacements vanish and warping is prevented at the clamped end, while all the contact
actions, as well as the bi-moment, are assumed to vanish at the free end. As in the case of the simply
supported beam, here as well the solution of (28)1 is of no interest for determining a linearized buckling
path, and easily can be proved to be identically equal to zero.

On the other hand, nontrivial solutions of equations (28)2−4, with the relevant boundary conditions in
equations (34), of the form

ū2 = V
[
1 − cos

(πx1

2l

)]
,

ū3 = W
[
1 − cos

(πx1

2l

)]
,

ϕ̄1 =8
[
1 − cos

(πx1

2l

)]
,

(35)

where V , W , and 8 are arbitrary integration constants, exist under the condition

det


b3

(π
2l

)2
− λ+

λ2

a
0 λc3

0 b2

(π
2l

)2
− λ+

λ2

a
−λc2

λc3 −λc2 hξ 2
(π

2l

)2
−

dλ
a

+ c

= 0. (36)

It is apparent that (36) provides a characteristic equation which has the same form as that provided by
(31) for the simply supported beam. The only difference between the two characteristic equations is
in the coefficient (2l)2 instead of l2 in the terms multiplying b2, b3 and hξ 2. Hence, apart from this
numerical difference, it is obvious that all the results obtained for the simply supported beam are the
same of those for the clamped beam. It follows that our analysis and remarks for the simply supported
beam can be equally reproduced for the clamped beam. The obtained results are then qualitatively the
same as those in [Grimaldi and Pignataro 1979] and for symmetric cross-sections, coincide with those
in [Timoshenko and Gere 1961; Pignataro and Ruta 2003].

6. Post-buckling paths

A fundamental aspect of the study of bifurcation paths is the analysis of the post-buckling behavior of
the structural element under consideration. That is, it is essential to understand whether the considered
element has a stable or unstable post-buckling behavior. This also can tell us if the element is sensitive
to imperfection. Another interesting aspect is related to the possibility of interaction between buckling
modes, which occurs when the geometrical and mechanical characteristics are such that two or more
buckling modes occur under the same critical load.
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To study all these aspects, we must analyze the field equations at the second order of the formal power
series expansion in terms of σ in a neighborhood of the bifurcation point. These turn out to be

D11 ¯̄u1 = − 2
(

a(ū′

2ū′′

2 + ū′

3ū′′

3)+ dϕ̄′

1ϕ̄
′′

1 +
a

a−λc

(
ū′′

2(λcc3ϕ̄
′

1 − b3ū′′′

2 )− ū′′

3(λcc2ϕ̄
′

1 + b2ū′′′

3 )
))
,

D22 ¯̄u2 + D24 ¯̄ϕ1 = 2b2
(
ū′′

2ϕ̄
′

1
)′′

+ 2 f2
(
ϕ′

1ϕ
′′

1
)′

+ 2λcc2
(
ū′

2ū′′

3
)′

+ 2λcc3
(
ϕ̄′

1
)2

+2λc
(
1 −

λc
a
)
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2ū′′′

2 )
′

)
−2λ̄

((
1 −

λc
a

)
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, (37)

where λc is one of the critical values of the load multiplier and the Di j are the components of the symbolic
linear differential operator introduced in (28). That is, the field equations at the second order of the formal
power series expansion in terms of σ have the same formal structure of the equations at the first order. The
difference is that first order equations are homogeneous while second order equations are not (see also
[Budiansky 1974; Pignataro et al. 1991]). Hence, since λc is an eigenvalue, that is, the symbolic operator
Di j is singular, a condition of solvability of the system described by equations (37) must be introduced.
This turns out to be given by the requirement that the right-hand side of (37) be orthogonal to any of
the eigensolutions of the first order equations provided by (28). In this case, the dot product yielding an
orthogonality condition is given by the integral over the length of the beam of the sum of the products
between each right hand side of (37) and the corresponding eigenmode. Such a condition, supplemented
by a normalization condition on the buckling modes, will provide the expressions for determining λ̄, that
is, the slope of the post-buckling path. Roughly speaking, when λ̄= 0, the considered buckling mode is
symmetric, otherwise it is imperfection-sensitive (see also [Budiansky 1974; Pignataro et al. 1991]).

In the following sections, we investigate the case of the simply supported beam considered before.
Indeed, since the eigenmodes (35) are qualitatively the same as the eigenmodes (32), the qualitative
behaviour of the clamped beam is the same as this of the simply supported one. Since the equation
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for the axial component of the displacement is immaterial for the study of buckling and hence also of
post-buckling, we will leave it aside, and focus attention on eqs. (37)2,3,4.

We will limit ourselves to examine the case when the cross section exhibits two axes of symmetry, the
eigenmodes are provided by equations (30) and the critical load multipliers are given by the equations of
(32). Furthermore, in that case we have c2 = c3 = 0 and f2 = f3 = 0. As a consequence, the right-hand
side of (37) assumes a much simpler form (which is not reported here for the sake of brevity).

For post-buckling behavior in bending, with no loss of generality, let us suppose that the buckling
mode which has taken place is ū2 = V sin

(
πx1

l

)
(see (30)). Once we denote the right-hand side of (37)2

by r2(x1), when ū1 = ū3 = ϕ̄1 = 0, the solvability condition yields∫ l

0
r2(x1)ū2(x1)= 0 ⇒ λ̄= 0.

That is, the post-buckling path is symmetric, a well known result of Euler-like buckling for symmetric
beams.

For post-buckling behavior in torsion, the eigenmode is ϕ̄1 =8 sin
(
πx1

l

)
(see (30)). Once we denote

the right hand side of (37)4 by r4(x1), when ū1 = ū2 = ū3 = 0, the solvability condition yields∫ l

0
r4(x1)ϕ̄1(x1)= 0 ⇒ λ̄= 0.

Therefore, the post-buckling path in torsion is also symmetric, which is also a well known feature of
symmetric beams.

7. Conclusions

In this paper we presented a direct, one-dimensional beam model suitable for describing the flexural-
torsional buckling of thin-walled beams. The kinematic description makes use of two different beam
axes: the centroids, and the shear centers (we left aside the definition of the latter). Using this, we
can imagine the contact forces applied at different places of the planes of the (unwarped) cross sections
and the contact torques evaluated with respect to different places of the planes of the (unwarped) cross
sections. The constitutive relations are nonlinear and hyperelastic. Two inner constraints are assumed to
hold, that is, the (unwarped) cross sections remain orthogonal to the centroidal axis, and the descriptor
of the warping is proportional to the twist. This makes it possible to use a static perturbation technique
to look for bifurcations. Moreover, it is possible to provide a rough description of the quality of the
post-buckling behavior and of the interaction of multiple buckling modes. The qualitative description of
the phenomena coincides with that obtained with other beam models, yet with all the advantages of a
direct model. Further developments of this study will be related to the qualitative analysis of frames.
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Izuru Takewaki writes:

The discusser is very interested in the paper presented by Julius Marko, David Thambiratnam and Nimal
Perera. This paper includes various interesting aspects, for example, comparison of the effectiveness of
various damper systems (viscoelastic, friction and hybrid), optimal damper configuration and location,
and the influence of different types of earthquake ground motions on the response reduction by dampers.

The authors draw several references for readers. In the discusser’s opinion, more versatile inves-
tigations on optimal damper configuration and location have been made in the scientific community
of earthquake engineering, and computing algorithms based on certain theoretical backgrounds have
been proposed [Austin and Pister 1985; Takewaki 1997; Takewaki and Yoshitomi 1998; Takewaki 1999;
Takewaki et al. 1999; Takewaki 2000a; Takewaki 2000b; Takewaki 2000c; Garcia 2001; Singh and
Moreschi 2001; Singh and Moreschi 2002; Garcia and Soong 2002; Liu et al. 2003; Silvestri et al. 2003;
Kiu et al. 2004; Park et al. 2004; Trombetti and Silvestri 2004; Xu et al. 2004; Liu et al. 2005; Tan
et al. 2005; Trombetti and Silvestri 2006; Wongprasert and Symans 2004; Lavan and Levy 2005; Lavan
and Levy 2006; Aydina et al. 2007]. For example, the optimal quantity and location of dampers can be
obtained automatically with the help of these algorithms; the gradient-based algorithm is a representative
one [Takewaki 1997; Takewaki and Yoshitomi 1998; Takewaki 1999; Takewaki 2000a; Takewaki 2000b;
Takewaki 2000c; Takewaki et al. 1999]. It is obvious that dampers have various kinds of nonlinearities,
and a time-history response analysis is often required to simulate the behaviors of structures with such
dampers. However, many useful equivalent linearization techniques have been proposed [Roberts and
Spanos 1990], and these techniques certainly make it possible to treat those behaviors almost theoretically.
Although the equivalent linearization techniques have some limitations on the range of applicability, most
of building structures are designed within this range of applicability.

The authors point out another interesting aspect, that is, the influence of different types of earthquake
ground motions on the response reduction by dampers. The broad-range parametric simulation using
recorded ground motions may be attractive and lead to many useful conclusions. However, it is also true
that theoretical approaches enable one to capture more essential features of permanent interest even if
the range of applicability is limited. For example, the concept of critical excitation or worst-case analysis

Keywords: dampers, multistory buildings, seismic mitigation, finite element techniques.
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seems to provide a powerful means for overcoming the difficulties caused by uncertainties of earthquake
ground motions [Drenick 1970; Shinozuka 1970; Takewaki 2000b; Takewaki 2001; Takewaki 2002a;
Takewaki 2002b; Takewaki 2002c; Takewaki 2004; Takewaki 2007]. The tough and robust design may
be possible using this concept [Takewaki 2000b; Takewaki 2002b; Takewaki 2007].

In closing, the discusser would like to call the attention of interested readers to the work reported in
[Takewaki 1997; Takewaki and Yoshitomi 1998; Takewaki 1999; Takewaki et al. 1999; Takewaki 2000a;
Takewaki 2000b; Takewaki 2000c; Garcia 2001; Singh and Moreschi 2001; Liu et al. 2003; Park et al.
2004; Silvestri et al. 2003; Trombetti and Silvestri 2004; Lavan and Levy 2005; Liu et al. 2005; Lavan
and Levy 2006; Takewaki 2007] to provide a broader context for the results reported by Julius Marko,
David Thambiratnam and Nimal Perera.

IZURU TAKEWAKI: takewaki@archi.kyoto-u.ac.jp
Dept. of Urban and Environmental Engineering, Graduate School of Engineering, Kyoto University
Kyotodaigaku-Katsura, Nishikyo-ku Kyoto 615-8540, Japan

The authors respond:

The authors would like to thank the discusser for the encouraging remarks and the valuable comments. We
reviewed the work by Austin, Pister, Takewaki, Yoshitomi, Singh, Moreschi, Garcia, Soong et al. referred
to by the discusser as part of this study and found that work to be very useful and informative. This
specific research project is part of a comprehensive study by industry collaborators actively involved in
the structural design of high-rise buildings with the intent of gaining an understanding of the relationship
between nature of ground excitation, ground structure interaction, structural system response and the
effective influence of damping systems to mitigate adverse effects. The ultimate aim of this research
is to explore the potential for total interactive design that includes ground support, structural framing
and the various forms and configurations of damping as an integral part of high-rise building design. In
doing so, we believe that it is possible to design not only the dampers but the entire building and its
foundations as an integral part of the response reduction mechanism. Hence our focus on the nature of
ground excitation and its interactive response with dampers.

This was only possible via a study which involved the numerous parameters that we investigated, such
as earthquake type (frequency band and magnitude), damper type, location and configuration, etc. We
acknowledge the discusser’s comments that “theoretical approaches enable one to capture more essen-
tial features of permanent interest”, and we plan to continue our work incorporating such an approach
combined with synthetic ground excitations to overcome the unpredictability of ground motions.
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