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COMPOSITE MODELING FOR THE EFFECTIVE ELASTIC PROPERTIES OF
SEMICRYSTALLINE POLYMERS

SAID AHZI, NADIA BAHLOULI, AHMED MAKRADI AND SALIM BELOUETTAR

It is established that upper and lower bounds predict results far apart from each other for the effective elas-
tic properties of semicrystalline polymers such as polyethylene. This is manly due to the high anisotropy
of the elastic properties of the crystals. Composite modeling has been used to predict intermediate results
between the bounds. Here, we show the details of composite modeling based on a two phase inclusion
(crystalline lamella and amorphous domain) as the local representative element of a semicrystalline
polymer. Three approaches, two composite bounds, and a composite self-consistent model, are used
to compute the overall elastic properties. Details of the development of these approaches are given in
this paper. We find good agreement between results from these approaches and experimental results for
polyethylene.

1. Introduction

Under a nondistorted state, semicrystalline polymer morphology is often presented in the shape of
spherulites. Each spherulite is composed of crystalline plates arranged radially and separated by an
amorphous domain. The macroscopic mechanical behavior of the spherulitic polymer is assumed to be
isotropic. When the material is distorted, the spherulitic morphology disappears, leading to an oriented
morphology with privileged directions. This arrangement contributes to the increase in global elastic
anisotropy. We note that the elastic stiffness in the chain direction of the crystalline lamellae is very high.
This local anisotropy appears at a macroscopic scale in the case of oriented polymers.

One of the current and very important challenges for cost-effective design of new advanced polymers
and polymer matrix composites hinges upon the use of advanced computational methods and novel
micromechanical models that bridge the gap between different material length scales. Here we consider
simplified homogenization techniques based on continuum mechanics where the molecular architecture
and molecular weight are not explicitly accounted for. However, their effects are somehow included in
the values chosen for the homogenized local properties and in the volume fractions of the phases.

For the general case of predicting the effective properties of heterogeneous media, such as the two
phase composites, there exist several theories that are used as averaging schemes. For instance, the
asymptotic method proposed by [Berlyand and Kozlov 1992; Berlyand and Promislow 1995] can be used
to predict the asymptotic behavior of the effective elastic properties of a two phase composite material
as the ratio δ of the moduli for the soft (matrix) and hard (inclusion) phases tends to zero (δ → 0).
This asymptotic method has been used to design both isotropic and orthotropic composite materials
with particular elastic properties. Among other widely used theories are the Hashin–Shtrikman bounds

Keywords: effective elastic properties, crystalline polymers, homogenization, micromechanics, composite averaging schemes.
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[1963], the Mori–Tanaka approach [Mori and Tanaka 1973; Benveniste 1987], the Ponte Castaneda–
Willis approach [1995], the double inclusion theory [Hori and Nemat-Nasser 1993; Hu and Weng 2000;
Aboutajeddine and Neale 2005] and the statistical approach [Lin and Garmestani 2000; Jefferson et al.
2005]. Specific application of these approaches to semicrystalline polymers is yet to be done to compare
results for these materials. While this is an important task, it is out of the scope of the present work, in
which we discuss simpler methods.

To calculate the mechanical properties of semicrystalline polymers, Takayanagi et al. [1966] con-
sidered the two polymer phases as oriented crystalline blocks alternating with an amorphous phase.
This simple model was used to predict the tensile moduli parallel and perpendicular to the draw di-
rection. Another model, proposed by Barham and Arridge [1977], considers the composite nature of
the semicrystalline polymer. These two models are used and discussed in [Ward 1985]. Wang [1973]
proposed a composite model based on the self-consistent approach of [Hill 1964; 1965; Hermans 1967].
To predict the elastic constant for transcrystalline polyethylene using Hertman’s formulation, [Wang
1973] considered transcrystalline polyethylene as crystalline fibers embedded in an isotropic amorphous
matrix.

Ahzi et al. [1995] showed that the classical upper and lower bounds result in estimates far apart from
each other for elastic isotropic polyethylene (PE), and that the results of [Wang 1973] for transcrystalline
PE are very close to those predicted by the classical upper bound. They also suggested the use of two-
phase composite inclusion-based modeling to develop intermediate estimates of the elastic properties of
semicrystalline polymer. However, some of the details of the intermediate modeling approach were not
given in [Ahzi et al. 1995].

Molecular weight is not explicitly accounted for in our present proposed approach. It is well es-
tablished that small-strain tensile deformation properties, such as Young’s modulus, yield stress, and
yield strain are directly related to percent crystallinity, independently of molecular weight; [Jordens et al.
2000]. However for low and medium density, Nakayama et al. [1991] and Capaccio et al. [1976] have
shown that the crystallinity decreases with increasing molecular weight of PE. This is the case for PE
processed following the standard procedure based on slow cooling from the melt, according to this last
reference. For instance, the thickness of the amorphous domains is directly related to the square root of
molecular weight [Flory 1969]. Under these conditions the crystalline PE has an orthorhombic structure,
but when PE is processed under high pressure, a hexagonal crystalline phase is obtained [de Langen et al.
2000]. In the present work we consider PE obtained by slow cooling, where the crystalline phase can be
considered as entirely orthorhombic [Addiego et al. 2006]. In our approach, the percent of crystallinity
is imposed and therefore the corresponding molecular weight is implicitly accounted for. For other
processing procedures where the link between crystallinity and molecular weight may not be so simple,
our approach should be modified. This can be done by introducing the molecular weight effect directly
in the expression of the local properties. Averaging will therefore account for the effect of molecular
weight. However, this point is out of the scope of the current paper.

The present work is based on the composite model of [Ahzi et al. 1995], where the following hypothe-
ses are considered: the elementary representative volume of a semicrystalline polymer is considered as a
two-phase composite inclusion representing a crystalline plate and the neighboring amorphous domain.
These composite inclusions can be modeled as an extended sandwich with an infinite planar interface
(Figure 1). We give the details of the development of three composite models: composite upper bound,
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Figure 1. Two-phase composite inclusion.

composite lower bound and composite self-consistent model. To illustrate the result of these intermediate
models, we applied them to predict the elastic properties of spherulitic polyethylene. We also compare
these results to experimental ones from the literature. These comparisons show that the developed inter-
mediate models give good bounding of experimental results for different crystallinities.

2. Local elastic properties

The elastic constants of the crystals of polyethylene (PE) used in this work are computed in [Zehnder
et al. 1996] using atomistic simulations. These elastic constants are expressed in the orthonormal axis
of the orthorhombic unit cell of PE crystals as follows:

Cc
=



8.50 5.00 4.50 0.00 0.00 0.00
5.00 9.00 6.40 0.00 0.00 0.00
4.50 6.40 250.00 0.00 0.00 0.00
0.00 0.00 0.00 2.80 0.00 0.00
0.00 0.00 0.00 0.00 1.70 0.00
0.00 0.00 0.00 0.00 0.00 3.40


GPa,

Sc
= (Cc)−1

=



0.17 −0.09 −0.0006 0.00 0.00 0.00
−0.09 0.16 −0.0025 0.00 0.00 0.00
−0.0006 −0.0025 0.004 0.00 0.00 0.00

0.00 0.00 0.00 0.35 0.00 0.00
0.00 0.00 0.00 0.00 0.58 0.00
0.00 0.00 0.00 0.00 0.00 0.29


GPa−1.

For the amorphous phase, since polyethylene (PE) is rubbery at room temperature, atomistic simula-
tions cannot be used to compute the elastic properties. However, Gray and McCrum [1969] reported a
Poisson ratio ν = 0.49 and a shear modulus Ga

= 0.1 GPa for polyethylene. The shear modulus appears
to be two orders of magnitude higher than what one would expect for the rubbery phase of PE. This
is due to the fact that the measured value is influenced by the presence of the crystalline phase. In the
applications shown in this work, we will keep ν = 0.49 and shear modulus Ga

= 0.1 GPa. As one would
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Figure 2. Classical bounds for the shear modulus (left) and bulk modulus (right) for
isotropic PE.

expect, the amorphous domains in semicrystalline polymers will not have the same properties as the
corresponding bulk material.

3. Classical upper and lower bounds (Voigt and Reuss)

For a semicrystalline polymer with a volume fraction fa of the amorphous phase, the classical bounds,
Voigt (upper bound) and Reuss (lower bound), can be used to compute the effective (average) elastic
properties. The Voigt model assumes the uniformity of strain in the material which leads to the expression

Ceff
=
〈
faCa

+ (1 − fa)Cc〉 (1)

for the effective stiffness tensor. The Reuss model assumes uniformity of the stress which yields the
expression

Seff
=
〈
fa Sa

+ (1 − fa)Sc〉 (2)

for the effective compliance tensor. Here, 〈 · 〉 represents the volume average over the aggregate. These
classical bounds were implemented in [Ahzi et al. 1995] to predict the effective elastic properties of
polyethylene with isotropic distribution of the crystalline lamellae, which represent a spherulitic mor-
phology of polyethylene. The analytical integration procedure for isotropic distribution is outlined in
Appendix A. The predicted effective isotropic properties are shown in Figure 2, which depicts the evolu-
tion of the shear and bulk moduli as functions of the crystallinity of PE. These results show a very large
gap between the predictions of the Voigt and the Reuss models for increasing values of crystallinity. This
gap is due to the high anisotropy of the crystalline phase and the fact that these classical models account
for the composite nature of semicrystalline polymers, such as PE, only through the volume fraction of the
two phases. The wide gap between the two model predictions makes it difficult to consider the classical
bounds for accurate predictions of the elastic properties of semicrystalline polymers. Polyethylenes
usually have crystallinities ranging from 0.3 to 0.8 and for this range the gap between the curves is too
wide to make an estimate of the actual values of the macroscopic elastic properties. As seen in the next
section, the development of new composite bounds ensures that the gap between these new bounds is
drastically reduced compared to the classical bounds, and hence more accurate predictions of the elastic
properties can be made.
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4. Proposed composite modelling

Composite inclusion model. The morphology of semicrystalline polymers may be thought of as an
assemblage of two-phase inclusions. Each inclusion consists of a crystalline lamella and an adjacent
amorphous layer as shown in Figure 1 (see also [Ahzi et al. 1990; Ahzi et al. 1995] and [Lee et al.
1993]). The inclusions are of high aspect ratio and are modeled as infinitely extended planar structures
with planar interface between the crystalline and the amorphous phase. Lamellar twist is neglected and
linear elasticity is assumed for each individual phase as well as for the composite inclusion and the
matrix. Let σ c, σ a , and σ I be the Cauchy stress tensors of the crystalline phase, amorphous phase and
the inclusion respectively and let εc, εa and ε I be the corresponding infinitesimal elastic strain tensors.
The constitutive relation for each phase as well as for the composite inclusion may be written as follows:

Crystalline lamella.
σ c

= Ccεc or εc
= Scσ c, (3)

Crystalline lamella.
σ a

= Caεa or εa
= Saσ a, (4)

Crystalline lamella.
σ I

= C I ε I or ε I
= SI σ I . (5)

Here Cc, Ca , nad C I represent the fourth order stiffness tensors for the crystalline lamella, the amorphous
domain and the composite inclusion respectively, and Sc, Sa , SI are the corresponding compliance
tensors (the inverses of the stiffness tensors). The inclusion stress and strain may be obtained by the
volume average of the constituent’s stress and strain fields

σ I
= faσ

a
+ (1 − fa)σ

c, (6)

and
ε I

= faε
a
+ (1 − fa)ε

c, (7)

where fa is the volume fraction of the amorphous phase, assumed to be the same for all inclusions.

Interface compatibility and equilibrium. Let us first define the vector form of the stress and strain tensors.
These tensors can be expressed as

σ ≡
(
σ11, σ22, σ33, σ23, σ13, σ12

)T
≡
(
σ1, σ2, σ3, σ4, σ5, σ6

)T
, (8)

and
ε ≡

(
ε11, ε22, ε33, ε23, ε13, ε12

)T
≡
(
ε1, ε2, ε3, ε4, ε5, ε6

)T
, (9)

where the superscript T designates the transpose.
The interface between the crystalline and the amorphous phase of each inclusion requires the enforce-

ment of the compatibility and equilibrium conditions. Considering an orthonormal basis (e1, e2, e3)

with e3 normal to the interface and (e1, e2) in the plane of the interface, we can then write the strain
compatibility at the interface as

εc
α = εa

α = ε I
α. (10)
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Here α takes the values 1, 2 and 6. This means that the in-plane strains are continuous across the interface.
The stress equilibrium conditions ensure interface traction equilibrium. These conditions are represented
by

σ c
β = σ a

β = σ I
β . (11)

Here β takes the value 3, 4 and 5.
Now the problem is to determine the expressions for C I and SI from the stiffness and compliance

tensors of the individual phases. From Equations (3), (4), and (5) we note that, to get the expression for
the inclusion stiffness and compliance tensors, we need to express σ a and σ c in terms of σ I , and εa and
εc in terms of ε I . From the above linear relations, we show (see Appendix B) that the phase stress and
strain tensors are linearly related to the inclusion stress and strain tensors, respectively. These relations
are given by

σ a
= Raσ I , and σ c

= Rcσ I (12)

εa
= Qaε I and εc

= Qcε I . (13)

The fourth order tensors Qa , Qc, Ra and Rc depend on the elastic moduli of the phases. These mapping
tensors are termed phase concentration tensors and the analytical determination of their expressions are
given in Appendix B.

Inclusion elastic constants. Introducing the constitutive relations given by (3), (4) and (5) in Equation
(6) we obtain

C I ε I
= fa Caεa

+ (1 − fa)Ccεc, (14)

and the use of (12) in (13) leads to

C I ε I
=
[

fa Ca Qa
+ (1 − fa)Cc Qc]ε I . (15)

Thus, the inclusion stiffness tensor is obtained as

C I
= fa Ca Qa

+ (1 − fa)Cc Qc. (16)

Similarly, introducing the constitutive relations (3), (4), and (5) in (7) we obtain

SI σ I
= fa Saσ a

+ (1 − fa)Scσ c. (17)

If the relations of (12) are used in (17), we obtain

SI σ I
=
[

fa Sa Ra
+ (1 − fa)Sc Rc]σ I . (18)

Thus, the inclusion compliance tensor is obtained as

SI
= fa Sa Ra

+ (1 − fa)Sc Rc. (19)

We note that the expression (19) for the composite inclusion elastic constants is dual to Equation (16):
C I

= (SI )−1. However, Voigt-type inclusion-averaging, C I
Voigt, is obtained by setting Qa and Qc to

identity in relation (16). Reuss-type inclusion averaging, SI
Reuss, is also obtained by setting Ra and Rc

to identity in relation (19).
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The stiffness matrix C I is an important indicator regarding the elastic constants of bulk crystalline
polymers such as polyethylene. If we assume the chain direction of the crystalline lamella to be parallel to
the inclusion interface normal (e3), the C I

33 element of the inclusion stiffness matrix reflects the variation
of local elastic stiffness with crystallinity. Figure 3 shows the variation of this stiffness component as
function of crystallinity for the three local averaging schemes discussed above: C I

Composite, C I
Voigt, and

C I
Reuss = (SI

Reuss)
−1.

Composite averaging schemes. The overall (effective) elastic properties of an aggregate consisting of
N inclusions is obtained by averaging the local elastic properties. We consider an aggregate of volume
V subjected to a remote macroscopic stress tensor σ̄ and to the corresponding macroscopic elastic strain
tensor ε̄. Considering the overall behavior to be linear elastic, Hooke’s law is then given by

σ̄ = Ceffε̄ or ε̄ = Seffσ̄ , (20)

where Ceff and Seff are the effective stiffness and compliance tensors of the aggregate, respectively.
The consistency condition dictates that the average of the local stresses and strains should equal the
macroscopic ones, that is

σ̄ = 〈σ I
〉 ≡

1
V

∫
σ I dV , (21)

and

ε̄ = 〈ε I
〉 ≡

1
V

∫
ε I dV . (22)

To obtain an expression for the effective elastic constants as a function of the local ones, we need
to apply an interaction law which consists of a relationship between the macroscopic stress (or strain)
tensors. This will depend upon the type of averaging scheme chosen.
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Composite lower bound. The lower bound estimate assumes stress uniformity within the aggregate. To
extend this model to our composite approach, we assume the composite-inclusion stress to be uniform,
and the macroscopic stress σ̄ to be

σ I
= σ̄ . (23)

Note that the stress in each phase σ a and σ c are not necessarily equal to σ̄ . Substituting (23) in (5) we
obtain

ε I
= SI σ̄ . (24)

Taking the volume average of this relation leads to

〈ε I
〉 = 〈SI

〉σ̄ . (25)

By imposing the global condition (22), and the second equation of (20) we obtain the following expres-
sion for the effective compliance tensor:

Seff
= 〈SI

〉. (26)

Using the expression (19), the composite lower bound averaging expression (27) can be written as

Seff
= 〈SI

〉 =
〈
fa Sa Ra

+ (1 − fa)Sc Rc〉. (27)

We note that relation (27) reduces to the Reuss estimate given by (2) if the phase concentration tensors
R reduce to identity. The effective stiffness tensor is then obtained by inverting the effective compliance
tensor:

Ceff
= (Seff)−1. (28)

Composite upper bound. For the composite upper bound estimate, we assume strain uniformity in the
aggregate. That is, each composite inclusion is subjected to the same macroscopic strain ε̄

ε I
= ε̄, (29)

which allows εa and εc to deviate from ε̄. Substituting (29) in the first part of (5) and taking the volume
average of the resulting relation we obtain

〈σ I
〉 = 〈C I

〉ε̄. (30)

Using the global equilibrium condition (21) and comparing to the first part of (20) we obtain the com-
posite upper bound expression for the effective elastic stiffness tensor

Ceff
= 〈C I

〉. (31)

Using (16), relation (33) becomes

Ceff
= 〈C I

〉 =
〈
fa Ca Qa

+ (1 − fa)Cc Qc〉. (32)

Here again, we note that relation (32) reduces to the Voigt estimate given by (1) if the phase concentration
tensors Q reduce to identity The effective compliance tensor for the composite upper bound is then
obtained by inverting the effective stiffness tensor, as

Seff
= (Ceff)−1. (33)
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Self-consistent estimate. In our proposed composite bounds, partial local compatibility and equilibrium
are satisfied. This is due to the composite inclusion interface conditions given by (10) and (11). To
develop a composite self-consistent scheme, we propose to use the two-phase composite inclusion as the
local representative element with an elliptical shape, and embedded in infinite homogeneous equivalent
medium. To derive the self-consistent interaction law, we use the integral equation method for which
details are given in Appendix C. This treatment is analogous to the work of [Zeller and Dederichs 1973],
where the Green function method is used to define the integral equation linking local velocity gradient
to the macroscopic one. The interaction law obtained by this scheme, in terms of the inclusion versus
the macroscopic strain (or stress) tensors, can be expressed by one of the two following dual expressions
(see Appendix C):

ε I
= B I

〈B I
〉
−1ε̄ or σ I

= AI σ̄ . (34)

Here the fourth order strain-concentration tensor, B I , and the stress-concentration tensor AI depend on
the effective elastic constants, the inclusion elastic constants, and the shape of the inclusion. Because of
the normalization procedure used in the development of the self-consistent scheme (see (Appendix C),
the consistency conditions (21) and (22) are trivially satisfied by the interaction law (34).

If we insert (34) in the first equation of (5) we obtain

σ I
= C I B I

〈B I
〉
−1ε̄. (35)

Taking the volume average of (35) and making use of (21), then comparing the final expression with the
first equation of (20) leads to the following composite self-consistent expression of the effective stiffness
tensor

Ceff
= 〈C I B I

〉〈B I
〉
−1. (36)

If we use (16), the above expression becomes

Ceff
=
〈[

f a Qa Ca
+ (1 − fa)QcCc]B I 〉

〈B I
〉
−1. (37)

The self-consistent estimate of the effective compliance tensor can be obtained by inverting the stiffness
tensor given by (37). Or, if we use the interaction law given by the second equation of (34) and reasoning
similar to that given above, a dual expression to (37) can be obtained as

Seff
=
〈(

fa Ra Sa
+ (1 − fa)Rc Sc)AI 〉. (38)

5. Results and discussion

Predicted results for isotropic polyethylene. To illustrate differences between model predictions, we
first evaluate the single inclusion elastic constant C I

33 as a function of crystallinity. For this, the crystal
elastic constants of the polyethylene are computed by [Zehnder et al. 1996] using atomistic simulations
(see Section 1), while those for the amorphous phase are calculated using a shear modulus Ga

= 0.1 GPa.
In Figure 3, the values of C I

33 have been plotted against crystallinity for the Voigt model (Equation (16),
with Qa

= Qc
= I), Reuss model (as in Equation (19), with Ra

= Rc
= I), and composite inclusion

model (Equation (16)). The nature of the curves reflects that the C I
33 elastic constant for the Voigt model

increases almost linearly as a function of the crystallinity, compared to the composite inclusion and Reuss
models. These predicted results show moderate variation of the elastic constant C I

33 with the crystallinity
for the composite inclusion and Reuss models except for polyethylene with high crystallinity.
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Comparisons between models. The predicted results for the effective shear and bulk moduli as a func-
tion of crystallinity of isotropic polyethylene are reported in Figure 4. We notice that the gap between
the composite inclusion bounds is drastically reduced relative to the classical bounds except for high
concentration of the crystalline phase. In fact, the composite inclusion bounds demonstrate dependence
of the stiffness of the crystalline and amorphous phases by enforcement of interface compatibility and
equilibrium conditions, which result in reduction of the stiffness of the composite inclusion in the chain
direction. In contrast, the classical Voigt and Reuss models assume that the crystalline and amorphous
phases deform independently. The imposed uniform strain and high stiffness of the crystals in the chain
directions are responsible for over-prediction of the elastic properties by the classical Voigt model.

Regarding self-consistent representation based on the composite inclusion-model, the predicted results
fall between the composite bounds. At low crystallinity, the self-consistent curves show a closer response
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to the composite inclusion lower bound. This behavior is moderately inverted as crystallinity increases
but remains in general closer to the composite inclusion lower bound.

Shape effect for the composite self-consistent model. Since the self-consistent approach accounts for
inclusion shape effects, in the shear and bulk moduli are reported in Figure 5 for isotropic polyethylene
with different inclusion shapes: spherical (a/c = b/c = 1), penny-shaped (a/c = b/c = 5), and oblate
(a/c = 5, b/c = 10). It can be seen that the predicted elastic properties are very similar for both the
penny-shaped and oblate-shaped inclusions. Both the penny and oblate shapes can be used as good
inclusion shape approximations of the lamellar structure of polyethylene.

Comparison with experimental results. Davidse et al. [1962] have determined the Young’s modulus by
measuring the sound velocity, ν, and density, ρ, of various polyethylene samples. The Young’s modulus
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by the self-consistent model.
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is related to the sound velocity as
E = v2ρ. (39)

According to [Janzen 1992a; 1992b; 1997], the experimental results of Davidse et al. [1962] cannot be
uncritically accepted because their measurements are about three times greater than those obtained from
bending and tensile tests. Though this difference was attributed to larger deformations in the bending
and tensile tests, the anomaly needs to looked into with a deeper perspective.

[Janzen 1992b] has compared values of the Young’s modulus of polyethylene obtained from ultrasound
techniques with those obtained from static compression tests. The ultrasound experimental data are from
[Hartmann and Jarzynski 1974], while static compression results are taken from [Lagakos et al. 1986].

Experimental data from [Janzen 1992b] and [Davidse et al. 1962] are compared to our predicted results
in Figure 6 for the Young’s and shear moduli. These results show that the experimental results lie within
the composite inclusion bounds.
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Conclusion

An averaging scheme for a semicrystalline polymeric material is developed to predict the evolution of the
elastic properties function of the crystalline phase volume fraction. The proposed scheme is formulated
so as to enforce the local equilibrium and compatibility conditions, which are violated partially by Voigt
and Reuss estimates. The classical Voigt and Reuss averaging schemes, where the presence of both crys-
talline and amorphous phases is represented only by their relative volume fractions, results in far-apart
estimates of the effective elastic properties, particularly for the high volume fraction of the crystalline
phase. To develop new bounds, the problem of two-phase composite inclusion is considered, where the
crystalline and amorphous domains of such a homogenized inclusion are subject to piecewise constant
strains and stresses. The satisfaction of interface compatibility and traction equilibrium results in a softer
inclusion stiffness, particularly in the crystallographic chain direction. Composite bounds, as well as a
self-consistent averaging scheme are used to predict elastic properties of isotropic polyethylene. The
composite approach resulted in much narrower difference between the new composite bounds compared
to the classical ones. Comparison of predictions of the composite inclusion models with experimental
data shows good agreement. We are working on other homogenization approaches for these materials.

An important shortcoming of the proposed modeling is related to the effects of molecular weight and
molecular architecture that are ignored. Molecular weight is certainly an important factor that needs
to be addressed. In our model, molecular weight is included in a very simple implicit way through the
crystallinity and through the chosen values for the local properties. A way to extend the proposed model to
include the effect of molecular weight would be to express the crystallinity and local properties as function
of the molecular weight. In the modeling proposed here the effect of molecular architecture (that is, linear
versus branched chains) cannot be accounted for in an explicit way since the local properties (inputs)
are rather homogenized over a local volume. Only molecular simulations can directly account for the
effect of molecular architecture. Thus, one way of resolving this would be to combine our modeling with
molecular simulations. The latter can be used to compute the local properties as function of molecular
architecture then use the results as input for our modeling. We note that for the crystalline phase, the input
we used (the elastic properties of the crystalline phase), are those based on atomistic simulations. Here
again, the atomistic simulations were conducted on a small volume, which represents only a fraction
of the crystalline lamella. In our approach, we have simplified the problem by assuming that these
atomistically computed properties are homogeneous within the entire crystalline lamella. Without these
simplifying assumptions, no homogenization technique can be developed based on continuum mechanics.

Appendix A. Isotropic distribution

This appendix develops the inclusion average of the stiffness (or compliance), in the case of isotropic
distribution of the aggregate such as in spherulitic morphology. If we consider θ , φ and 8 to be the Euler
angles between the local coordinate system of inclusion and the global coordinate system, we can write
the inclusion average of the stiffness (or compliance) as

〈C I
i jkl〉 =

∫ 2π

0

∫ 2π

0

∫ π

0
ai i ′, a j j ′, akk′, all ′,C I

i ′ j ′k′l ′8 sin θ dθ dφ dψ, (A1)
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where 8= 1/(8π2) and the transform matrix components ai j ′ are given by

a11′ = cosψ cosθ cosφ− sinψ sinφ,

a12′ = −cosψ sinφ− sinψ cosθ cosφ,

a13′ = sinθ cosφ,

a21′ = cosψ cosθ sinφ+ sinψ cosφ,

a22′ = −sinψ cosθ sinφ+ cosψ cosφ,

a23′ = sinθ sinφ,

a31′ = −cosψ sinθ,

a32′ = sinψ sinθ,

a33′ = cosθ.

Carrying out this integration we get the following nonzero components of the symmetric effective stiff-
ness tensor:

Ceff
= 〈C I

〉,

Ceff
11 = Ceff

22 = Ceff
33 =

1
15

(
3(C I

11 + C I
22 + C I

33)+ 2(C I
12 + C I

13 + C I
23)+ 4(C I

44 + C I
55 + C I

66)
)
,

Ceff
12 = Ceff

23 = Ceff
13 =

1
15

(
(C I

11 + C I
22 + C I

33)+ 4(C I
12 + C I

13 + C I
23)− 2(C I

44 + C I
55 + C I

66)
)
,

Ceff
21 = Ceff

31 = Ceff
32 = Ceff

12

Ceff
44 = Ceff

55 = Ceff
66 =

1
15

(
(C I

11 + C I
22 + C I

33)− (C
I
12 + C I

13 + C I
23)+ 3(C I

44 + C I
55 + C I

66)
)
.

(A2)

Appendix B. Determination of phase concentration tensors

The phase concentration tensors relate the stress and strain of the phases to the inclusion stress as shown
by Equations (10)–(13). We first determine the expression for the tensors Qc and Qa . In this appendix,
the Greek subscripts α and α′ take the values 1, 2 and 6, and β and β ′ take the values 3, 4 and 5. The
non-Greek subscripts take all integer values from 1 to 6.

Determination of Qc. The second relation in (13) may be written in component form as

εc
i = Qc

i jε
I
j , (B1)

where the index i and j both range from 1 to 6. For the index α = 1, 2, and 6 we can write this equation
as

εc
α = Qc

α jε
I
j . (B2)

Using the compatibility condition as given by (9) we can write (B2) as

ε I
α = Qc

α jε
I
j . (B3)

Now, when j = α, Qc
α j should be equal to identity and when j 6= α, Qc

α j should be zero, that is,

Qc
α j = δα j , (B4)

where δ is the Kronecker delta symbol.
To determine the other components of Qc, that is, Qβ j , with β = 3, 4, 5 we need to consider the

equilibrium condition σ c
β = σ a

β represented by Equation (9). Inserting Hooke’s law into this equation we
obtain

Cc
β jε

c
j = Ca

β jε
a
j . (B5)

Equation (5) may be rewritten as

εa
j =

1
fa
ε I

j −
1 − fa

fa
εc

j . (B6)
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Substituting this in (B5) we obtain(
Cc
β j +

1 − fa

fa
Ca
β j

)
εc

j =
1
fa

Ca
β jε

I
j . (B7)

This equation can be split into components represented by indices α and β as(
Cc
ββ ′ +

1 − fa

fa
Ca
ββ ′

)
εc
β ′ +

(
Cc
βα +

1 − fa

fa
Ca
βα

)
εc
α =

1
fa

Ca
β jε

I
j , (B8)

where β ′ takes the value 3, 4 and 5. Using the compatibility condition εc
α = ε I

α as given Equation (8), we
obtain (

Cc
ββ ′ +

1 − fa

fa
Ca
ββ ′

)
εc
β ′ =

1
fa

Ca
β jε

I
j −

(
Cc
βα +

1 − fa

fa
Ca
βα

)
δα jε

I
j . (B9)

This equation may be written in a more convenient form as

Hββ ′εc
β ′ = Kβ jε

I
j , (B10)

where

Hββ ′ = Cc
ββ ′ +

1 − fa

fa
Ca
ββ ′ (B11)

and

Kβ j =
1
fa

Ca
β j −

(
Cc
βα +

1 − fa

fa
Ca
βα

)
δα j . (B12)

From (B10) we get
εc
β ′ = H−1

ββ ′ Kβ jε
I
j . (B13)

Comparing with (B1) we deduce
Qc
β j = H−1

ββ ′ Kβ ′ j . (B14)

Finally, (B4) and (B14) define the tensor Qc completely.

Determination of Qa. Equation (13) in indicial notation may be written as

εa
i = Qa

i jε
I
j (B15)

again continuity condition (9) implies
Qa
α j = δα j . (B16)

The other components of Qa
α j ie. Qa

β j are obtained as follows. Substituting (B1) in (7) we obtain

ε I
β = faε

a
β + (1 − fa) Qc

β jε
I
j (B17)

or

εa
β =

1
fa

(
δβ j + (1 − fa)Qc

β j
)
ε I

j ; (B18)

comparing this with (B15) we obtain

Qa
β j =

1
fa

(
δβ j + (1 − fa)Qc

β j
)
. (B19)
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Therefore, (B16) and (B19) define the tensor Qa completely. We now determine the phase concentration
tensors Rc and Ra .

Determination of Rc. The second relation in (12) in indicial notation may be written as

σ c
i = Rc

i jσ
I

i . (B20)

For β = 3, 4, and 5 we can write
σ c
β = Rc

β jσ
I
j . (B21)

Using the equilibrium condition (11) leads to

Ra
β j = δβ j . (B22)

The remaining components of Ra are determined by considering the compatibility conditions. Introduc-
ing Hooke’s law into the compatibility equation εc

α = εa
α as given by (10) we obtain

Sc
α jσ

c
j = Sa

α jσ
a
j . (B23)

From (6) and (B23) we obtain (
Sc
α j +

1 − fa

fa
Sa
α j

)
σ c

j =
1
fa

Sa
α jσ

I
j . (B24)

Splitting this equation into components given by the indices α and β we obtain(
Sc
αα′ +

1 − fa

fa
Sa
αα′

)
σ c
α′ +

(
Sc
αβ +

1 − fa

fa
Sa
αβ

)
σ c
β =

1
fa

Sa
α jσ

I
j , (B25)

where α′ takes the value 1, 2 and 6. Using the equilibrium relation σ c
β = σ I

β as given by (11) we obtain(
Sc
αα′ +

1 − fa

fa
Sa
αα′

)
σ c
α′ =

1
fa

Sa
α jσ

I
j −

(
Sc
αβ +

1 − fa

fa
Sa
αβ

)
δβ jσ

I
j . (B26)

This equation may be written in a more convenient form as

Lαα′σ c
α′ = Mα jσ

I
j , (B27)

where

Lαα′ = Sc
αα′ +

1 − fa

fa
Sa
αα′, (B28)

and

Mα j =
1
fa

Sa
α j −

(
Sc
αβ +

1 − fa

fa
Sa
αβ

)
δβ j . (B29)

Thus
σ c
α′ = L−1

αα′ Mα jσ
I
j . (B30)

Comparing this with Equation (B20) gives

Rc
α j = L−1

αα′ Mα′ j . (B31)

Therefore, (B22) and (B31) define the tensor Rc.
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Determination of Ra. The first relation in (12) in indicial notation may be written as

σ a
i = Ra

i jσ
I
j . (B32)

The equilibrium condition (11) implies
Ra
β j = δβ j . (B33)

The other components of Ra
i j , that is, Ra

β j are obtained as follows. Substituting (B32) in (6) we obtain

σ I
β = faσ

a
β + (1 − fa)Rc

β jσ
I
j , (B34)

or

σ a
β =

1
fa

(
δβ j − (1 − fa)Rc

β j
)
σ I

j . (B35)

Comparing this with (B32) we obtain

Ra
β j =

1
fa

(
δβ j − (1 − fa)Rc

β j
)
. (B36)

Equations (B33) and (B36) define the tensor Ra completely.

Appendix C. Self-consistent model

In this appendix we develop the self consistent approach applied to semicrystalline polymers. This
approach is based on the self-consistent scheme developed in [Zeller and Dederichs 1973] for the elastic
properties of polycrystals. Here, we assume small elastic deformations, and that the components of the
strain field, εi j , are defined as the symmetric part of the displacement gradient:

εi j =
1
2(ui, j + u j,i ) (C1)

with

ui, j =
∂ui

∂r j
, (C2)

where the ui are the components of the displacement vector and the r j the components of the spatial
position vector r .

In an elastic material, the stress field is in general dependent on the spatial position r , and is related
to the strain field εi j through a local Hooke’s law

σi j = Ci jklεkl ≡ Ci jkluk,l . (C3)

The elastic constants are statistically fluctuating quantities which can be decomposed into a sum of a
constant part, C0

i jkl , and a fluctuating part, C̃i jkl(r)

Ci jkl = C0
i jkl + C̃i jkl . (C4)

The macroscopic homogeneous material is subject to a stress field σ̄i j , and a corresponding strain field ε̄i j .
The elastic constants C0

i jkl used in the decomposition can be taken as equal to those of the homogeneous
equivalent medium, as

C0
i jkl = Ceff

i jkl . (C5)
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The problem consists of finding a solution for the local strain or stress fields as a function of the macro-
scopic fields. We start by writing the equilibrium

σi j, j = Ceff
i jkluk,l j + (C̃i jkluk,l), j = 0. (C6)

The solution of the Navier equation given by (C6), for given surface displacements ū∗

i , can be written as

ui (r)= ū∗

i (r)+
∫

V
Gik(r, r ′)

[
C̃klmn(r ′)um,n(r ′)

]
,l ′d r ′, (C7)

where V is the volume of the entire aggregate and Gkl(r, r ′) are the components of a Green tensor which
satisfies the equilibrium relation

Ceff
i jkl Gkm,l j (r, r ′)+ δimδ(r − r ′)= 0. (C8)

It is convenient to assume an infinite medium. This assumption implies the following properties:

Gi j (r, r ′)= Gi j (r − r ′) (C9)

Gi j,l ′ = −Gi j,l . (C10)

Note that indexes with a prime symbol are relative to r ′.
By partial integration and subsequent differentiation of (C7) we obtain an integral equation for the

local strain tensor

εi j (r)= ε̄∗

i j +

∫
V

gi jkl(r, r ′)C̃klmn(r ′) εmn(r ′)d3r ′, (C11)

where

gi jkl =
1
4(Gik, jl + G jk,il + Gil, jk + G jl,ik). (C12)

We are now looking for an approximate solution of the integral equation (C11). For this, we make use of
the Eshelby’s solution and proof [1957] of the uniformity of the strain field within an ellipsoidal inclusion
embedded in a linear matrix. Our material is represented by N inclusions, and the strain of each of them
can be taken as

ε I
i j =

1
VI

∫
VI

εi j (r)d3r, (C13)

where VI is the volume of the inclusion I . Since the strain is uniform within each inclusion, we have

εi j (r)=

N∑
I=1

ε I
i j1I (r), Ci jkl(r)=

N∑
I=1

C I
i jkl1I (r), C̃i jkl(r)=

N∑
I=1

C̃ I
i jkl1I (r). (C14)

Here, 1I is the characteristic function of the inclusion I . It has unit value if r falls within VI and zero
value if not.

If we insert (C13) and (C14) into (C11) and neglect the inclusion-inclusion interaction terms [Molinari
et al. 1987], the integral equation (C11) is then approximated by

ε I
i j = ε̄∗I

i j +0i jklC̃ I
klmnε

I
mn. (C15)
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The matrix-inclusion interaction tensor 0 is given by

0i jkl =
1
VI

∫
VI

∫
VI

gi jkld3rd3r ′. (C16)

Note that the Eshelby tensor is defined as Ei jkl = −0i jmnCeff
mnkl .

Finally, a rearrangement of (C15) leads to

ε I
i j = B I

i jkl ε̄
∗

kl, (C17)

with

B I
i jkl =

[
Ii jkl −0i jmnC̃ I

mnkl
]−1
. (C18)

At this point, the macroscopic strain ε̄∗ is not specified. The consistency condition requires that the
average of local (inclusion) strains should equal the macroscopically imposed strain. If all inclusions
of the aggregate have parallel principal axes, this condition is easily met, which also implies that ε̄∗

is exactly the macroscopically imposed strain. However, if the principal axes of the inclusions are not
parallel, the consistency condition needs to be enforced using a normalization procedure. For this, we
denote by ε̄ the macroscopically imposed strain and assume the relation

ε̄∗
= K ε̄, (C19)

where the fourth order tensor K is uniform. If we insert (C19) into (C17) we obtain

〈ε I
〉 = 〈B I

〉K ε̄. (C20)

Therefore, the consistency condition leads to

K = 〈B I
〉
−1. (C21)

The final expression of the interaction law (C17) is given by

ε I
= B I

〈B I
〉
−1ε̄. (C22)

Now, if we insert Hooke’s law into (C17), a dual interaction law that expresses the inclusion stress σ I

as a function of the macroscopic one, σ̄ can be obtained as

σ I
i j = AI

i jkl σ̄kl, (C23)

with

AI
= C I B I

〈B I
〉
−1(Ceff)−1. (C24)

By averaging Equations (C23) and using the estimate given by (36) with relation (C24), one can easily
show that 〈AI

〉 = I .
To compute the interaction tensor 0 we use the Fourier transform method. Details of the computations

may be found in [Ghahremani 1977] and [Gavazzi and Lagoudas 1990].
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DISLOCATION INTERACTING WITH COLLINEAR RIGID LINES IN
PIEZOELECTRIC MEDIA

BINGJIN CHEN, DONGWEI SHU AND ZHONGMIN XIAO

The electro-elastic interaction between a piezoelectric dislocation and collinear rigid lines embedded in a
piezoelectric medium is studied in the framework of linear elastic theory. The rigid lines are considered,
respectively, as dielectrics or conductors. We present a general solution of the problem based on the
extended Stroh’s formalism. Explicit expressions of the field intensity factors are obtained for the special
case of a single rigid line. The image force acting on the piezoelectric dislocation due to the presence
of a single rigid line is calculated by using the generalized Peach-Koehler formula. Numerical examples
show the shielding effects of field intensity factors and image force on the dislocation. The solution we
present can be served as a Green’s function for investigating the micro-crack initiation mechanism at the
tip of a rigid line.

1. Introduction

Piezoelectric materials are widely used in devices such as sensors and actuators. When subjected to
mechanical and electric loads, these piezoelectric materials can fail prematurely due to defects arising
in the manufacturing process. It is therefore important to study how defects such as dislocations and
inclusions disturb the field variables, and how stress concentration arises as a result of defects. When
a flat inclusion is much harder than the matrix, it is reasonable to consider it as a rigid line. There
are numerous contributions to the literature on electro-elastic coupling characteristics of piezoelectric
composite materials. To name a few, Pak [1992a] studied the anti-plane problem of a piezoelectric
circular inclusion; Meguid and Zhong [1997] provided a general solution for the elliptical inhomogene-
ity problem in piezoelectric material under anti-plane shear and an in-plane electric field; Kattis et al.
[1998] investigated the electro-elastic interaction effects of a piezoelectric screw dislocation with circular
inclusion in piezoelectric material; Deng and Meguid [1998; 1999] considered the interaction between
the piezoelectric elliptical inhomogeneity and a screw dislocation located inside inhomogeneity and
outside inhomogeneity respectively under anti-plane shear and an in-plane electric field. More recently,
Huang and Kuang [2001] evaluated the generalized electro-mechanical force for dislocation located
inside, outside and on the interface of elliptical inhomogeneity in an infinite piezoelectric medium.

For rigid line problems in piezoelectric media, Liang et al. [1995] derived an exact general solution for
an infinite piezoelectric medium with a rigid line and a crack. Shi [1997] investigated the collinear rigid
lines under anti-plane deformation and in-plane electric field in piezoelectric media. Deng and Meguid
[1998] addressed the plane problem of an interfacial rigid line between dissimilar piezoelectric materials.
Gao and Fan [2000] investigated the generalized plane problem of piezoelectric media with collinear
rigid lines under the loads at infinity. Chen et al. [2002] studied the problem of a screw dislocation

Keywords: rigid lines, dislocation, piezoelectric, field intensity factors, force on dislocation.
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near a semi-infinite rigid line in a piezoelectric solid. More recently, Liu and Fang [2003] dealt with the
interaction problem of a piezoelectric screw dislocation with circular interfacial rigid lines.

In the present work, we address the plane problem of a dislocation interacting with collinear rigid
lines in piezoelectric media. Following this brief introduction, in Section 2 we outline the basic theory
of the Stroh formalism. In Section 3 we state the problem to be investigated. We solve the problem of
dielectric lines in Section 4 and that of conducting lines in Section 5. We present numerical examplesin
Section 6, and concluding remarks in Section 7.

2. The Stroh formalism

In fixed rectangular coordinates xi (i = 1, 2, 3), the basic equations for linear piezoelectric materials at
constant temperature can be written as

σi j, j = 0, (2–1)

Di,i = 0, (2–2)

γi j =
1
2(ui, j + u j,i ), (2–3)

Ei = −φ,i , (2–4)

σi j = ci jklγkl − eki j Ek, (2–5)

Di = eiklγkl + εik Ek, (2–6)

where σi j , γi j , ui , Di , Ei , φ are stress, strain, mechanical displacement, electric displacement, electric
field and electric potential, respectively. ci jkl , eki j and εi j are the corresponding elastic, piezoelectric and
dielectric constants, respectively, which satisfy the symmetric relations

ci jkl = ckli j = ci jlk = c j ikl, eki j = ek ji , εik = εki , (2–7)

where i, j, k, l = 1, 2, 3, repeated Latin indices mean summation, and a comma stands for partial differ-
entiation.

Substitution of (2–3) and (2–4) into (2–5) and (2–6) yields

σi j = ci jkluk,l + eki jφ,k, (2–8)

Di = eikluk,l − εikφ,k . (2–9)

Furthermore, substituting (2–8) and (2–9) into (2–1) and (2–2) results in

(ci jkluk + eli jφ),li = 0, (2–10)

(eikluk − εilφ),li = 0. (2–11)

Here we only address a generalized two-dimensional deformation problem in the (x1, x2) plane. There-
fore all the variables are constant along the x3 axis. For such two-dimensional deformations where the
physical quantities only depend on the coordinates x1 and x2, the general displacement solution to the
above equations is

u =
{
u1 u2 u3 u4

}T
= a f (z), z = x1 + px2, (2–12)
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or

uk = ak f (z), k = 1, 2, 3, 4, (2–13)

where u4 = φ is the electric displacement, p and a are constants to be determined, and f (z) is an arbitrary
function of z. Substituting (2–12) into (2–10) and (2–11) yields(

c1 jk1 + p(c2 jk1 + c1 jk2)+ p2c2 jk2
)
ak +

(
e1 j1 + p(e1 j2 + e2 j1)+ p2e2 j2

)
a4 = 0, (2–14)(

e1k1 + p(e1k2 + e2k1)+ p2e2k2
)
ak −

(
ε11 + p(ε12 + ε21)+ p2ε22

)
a4 = 0, (2–15)

where k = 1, 2, 3. In view of (2–7), these equations can be rewritten as(
Q + p(R + RT )+ p2T

)
a = 0, (2–16)

where

Qik = ci1k1, Rik = ci1k2, Tik = ci2k2. (2–17)

The stresses and electric displacements can be expressed as

σi j =
(
(ci jk1 + pci jk2)ak + (e1 j i + pe2 j i )a4

)
f ′(z), (2–18)

Di =
(
(eik1 + peik2)ak − (ε1i + pε2i )a4

)
f ′(z), (2–19)

or

{σ2 j , D2}
T

= (RT
+ pT )a f ′(z), {σ1 j , D1}

T
= (Q + p R)a f ′(z). (2–20)

Defining

b = (RT
+ pT )a, (2–21)

and comparing it with (2–16), we get

b = (RT
+ pT )a = −

1
p
(Q + p R)a. (2–22)

By introducing the additional solution

8 = b f (z), (2–23)

then (2–20) can be expressed as

{σ2 j , D2}
T

= 8,1, {σ1 j , D1}
T

= −8,2. (2–24)

The eigenvalue problem (2–16) gives four pairs of complex conjugates and corresponding vectors.
pα (α = 1, 2, 3, 4) as the eigenvalues with positive imaginary part, and aα and bα as the associated
vectors, we can write

pα+4 = p̄α, aα+4 = āα, bα+4 = b̄α, (2–25)
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where the over-bar denotes the complex conjugate. Assuming that pα are distinct, the general solution
can be written as

u =

4∑
α=1

(
aα fα(zα)+ āα fα+4(z̄α)

)
, (2–26)

8 =

4∑
α=1

(
bα fα(zα)+ b̄α fα+4(z̄α)

)
, (2–27)

where zα = x1 + pαx2 and fl (l = 1, 2, 3, 4, 5, 6, 7, 8) are arbitrary functions to be determined according
to the boundary conditions. In many applications they could be assumed to have the same function form

fα(zα)= qα f (zα), fα+4(z̄α)= q̄α f̄ (z̄α), (2–28)

where qα are constants to be determined, and f̄ (z̄α) is the conjugate complex of f (zα). Defining two
4 × 4 complex matrices

A =
[
a1 a2 a3 a4

]
, (2–29)

B =
[
b1 b2 b3 b4

]
, (2–30)

Equations (2–26) and (2–27) can be written as

u = A f (z)+ A f (z̄), (2–31)

8 = B f (z)+ B f (z̄), (2–32)

where
f (z)= 〈 f (zα)〉q, (2–33)

with

〈 f (zα)〉 = diag
[

f (z1), f (z2), f (z3), f (z4)
]
, (2–34)

q = {q1, q2, q3, q4}
T . (2–35)

With the help of (2–22), the eigenvalue problem (2–16) can be expressed in a standard form as[
−T−1 RT T−1

RT−1 RT
− Q −RT−1

] [
a
b

]
= p

[
a
b

]
, (2–36)

The A and B expressed in (2–29) and (2–30) satisfy the normalized orthogonality relation[
BT AT

B̄T Ā
T

][
A Ā
B B̄

]
=

[
I 0
0 I

]
, (2–37)

from which three real 4 × 4 matrices can be defined

S = i(2ABT
− I), H = 2i AAT , L = −2i B BT , (2–38)
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where, I is the 4 × 4 identity matrix and i =
√

−1. It is easy to show that

H L − SS = L H − ST ST
= I, LS + ST T = SH + H ST

= 0. (2–39)

For a dislocation d = [d1, d2, d3, d4] located at zd in an infinite homogenous material, the vector q and
the functions f (zα) in (2–33) can be written as

q =
1

2π i
BT d, f (zα)= ln(zα − zdα). (2–40)

Differentiating (2–31) and (2–32) with x1, we obtain

u,1 = AF(z)+ AF(z̄), (2–41)

8,1 = B F(z)+ B F(z̄)= i M AF(z)− i M AF(z̄), (2–42)

where

F(z)= d f (z)/dz, (2–43)

M = −i B A−1
= H−1

+ i H−1 S. (2–44)

3. Statement of the problem

The physical problem to be investigated is shown in Figure 1. A charged dislocation d = [d1, d2, d3, d4]

is located at the point zd(rd , θd) near some rigid lines Lr (r = 1, 2, . . . , N ) embedded in an infinite
piezoelectric medium. The rigid lines are assumed to be collinearly located along the x1-axis of a
Cartesian coordinate system x1x2x3. The dislocation is assumed to be straight and infinitely long in
the x3-direction, suffering a finite discontinuity in the displacement and electric potential across the slip
plane. Assume that the deformations of the solid depend on x1 and x2 only.

The mechanical boundary conditions at any rigid line surface are

u j (t)+ = u j (t)− = u j0 +wr x1δ j2, j = 1, 2, 3, t ∈ Lr , (3–1)

where the superscript “+” and “−” refer, respectively, to the upper and lower rigid line surfaces, u j0 are
displacements of the inclusions, wr is the counterclockwise rotation with respect to the x3 axis, and δ j2

is the Kronecker coefficient.

dr  

dθ  

),( ddd rz θ  y  

x  

 

ra  rb  
rL  

Figure 1. A piezoelectric screw dislocation near collinear rigid line inclusions.
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The electric boundary conditions at any rigid line surface are

E1(t)+ = E1(t)−, t ∈ Lr (3–2a)

D2(t)+ = D2(t)−, t ∈ Lr , (3–2b)

for the dielectric rigid lines, and

u4(t)+ = u4(t)− = u40, t ∈ Lr (3–3)

for the conducting rigid lines, where u40 is a constant.
By using the perturbation technique, the complex potential vectors for the current problem can be

expressed as

F(z)= F0(z)+ F1(z), (3–4)

where F0(z) is associated with the unperturbed field that is related to the solutions of an infinite homo-
geneous medium without the inclusions and is holomorphic in the entire domain except at zd . F0(z) can
be expressed as

F0(z)=
1

2π i

〈 1
zα−zdα

〉
BT d. (3–5)

The function F1(z) corresponds to the perturbed field due to the introducing of the rigid lines and is
holomorphic in the entire domain excluded the rigid lines. It is an unknown function to be determined
according to the boundary conditions of the rigid lines.

4. Interaction of a dislocation with rigid dielectric lines

4.1. Determination of the complex potential function. In this case, the boundary conditions (3–1) and
(3–2) apply. Conditions (3–1) and (3–2) can be rewritten as

u′

j (t)
+

= u′

j (t)
−

= wrδ j2, E1(t)+ = E1(t)−, j = 1, 2, 3, t ∈ Lr , (4–1)

D2(t)+ = D2(t)−, t ∈ Lr , (4–2)

where the prime denotes differentiation with respect to x1. Using (2–41) and (3–4), condition (4–1)
becomes

AF(t)+ + AF(t)− = h0, t ∈ L (4–3)

AF(t)− + AF(t)+ = h0, t ∈ L (4–4)

which leads to

[AF(t)− AF(t)]+ − [ AF(t)− AF(t)]− = 0, t ∈ L , (4–5)

[AF(t)+ AF(t)]+ + [AF(t)+ AF(t)]− = 2h0, t ∈ L , (4–6)

where h0(t)= (0, wr , 0,−E1(t))T , and E1(t) the unknown function that indicates the boundary value of
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E1(z) on the inclusion faces [Gao and Fan 2000]. The substitution of (3–4) into (4–5) and (4–6) yields

[AF1(t)− AF1(t)]+ − [AF1(t)− AF1(t)]− = 0, t ∈ L (4–7)

[AF1(t)+ AF1(t)]+ + [AF1(t)+ AF1(t)]− = 2[h0(t)+ h(t)], t ∈ L , (4–8)

where

h(t)= −
A

2π i

〈 1
t − zdα

〉
BT d +

Ā
2π i

〈 1
t − z̄dα

〉
B̄T d. (4–9)

Based on the theory of [Muskhelishvili 1975] and the assumption that F1(z) vanishes at infinity, the
solution of boundary problems (4–7) and (4–8) can be obtained as

AF1(z)− AF1(z)= 0, (4–10)

AF1(z)+ AF1(z)= h0(z)+ 2[Z(z)+ X0(z)P(z)], (4–11)

where

X0(z)=

N∏
j=1

(z − a j )
−

1
2 (z − b j )

−
1
2 , (4–12)

Z(z)=
X0(z)
2π i

∫
L

h(t)dt
X+

0 (t)(t − z)
, (4–13)

P(z)= cN zN
+ cN−1zN−1

+ · · · + c0. (4–14)

Incorporating Equations (4–10) and (4–11) results in

AF1(z)=
h0(z)

2
+ Z(z)+ X0(z)P(z). (4–15)

Taking the limit z → ∞ in (4–15), and noting that F1(∞)= 0, and E1(∞)= 0, the constant cN can be
obtained as

cN = (0,−wr/2, 0, 0)T . (4–16)

The other constants, that is, the vector cN−1, . . . , c0 and wN , . . . , w1 can be determined by single-value
displacement, the irrotationality of electric fields and the force equilibrium conditions. With reference
to (2–42), these conditions can be written as∮

3

AF1(z)dz = 0, Ĥ2

∮
3

AF1(z)zdz = 0, (4–17)

where 3 is the closed path around each inclusion, and Ĥ2 is the second low of the real 4 × 4 matrix
Ĥ = H−1. The complex potential is therefore obtained if the function E1(z) is known.

To obtain E1(z), we introduce the condition (4–2). Using (2–42), (4–2) can be rewritten as

i M4 AF+

1 (t)− i M̄4 AF
−

1 (t)= i M4 AF−

1 (t)− i M̄4 AF
+

1 (t), (4–18)

where the vector M4 is the fourth low of the matrix M as expressed in (2–44). From [Muskhelishvili
1975] we know that the solution of the Equation (4–18) is

Ĥ4 AF1(z)= 0, (4–19)
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Figure 2. A piezoelectric screw dislocation near a rigid line inclusion.

where Ĥ4 = (Ĥ41, Ĥ42, Ĥ43, Ĥ44)
T is the fourth low of the real 4 × 4 matrix Ĥ . Inserting (4–15) into

(4–19) yields

E1(z)=
Ĥ43

Ĥ44
wr +

2Ĥ4

Ĥ44
[Z(z)+ X0(z)P(z)]. (4–20)

The complex potentials for the problem are thus determined. After F(z) has been obtained,we can
calculate the stress and the electrical displacement fields. Thus, we can derive the field intensity factors
and the force on the dislocation.

As an example, consider a single rigid line as shown in Figure 2. We can then simplify Equations
(4–12) to (4–14) as

X0(z)= (z2
− a2)

−
1
2 , (4–21)

P(z)= c1z + c0, (4–22)

Z(z)=
Ā

4π i

〈
1

zα − z̄dα
−

√
z̄dα

2 − a2√
zα 2 − a2(zα − z̄dα)

−
1√

z2
α − a2

〉
B̄T d

−
A

4π i

〈
1

zα − zdα
−

√
zdα

2 − a2√
z2
α − a2(zα − zdα)

−
1√

z2
α − a2

〉
BT d. (4–23)

Substituting (4–15), together with (4–21), (4–22) and (4–23) into (4–17) yields

c0 = 0, Ĥ2c1 = 0. (4–24)

Then, substituting (4–16) into (4–24) yields

c0 = 0, c1 = 0, wr = 0, (4–25)

The complex potentials are thus written as

AF1(z)= (I − Y)Z(z), (4–26)
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where I is the 4 × 4 identity matrix, and

Y =


0 0 0 0
0 0 0 0
0 0 0 0

Ĥ41/Ĥ44 Ĥ42/Ĥ44 Ĥ43/Ĥ44 1

 . (4–27)

When the material is purely elastic, the solution reduces to that of [Fan and Keer 1993].

4.2. Field intensity factors. Using (2–24), the field intensity factors at the right rigid line tip can be
defined as

K = {K II , K I , K II , K D}
T

= lim
x1→a

√
2π(x1 − a)8,1(x1), (4–28)

where

8,1(x1)= 2 Re i M AF1(x1)= −2H−1 S(I − Y)Re Z(x1). (4–29)

Substituting (4–23) into (4–29) yields

8,1(x1)=
H−1 S(I − Y)

π

√
x2

1 − a2

(
Im A

〈√x2
1 − a2 −

√
z2

dα − a2

x1 − zdα
− 1

〉
BT d

)
. (4–30)

The field intensity factors are thus obtained as

K =
H−1 S(I − Y)

√
πa

(
Im A

〈√
zdα + a
zdα − a

− 1
〉

BT d
)
. (4–31)

When the dislocation lies along the real axis zd = (xd , 0), (4–15) reduces to

K = −
H−1 S(I − Y)Sd

2
√
πa

(√
xd + a
xd − a

− 1
)
. (4–32)

4.3. Force on dislocation. To analyze the possible balance position of a dislocation, it is of interest to
compute the image force acting on the dislocation due to the presence of the rigid lines. The image force
per unit length is defined as the negative gradient of the interaction energy with respect to the position
of the dislocation. The image force [Pak 1990] can be written as

Fx1 = d1σ
1
21 + d2σ

1
22 + d3σ

1
23 + d4 D1

2 = dT 81
,1, (4–33)

Fx2 = −
(
d1σ

1
11 + d2σ

1
12 + d3σ

1
13 + d4 D1

1
)
= dT 81

,2, (4–34)

where 81 is associated with the perturbed field calculated from F1(z) with zα → zdα, that is,

F1(zdα)=
1

2π i

[
A−1(I − Y) Ā〈G1〉B̄T

+ A−1(I − Y)A〈G2〉BT ]d, (4–35)
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with

G1(zdα)=

√
z2

dα − a2 −

√
z̄2

dα − a2 − (zdα − z̄dα)

2(zdα − z̄dα)

√
z2

dα − a2
,

G2(zdα)= −

zdα −

√
z2

dα − a2

2(z2
dα − a2)

.

(4–36)

As a result, we obtain

81
,1(zdα)=

1
π

Im
(
B A−1(I − Y) Ā〈G1〉B̄T

+ B A−1(I − Y)A〈G2〉BT )d, (4–37)

81
,2(zdα)=

1
π

Im
(
B A−1(I − Y) Ā〈pαG1〉B̄T

+ B A−1(I − Y)A〈pαG2〉BT )d. (4–38)

When the dislocation lies on the x1-axis, that is, zad = x1d = xd , we can simplify the expressions (4–37)
and (4–38)as

81
,1(xd)= −g(xd)H−1 S(I − Y)Sd, (4–39)

81
,2(xd)= g(xd) Im

(
B A−1(I − Y)

(
Ā〈pα〉B̄T

− A〈pα〉BT ))d, (4–40)

where

g(xd)=
1

2π

xd −

√
x2

d − a2

x2
d − a2

. (4–41)

5. Interaction of a dislocation with rigid conducting lines

5.1. Determination of the complex potential function. In the case of rigid conducting lines, the bound-
ary conditions (3–1) and (3–3) apply. Conditions (3–1) and (3–3) can be rewritten as

u′

j (t)
+

= u′

j (t)
−

= wrδ j2, j = 1, 2, 3, t ∈ Lr (5–1)

u′

4(t)
+

= u′

4(t)
−

= 0, t ∈ Lr , (5–2)

where the prime denotes differentiation with respect to with x1. With reference to (2–41) and (3–4),
conditions (5–1) and (5–2) arrive at

AF(t)+ + AF(t)− = h0, t ∈ L , (5–3)

AF(t)− + AF(t)+ = h0, t ∈ L , (5–4)

which lead to [
AF(t)− AF(t)

]+
−
[

AF(t)− AF(t)
]−

= 0, t ∈ L , (5–5)[
AF(t)+ AF(t)

]+
+
[

AF(t)+ AF(t)
]−

= 2h0, t ∈ L , (5–6)
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where h0 = (0, wr , 0, 0)T . Substituting (3–4) into (5–5) and (5–6) yields[
AF1(t)− AF1(t)

]+
−
[

AF1(t)− AF1(t)
]−

= 0, t ∈ L , (5–7)[
AF1(t)+ AF1(t)

]+
+
[

AF1(t)+ AF1(t)
]−

= 2[h0 + h(t)], t ∈ L , (5–8)

where h(t) is as defined in (4–9). This problem is a special case of the case solved in the previous section.
The solution can be obtained from the previous solution by setting Y = 0. For a single rigid conducting
line as shown in Figure 2, the complex potential corresponding to the perturbed field is

AF1(z)= Z(z), (5–9)

where Z(z) is as in (4–23).

5.2. Field intensity factors. The field intensity factors at the right inclusion tip can be defined as

K =
H−1 S
√
πa

(
Im A

〈√
zdα + a
zdα − a

− 1
〉

BT d
)
. (5–10)

When the dislocation lies along the real axis zd = (xd , 0), Equation (5–15) reduces to

K = −
H−1 S2d
2
√
πa

(√
xd + a
xd − a

− 1
)
. (5–11)

5.3. Force on dislocation. The image force on dislocation can be written as

Fx1 = dT 81
,1(zdα), (5–12)

Fx2 = dT 81
,2(zdα), (5–13)

where

81
,1(zdα)=

1
π

Im
[
B A−1 Ā〈G1〉B̄T

+ B〈G2〉BT ]d, (5–14)

81
,2(zdα)=

1
π

Im
[
B A−1 Ā〈pαG1〉B̄T

+ B〈pαG2〉BT ]d. (5–15)

G1(zdα) and G2(zdα) are as defined in (4–36). When the dislocation lies on the x1-axis, that is, zda =

x1d = xd , we simplify (5–14) and (5–15) as

81
,1(xd)= g(xd)(H−1

− L)d, (5–16)

81
,2(xd)= g(xd) Im

{
B A−1

[ Ā〈pα〉B̄T
− A〈pα〉BT

]
}

d, (5–17)

where g(xd) is as defined in (4–41).

6. Numerical examples

The previous sections derived the explicit expressions for the field intensity factors and the forces on the
dislocation. However they are not straightforward since several variables are involved. In this section,
we present some numerical illustrations. As an example, we address the case when the dislocation lies
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along θd = π/6. The material is assumed to be PZT-5H, with the x1-axis the polling direction. The
material constants [Pak 1992b] are

c11 = 117 GPa, c12 = c13 = 53 GPa,

c22 = c33 = 126 GPa, c23 = 55 GPa,

c44 = 35.5 GPa, c55 = c66 = 35.3 GPa,

e11 = 23.3 C/m2, e12 = e13 = −6.5 C/m2,

e35 = e26 = 17 C/m2,

ε11 = 130 × 10−10 C/Vm,

ε22 = ε33 = 151 × 10−10 C/Vm.

(6–1)

For pα (α = 1, 2, 3, 4), the values of A and B are then calculated as follows:

p1 = −0.17351 + 0.93175i,

p2 = 0.17351 + 0.93175i,

p3 = 0.93367i,

p4 = 0.99718i,

(6–2)

A11 = −.8521 × 10−6
+ .3117 × 10−5i, A12 = .3117 × 10−5

− .8521 × 10−6i,

A13 = .4133 × 10−5
+ .1433 × 10−5i, A14 = 0,

A21 = −.3561 × 10−5
+ .4268 × 10−6i, A22 = −.4268 × 10−6

+ .3561 × 10−5i,

A23 = −.1189 × 10−5
+ .1189 × 10−5i, A24 = 0,

A31 = 0, A32 = 0,

A33 = 0, A34 = −.2657 × 10−5
+ .2657 × 10−5i,

A41 = 722.3288 + 2351.6593i, A42 = 2351.6593 + 722.3288i,

A43 = −3006.4445 − 3006.4445i, A44 = 0.

(6–3)

B11 = −262382.5644 − 27548.9152i, B12 = 27548.9157 + 262382.5653i,

B13 = −41491.1280 + 41491.1353i, B14 = 0,

B21 = −22107.3141 − 277484.1268i, B22 = −277484.1276 − 22107.3141i,

B23 = 44438.6631 − 44438.6550i, B24 = 0,

B31 = 0, B32 = 0, B33 = 0, B34 = −94074.2510 − 94074.2510i,

B41 = −.7241 × 10−4
− .1944 × 10−4i, B42 = .1944 × 10−4

+ .7241 × 10−4i,

B43 = −.8535 × 10−4
+ .8535 × 10−4i, B44 = 0.

(6–4)

6.1. Field intensity factors. The expression (4–31) gives the field intensity factors at the right rigid line
tip arising from the dislocation d = (d1, d2, d3, d4)

T located at zd near a rigid dielectric line. Expression
(5–10) does the same for a rigid conducting line. When these intensity factors have the same sign as
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those arising from the remote applied stress or electric displacement, the total intensity factors increase.
The dislocation then anti-shields the rigid line tip; otherwise the dislocation shields it. Shielding effects
from d1, d2, and d4 on K I , K II , K III , K D for the dislocation located along θd = π/6 near a rigid line
are illustrated in Figures 3 to 8, in relation to the normalized dislocation radial location rd/a. To plot
the four field intensity factors in one figure, the values of K I , K II , K III , K D were properly normalized
in the figures with positive values. The normalized intensity factors are denoted as K ∗

I , K ∗

II , K ∗

III , K ∗

D
in the figures, where

K ∗

j (d j )=
K j (d j )

K j0(d j )
, j = I, II, III, D, (6–5)

with

K j0(d j )=
d j

2
√
πa

× 1010 N/m2, K D0(d j )=
d j

√
πa

× 2 N/Vm, j = I, II, III

K j0(d4)=
d4

√
πa

× 2 N/Vm, j = I, II, III, K D0(d4)=
d4

√
πa

× 10−9 N/V2.

(6–6)

In the above equations, dI = d1, dII = d2, dIII = d3.
Figure 3 shows that the glide dislocation d1 always shields K I while anti-shielding K II and K D when

it is near a dielectric line tip. The shielding effects from the glide dislocation on K II and K D appear

ard

)( 1
* dK

*
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*
IIK

*
IIIK
*
DK

Figure 3. The shielding effect from the glide dislocation d1 located along θd = π/6 on
the field intensity factors for a rigid dielectric inclusion.
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Figure 4. The shielding effect from the glide dislocation d1 located along θd = π/6 on
the field intensity factors for a rigid conducting inclusion.

in a very similar way. But the glide dislocation d1 does not affect K III . This occurs because the glide
dislocation does not contribute any anti-plane deformations.

Figure 4 also shows that the glide dislocation d1 always shields K I while anti-shielding K II and K D ,
but does not affect K III when it is near a conducting line tip. A comparison of Figures 3 and 4 indicates
that the conductivity of the inclusion only has apparent effects on K I .

Figures 5 and 6 show the shielding effects from the climb dislocation d2 for a rigid dielectric line and
a rigid conducting line, respectively. We find that the two figures are nearly the same, which indicates
that the conductivity of the rigid line is not sensitive to the shielding effects from d2.

Figures 7 and 8 show the shielding effects from the electrical dislocation d4 for a rigid dielectric
line and a rigid conducting one, respectively. The comparison of these two figures also indicates that the
conductivity of the rigid line only has apparent effects on K I . For a rigid dielectric line, it first anti-shields
and then shields K I when increasing rd/a; while for a rigid conducting one, it always shields K I .

6.2. Image force on dislocation. Expressions for the image forces on the dislocation due to existence of
the inclusion are calculated using (4–33) and (4–34) together with (4–37) and (4–38) for a rigid dielectric
line, and by (5–12) to (5–15) for a rigid conducting one. As such, the slip and climb parts of the image
forces can be calculated as follows:

Fr = Fx cos θd + Fy sin θd ,

Ft = −Fx sin θd + Fy cos θd .
(6–7)
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Figure 5. The shielding effect from the climb dislocation d2 located along θd = π/6 on
the field intensity factors for a rigid dielectric inclusion.
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Figure 6. The shielding effect from the climb dislocation d2 located along θd = π/6 on
the field intensity factors for a rigid conducting inclusion.
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Figure 7. The shielding effect from the electrical dislocation d4 located along θd = π/6
on the field intensity factors for a rigid dielectric inclusion.
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Figure 8. The shielding effect from the electrical dislocation d4 located along θd = π/6
on the field intensity factors for a rigid conducting inclusion.
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Figures 9 and 10 plot the normalized slip image force Fr/F0 and climb image force Ft/F0 varied with
the normalized radial location rd/a, respectively, for a rigid dielectric line.
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Figure 9. Variations of the radial normalized image forces on the dislocation located
along θd = π/6 near a rigid dielectric inclusion.
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Figure 10. Variations of the tangential normalized image forces on the dislocation lo-
cated along θd = π/6 near a rigid dielectric inclusion.
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Figures 11 and 12 plot those for a rigid conducting line. The dislocation has four different dislocation
strength characteristics (d1, d2, d3, d4). We allow the dislocation to have only one non-zero strength
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Figure 11. Variations of the radial normalized image forces on the dislocation located
along θd = π/6 near a rigid conducting inclusion.
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Figure 12. Variations of the tangential normalized image forces on the dislocation lo-
cated along θd = π/6 near a rigid conducting inclusion.
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characteristic. The other three are zero in each plotted curve. The normalizing factors in each curve are
given by

F0 =
dT Ld
4πa

. (6–8)

Figures 9 and 10 show that, a rigid dielectric line always repels the mechanical dislocation in the
radial direction, while it does little on the electrical dislocation; it always attracts the dislocation to the
real axis when it is close to the rigid line tip. On the other hand, Figures 11 and 12 show that a rigid
conducting line always repels the dislocation in the radial direction and attracts the dislocation in the
tangential direction when the dislocation is close to the inclusion.

7. Conclusions

The interaction problem of a dislocation and collinear rigid lines embedded in a piezoelectric media is
addressed. The lines considered are for either conductors or dielectrics. We obtain a closed form solution
using the complex potential method, and explicitly derive field intensity factors and the forces on the
dislocation for a single inclusion case.We present numerical examples and discuss the results.
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A DAMAGE INDEX FOR STRUCTURAL HEALTH MONITORING BASED ON
THE EMPIRICAL MODE DECOMPOSITION

NADER CHERAGHI AND FARID TAHERI

This paper presents two novel damage indices based on empirical mode decomposition (EMD) and fast
Fourier integration for identifying structural damage caused by a change in structural stiffness. The
paper also demonstrates the effectiveness of the proposed damage indices formulated based on a series
of coupled mathematical/engineering approaches that are used to detect damage in pipes reliably and
accurately. The main approach is based on monitoring the vibration response of pipes using piezoelectric
sensors and the first intrinsic mode functions (IMFs). Finite element analysis is used to simulate the
response of a healthy pipe, as well as pipes with various sizes of damage. Damages are meant to represent
the outcome of local corrosion (damage) with varying reduction in areas around the circumference of the
pipe. The evaluated damage indices could effectively establish the location of the defects. Moreover,
the evaluated energy indices could also distinguish various size defects. To demonstrate further the
effectiveness of our proposed damage indices, the results are compared with other effective indices based
on wavelet packet and other statistical methods reported in the literature.

Introduction

Vital energy resources such as oil and gas are transported through pipelines that span various terrains.
They are critical transport elements, and their health and reliability through their designed service life is
an important issue for design and maintenance engineers. Ground movement, resulting from natural and
unavoidable circumstances, could significantly change the support condition of pipelines, thus subjecting
them to loads and boundary conditions that would not have been considered during the design phase.
Moreover, as pipes age, their component materials deteriorate. Therefore, many factors such as corrosion,
damage caused by excavation equipment, cracks, and defective welds could severely impact the integrity
of pipelines. There are several outcomes resulting from such changes to the original status of the pipe,
causing massive costly dilemmas for industry stakeholders, including the producers, pipeline operators,
regulatory agencies, and the public. The establishment of a safe and reliable method for detecting damage
in pipelines is an important issue for not one, but several parties.

There are currently several industrially established nondestructive and in-line inspection methodolo-
gies available which provide some success in detecting the factors that affect the safe performance of
pipelines. Most in-line inspection tools that are available today use either the magnetic flux leakage

Keywords: damage detection, empirical mode decomposition, wavelet, vibration based, health monitoring.
The financial support of the Killam Foundation in the form of a doctoral scholarship to the first author is gratefully acknowl-
edged. We also acknowledge the support of the Atlantic Innovation Fund awarded to the second author.
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(MFL) method [Reber et al. 2002] or the ultrasonic guided wave method [Wilkie et al. 2002]. Alterna-
tively, experimental studies have also demonstrated the potential of piezoceramic actuators for controlling
vibration in cylindrical shell structures [Fuller et al. 1992; Silcox et al. 1992].

Sun et al. [1995] and later Ayres et al. [1998] reported the use of PZT transducers for damage detection
on a laboratory sized truss structure and a prototype truss joint, respectively. Their damage detection
methods are based on the principle of electromechanical coupling between the host structure and the
bonded PZT transducer. Several other workers have also explored the use of piezoelectric patches for
detecting damage in structures. A review of damage detection methods using piezoelectric sensors and
actuators can be found in [Zou et al. 2000] or [Cheraghi et al. 2005]. Its main objective is to demonstrate
the effectiveness and integrity of two novel damage indices that were developed based on the EMD and
fast Fourier integration (FFT) for identifying structural damage caused by a change in structural stiffness.
A series of coupled mathematical/engineering approaches were used in the development of these indices,
which would reliably and accurately detect damage in pipes. This demonstration will be based on the
simulation of the response of a healthy pipe, as well as pipes with various sizes of damage by the finite
element method. Our case studies will demonstrate that the proposed indices could also establish the
location of the defects, as well as the relative sizes of the defects. In addition, comparisons will be made
using the results reported in the literature that were established based on the wavelet packet and other
statistical methods.

Modeling and formulation of the piezoelectric sensors

Various finite element formulations have been presented by several researchers for the assessment of
dynamic response of piezoelectric materials. For instance, Tzou and Tseng [1990] and Rao and Sunar
[1994] used the following equations to represent the dynamic response

[M]{ü} + [Kuu]{u} + [Kuφ]{φ} = {F},

[Kφu]{u} + [Kφφ]{φ} = {Q},
(1)

where

[M] =

∫
V
ρ[Nu]

T
[Nu] dV is the kinematically consistent mass matrix;

[Kuu] =

∫
V
[Bu]

T
[C E

][Bu] dV is the elastic stiffness matrix;

[Kuφ] =

∫
V

[Bu]
T
[e]T

[Bφ] dV is the piezoelectric coupling matrix;

[Kφφ] = −

∫
V

[Bφ]T
[ε][Bφ] dV is the dielectric stiffness matrix;

{F} =

∫
V

[Nu]
T
{ fb} dV +

∫
S1

[Nu]
T
{ fS}d�+ [Nu]

T
{ fc} is the mechanical force vector;

{Q} = −

∫
S2

[Nφ]T qsd�− [Nφ]
T

qc is the electrical force vector.
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In these equations, u is the displacement, φ is the electric potential, Q represents the applied concentrated
electric charges, ρ is the mass density, [Bu] and [Bφ] are the derivatives of the shape functions [Nu] and
[Nφ], [C E

], [ε], and [e] are the elasticity, dielectric, and piezoelectric matrices, respectively, fb denotes
the body force, fs is the surface force, fc is the concentrated force, qs is the surface charge, qc is the point
charge, S1 is the area where mechanical forces are applied, and S2 is the area where electrical charges
are applied. The above matrix equations are written in partitioned form to reflect the coupling between
the elastic and electric fields. Equation (1) can be condensed to represent the sensor’s potential in terms
of the sensor displacement in the form

{φs} = [Kφφ]
−1(−[K T

uφ]{u}). (2)

The commercial finite element program ANSYS was employed for modeling the piezoelectric sensors.
The three-dimensional coupled element (SOLID5) of ANSYS was used for modeling the piezoelectric
patch. Note that this formulation is essentially used to obtain the voltage-time domain data of the excited
pipe through the sensors attached to it.

FFT-based damage detection method

All the methods presented here for comparison purposes are based on the assumption that damage is
located between two locations that exhibit the greatest damage indices. The selection of the sensor
locations is arbitrary. The methodology relies on vibration data obtained through the sensors located on
these points. If more than one defect is located in between two sensors, then the methodologies in their
present form could not indicate the existence of more than one defect. However these methodologies
could detect muti-defects, as long as each defect is located in between a pair of sensors.

The calculation of discrete approximation of FFT of the transient response data can be represented by
(see [Santamarina and Dante 1998])

X (ω)=

N−1∑
r=0

x(r1t)e−iωr1t1t, 1t =
T
N
, (3)

where x(t) is a periodic function (containing the output of the piezoelectric sensors) with a period of T ,
N is the total number of samples, X (ω) is the frequency response of x(t).

The equivalent energy can be represented by

Exx =

∫
+∞

−∞

|X (ω)|2dω. (4)

The equivalent FFT energy index is assumed to be

FRF − Eω =

∑
ω

∣∣∣∣Edamaged
xx

Ehealthy
xx

∣∣∣∣ 2
N

× 100, (5)

where Edamaged
xx and Ehealthy

xx are the before and after damage energies in the pipeline, respectively.
This research proposes the integral of the amplitude of the frequency response function (FRF) evalu-

ated over various frequency ranges as a novel quantity, that is, a damage index. The selected frequency
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Figure 1. Schematics of a typical FFT function (left) and two typical wavelet functions
(from Haar and Morlet, respectively).

intervals should be such that their limits bound the natural frequencies of the original undamaged system,
because these are the regions most sensitive to the changes in response to the damage causing parameters.

This integral is then defined by

Ix =

∫
+∞

−∞

|X (ω)|dω. (6)

The damage index of FFT integration is defined as

FRF Iω =

∣∣∣∣∣ I damaged
x − I healthy

x

I healthy
x

∣∣∣∣∣× 100, (7)

where I damaged
x and I healthy

x are the integral of the pipe’s signals at the damaged and undamaged state.

Wavelet transformation and damage index

The discrete wavelet transform. The following paragraphs provide brief reviews of wavelets and wavelet
transformation methodologies with the aim of offering the reader a better perspective of the work carried
out in this paper.

Transformation of a signal is just another form of representing a signal; such a transformation, however,
would not alter the content of a given signal. In the context of the work presented here, the wavelet
transform (WT) provides a time-frequency representation of a signal. It was developed to overcome the
limitations of the short time Fourier transform (STFT), which is commonly used to analyze nonstation-
ary signals. While STFT provides a constant resolution at all frequencies, WT uses a multiresolution
technique by which different frequencies are analyzed with different resolutions.

While a wave is an oscillating function of time or space and is periodic, wavelets are localized waves.
They have their energies concentrated in time or space and are suited for analysis of transient signals.
The Fourier Transform and STFT use waves of regular shapes to analyze signals, while the Wavelet
Transform uses wavelets of finite energy to do the same. Figure 1 schematically illustrates typical FFT
and wavelet waves.
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A wavelet analysis is very similar to a STFT analysis. In STFT analysis, the signal to be analyzed
is multiplied by a window function, while in wavelet analysis the function is multiplied with a wavelet
function. However, as shown in the above figure, unlike the STFT, in WT, the width of the wavelet func-
tion changes with each spectral component. As a rule of thumb, the WT provides good time resolution
but relatively poor frequency resolution at high frequencies. However, when used at low frequencies, it
provides good frequency resolution, but relatively poor time resolution.

Wavelet-based damage detection method

Wavelet packets consist of a set of linearly combined usual wavelet functions. A wavelet packet function
has three indices, ψ i

j,k(t) , where the integers i , j and k are the modulation, the scale, and translation
parameters, respectively, and

ψ i
j,k(t)= 2 j/2ψ i (2 j t − k). (8)

The wavelets ψ i are obtained from the following recursive relationships

ψ2i (t)=
√

2
∞∑

k=−∞

h(k)ψ i (2t − k),

ψ2i+1(t)=
√

2
∞∑

k=−∞

g(k)ψ i (2t − k).

(9)

Note that the first wavelet is the so-called mother wavelet function

ψ0(t)= ϕ(t), ψ1(t)= ψ(t). (10)

The discrete filters h(k) and g(k) are the quadrature mirror filters associated with the scaling function
ϕ(t) and the mother wavelet function ψ(t). Any measurable and square-integratable function can be
decomposed into wavelet packet component functions. The decomposition process is a recursive filter-
decimation operation. The decomposed wavelet packet component signals f i

j (t) can be expressed by a
linear combination of wavelet packet functions ψ i

j,k(t) as follows

f i
j (t)=

∞∑
k=−∞

ci
j,kψ

i
j,k(t). (11)

The wavelet packet coefficients ci
j,k(t) can be obtained from

ci
j,k =

∫
∞

−∞

f (t)ψ i
j,k(t). (12)

Each component in the wavelet packet decomposition (WPD) tree can be viewed as the output of a
filter tuned to a particular basis function. Thus the whole tree can be regarded as a filter bank. At the
top of the WPD tree (lower decomposition level), the WPD yields good resolution in the time domain
but poor resolution in the frequency domain. On the other hand, at the bottom of the WPD tree (higher
decomposition level), the WPD results in good resolution in the frequency domain, yet poor resolution
in the time domain. For the purpose of structural health monitoring, frequency domain information tends
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to be more important, and thus a high level of the WPD is often required to detect the minute changes
in the signals.

After understanding the basis of WPD, methodologies that use these signals for structural condition
assessment are briefly summarized. [2002] demonstrated numerically, using a three-span bridge, that
wavelet packet component energies were sensitive parameters and could be used as structural condition
signatures. These component energies were defined as

E i
j =

∫
∞

−∞

f i
j (t)

2dt . (13)

It can be shown that when the mother wavelet is semiorthogonal or orthogonal, the signal energy E f

would be the summation of the jth level component energies, as

E f =

∫
∞

−∞

f 2(t)dt =

2 j∑
i=1

E i
j . (14)

Since each wavelet packet component contains information of the signal in a specific time-frequency
window, the magnitude of the component energy could therefore vary quite significantly.

Mathematical description of the Hilbert–Huang transform (HHT). The Hilbert transform Y (t) of an
arbitrary function X (t), in lower pass (Lp-) class [Titchmarsh 1986] is defined by

Y (t)=
1
π

P
∫

∞

−∞

X (t ′)

t − t ′
dt ′, (15)

where P indicates the Cauchy principal value. Therefore an analytic signal, Z(t), can be produced by

Z(t)= X (t)+ iY (t)= a(t)eiθ(t), (16)
where

a(t)= (X2(t)+ Y 2(t))1/2 and θ(t)= arctan
Y (t)
X (t)

(17)

are the instantaneous amplitude and phase angle of X (t).
Since the Hilbert transform Y (t) is defined as the convolution of X (t) and 1/t by (12), it emphasizes

the local properties of X (t), even though the transform is global. In (13), the polar coordinate expression
further clarifies the local nature of this representation. With (13), the instantaneous frequency of X (t)
can be defined by

ω(t)=
dθ(t)

dt
. (18)

The method of EMD was recently proposed in [Huang et al. 1998] to decompose a measured response
signal x(t) into intrinsic mode functions (IMFs) that would admit well-behaved Hilbert transforms. The
procedure of EMD is to construct the upper and lower envelopes of the signal by spline-fitting, and
compute the average (mean) of both envelopes. Then the signal is subtracted from the mean (a process
known as the sifting process). By repeating the sifting process until the resulting signal becomes a mono
component (that is, one up-crossing or down-crossing) of zero, it will result in one local peak or (trough),
indicating that the number of up-crossings (or down-crossings) of zero is equal to the number of peaks
(or troughs). Such a mono component signal would then admit a well-behaved Hilbert transform and is
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referred to as an IMF. The original signal is then subtracted from the IMF and the repeated sifting process
is applied to the remaining signal to obtain another IMF. The process is repeated to obtain n IMFs:

x(t)=

n∑
j=1

c j (t)+ rn(t), (19)

where c j (t) ( j = 1, 2, . . . , n) are the IMFs of the measured signal x(t), and rn(t) are the residues that
could be viewed as the mean trend of the signal or a constant.

The above set of operations is referred to as the EMD method, which has been patented by Huang
[1998; 1999]. He showed that the characteristics of the signal could be extracted through the behavior
of the IMFs, and that the EMD is applicable to nonstationary or nonlinear signals. Based on the EMD
approach described above, the first IMF has the highest frequency contents of the signal. During the EMD
process, a specified frequency is referred to as the intermittency frequency ωint, which can be imposed
so that the resulting IMF will have frequencies higher than ωint; see [Huang 1998]. This is accomplished
by removing the data that have frequencies lower than ωint from the IMFs by a straightforward counting
process.

The Hilbert–Huang transform (HHT) method was also proposed in [Huang 1998]. It consists of
two parts: an EMD, and a Hilbert spectral analysis. The method is based on decomposing a signal
into intrinsic mode functions (IMFs) using the described EMD method, with the condition that each
IMF admits a well-behaved HHT. Then, the HHT is applied to each intrinsic mode function to obtain
a decomposition of the signal in the frequency-time domain. This approach is also referred to as the
Hilbert–Huang spectral analysis (HHSA) and it is applicable to a nonstationary signal [Huang et al.
1998; 1999].

In this paper, the EMD method proposed in [Huang 1998] will be used to decompose the measured
response signal (output voltage of the piezoelectric sensors) into IMFs that would admit a well-behaved
Hilbert transform. Based on the EMD, the modal response of each mode can then be extracted from the
output voltage of a piezoelectric sensor (or any other similar sensors). The key advantage of using the
HHT and EMD, rather than FFT or wavelet methodologies is that one is enabled to use the instantaneous
frequency to display the data in a time-frequency-energy format. This would produce a more accurate,
real-life representation of the data, thereby eliminating the artifacts associated with the nonlocal and
adaptive limitations imposed by the FFT or wavelet methodologies. Moreover, the conventional Fourier-
based methods are designed to work with linear data or linear representations of nonlinear data. Therefore,
they are not efficient for studying nonlinear waves and other nonlinear phenomena.

In this paper, a damage index is also introduced that is based on the first (IMFs) of the output voltages
obtained through piezoelectric sensors, which are passed through the band pass filter to ensure that they
only contain the first natural frequency of the system. The energy of the first (IMFs) is defined as

E =

∫ t0

0
(IMF)2dt. (20)

The damage index is therefore defined as

DImn =

∣∣∣∣∣Ehealthy
mn − Edamaged

mn

Ehealthy
mn

∣∣∣∣∣× 100, (21)
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where m is the sensor’s number or the considered degree of freedom of structure, n is the mode shape
and (IMF) is the first calculated intrinsic mode function of the signal which has been passed through the
band-pass criterion.

Band-pass filtering and EMD. The isolation of the modal responses using the EMD method presented
above has an advantage in that the frequency content of the signal at each time instant can be effectively
obtained. However, the associated computation could be quite involved, in particular when the modal
frequencies are high, and/or when the signal is polluted by an elevated noise level. In these cases, to obtain
accurate modal responses, one should increase the number of siftings in the EMD procedure. Therefore,
to simplify and decrease the computational efforts, an alternative approach based on the band-pass filter
was proposed in [Yang et al. 2003]. With that approach one could determine the approximate frequency
range for each natural frequency from the Fourier spectrum of the output voltage. For example, if one
looks at the power spectrum analysis of sensor 3, as illustrated in 3, one would see that the first mode
is between 60 to 65 Hz. Each signal is then processed through the band-pass filters with a set frequency
band. The time history obtained from the j th band-pass filter ( j th natural frequency) is then processed
through EMD. In this way, the first resulting IMF would be quite close to the j th modal response. By
repeating the above procedure for the other natural frequencies, one could then obtain n modal responses.
In Table 1 the result of calculating natural frequency based on EMD method is tabulated. Here we pass
all of the output signals of piezoelectric sensors through band pass filter which only has a first natural
frequency because our damage index is based on first IMFs of first natural frequency.

Examples. To investigate the effectiveness of the proposed piezoelectric-based vibrational sensing dam-
age detection methodology for assessing the health of pipeline systems, we examine the response of
aluminum pipes bearing various levels of damage. In each analysis, the pipe hosts nine piezoelectric
patches bonded onto it. The physical and material properties of the pipes, which are made of aluminum,
are provided in Table 2.

Nine PZT BM500 patches with dimensions of 50 mm long, 50 mm wide and 1 mm thick, with mass
density of 7650 kg/m3 were used in this analysis. The elasticity matrix [C E

], piezoelectric matrix [e]
and dielectric matrix [εS

] of PZT BM500 piezoceramic are listed in [Sensor 2001] as

[C E
] =



12.1 7.54 7.52 0 0 0
7.54 12.1 7.52 0 0 0
7.52 7.52 11.1 0 0 0

0 0 0 2.11 0 0
0 0 0 0 2.26 0
0 0 0 0 0 2.26


× 1010 [N / m2],

[e] =

 0 0 0 0 0 12.3
0 0 0 0 12.3 0

−5.4 −5.4 15.1 0 0 0

 [C/m2], [εS
] =

8.11 0 0
0 8.11 0
0 0 7.349

× 10−9 [F / m],

The commercial finite element program ANSYS was employed for modeling the response of pipes
and the piezoelectric sensors. The three-dimensional coupled element (SOLID5) of ANSYS was used for
modeling. The pipes were cantilevered (fully supported at one end, and free at the other end). The mesh
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Pipe Condition Modes FE (eigenvalue) solution (Hz) FRF solution (Hz) EMD solution

Healthy pipe
1 62.4 63.8 62.45
2 339.1 332.1 332.28
3 379.2 380.1 379.04

Damaged pipe (DL2)
1 62.3 63.7 62.41
2 333.1 326.6 326.91
3 377.1 376.3 376.59

Table 1. Comparison of computed natural frequencies.

Outside diameter 273.5 mm
Wall thickness 9.3 mm

Length 2000 mm
Young’s modulus 67×103 N/mm2

Poisson ratio ν = 0.33
Mass density 2730 kg/m3

Table 2. Geometry and material properties of the pipe.

density had 40 rows of elements along the axial direction, 18 elements along the pipe’s circumference
in each row, and two layers through the thickness, as shown in Figure 2a. The pipe was assumed to have
been impacted at its free end by a pendulum, which was simulated by applying a concentrated load with
magnitude of 1000N applied in a time interval of 2.5µs. Figure 2d shows a graphical representation
of the applied load. Different damage locations, sizes and stiffness reductions (as a damage form) were
considered, which will be described in the following sections.

Case 1: dynamical response of piezoelectric sensors for different damage locations. To evaluate the
integrity of the proposed methodologies, three different cantilevered aluminum pipes, each having dam-
age at different locations along their length, were considered. This form of damage was assumed to have
resulted from corrosion, and the subsequent reduction of material at that location. This is simulated by
removing one layer (interior layers) element within two rows (that is, a 100 mm width) off the mesh
forming the pipe. The defects are assumed to be located halfway between sensors 2 and 3, sensors 4
and 5, and sensors 7 and 8. These damage locations will be referred to as DL1, DL2 and DL3. A
comparison of the natural frequencies obtained by the FEM (eigenvalue) analysis with those obtained
from the frequency response function and EMD analysis of the sensors for the healthy and damaged pipes
(DL2) is made in Table 1. The first and second mode shapes for the healthy pipe are shown in Figures 2b
and 2c. As indicated in Table 1, there is fairly close agreement among the results obtained from the three
approaches, indicating that the sensors’ response from a modal analysis could be effectively used to
evaluate the dynamic behavior of the system, since there are distinct differences between the two signals.
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eS n s o r 9 

S sne o r 8 

P i ze s o e n s ro 1 

S sne o r 2 

S e sn ro 5 

(a) (b)

(c) (d)

Figure 2. Computational dynamic response analysis of the pipe for (a) FEM mesh, (b)
first vibration mode, (c) second vibration mode, and (d) impact load-time history of the
tip of the pipe.

Typical FRF response curves of one of the sensors (sensor 5) for the healthy and damaged pipes (where
damage is located on sensor location DL2) are shown in Figure 3. Figure 4 illustrates the FRF response

 

 

Figure 3. Typical FRF response curves of sensor 5 for healthy and damaged pipes.
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Figure 4. Comparison of FRF response for sensor 5 for damage cases DL1, DL2 and DL3.

curves of sensor 5 for the pipes having damage at three locations (DL1, DL2 and DL3). The response
of sensors 2, 4 and 7 when damage is located in location 2 (DL2) is illustrated in Figure 5. A careful
examination of the FRF responses shown in Figures 4 and 5 indicates that identical piezoelectric sensors,
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Figure 5. Comparison of FRF response for sensors 2, 4 and 7 for the damage case DL2.
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frequency based on first IMF.

mounted under a similar condition on a pipe, would respond differently depending on the presence and
location of damage in the substrate. Figure 6 shows calculation of the first and second natural frequencies
based on EMD calculations for sensor 6 for the case of DL2. This is a significant observation, in that
health monitoring of pipeline systems could be effectively achieved by using an array of piezoelectric
transducers. The following section will provide justification for this statement.

Wavelet analysis was also applied to the three cases. Specifically, the db4 wavelet and wavelet packet
were used to conduct the analyses. Detailed wavelet responses obtained through the analysis of sensor
4 for the healthy and DL2 damaged pipeline cases are shown in Figure 7. Similarly, the information
obtained for the wavelet packet analysis is shown in Figure 8. The EMD was also applied to the all
cases. Detailed results of EMD for calculation of IMFs of sensor 3 for healthy pipe and sensor 6 for
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Figure 7. Wavelet simulation of (left) the healthy pipe, and (right) the damaged pipe (at DL2).
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Figure 8. Wavelet packet simulation of (left) the healthy pipe, and (right) the damaged
pipe (at DL2).

DL1 are shown in Figure 9. Notice that the wavelet methodology adopted here involves a multiresolu-
tion analysis for a piece of data windowed by shifted and scaled wavelets generated from the so-called
mother wavelet [Wickerhauser 1994]. Only the higher-resolution details were used to make the above
observation. Therefore, to detect a potential damage at a particular point in time would only require
a small portion of data neighboring that particular time. This is an attractive feature of this approach
and an effective means for on-line heath monitoring of pipelines. As seen from Figures 8 and 9, the
initial signal has been decomposed to its IMFs and baby wavelets. One could reach the original signal
by inversing the process.

The energy components obtained by the FFT, EMD, WT and WPT and EMD are tabulated in Table 3.
In this table, the WT and WPT energy components are evaluated based on the db3 wavelet at the fourth
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Figure 9. EMD of the healthy pipe for (left) sensor 3, and (right) sensor 6.
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Method Components Ehealthy (0–0.25 s) Edamaged (0–0.25 s) Change ( %)

FFT — 394.2 2426.2 515.5

WT

da
4 (t) 1.2687×10−5 3.9225×10−3 30816.7

dd
4 (t) 8.6086×10−7 2.5979×10−5 2917.8

dd
3 (t) 6.0146×10−5 1.5819×10−4 163.0

dd
2 (t) 5.0762×10−5 8.3846×10−5 65.2

dd
1 (t) 7.2237×10−5 1.2242×10−4 69.5

WPT

d1
4 (t) 8.6086×10−7 2.5979×10−5 2917.8

d2
4 (t) 4.6565×10−5 5.9677×10−5 28.2

d3
4 (t) 1.3367×10−5 9.8914×10−5 640.0

d4
4 (t) 8.7762×10−6 1.6786×10−5 91.3

d5
4 (t) 6.8594×10−6 1.3166×10−5 91.9

d6
4 (t) 1.7970×10−5 1.7382×10−5 3.3

d7
4 (t) 1.6655×10−5 3.6173×10−5 117.2

d8
4 (t) 2.8572×10−7 3.6739×10−7 28.6

EMD — 0.0115 1.0039 8629.56

Table 3. Comparison of computed energies for FFT, WT and WPT for the damage case DL2.

level decomposition. In the case of the WT approach, the da
4 (t) and dd

4 (t) component of energies shows
sensitivity to damage. However, in the case of the WPT approach, the d1

4 (t) component of energy exhibits
more sensitivity to damage.

Figure 10 illustrates the damage signatures (damage energy indices evaluated based on the EMD, FFT
integration, WT, and WPT methodologies at the damage locations) as a function of the sensor number
mounted along the axial direction of the pipe for the case where the damage is located in location 2
(DL2). It is observed that all four approaches could detect the defect locations within a range of a pair
of sensors. However, it is noted that the WT , WPT, and EMD methodologies could predict the damage
location more accurately than the FFT methods (that is, the differences in the energy indices from the
sensors have much larger margin in WT and WPT than in the other methods). The results also confirm
the suitability of PZT sensors and their sensitivity for detecting damage in pipelines.

Figure 11, left, illustrates the damage indices based on EMD, WT, and WPT as a function of sensor
number for the case where the damage is located in location (DL1). Figure 11, right, shows the damage
indices based on EMD and WPT for the case where the damage is located in location (DL2).

Case 2: detection of damage due to reduction in flexural rigidity. To further examine the integrity
and sensitivity of the selected methodologies, this case study examines a pipe having reduced flexural
rigidity between sensors 4 and 5. This effect was simulated by reducing the Young’s modulus of the two
rows of elements between sensors 4 and 5. The reduction in flexural rigidity ranges from 10% to 50%,
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Figure 10. Damage indices for various percentiles of degradation based on the four
methodologies (DL2).

representing different intensities of damage. The comparison of FRF response of sensor 4 for the cases of
10%, 30% and 50% reduction in rigidity is plotted in Figure 12. The comparison of the damage indices
evaluated by EMD, WT, and WPT methodologies are illustrated in Figure 13. The damage indices are

x
x
x
x

x
x
x
x

x
x
x
x

x
x
x
x

x
x
x
x

x
x
x
x

x
x
x
x

xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

xxxxxxxxxxxxxx

xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

xxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

xxxxxxxxxxxxxxxx

xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

xxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

xxxxxxxxxxxxxx

xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

xxxxxxxxxxxxxxxx

xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

xxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

xxxxxxxxxxxxxx

xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

xxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

xxxxxxxxxxxxxxxx

xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

xxxxxxxxxxxxxxxx

xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

xxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

xxxxxxxxxxxxxx

xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

x
x

x
x

x
x
x
x

x
x
x
x

x
x

xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

xxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

xxxxxxxxxxxxxx 

xxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxx
xxxxxx xxxxxxxxxxxxxxxxxxxxxxxx

xxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxx
xxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxx

xxxxxxxxxxxxxx xxxxxxxxxxxxxxxx

0

002

004

006

008

0001

0021

0041

0061

0081

0002

4321 8765

Se sn ro N umber

D
a

m
a

g
e

 I
n

d
e

x

x IDME edn

xxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxx

xxxxxxxxxxxxxxxxxxxxxxxxxxxx

xxxxxxxxxxxxxxxxxxxxxxxx

eat PelevaW kc t

xxxxxxxxxxxx xxxxxxx

xxxxxxxxxxxx

xxxxxxx

aW velet

xxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

xxxxxxxxxxxxxxxxxx 

0

02 00

04 00

06 00

08 00

01 00 0

21 00 0

1 2 43 65 7 8

eS nsor N umber

D
a

m
a

g
e

 I
n

d
e

x

xxxxxx xxxxxxxxxxxxxx

xxxxxx

xxxxxxx

ME D

aW velet P  acket

Figure 11. Damage index at (left) the damage location DL1, based on EMD, WT and
WPT; (right) the damage location DL2 based on EMD and WPT.



58 NADER CHERAGHI AND FARID TAHERI

 

 

Figure 12. Comparison of the FRF responses for the pipe with 10%, 30% and 50%
reduction in flexural rigidity.

clearly increased near the location where the pipe’s rigidity is decreased. As can be clearly seen from
Figure 13, the EMD method yields an approximately linear function for the damage index compared to
WT or WPT methods.

As the case studies show, the Fourier transform method and the associated FFTs carry strong a pri-
ori assumptions about the source data, such as the linearity and status of the data. Signals associated
with natural phenomena are essentially nonlinear and nonstationary. The accommodation of this fact
in FFT-based analysis often involves using more data samples to assure acceptable convergence and
nonalgorithmic procedural steps for the interpretation of FFT results. Wavelet-based analysis may yield
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some improvement over the FFT because it can handle nonstationary data. However, it retains the lim-
itation of requiring the data set to be linear. The wavelet method may also prove inadequate, because
notwithstanding the fact that it is well-suited for analyzing data with gradual frequency changes, its
nonlocally adaptive approach causes leakage. This leakage can spread frequency energy over a wider
range, removing definition from data and giving it an overly smooth appearance. Only recently has an
alternative view for mechanics, the Hilbert view, and the associated processing tool, the empirical mode
decomposition (EMD), been proposed.

The HHT, however, allows direct algorithmic analysis of nonlinear and nonstationary data functions
by using an engineering and a posteriori data processing method, namely an EMD. This method enables
one to perform unconstrained decomposition of the source data function into a finite set of intrinsic
mode functions (IMFs) that can be effectively analyzed by the classical Hilbert transform, thus making
the HHT devoid of the FFT limitations.

A case study was experimentally investigated to confirm the integrity of the proposed approach. The
experimental investigation considered an adhesively bonded joint connecting two PVC plastic pipes.
Three different specimen configurations were considered. In total, 24 test set-ups were considered with
each specimen to examine the influence of several parameters. The parameters that were considered were
the loading (excitation) location, support tightness, and debond location.

Each specimen had a different degree of disbond in its joint region; that is, one specimen was fully
bonded, one bonded around half of its parameter and one only around a quarter of the parameter. The
specimens were instrumented by piezoelectric sensors. The piezoelectric patches implemented in this
investigation were QP15N PZT QuickPack strain sensors available from Mide Technology Corporation
(Medford, MA). These patches were bonded to the surface of the pipe at the joint region using the
West System’s two-part epoxy. On the test specimens containing damage, piezoelectric sensors were
positioned at the center of the damaged section of the joint and on the location 180◦ opposite to the first
sensor. For the fully bonded pipe there was only one sensor bonded on the center of the joint.

To determine the existent and extent of damage in the adhesively bonded PVC pipe joints, the dy-
namic responses of the pipes were monitored at the joint region using a simply supported beam setup
as schematically shown in Figure 14. The pipes were excited with an impulse hammer. The impulse
hammer response was monitored continuously using a data acquisition card as well. The response of the
piezoelectric sensors was also continuously monitored with a multipurpose data acquisition card in a PC.
40,000 data points were collected in each test at a rate of 10 kHz.

The results were used and processed based on the proposed methodologies. The integrity of the
proposed damage index methodologies was verified and compared. A typical set of results of damage

Joint SideInner Side

1000 1000

300300200 200 200 200

Piezoelectric Sensor

1 2 3 654

 
Figure 14. Schematic of the experimental setup of the adhesively bonded joint.
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Figure 15. A typical set of experimental results based on different proposed damage indices.

indices evaluated by the various methods are illustrated in Figure 15. The terms quarter and half refer
to the bonding status (that is, the joint has adhesive around a quarter of half of its circumference). The
results clearly show that the energy based index obtained through the proposed EMD approach provides
the most distinctive results.

Conclusions

Access to an effective health monitoring system is an important aspect of pipeline maintenance. The
availability of an accurate and reliable damage detection system can significantly reduce the life-cycle
cost of a pipeline system. There are some simple methods, such as root mean square, that in some
cases can predict the location of damage, but the method is not effective in all cases. This research
introduced a new health monitoring approach based on sensing of the vibration response of a pipe using
smart piezoelectric transducers, and then evaluating the vibration response of the pipe using the data
obtained by the transducers. In conjunction with the use of three-dimensional piezoelectric FE analysis,
a novel approach was proposed for evaluating the damage energy indices established based on (FFT) and
(EMD), which has been compared with wavelet transform methodologies. The damage indices proposed
in this paper can reveal the location of the defect. Case studies were considered to evaluate the integrity
of the proposed methodologies. For this, cantilevered pipes, having various forms of defects, were
considered. The defects were assumed to be at various locations, having different intensities (that is, in
the form of reduction of wall thickness to simulate a reduction in stiffness due to presence of corrosion).
The numerical results confirm that the proposed approaches could effectively identify the existence and
intensity of defects in the pipes. However, it was observed that the EMD-based procedure produced
an almost linear relationship between the damage density and damage indices, while the relationship is
nonlinear in the results produced by both the wavelet packet and wavelet methodologies. In our view,
therefore, the EMD produced adequate accuracy for both detecting the location of the damage, and also
establishing the severity of the damage. This was not the case for the observation on the wavelet and
wavelet packet-based methods.
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THE FLEXIBILITY OF FUNCTIONALLY GRADED MATERIAL PLATES
SUBJECTED TO UNIFORM LOADS

YEN-LING CHUNG AND WEI-TING CHEN

We analyze functionally graded material (FGM) plates with two opposite edges simply supported and
the other two edges free subjected to a uniform load. Even though an FGM plate is a kind of composite
material, if the Young’s modulus of the FGM plates varies along the thickness direction and the Pois-
son’s ratio is constant in the whole FGM plate, the bending and in-plane problems in FGM plates under
transverse load only are uncoupled. Therefore, the analytical solution to the bending problem of FGM
plates is obtained in this study by Fourier series expansions, which agrees very well with a finite element
calculation. Results show that the maximum tensile stresses are located at the bottom of the FGM plates.
However, the maximum compressive stresses move to the inside of the FGM plates. The coefficients
A11, B11,C11 defined in this paper relate to the area and to the first and the second moments of the area
under the E(z) curve from z = −h/2 to z = h/2. The parameter Q11, representing the location of
the centroid of the area under the E(z) curve, is related to the location of the neutral surfaces, and S11

represents the bending stiffness of the FGM plates.

1. Introduction

Functionally graded materials (FGMs), a type of composite material produced by continuously varying
the volume fractions in the thickness direction to obtain a predetermined profile, have received much
attention recently because of the advantages of decreasing the mismatch in material properties and re-
ducing residual and thermal stresses [Chung and Chi 2001; Lee and Erdogan 1994]. Many researchers
have been working toward an understanding of the material constituent [Chi and Chung 2002; Bao and
Wang 1995; Suresh and Mortensen 1998], fracture mechanics [Chi and Chung 2003; Jin and Noda 1994;
Jin and Batra 1996; Delale and Erdogan 1983; Gu and Asaro 1997; Cai and Bao 1998; Jin and Paulino
2001; Erdogan and Wu 1996; Erdogan and Chen 1998], and processing of FGMs [Kwon and Crimp
1997; Kesler et al. 1997].

FGMs may be applied to plate structures in aircraft, space vehicles, reactor vessels, and other engi-
neering applications as a thermal barrier. Studies of thermoelastic deformations of FGM plates can be
found in many references in the literature. Obata and Noda [1996] theoretically analyzed and numerically
calculated the steady thermal stresses in an FGM plate composed of PSZ and Ti-6Al-4V, and determined
the optimal FGM plates. Praveen and Reddy [1998] investigated nonlinear transient thermoelastic re-
sponses of functionally graded ceramic-metal plates by using a plate finite element that accounts for the
transverse shear strains, rotary inertia and moderately large rotations in the Von Karman sense. An exact
solution was obtained in [Vel and Batra 2002] for three-dimensional deformations of a simply supported
FGM thick rectangular plate subjected to mechanical and thermal loads on its top and/or bottom surfaces.

Keywords: FGM plate, Fourier series expansion, finite element analysis.
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The exact solutions for mechanical and thermal loads are used to assess the accuracy of classical plate
theory, first-order shear deformation theory, and a third-order shear deformation theory. Transient thermal
stresses in FGM plates with a simple power-law distribution were investigated in [Vel and Batra 2003].

Buckling behavior plays an important role in plate structures. Elastic bifurcation buckling of FGM
plates under in-plane compressive loading was studied in [Feldman and Aboudi 1997], based on a com-
bination of micromechanical and structural approaches. Ma and Wang [2004] investigated the axisym-
metric bending and buckling solutions for an FGM circular plate based on third-order plate theory and
classical plate theory. The results showed that the first-order shear deformation plate theory is enough
to consider the effect of shear deformation on the axisymmetric bending and buckling of FGM plates.
The problems of thermal buckling in the axial direction of cylindrical shells made of FGMs varying as a
power form were discussed in [Wu et al. 2005]. Moreover, the dynamic stability of conical FGM shells
subjected to a periodic impulsive pressure was studied in [Sofiyev 2004] by applying Galerkin’s method.

Understanding of the mechanical behavior of an FGM plate becomes very important in assessing the
safety of the plate structure. Woo and Meguid [2001] applied Karman theory for large deformations to
obtain the analytical solution for plates and shells under transverse mechanical loads and a temperature
field. He et al. [2001] studied the vibration control of the FGM plates with integrated piezoelectric
sensors and actuators by a finite element formulation based on the classical laminated plate theory. Chi
and Chung [2006a; 2006b] analyzed the mechanical behaviors of a simply supported rectangular FGM
plate with sigmoid functions of the volume fraction of the constituents by the Fourier series expansion.
The collocation multiquadric radial basis is used in [Ferreira et al. 2005] to analyze static deformations
of simply supported FGMs modeled by a third-order shear deformation theory and a meshless method.

The closed-form solution to the problems of FGM plates subjected to transverse loads with two op-
posite edges simply supported and the other two edges free is not found in the literature. Therefore, this
study will focus on the simple but important problems of FGM plates with two opposite edges simply
supported and the other two edges free. The material properties of the FGM plates considered here are
assumed to change continuously throughout the thickness of the plate, according to the volume fraction
of the constituent material based on the power-law and sigmoid functions. The analytical solution is
obtained by the Fourier series expansion and compared with the finite element calculation.

2. Governing equations

Consider a linearly elastic, moderately thick, rectangular FGM plate subjected to a transverse load. As-
sume the plate has a uniform thickness h in the range 1/20 ∼ 1/100 of its span. The deformations and
the stresses of the FGM plate are derived under the following assumptions:

1. Line elements perpendicular to the middle surface of the plate before deformation remain normal
and unstretched after deformation.

2. The deflection of the FGM plate is small in comparison with its thickness h, so the linear strain-
displacement relations are valid.

3. The normal stress in the thickness direction can be neglected because of the thickness assumption.

4. For the nonhomogeneous elastic FGM plate, the Young’s modulus and Poisson’s ratio of the FGM
plate are functions of the spatial coordinate z.
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2.1. Stress field of FGM plates. According to assumption 1, the transverse strain components εzz , γxz ,
and γyz are negligibly small. Under the assumption of small deformation, the strain field of the FGM
plate is

εx =
∂u
∂x

= εx0 − z
∂2w(x, y)
∂x2 , (1a)

εy =
∂v

∂y
= εy0 − z

∂2w(x, y)
∂y2 , (1b)

γxy =
∂u
∂y

+
∂v

∂x
= γxy0 − 2z

∂2w(x, y)
∂x∂y

, (1c)

εz = γxz = γyz = 0, (1d)

where

εx0 =
∂u0(x, y)
∂x

εy0 =
∂v0(x, y)
∂y

γxy0 =
∂u0

∂y
+
∂v0

∂x

are strains at the middle surface. The quantities u0(x, y), v0(x, y), w0(x, y) are the displacements at
the middle surface. It is known that neglecting the transverse shear deformations may lead to significant
errors when applied to moderately thick plates with thickness larger than 0.1 of span [Tauchert 1986].
However, Shames and Dym [1985] indicated that for a plate with a thickness less than 0.1 of its span, the
classical theory of plates is expected to give good results. In this paper, the thickness of the moderately
thick FGM plate is assumed to be in the range 1/20 ∼ 1/100 of its span, therefore the transverse shear
deformations are negligible.

Based on assumptions 3 and 4, the stress-strain relation of an FGM plate for plane stress condition is

σx =
E(z)

1−ν(z)2

(
εx0 + ν(z)εy0 − z

(
∂2w

∂x2 + ν(z)∂
2w

∂y2

))
, (2a)

σy =
E(z)

1−ν(z)2

(
εy0 + ν(z)εx0 − z

(
∂2w

∂y2 + ν(z)∂
2w

∂x2

))
, (2b)

τxy =
E(z)

1−ν(z)2
(1−ν(z)

2

)(
γxy0 − 2z ∂

2w

∂x∂y

)
. (2c)

2.2. Axial forces, shear forces, and bending moments of FGM plates. The stress resultants per unit
length of the middle surface are defined by integrating stresses along the thickness. Thus the in-plane
axial forces Nx , Ny , and Nxy , and the bending moments per unit length of the middle surface, Mx , My ,
and Mxy are defined as follows, with α = x, y:

Nα =

∫ h/2

−h/2
σα dz, Nxy =

∫ h/2

−h/2
τxy dz, Mα =

∫ h/2

−h/2
zσα dz, Mxy =

∫ h/2

−h/2
zτxy dz.
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Substituting the relations (2) into these defining equations, we obtain the in-plane axial forces and the
bending moments in terms of the middle-surface strains and deflection:


Nx

Ny

Nxy

=

A11 A12 0

A12 A11 0

0 0 A66



εx0

εy0

γxy0

+

B11 B12 0

B12 B11 0

0 0 B66




−
∂2w

∂x2

−
∂2w

∂y2

−2
∂2w

∂x∂y


, (3)


Mx

My

Mxy

=

B11 B12 0

B12 B11 0

0 0 B66



εx0

εy0

γxy0

+

C11 C12 0

C12 C11 0

0 0 C66




−
∂2w

∂x2

−
∂2w

∂y2

−2
∂2w

∂x∂y


, (4)

where the coefficients of Ai j , Bi j and Ci j are the integration of the material properties of the FGM plate

(A11, B11,C11)=

∫ h/2

−h/2

1
1 − ν(z)2

(
E(z), zE(z), z2 E(z)

)
dz, (5a)

(A12, B12,C12)=

∫ h/2

−h/2

ν

1 − ν(z)2
(
E(z), zE(z), z2 E(z)

)
dz, (5b)

(A66, B66,C66)=

∫ h/2

−h/2

1
2(1 + ν(z))

(
E(z), zE(z), z2 E(z)

)
dz. (5c)

2.3. Equilibrium and compatibility equations for FGM plates. Assume that the FGM plate is subjected
to the distributed loads qx , qy and qz along the x , y and z directions. Then the equilibrium equations of
the FGM plate are (see [Chi and Chung 2003])

∂Nx

∂x
+
∂Nyx

∂y
+ qx = 0 (6)

∂Nyx

∂x
+
∂Ny

∂y
+ qy = 0 (7)

∂2 Mx

∂x2 + 2
∂2 Mxy

∂x∂y
+
∂2 My

∂y2 = −qz(x, y). (8)

If the FGM plate is only subjected to the transverse load qz , that is, if qx = qy = 0, the in-plane Equa-
tions (6) and (7) can be solved in term of a stress function φ(x, y) defined by

Nx =
∂2φ

∂y2 ; Ny =
∂2φ

∂x2 ; Nxy = −
∂2φ

∂x∂y
. (9)
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Using Equations (3) and (9), the strains at the middle surface are then expressed in terms of the stress
function φ(x, y) and the deflection w as


εx0

εy0

γxy0

=

P11 P12 0

P12 P11 0

0 0 P66




∂2φ

∂y2

∂2φ

∂x2

∂2φ

∂x∂y


+

Q11 Q12 0

Q12 Q11 0

0 0 Q66




−
∂2w

∂x2

−
∂2w

∂y2

−2
∂2w

∂x∂y


. (10)

Consequently, the bending moments rearranged by substituting (10) into (4) are


Mx

My

Mxy

=

−Q11 −Q12 0

−Q12 −Q11 0

0 0 −Q66




∂2φ

∂y2

∂2φ

∂x2

∂2φ

∂x∂y


+

S11 S12 0
S12 S11 0
0 0 S66




−
∂2w

∂x2

−
∂2w

∂y2

−2
∂2w

∂x∂y


, (11)

where

P11 = A11/1,

P12 = −A12/1,

P66 = −1/A66,

Q11 = (A12 B12 − A11 B11)/1,

Q12 = (A12 B11 − A11 B12)/1,

Q66 = −B66/A66,

S11 = B11 Q11 + B12 Q12 + C11,

S12 = B11 Q12 + B12 Q11 + C12,

S66 = C66 + B66 Q66,

(12)

and
1= A2

11 − A2
12.

Consequently, we substitute (11) into (8) and the equilibrium equation becomes

Q12
∂4φ

∂x4 + 2(Q11 − Q66)
∂4φ

∂x2∂y2 + Q12
∂4φ

∂y4 + S11
∂4w

∂x4 + 2(S12 + 2S66)
∂4w

∂x2∂y2 + S11
∂4w

∂y4 = qz(x, y).

(13)
In a similar manner, the compatibility equation for a plane problem expressed in terms of stress function
φ(x, y) and the deflection w are derived as

P11
∂4φ

∂x4 + (2P12 − P66)
∂4φ

∂x2∂y2 + P11
∂4φ

∂y4 − Q12
∂4w

∂x4 − 2(Q11 − Q66)
∂4w

∂x2∂y2 − Q12
∂4w

∂y4 = 0. (14)

Equations (13) and (14) provide the simultaneous equations to solve the stress function φ(x, y) and the
deflection w. They are particular cases of the nonlinear equations presented in [Woo and Meguid 2001].
Similar formulae for the equilibrium and compatibility equations in (13) and (14) can also be found in
[Nowinski and Turski 1953] and [Sokolowski 1958].

If both the Young’s modulus and Poisson’s ratio are considered for calculating the coefficient, the
integration will turn out to be very complex. Chi and Chung [2003] showed that the influence of Poisson’s
ratio on the mechanics of FGM plates is much less than that of the Young’s modulus. Therefore, the



68 YEN-LING CHUNG AND WEI-TING CHEN

solutions for the material with Poisson’s ratio assumed to be constant and Young’s modulus varying in
the thickness direction are derived in Section 3.

For material with ν =constant and E = E(z), it can be found that

(A12, B12,C12)= ν(A11, B11,C11),

(A66, B66,C66)=
1 − ν

2
(A11, B11,C11),

(P12, Q12, S12)= ν(−P11, 0, S11),

(P66, Q66, S66)=

(
−2(1 + ν)P11, Q11,

1 − ν

2
S11

)
,

(15)

where

P11 =
1

(1 − ν2)A11
, Q11 = −

B11

A11
, and S11 = B11 Q11 + C11.

Consequently, the equilibrium and compatibility equations are simplified as

S11∇
4w = q(x, y), (16)

∇
4φ = 0. (17)

It can be seen that for the FGM plate with constant Poisson’s ratio, the governing equations of the bending
problem expressed in Equation (16) and the in-plane problem in Equation (17) are uncoupled.

3. Solution to FGM plates with two opposite edges simply supported and two other edges free

Consider an FGM plate with length a, width b, and uniform thickness h subjected to the lateral load
qz(x, y). The coordinates x and y define the plane of the plate, whereas the z-axis originating at the
middle surface of the plate is in the thickness direction. The Poisson’s ratio of the FGM plate is assumed
to be constant and the Young’s modulus varies functionally in the thickness direction. Further assume
that two opposite edges of the FGM plate are simply supported and the other edges are free, as shown
in Figure 1.

The deflection w must satisfy the boundary conditions of w = 0 and w′′
= 0 at x = 0 and x = a.

Therefore the deflection of the FGM plate can be assumed as

w(x, y)=

∞∑
m=1

wm(y) sin
mπx

a
. (18)

Consequently the distributed loading qz(x, y) can be expanded by Fourier series

qz(x, y)=

∞∑
m=1

qm(y) sin kx,

where qm(y)=
∫

qz(x, y) sin kx dx and k = mπ/a. For the special case when the FGM plate is under a
uniform load with magnitude qz(x, y)= q0, the quantity qm(y)= 4q0/(mπ) where m is an odd number.
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Figure 1. The configuration of an FGM plate.

To satisfy the governing equation of ∇
4φ = 0, the stress function is also assumed as

φ(x, y)=

∞∑
m=1

φm(y) sin
mπx

a
. (19)

Substituting (18) and (19) into (16) and (17), we rewrite the governing equations as

k4wm(y)− 2k2w′′

m(y)+w
′′′′

m(y)=
qm(y)

S11
, (20)

k4φm(y)− 2k2φ′′

m(y)+φ
′′′′

m(y)= 0. (21)

The solution of (20) consists of a homogeneous part wmh(y), and a particular part wmp(y). The partic-
ular part cannot be determined until qm(y) is specified. However, the homogeneous part can be easily
determined as

wmh(y)= A1m cosh ky + A2mky sinh ky + A3m sinh ky + A4mky cosh ky. (22)

Similarly, φm(y) is obtained in the form

φm(y)= B1m cosh ky + B2mky sinh ky + B3m sinh ky + B4mky cosh ky. (23)

Because of symmetry with respect to the y-axis,

A3m = A4m = B3m = B4m = 0.

The unknown constants Aim and Bim can be determined from the boundary conditions on the free edges
(y = ±b/2) as My = 0,

Vy +
∂Mxy

∂y
= 0,

and

{
Ny = 0,

Nxy = 0.
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The conditions Ny(y = ±b/2) = 0 and Nxy(y = ±b/2) = 0 give B1m = B2m = 0. Consequently, the
stress function φ(x, y)= 0. The boundary conditions My = 0 and Vy + ∂Mxy/∂y = 0 at y = ±b/2 yield

A1m =

νwmp(y)
(1+ν

1−ν
sinh kb

2
−

kb
2

cosh kb
2

)
3+ν

2
sinh kb − (1 − ν)

kb
2

, A2m =

νwmp(y) sinh kb
2

3+ν

2
sinh kb − (1 − ν)

kb
2

. (24)

With the aid of φ(x, y) = 0, the complete solution of the FGM plate with two opposite edges simply
supported and two other edges free is

w(x, y)=

∑
m

(
A1m cosh ky + A2mky sinh ky +wmp(y)

)
sin kx, (25a)

Nx = Ny = Nxy = 0, (25b)
Mx

My

Mxy

= S11

1 ν 0
ν 1 0
0 0 (1 − ν)/2


κx

κy

κxy

 , (25c)


εx0

εy0

γxy0

= Q11


κx

κy

κxy

 , (25d)


εx

εy

γxy

= (Q11 + z)


κx

κy

κxy

 , (25e)


σx

σy

τxy

=

(
E(z)

1 − ν2

)(
Q11 + z

S11

)
Mx

My

Mxy

 , (25f)

where κx = −
∂2w

∂x2 , κy = −
∂2w

∂y2 , κxy = −2
∂2w

∂x∂y
, and

∂2w

∂x2 = −

∑
m

k2(A1m cosh ky + A2mky sinh ky +wmp(y)
)

sin kx,

∂2w

∂y2 =

∑
m

k2(A1m cosh ky + A2m(2 cosh ky + ky sinh ky)+w′′

mp(y)
)

sin kx,

∂2w

∂x∂y
=

∑
m

k2(A1m sinh ky + A2m(sinh ky + ky cosh ky)+w′

mp(y)
)

cos kx,

for an FGM plate under a uniform load with magnitude qz(x, y)= q0, the particular solution wmp equals
4q0/(ak5S11).
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4. Material gradient and the physical meaning of the coefficients

For the FGM plate in Figure 1, Poisson’s ratio is assumed to be constant. The Young’s moduli on the
upper and lower surfaces of the FGM plate differ and are preassigned according to the performance
demands, but the Young’s modulus inside FGM plates varies continuously in the thickness direction
with power-law functions (P-FGM) or sigmoid functions (S-FGM).

4.1. Material properties and parameters of P-FGM plates. The volume fraction of the P-FGM is as-
sumed to obey a power-law function

g(z)=

( z + h/2
h

)p
, (26)

where p is the material parameter and h is the thickness of the plate. Once the local volume fraction
g(z) has been defined, the material properties of a P-FGM can be determined by the rule of mixture (see
[Bao and Wang 1995])

E(z)= g(z)E1 + [1 − g(z)]E2, (27)

where E1 and E2 are the Young’s moduli of the bottom and top surfaces of the FGM plate, respectively
(z = ±h/2). The variation of the Young’s modulus of a P-FGM plate in the thickness direction with
different material parameters p is plotted in Figure 2, which indicates that the overall stiffness of the
FGM plate increases as the parameter p decreases. It is seen from Figure 2 that the Young’s modulus
varies rapidly at the top surface (z/h = −0.5) of the plate, therefore it must be very carefully defined in
finite element analysis when dividing the meshes near the top surface.
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z 
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0.5

 

Figure 2. Variation of the Young’s modulus of a P-FGM plate with differing material
parameters p.
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Substituting the gradation of the Young’s modulus of P-FGM plates in (27) into the definition of
coefficients in Equations (5), we obtain the coefficients of P-FGM plates:

A11 =
h

1 − ν2

(
E2 + (E1 − E2)

1
p + 1

)
,

B11 =
h2

2(1 − ν2)
(E1 − E2)

p
(p + 1)(p + 2)

,

C11 =
h3

12(1 − ν2)

(
E2 + (E1 − E2)

3(p2
+ p + 2)

(p + 1)(p + 2)(p + 3)

)
,

Q11 =
−ph

2(p + 2)
(E1 − E2)

(pE2 + E1)
,

S11 =
h3

12(1 − ν2)

(
E2 +

3(p2
+ p + 2)(E1 − E2)

(p + 1)(p + 2)(p + 3)
−

3p2(E1 − E2)
2

(p + 1)(p + 2)2(pE2 + E1)

)
.

(28)

4.2. Material properties of S-FGM plates. In the case of adding an FGM of a single power-law function
to the multilayered composite, stress concentrations appear on one of the interfaces where the material
is continuous but changes rapidly [Lee and Erdogan 1994; Bao and Wang 1995]. Therefore, we defined
the volume fraction using two power-law functions to ensure smooth distribution of stresses among all
the interfaces. The Young’s modulus of the S-FGM plate is defined based on two power-law functions
[Chung and Chi 2001]

g1(z)= 1 −
1
2

(h/2 − z
h/2

)p
for 0 ≤ z ≤ h/2, (29a)

g2(z)=
1
2

(h/2 + z
h/2

)p
for − h/2 ≤ z ≤ 0. (29b)

By using the rule of mixture, the Young’s modulus of the S-FGM plate can be calculated by

E(z)= g1(z)E1 + [1 − g1(z)]E2 for 0 ≤ z ≤ h/2, (30a)

E(z)= g2(z)E1 + [1 − g2(z)]E2 for − h/2 ≤ z ≤ 0. (30b)

The variation of the Young’s modulus of a P-FGM plate in the thickness direction with different material
parameters p is plotted in Figure 3 which shows that the material properties rapidly change near the top
and bottom surfaces for p � 1 but vary rapidly near the middle surface for p � 1. Therefore, if the
S-FGM plate is used as the undercoat in a laminated material, the material distribution with p � 1 is the
better choice.
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Figure 3. Variation of the Young’s modulus of an S-FGM plate with differing material
parameters p.

A similar approach to that used for P-FGM plates yields for the coefficients of S-GFM plates

A11 =
h

1 − ν2

(E1 + E2

2

)
,

B11 =
h2

8(1 − ν2)
(E1 − E2)

p2
+ 3p

(p + 1)(p + 2)
,

C11 =
h3

12(1 − ν2)

E1 + E2

2
,

Q11 =
−h(E1 − E2)(p2

+ 3p)
4(E1 + E2)(p + 1)(p + 2)

,

S11 =
h3

8(1 − ν2)

(
E1 + E2

3
−

(E1 − E2)
2(p2

+ 3p)2

4(E1 + E2)(p + 1)2(p + 2)2

)
.

(31)

4.3. Physical meaning of the quantities A11, B11, and C11. For FGM plates with constant Poisson’s
ratio, the parameters A11, B11, and C11 are defined in (5a) as

(A11, B11,C11)=
1

1 − ν2

∫ h/2

−h/2

(
E(z), zE(z), z2 E(z)

)
dz

Therefore, it is clear that (1 − ν2)A11 equals the area under the E(z) curve from z = −h/2 to z = h/2,
referred to in Figure 4, as indicated in [Mushelishvili 1953]. Similarly, the parameters B11, and C11 are
related to the first and second moments of the area under the E(z) curve from z = −h/2 to z = h/2 with
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x
x

x
x

Figure 4. Distribution of the Young’s modulus in the thickness direction of an FGM plate.

respect to the z = 0 axis. They are simplified as

(1 − ν2)A11 = the area under the E(z) curve from z = −h/2 to z = h/2, (32a)

(1 − ν2)B11 = (1 − ν2)A11 × z̄, (32b)

(1 − ν2)C11 = Ī + (1 − ν2)A11 × z̄2, (32c)

where z̄ is the distance from the centroid of the area (1 − ν2)A11 to the axis z = 0, and I is the second
moment of the area (1 − ν2)A11 with respect to the axis passing through the centroid. It can be seen from
Equation (32c) that the location of the centroid z̄ can be expressed by the parameters A11 and B11 as

z̄ =
B11

A11
. (33)

From Equations (28) and (31), the quantity B11 is positive if the Young’s moduli satisfy E1 > E2; in this
case the location of the centroid z̄ is also positive.

4.4. Physical meaning of the parameters Q11 and S11. Because of the zero strains at the neutral surface,
the neutral surface is located at Q11 + z = 0 according to (25e). Therefore, the physical meaning of the
parameter Q11 is the negative of the location of the neutral surface of the FGM plates. Based on (15)
where Q11 = −B11/A11 and (33) where z̄ = B11/A11, we obtain Q11 + z̄ = 0 which means that the axes
of the neutral surface and the centroid of the area under the E(z) curve coincide. Therefore, the neutral
surface of the FGM plates for bending problems can be evaluated directly by determining the location of
the centroid of the E(z) curve, which is related to the quantity B11 in (33). Consequently, it is concluded
that when the origin of the z-axis is located at the central axis of the area under the E(z) curve parallel
to the middle surface, the quantity B11 = 0.

The neutral surfaces versus the material parameter p with different ratios of Young’s moduli are plotted
in Figure 5 for P-FGM and S-FGM plates. The two halves of the figure indicate that the neutral axes
move far away from the z = 0 axis as the parameter p increases for E1/E2 > 1 (with E1 fixed). With the
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Figure 5. Locations of the neutral surfaces versus the material parameter p for E1 =

196 GPa and varying E2. Top: P-FGM plate. Bottom: S-FGM plate.

same parameter p and Young’s moduli E1 and E2, the locations of the neutral surfaces of the S-FGM
plates are closer to the middle surfaces than those of the P-FGM plates.

It is also worthwhile to investigate the quantity S11. With the aid of (15), (32c) and (33), the parameter
S11 can be rewritten as

S11 =
I

1 − ν2 , (34)
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where I is the second moment of the area (1 − ν2)A11 with respect to the axis passing through the
centroid. For homogeneous plates (E1 = E2 = E), the quantity S11 equals Eh3/12(1 − ν2) according to
(28) and (31), and this is the bending stiffness of a homogeneous plate. By comparing the equilibrium
equation of FGM plates in (16) with that of homogeneous plates, it is shown that parameter S11 is related
to the bending stiffness of FGM plates. Therefore, the parameter S11 is here called the bending stiffness
of FGM plates.
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Figure 6. Bending stiffness versus material parameter p for E1 = 196 GPa and varying
E2. Top: P-FGM plate. Bottom: S-FGM plate.
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The ratios of S11 to the bending stiffness of homogeneous plates Eh3/12(1 − ν2) are plotted in Figure
6 for P-FGM and S-FGM plates. The figure shows that S11 = Eh3/12(1 − ν2) for a homogeneous plate
in which E1 = E2. The bending stiffness of FGM plates S11 decreases with increase of p for E1/E2 > 1.
However for P-FGM plates, the bending stiffnesses S11 are almost the same and close to that of the
homogeneous plate for p � 1. It also can be seen that the bending stiffness S11 decreases when E1/E2

(E1 fixed) increases for both S-FGM and P-FGM plates, because the overall stiffnesses of the plates
decrease with the increase of E1/E2.

5. Numerical results

For the problem in Figure 1, if the aspect ratio a/b is large, the behavior of the plate will be similar to
that of a beam. Therefore, consider a homogeneous plate in which E1 = E2 = E and Poisson’s ratio is
ν = 0 subjected to a uniform load q0. If the aspect ratio a/b of the plate is large, the maximum deflection
located at x = a/2 is approximated by 5q0ba4/384E I = 15q0a4/96Eh3

= 0.15625q0a4/Eh3. This value
will be compared with the solution to a homogeneous plate given in Equation (25a).

When E1 = E2 = E , and ν = 0, Equations (28) and (31) become

(1 − ν2)A11 = Eh, B11 = Q11 = 0, C11 = S11 = Eh3/12(1 − ν2).

As mentioned previously, the quantity (1−ν2)A11 represents the area under the E(z) curve from z =−h/2
to z = h/2 which is equal to Eh. The results of Q11 = 0 and B11 = 0 reveal that the location of the neutral
surface is at the origin of the z-axis, and that the axes of the neutral surface and the centroid of the area
under the E(z) curve coincide, respectively. Moreover, the term (1 − ν2)C11, the second moment of the
area under the E(z) curve from z = −h/2 to z = h/2 with respect to z = 0 axis, is equal to the bending
stiffness of FGM plates S11 times (1 − ν2).

The coefficients A1m and A2m in (24) are approximated by zero as the aspect ratio a/b becomes large.
Then, the displacement of a homogeneous rectangular plate based on (25a) is simplified as w(x, y)=∑

m wmp(y) sin kx . Hence, the maximum displacement of the homogeneous rectangular plate located at
y = 0, x = a/2 is obtained as

w(x = a/2, y = 0)=
48q0a4

π5 Eh3

∑
m=1,3,5,...

1
m5 sin

mπ
2
,

≈ 0.15625
q0a4

Eh3 .

(35)

The result of (35) derived from (25a) with E1 = E2 = E , ν = 0 and large a/b is almost the same as
the result from beam theory. The comparison of the deflections of a homogeneous plate and a beam is
shown in Figure 7 for different aspect ratios. The figure shows that if the aspect ratio a/b is large, the
deflections at the line x = a/2 based on the plate theory and beam formulation are almost the same for
zero or nonzero Poisson’s ratio. However if the aspect ratio a/b is small, the deflection at the center of
the homogeneous plate will be identical to that of the beam theory only for Poisson’s ratio ν = 0.

Next, consider an FGM plate in which the boundary and load conditions are shown in Figure 1.
Because of the symmetry about the x- and y-axes, only one quarter of the full plate in Figure 1 is under
consideration when using the finite element program MARC. On the edge y = 0 of the one-quarter plate,
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Figure 7. Comparison of the deflections of a homogeneous plate and beam.
 

 
 

Figure 8. Deformation of an FGM plate at the neutral surface.

hinges are put at the neutral surface, while on the symmetric edges (that is, y = 0 and x = a/2), rollers are
used such that displacements in z-direction are allowed. In the finite element mesh, because there is no
stress singularity in the plate, solid eight-node elements are applied and 20 × 20 equally divided elements
are used in the x- and y-directions. In order to simulate the variation of the material properties of the
FGM plate, sixty layers in the thickness direction are used. Each layer has constant material properties,
but the material properties differ from layer to layer. The material properties of all layers in the mesh
are determined from the functions of volume fractions, according to the given E1, E2, ν.

The dimensions of the FGM plate in Figure 1 are taken as a = b = 100 cm and h = 2 cm, so the width
to thickness ratio is equal to 50. The Poisson’s ratio of the FGM plate is assumed to be constant for the
whole plate and is taken as v = 0.3. It is assumed that the Young’s modulus at the bottom surface of the
FGM plate E1, is 196 GPa, while that at the top surface of the S-FGM plate E2, varies with the ratio of
E1/E2. The deflections and strains of the FGM plate for the material parameter p = 2 and the ratios of
Young’s modulus E1/E2 = 1, 2, 4, 10, 20, 50 are under investigation.

The deformed configuration of an FGM plate at the neutral surface is shown in Figure 8. The dimen-
sionless deflections along the x = a/2 axis from y = 0 to y = b/2 and those along the y = 0 axis from
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Figure 9. Deflection of an S-FGM plate. Top: from y = 0 to y = b/2 along the line
x = a/2. Bottom: from x = a/2 to x = a along the line y = 0.

x = a/2 to x = a are plotted in Figure 9. Figures 8 and 9 reveal that the FGM plate exhibits saddle
deformation which is the same as in homogeneous plates. The analytical and numerical results agree
very well for small E1/E2 and are slightly different for large E1/E2. However, the error is less than 5%.

The dimensionless stresses σx/q0 and σy/q0 at the center of the plate along the thickness direction for
p = 2 and different E1/E2 ratios are presented in Figure 10. These figures show that the stresses of the
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Figure 10. Distribution of stresses σx (top) and σy (bottom) at the center of an S-FGM
plate along the thickness direction for different E1/E2 ratios.

S-FGM plate along the thickness direction are cubed. This is reasonable because the material parameter
p = 2. For a homogeneous plate in which E1/E2 = 1, the magnitude of the tensile and compressive
stresses are equal and located at the top and bottom surfaces. However, as the ratio of E1/E2 increases,
the magnitudes of the tensile and compressive stresses are no longer equal. The maximum stress is tensile
and is located at the bottom surface of the plate. However, the maximum compressive stress moves from
the top surface to inside of the plate, and this phenomenon becomes clear for large E1/E2.
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Figure 11. Distribution of stresses σx (top) and σy (bottom) at the center of an S-FGM
plate along the thickness direction for differing material parameters p ≥ 1.

Next we focus on a fixed value E1/E2 = 4, with changing material parameters p = 1, 2, 4, and 10, and
p = 1/2, 1/4, and 1/10. The dimensionless stresses σx/q0 and σy/q0 at the center of the FGM plates are
plotted in Figure 11 for p = 1, 2, 4, and 10 and in Figure 12 for p = 1/2, 1/4, and 1/10. It is clear from
these four figures that the stress distributions differ little for different parameters p when E1/E2 is fixed.
Specifically, the stresses at the top and bottom surfaces are almost the same for p < 1. This phenomenon
occurs because the bending stiffness S11 for E1/E2 = 4 doesn’t change very much for different values
of p.
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Figure 12. Distribution of stresses σx (top) and σy (bottom) at the center of an S-FGM
plate along the thickness direction for differing material parameters p < 1.

So far, the results in this paper show that the analytical solution agrees very well with FEM simulation.
However, the limitations and range of validity of the proposed model need to be investigated. Therefore,
further considerations will focus on how thick the FGM plate is, or how steep the material gradient can
be for the theoretical solution to fail.

The theoretical solutions in this paper are based on the assumption that the thickness of a moderately
thick FGM plate is in the range 1/20 ∼ 1/100 of its span, and thus transverse shear deformations can
be negligible. To examine this assumption, we fix the ratio E1/E2 = 10 but take the thickness of the
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Figure 13. Error in maximum deflection versus thickness-to-length ratio h/a (fixed a).
Top: P-FGM plate; bottom: S-FGM plates. In both cases E1/E2 = 10.

plate h = 2 cm, 4 cm, 8 cm, 16 cm, or 24 cm, and the corresponding ratios of thickness to length h/a =

0.02, 0.04, 0.08, 0.16, 0.24. The maximum deflections located at the center of the plate are evaluated
by theoretical equation and FEM simulation. The errors, which are the differences between theoretical
and numerical results divided by the theoretical results, are plotted in Figure 13 for P-FGM and S-FGM
plates for various ratios h/a. These figures indicate that for moderately thick FGM plates with thickness
less than 0.1 of the span, the error is less than 5%. This means that for an FGM plate with thickness
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Figure 14. Error of maximum deflection of P-FGM plates versus ratio E1/E2 between
Young’s moduli. Top: P-FGM plate; bottom: S-FGM plates. In both cases h/a = 0.02.

less than 0.1 of its span, the classical theory of plates will give good results, as indicated in [Shames and
Dym 1985] for homogeneous plates.

To investigate the effect of the steepness of the material gradient on the FGM plates, the ratio of
thickness to length is fixed at 0.02 (that is, h/a = 0.02), but the ratios of Young’s moduli are taken as
E1/E2 = 1, 10, 20, 50, 80, 120, and 200. The errors in maximum deflections versus the ratios E1/E2,
plotted in Figure 14 for P-FGM and S-FGM plates, are all in the range 0.1% to 0.5%. Therefore, the
linear assumption for the displacement field is still accurate for FGMs with steep material gradients.

6. Conclusions

We applied a Fourier series expansion to the analysis of FGM plates with two opposite edges simply
supported and the other two edges free, subjected to uniform load. The results lead to these conclusions:

(1) The analytical solution obtained agrees very well with the finite element solution. The deformed
configuration of the FGM plates is a saddle deformation, which is the same as that of a homogeneous
plate. The maximum tensile stresses are located at the bottom of the FGM plates. However, the
maximum compressive stresses move to the inside of the FGM plates, especially for larger E1/E2.

(2) In general, the bending and in-plane problems in FGM plates are coupled. But if the material
properties of the FGM plate are such that the Young’s modulus varies along the thickness direction
but the Poisson’s ratio is constant for the whole FGM plate, as in the problem solved in this paper,
then the governing equations for the bending and in-plane problem become uncoupled.

(3) The parameters of A11, B11,C11, Q11, and S11 defined in this paper have physical meaning. The
quantity (1 − ν2)A11 represents the area under the E(z) curve from z = −h/2 to z = h/2. The
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parameters B11 and C11 are related to the first and second moment of the area under the E(z) curve
from z =−h/2 to z = h/2 with respect to the z = 0 axis. The ratio of B11/A11 is equal to the centroid
location z̄, of the area under the E(z) curve. The parameter Q11 = −B11/A11 = −z̄ represents the
location of the centroid of the area under the E(z) curve. The parameter S11 is called here the
bending stiffness of FGM plates.
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THERMOMECHANICS OF MARTENSITIC PHASE TRANSITIONS IN SHAPE
MEMORY ALLOYS

I. CONSTITUTIVE THEORIES FOR SMALL AND LARGE DEFORMATIONS

DIRK HELM

This article deals with the geometrically linear and nonlinear modeling of martensitic phase transitions in
shape memory alloys. A geometrically nonlinear theory is required for the thermomechanical simulation
of complex structures like endoscopic devices and stents. However, in certain situations like the simula-
tion of pipe couplers, it is sufficient to apply a geometrically linear theory. In both cases, a free energy
function is introduced, evolution equations for internal variables are postulated, and the dependence of
the fraction of oriented martensite on the transformation strains is represented by a novel constitutive
equation. In all, the developed constitutive theories are able to depict the thermomechanically coupled
behavior of shape memory alloys. This is demonstrated in Part II of this article (to appear in this journal,
in coauthorship with M. Schäfers). For this purpose, the theories are numerically treated in the framework
of the finite element method in order to solve initial-boundary-value problems. These illustrate the main
features of the constitutive theories by means of numerical test calculations. The results are compared
with experimental data.

1. Introduction

The exceptional material behavior of shape memory alloys is based on martensitic phase transitions,
which can be initiated and propagated by thermomechanical processes. In contrast to other kinds of
phase changes, martensitic phase transitions take place without diffusion processes. These phase transi-
tions are the result of cooperative movements of atomic layers until the crystal structure of the product
phase is reached. The underlying physical processes on the micro scale are well understood [Funakubo
1987; Otsuka and Ren 1999; Otsuka and Wayman 1998; Patoor et al. 2006]. During the last decades,
the material behavior including the fatigue properties of different shape memory alloys like NiTi and
CuAlNi has been elaborately investigated in uniaxial tests; see, for example, [Funakubo 1987; Huo and
Müller 1993; Otsuka and Wayman 1998; Shaw and Kyriakides 1995; Eggeler et al. 2004]. Moreover,
the material properties under combined tension-torsion loads were studied by [Rogueda et al. 1996;
Lim and McDowell 1999; Helm and Haupt 2001; Raniecki et al. 2001; McNaney et al. 2003]. Above
the so-called austenite finish temperature Af, martensitic phase transitions from austenite into oriented
(detwinned) martensite occur at a certain stress level. Due to the involved crystal structure of the austenite
and martensite phase, the occurring phase transitions are dominated by shear deformations and lead to
macroscopic inelastic deformations. If the material is unloaded, the material returns back to its parent

Keywords: shape memory alloys, thermomechanical modeling, martensitic phase transitions, finite deformations.
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Figure 1. Sketch of the pseudoelasticity and the shape memory effects. A: austenite; EM:
oriented (detwinned) martensite.

phase (austenite) and initial shape. This behavior is called pseudoelasticity or superelasticity, and is illus-
trated in Figure 1a. In the case of polycrystalline nickel-titanium shape memory alloys, the pseudoelastic
deformations are in the magnitude of about 5–10% engineering strain.

On condition that the austenitic material is loaded below the austenite finish temperature Af but above
the martensite start temperature Ms (see Figure 1b and c), martensitic phase transitions occur during
mechanical loading, but after unloading inelastic deformations remain in the shape memory alloy, be-
cause the detwinned martensite still exists (see Figure 1b). This effect is called pseudoplasticity due to
martensitic phase transitions. Of course, the pseudoplastic behavior (r-pseudoplasticity) is also observed
below Mf: in this situation, the shape memory alloy consists of martensite twins in the stress-free state,
which can be oriented and reoriented by appropriate mechanical loads. In the present study, this effect
is not regarded in the model, but the basic structure of the constitutive theory [Helm 2001; Helm and
Haupt 2003] also includes the description of this phenomenon.
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In addition to the pseudoelastic and pseudoplastic behavior, appropriate thermomechanical processes
lead to one-way and two-way shape memory effects. The one-way shape memory effect takes place if the
detwinned martensite is heated at sufficient small mechanical loads. Between the As- and Af-temperature,
the oriented martensite transforms back into austenite (see Figure 1b), the inelastic deformations disap-
pear, and the material regains its original shape. Therefore, this material behavior is called one-way
shape memory effect.

Under certain circumstances, shape memory alloys exhibit a two-way shape memory effect. Therefore,
oriented martensite must be produced by an appropriate stress field in the microstructure, which can be
the result of residual stresses or external forces. This stress field must be affected on the microstructure
during a subsequent heating and cooling process between the Af- and Mf-temperature (see Figure 1c).
In analogy to the one way-shape memory effect, the material regains approximately its undeformed
shape during heating. However, the required temperature to initiate and propagate the martensitic phase
transitions is higher than in the case of the one-way shape memory effect, because the existing stress state
increases the characteristic phase transition temperatures. In contrast to the one-way shape memory effect,
the induced stress state during the cooling process leads to phase transitions from austenite into oriented
martensite. Consequently, the material regains its deformed shape. In the used definition of the two-way
shape memory effect, which is advantageously for the modeling of the material behavior, the two-way
shape memory effect is released by a suitable stress field, which interacts with the microstructure, and
an appropriate variation in the temperature field. This usage of the term two-way shape memory effect
differs from the classical definition (see the explanations in [Funakubo 1987; Otsuka and Wayman 1998]):
in the classical definition, the two-way shape memory effect is only released by residual stress fields. The
other phenomenon is called two-way behavior of a shape memory alloy with a one-way characteristic
[Funakubo 1987].

More than twenty years ago, the first constitutive theories for shape memory alloys were published
[Achenbach and Müller 1982; Bertram 1982; Tanaka and Nagaki 1982; Falk 1983]. Since these pioneer-
ing studies, many different constitutive theories have been developed, and a number of models are able to
predict the uniaxial behavior of shape memory alloys; see, for example, [Liang and Rogers 1990; Khan
and Lagoudas 2002; Seelecke 2002; Paiva et al. 2005]. Such theories are well applicable to simulate
the behavior of one-dimensional structures like the usage of wires in actuator applications. However,
the simulation of applications like stents or pipe couplers requires three-dimensional formulated con-
stitutive theories. For this purpose, a large number of phenomenological models were suggested: for
example, Bertram [1982] and Graesser and Cozzarelli [1994] developed constitutive theories, which are
not discussed in a thermodynamic framework. In contrast to these concepts, constitutive theories in the
framework of continuum thermomechanics have been proposed in [Boyd and Lagoudas 1994; Raniecki
et al. 1992; Raniecki and Lexcellent 1994; Leclercq and Lexcellent 1996; Souza et al. 1998; Juhász
et al. 2000; Entchev and Lagoudas 2002; Helm and Haupt 2003; Lexcellent et al. 2006]. These models
consist of a thermodynamic function for the free energy (Helmholtz free energy) or the free enthalpy
(Gibbs free energy), which depends on state and internal variables. Moreover, evolution equations for
certain internal variables are introduced to represent the history dependent material behavior as well as
dissipation phenomena. An elaborate review about the phenomenological modeling of shape memory
alloys was recently published in [Lagoudas et al. 2006]. In addition to the discussions in that paper, it
should be mentioned that a part of the phenomenological models subdivide the evolution of the phase
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transition strains into an evolution equation for the forward phase transition and an evolution equation for
the reverse phase transition; see, for example, [Bondaryev and Wayman 1988; Boyd and Lagoudas 1994;
Auricchio et al. 1997; Helm 2001; Lagoudas et al. 2006]. In contrast to this, the approaches in [Graesser
and Cozzarelli 1994; Delobelle and Lexcellent 1996; Souza et al. 1998; Juhász et al. 2000; Helm and
Haupt 2003; Auricchio and Stefanelli 2004] utilize only one evolution equation for both directions of
phase transitions. In addition to these phenomenological concepts, different types of micromechanically
motivated theories have also been proposed in the literature; see, for instance, [Patoor et al. 1994; Lex-
cellent et al. 1996; Huang et al. 2000; Lim and McDowell 2002; Tanaka et al. 2002; Anand and Gurtin
2003; Thamburaja and Anand 2003; Jung et al. 2004; Novák and Sittner 2004; Patoor et al. 2006],
which are able to model the influence of the microstructure on the macroscopic behavior. Most of the
proposed constitutive theories are formulated in the framework of a geometrically linear theory. However,
the simulation of certain problems like stents or endoscopic devices requires a geometrically nonlinear
theory. Referring to this, only a few geometrically nonlinear concepts have been proposed in the common
literature: on the one hand, phenomenological theories were published in [Auricchio and Taylor 1997;
Qidwai and Lagoudas 2000; Helm 2001; Müller and Bruhns 2004]. On the other hand, in [Anand and
Gurtin 2003; Thamburaja and Anand 2003; Jung et al. 2004], the focus has been on micromechanical
models at finite deformations.

For many applications, it is sufficient to apply a geometrically linear theory. However, a geomet-
rically nonlinear constitutive theory is generally required, because different types of applications are
characterized by large rotations. Therefore, the present work is concerned with the thermomechanical
modeling in the case of small and also finite deformations. Our previous studies [Helm and Haupt 2003;
Helm 2005] are geometrically linear theories and contain singularities in the phase transition function.
Moreover, the concept of the former paper also contains a singularity in the phase transition rule. In
certain cases, both types of singularities are removable if a simple von Mises phase transition function
is applied. In contrast to these previous studies, the present constitutive theory does not contain such
types of singularities, because the dependence of the fraction of oriented martensite on the transformation
strains is modeled by a novel constitutive equation. In addition to this mathematical improvement, the
modified constitutive relation leads also to a more precise depiction of the observed material behavior:
e.g., the modeling of residual martensite after unloading at temperatures above Af.

The first part of the article is organized as follows: in Section 2, the kinematics for representing
inelasticity with respect to small and finite deformations are outlined. Thereafter, the basic structure of
the constitutive theories to model the multiaxial behavior of shape memory alloys in the framework of
continuum thermomechanics is developed (geometrically linear theory: Section 3; geometrically nonlin-
ear theory: Section 4). In both cases, a free energy function and two evolution equations for internal
variables are introduced. Both models are able to represent the basic phenomena of shape memory alloys
due to martensitic phase transitions: i.e. pseudoelasticity and pseudoplasticity as well as one-way and
two-way shape memory effect. Moreover, the representation of other effects like tension-compression
asymmetries or the cyclic behavior of shape memory alloys is possible, if certain parts of the model are
slightly changed. A second part of this article ([Helm and Schäfers 2006]) will deal with the numerical
treatment of these constitutive theories in the framework of the finite element method. For this purpose,
the system of differential equations is numerically integrated to obtain the stress state as well as the
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Figure 2. Reference, current, and intermediate configuration.

accompanying heat production. The capabilities of these constitutive theories are demonstrated with
illustrative examples and the results of the constitutive theories are compared to experimental data.

2. Kinematics

The continuum mechanics is based on the assumption that a material body B consists of material points
P and its motion is depicted by a continuous sequence of configurations (see Figure 2). If a reference
configuration is selected, the motion is representable by the one-to-one mapping: x = χR(X, t). The local
changes in space of the motion are depicted by the deformation gradient F(X, t)= Grad χR(X, t), which
is the Fréchet-derivative of the motion x = χR(X, t). The deformation gradient transforms material line
elements dX of the reference configuration KR into material line elements of the current configuration
KM: i.e., dx = FdX .
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The following theory for finite deformations makes use of the multiplicative split F = F∗ F̄, which can
be traced back to [Flory 1961]: in this multiplicative split, the deformation gradient F is decomposed
into a volumetric part F∗ and an isochoric part F̄ if the operators

( · )∗ : F 7→ F∗
= (det F)1/31 and ( · ) : F 7→ F̄ = (det F)−1/3F (1)

are applied. Throughout the whole article, these operators are used in a more general sense: the tensor
Ā = (det A)−1/3A is the unimodular part of A and the remaining nonunimodular part of A is denoted by
A∗

= (det A)1/31.

2.1. Multiplicative decompositions of the deformation gradient. In finite deformation theories for mod-
eling the inelastic behavior of different types of materials, the multiplicative decomposition of the defor-
mation gradient F = F̂eFi into an elastic part F̂e and an inelastic part Fi is often applied (see [Kröner
1960; Lee 1969; Lee and Liu 1967; Lubliner 1985; Haupt 2002]). In the present framework, the related
multiplicative decomposition F = F̂eFt is used: therein, F̂e is the elastic part of the deformation gradient
and Ft represents the inelastic part of the deformation gradient resulting from martensitic phase transi-
tions see [Auricchio and Taylor 1997; Helm 2001]. The multiplicative decomposition of the deformation
gradient implies a stress-free intermediate configuration K̂t (see Figure 2). Already in [Eckart 1948]
and [Kröner 1958], stress-free intermediate configurations were introduced to define inelastic states. It is
common knowledge that the multiplicative decomposition F = F̂eFt leads to an incompatible intermediate
configuration; see [Eckart 1948; Lee 1969; Mandel 1972; Haupt 2002].

As a result of our previous studies [Helm and Haupt 2003; Helm 2005], the consideration of internal
stress fields is a useful concept to model the material behavior of shape memory alloys. It is known
from viscoplasticity [Lion 2000] that an additional multiplicative decomposition of the inelastic part is
appropriate to model internal stress fields in a geometrically nonlinear theory. Therefore, this concept
is transferred to the present study (see [Helm 2001]): the inelastic part Ft = F̌sFd of the deformation
gradient is decomposed into two parts F̌s and Fd. In the present theory, the part F̌s is used to model energy
storage effects during the evolution of internal stress fields while the remainder part Fd is introduced to
account for the accompanied dissipative phenomena. In addition to the intermediate configuration K̂t,
the additional decomposition of Ft = F̌sFd formally results in a further intermediate configuration Ǩd

(see Figure 2).

2.2. Strain tensors.

2.2.1. Finite strains. Provided that the multiplicative decomposition is used, the Green strain tensor
E = [C − 1] /2 cannot be separated into purely elastic and inelastic parts. Therein, the tensor C = FTF is
the right Cauchy–Green tensor. However, the transformation of the Green strain tensor to the intermediate
configuration K̂t leads to a strain measure (see [Haupt 1985])

0̂ = F−T
t EF−1

t = 0̂e + 0̂t with 0̂e =
1
2

(
Ĉe − 1

)
and 0̂t =

1
2

(
1 − B̂−1

t
)
, (2)

which is additively decomposable into an elastic part 0̂e and an inelastic part 0̂t. Therein, the tensors
Ĉe = F̂T

e F̂e and B̂t = FtFT
t are defined in analogy to the right and left Cauchy–Green tensors, C = FTF

and B = FFT. If 0̂e and 0̂t are expressed in terms of the reference configuration KR,

Ee = FT
t 0̂eFt =

1
2

(
FT

t ĈeFt − FT
t Ft
)

and Et = FT
t 0̂tFt =

1
2

(
FT

t Ft − 1
)
, (3)
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it becomes clear that the transformation strain state Et depends only on Ft, but the elastic strain state Ee

is a function of F̂e and Ft.
On the basis of the foregoing discussion, an internal variable to represent internal stress fields can

be introduced with respect to the intermediate configuration Ǩd: the transformation of Et or 0̂t to the
intermediate configuration Ǩd leads to an internal variable Y̌ of strain type,

Y̌ = F−T
d EtF−1

d = F̌T
s 0̂tF̌s = Y̌s + Y̌d, (4)

which can be additively decomposed into Y̌s and Y̌d:

Y̌s =
1
2

(
Čs − 1

)
and Y̌d =

1
2

(
1 − B̌−1

d

)
. (5)

In analogy to the left and right Cauchy–Green tensors, the tensors Čs = F̌T
s F̌s and B̌d = FdFT

d are defined.

Remark 1 (Notation). In order to distinguish between the different configurations the following terminol-
ogy is applied (see Figure 2): Stress and strain tensors operating in the intermediate configuration K̂t are
denoted by ˆ( · ). In contrast to this, the stress and strain measures in the second intermediate configuration
Ǩd are denoted by ˇ( · ). For the stress tensors in the reference configurationKR the notation ˜( · ) is used and
for the strain tensors the letters like E and C are applied. In the case of the theory for small deformations
(see Eq.(6) and (7)), the distinction of different configurations is not required. Moreover, the quantities
F̌s and F̂e are denoted with ˇ( · ) and ˆ( · ), because they transforms material line elements from different
intermediate configurations.

2.2.2. Small strains. The previously introduced strain measures on the basis of the multiplicative de-
compositions are not required in their exact forms if the special case of a theory for small deformations
is considered: according to [Casey 1985], the multiplicative decomposition of the deformation gradient
F = F̂eFt corresponds in a geometrically linear theory to the additive decomposition of the linearized
Green strain tensor,

E = Ee + Et, (6)

into an elastic part Ee and an inelastic part Et, which represent the transformation strain state. Finally,
the other multiplicative decomposition Ft = F̌sFd merge into the additive decomposition

Y = Et = Ys + Yd, (7)

if the assumption of small deformations is applied. Consequently, the geometrically linear theory can be
formulated on the basis of the additive decomposition (6) and (7).

3. Constitutive theory in relation to small deformations

3.1. Free energy. In shape memory alloys different types of energy storage mechanisms play an impor-
tant role: for example the change in internal energy due to the thermoelasticity of a single-phase material,
the energy change on account of the phase transitions, as well as energy storage phenomena resulting from
internal stress fields. Consequently, it is assumed that the free energy of the proposed model depends on
the elastic part of the linearized Green strain tensor Ee (see Equation (6)), the absolute thermodynamic
temperature θ , the fraction z ∈ [0, 1] of oriented martensite, and the internal variable Ys:

ψ(Ee, θ, z,Ys)= ψ̂e(Ee, θ, z)+ ψ̂s(Ys, θ). (8)
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In this assumption, the thermoelastic part ψe represents the mixture of two thermoelastic single-phase
materials (austenite (A) and martensite (M)):

ρψe = ρψ̂e(Ee, θ, z)= zρψM
e (Ee, θ)+ (1 − z)ρψA

e (Ee, θ)

= µ̃(θ, z)ED
e · ED

e +
κ̃(θ, z)

2
(tr Ee)

2
− 3α̃(θ, z) (tr Ee) (θ − θ0)

+ zρ
∫ θ

θ0

cM
d0
(θ̄)dθ̄ + (1 − z)ρ

∫ θ

θ0

cA
d0
(θ̄)dθ̄ + ρ

[
uA

0 + z1u0
]

− θ

[
zρ
∫ θ

θ0

cM
d0
(θ̄)

θ̄
dθ̄ + (1 − z)ρ

∫ θ

θ0

cA
d0
(θ̄)

θ̄
dθ̄ + ρ

[
ηA

0 + z1η0
]]
. (9)

Therein, the effective elasticity parameters

µ̃(θ, z)= zµM(θ)+ (1 − z)µA(θ), (10)

κ̃(θ, z)= zκM(θ)+ (1 − z)κA(θ), and (11)

α̃(θ, z)= zαM(θ)κM(θ)+ (1 − z)αA(θ)κA(θ) (12)

contain the elasticity parameters of the different phases (ω= A, M): µω is the shear modulus, κω the bulk
modulus, and αω the linear expansion coefficient. Moreover, θ0 represents the reference temperature, cωd0

is a certain part of the specific heat at constant deformation, and the initial internal energy and the initial
entropy are denoted by uω0 and ηω0 . Furthermore the constants 1u0 = uM

0 − uA
0 and 1η0 = ηM

0 − ηA
0 are

of special interest in the thermomechanical modeling of phase transitions (see [Huo and Müller 1993;
Helm and Haupt 2003]): for instance, they play a dominant role in the description of latent heat effects.
The thermomechanical interactions between the austenite and martensite phase in the microstructure of
the material are strongly simplified due to the assumption of equal thermoelastic strain and temperature
states in both phases.

The other part ψ̂s(Ys) of the free energy models the energy storage due to the generation and variation
of internal stresses. Each grain of a polycrystalline shape memory alloy contains a lot of imperfections
like precipitations and impurities. Consequently, the martensitic phase transitions are obstructed by
the imperfections and by the surrounding grains. As a macroscopical result of these microstructural
phenomena, the associated part ψs of the free energy function is assumed to be

ρψs = ρψ̂s(θ,Ys)=
c(θ)

2
Ys · Ys. (13)

Therein, c(θ) is a nonnegative material function of temperature.

3.2. Evolution equations for internal variables. In order to develop a thermodynamically consistent
theory, the basic structure of the free energy function according to Equation (8) is introduced into the
internal dissipation inequality ρδi = −ρψ̇ − ρθ̇η+ T · Ė ≥ 0 (for details see [Helm and Haupt 2003] or
Section 4):

ρδi =

[
T − ρ

∂ψe

∂Ee

]
· Ėe − ρ

[
∂ψ

∂θ
+ η

]
θ̇ − ρ

∂ψe

∂z
ż − ρ

∂ψs

∂Ys
· Ẏs + T · Ėt ≥ 0. (14)



THERMOMECHANICS OF MARTENSITIC PHASE TRANSITIONS IN SHAPE MEMORY ALLOYS, I 95

Therein, η is the entropy and the material density is denoted by ρ. For arbitrary rates of Ee, θ , z, Ys, and
Et, this inequality implies potential relations for the stress tensor T,

T = ρ
∂ψe

∂Ee
= 2µ̃(θ, z)ED

e + κ̃(θ, z)(tr Ee)1 − 3α̃(θ, z) (θ − θ0) 1, (15)

and the entropy η = −∂ψ/∂θ , if ż, Ẏs, and Ėt do not depend on Ėe and θ̇ (see [Coleman and Gurtin
1967]). Furthermore, the remaining dissipation inequality motivates the definition of the thermodynamic
quantity 4= ρ∂ψe/∂z,

4=
∂µ̃(θ, z)
∂z

ED
e · ED

e +
1
2
∂κ̃(θ, z)
∂z

(tr Ee)
2
− 3

∂α̃(θ, z)
∂z

(tr Ee) (θ − θ0)

+ ρ

[∫ θ

θ0

[
cM

d0
(θ̄)− cA

d0
(θ̄)
]

dθ̄ +1u0

]
− ρθ

[∫ θ

θ0

cM
d0
(θ̄)− cA

d0
(θ̄)

θ̄
dθ̄ +1η0

]
, (16)

and the internal stress field Xε:

Xε = ρ
∂ψs

∂Ys
= c(θ)Ys = c(θ) [Et − Yd] . (17)

The thermodynamic quantity 4 plays an important role in view of the depiction of the stress state, which
is required to initiate and propagate the martensitic phase transitions. The other internal variable Xε

incorporates the fact that the cooperative motion of the atoms during the martensitic phase transitions
is limited by defects in the microstructure like impurities and precipitations. In classical theories of
plasticity, Xε is denoted as back stress.

With these definitions, the remaining dissipation inequality takes the following form:

ρδi = −4 ż + T · Ėt − Xε · Ẏs ≥ 0. (18)

To complete the material model, constitutive equations for the internal variables z, Et, and Yd = Et − Ys

have to be defined. On account of the physical understanding of the deformation mechanisms (see
[Miyazaki and Otsuka 1989], for instance) and also based on experimental studies, the martensitic phase
transitions between austenite and oriented martensite are accompanied by inelastic deformations. In
polycrystalline materials, the required constitutive relation between the oriented martensite fraction z and
the transformation strain tensor Et is quite difficult to identify. However, the following physical aspects
should be considered in a constitutive theory for shape memory alloys: if the material is completely in the
austenite phase, the transformation strains must vanish, i.e. Et = 0. Moreover, if a complex deformation
path is performed, which starts and ends at Et = 0, it must be guaranteed that the fraction of oriented
martensite is always zero if Et = 0. Both z = ẑ(Et) with the restriction ẑ(0) = 0 and Et = Ēt(z) with
the constraint Ēt(0)= 0 are appropriate strategies to model the observations. In the present concept the
fraction of oriented martensite z = ẑ(Et) is depicted as function of Et. It should be emphasized that such
a relation is only meaningful between the fraction of detwinned martensite and the inelastic strain state,
because the fraction of twinned martensite does not depend on the inelastic strain state.
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Remark 2. Instead of a function z = ẑ(Et), it is possible to apply an evolution equation for z, namely
ż = Z(Et) · Ėt. Then, the relation

z =

∮
Z(Et) · dEt = 0 (19)

must be fulfilled if an arbitrary deformation process starts at Et = 0. This relation guarantees that z
vanishes after an arbitrary multiaxial process, which starts and ends at Et = 0. Of course, Equation (19)
is fulfilled, if and only if Z(Et) is equal to dz/dEt.

For an isotropic material, the fraction z of oriented martensite depends on the basic invariants (Jt1 = tr Et,
Jt2 = tr E2

t , and Jt3 = tr E3
t ): z = ẑ(Et) = z̃(Jt1, Jt2, Jt3). In the remaining dissipation inequality, the

material time derivative of z = z̃(Jt1, Jt2, Jt3) is required:

ż =
dẑ
dEt

· Ėt with
∂ ẑ
∂Et

=
∂ z̃
∂ Jt1

1 + 2
∂ z̃
∂ Jt2

Et + 3
∂ z̃
∂ Jt3

E2
t . (20)

Martensitic phase transitions are accompanied by small volume changes (see [Shimizu and Tadaki 1987],
for instance), which may be neglected. For example, in NiTi the volume change by phase transitions
between austenite and martensite amounts 0.34%. Consequently, the underlying deformation mechanism
is nearly volume preserving. As a result of this material property, the influence of the first invariant Jt1

in the function of z can be omitted. Furthermore, the transformation strains are small and dominated by
shear deformations. Therefore, the influence of the second invariant is much more important than that of
the third invariant. However, for the modeling of tension-compression asymmetries in the strain space, the
first and third invariants may be important quantities. Ignoring these possibilities, the fraction of oriented
martensite is introduced to be a function of the second invariant Jt2: z = z̃(Jt2). In phenomenological
theories for shape memory alloys; see, for example, [Levitas 1998; Juhász et al. 2000; Helm and Haupt
2003], the fraction of oriented martensite is commonly depicted in the following form:

z = ẑ(Et)= z̃(Jt2)=
‖Et‖√

3
2γt

⇒ ż =
Et · Ėt√
3
2γt‖Et‖

. (21)

Therein, the norm of Et is given by ‖Et‖ =
√

Et · Et and γt represents the maximum transformation
strain, which can be measured in a uniaxial test. It should be mentioned that a similar relation was
suggested by Bertram [1982] in terms of the so-called limit function. As pointed out in [Helm and Haupt
2003], the evolution equation (phase transition rule) for the transformation strains incorporates the time
derivative of z according to Equation (21)2. Therefore, the applied phase transition rule (see Equation
(27) and the internal variable Xθ according to Equation (24) for γ0 = 0) and likewise the introduced
phase transition function are singular, if a process starts at Et = 0. In certain cases, these singularities
are removable, but difficulties in numerical implementation still remain. Similar problems exist in the
theories of Souza et al. [1998], Juhász et al. [2000], and Auricchio and Stefanelli [2004]. In order to avoid
this problem, Auricchio and Petrini [2004] introduce a regularized norm operator. Moreover, the shape
memory materials often show a smooth transition from the retransformation plateau into the elastic region
(see region II in Figure 1a): in previous models, such as that of [Helm and Haupt 2003], this smooth
transition cannot be described. Therefore, an improved constitutive equation for representing the fraction
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of oriented martensite as a function of the transformation strain tensor is proposed in the present article:

z = ẑ(Et)= z̃(Jt2)=

√
2
3 Et · Et + γ

2
0

γt
− z0. (22)

In this constitutive relation, γt is still the maximum transformation strain. In contrast to the constitutive
relation (21), the positive parameters γ0 and z0 are additionally introduced. The parameter z0 is pre-
determined, because the physical understanding of the occurring martensitic phase transitions between
austenite and oriented martensite requires z = ẑ(0)= 0. Consequently, this condition leads to z0 = γ0/γt.
The parameter γ0 has an important influence on the rate of z (Equation (22)),

ż =
Et · Ėt√

3
2γt

√
Et · Et +

3
2γ

2
0

, (23)

because the influence of γ0 on z is only negligible if ‖Et‖ � γ0. In order to obtain the final form of the
internal dissipation inequality (18), the time derivative of z according to Equation (23) is inserted, the
time derivative of Ys = Et − Yd is replaced by usage of Equation (7), and the internal variable Xθ of
stress type (see the discussion in [Helm and Haupt 2003]):

Xθ =4
dẑ
dEt

=
4Et√

3
2γt

√
Et · Et +

3
2γ

2
0

, (24)

as well as X = Xε + Xθ is considered:

ρδi = [T − X] · Ėt + Xε · Ẏd ≥ 0. (25)

The introduced internal variable Xθ has a physical meaning, because Xθ is responsible for the depiction
of the temperature-dependence of the required stress state to initiate and progress the martensitic phase
transitions. Due to the applied thermoelastic mixture, the thermodynamic quantity 4 strongly depends
on temperature. The most important term in 4 is given by ρ(1u0 −θ1η0). Therefore, if suitable material
parameters are used, the model predicts a nearly linear temperature-dependence of the required phase
transition stress over a certain temperature range. This is the stress state, which is necessary to initiate and
progress the martensitic phase transitions. In contrast to [Helm 2001; Helm and Haupt 2003], the internal
variable Xθ is a continuous function of Et. For a simple tension-compression load, the 11-component of
Xθ is proportional to

εt√
ε2

t + γ 2
0 .

This function is plotted in Figure 3 for different values of γ0.
The final inequality (25) is an excellent basis to introduce a phase transition function

f = ‖TD
− XD

‖ −

√
2
3 k(θ) (26)

and the evolution equations for the internal variables Et and Yd. In the phase transition function, the
quantity k(θ) is the radius of the phase transition surface. In general, it is also possible to introduce
the phase transition radius as function of the fraction of oriented martensite in order to model isotropic
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Figure 3. Illustration of e1 · Xθ e1 ∼ εt/

√
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t + γ 2
0 for uniaxial tension-compression load.

transformation hardening. Such transformation hardening functions are commonly used in the modeling
of shape memory alloys (see discussions in [Lagoudas et al. 2006]). Moreover, it is assumed that only
deviatoric stress states influence the value of the phase transition function: TD

= T − (tr T)/3 1. Due to
the fact that phase transition function f depends on the internal variable Xθ according to Equation (24),
the model is restricted to a temperature range, which implies 4≥ 0 at Ee = 0.

It should be mentioned that the simple v. Mises-type phase transition function leads initially to a
symmetric tension-compression behavior. Such a behavior is almost observable for the first cycle in
the uniaxial tension-compression experiments of Lim and McDowell [1995] on NiTi. In the case of
a polycrystalline NiTi shape memory alloy without texture, the micromechanical studies of Gall and
Sehitoglu [1999] lead to the result that, at the macroscopic level, merely a small tension-compression
asymmetry is observable. In contrast to these results, a tension-compression asymmetry is experimentally
observed and theoretically investigated in different types of shape memory alloys: see [Patoor et al. 1996;
Gall and Sehitoglu 1999; Lim and McDowell 1999; Qidwai and Lagoudas 2000; Raniecki et al. 2001;
Lexcellent et al. 2006]. Both the induced set of active martensite variants by the applied stress state
and the texture of the material influence the tension-compression asymmetry. Consequently, depending
on the underlying shape memory alloy and its microstructure, an appropriate phase transition function
should be applied; see [Patoor et al. 1996; Qidwai and Lagoudas 2000].

Finally, the evolution equations for the internal variables Et and Yd are postulated.

• It is assumed that the transformation strain state Et evolves according to the phase transition rule

Ėt = λt N with the normal N =
∂ f
∂T

=
TD

− XD

‖TD − XD‖
. (27)
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In analogy to [Helm and Haupt 2003] and [Helm 2005], a nonnegative inelastic multiplier

λt =


1

ηt(θ)

〈
f
rt

〉mt(θ) A → EM if z < 1 and Et · N ≥ 0,

EM → A if z > 0 and Et · N< 0,

0 in all other cases

(28)

of Perzyna-type is assumed [Perzyna 1963; Hohenemser and Prager 1932]. Therein, ηt(θ) > 0 and mt(θ)

are temperature-dependent material functions and rt is introduced to obtain a dimensionless argument
to the operator: 〈x〉 = (|x | + x)/2. The introduced inelastic multiplier leads to a rate-dependent theory.
However, if ηt(θ)→ 0 (but always ηt(θ) > 0) or if sufficiently slow processes are considered, the material
model approximates a rate-independent theory in the sense of an asymptotic limit. This property is well
known in thermoviscoplasticity [Haupt et al. 1992; Haupt 2002].

For representing the history-dependent material behavior of shape memory alloys, a few case distinc-
tions are introduced: the phase transition from austenite to oriented martensite takes place if the phase
transition function f is positive, austenite is available (z < 1), and the fraction of oriented martensite
increases (dz ∼ Et · N ≥ 0). In contrast to the forward transition, the retransformation occurs if oriented
martensite is available (z > 0) and the fraction of oriented martensite decreases (dz ∼ Et · N < 0). In
comparison with the magnitude of the isochoric deformations, the occurring volume changes during the
martensitic phase transitions are negligible. Therefore, a deviatoric evolution of Et is assumed; that is,

ED
t = Et − (tr Et)/3 1.

As pointed out in [Helm and Haupt 2003], the applied evolution equation (27) is able to predict
the direction of the transformation strain-rate in accordance with the experimental studies of [Lim and
McDowell 1999]. The main reason for this result is that the internal variable Xθ significantly influences
the direction of the transformation strain-rate.

• Furthermore, the evolution of Yd is proposed to be proportional to the internal stress tensor Xε:

Ẏd = ζd Xε. (29)

The introduced proportional factor ζd ≥ 0 is assumed to be

ζd =
B(θ, z, ż)

c(θ)
ṡt with ṡt =

√
2
3‖Ėt‖ (30)

and the function

B(θ, z, ż)=

{
1
2

(
tanh [−β(θ)(z − γ (θ))] + 1

)
b(θ) if ż > 0,

b(θ) if ż < 0.
(31)

Here, ṡt is the rate of the accumulated phase transition strain st. Therein, b, β, and γ are nonnegative
and generally temperature-dependent material functions. The constitutive model for the evolution of the
internal stress fields (Equation (13), (30), and (31)) is a modification of a classical Armstrong–Frederick
type approach: thus the strong stress slope as well as the different slope in the loading and unloading
paths at the end of the phase transition plateau (see region I in Figure 1a and the experiments in [Huo and
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Müller 1993; Shaw and Kyriakides 1995; Helm and Haupt 2001]) are all incorporated in the suggested
constitutive theory.

On account of the internal stress tensor Xε (Equation (17)) and the accompanying evolution equation
for the internal variable Yd (Equation (29)), the evolution of the internal stress state Xε depends on
the deformation history and leads to an anisotropic behavior of the model, because the value of the
phase transition function f (Equation (26)) depends on Xε. Therefore, the characteristic phase transition
stresses and temperatures depends also on the deformation history.

If both evolution equations are introduced into the remaining dissipation inequality (25),

ρδi = λt‖TD
− XD

‖ + ζd ‖Xε‖
2
≥ 0, (32)

it is discernible that the proposed constitutive theory is thermodynamically consistent, because of λt ≥ 0
and ζd ≥ 0 according to Equation (28) and (30).

4. Constitutive theory in relation to finite deformations

In the foregoing section, a small strain theory has been constructed to model the thermomechanical
behavior of shape memory alloys due to martensitic phase transitions. To formulate a relation between
the fraction of oriented martensite and the transformation strain tensor, a new constitutive equation in
form of Equation (22) was introduced. In this section, the developed constitutive theory is enhanced
on the basis of [Helm 2001] to a finite strain theory. In that work we introduced a basic concept for
shape memory alloys at finite deformations. This concept is based on a twofold multiplicative decom-
position of the deformation gradient in order to distinguish between elastic and inelastic deformations
as well as to incorporate the influences of internal stress states. Furthermore, the theory contains two
evolution equations for the phase transition strain: one evolution equation models the phase transition
from austenite into oriented martensite and the other evolution equation represents the retransformation.
In the present section, the finite deformation theory of our earlier work is revised in order to obtain a
constitutive theory, which requires only one simple constitutive equation to describe the evolution of the
phase transition strains, which is valid for the forward and the reverse phase transition as well.

4.1. Free energy. According to [Helm 2001] and in analogy to the proposed geometrically linear the-
ory in the foregoing section, the main energy storage phenomena are describable if the free energy is
introduced as a function of the elastic strain state 0̂e, the absolute thermodynamic temperature θ , and
the fraction of martensite z as well as an internal variable Y̌s:

ψ = ψ̂(0̂e, θ, z, Y̌s)= ψ̂e(0̂e, θ, z)+ ψ̂s(Y̌s, θ). (33)

In analogy to the small strain theory, the thermoelastic part ψe of the free energy results from the simple
mixture of two single phase materials:

ψe(θ, 0̂e, z)= zψM
e (θ, 0̂e)+ (1 − z)ψA

e (θ, 0̂e). (34)
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Here, it is assumed that the elastic strains in the austenite and martensite phase are equal. Each single
phase material is depicted by a finite thermoelasticity relation (see [Helm 2001; 2006]):

ψωe =
1

2ρR
κω(θ)

(
ln
(
det Ĉe

)1/2
)2

+
1

2ρR
µω(θ)

(
tr ¯̂Ce − 3

)
−

1
ρR
κω(θ) ln

(
1 +αω(θ) [θ−θ0]

)3 ln
(
det Ĉe

)1/2
+

∫ θ

θ0

cωd (θ̄)dθ̄ + uω0 − θ

[∫ θ

θ0

cωd (θ̄)

θ̄
dθ̄ + ηω0

]
. (35)

Therein, the first part describes the energy storage due to volumetric deformations (see [Simo and Pister
1984]), and the free energy contribution of isochoric deformations is given by the second term (see
[Simo 1985: 1988]), which is of neo-Hooke type. Moreover, the third term represents the thermoelastic
coupling phenomena. Applying the useful assumption of small thermoelastic strains αω(θ) [θ − θ0], this
term can be written in its approximation κω(θ) ln

[
(1 +αω(θ) [θ − θ0])3

]
≈ 3κω(θ)αω(θ) [θ − θ0]. The

last term in Equation (34) models the energy storage due to caloric effects. The meaning of the material
parameters in the free energy function of a single-phase material are already known from the small strain
theory (see Section 3.1).

If the free energy of the single phase material (35) is inserted into the mixture relation (34), the free
energy of the two-phase material is given by

ρRψe =
κ̃(θ, z)

2

(
ln
(
det Ĉe

)1/2
)2

+
1
2
µ̃(θ, z)

(
tr ¯̂Ce − 3

)
− 3α̃(θ, z) (θ − θ0) ln

(
det Ĉe

)1/2

+zρR

∫ θ

θ0

cM
d0
(θ̄)dθ̄ + (1 − z)ρR

∫ θ

θ0

cA
d0
(θ̄)dθ̄ + ρR

[
uA

0 + z1u0
]

−θ

[
zρR

∫ θ

θ0

cM
d0
(θ̄)

θ̄
dθ̄ + (1 − z)ρR

∫ θ

θ0

cA
d0
(θ̄)

θ̄
dθ̄ + ρR

[
ηA

0 + z1η0
]]
. (36)

According to Equation (10)–(12), the material functions κ̃(θ, z), µ̃(θ, z), and α̃(θ, z) are already known.
Altogether, the main thermoelastic effects are representable by the proposed finite thermoelasticity rela-
tion.

In addition to the thermoelastic part of the free energy, a constitutive equation for the inelastic part is
assumed to be (see [Helm 2001])

ψs =
1

4ρR
c(θ)

(
tr ¯̌Cs − 3

)
. (37)

Therein, the tensor ¯̌Cs is the unimodular part of Čs.

4.2. Evolution equations for internal variables. In a finite deformation theory it is important to intro-
duce conjugate variables and associated time derivatives. The concept of dual variables [Haupt and
Tsakmakis 1989; Haupt 2002] implies that the variables T̃ (second Piola–Kirchhoff stress tensor) and
E are not only conjugate but also dual variables. Other dual variables result from the postulate that the
invariance of the following physically significant inner products is fulfilled: the scalar product between
the second Piola–Kirchhoff stress tensor T̃ and the Green strain tensor E (T̃ · E), the stress power T̃ · Ė,
the complementary stress power ˙̃T · E, and finally the incremental stress power ˙̃T · Ė. In relation to the
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intermediate configuration K̂t, the stress tensor Ŝ = FtT̃FT
t and the strain tensor 0̂ (see Equation (2)) are

dual variables, because this pair does not influence, for example, T̃ · E = Ŝ · 0̂ and

T̃ · Ė = tr (FtT̃FT
t︸ ︷︷ ︸

Ŝ

F−T
t ĖF−1

t︸ ︷︷ ︸
4

0̂

)= Ŝ ·

4

0̂. (38)

Therein,
4

0̂ represents the Oldroyd derivative of 0̂,
4

0̂ =
˙̂
0 + L̂T

t 0̂ + 0̂L̂t with
4

ˆ( · )=
˙̂
( · )+ L̂T

t
ˆ( · )+ ˆ( · )L̂t, (39)

which is an associated time derivative, formulated relative to the intermediate configuration K̂t. This Ol-
droyd derivative of 0̂t is calculated on the basis of the inelastic deformation rate L̂t = ḞtF−1

t . Furthermore,
the relation

4

0̂ =

4

0̂e +

4

0̂t, with
4

0̂e =
˙̂
0e + L̂T

t 0̂e + 0̂eL̂t and
4

0̂t =
˙̂
0t + L̂T

t 0̂t + 0̂tL̂t (40)

is valid, because the Oldroyd derivative is a linear operator. It should be mentioned that the relation
4

0̂t =
1
2

[
L̂t + L̂T

t
]
= D̂t (41)

is valid for the Oldroyd derivative of 0̂t. This relation underlines that the Oldroyd rate of 0̂t depends
only on Ft and its material time derivative. In contrast to this, the Oldroyd derivative of 0̂e is influenced
by F̂e, Ft and their material time derivatives.

In analogy to Section 3.2, the basic structure of the constitutive theory is developed on the basis of the
internal dissipation inequality, given by ρRδi = −ρRψ̇ − ρRθ̇η+ T̃ · Ė ≥ 0. Here, ρR is the mass density
with respect to the reference configuration. Inserting the free energy function (33), the identity (38), and
the relation (40) into the internal dissipation inequality, the resulting inequality is given by

δi = −
∂ψ̂e

∂0̂e
·
˙̂
0e −

∂ψ̂e

∂z
ż −

[
η+

∂ψ̂

∂θ

]
θ̇ −

∂ψ̂s

∂Y̌s
·
˙̌Ys +

1
ρR

Ŝ ·

4

0̂e +
1
ρR

Ŝ ·

4

0̂t. (42)

In the next step, ˙̂
0e is replaced by its Oldroyd derivative according to Equation (40)2. In the same way,

˙̌Ys is substituted by an associated time derivative: with respect to the intermediate configuration Ǩd, an
internal stress tensor X̌ε = FtX̃εFT

t is defined, which represents the transformation of the internal stress
state X̃ε from the reference configuration to the intermediate configuration Ǩd. Its dual strain tensor
in the reference configuration is named as Ỹ and the variable Y̌ is the associated strain tensor in the
intermediate configuration Ǩd. The analysis of the stress power,

X̃ε ·
˙̃Y = tr (FdX̃εFT

d︸ ︷︷ ︸
X̌ε

F−T
d

˙̃YF−1
d︸ ︷︷ ︸

4

Y̌

)= X̌ε ·

4

Y̌, (43)

leads to the associated time derivative:
4

Y̌ =
˙̌Y + ĽT

d Y̌ + Y̌Ľd,
4

ˇ( · )=
˙̌
( · )+ ĽT

d
ˇ( · )+ ˇ( · )Ľd, (44)
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with Ľd = ḞdF−1
d . Consequently,

4

Y̌ represents an Oldroyd derivative relative to the intermediate config-
uration Ǩd. Since this Oldroyd derivative is also a linear operator, the relation

4

Y̌ =

4

Y̌s +

4

Y̌d with
4

Y̌s =
˙̌Ys + ĽT

d Y̌s + Y̌sĽd and
4

Y̌d =
˙̌Yd + ĽT

d Y̌d + Y̌dĽd (45)

is likewise valid. In analogy to Equation (41), the Oldroyd derivative of Y̌d is representable as

4

Y̌d =
1
2

[
Ľd + ĽT

d
]
= Ďd. (46)

Consequently, the identities according to Equation (40)2 and also Equation (45)2 are used to replace in
Equation (42) the material time derivative of 0̂e and Y̌s by their Oldroyd derivatives. Additionally, the
additive relation according to Equation (45)1 is applied in Equation (42):

δi =
1
ρR

[
Ŝ − ρR

∂ψ̂e

∂0̂e

]
·

4

0̂e −

[
η+

∂ψ̂

∂θ

]
θ̇ −

∂ψ̂e

∂z
ż −

∂ψ̂s

∂Y̌s
·

4

Y̌ +
1
ρR

Ŝ ·

4

0̂t

+
∂ψ̂s

∂Y̌s
·

[ 4

Y̌d + ĽT
d Y̌s + Y̌sĽd

]
︸ ︷︷ ︸[

Čs
∂ψ̂s

∂Y̌s

]
·

4

Y̌d

+
∂ψ̂e

∂0̂e
·

[
L̂T

t 0̂e + 0̂eL̂t

]
︸ ︷︷ ︸[

Ĉe
∂ψ̂e

∂0̂e

]
·

4

0̂t

≥ 0. (47)

As shown in the last line of Equation (47), these terms can be replaced if ∂ψ̂s/∂Y̌s is an isotropic
tensor function of Y̌s and if ∂ψ̂e/∂0̂e is an isotropic tensor function of 0̂e [Mandel 1972; Haupt 2002].
Furthermore, the relation

∂ψ̂s

∂Y̌s
·

4

Y̌ = F̌s
∂ψ̂s

∂Y̌s
F̌T

s · F̌−T
s

4

Y̌F̌−1
s = F̌s

∂ψ̂s

∂Y̌s
F̌T

s ·

4

0̂t. (48)

is valid for the last term in the first line of the inequality (47). Considering these identities into the
internal dissipation inequality (47), the resulting inequality

ρRδi =

[
Ŝ − ρR

∂ψ̂e

∂0̂e

]
·

4

0̂e − ρR

[
η+

∂ψ̂

∂θ

]
θ̇ − ρR

∂ψ̂e

∂z
ż +

[
ČsρR

∂ψ̂s

∂Y̌s

]
·

4

Y̌d +

[
ĈeŜ − F̌sρR

∂ψ̂s

∂Y̌s
F̌T

s

]
·

4

0̂t

≥ 0 (49)

implies a potential relation for the stress tensor

Ŝ = ρR
∂ψ̂e

∂0̂e
= 2ρR

∂ψ̃e

∂Ĉe
= µ̃(θ, z)

(
det Ĉe

)−1/3
[
1 −

1
3

(
tr Ĉe

)
Ĉ−1

e

]
+

[
κ̃(θ, z) ln

(
det Ĉe

)1/2
− 3α̃(θ, z) (θ − θ0)

]
Ĉ−1

e , (50)

which is related to the intermediate configuration K̂t, and the entropy η = −∂ψ̂/∂θ , if ż, ˙̌Yd, and
4

0̂t do
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not depend on
4

0̂e and θ̇ [Coleman and Gurtin 1967]. Furthermore, the remaining internal dissipation
inequality

ρRδi = − ρR
∂ψ̂e

∂z︸ ︷︷ ︸
4

ż +

[
Čs

X̌ε︷ ︸︸ ︷
ρR
∂ψ̂s

∂Y̌s

]
·

4

Y̌d +

[
ĈeŜ︸︷︷︸

P̂

− F̌s

X̌ε︷ ︸︸ ︷
ρR
∂ψ̂s

∂Y̌s
F̌T

s︸ ︷︷ ︸
P̂Xε

]
·

4

0̂t (51)

motivates the introduction of four definitions: the partial derivative in the first term is interpretable as a
thermodynamic force 4= ρR ∂ψe/∂z,

4=
1
2
∂µ̃

∂z

(
tr ¯̂Ce − 3

)
+

1
2
∂κ̃

∂z

(
ln
(
det Ĉe

)1/2
)2

− 3
∂α̃

∂z
(θ − θ0) ln

(
det Ĉe

)1/2

+ ρR

[∫ θ

θ0

[
cM

d0
(θ̄)− cA

d0
(θ̄)
]

dθ̄ +1u0

]
− ρRθ

[∫ θ

θ0

cM
d0
(θ̄)− cA

d0
(θ̄)

θ̄
dθ̄ +1η0

]
, (52)

which is already known from the geometrically linear theory. Furthermore, the partial derivative in the
second term,

X̌ε = ρR
∂ψ̂s

∂Y̌s
= 2ρR

∂ψ̂s

∂Čs
=

c(θ)
2

(
det Čs

)−1/3
[
1 −

1
3

(
tr Čs

)
Č−1

s

]
, (53)

can be understood as the internal stress tensor (back stress tensor) on the intermediate configuration Ǩd.
The stress tensor

P̂ = ĈeŜ = κ̃(θ, z) ln
(
det Ĉe

)1/21 + µ̃(θ, z) ¯̂CD
e − 3α̃(θ, z) (θ − θ0) 1 (54)

is known as the Mandel stress tensor [1972] (see also [Lubliner 1990]). Due to the assumption that
∂ψ̂e/∂0̂e is an isotropic tensor function of 0̂e, the Mandel-stress tensor P̂ is symmetric. In contrast to
this, the stress tensor

M̌Xε = ČsX̌ε =
c(θ)

2
¯̌CD

s (55)

has the structure of a Mandel stress tensor and the stress tensor

P̂Xε = F̌sX̌εF̌T
s =

c(θ)
2

¯̂BD
s (56)

is the transformation of X̌ε from the intermediate configuration Ǩd onto K̂t. The stress tensor P̂Xε is of
Mandel-type, too.

Using these definitions, the remaining dissipation inequality (see [Helm 2001]) is given by

ρRδi = −4 ż + M̌Xε ·

4

Y̌d +
[
P̂ − P̂Xε

]
·

4

0̂t ≥ 0. (57)

In shape memory alloys, the martensitic phase transitions between austenite and oriented martensite result
from a cooperative movement of the atomic lattice. In analogy to Equation (22), a constitutive equation is
required for incorporating this coupling phenomenon between the fraction of oriented martensite and the
transformation strain. Already in [Helm 2001] the coupling between the fraction z of oriented martensite
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and the inelastic Cauchy–Green tensor Ct was represented in a finite-strain concept by the constitutive
relation

z =
1

√
3γt

√
tr
[
C̄t
]
− 3. (58)

According to the definition in Equation (1), the tensor C̄t is the unimodular part of Ct = FT
t Ft. However, if

the relation (58) was applied in the present context, the model would contain a phase transition criterion
and a phase transition rule, which would be singular at C̄t = 1 (see the discussions in [Helm 2001;
Helm and Haupt 2003]). Moreover, the smooth transition from the retransformation plateau into the
elastic region (see region II in Figure 1a) cannot be depicted. Therefore, a new constitutive equation is
suggested in analogy to Equation (22):

z =
1

√
3γt

√
tr
[
C̄t
]
− 3(1 − γ 2

0 )− z0. (59)

Therein, γ0 is a positive material parameter and z0 = γ0/γt follows from the condition ẑ(C̄t = 1)= 0. On
account of the introduced material parameter γ0 > 0, the resulting model does not contain any singularity.

In the dissipation inequality (57), the material time derivative of z is required:

ż =

(det Ct)
−1/3

[
1 −

1
3 tr (Ct)C−1

t

]
√

3γt

√
tr C̄t − 3(1 − γ 2

0 )

·
1
2

Ċt. (60)

Multiplying the time derivative of z with the thermodynamic quantity 4 and transforming the participated
variables from the reference configuration KR to the intermediate configuration K̂t, the resulting relation
(B̂t = FtFT

t )

4 ż =
4

¯̂BD
t ·

4

0̂t
√

3γt

√
tr ¯̂Bt − 3(1 − γ 2

0 )

= P̂Xθ ·

4

0̂t, (61)

motivates the definition of an internal variable P̂Xθ of stress type:

P̂Xθ =
4

¯̂BD
t

√
3γt

√
tr ¯̂Bt − 3(1 − γ 2

0 )

. (62)

Owing to P̂X̂θ , which is a continuous function of ¯̂Bt, the present constitutive model is able to represent
the temperature-dependence of the phase transition stress.

Remark 3 (Interpretation of P̂Xθ ). The internal variable P̂Xθ can be better understood if a simple inelastic
shear deformation is regarded: Ft = 1 + γ12 e1 ⊗ e2. On account of

B̂t =
¯̂Bt = 1 + γ12 (e1 ⊗ e2 + e2 ⊗ e1)+ γ

2
12 e1 ⊗ e1, (63)

the 12-component of P̂Xθ can be calculated:

e1 · P̂Xθ e2 =
4

√
3γt

γ12√
γ 2

12 + 3 γ 2
0

. (64)
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For γ12 � γ0, the value of this shear stress is given by 4/(
√

3γt), because the other term is approximately
±1. Consequently, the effect of the introduced constitutive relation for P̂Xθ on the whole theory is similar
to the influence of the internal variable Xθ in the small strain theory (see Equation (24) and Figure 3).

Remark 4 (Trace of a unimodular tensor). The first invariant IA of a unimodular tensor A (i.e., IIIA =

det A = 1 is valid) has a lower bound IA = tr A ≥ 3 [Haupt 2002, (9.91)]. Therefore, the term

f ( ¯̂Bt)=

√
tr ¯̂Bt − 3(1 − γ 2

0 )≥
√

3γ0 (65)

in Equation (62) has likewise a lower bound and the ratio 1/ f ( ¯̂Bt) is always defined, because γ0 > 0 is
required in the model.

If the important relation 4 ż = P̂Xθ ·

4

0̂t according to Equation (61) is inserted into the remaining
dissipation inequality (57), the resultant inequality (see [Helm 2001])

ρRδi = M̌Xε ·

4

Y̌d +
[
P̂ − P̂X

]
·

4

0̂t ≥ 0 (66)

with the definition P̂X = P̂Xε + P̂Xθ , is a suitable basis to specify the phase transition function

f = ‖P̂D
− P̂D

X‖ −

√
2
3

k(θ) (67)

and the required evolution equations for the internal variables 0̂t and Y̌d.

• In the case of the transformation strain tensor 0̂t the phase transition rule

4

0̂t = λt P̂N with P̂N =
∂ f

∂P̂
=

P̂D
− P̂D

X

‖P̂D − P̂D
X‖

(68)

is suggested. Therein, λt ≥ 0 is the inelastic multiplier. This evolution equation states that
4

0̂t is a devi-
atoric tensor. Consequently, the model incorporates the assumption of isochoric inelastic deformations:
det Ft = 1.

In analogy to the inelastic multiplier of the small deformation theory, a Perzyna-type (see [Perzyna
1963; Hohenemser and Prager 1932]) multiplier λt is introduced:

λt =


1

ηt(θ)

〈
f
rt

〉mt(θ) A → EM if z < 1 and ¯̂BD
t · P̂N ≥ 0,

EM → A if z > 0 and ¯̂BD
t · P̂N < 0,

0 in all other cases.

(69)

The material parameters and the case distinctions have the same meaning as in the small strain theory,
but the condition of increasing martensite requires dz ∼

¯̂BD
t · P̂N ≥ 0 and the martensite decreases, if

dz ∼
¯̂BD

t · P̂N < 0 is fulfilled.
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• For the internal variable Y̌d, the evolution equation

4

Y̌d = ζd M̌Xε = ζd ČsX̌ε, (70)

is proposed. Likewise in the case of finite deformations, ζd is introduced in form of

ζd =
B(θ, z, ż)

c(θ)
ṡt with ṡt =

√
2
3‖

4

0̂t‖. (71)

Therein, B(θ, z, ż) is given according to Equation (31) and st is the accumulated transformation strain.

It should be mentioned that no further constitutive equations are required to represent the evolution
of the internal variables 0̂t and Y̌d according to (68) and (70), because it is not necessary to determine
the orthogonal part Rt of the polar decomposition Ft = RtUt and the orthogonal part Rd of the polar
decomposition Fd = RdUd in the proposed constitutive theory for an isotropic elastic material (see [Haupt
2002] or [Helm and Schäfers 2006], for example). Only the evolution of the stretch tensors Ut and Ud is
represented by the evolution equations (68) and (70).

If the evolution equations (68) and (70) are inserted into the inequality (66) the internal dissipation is
written in the following form:

ρRδi = ζd ‖M̌Xε‖
2
+ λt‖P̂D

− P̂D
X‖. (72)

Obviously (λt ≥ 0 and ζd ≥ 0), the postulated geometrically nonlinear constitutive theory is thermody-
namically consistent for arbritrary thermomechanical processes.

Remark 5 (Mandel stress tensors). In the context of a constitutive theory for viscoplastic materials,
Mandel [1972] proposed to consider the stress tensor P̂ = ĈeŜ in the yield function. Mandel’s theory has
been formulated on the basis of the multiplicative decomposition of the deformation gradient in an elastic
and inelastic part. In order to describe the kinematic hardening behavior of metals in a finite deformation
theory using continuum thermomechanics, Tsakmakis [1996] found out that the yield function should
depend on a back stress tensor of Mandel-type.

5. Conclusions

In the present article, two basic concepts for modeling martensitic phase transitions in shape memory
alloys are developed: the first model is based on the assumption of small deformations, and the second
concept is formulated in the context of finite deformations. In both cases, the energy storage and release
phenomena during thermomechanical processes are represented by a free energy function. Moreover, evo-
lution equations for two internal variables are introduced in order to model the history-dependent material
behavior and the dissipation phenomena. An essential element of the developed theories is that the de-
formation and the strain-like internal variables are decomposed into volumetric and isochoric parts. This
leads to a simple representation of the occurring mechanisms. In contrast to other constitutive theories
for shape memory alloys, the developed concept is formulated in the framework of thermoviscoplasticity.
Therefore, the system of constitutive equations has a strong resemblance to classical models, which depict
the viscoplastic behavior of metals by using the concept of kinematic hardening. The present approach of
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finite thermoviscoplasticity is based on [Lion 2000], which introduces a multiple multiplicative decom-
position of the deformation gradient for the modeling of kinematic hardening in the framework of finite
deformations. In analogy to [Helm 2001], only a double multiplicative decomposition of the deformation
gradient is introduced without any thermal intermediate configuration. Therefore, the entropy results
immediately from the free energy function by means of a potential relation. Similar strategies for incor-
porating the kinematic hardening at finite strains were discussed in [Dettmer and Reese 2004; Tsakmakis
and Willuweit 2004]. In the present constitutive theory, all energy storage phenomena due to isochoric
deformations are depicted by modified neo-Hooke-type models. This strategy leads to a simple repre-
sentation of the occurring energy storage mechanisms and the kinematic hardening behavior. In all, the
developed concept can be easily transformed to give the thermoviscoplastic behavior of metals if only a
few modifications are considered: e.g. γt = ∞, Xθ = 0 or P̂Xθ = 0, and a single phase material is modeled.

It is important to mention that the number of material parameters or functions is identical for both
theories. Provided that the material functions do not depend on temperature, the model includes 20
material parameters: the modeling of the thermoelastic material properties of a two-phase material re-
quires eleven material parameters (µA, µM, κA, κM, αA, αM, cA

d0
, cM

d0
, ρ, 1u0, and 1η0). The evolution

of the transformation strain tensor is adjusted by the parameters ηt and mt. The limit case ηt → 0
results in a rate-independent theory. Moreover, the material parameters c (modulus for Xε), b (saturation
value), γ (parameter in B(θ, z, ż)), and β (parameter in B(θ, z, ż)) are used to model the internal stress
field Xε. The height of the hysteresis is influenced by the phase transition radius k and the relation
between the fraction of oriented martensite and the transformation strain state is adjusted by γt (maximum
transformation strain) and γ0. Of course, the identification of all these parameters is a challenge: e.g.
the determination of all thermoelasticity parameters requires an elaborate testing equipment. In [Helm
2005] it is demonstrated that a certain part of the set of material parameters can be identified by common
experiments in combination with the method of neural networks.

The present constitutive theory models only the material behavior of shape memory alloys due to
martensitic phase transitions. For simplicity, the influence of the orientation and reorientation of marten-
site twins on the material behavior of shape memory alloys is not considered. However, it is possible to
combine the current theory with the proposed strategy in [Helm and Haupt 2003] for the representation
of the orientation and reorientation of martensite twins. To do this, it is necessary to separate the fraction
of martensite into the fraction of self-accommodated martensite (twinned martensite) and the fraction of
oriented martensite (detwinned martensite); compare the discussion in [Lagoudas et al. 2006].

From a mathematical point of view, the theories developed are particularly suitable for the numerical
solution of initial-boundary value problems, because the introduced internal variables to describe the
temperature-dependent phase transition stress are continuous functions of the transformation strain tensor.
The numerical treatment of the proposed material models is discussed in the second part of this article
[Helm and Schäfers 2006]. Moreover, the main features of the theories are demonstrated in numerical
examples, which include the comparison to experimental data.

References

[Achenbach and Müller 1982] M. Achenbach and I. Müller, “A model for shape memory”, Journal de Physique, Colleque C4,
ICOMAT–82 43 (1982), 163–167.



THERMOMECHANICS OF MARTENSITIC PHASE TRANSITIONS IN SHAPE MEMORY ALLOYS, I 109

[Anand and Gurtin 2003] L. Anand and M. E. Gurtin, “Thermal effects in the superelasticity of crystalline shape-memory
materials”, J. Mech. Phys. Solids 51:6 (2003), 1015–1058. MR 2004c:74066

[Auricchio and Petrini 2004] F. Auricchio and L. Petrini, “A three-dimensional model describing stress-temperature induced
solid phase transformations: solution algorithm and boundary value problems”, Internat. J. Numer. Methods Engrg. 61:6
(2004), 807–836. MR 2005d:74032

[Auricchio and Stefanelli 2004] F. Auricchio and U. Stefanelli, “Numerical analysis of a three-dimensional super-elastic con-
stitutive model”, Internat. J. Numer. Methods Engrg. 61:1 (2004), 142–155. MR 2005b:74100

[Auricchio and Taylor 1997] F. Auricchio and R. Taylor, “Shape-memory alloys: modelling and numerical simulations of the
finite-strain superelastic behavior”, Computer Methods in Applied Mechanics and Engineering 143 (1997), 175–194.

[Auricchio et al. 1997] F. Auricchio, R. Taylor, and J. Lubliner, “Shape-memory alloys: macromodelling and numerical simu-
lations of the superelastic behavior”, Computer Methods in Applied Mechanics and Engineering 146 (1997), 281–312.

[Bertram 1982] A. Bertram, “Thermo-mechanical constitutive equations for the description of shape memory effects in alloys”,
Nuclear Engineering and Design 74 (1982), 173–182.

[Bondaryev and Wayman 1988] E. Bondaryev and C. Wayman, “Some stress-strain-temperature relationships for shape mem-
ory alloys”, Metallurgical Transactions A 19A (1988), 2407–2413.

[Boyd and Lagoudas 1994] J. Boyd and D. Lagoudas, “A constitutive model for simultaneous transformation and reorientation
in shape memory materials”, pp. 159–177 in Mechanics of phase transformations and shape memory alloys (Chicago, 1994),
edited by L. C. Brinson and B. Moran, AMD 189, The American Society of Mechanical Engineers, New York, 1994.

[Casey 1985] J. Casey, “Approximate kinematical relations in plasticity”, Internat. J. Solids Structures 21:7 (1985), 671–682.
MR 88c:73033

[Coleman and Gurtin 1967] B. Coleman and M. Gurtin, “Thermodynamics with internal state variables”, J. Chem. Phys. 47
(1967), 597–613.

[Delobelle and Lexcellent 1996] P. Delobelle and C. Lexcellent, “A phenomenological three dimensional model for pseudoe-
lastic behavior of shape memory”, Journal de Physique IV 6 (1996), 293–300.

[Dettmer and Reese 2004] W. Dettmer and S. Reese, “On the theoretical and numerical modelling of Armstrong-Frederick
kinematic hardening in the finite strain regime”, Comput. Methods Appl. Mech. Engrg. 193 (2004), 87–116.

[Eckart 1948] C. Eckart, “The thermodynamics of irreversible processes, IV: The theory of elasticity and anelasticity”, Physical
Rev. (2) 73 (1948), 373–382. MR 9,394a

[Eggeler et al. 2004] G. Eggeler, E. Hornbogen, A. Yawny, and M. Wagner, “Structural and functional fatigue of NiTi shape
memory alloys”, Materials Science and Engineering A 378 (2004), 24–33.

[Entchev and Lagoudas 2002] P. Entchev and D. Lagoudas, “Modeling porous shape memory alloys using micromechanical
averaging techniques”, Mechanics of materials 34:11 (2002), 1–24.

[Falk 1983] F. Falk, “One-dimensional model of shape memory”, Archives of Mechanics 35 (1983), 63–84.

[Flory 1961] P. J. Flory, “Thermodynamic relations for high elastic materials”, Trans. Faraday Soc. 57 (1961), 829–838. MR 23
#B1161

[Funakubo 1987] H. Funakubo, Shape memory alloys, Gordon and Breach, New York, 1987.

[Gall and Sehitoglu 1999] K. Gall and H. Sehitoglu, “The role of texture in tension-compression asymmetry in polycrystalline
NiTi”, International Journal of Plasticity 15:1 (1999), 69–92. Corrigendum in 15:7, 781.

[Graesser and Cozzarelli 1994] E. Graesser and F. Cozzarelli, “A proposed three dimensional constitutive model for shape
memory alloys”, Journal of Intelligent Material Systems and Structures 5 (1994), 78–89.

[Haupt 1985] P. Haupt, “On the concept of an intermediate configuration and its application to a representation of viscoelastic-
plastic material behaviour”, International Journal of Plasticity 1 (1985), 303–316.

[Haupt 2002] P. Haupt, Continuum mechanics and theory of materials, 2nd ed., Advanced Texts in Physics, Springer, Berlin,
2002. MR 2004h:74001

[Haupt and Tsakmakis 1989] P. Haupt and C. Tsakmakis, “On the application of dual variables in continuum mechanics”,
Contin. Mech. Thermodyn. 1:3 (1989), 165–196. MR 91m:73002



110 DIRK HELM

[Haupt et al. 1992] P. Haupt, M. Kamlah, and C. Tsakmakis, “On the thermodynamics of rate-independent plasticity as an
asymptotic limit of viscoplasticity for slow processes”, pp. 107–116 in Finite inelastic deformations: Theory and applications
(Hannover, 1991), edited by D. Besdo and E. Stein, Berlin, 1992.

[Helm 2001] D. Helm, Formgedächtnislegierungen: Experimentelle Untersuchung, phänomenologische Modellierung und nu-
merische Simulation der thermomechanischen Materialeigenschaften, Ph.D. thesis, Institut für Mechanik, Universität Gesamt-
hochschule Kassel, Kassel, 2001.

[Helm 2005] D. Helm, “Pseudoelastic behavior of shape memory alloys: Constitutive theory and identification of the material
parameters using neural networks”, Technische Mechanik 25 (http://www.uni-magdeburg.de/ifme/techmech/ 2005), 39–58.

[Helm 2006] D. Helm, “Stress computation in finite thermoviscoplasticity”, International Journal of Plasticity 22 (2006),
1699–1727.

[Helm and Haupt 2001] D. Helm and P. Haupt, “Thermomechanical behaviour of shape memory alloys”, pp. 302–313 in Smart
structures and materials: Active materials, behavior and mechanics (Newport Beach, CA, 2001), edited by C. S. Lynch,
Proceedings of SPIE 4333, Internat. Soc. Optical Eng., Bellingham, WA, 2001.

[Helm and Haupt 2003] D. Helm and P. Haupt, “Shape memory behaviour: modelling within continuum thermomechanics”,
International Journal of Solids and Structures 40 (2003), 825–849.

[Helm and Schäfers 2006] D. Helm and M. Schäfers, “Thermomechanics of martensitic phase transitions in shape memory
alloys, II: numerical treatment”, Journal of Mechanics and Materials of Structures (2006), 1–30. prepared.

[Hohenemser and Prager 1932] K. Hohenemser and W. Prager, “Über die Ansätze der Mechanik isotroper Kontinua”, ZAMM
12 (1932), 216–226.

[Huang et al. 2000] M. Huang, X. Gao, and L. C. Brinson, “A multivariant micromechanical model for SMAs, 2: Polycrystal
model”, International Journal of Plasticity 16 (2000), 1371–1390.

[Huo and Müller 1993] Y. Huo and I. Müller, “Nonequilibrium thermodynamics of pseudoelasticity”, Contin. Mech. Thermo-
dyn. 5:3 (1993), 163–204. MR 94h:73015

[Juhász et al. 2000] L. Juhász, H. Andrä, and O. Hesebeck, “Simulation of the thermomechanical behaviour of shape memory
alloys under multi-axial non-proportional loading”, pp. 484–495 in Smart structures and materials: Active materials, behavior
and mechanics (Newport Beach, CA, 2000), edited by C. S. Lynch, Proceedings of SPIE 3992, Internat. Soc. Optical Eng.,
Bellingham, WA, 2000.

[Jung et al. 2004] Y. Jung, P. Papadopoulos, and R. O. Ritchie, “Constitutive modelling and numerical simulation of multi-
variant phase transformation in superelastic shape-memory alloys”, Internat. J. Numer. Methods Engrg. 60:2 (2004), 429–460.
MR 2005a:74076

[Khan and Lagoudas 2002] M. Khan and D. Lagoudas, “Modeling of shape memory alloy springs using Preisach model for
passive vibration isolation”, pp. 336–347 in Smart structures and materials: Modeling, signal processing, and control (San
Diego, 2002), edited by V. Rao, Proceedings of SPIE 4693, Internat. Soc. Optical Eng., Bellingham, WA, 2002.

[Kröner 1958] E. Kröner, Kontinuumstheorie der Versetzungen und Eigenspannungen, Ergebnisse der angewandten Mathe-
matik 5, Springer, Berlin, 1958. MR 20 #2117

[Kröner 1960] E. Kröner, “Allgemeine Kontinuumstheorie der Versetzungen und Eigenspannungen”, Arch. Rational Mech.
Anal. 4 (1960), 273–334. MR 23 #B26

[Lagoudas et al. 2006] D. Lagoudas, P. Entchev, P. Popov, E. Patoor, L. Brinson, and X. Gao, “Shape memory alloys, I:
Modeling of polycrystals”, Mechanics of Materials 38 (2006), 430–462.

[Leclercq and Lexcellent 1996] S. Leclercq and C. Lexcellent, “A general macroscopic description of the thermomechanical
behavior of shape memory alloys”, Journal of the Mechanics and Physics of Solids 44:6 (1996), 953–980.

[Lee 1969] E. Lee, “Elastic-plastic deformation at finite strains”, Journal of Applied Mechanics 36 (1969), 59–67.

[Lee and Liu 1967] E. Lee and D. Liu, “Finite-strain elastic-plastic theory with application to plane-wave analysis”, Journal of
Applied Physics 38 (1967), 19–27.

[Levitas 1998] V. I. Levitas, “Thermomechanical theory of martensitic phase transformations in inelastic materials”, Internat.
J. Solids Structures 35:9-10 (1998), 889–940. MR 98k:73012



THERMOMECHANICS OF MARTENSITIC PHASE TRANSITIONS IN SHAPE MEMORY ALLOYS, I 111

[Lexcellent et al. 1996] C. Lexcellent, B. Goo, Q. Sun, and J. Bernardini, “Characterization, Thermomechanical Behaviour
and Micromechanical-Based Constitutive Model of Shape-Memory Cu-Zn-Al Single Crystals”, Acta Materialia 44 (1996),
3773–3780.

[Lexcellent et al. 2006] C. Lexcellent, M. Boubakar, C. Bouvet, and S. Calloch, “About modelling the shape memory alloy
behaviour based on the phase transformation surface identification under proportional loading and anisothermal conditions”,
International Journal of Solids and Structures 43 (2006), 613–626.

[Liang and Rogers 1990] C. Liang and C. Rogers, “One dimensional thermomechanical constitutive relations for shape memory
materials”, Journal of Intelligent Material Systems and Structures 1 (1990), 207–234.

[Lim and McDowell 1995] T. Lim and D. McDowell, “Path dependence of shape memory alloys during cyclic loading”, Jour-
nal of Intelligent Material Systems and Structures 6 (1995), 817–830.

[Lim and McDowell 1999] T. Lim and D. McDowell, “Mechanical behavior of an Ni-Ti shape memory alloy under axial-
torsional proportional and nonproportional loading”, Journal of Engineering Materials and Technology 121 (1999), 9–19.

[Lim and McDowell 2002] T. Lim and D. McDowell, “Cyclic thermomechanical behavior of a polycrystalline pseudoelastic
shape memory alloy”, Journal of the Mechanics and Physics of Solids 50:26 (2002), 651–676.

[Lion 2000] A. Lion, “Constitutive modelling in finite thermoviscoplasticity: a physical approach based on nonlinear rheologi-
cal models”, InternationalJournal of Plasticity 16 (2000), 469–494.

[Lubliner 1985] J. Lubliner, “A model of rubber viscoelasticity”, Mechanics Research Communications 12 (1985), 93–99.

[Lubliner 1990] J. Lubliner, Plasticity theory, New York, London, 1990.

[Mandel 1972] J. Mandel, Plasticité classique et viscoplasticité, CIMS Courses and Lectures 97, Springer, Vienna, 1972.
MR 49 #8463

[McNaney et al. 2003] J. McNaney, V. Imbeni, Y. Jung, P. Papadopoulos, and R. O. Ritchie, “An experimental study of the
superelastic effect in a shape-memory Nitinol alloy under biaxial loading”, Mechanics of Materials 35 (2003), 969–986.

[Miyazaki and Otsuka 1989] S. Miyazaki and K. Otsuka, “Development of shape memory alloys”, ISIJ International 29:5
(1989), 353–377.

[Müller and Bruhns 2004] C. Müller and O. Bruhns, “An Eulerian model for pseudoelastic shape memory alloys”, Material
Science and Engineering Technology 35 (2004), 260–271.

[Novák and Sittner 2004] V. Novák and P. Sittner, “Micromechanical modelling of NiTi polycrystalline aggregates transforming
under tension and compression stress”, Materials Science and Engineering, A 378 (2004), 490–498.

[Otsuka and Ren 1999] K. Otsuka and X. Ren, “Recent developments in the research of shape memory alloys”, Intermetallics
7 (1999), 511–528.

[Otsuka and Wayman 1998] K. Otsuka and C. Wayman, Shape memory materials, Cambridge University Press, 1998.

[Paiva et al. 2005] A. Paiva, M. Savi, A. Braga, and P. Pacheco, “A constitutive model for shape memory alloys considering
tensile-compressive asymmetry and plasticity”, International Journal of Solids and Structures 42 (2005), 3439–3457.

[Patoor et al. 1994] E. Patoor, A. Eberhardt, and M. Berveiller, “Micromechanical modelling of the shape memory behavior”,
pp. 23–37 in Mechanics of phase transformations and shape memory alloys (Chicago, 1994), edited by L. Brinson and B.
Moran, AMD 189, The American Society of Mechanical Engineers, New York, 1994.

[Patoor et al. 1996] E. Patoor, A. Eberhardt, and M. Berveiller, “Micromechanical modelling of superelasticity in shape memory
alloys”, Journal de Physique IV 6 (1996), 277–292.

[Patoor et al. 2006] E. Patoor, D. Lagoudas, P. Entchev, L. Brinson, and X. Gao, “Shape memory alloys, Part I: General
properties and modeling of single crystals”, Mechanics of Materials 38 (2006), 391–429.

[Perzyna 1963] P. Perzyna, “The constitutive equations for rate sensitive plastic materials”, Quart. Appl. Math. 20 (1963),
321–332. MR 26 #2080

[Qidwai and Lagoudas 2000] M. A. Qidwai and D. C. Lagoudas, “On thermomechanics and transformation surfaces of poly-
crystalline NiTi shape memory alloy material”, International Journal of Plasticity 16 (2000), 1309–1343.

[Raniecki and Lexcellent 1994] B. Raniecki and C. Lexcellent, “RL -models of pseudoelasticity and their specification for some
shape memory solids”, European J. Mech. A Solids 13:1 (1994), 21–50. MR 94m:73012



112 DIRK HELM

[Raniecki et al. 1992] B. Raniecki, C. Lexcellent, and K. Tanaka, “Thermodynamic models of pseudoelastic behaviour of shape
memory alloys”, Arch. Mech. (Arch. Mech. Stos.) 44:3 (1992), 261–284. MR 94j:73012

[Raniecki et al. 2001] B. Raniecki, K. Tanaka, and A. Ziółkowski, “Testing and modeling of NiTi SMA at complex stress
state: Selected results of Polish-Japanese research cooperation”, Materials Science Research International Special Technical
Publication 2 (2001), 327–334.

[Rogueda et al. 1996] C. Rogueda, C. Lexcellent, and L. Bocher, “Experimental study of pseudoelastic behaviour of a CuZ-
nAl polycrystalline shape memory alloy under tension-torsion proportional and non-proportional loading tests”, Archives of
Mechanics 48 (1996), 1025–1045.

[Seelecke 2002] S. Seelecke, “Modeling the dynamic behavior of shape memory alloys”, International Journal of Non-Linear
Mechanics 37 (2002), 1363–1374.

[Shaw and Kyriakides 1995] J. Shaw and S. Kyriakides, “Thermomechanical aspects of NiTi”, Journal of the Mechanics and
Physics of Solids 8 (1995), 1243–1281.

[Shimizu and Tadaki 1987] K. Shimizu and T. Tadaki, “Shape memory effect: Mechanism”, pp. 1–60 in Shape memory alloys,
edited by H. Funakubo, Gordon and Breach, New York, 1987.

[Simo 1985] J. Simo, “On the computational significance of the intermediate configuration and hyperelastic stress relations in
finite deformation elastoplasticity”, Mechanics of Materials 4 (1985), 439–451.

[Simo 1988] J. C. Simo, “A framework for finite strain elastoplasticity based on maximum plastic dissipation and the multiplica-
tive decomposition, I: Continuum formulation”, Comput. Methods Appl. Mech. Engrg. 66:2 (1988), 199–219. MR 89a:73029

[Simo and Pister 1984] J. Simo and K. Pister, “Remarks on rate constitutive equations for finite deformation problems”, Com-
puter Methods in Applied Mechanics and Engineering 46 (1984), 201–215.

[Souza et al. 1998] A. Souza, E. Mamiya, and N. Zouain, “Three-dimensional model for solids undergoing stress-induced
phase transitions”, Eur. J. Mech. A/Solids 17 (1998), 789–806.

[Tanaka and Nagaki 1982] K. Tanaka and S. Nagaki, “A thermomechanical description of materials with internal variables in
the process of phase transitions”, Ingenieur-Archiv 51 (1982), 287–299.

[Tanaka et al. 2002] K. Tanaka, D. Ohnami, T. Watanabe, and J. Kosegawa, “Micromechanical simulations of thermomechan-
ical behavior in shape memory alloys: transformation conditions and thermomechanical hystereses”, Mechanics of Materials
34 (2002), 279–298.

[Thamburaja and Anand 2003] P. Thamburaja and L. Anand, “Thermo-mechanically coupled superelastic repsonse of initially-
textured Ti-Ni sheet”, Acta Materialia 51 (2003), 325–338.

[Tsakmakis 1996] C. Tsakmakis, “Kinematic hardening rules in finite plasticity, I: A constitutive approach”, Continuum Me-
chanics and Thermodynamics 8 (1996), 215–231.

[Tsakmakis and Willuweit 2004] C. Tsakmakis and A. Willuweit, “A comparative study of kinematic hardening rules at finite
deformations”, Int. J. of Non-Linear Mechanics 39 (2004), 539–554.

Received 8 Dec 2005. Revised 24 Jul 2006. Accepted 27 Jul 2006.

DIRK HELM: dirk.helm@iwm.fraunhofer.de
Institute of Mechanics, Department of Mechanical Engineering, University of Kassel, Mönchebergstraße 7, D–34109 Kassel,
Germany
Current address: Fraunhofer Institute for Mechanics of Materials, Wöhlerstraße 11, D–79108 Freiburg, Germany
http://www.iwm.fraunhofer.de



JOURNAL OF MECHANICS OF MATERIALS AND STRUCTURES
Vol. 2, No. 1, 2007

MAGNETOTHERMOELASTIC STRESSES INDUCED BY A TRANSIENT
MAGNETIC FIELD IN AN INFINITE CONDUCTING PLATE

MASAHIRO HIGUCHI, RYUUSUKE KAWAMURA, YOSHINOBU TANIGAWA AND HIDEKI FUJIEDA

We investigate the dynamic and quasistatic behavior of magnetothermoelastic stresses induced by a
transient magnetic field in an infinite conducting plate. A transient magnetic field defined by an arbitrary
function of time acts on both surfaces of the infinite plate and parallel to them. The fundamental equa-
tions of one-dimensional electromagnetic, temperature and elastic fields are formulated, and solutions for
the magnetic field, eddy current, temperature change and dynamic and quasistatic solutions for stresses
and deformations are analytically derived, in terms of the excitation function. The stress solutions are
determined to be sums of a thermal stress component caused by eddy current loss and a magnetic stress
component caused by the Lorentz force. The case of a magnetic field defined by a smoothed ramp
function with a sine-function profile is examined in particular, and the dynamic and quasistatic behavior
of the stresses are numerically calculated.

1. Introduction

Mechanical structures that are activated when a magnetic field is applied has been of increasing interest
in recent years. When a time-dependent magnetic field acts on a conducting medium, an eddy current is
induced, which generates heat; this is the eddy current energy loss due to the Joule effect. The conducting
medium is also subjected to a Lorentz force. Thus, two kinds of stress arise: thermal stress caused by
eddy current loss magnetic stress caused by the Lorentz force.

In the field of magnetoelasticity or magnetothermoelasticity, many studies have employed an analytical
treatment of the interaction between elastic, electromagnetic and temperature fields; see, for instance,
[Kaliski and Nowacki 1962; Kaliski and Michalec 1963; Paria 1967; Wauer 1996; Banerjee and Roy-
choudhuri 1997; Wang et al. 2002; 2003; Librescu et al. 2003; Ezzat and Youssef 2005; Zheng et al.
2005]. However, there have been only a few analytical studies of thermal stresses induced by time-
dependent magnetic fields [Moon and Chattopadhyay 1974; Chian and Moon 1981; Wauer 1995]. Moon
and Chattopadhyay [1974] have studied thermal stresses and magnetic stresses in a conducting half-space
caused by an applied jump in tangential magnetic field at the boundary. Chian and Moon [1981] have
extended that work, investigating the same stresses in a hollow cylindrical conductor caused by a pulsed
magnetic field at the cavity. Wauer [1995] has studied the dynamic behavior of a magnetothermoelastic
plate layer whose surfaces are subjected to a magnetic field composed of a constant and a harmonically
oscillating part in the direction parallel to the surfaces. He has mentioned the stability of the plate due to
the external magnetic field. Pantelyat and Féliachi [2002] have studied the mechanical behavior of metals

Keywords: magnetothermoelasticity, eddy current loss, Lorentz force.
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in induction heating devices by using of finite element method. They have calculated thermoelastic-
plastic stresses induced by an alternating magnetic field, taking into account the temperature dependence
of the material properties.

Here we investigate the dynamic and quasistatic behavior of magnetothermoelastic stresses induced
by a transient magnetic field on an infinite conducting plate made of a nonferromagnetic metal such
as copper or aluminum. Assuming an applied magnetic field defined by an arbitrary function of time,
acting on both sides of the plate and parallel to it, we formulate the fundamental equations of the one-
dimensional electromagnetic, temperature and elastic fields. We then solve for the electromagnetic field,
temperature change and dynamic and quasistatic solutions of stresses and displacements, analytically
deriving expressions for these fields in terms of the arbitrary excitation function. The stresses solutions
are determined to be the sums of a thermal stress and a magnetic stress component.

We then focus on the case of an excitation given by a smoothed ramp function with sine-function
profile, studying numerically the dynamic and quasistatic behavior of the induced thermal and magnetic
stresses.

2. Fundamental equations

2.1. Electromagnetic field. Figure 1 shows an infinite conducting plate of thickness 2b with a Cartesian
coordinate system, subject to a time-dependent magnetic field H0φ(t) that is uniformly distributed along
the x and z directions and acts on both side surfaces of the infinite plate in the z direction, starting at
time t = 0. Here H0 is a reference magnetic field strength and φ(t) is an arbitrary function of time.

Let the magnetic field be H = (0, 0, Hz(y, t)) in the infinite plate, and let the electric field vector be
E = (Ex(y, t), 0, 0). Disregarding the displacement current, the governing equations and the constitutive
relations of electromagnetics reduce to (see [Stoll 1974; Moon and Chattopadhyay 1974])

−
∂Ex

∂y
+
∂Bz

∂t
= 0,

∂Hz

∂y
= Jx ,

σ

(
Ex + Bz

∂v

∂t

)
= Jx , Bz = µHz,

(1)

where Bz is the magnetic flux in the z direction, Jx is the electric current density in the x direction, v
is the displacement in the y direction (as discussed later, no displacement is considered in the x and z
directions), and σ and µ are the electric conductivity and the magnetic permeability in the infinite plate.

b

xz

y

H03(t)

-b H03(t)

Figure 1. Conditions and coordinate system of infinite plate.



MAGNETOTHERMOELASTIC STRESSES INDUCED BY TRANSIENT MAGNETIC FIELD 115

This leads to the fundamental equation of magnetic field [Moon and Chattopadhyay 1974]:

∂2 Hz

∂y2 = µσ
∂Hz

∂t
+µσ

∂

∂y

(
Hz
∂v

∂t

)
, (2)

where the second term on the right is a nonlinear coupling term with elastic field. This coupling term is
small compared with the first term µσ∂Hz/∂t , as shown in [Moon and Chattopadhyay 1974; Chian and
Moon 1981]. Therefore, the coupled equation (2) with the elastic field reduces to the uncoupled equation

∂2 Hz

∂y2 = µσ
∂Hz

∂t
. (3)

The boundary conditions and initial condition are

at y = ±b : Hz = H0φ(t),

at t = 0 : Hz = 0.
(4)

The current density Jx = ∂Hz/∂y induced by the variation of the magnetic field is called the eddy current.

2.2. Temperature field. The eddy current Jx generates Joule heat, giving rise to the so-called eddy cur-
rent loss w(y, t). The eddy current loss per unit time per unit volume is given by (see [Moon and
Chattopadhyay 1974])

w(y, t)= σ−1 Jx(y, t)2. (5)

We assume that the infinite plate with zero initial temperature change is heated by the eddy current
loss w(y, t) from time t = 0, and that both side surfaces are insulated, or subjected to surrounding media
at temperature 0, with relative heat transfer coefficients h.

The one-dimensional heat conduction equation taking into account the eddy current loss [Moon and
Chattopadhyay 1974] is then given by

∂T
∂t

= κ
∂2T
∂y2 +

w

Cρ
, (6)

with boundary conditions and initial condition

at y = ±b :
∂T
∂y

± hT = 0,

at t = 0 : T (y, 0)= 0,
(7)

where T = T (y, t) is temperature change and κ , C and ρ denote the thermal conductivity, the specific
heat and the mass density. If both surfaces are insulated, then h in (7) becomes zero. In (6), the coupling
term with strain is neglected because the coupling effect mainly occurs at large times [Boley and Tolins
1962; Moon and Chattopadhyay 1974].
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2.3. Elastic field. Besides the temperature change arising from the eddy current loss, the plate is sub-
jected to a Lorentz force f , given by (see [Moon and Chattopadhyay 1974])

f = J × B =


∂Hz
∂y

0

0

×

 0
0
µHz

=


0

−
µ

2
∂

∂y
[
Hz(y, t)

]2
0

 (8)

Thus the Lorentz force only has a y component:

fy(y, t)= −
µ

2
∂

∂y

(
Hz(y, t)

)2 (9)

Because the temperature change and Lorentz force depend only on y and t , the displacement com-
ponents are assumed to be (0, v(y, t), 0). Thus the stress-displacement relations taking into account
temperature change reduce to (see [Sternberg and Chakravorty 1959])

σxx(y, t)= σzz(y, t)=
(1 − ν)E

(1 + ν)(1 − 2ν)

(
ν

1 − ν

∂v

∂y
−

1 + ν

1 − ν
αT
)
,

σyy(y, t)=
(1 − ν)E

(1 + ν)(1 − 2ν)

(
∂v

∂y
−

1 + ν

1 − ν
αT
)
,

(10)

where (σxx , σyy, σzz) are the stress components and ν, E and α denote the Poisson ratio, the Young’s
modulus and the coefficient of linear thermal expansion. The equation of motion in the y direction,
taking into account Lorentz force, is given by (see [Moon and Chattopadhyay 1974])

∂σyy

∂y
+ fy = ρ

∂2v

∂t2 . (11)

Substitution of (9) and σ̄yy from (10) into (11) leads to the displacement equation of motion

∂2v

∂y2 =
1

C2
L

∂2v

∂t2 +
1 + ν

1 − ν
α
∂T
∂y

+
(1 + ν)(1 − 2ν)
(1 − ν)E

µ

2
∂

∂y

(
Hz
)2
, (12)

where

CL =

√
(1 − ν)E

(1 + ν)(1 − 2ν)ρ
. (13)

is the velocity of longitudinal wave. The infinite plate is at rest before t = 0 and we suppose that the
surfaces are traction-free (σyy = 0). Thus the mechanical boundary conditions and initial conditions are

at y = ±b :
∂v

∂y
=

1 + ν

1 − ν
αT,

at t = 0 : v =
∂v

∂t
= 0.

(14)
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2.4. Dimensionless quantities. We define the dimensionless quantities

ȳ =
y
b
, H̄z =

Hz

H0
, τ =

t
µσb2 , J̄x =

bJx

H0
, w̄ =

σb2w

H 2
0
, T̄ =

Cγ T
µH 2

0
, h̄ = bh,

f̄y =
b fy

µH 2
0
, (σ̄xx , σ̄yy, σ̄zz)=

(σxx , σyy, σzz)

µH2
0

2

, v̄ =
(1 − ν)E

(1 + ν)(1 − 2ν)
2

bµH 2
0
v

(15)

and

χ1 = µσκ, χ2 = µσbCL , χ3 =
2αE

(1 − 2ν)Cρ
. (16)

In terms of these dimensionless quantities, the equality Jx = ∂Hz/∂y and Equations (3)–(7), (9), (10),
(12), (14) become:

(1) Electromagnetic field:

Equation system:
∂2 H̄z

∂ ȳ2 =
∂ H̄z

∂τ
(17)

with conditions
at ȳ = ±1 : H̄z = φ(τ)

at τ = 0 : H̄z = 0
(18)

Eddy current: J̄x(ȳ, τ )=
∂ H̄z(ȳ, τ )

∂ ȳ
(19)

(2) Temperature field:

Eddy current loss: w̄(ȳ, τ )=
(
J̄x(ȳ, τ )

)2 (20)

Equation system:
∂ T̄
∂τ

= χ1
∂2T̄
∂ ȳ2 + w̄ (21)

with conditions
at ȳ = ±1 :

∂ T̄
∂ ȳ

± h̄T̄ = 0

at τ = 0 : T̄ = 0
(22)

(3) Elastic field:

Lorentz force: f̄y(ȳ, τ )= −
1
2
∂

∂ ȳ

(
H̄z(ȳ, τ )

)2 (23)

Stress-displacement relations:
σ̄xx(ȳ, τ )= σ̄zz(ȳ, τ )=

ν

1 − ν

∂v̄

∂ ȳ
−χ3T̄

σ̄yy(ȳ, τ )=
∂v̄

∂ ȳ
−χ3T̄

(24)
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Equation system:
∂2v̄

∂ ȳ2 =
1
χ2

2

∂2v̄

∂τ 2 +χ3
∂ T̄
∂ ȳ

+
∂

∂ ȳ

(
H̄z
)2 (25)

with conditions
at ȳ = ±1 :

∂v̄

∂ ȳ
= χ3T̄

at τ = 0 : ū =
∂ ū
∂τ

= 0
(26)

3. Solutions

3.1. Magnetic field. To transform the inhomogeneous boundary condition H̄z = φ(τ) from (18) into a
homogeneous one, we assume that the solution of (17) is given by

H̄z(ȳ, τ )= hz(ȳ, τ )+φ(τ). (27)

By substitution of (27) into (17)–(18), the equation system with respect to hz becomes

∂2hz

∂ ȳ2 =
∂hz

∂τ
+
∂φ(τ)

∂τ
(28)

with boundary and initial conditions

atȳ = ±1 : hz = 0,

at τ = 0 : hz = −φ(0).
(29)

By separation of variables, the solution of (28) will be assumed to be of the form

hz(ȳ, τ )=

∞∑
n=1

an(τ ) cos(kn ȳ), (30)

where the an(τ ) are unknown functions of τ and the kn are the positive roots of the eigenequation

cos(kn)= 0 ∴ kn =
(2n − 1)π

2
(n = 1, 2, . . . ) (31)

The solution hz(ȳ, τ ) in (30) clearly satisfies the homogeneous boundary conditions in (29).
Substitution of (30) into (28) gives

−

∞∑
n=1

k2
nan(τ ) cos(kn ȳ)=

∞∑
n=1

dan(τ )

dτ
cos(kn ȳ)+

dφ(τ)
dτ

(32)

Multiplying both sides by cos(km ȳ) and integrating it from −1 to 1, we obtain

−

∞∑
n=1

k2
nan(τ )

∫ 1

−1
cos(kn ȳ) cos(km ȳ) dȳ

=

∞∑
n=1

dan(τ )

dτ

∫ 1

−1
cos(kn ȳ) cos(km ȳ) dȳ +

∫ 1

−1

dφ(τ)
dτ

cos(km ȳ) dȳ. (33)
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By virtue of the orthogonal property of trigonometric functions, we obtain∫ 1

−1
cos(kn ȳ) cos(km ȳ) dȳ =

{
1 (m = n),

0 (m 6= n).
(34)

Substituting (34) into (33) gives

dan(τ )

dτ
+ knan(τ )= −

∫ 1

−1

dφ(τ)
dτ

cos(kn ȳ) dȳ. (35)

By use of the initial condition in (29), the solutions of (35) are determined to be

an(τ )=
2(−1)n

kn
ân(τ ). (36)

where the ân(τ ) are determined by the function φ(τ):

ân(τ )=

∫ τ

0
e−k2

n(τ−τ
′) dφ(τ ′)

dτ ′
dτ ′. (37)

From (27), (30) and (36), the magnetic field H̄z is written as

H̄z(ȳ, τ )= φ(τ)+ 2
∞∑

n=1

(−1)n

kn
cos(kn ȳ)ân(τ ). (38)

Substitution of (38) into (19) gives the eddy current J̄x as follows:

J̄x(ȳ, τ )= 2
∞∑

n=1

(−1)n+1 sin(kn ȳ)ân(τ ). (39)

3.2. Temperature field. By separation of variables, the solution of (21) will be assumed to be of the
form

T̄ (ȳ, τ )=

∞∑
j=β

b j (τ ) cos(p j ȳ), β =

{
0 for h̄ = 0,

1 for h̄ > 0,
(40)

where the b j (τ ) are unknown functions of τ , and the p j are the nonnegative roots of the eigenequations

sin p j = 0 (p j ≥ 0 for j = 0, 1, 2, . . . ) if h̄ = 0,

tan p j =
h
p j

(p j > 0 for j = 1, 2, 3, . . . ) if h̄ > 0.
(41)

The solution T̄ (ȳ, τ ) in (40) clearly satisfies the boundary conditions in (22).
By virtue of the orthogonal property of trigonometric functions, we have∫ 1

−1
cos(p j ȳ) cos(pl ȳ) dȳ =

{
M j (l = j),

0 (l 6= j),
(42)
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where M j =


2 ( j = 0)

1 for h̄ = 0

h̄ + h̄2
+ p2

j

h̄2 + p2
j

for h̄ > 0

 ( j > 0)
(43)

Substituting (40) into (21) and using (42), we obtain

db j (τ )

dτ
+χ1 p2

j b j (τ )=
1

M j

∫ 1

−1
w̄(ȳ, τ ) cos(p j ȳ) dȳ (44)

Through the use of the initial condition in (21), the solutions of (44) are determined to be

b j (τ )=


1
2

∫ 1

−1

(∫ τ

0
w̄(ȳ, τ ′) dτ ′

)
dȳ ( j = 0)

1
M j

∫ 1

−1

(∫ τ

0
e−χ1 p2

j (τ−τ
′)
w̄(ȳ, τ ′) dτ ′

)
cos(p j ȳ) dȳ ( j > 0)

(45)

Substituting (39) into (20), we obtain the eddy current loss:

w̄(ȳ, τ )= 4
∞∑

m=1

∞∑
n=1

(−1)m+n sin(km ȳ) sin(kn ȳ)âm(τ )ân(τ ) (46)

Substitution of (46) into (45) gives

b j (τ )=


2

∞∑
n=1

b̂(0)n (τ ) ( j = 0),

4
M j

∞∑
m=1

∞∑
n=1

I1 jmn b̂ jmn(τ ) ( j > 0),

(47)

where

I1 jmn =(−1)m+n
∫ 1

−1
sin km ȳ sin kn ȳ cos p j ȳ dȳ

=



−
1
2(−1)m+n (m + n = j + 1)
1
2(−1)m+n (|m − n| = j)

0 (otherwise)

 if h̄ = 0,

h̄ cos(p j )
2(k2

m + k2
n − p2

j )

(2kmkn)2 − (k2
m + k2

n − p2
j )

2
if h̄ > 0,

(48)
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and where the b̂(0)n (τ ) and b̂ jmn(τ ) are determined by the function φ(τ):

b̂(0)n (τ )=

∫ τ

0

(
ân(τ

′)
)2 dτ ′,

b̂ jmn(τ )=

∫ τ

0
e−χ1 p2

j (τ−τ
′)âm(τ

′)ân(τ
′) dτ ′.

(49)

Substituting (47) into (40), we obtain for the temperature change

T̄ (ȳ, τ )= 2
∞∑

n=1

b̂(0)n (τ )+ 4
∞∑
j=1

1
M j

cos(p j ȳ)
∞∑

m=1

∞∑
n=1

I1 jmn b̂ jmn(τ ) (50)

where, for h̄ > 0, the first term on the right-hand side in (50) is ignored.

3.3. Elastic field.

3.3.1. Dynamic solutions. To transform the inhomogeneous boundary condition ∂v̄
∂ ȳ = χ3T̄ from (26)

into a homogeneous one, we assume that the displacement v̄(ȳ, τ ) is given by

v̄(ȳ, τ )= v1(ȳ, τ )+ v2(ȳ, τ ), (51)

where v1(ȳ, τ ) satisfies

∂2v1

∂ ȳ2 = 0 with boundary condition
∂v1

∂ ȳ
= χ3T̄ at ȳ = ±1. (52)

The solution of (52) is

v1 = χ3T̄ (±1, τ )ȳ, (53)

where T̄ (1, τ )= T̄ (−1, τ ) from (50).
Substitution of (51) with (52) into (25)–(26) gives the equation system with respect to v2 as

∂2v2

∂ ȳ2 =
1
χ2

2

∂2v2

∂τ 2 +
1
χ2

2

∂2v1

∂τ 2 +χ3
∂ T̄
∂ ȳ

+
∂

∂ ȳ
(H̄z)

2 (54)

with conditions

at ȳ = ±1 :
∂v2

∂ ȳ
= 0,

at τ = 0 :
∂v2

∂τ
= −

∂v1

∂τ
, v2 = −v1.

(55)

By separation of variables, the solution of (54) will be assumed to be of the form

v2(ȳ, τ )=

∞∑
i=1

ci (τ ) sin(ηi ȳ), (56)
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where the ci (τ ) are unknown functions of τ and the ηi are the positive roots of the eigenequation

cos(ηi )= 0 ∴ ηi =
(2i − 1)π

2
(i = 1, 2, . . . ). (57)

The solution v2(ȳ, τ ) in (56) clearly satisfies the homogeneous boundary conditions in (55).
By the orthogonality of trigonometric functions, we obtain∫ 1

−1
sin(ηi ȳ) sin(ηq ȳ) dȳ =

{
1 (q = i),

0 (q 6= i).
(58)

Substituting (56) into (54), and using (58) we obtain

∂2ci (τ )

∂τ 2 +�2
i ci (τ )

= −

∫ 1

−1

∂2v1

∂τ 2 sin(ηi ȳ) dȳ −χ3χ
2
2

∫ 1

−1

∂ T̄
∂ ȳ

sin(ηi ȳ) dȳ −χ2
2

∫ 1

−1

∂

∂ ȳ

(
H̄z
)2 sin(ηi ȳ) dȳ, (59)

where the �i are the natural angular frequencies of the i-th mode in dimensionless form:

�i = χ2ηi . (60)

By the use of the initial condition in (55), the solutions of (59) are determined to be

ci (τ )=

∫ 1

−1

(
−v1(ȳ, τ )+�i

∫ τ

0
sin�i (τ − τ ′)v1(ȳ, τ ′) dτ ′

)
sin(ηi ȳ) dȳ

−χ3
χ2

ηi

∫ 1

−1

∂

∂ ȳ

(∫ τ

0
sin�i (τ − τ ′)T̄ (ȳ, τ ′) dτ ′

)
sin(ηi ȳ) dȳ

−
χ2

ηi

∫ 1

−1

∂

∂ ȳ

(∫ τ

0
sin�i (τ − τ ′)

(
H̄z(ȳ, τ ′)

)2 dτ ′

)
sin(ηi ȳ) dȳ. (61)

Substitution of (38), (50) and (53) into (61) gives

ci (τ )= cT
i (τ )+ cM

i (τ ), (62)

where

cT
i (τ )=

4(−1)i

η2
i

χ3

(
1
2

∞∑
n=1

(
b̂(0)n (τ )−�i ĉ

T (0)
in (τ )

)
+

∞∑
j=1

cos(p j )

M j

∞∑
m=1

∞∑
n=1

I1 jmn

(
b̂ jmn(τ )+

η2
i

p2
j − η2

i
�i ĉT

i jmn(τ )

))
(63)

is the contribution from the temperature change (the first term on the right-hand side being ignored, for
h̄ = 0), and

cM
i (τ )=

4(−1)iχ2

ηi

(
ĉM(1)

i i (τ )+

∞∑
m=1

∞∑
n=1

4η2
i

(k2
m + k2

n − η2
i )

2 − (2kmk2
n)

2
ĉM(2)

imn (τ )

)
(64)
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is the contribution from the Lorentz force. In these expressions ĉT (0)
in (τ ), ĉT

i jmn(τ ), ĉM(1)
i i (τ ) and ĉM(2)

imn (τ )

are defined in terms of the excitation function φ(τ) by

ĉT (0)
in (τ )=

∫ τ

0
sin�i (τ − τ ′)b̂(0)n (τ ′) dτ ′,

ĉT
i jmn(τ )=

∫ τ

0
sin�i (τ − τ ′)b̂ jmn(τ

′) dτ ′,

ĉM(1)
i i (τ )=

∫ τ

0
sin�i (τ − τ ′)φ(τ ′)âi (τ

′) dτ ′,

ĉM(2)
imn (τ )=

∫ τ

0
sin�i (τ − τ ′)âm(τ

′)ân(τ
′) dτ ′.

(65)

From (51), (53), (56), and (62), we have

v̄T (ȳ, τ )= χ3T̄ (±1, τ )ȳ +

∞∑
i=1

cT
i (τ ) sin(ηi ȳ),

v̄M(ȳ, τ )=

∞∑
i=1

cM
i (τ ) sin(ηi ȳ),

(66)

where v̄T (ȳ, τ ) and v̄M(ȳ, τ ) are the radial displacements due to temperature change and due to Lorentz
force, respectively, and satisfy

v̄(ȳ, τ )= v̄T (ȳ, τ )+ v̄M(ȳ, τ ). (67)

Substituting (67) with (66) into (24), we obtain the dynamic solutions for the stress components:

σ̄ T
xx(ȳ, τ )= σ̄ T

zz(ȳ, τ )=
ν

1 − ν

(
χ3T̄ (±1, τ )+

∞∑
i=1

cT
i (τ )ηi sin(ηi ȳ)

)
−χ3T̄ (ȳ, τ ),

σ̄ T
yy(ȳ, τ )= χ3

(
T̄ (±1, τ )− T̄ (ȳ, τ )

)
+

∞∑
i=1

cT
i (τ )ηi sin(ηi ȳ),

(68)

σ̄M
xx (ȳ, τ )= σ̄M

zz (ȳ, τ )=
ν

1 − ν

∞∑
i=1

cM
i (τ )ηi sin(ηi ȳ),

σ̄M
yy (ȳ, τ )=

∞∑
i=1

cM
i (τ )ηi sin(ηi ȳ),

(69)

where (σ̄ T
xx , σ̄

T
yy, σ̄

T
zz) and (σ̄M

xx , σ̄
M
yy , σ̄

M
zz ) are the thermal and magnetic stress components, satisfying

σ̄xx = σ̄ T
xx + σ̄M

xx , σ̄yy = σ̄ T
yy + σ̄M

yy , σ̄zz = σ̄ T
zz + σ̄M

zz . (70)
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3.3.2. Quasistatic solutions. We now derive the quasistatic solutions of the displacements and stresses.
Neglect of the inertia term on the right-hand side of (25) gives the equilibrium equation

d2v̄

dȳ2 = χ3
dT̄
dȳ

+
d

dȳ

(
H̄z
)2 (71)

Solving (71) with the boundary condition in (26), we obtain the quasistatic solutions of the displace-
ments due to temperature change and due to Lorentz force:

v̄T (ȳ, τ )= χ3

∫
T̄ (ȳ, τ ) dȳ, v̄M(ȳ, τ )=

∫
H̄z(ȳ, τ )2 dȳ −φ(τ)2. (72)

Substituting (72) with the relation of (67) into (24), we obtain the quasistatic solutions of the stress
components as follows:

σ̄ T
xx(ȳ, τ )= σ̄ T

zz(ȳ, τ )= −
1 − 2ν
1 − ν

χ3T̄ (ȳ, τ ), σ̄ T
yy(ȳ, τ )= 0, (73)

σ̄M
xx (ȳ, τ )= σ̄M

zz (ȳ, τ )=
ν

1 − ν

(
H̄z(ȳ, τ )2 −φ(τ)2

)
, σ̄M

yy (ȳ, τ )=
(
H̄z(ȳ, τ )

)2
−
(
φ(τ)

)2
, (74)

These quasistatic thermal stresses and magnetic stresses satisfy the relations in (70).

4. Numerical results and discussion

So far we have assume the excitation φ(τ) to be arbitrary. Now we specialize to the case of a smoothed
ramp function with a sine-function profile:

φ(τ)=

 sin
(
π

2τ0
τ
)

(τ < τ0),

1 (τ ≥ τ0),
(75)

where τ0 is the (nondimensional) rise time. The particular expressions for the various functions of τ in
(37), (49) and (65) — ân(τ ), b̂(0)n (τ ), b̂ jmn(τ ), ĉT (0)

in (τ ), ĉT
i jmn(τ ), ĉM(1)

i i (τ ), and ĉM(2)
imn (τ )— will not be

spelled out because they can be easily derived.
We carried out numerical calculations corresponding to the analytical results above in the case of

aluminum, whose material properties are

µ= 4π × 10−7
[H/m], σ = 3.42 × 107

[S/m], C = 2.7 × 103
[J/kgK], ρ = 0.9 × 103

[kg/m3
],

κ = 92.6 × 10−6
[m2/sec], ν = 0.33, E = 70 [GPa], α = 24 × 10−6

[1/K].

In addition, since the nondimensional variable χ2 in (16) includes the half-thickness b, this dimension
needs to be fixed. We chose b = 1.0 × 10−4

[m] to ensure the convergence of the solutions. The rise time
τ0 is given by

τ0 = ε
1
χ2
,

where ε is a dimensionless parameter and 1/χ2 is the nondimensional time needed by the stress waves
created at the surfaces to arrive at the middle of the infinite plate.
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Figure 2. Time evolution of the eddy current J̄x , for ε = 0.5.

We first present the numerical results for ε= 0.5. Figure 2 shows the time evolution of eddy current J̄x .
It shows a peak ahead of τ = τ0 at the surface (ȳ = 1.0), then it decays slowly with time. Figure 3 shows
the time evolution of the temperature change T̄ for h̄ = 0.0 and 1.0 until they attain steady state. It can be
seen from that figure that temperature changes take a long time to attain a steady state, in comparison with
the eddy current J̄x . This is because the value of χ1 in (16), which is the ratio of the diffusion coefficient
of temperature field κ to that of magnetic field (µσ)−1, is very small: χ1 = κµσ ∼= 3.98 × 10−3 for
aluminum. In the case of h̄ = 1.0, the temperature change converges to zero, whereas in the case of
h̄ = 0.0 (insulated plate), it converges to a value that can be determined from (45):

T̄ =
1
2

∫ 1

−1

(∫
∞

0
w̄(ȳ, τ ′) dτ ′

)
dȳ. (76)

However, as shown in Figure 4 (short-term time evolution of temperature), there is not a large dif-
ference between the insulated and noninsulated cases: the temperature changes always propagate from
the surface more slowly than the eddy current. Therefore numerical results on the thermal stresses
are shown only for the case of h̄ = 0.0. Figure 5 shows the dynamic and quasistatic behaviors of the
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Figure 3. Time evolution of temperature changes T̄ , for h̄ = 0.0 and 1.0, ε = 0.5.
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Figure 4. Short-term evolution of temperature change T̄ , for h̄ = 0.0 and 1.0, ε = 0.5.

thermal stress σ̄ T
xx(= σ̄ T

zz) at the middle (ȳ = 0.0) and the surface (ȳ = 1.0) of the infinite plate versus
nondimensional time τ . Note that the dynamic solution of σ̄ T

xx corresponds to the quasistatic one at the
surface (see (68) and (73) ), and that the quasistatic solution is proportional to temperature change T̄
with the negative constant −(1 − 2ν)χ3/(1 − ν)∼= −2.06 for aluminum. Therefore, the thermal stress
σ̄ T

xx is compressive at the surface. However, the dynamic stress at the middle shows different behavior
from the quasistatic one as shown in Figure 5. The dynamic behavior of the thermal stress σ̄ T

yy is shown
in Figure 6. Consequently, the quasistatic one is identically zero as shown by the second relation in (73).
In Figure 6, a new nondimensional time τE is introduced for convenience. The nondimensional time τE

is based on the longitudinal wave velocity CL , defined as

τE =
τ

χ2
=

CL

b
t.
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Figure 5. Dynamic and quasistatic behaviors of the thermal stress σ̄ T
xx versus nondimen-

sional time τ , for h̄ = 0.0, ε = 0.5.
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We see from Figure 6 that a pulsed stress wave is induced by the rapid surface temperature rise in
Figure 4. As shown in Figure 7, the stress waves created on both surfaces propagate to the middle, and
then interfere with each other at the middle. Therefore, the absolute value of the stress at the middle
becomes about twice of those in distant positions from the middle as shown in Figures 6 and 7.

Figure 8 shows the dynamic and quasistatic behaviors of the magnetic stress σ̄M
yy at the middle versus

nondimensional time τ . The magnetic stress components σ̄M
xx and σ̄M

zz are omitted here because those
components are proportional to the component σ̄M

yy with ν/(1 − ν) ∼= 0.49 as shown by (69) and (74).
Although the maximum absolute value of the quasistatic stress σ̄M

yy is less than 1, as shown by the second
relation in (74), the absolute value of the dynamic stress can exceed 1, as shown in Figure 8. The variation
in the y direction of the dynamic magnetic stress σ̄M

yy is shown in Figure 9.
The stress waves, whose maximum absolute value is 1, created at both surfaces due to the Lorentz

force propagate into the middle, and then get superimposed. Therefore, the maximum absolute value of
the dynamic stress becomes 2 except near the surfaces, as shown in Figure 9. Comparing the magnetic
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stress σ̄M
yy in Figure 8 with the thermal stress σ̄ T

yy in Figure 6, we see that the former is the dominant
stress component in the y direction.

Numerical results for ε = 10.0 — eddy current, thermal stress and magnetic stress — are presented
in Figures 10–12. It can be seen from Figure 10 that the eddy current J̄x is small and varies slowly in
comparison with the case ε = 0.5. Therefore, the maximum absolute values of both the thermal stress
σ̄ T

xx and the magnetic stress σ̄M
yy are smaller and there is almost no difference in behavior between the

dynamic and quasistatic solutions.
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EXPERIMENTAL EVALUATION OF TWO MULTIPHASE CONSTITUTIVE
MODELS APPLICABLE TO METAL MATRIX COMPOSITES UNDER

NONPROPORTIONAL VARIABLE AMPLITUDE LOADING

GBADEBO MOSES OWOLABI AND MEERA NAND KAUR SINGH

In a previous research investigation, using the Mróz model and the endochronic theory of plasticity as
their bases, two sets of elastic-plastic constitutive relations were identified that account for the interaction
in stress fields between adjacent particles in particulate metal matrix composites (PMMCs). In this paper
the ability of the two models to predict the behavior of PMMCs under variable amplitude nonpropor-
tional cyclic loading paths is evaluated by comparing the models predictions with experimental results
obtained from a series of biaxial (tension-torsion) cyclic tests performed on tubular specimens made from
6061-T6 aluminum with 10 and 20% volume fractions of alumina particles. For most of the investigated
loading paths, both models predict satisfactorily the amplitudes of the experimental strains. However, the
endochronic theory-based constitutive model generally gives better predictions of the measured strains.

Notation

m matrix

f reinforcement

C f reinforcement stiffness tensor

Cm matrix stiffness tensor

F yield function

Ii jkl identity tensor

δ Kronecker delta

1 increment of a variable

εi j components of strain tensor

dµ magnitude of translation

ρ() hereditary (memory) function

σi j components of stress tensor

σ `o yield stress of surface `

dµ magnitude of translation

K p hardening modulus

z intrinsic time scale

i, j, k, l, r, s indices = 1,2,3 (summation convention)

Si j components of deviatoric stress tensor

Si jkl components of Eshelby’s tensor

V f reinforcement volume fraction

Vm matrix volume fraction

Cr material constants

α`i j components of back stress tensor of surface `

ξi j deviatoric components of αi j

d(·) differential form of variable or constant

(·)e elastic components of a variable

(·)( f ) reinforcement component

(·)` component with reference to surface `

(·)(m) matrix components of a variable or constant

(·)p plastic components of a variable

(·)q q-th step component of a variable

(·)T total components of a variable

Keywords: cyclic plasticity, nonproportional loading, particulate reinforced material, Mróz model, endochronic theory.
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1. Introduction

Due to their material properties, particulate metal matrix composites (PMMCs) are increasingly finding
applications in aerospace, automotive, and related industries. However, due to the complexity of the
geometry of the reinforcements and the nonlinear (inelastic) behavior of the matrix, the behavior of
PMMCs particularly when subjected to complex service loading conditions is still not fully understood
[Ji and Wang 2003; Lease et al. 1996; Ju and Chen 1994]. Thus, with increasing interest in the application
of these materials in both structural and nonstructural applications, the need to understand, model, and
predict the mechanical response and fatigue life of the materials to applied service loads also increases.

Most research studies that have described the constitutive behavior of PMMCs assume that the com-
posites remain elastic as the loads are applied. Goodier [1933] worked on modeling a spherical and a
cylindrical inclusion in a matrix, providing the first detailed analysis of the elastic stress-strain response
of composite materials. Subsequently, Sadowsky and Sterberg [1952] derived relations defining the
elastic stress-field around an ellipsoidal cavity under plane stress conditions. The general problem of
elastic field inside and at the interface of an ellipsoidal inclusion was solved by Eshelby [1957]. His
theory of equivalent inclusions is perhaps the most widely accepted elastic constitutive model applicable
to composite materials. However, Eshelby’s method is only applicable to composites with very small
volume fraction of the reinforcement — at most 5%. For higher volume fractions of reinforcements, the
method has to be modified to account for the interaction in the stress field between the reinforcements.

The concept of average stress and strain in the composite and its constituents has been used extensively
in the past to account for the interactions in the stress field between the particles. The self-consistent
theory [Hershey 1954; Kröner 1961] and the mean-field theory of Mori and Tanaka [1973], both based
on the concept of average stress and strain, are the commonly used models. The self-consistent theory
was originally developed to model the average constitutive behavior of polycrystals; it has been used to
estimate the macroscopic elastic moduli of two-phase composites and also the average internal nonuni-
formity of strain and stresses in the matrix and particles of a composite system. Hutchison [1970] used
this theory to estimate the elastic-plastic incremental relations of polycrystals and composites. Although
straightforward, the method does not provide acceptable results when the matrix contains either voids or
perfectly rigid inclusions [Mori and Wakashima 1990]. Consequently, Mori–Tanaka mean-field theory
has been more widely used. The original approach of [Mori and Tanaka 1973] has been used mainly to
evaluate the elastic behavior of composite materials. The emphasis on elasticity shows its importance in
applications, and provides the means for developing practical design methods. It is, however, unrealistic
to assume that all components being modeled behave linearly.

Tandon and Weng [1988] considered the elastic-plastic stress-strain behavior of spherical particle
reinforced composites under multiaxial loading using the secant moduli of the ductile, work-hardening
matrix. Specifically, they analyzed the elastic-plastic behavior of the composites by applying the concept
of secant properties to the elastic mean field theory. In the Tandon–Weng model, the secant modulus
of the matrix in the plastic range changes with an increase in plastic deformation. Since the change is
not known beforehand, at each state of stress or strain an initial value has to be assumed for the matrix
effective plastic strain. The model has received attention from the research community, but it is only
applicable if the loads are applied in a proportional manner and not if there is load reversal.
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In an attempt to study the elastic-plastic deformation of multiphase composite materials under nonpro-
portional loading, Li and Chen [1990] reformulated the mean field theory in an incremental form. Their
method is meant to be applied to multiphase materials in which the components exhibit different elastic-
plastic material behavior under nonproportional or reverse loading. Theoretically, the model could be
used to study the elastic-plastic deformation of composite materials under nonproportional monotonic and
cyclic loadings; however, Li and Chen only implemented and validated the model for uniaxial monotonic
loading. That is, in [Li and Chen 1990], the model was not validated for the case of multiaxial cyclic
loading. Generally, their model can be used in conjunction with any cyclic plasticity model developed
for homogeneous materials to predict the matrix plastic strain components.

Inelastic constitutive models for homogeneous metals subjected to cyclic loads (cyclic plasticity mod-
els) are still evolving. Chaboche [1986] describes two classes of such models. Those in the first class
are based on thermodynamic concepts and assume that the present state of the material depends on the
present values of observable variables and a set of internal variables. Included in this category are the
Ziegler model [1959], the Mróz model [1967], the two-surface plasticity model [Dafalias and Popov
1975; Krieg 1975], and the Armstrong and Frederick model [1966], modified by Chaboche et al. [1979].
The second class of plasticity models is based on the assumption that the present state of material depends
on the present values and the past history of observable variables only (total strains, temperature etc.),
giving rise to hereditary theories. The endochronic theory of plasticity [Valanis 1971; 1980] is based
on this concept. Several of these models and their various modifications have been used to predict the
elastic-plastic, creep and ratcheting behaviors of homogeneous materials and are well documented in
the literature, including recent work such as [Kang et al. 2003; Chiou and Yip 2003; Tong et al. 2004;
Vincent et al. 2004; Chen et al. 2005; Hashiguchi et al. 2005].

Only a few cyclic plasticity models have been incorporated into a formulation targeted at describing
the constitutive behavior of metal matrix composites under multiaxial loading conditions. Ogarevic
[1992] formulated a composite constitutive model based on Li and Chen’s incremental mean field theory,
the incremental theory of plasticity, and a linear kinematic hardening rule to study the uniaxial cyclic
deformation of discontinuously reinforced metal matrix composites (MMCs) both at room and elevated
temperatures. The model was demonstrated only analytically for externally applied uniaxial cyclic load-
ing. A major relevant model that addresses cyclic biaxial proportional external loading was developed
in [Lease 1994; Lease et al. 1995], where the Li and Chen model was used together with Chaboche’s
incremental plasticity theory to simulate the constitutive behavior of the composite system. The model
was demonstrated both analytically and experimentally for cyclic axial and biaxial proportional loading.
Although the axial and torsional elastic-plastic strain and stress seemed to accurately simulate the mono-
tonic tests, the elastic loading/unloading portions of the cyclic uniaxial and biaxial tests show obvious
differences that increase with increasing strain range [Lease 1994]. Fleming and Temis [2002] used cyclic
strain plasticity relationships based on the classical strain plasticity theory hypotheses in [Johnson and
Mellor 1975] to predict cyclic stress-strain response of the matrix material. The constitutive equations
lead to a nonlinear finite element problem that was solved using a special iterative procedure at every
half-cycle of the loading or unloading. However, the model has only been demonstrated for monotonic
and uniaxial cyclic loading conditions.

In [Owolabi and Singh 2003], two constitutive models capable of predicting the elastic-plastic strain-
stress response of the matrix, reinforcement, and the PMMC under multiaxial cyclic loading conditions



134 GBADEBO MOSES OWOLABI AND MEERA NAND KAUR SINGH

were developed. Specifically, the elastic components of the matrix and reinforcement strains and stresses
were obtained from the applied incremental stresses or strains by implementing known relations specific
to composites. The matrix plastic strain components were obtained using two alternative cyclic plasticity
routines. Specifically, the Mróz multisurface model [1967] and the endochronic theory of plasticity
[Valanis 1971; 1980], originally developed for homogeneous materials, were used to model the matrix
cyclic plasticity. The elastic and plastic (matrix only) strains were superimposed to obtain the constituents
constitutive relations. These models are capable of predicting the constitutive behavior of PMMCs under
a variety of loading conditions and are dependent on the properties of the matrix and the properties,
volume fraction and geometry of the reinforcing particles. The constitutive models account for the
interactions in stress fields between adjacent particles in PMMCs. In [Owolabi and Singh 2003] we
compared the models predictions to limited experimental results given in [Lease 1994] for PMMCs under
biaxial cyclic strain-controlled (proportional loading) tests with various strain amplitudes. However in
our 2003 paper only preliminary comments could be made regarding the model’s suitability in defining
the constitutive behavior of composites, based on a comparison with the limited experimental results in
[Lease 1994]. That is, more testing was required to make more meaningful conclusions, particularly when
the material is subjected to more complex loadings. Investigations of the ability of the cyclic constitutive
models to predict the elastic-plastic response of PMMCs under more complex loading conditions such
as variable amplitude nonproportional cyclic loading is critical in engineering design.

To date, no cyclic plasticity model applicable to PMMCs has been validated experimentally for cyclic
nonproportional variable amplitude external loading. In addition, experimental data that can be used to
validate existing and newly developed models for PMMCs subjected to variable amplitude loads are very
rare in the open literature. Thus, this paper is designed primarily to provide a complete formulation of the
two models that completely define the constitutive response of the matrix, reinforcement, and PMMCs;
and validate the ability of the models to predict the elastic-plastic behavior of PMMCs under complex
external loading. The theoretical and experimental results of the constitutive response of PMMCs to
such complex loading paths are reported. Note that the experimental results presented here were all
conducted under load-controlled tests. In addition to the variable amplitude loads, one load-controlled
biaxial proportional path was also included.

Section 2 presents a summary of the constitutive models. The experimental procedure and load paths
used are presented in Section 3. In Section 4, the model’s predictions are compared with experimental
results. Conclusions are given in Section 5.

2. Constitutive models

The details of the elastic-plastic constitutive model appear in [Owolabi and Singh 2003], so only a
summary is given here. For PMMCs, we assume that the matrix, consisting of a homogeneous metallic
material, is initially isotropic and strain hardens at the onset of plastic deformation. Since it is additionally
assumed to be cyclically stable, transient effects are not considered. The reinforcement, consisting of
ceramic particles, behaves elastically throughout the loading paths and has higher stiffness relative to the
matrix.
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For small deformations, the total incremental matrix strain tensor dεT
i j(m) can be decomposed into

elastic and plastic components, denoted by superscript e and p:

dεT
i j(m) = dεe

i j(m) + dε p
i j(m). (1)

The reinforcement strain, dεT
i j( f ), only has an elastic component, since the reinforcement (ceramic parti-

cles) deforms elastically:
dεT

i j( f ) = dεe
i j( f ). (2)

The approach used to determine the incremental elastic stress and strain components in the matrix, re-
inforcement, and composite was presented in [Owolabi and Singh 2003] on the same basis as Li and
Chen’s [1990] incremental formulations of mean field theory. This approach is suitable for PMMCs with
high volume fractions of reinforcement, since it accounts for interactions in the stress fields between
reinforcing particles; it is summarized in Section 2.1. Once the matrix stress exceeds the material yield
stress, a suitable cyclic plasticity model must be used to obtain the matrix strains. Two such cyclic
plasticity models are presented in Section 2.2.

2.1. Elastic model. In [Owolabi and Singh 2003; Lease 1994; Lease et al. 1995] it was shown that the
average incremental stress tensors in the matrix and the reinforcements, due to externally applied load
tensor, can be obtained using the incremental form of Mori and Tanaka’s mean field theory [1973]. A
summary of this approach is presented here. Consider an elastic component subjected to an increment in
external load or displacement tensor. In the absence of reinforcement, the external load would give rise
to an increase in the uniform stress field, 1σi j , which can be related to the increment in the strain field,
1εi j . The average incremental stress in the matrix, 1σi j (m), differs from the applied incremental stress
by a perturbed incremental stress, 1σ̃i j (m):

1σi j (m) =1σi j +1σ̃i j (m) = Ci jkl(m)(1εkl +1ε̃kl(m)), (3)

where Ci jkl(m) is the matrix stiffness tensor and 1ε̃i j (m) is the matrix incremental strain disturbance
that results from the presence of the particles. The reinforcement average incremental stress, 1σi j ( f ),
and strain, 1εi j ( f ) are also different from those of the matrix. The average incremental stress in the
reinforcement is

1σi j ( f ) = Ci jkl(m)(1εkl +1ε̃kl(m) +1ε
c
kl −1εt

kl), (4)

where 1εc
kl is a constrained strain set up at all points in the matrix and the reinforcement, and 1εt

kl is a
transformation strain having a finite value within the reinforcements and zero outside them. Although the
solution for the constrained strain field in the matrix is quite complex, an approximate relation between
the constrained strain, the stress free transformation strain, and the 6 × 6 Eshelby tensor S is given by

1εc
i j = Si jkl1ε

t
kl . (5)

The incremental strain disturbance in the matrix can be found using Equations (3)–(5) and the rule of
mixture as

1ε̃i j (m) = (1 − Vm)(I i jkl − Si jkl)(1ε
t
kl), (6)

where Vm is the matrix volume fraction. and I is the identity tensor.
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The incremental transformation strain, 1εt
i j , is found in [Owolabi and Singh 2003] to be

1εt
i j = L−1

i jkl(Cklrs( f ) − Cklrs(m))(C−1
klrs(m)1σkl), (7)

where
L i jkl = (V f − 1)Cklrs(m)(I i jrs − Si jrs)+ Cklrs( f )

(
V f (Si jrs − I i jrs)− Si jrs

)
. (8)

Substituting (7) into (6), and using the result in (3), we get the average incremental stress in the matrix:

1σi j (m) =
(
I i jkl − V f Ci jrs(m)(Sklrs − Iklrs)L−1

i jrs(Ci jkl( f ) − Ci jkl(m))C−1
klrs(m)

)
1σkl, (9)

where V f is the volume fraction of reinforcement.
The incremental matrix elastic strain, 1εe

i j(m), can be obtained from the incremental stress using the
generalized Hooke’s law:

1εe
i j(m) = C−1

i jkl(m)1σkl(m). (10)

The mean incremental stress tensor in the reinforcement, 1σi j ( f ), is obtained from (4), (5) and (7):

1σi j ( f ) =
(
I i jkl + VmCi jrs(m)(Sklst − Iklrs)L−1

i jrs(Ci jkl( f ) − Ci jkl(m))C−1
klrs(m)

)
1σkl . (11)

The incremental elastic strain in the reinforcement can be obtained from the incremental stress using the
generalized Hooke’s law:

1εe
i j( f ) = C−1

i jkl( f )1σkl( f ). (12)

The increment in average strains in the composite can be estimated using an approximate technique
proposed by [Li and Chen 1990] for a multiphase system. The technique assumes that the work done by
the average stress of the composite is equal to the weighted sum of the work done by the local stresses
of the inclusions and the matrix. Under this assumption, the following expression is obtained for a
two-phase composite material:

1σik1εk j = Vm1σik(m)1εk j (m) + V f1σik( f )1εk j ( f ), (13)

from which 1εi j can be obtained in terms of other stress and strain increments. A similar expression of
this work-based rule of mixture has been used in [Lease 1994; Lease et al. 1995] and is valid both in the
elastic and the elastic-plastic regions.

2.2. Cyclic plasticity models. In [Owolabi and Singh 2003] we identified two sets of elastic-plastic
constitutive relations as applicable to PMMCs. These are the based respectively on the Mróz model
(Section 2.2.1) and the endochronic theory of plasticity (Section 2.2.2), and are used below to describe
the increments in the matrix plastic strain given in (1).

2.2.1. The Mróz model. For a plastically deforming material, Mróz [1967] describes a field of ` initially
concentric work hardening surfaces and prescribing a translation rule for the surfaces moving with respect
to one another. The model assumes that each surface can be described by the same relationship as the
yield criterion. Using the von Mises yield criterion on the matrix gives

F`
(
Si j(m), ξi j(m)

)
=

3
2

(
Si j(m) − ξ

`
i j(m)

)(
Si j(m) − ξ

`
i j(m)

)
− σ ` 2

o(m) = 0, (14)

where Si j (m) and ξ `i j (m) are the deviatoric components of the current matrix stress tensor σi j (m) and the
backstress tensor α`i j ; F` is the yield function of the active surface (the one on which the stress state is
located during elastic-plastic loading) at higher stress level; and σ `o is the material yield stress.
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For the active surface, the increment in the plastic strain tensor is related to the increment in the stress
by the flow rule:

dε p
i j (m) =

1
K p

∂F`

∂σi j (m)

(
∂F`

∂σkl(m)
∂σkl(m)

)
, (15)

where K p is the hardening modulus obtained from the matrix uniaxial stress-strain curve. Mróz [1967]
prescribed a translation rule for the determination of the active surface; in our case it takes the form

dξ `i j (m) = dµ
(
S`+1

i j(m) − S`i j(m)
)
, (16)

where dµ is a scalar parameter of the active surface translation, which can be determined using the
consistency condition, and the term (S`+1

i j(m) − S`i j(m)) governs the direction of its translation. The quantity
S`+1

i j(m) is the point on the surface `+ 1 immediately enclosing the active surface; it has the same unit
normal as the active surface ` at the actual current stress state, S`i j(m). It is obtained from the Mróz
translation rule as

S`+1
i j (m) = ξ `+1

i j (m) +
σ `+1

o(m)

σ `o(m)

(
Si j (m) − ξ

`
i j (m)

)
. (17)

2.2.2. Endochronic theory. The ability of the endochronic theory to model certain phenomena in cyclic
plasticity and creep of homogeneous materials was demonstrated in [Wu and Yang 1983; Khan and
Wang 1988; Watanabe and Atluri 1986; Hsu et al. 1991]. In [Owolabi and Singh 2003], the theory was
used along with the incremental mean field theory to predict the constitutive behavior of PMMCs under
biaxial proportional loading conditions. We give a brief description of the theory. For a plastically incom-
pressible and time independent matrix material, the deviatoric stress is related to the matrix incremental
plastic strain by the equation

Si j(m) = 2
∫ z

0
ρ(z − z′)

dε p
i j (m)(z

′)

dz′
dz′. (18)

Here z is the intrinsic time scale and ρ(z) is the material function called the hereditary function, and
given by

ρ(z)=

r∑
r=1

Cr e−αr z, (19)

where Cr and αr are material constants determined from the uniaxial cyclic stress-strain curve of the
matrix.

As described in [Hsu et al. 1991; Owolabi and Singh 2003], for a stress-controlled loading condition,
the incremental matrix plastic strain tensor is related to the incremental intrinsic time scale by

1ε
p
i j (m) =

ai j1z
b

, (20)

where

ai j =
1
2

(
(1Si j (m))q +

r∑
r=1

(Sr
i j (m))q−1(1 − e−αr1z)

)
(21)

and
b =

( r∑
r=1

Cr
(1 − e−αr1z)

αr

)
. (22)
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In these equations q and q−1 denote the current and the previous loading steps, and 1 is the difference
between the current and previous steps. For a given increment of composite stress tensor, the increment
in the intrinsic time scale, 1z, can be obtained, using the secant method or the Newton–Raphson method,
as a root of the equation

b2
− ai j ai j = 0 = R(1z). (23)

2.2.3. Complete formulation of the constitutive models. We now present two models that completely
define the constitutive response of the matrix, reinforcement, and PMMCs. The first combines the elastic
constitutive response defined by the incremental mean field theory with the Mróz model. The second
model differs from the first in that the endochronic theory of plasticity is used to define the increments
in the matrix plastic strain components.

Constitutive relations based on the Mróz model. For multiaxial cyclic loading, using the Mróz-based
model, incremental mean field theory, and the work relation, the following constitutive relations can be
developed to predict the constituents and the composite elastic-plastic strain and stress increments.

Matrix constitutive model. The matrix constitutive relation can be finalized by substituting (9), (10) and
(15) into (1). Changing the differential to small increments for numerical implementation yields

1εi j (m) =
1 + υm

Em

(
Ii jkl − V f Ci jrs(m)(Sklrs − Iklrs)L−1

i jrs(Ci jkl( f ) − Ci jkl(m))C−1
klrs(m)

)
1σkl

−
υm

E(m)

(
1σkk − V f Ci jrs(m)(Sklrs − Iklrs)L−1

i jrs(Ci jkl( f ) − Ci jkl(m))C−1
i jrs(m)1σkk

)
δi j

+
n̂i j

K p(m)
n̂kl
(
Ii jkl − V f Ci jrs(m)(Sklrs − Iklrs)L−1

i jrs(Ci jkl( f ) − Ci jkl(m))C−1
klrs(m)

)
1σkl . (24)

Reinforcement constitutive model. The reinforcement, being relatively stiff, only has elastic strain com-
ponents. The reinforcement constitutive relation can be finalized by substituting (11) and (12) into (2).
Changing the differential to small increments yields

1εi j ( f ) =
1 + υ f

E f

(
I i jkl + VmCi jrs(m)(Sklrs − Iklrs)L−1

i jrs(Ci jkl( f ) − Ci jkl(m))C−1
klrs(m)

)
1σkl

−
υ f

E( f )

(
11σkk + VmCi jrs(m)(Sklrs − Iklrs)L−1

i jrs(Ci jkl( f ) − Ci jkl(m))C−1
i jrs(m)1σkk

)
δi j . (25)

Composite constitutive model. The composite constitutive relation can be reached by substituting Equa-
tions (9), (11), (24), and (25) into (13). Changing the differential to small increments yields

1εi j = Vm[1σkl]
−1(Ii jkl − V f Ci jrs(m)(Sklrs − Iklrs)L−1

i jrs(Ci jkl( f ) − Ci jkl(m))C−1
klrs(m)

)
1σkl

×

(
1 + υm

Em

(
Ii jkl − V f Ci jrs(m)(Sklrs − Iklrs)L−1

i jrs(Ci jkl( f ) − Ci jkl(m))C−1
klrs(m)

)
1σkl

−
υm

E(m)

(
1σkk − V f Ci jrs(m)(Sklrs − Iklrs)L−1

i jrs(Ci jkl( f ) − Ci jkl(m))C−1
i jrs(m)1σkk

)
δi j

+
n̂i j

K p(m)
n̂kl
(
Ii jkl − V f Ci jrs(m)(Sklrs − Iklrs)L−1

i jrs(Ci jkl( f ) − Ci jkl(m))C−1
klrs(m)

)
1σkl

)
+
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+ V f [1σkl]
−1(Ii jkl + VmCi jrs(m)(Sklrs − Iklrs)L−1

i jrs(Ci jkl( f ) − Ci jkl(m))C−1
klrs(m)

)
1σkl

×

(
1 + υ f

E f

(
Ii jkl + VmCi jrs(m)(Sklrs − Iklrs)L−1

i jrs(Ci jkl( f ) − Ci jkl(m))C−1
klrs(m)

)
1σkl

−
υ f

E( f )

(
1σkk + VmCi jrs(m)(Sklrs − Iklrs)L−1

i jrs(Ci jkl( f ) − Ci jkl(m))C−1
i jrs(m)1σkk

)
δi j

)
. (26)

Constitutive relations based on endochronic theory. For multiaxial cyclic loading, using the endochronic
theory-based model, incremental mean field theory, and the work relation, the following constitutive
relations are developed to predict the constituents and the composite elastic-plastic strain and stress
increments.

Matrix constitutive model. The matrix constitutive relation can be finalized by substituting (9), (10), and
(20)–(22) into (1). Changing the differential to small increments yields

1εi j (m) =
1 + υm

Em

(
I i jkl − V f Ci jrs(m)(Sklrs − Iklrs)L−1

i jrs(Ci jkl( f ) − Ci jkl(m))C−1
klrs(m)

)
1σkl

−
υm

E(m)

(
1σkk − V f Ci jrs(m)(Sklrs − Iklrs)L−1

i jrs(Ci jkl( f ) − Ci jkl(m))C−1
i jrs(m)1σkk

)
δi j

+

1
2

(
(1Si j (m))q +

n∑
r=1
(Sr

i j (m))q−1(1 − e−αr1z)
)
1z

n∑
r=1

Cr
(1−e−αr1z)

αr

. (27)

Reinforcement constitutive model. The reinforcement, being relatively stiff, has only the elastic strain
components. Consequently, the reinforcement constitutive relation is the same as in the Mróz-based
PMMCs constitutive model given by Equation (25).

Composite constitutive model. The composite constitutive relation can be finalized by substituting (9),
(11), (25) and (27) into (13). Changing the differentials to small increments yields

1εi j = Vm[1σkl]
−1(Ii jkl − V f Ci jrs(m)(Sklrs − Iklrs)L−1

i jrs(Ci jkl( f ) − Ci jkl(m))C−1
klrs(m)

)
1σkl

×

(
1 + υm

Em

(
Ii jkl − V f Ci jrs(m)(Sklrs − Iklrs)L−1

i jrs(Ci jkl( f ) − Ci jkl(m))C−1
klrs(m)

)
1σkl

−
υm

E(m)

(
1σkk − V f Ci jrs(m)(Sklrs − Iklrs)L−1

i jrs(Ci jkl( f ) − Ci jkl(m))C−1
i jrs(m)1σkk

)
δi j +

ai j1z
b

)
+ V f [1σkl]

−1(1σkl + VmCklst (m)(Sklst − Iklst)L−1
i jkl(Cklst ( f ) − Cklst (m))C−1

klst (m)1σkl
)

×

(
1 + υ f

E f

(
Ii jkl + VmCi jrs(m)(Sklrs − Iklrs)L−1

i jrs(Ci jkl( f ) − Ci jkl(m))C−1
klrs(m)

)
1σkl

−
υ f

E( f )

(
1σkk + VmCi jrs(m)(Sklrs − Iklrs)L−1

i jrs(Ci jkl( f ) − Ci jkl(m))C−1
i jrs(m)1σkk

)
δi j

)
. (28)

To obtain numerical results, two MATLAB programs were developed, one for each of the Mróz-
based model and the endochronic theory-based model. Each program calculates either the elastic-plastic
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composite strain or stress history given the composites material properties and the known stress or strain
history. The Mróz-based PMMCs constitutive model uses the yield stresses and hardening moduli of the
matrix yield surfaces, while the endochronic theory-based PMMCs constitutive model uses the materials
constants as additional inputs. The matrix incremental stress-strain increments are obtained separately
using (9), (10), and (24) for the Mróz-based model, while for the endochronic theory-based model, the
elastic-plastic matrix stress-strain increments are obtained using (9), (10), and (27) after calculating the
increment in the intrinsic time using (23). The final state of stress and strain for a loading step can
then be obtained by adding the increments to the previous stress-strain history. The increments in the
reinforcement stress and strain can be obtained from the elastic analysis using (11) and (25). For each
loading step in the loading history the composite elastic-plastic strain or stress state can be obtained
using the elastic-plastic matrix strains, the elastic reinforcement strains and stresses, and (26) and (28)
respectively for the Mróz-based and the endochronic theory based models.

3. Experimental procedure

To assess the capability of the two constitutive models presented in Section 2.2.3 to predict the elastic-
plastic constitutive behavior of PMMCs, biaxial cyclic (proportional and nonproportional) loads were
applied to tubular PMMC specimens, machined from round bars as shown in Figure 1. The PMMC
materials used are general purpose Duralcan materials made of 6061-T6 aluminum alloy reinforced with
10 and 20% by volume alumina (Al2O3). The composite and its constituents properties, obtained from
[Bill 2003; Lease 1994], are shown in Table 1. In [Owolabi and Singh 2003], three terms in the series
expansion of the Equation (19) were found to accurately model the stress-plastic strain response of the
matrix cyclic stress-strain curve. The values of the material constants, Cr and αr , associated with the
endochronic theory-based PMMCs constitutive model for the matrix material 6061-T6 alloy are shown
in Table 2. For the Mróz model, the values of the hardening moduli and yield stresses for ten surfaces
used in the matrix uniaxial curve are shown in Table 3.

For the verification of any constitutive model, tubular specimens are normally used because they are
more suitable for use for torsional and combined tensile-torsional tests than the corresponding smooth
solid specimens. That is, the relationship between the applied torque, T , and the shear stress, τ , can easily
be made for tubular specimens in both the elastic and the plastic regions than can be for solid specimens.

31.80 

D =  
25.40 Ø 

Overall Specimen Length, L = 179.30 

Radius, r = 63.50 

Gage Section Outer 
Diameter, do = 12.78 

Gage Section Inner 

Diameter, di = 12.70  

Figure 1. Geometry of the smooth tubular specimen.
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ultimate strength yield strength elastic modulus elongation
material (MPa) (MPa) (GPa) (%)

6061-T6 310 (262) 276 (241) 69 20
6061/Al2O3/10p 352 (324) 296 (262) 81 10
6061/Al2O3/20p 372 (345) 352 (317) 97 4

Table 1. Tensile properties (typical and minimum values) of extruded rods, from [Bill
2003; Lease 1994]. Minimum values based on a 99% confidence interval.

C1 (MPa) C2 (MPa) C3 (MPa) α1 α2 α3

7841132 218948 17115 60172 2097 347

Table 2. Material constants used in the endochronic theory series expansion.

hardening modulus yield stress
surface (×10−11) (MPa)

1 0.381 150
2 0.476 175
3 1.150 225
4 1.307 237
5 1.515 275
6 4.167 330
7 5.556 315
8 16.667 325
9 111.111 340

10 222.222 350

Table 3. Discretization of the matrix uniaxial stress strain curve to ten surfaces.

Using the thin-wall assumption, the shear stress distribution in a tubular specimen was obtained in [Lease
1994; Wu et al. 1992] as

τ =
T

2πr2
m t
, (29)

where rm and t are the mean radius and wall thickness respectively. Equation (29) is applicable both to
elastic and elastic-plastic material behavior in the outer region. The shear stress obtained in Equation
(29) is normally considered to correspond to the strain at the mid-surface of the smooth tubular specimen.
Consequently, the smaller the wall thickness of the specimen, the higher the accuracy of the results
obtained. For the constitutive model verifications, if the smooth tubular specimen is subjected to an axial
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load P , the stress distribution is uniform. It can be obtained from

σ =
4P

π(do − di )2
, (30)

where σ is the uniform axial stress, and do and di (shown in Figure 1) are the outer and inner diameters
of the tubular specimen in the gage section respectively. It should be noted that Equation (30) applies to
both elastic and elastic-plastic material behavior.

A servo-hydraulic biaxial load frame [Instron 1992] was used to apply the loads. The frame can apply
axial and/or torsional loads both monotonically and cyclically. It has an axial (P) and a torsional (T )
load capacity of ±250 kN and ±2500 Nm respectively. Experimental tests were conducted using three
loading paths: a biaxial proportional loading path (Figure 2) and two variable amplitude nonproportional
loading paths (Figure 3).
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Figure 2. Cyclic proportional tension-torsion (p-t) loading path.
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Figure 3. Variable amplitude nonproportional loading path: (a) path 1; (b) path 2.
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A 3D image correlation technology system [Aramis 2003] was used to obtain both the axial and the
shear strains on the exterior surface close to the middle section of the specimens gage length. The system
has the capacity to measure surface strain fields with high resolution; the strain sensitivity is in the range
of 50–100 microstrains. The equipment also has a measurement sensitivity of 1/30,000 field of view and
thus provides extensive strain measurements at the gage length. To measure the 3D deformations and
surface strains, a random or regular pattern is first applied to the area of the specimen under investigation.
A typical pattern consists of a white dye penetrant developer, and black spray paint. The white dye is
applied first, allowed to dry, then followed with very black spray paint. The pattern should exhibit a high
contrast to the surface otherwise the matching of the captured images, from which the displacements
and the surface strains are obtained, cannot be carried out correctly [Tyson et al. 2002]. As the loads are
applied, the pattern deforms with the test specimen. An image of the deforming pattern is then captured
either manually or automatically at desirable load or time intervals by a pair of high resolution digital
cameras. The cameras enable the 3D image correlation system to register the 3D shape of the object.
The initial image processing defines unique correlation areas known as macro-image facets, typically
5–20 pixels square across the entire imaging area. The center of each facet is a measurement point
that can be thought of as an extensometer or a strain rosette. The system processes and visualizes the
data gathered in order to obtain an impression of the distribution of strains in the object. It recognizes
the surface of the specimen in digital images, and attributes coordinates to every pixel in the image.
The system tracks the stochastic pattern applied to the measured surface with subpixel accuracy. Hence
localized deformation can be tracked as long as the test specimen remains within the cameras field of view.
Using photogrammetric principles [Aramis 2003] and image processing, the specimen’s 3D coordinates,
3D displacements, and the surface strain field are automatically calculated using the associated software
during the post-processing stage.

4. Results and discussion

The results for the two constitutive models are compared to the experimental results obtained from the
tests conducted on the tubular specimens using the tension-torsion load paths in Figures 2 and 3. Note
that all the relations presented in the previous sections are valid for cyclic nonproportional (constant
or variable amplitude) loading. Either model can be employed knowing the material properties, and
either the stress or strain history. Here, the models are demonstrated specifically for load-controlled
simulations. In the numerical implementations, equations (29) and (30) are employed to obtain the
composite experimental torsional and axial stresses respectively from the applied combined torsion (T )
and Tension (P) loads. The elastic-plastic composite strains are subsequently obtained from the known
stresses. The strain results obtained are compared with experimentally determined strains.

Figure 4 shows the predicted and experimental results for cyclically stable combined axial/torsional
proportional loading (Figure 2) of the tubular specimens. The results of this proportional loading path
show the ability of both models to predict the elastic-plastic hysteresis loops associated with cyclic
loading. Most of the characteristics exhibited by the experimental results are reflected quite well by both
models. However, the major disagreement that can be classified as quantitative is the difference in strain
levels prescribed at high plastic strains. The results indicate the Mróz-based PMMCs constitutive model
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Figure 4. Experimental and simulated shear strains versus axial strains for hollow tube
specimen under proportional cyclic load (10% volume fraction).

slightly over-predicts, while the endochronic theory-based PMMCs constitutive model slightly under-
predicts the experimental shear strains. The difference between the predicted and experimental results
for the endochronic theory-based PMMCs constitutive model may be due to the approximate method
used to obtain the material constants. For the Mróz-based PMMCs constitutive model, the number of
surfaces used in the multisurface model could have influenced the results. The number of surfaces used
may have a significant effect on the direction of translation of the yield surfaces, and thus, affect the
predicted results.

Figures 5 and 6 show the strain response of the tubular specimens predicted by the experimental and
proposed models to the variable amplitude loading paths shown in Figure 3. Both models predict very
similar strain responses for the loading paths and also give reasonable qualitative estimations of the
measured strains. However, both models sometimes over-predict and at other times under-predict the
measured strains. Generally, the endochronic theory-based PMMCs constitutive model predictions are
closer to the experimental results than the Mróz-based PMMCs constitutive model predictions, particu-
larly for the measured peaks and valleys that are essential for fatigue life prediction.

In the load paths considered, both models produce a reasonable qualitative and quantitative response of
the composite behavior. The Mróz-based PMMCs constitutive model requires a large number of surfaces
and a clearly defined yield point to give good results, while in the endochronic theory-based PMMCs
constitutive model, determining the material constants necessary for its implementation is a very difficult
task. The Mróz-based PMMCs constitutive model seems to be mathematically more complex than the
endochronic theory-based PMMCs constitutive model. In general, the endochronic theory-based PMMCs
constitutive model predictions are closer to the experimental results than the Mróz-based PMMCs consti-
tutive model predictions for the load path tested. Thus, the endochronic theory-based PMMC constitutive
model was used in [Owolabi and Singh 2006] to provide some of the relations that are necessary in
defining notch-root stresses and strains in PMMC components with geometric discontinuities.



TWO MODELS FOR METAL COMPOSITES UNDER NONPROPORTIONAL VARIABLE LOADING 145

-0.8

-0.4

0

0.4

0.8

-0.4 -0.2 0 0.2 0.4
Experimental

Endochronic-Based

Mroz-Based

niart
S rae

h
S

)
%( 

Axial Strain (%) 

Figure 5. Experimental and simulated shear strains versus axial strains for hollow tube
specimen under a variable amplitude load path (Figure 3a, 10% volume fraction).
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Figure 6. Experimental and simulated shear strains versus axial strains for hollow tube
specimen under a variable amplitude load path (Figure 3b, 20% volume fraction).

The differences between the Mróz-based PMMCs constitutive model predictions and the experimental
results may be due to the influence of the number of surfaces on the direction of translation of the
backstress tensors of the yield surfaces. In addition, the number of load increments used may affect
the predicted results. Theoretically, the Mróz-based PMMCs constitutive model can be used with large
increments, however, as with other cyclic plasticity models, care must be taken in the specification of
the input load increments. Since a quantitative relation between the number of surfaces, load increments,
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and the predicted results is difficult to formulate, efforts were made in this research to use a combination
of the number of yield surfaces and load increments that gave optimal and convergent results. Generally,
for small load levels, the number of loading increments and/or yields surfaces used may not significantly
affect the predicted results. However, for high load levels, the number of loading increments and/or yield
surface may significantly affect the magnitudes of the predicted results. To address this limitation one
can use the two-surface model based on the Mróz model and developed in [Dafalias and Popov 1975;
McDowell 1985a; 1985b; Itoh et al. 2000].

5. Conclusions

In this paper, two elastic-plastic constitutive models were evaluated for their applicability to model the
behavior of PMMCs under complex loading conditions. Details of the experimental and numerical
results that demonstrate the basic qualitative and quantitative aspects of the cyclic plasticity models
were presented. For most of the investigated loading paths, both models predict satisfactorily the ampli-
tudes of the experimental strains and qualitatively predict reasonably the characteristics features of the
experimental results. However, the endochronic theory-based constitutive model generally gives better
qualitative and quantitative predictions of the measured strains. This is the first attempt to incorporate
two cyclic plasticity routines into the development of elastic-plastic constitutive relations for PMMCs
components particularly under multiaxial variable amplitude loading conditions. It is important to state
that any plasticity model that incorporates path dependent material behavior may be used. However, the
constitutive models used in this study provide a simple to implement explicit numerical algorithm valid
for stress-controlled simulations. While the models are associated with some limitations and thus are not
expected to be pertinent to all possible cyclic loading conditions, the results obtained, however, provide
solid foundation for further and more systematic experimental and theoretical investigations.
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BOUNDARY ELEMENT ANALYSIS OF THE STRESS FIELD AT THE
SINGULARITY LINES IN THREE-DIMENSIONAL BONDED JOINTS UNDER

THERMAL LOADING

MONCHAI PRUKVILAILERT AND HIDEO KOGUCHI

The stress distribution near a point on the stress singularity line of dissimilar materials in three-dimen-
sional joints under thermal loading are investigated using BEM based on Rongved’s fundamental solu-
tions. Stress distributions for the material combinations in the singularity region, in the no singularity
region, and in the boundary between them on the Dundurs composite plane are investigated. The in-
fluences of thermal expansion coefficients, loading conditions and dimensions on the stress distribution
in three-dimensional joints composed of two blocks are examined. The stress intensity factors in three-
dimensional joints under a uniform change in temperature are proportional to the temperature variation,
1T , and depend on the difference in the thermal expansion coefficients. Furthermore, the level of the
stress distributions around the stress singularity lines also increases significantly as the length of one side
in the parallel cross section to the interface decreases.

1. Introduction

Stress singularities at the interface in the bonded joints of dissimilar materials are induced by mechanical
loading or thermal loading. Thermal stresses are caused by differences in elastic properties and thermal
expansion coefficients in dissimilar materials joints. The stress singularities exist not only at the vertex
in three-dimensional joints of dissimilar materials but also along the intersection of the interface with its
free surfaces. The cross line has been referred to as the stress singularity line. Li et al. [1992] reported
the results of stress analysis for dissimilar materials using three-dimensional BEM based on Kelvin’s
fundamental solutions. In the analysis, the interface must be divided using very fine meshes along the
stress singularity lines, and hugely memory- and time-consuming procedures are required for accurate
analysis. Then, Koguchi [1997] investigated the stress singularity in three-dimensional bonded joints
using three-dimensional BEM based on Rongved’s fundamental solutions. Rongved’s fundamental solu-
tions [Rongved 1955] satisfy boundary conditions at the interface. Therefore, the number of nodes and
elements necessary for accurate analysis decreases, because the BEM based on Rongved’s fundamental
solutions does not require the interface area of dissimilar materials joints to be divided into elements.
Koguchi et al. [2003] also used the fundamental solution for two-phase transversely isotropic materials
to investigate the stress singularity fields in three-dimensional bonded joints using three-dimensional
BEM. Furthermore, Prukvilailert and Koguchi [2005] reported on stress singularity analysis around a
point on the stress singularity line in three-dimensional bonded joints using three-dimensional BEM
based on Rongved’s fundamental solutions. However, this previous research focused only on the stress

Keywords: thermoelasticity, thermal stress, logarithmic singularity, stress singularity, three-dimensional joints, dissimilar
materials, BEM.
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Fig. 1. Dundurs� composite plane. 
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Figure 1. The Dundurs composite plane.

singularity distributions in three-dimensional bonded joints under mechanical loading. The distributions
of the stress fields near the point on the stress singularity line in three-dimensional joints of dissimilar
materials under thermal loading have not been made clear so far.

In recent years, there has been much research on thermal stresses at the interface in two-dimensional
bonded joints. Munz and Yang [1992], Munz and Yang [1994] and Yang and Munz [1995] investigated
the stress singularities and stress intensity factors near the free edge of a junction between dissimilar ma-
terials subjected to mechanical or thermal loading using the eigenfunction expansion method. Madenci
et al. [1998] and Barut et al. [2001] developed global (special) elements in a finite element analysis
to investigate the thermo-mechanical stress field in a junction between dissimilar materials. It is well-
known that three-dimensional BEM is useful to efficiently analyze the stress fields in three-dimensional
joints, since only surfaces are divided into meshes for analysis. Cruse et al. [1977] and Rizzo and
Shippy [1977] determined the boundary integral equation for three-dimensional thermoelasticity. The
thermoelastic integral equation was also derived using the body force analogy [Karami and Kuhn 1992;
Cheng et al. 2001].

In this paper, we investigate the stress singularity fields near the singular point on the stress singular-
ity line in three-dimensional joints of dissimilar materials under thermal loading using BEM based on
Rongved’s fundamental solutions. The material combinations are mapped on the α2D − β2D Dundurs
composite plane [1969] for the order of stress singularity in a form of power-law singularity, λa , in plane
strain condition as shown in Figure 1. These parameters are defined as:

α2D =
K m(2) − m(1)

K m(2) + m(1)
,

β2D =
K (m(2) − 2)− (m(1) − 2)

K m(2) + m(1)
,

(1)
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Fig. 2. Stress singularity line in a three-dimensional joint of dissimilar materials and 

spherical coordinate system with the origin at the singular point. 
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Figure 2. Stress singularity line in a three-dimensional joint of dissimilar materials and
spherical coordinate system with the origin at the singular point.

where

K =
G(1)

G(2)
, (2)

m(h) =

4(1 − v(h)), for plane strain,
4

1 + v(h)
, for plane stress,

(h = 1, 2) (3)

in which G(h) is the shear modulus and v(h) is the Poisson’s ratio. The subscript h of these material
properties represents the material region; subscript 1 refers to the region of material 1 and subscript 2
refers to the region of material 2. Prukvilailert and Koguchi [2005] investigated the eigenvalues for the
point on the stress singularity line in three-dimensional bonded joints using the formulation of FEM
eigen analysis developed by Yamada and Okumura [1981] and Pageau and Biggers [1995]. The eigen
equation was derived using the principles of virtual work for deducing the root p (eigenvalue). We
obtained quintuple roots (pl = 1) of logarithmic singularity and a root pa where 0 < pa < 1 of rλa

power-law singularity. We found that the order of stress singularity in a form of power-law singularity,
λa(λa = pa − 1), at the point on the stress singularity line, is almost identical to that at the apex of two-
dimensional bonded joints in plane strain condition, and the contour map of λa in the singular region of
the Dundurs composite plane was plotted. The stress singularity field around the singular point on the
stress singularity line according to the eigenvalues obtained by three-dimensional FEM eigen analysis
can be expressed as follows:
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Fig. 3. Mesh division of the model. 
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Figure 3. Mesh division of the model.

σi j (r, θ, φ)= L i j1(θ, φ)+ L i j2(θ, φ) ln(r/L)+ L i j3(θ, φ)(ln(r/L))2

+ L i j4(θ, φ)(ln(r/L))3 + L i j5(θ, φ)(ln(r/L))4 + (r/L)λa Ki ja(θ, φ, pa),
(4)

where L is the characteristic length of the configuration. L i jm is the stress intensity factor of the loga-
rithmic singularity term (m = 1, 2, . . . , 5), and Ki ja is that of the (r/L)λa term. The subscripts i, j refer
to r, θ and φ in a spherical coordinate system as shown in Figure 2.

2. BEM for thermoelasticity

The stress and displacement fields at a point in the joints with high stress are examined using BEM, which
requires less memory than FEM, especially in the case of three-dimensional joints. Here, Rongved’s
fundamental solutions satisfying the boundary conditions at the interface in dissimilar materials are
applied in our analysis. For thermoelasticity with a uniform temperature variation in dissimilar materials,
the boundary integral equation is derived as follows:

Ci j u j (P)=

∫
S

(
t j (Q)Ui j (P, Q)− Ti j (P, Q)u j (Q)

)
d S(Q)+

∫
S

(
(n j Mϕ)Ui j (P, Q)

)
d S(Q), (5)

where S is the surface of the dissimilar materials model excluding the interface area, P and Q are points
on the boundary, Ci j is the C-matrix derived from the configuration around a boundary point P , and Ui j

and Ti j are Rongved’s fundamental solutions for displacements and surface tractions. Parameter ϕ is a
uniform temperature variation from the stress-free state. The term M varies according to the location of
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Fig. 4. Model for analysis of a three-dimensional joint. 
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Figure 4. Model for analysis of a three-dimensional joint.

an element. We can define M as

M =


2G(1)αT 1(1 + v(1))

(1 − 2v(1))
, in Material region 1,

2G(2)αT 2(1 + v(2))

(1 − 2v(2))
, in Material region 2,

(6)

where αT 1 and αT 2 are the thermal expansion coefficients for material 1 and for material 2, respectively.
A very fine mesh division shown in Figure 3 is used to obtain an accurate stress distribution. The

stress state at internal points can then be derived. First, the strain-displacement relation is written as

εi j =
1
2
(ui, j + u j,i ). (7)

The stress-strain relation for thermoelasticity is given by

σ
(h)
i j = 2G(h)εi j + Nδi jεkk − Mδi jϕ, (8)

where

N =


2G(1)v(1)

(1 − 2v(1))
, in material region 1,

2G(2)v(2)

(1 − 2v(2))
, in material region 2.

(9)

Substitution of Equation (7) into Equation (8) then gives

σ
(h)
i j = G(h)(ui, j + u j,i )+ Nδi j uk,k − Mδi jϕ. (10)
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Fig. 5. Displacements in the z-direction on the upper surface of the model along the edge 

x = 10mm for a uniform temperature variation ( KT 100� ' , cooling down). 
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Figure 5. Displacements in the z-direction on the upper surface of the model along the
edge x = 10 mm for a uniform temperature variation (1T = − 100 K, cooling down.

Finally, the stress σi j at the internal point, ξ , can be obtained by differentiating Equation (5) and substi-
tuting into Equation (10) as follows:

σ
(h)
i j (ξ)=

∫
S

(
tl(Q)D

(h)
i jl (ξ, Q)−V (h)

i jl (ξ, Q)ul(Q)
)

d S(Q)+
∫
S

(nl Mϕ)D(h)
i jl (ξ, Q)d S(Q)−Mδi jϕ, (11)

where the third-order tensor components D(h)
i jl (ξ, Q) and V (h)

i jl (ξ, Q) are obtained by substituting Rong-
ved’s fundamental solutions Ui j (ξ, Q) and Ti j (ξ, Q), respectively, in the stress-displacement equations
as follows:

D(h)
i jl (ξ, Q)= G(h)

(
Uil, j (ξ, Q)+ U jl,i (ξ, Q)

)
+ Nδi jUkl,k(ξ, Q)

V (h)
i jl (ξ, Q)= G(h)

(
Til, j (ξ, Q)+ T jl,i (ξ, Q)

)
+ Nδi j Tkl,k(ξ, Q), (12)

where δi j is the Kronecker delta.
A typical model employed in our calculation is shown in Figure 4. The total number of nodes and

elements are 3067 and 1370, respectively. A very fine mesh division is located around the singular point
on the stress singularity line. For the boundary conditions, the displacements in the x-direction and the
y-direction are free at all surfaces of the model. The displacement in the z-direction at the upper surface
and side surfaces of the model is free, whereas that at the lower surface is fixed to zero.

3. Results and discussion

3.1. Thermal loading. In this section, thermal loading due to a uniform temperature variation (ϕ =1T :

constant) is applied to the three-dimensional joint model. The material combinations of the joint are cho-
sen so as to lie in the singularity region, in the no-singularity region and at the boundary between the two;
here “singularity” refers to the power-law singularity on the Dundurs composite plane in Figure 1. The
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distance between the vertex of the joint and the singular point where the stress distribution is investigated
is 0.0512 mm as shown in Figure 4. Material properties are first chosen as E(1) = 206 GPa, v(1) = 0.3,
E(2) = 52.6742 GPa, v(2) = 0.26316. The corresponding Dundurs parameters (α2D = 0.6, β2D = 0.2)
are in the singularity region. The thermal expansion coefficient of material 1, αT 1, is 1.0 × 10−6K −1,
and of material 2, αT 2, it is 5.0 × 10−6K −1. The uniform temperature variation 1T is −100K , which
means that the temperature in the joint decreases from the stress-free state (1T is negative, indicating
a cooling-down condition). The upper part of the model (material 2) allows more contraction than the
lower part of the model (material 1, which has a lower value of the thermal expansion coefficient). A
comparison of the displacements in the z-direction along the edge (x = 10 mm) on the upper surface
of the model in the BEM analysis with those in the FEM and theoretical analysis is shown in Figure
5. The theoretical analysis based on the theory of thermoelasticity for the extension of a bar shows the
average displacement over the upper surface of the model. As seen in Figure 5, the displacements for
each of the three methods are close to each other. The results of the BEM and the FEM also show
that the displacement varies over the upper surface of the model. The stress distribution of σθθ at the
interface (θ = 0◦) near the singular point on the stress singularity line along the dimensionless distance
r/L in the present BEM analysis for a uniform temperature variation (1T = −100K ) is shown in Figure
6a. For comparison, we also provide the stress distributions of σθθ in two-dimensional bonded joints,
computed using the formulation developed by Munz and Yang [1992] and the commercial FEM program
(MARC) in plane strain condition. It can be seen that the stress distribution of σθθ for three-dimensional
bonded joints is similar to that for two-dimensional bonded joints, but the magnitude is larger. The stress
distributions of σθθ around the singular points located at 0.0392 mm and 0.0292 mm from the junction
vertex are also investigated. To magnify the difference, Figure 6b shows the stress distributions of σθθ in
a semilog scale for the three singular points. The level of the stress σθθ increases slightly as the singular
point approaches the vertex point. Next, the stress distributions of σθθ for various uniform temperature
variations are investigated and shown in Figure 7. The magnitude of the stress σθθ near the singular
point is proportional to the value of a uniform temperature variation according to the Linear Theory of
Elasticity. Figures 8a–8c show the distributions of several stress components −σi j/1T near the singular
point in a log-log scale for various angles of θ . The stress level of −σθθ/1T in Figure 8a increases as
the angle θ approaches 0.

It is well-known that failure and cracks at the interface of joints usually occur due to the tensile stress
of σθθ . The stress distribution of −σθθ/1T at θ = 0◦ in Figure 8a refers to the stress distribution of σθθ
at the interface in Figure 6a divided by 1T = −100K . Moreover, the stress level of −σrθ/1T in Figure
8b decreases while the stress level of −σrr/1T in Figure 8c increases as the angle θ approaches the free
surface of joints. The stress components computed at θ = −10◦,−30◦ and − 60◦ are not reported in the
corresponding figures since their values are negative. All plots obviously have negative slopes. Therefore,
the occurrence of stress singularity in the form of (r/L)λa singularity (power-law singularity) is possible.
However, the curves deviate from a straight line as the distance from the singular point increases. An
attempt to estimate the stress distribution using a function of the 1st order logarithmic singularity term
and the power-law singularity term for two-dimensional joints does not provide a good fit for the stress
distribution of −σθθ/1T at θ = −60◦ shown in Figure 8a. In the present study, three-dimensional
FEM eigen analysis yields one root of power-law singularity, pa = 0.9073, λa = pa − 1 = −0.0927,
and quintuple roots (pl = 1) of logarithmic singularity. Then, a good fit for the profiles of the stress
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Fig. 6. Stress distributions of TTV  at the interface near the singular point on the stress 

singularity line for a uniform temperature variation ( KT 100� ' ). 
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Figure 6. Stress distributions of σθθ at the interface near the singular point on the stress
singularity line for a uniform temperature variation (1T = − 100 K).

distributions in the neighborhood of the singular point can be obtained using Equation (4) which is
a combination of power-law singularity and 4th order logarithmic singularity distributions. Figure 9a
shows the stress distributions of −σθθ/1T at the interface (θ = 0◦) for various values of αT 2 when
αT 1 is fixed to 1.0 × 10−6K −1. The stress level of −σθθ/1T increases as the value of αT 2 increases.
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Fig. 7. Stress distributions of TTV  at the interface for various uniform temperature 

variations in a semi-log scale.  
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Figure 7. Stress distributions of σθθ at the interface for various uniform temperature
variations in a semilog scale.

Furthermore, Figure 9b shows that the stress field is linear in the difference between the thermal expansion
coefficients. Figures 10a–10c show the log-log plots of −σi j/1T for various angles of θ and the Dundurs
parameters located at the zero boundary of singularity in plane strain condition (α2D = 0.4, β2D = 0.2,
E(1) = 206 GPa, v(1) = 0.3, E(2) = 94.68124 GPa, v(2) = 0.15517). The thermal expansion coefficients
for two dissimilar materials are chosen as αT 1 = 1.0 × 10−6K −1 and αT 2 = 5.0 × 10−6K −1. From the
three-dimensional FEM eigen value analysis, there are five roots of pl = 1 and λa = −0.000455. We also
used Equation (4) to approximate the curves of the stress distributions. Because of the very small order
of stress singularity (λa → 0), the (r/L)λa singularity term in Equation (4) is almost constant in the range
10−4

≤ r/L ≤ 10−2. However, in Figure 10a, the plots of the stress −σθθ/1T have significantly negative
slopes. The plots for the stresses −σrθ/1T and −σrr/1T in Figure 10b-10c also have negative slopes.
This means that the existence of logarithmic singularity clearly influences the characteristics of the stress
fields near the stress singularity line for material combinations at the zero boundary of singularity on
the Dundurs composite plane. We also investigate the stress distributions of −σi j/1T for the Dundurs
parameters located in the no-singularity region (α2D = 0.3, β2D = 0.2, E(1) = 206 GPa, v(1) = 0.3,
E(2) = 121.2716 GPa, v(2) = 0.07143, λa = 0.02752 > 0). It can be found that the characteristics of
the stress distributions of −σi j/1T are similar to those at the zero boundary of singularity, because the
Dundurs parameters in the two cases are not very different. The stress distributions of −σθθ/1T at
the interface for material combinations falling in the no-singularity region and at the zero boundary of
singularity when the difference of the thermal coefficient is varied are shown in Figure 11. The stress
distributions for material combinations in the singularity region, in the no-singularity region, and at
the zero boundary of singularity show that the stress intensity factors in Equation (4) are proportional
to the temperature variation 1T and depend on the difference in the thermal expansion coefficients in
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Fig. 8. Stress distributions of /ij TV� '  for various angles of T  ( 2 20.6, 0.2D DD E  ). 
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Figure 8. Stress distributions of − σi j/1T for various angles of θ (α2D = 0.6, β2D = 0.2).



STRESS IN BONDED JOINTS UNDER THERMAL LOADING 159

 31

Fig. 9. Stress distributions of / TTTV� '  at the interface ( 0T  D ) for various values of 

2TD  ( 6 1
1 1.0 10
T

KD � � u  and 2 20.6, 0.2
D D

D E  ). 
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Figure 9. Stress distributions of − σθθ/1T at the interface θ = 0◦ for various values of
αT 2 (αT 1 = 1.0x10−6K −1 and α2D = 0.6, β2D = 0.2).

two-phase materials, that is,

L i jm and Ki ja ∝1T . (13)

The stress intensity factors for the stress −σθθ/1T at the interface under a uniform temperature
variation are shown in Table 1. The stress intensity factors −Lθθ4/1T and −Lθθ5/1T are relatively
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Fig. 10. Stress distributions of /ij TV� '  for various angles of T  ( 2 20.4, 0.2D DD E  ). 
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Figure 10. Stress distributions of − σθθ/1T for various angles of θ (α2D = 0.4, β2D = 0.2).

−Kθθa/1T −Lθθ1/1T −Lθθ2/1T −Lθθ3/1T −Lθθ4/1T −Lθθ5/1T
10−2 GPa/K 10−2 GPa/K 10−2 GPa/K 10−2 GPa/K 10−2 GPa/K 10−2 GPa/K

α2D = 0.6, β2D = 0.2
λ= − 0.0927

4.233E-02 -5.381E-03 7.210E-03 1.072E-03 1.263E-06 8.683E-08

α2D = 0.5, β2D = 0.2
λ= − 0.000455

7.663E-02 -5.510E-02 -4.173E-03 4.575E-04 -1.015E-05 -6.968E-07

α2D = 0.3, β2D = 0.2
λ= − 0.02752

8.490E-02 -6.879E-02 -8.646E-03 1.069E-04 -1.382E-05 -9.482E-07

Table 1. Stress intensity factors for the stress −σθθ/1T at the interface (θ = 0) under a
uniform temperature variation. Note: αT 1 = 1.0 × 10−6K −1, αT 2 = 5.0 × 10−6K −1.
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Fig. 11. Effects of 2TD ( 6 1
1 1.0 10
T

KD � � u ) on / TTTV� '  at the interface ( 0T  D ) for 

( 2 20.4, 0.2
D D

D E  ) and ( 2 20.3, 0.2
D D

D E  ). 
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Figure 11. Effects of αT 2 (αT 11.0x10−6K −1) on σθθ/1T at the interface θ = 0 for
(α2D = 0.4, β2D = 0.2) and (α2D = 0.3, β2D = 0.2).

small compared with other stress intensity factors. For α2D = 0.6 and β2D = 0.2 (singularity region),
the stress intensity factor −Kθθa/1T of the (r/L)λa singularity term is obviously larger than that for

 37

Fig. 12. Stress distributions of TTV  at the interface near the singular point on the stress 

singularity line under various loading conditions. 
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each of the logarithmic singularity terms. For (α2D = 0.4, β2D = 0.2) and (α2D = 0.3, β2D = 0.2), it
can be seen that the plots of the stress −σθθ/1T against the dimensionless distance r/L in a log-log
scale have significantly negative slopes due to the value of the stress intensity factors −Lθθ2/1T of
the ln(r/L) term and −Lθθ3/1T of the (ln(r/L))2 term in Equation (4). In previous papers [Koguchi
1997; Prukvilailert and Koguchi 2005], it was found that the stress intensity factors (L i jm, Ki ja) under
tensile loading are proportional to the magnitude of the applied tensile stress, P , on the upper surface of
three-dimensional joints, that is,

L i jm and Ki ja ∝ P. (14)

For comparison, the stress distributions of σθθ under tensile loading (P = 1 GPa) and under combined
loading of tensile (P = 1 GPa) and thermal loading (1T = −100K ) are also provided in Figure 12. It
can be seen that the characteristic of the stress distribution of σθθ under a uniform temperature variation
is different from that under tensile loading or combined loading. For combined loading, the stress level
of σθθ increases with decreasing temperature from the stress-free state (cooling down).

3.2. Plate structure. Plate structures composed of dissimilar materials bonded together have many ap-
plications in solid mechanics. The stress distributions near the singular point on the stress singularity
line of plate structures under thermal loading are investigated in this section. The geometry of the three-
dimensional structure in Figure 4 is changed to a plate structure. Figure 13 shows the model for analysis.
The width of the y − z plane, 2w, is varied. Two stress singularity lines exist for examination in this
structure. One stress singularity line is located on the y − z plane and another on the x − z plane. The
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Fig. 13. Model for analysis of a plate structure.  
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Figure 13. Model for analysis of a plate structure.
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Fig. 14. Stress distributions / TTTV� '  around the singular point 1S  

at the interface of plate structures. 
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Figure 14. Stress distributions − σθθ/1T around the singular point S1 at the interface
of plate structures.
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Fig. 15. Stress distributions / TTTV� '  around the singular point 2S  

at the interface of plate structures. 
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Fig. 16. Variation in the stress / TTTV� ' at the interface against the dimensionless 

variable, /w L , in plate structures. 
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Figure 16. Variation in the stress −σθθ/1T at the interface against the dimensionless
variable, w/L , in plate structures.

distance between the singular points (S1 and S2) and the vertex of the joint is 0.0512 mm. The material
properties are chosen for material combinations corresponding to α2D = 0.6 and β2D = 0.2 (singularity
region). The thermal expansion coefficients are chosen as αT 1 = 1.0×10−6K −1 and αT 2 = 5.0×10−6K −1.
The temperature variation is uniformly applied to the material regions. Figures 14 and 15 show the stress
distributions of −σθθ/1T at the interface around the singular points S1 and S2, respectively, against the
dimensionless distance, r/w. The width, w, is varied from 10 mm to 0.15 mm. For the width w from
10 mm to 4 mm, we found that the plots are almost the same line. However, as the width w gets smaller
(from 1 mm to 0.15 mm), the plots are clearly different from each other. Because the singular point S1

is near the singular point S2, the characteristics of the stress distributions of −σθθ/1T around the two
singular points at the interface are not very different from each other. It can be seen that the dimensionless
distance, r/w, is an appropriate variable to determine the variations of the stress distributions around both
singular points S1 and S2 in plate structures. Therefore, the characteristic length L in Equation (4) is
replaced by the width w for the expression of the stress fields around the singular point on the stress
singularity line in a plate structure.

Furthermore, the variations in the magnitude of the stress −σθθ/1T for the two singular points
(S1 and S2) at the interface against the dimensionless variable w/L for r/w = 1.0 × 10−2 are shown in
Figure 16. For 1 ≥ w/L ≥ 0.4, the width of the model is not much less than the length or the height. So,
the model is a simple three-dimensional structure, and does not behave like a plate structure. Therefore,
the variation of the width in the range 1 ≥ w/L ≥ 0.4 has little influence on the stress distribution of
−σθθ/1T against the variable r/w around the two singular points. For 0.2 ≥ w/L ≥ 0.015, the model
obviously behaves like a plate structure. Then, the stress singularity lines get close enough to raise the
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magnitude of the stress field around each line. Therefore, the level of the stress distributions of −σθθ/1T
around the singular points, S1 and S2, increases rapidly as the width w of a plate structure decreases.

4. Conclusion

In this paper, we created a three-dimensional BEM program for thermoelasticity based on Rongved’s
fundamental solution satisfying the boundary condition at the interface. As a result, accurate analysis
using the present BEM program required less memory and was less time-consuming than BEM analysis
based on Kelvin’s fundamental solutions or FEM analysis. The distributions of stress singularity fields
around the singular point on the stress singularity lines for dissimilar materials in three-dimensional
bonded joints under thermal loading were presented and compared with the results in the previous re-
search studies. For a uniform temperature variation applied to three-dimensional bonded joints, the stress
intensity factors were proportional to the temperature variation, 1T , and depended on the difference in
the thermal expansion coefficients. Logarithmic singularity significantly influenced the characteristics
of the stress distributions in three-dimensional bonded joints under thermal loading. For plate structures
with very small thickness, the level of the stress distributions around the singular points on the stress
singularity lines along the dimensionless distance, r/w, increased rapidly.
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SHEAR WAVES AT A CORRUGATED INTERFACE BETWEEN TWO DISSIMILAR
FIBER-REINFORCED ELASTIC HALF-SPACES

SANASAM SARAT SINGH AND SUSHIL KUMAR TOMAR

A problem of reflection and transmission of shear waves (SH waves) at a corrugated interface between
two distinct fiber-reinforced elastic half-spaces has been analyzed. Rayleigh’s method of approximation
is used to determine the reflection and transmission coefficients. We find that (i) these coefficients
are functions of the angle of incidence and the elastic parameters of the media, (ii) the coefficients
corresponding to irregularly reflected and transmitted waves are proportional to the amplitude of the
corrugated interface, and (iii) reflection and transmission coefficients of the regularly reflected and trans-
mitted waves are greater than those of irregularly reflected and transmitted waves. The energy ratios
of reflected and transmitted waves are also presented. Numerical computations are performed and the
results obtained are presented graphically. Some earlier results by other workers are recovered by our
treatment.

1. Introduction

Problems of wave propagation in elastic media have applications in various fields, such as engineering,
geophysics, and seismology. When elastic waves are transmitted through one medium to another medium
of different characteristics, the phenomena of reflection and transmission take place. These phenomena
depend not only upon the characteristics of the media but are also influenced by the shape of the interface
between the two media. Thus, while investigating the problems of reflection and transmission of elastic
waves from a corrugated interface, one must take into account the shape of the corrugated interface.
Rayleigh [1893] was the first who attempted to solve a problem of wave scattering of sound waves and
electromagnetic waves from a rough surface. He gave an approximate method of solving this problem
for a sinusoidal surface with a small amplitude, restricting himself to the case of normal wave incidence.
In his method, the amplitude and slope of the interface which is expressed in Fourier series are assumed
to be very small. By using the boundary conditions of the problem, the unknown coefficients in the
solutions are determined for any order of approximation. Rayleigh used this method, in his paper “On
the dynamical theory of grating” [1907], and later, researchers in various fields applied his method
to explain reflection and transmission phenomena of waves from irregular boundary surfaces. Using
different techniques, many problems of reflection and refraction of elastic waves from irregular boundary
surfaces have appeared in the open literature, such as [Abubakar 1962; Asano 1960; 1961; 1966; Dunkin
and Eringen 1962; Tomar and Saini 1997; Okamoto and Takenaka 1999; Tomar et al. 2002; Gupta 1987;
Kumar et al. 2003; Tomar and Kaur 2003; Kaur and Tomar 2004; Kaur et al. 2005].

Keywords: SH waves, fiber reinforcement, Rayleigh’s method of approximation, apparent velocity, reflection coefficient,
transmission coefficient.
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Chattopadhyay and Choudhury [1990] studied propagation, reflection and transmission of magneto-
elastic shear waves in a self-reinforced medium. Later, Chattopadhyay and Choudhury [1995] studied
magnetoelastic shear waves in an infinite self-reinforced elastic plate. Sengupta and Nath [2001] inves-
tigated surface waves (Rayleigh, Love and Stoneley types) in anisotropic fiber-reinforced solid elastic
media. Pradhan et al. [2003] studied the dispersion of Love waves in a self-reinforced layer over an
elastic non-homogeneous half-space. Singh and Singh [2004] studied the propagation of plane waves in
fiber-reinforced elastic media and showed that the phase velocities of quasi P and SV waves depended
on the angle between direction of propagation and the direction of reinforcement. They also discussed
the reflection of these elastic waves from the free surface of a fiber reinforced elastic half-space. In this
paper, a problem of an SH wave striking obliquely at a corrugated interface between two dissimilar fiber-
reinforced elastic half-spaces has been discussed. The amplitude and slope of the corrugated interface
are assumed to be very small and Rayleigh’s method of approximation has been used to explain the
reflection and transmission coefficients for first and second order approximation of the corrugation. For
a special type of interface, that is, where the corrugated interface is a simple harmonic interface given
by ζ = d cos npx , we have obtained the formulae of reflection and transmission coefficients of regularly
and irregularly reflected and transmitted waves in closed form for the first order approximation of the
corrugation. Partitioning of energy due to reflected and refracted waves at the corrugated interface is
also presented. Numerically, the effects of corrugation and frequency parameters on these coefficients
are studied for a particular model and the results obtained are shown graphically. In the present work,
if we neglect the reinforcement parameters, we reduce to the case of a problem in an isotropic medium.
In this case, the problem of Asano [1960] can be recovered by setting α = β = 0 and µL = µT . The
expressions of energy ratios of regularly and irregularly reflected and transmitted waves are obtained and
their variations are depicted graphically with respect to the angle of incidence.

2. Basic relations and equations

The constitutive relations for a fiber-reinforced linear elastic medium, as given in [Belfield et al. 1983],
are

τi j = λekkδi j + 2µT ei j +α
(
akamekmδi j + ekkai a j

)
+ 2

(
µL −µT

)(
ai akek j + a j akeki

)
+βakamekmai a j , (i, j, k,m = 1, 2, 3), (1)

where τi j is the stress tensor, ei j is the strain tensor, µT and λ are elastic constants, α, β, and (µL −µT )

are fiber-reinforcement parameters having the dimensions of stress, and ai are the components of a unit
vector a that gives the direction of fiber-reinforcement. Spencer [1974] has shown that if the preferred
direction of a is chosen along the x-axis then µT can be identified as the shear modulus in transverse shear
across the preferred direction and µL as the shear modulus in longitudinal shear in the preferred direction.
He also established some relations among the elastic constants and given their physical meaning. It can
be seen that if α = β = 0 and µL = µT , then (1) reduces to the generalized Hooke’s law for an isotropic
medium. The strain tensor ei j in terms of displacement components ui is given by

ei j =
1
2

(
∂ui

∂x j
+
∂u j

∂xi

)
. (2)
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The equations of motion in a fiber-reinforced medium without body forces are

∂τi j

∂x j
= ρ

∂2ui

∂t2 , (i, j = 1, 2, 3), (3)

where ρ is the density of the medium.
Let the direction of reinforcement be along the x-axis: a = (1, 0, 0). For an SH wave propagating in

the x1x2 plane and having displacement along x3 axis, we have ∂/∂x3 ≡ 0. Using the notations u3 ≡ u,
∂/∂x1 ≡ ∂/∂x , and ∂/∂x2 ≡ ∂/∂y, and substituting Equations (1) and (2) into (3), we obtain

µL
∂2u
∂x2 +µT

∂2u
∂y2 = ρ

∂2u
∂t2 .

This is the equation of motion for SH wave propagation in a fiber-reinforced elastic medium.

3. Problem and boundary conditions

Let the x and z axes of a Cartesian coordinate system be on the horizontal plane and the y axis be
pointing vertically downward. Let the equation of the corrugated interface separating the two different
homogeneous fiber-reinforced elastic half-spaces, namely L1[−∞< y ≤ ζ(x)] and L2[ζ(x)≤ y <∞],
be given by y = ζ(x). The geometry of the problem is shown in Figure 1.
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Figure 1. Geometry of the problem.
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We shall take both the half-spaces as homogeneous such that the length scale of the reinforcement (that
is, the cross section of the fiber, or the separation between fibers) is small compared to the wavelength.
We denote the elastic parameters and density in the medium L l (l = 1, 2) by the quantities µLl , µTl , and
ρl , respectively. Fourier series representation of the function ζ(x) is given by

ζ(x)=

∞∑
n=1

(
ζneinpx

+ ζ−ne−inpx), (4)

where ζ(x) is a periodic function of x and independent of y whose mean value is zero, ζn and ζ−n

are Fourier series coefficients, p is the wave number, n is the series expansion order and i =
√

−1.
Introducing the constants d , cn and sn such that ζ1 = ζ−1 =

1
2 d , ζn =

1
2(cn − isn), ζ−n =

1
2(cn + isn), and

n = 2, 3, 4, . . . into (4), we obtain

ζ = d cos px +

∞∑
n=2

[
cn cos npx + sn sin npx

]
.

If the coefficients ζn = ζ−n vanish for n = 2, 3, 4, . . . then the equation of the corrugated interface reduces
to the simple harmonic interface ζ = d cos px , where d is the amplitude of the corrugation and 2π/p is
the wavelength of corrugation.

The equation of motion for SH wave propagation in the fiber-reinforced elastic half-spaces L l (l = 1, 2)
are

µLl

∂2ul

∂x2 +µTl

∂2ul

∂y2 = ρl
∂2ul

∂t2 .

An incident plane SH wave at the corrugated interface, after propagating through the medium L1, will
give rise to regularly reflected and regularly transmitted waves as well as irregularly reflected and irreg-
ularly transmitted waves [Asano 1960]. The irregularly reflected and transmitted waves are due to the
corrugation of the interface. Thus, the system of waves which arises due to corrugation on both sides
of the regularly reflected waves are called irregularly reflected waves. Similarly, the system of waves
which arises on both sides of regularly transmitted wave are called irregularly transmitted waves. These
waves propagate with different amplitudes but with the same velocity as the regular waves. The n-th
component of the spectrum form of an irregularly reflected wave is given by

uirr
1 = A+

n exp
( iω

c1

(
c1t − x sin θ+

n + η+

n y
))

+ A−

n exp
( iω

c1

(
c1t − x sin θ−

n + η−

n y
))
,

where A+
n and A−

n are the amplitude constants of the irregularly reflected SH waves propagating at angles
of reflection θ+

n and θ−
n respectively, and where

η±

n =

√
ρ1c2

1

µT1

−
µL1

µT1

sin2 θ±
n .
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The total displacement u1 in the medium L1 will contain the displacements due to the incident wave, the
regularly reflected wave, and all irregularly reflected SH waves:

u1 = A0 exp
( iω

c1

(
c1t − x sin θ − ηy

))
+ A exp

( iω
c1

(
c1t − x sin θ + ηy

))
+

∞∑
n=1

(
A+

n exp
( iω

c1

(
c1t − x sin θ+

n + η+

n y
))

+ A−

n exp
( iω

c1

(
c1t − x sin θ−

n + η−

n y
)))

, (5)

where A0 is the amplitude of the incident wave, θ is the angle of incidence, ω is the angular frequency,
c1 =

√
µL1/ρ1 is the speed of SH wave along x-axis in medium L1, A is the amplitude of the regularly

reflected SH wave with the angle of reflection θ , and

η =

√
ρ1c2

1

µT1

−
µL1

µT1

sin2 θ.

Similarly, the n-th component of the spectrum form of the irregularly transmitted wave is given by

uirr
2 = B+

n exp
( iω

c2

(
c2t − x sinφ+

n − η+

0n y
))

+ B−

n exp
( iω

c2

(
c2t − x sinφ−

n − η−

0n y
))
,

where B+
n and B−

n are the amplitudes of the irregularly transmitted waves with transmitted angles φ+
n

and φ−
n , and

η±

0n =

√
ρ2c2

2

µT2

−
µL2

µT2

sin2 φ±
n .

Thus, the displacement u2 in the medium L2 will contain the displacements due to regularly transmitted
waves and due to all irregularly transmitted SH waves as

u2 = B exp
( iω

c2

(
c2t − x sinφ− η0 y

))
+

∞∑
n=1

(
B+

n exp
( iω

c2

(
c2t − x sinφ+

n − η+

0n y
))

+ B−

n exp
( iω

c2

(
c2t − x sinφ−

n − η−

0n y
)))

, (6)

where c2 =
√
µL2/ρ2 is the speed of the SH wave along the x axis in medium L2, B is the amplitude of

the regularly transmitted wave, φ is the angle which the transmitted wave makes with the normal, and

η0 =

√
ρ2c2

2

µT2

−
µL2

µT2

sin2 φ.

The angles of the regularly reflected and regularly transmitted waves are related by Snell’s law:

sin θ
c1

=
sinφ

c2
=

1
c
, (7)

where c is the apparent velocity. The relation between the angles of the regular wave and the correspond-
ing irregular waves is given by the Spectrum theorem [Abubakar 1962; Asano 1960]:

sin θ±

n − sin θ = ±
npc1

ω
, sinφ±

n − sinφ = ±
npc2

ω
, (8)
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where the ± signs on both sides of each equality are matched.
The appropriate boundary conditions are the continuity of displacements and traction at the corrugated

interface. Mathematically, at y = ζ(x), these boundary conditions are

[u1]L1 = [u2]L2, (9)

[τ32 − ζ ′τ31]L1 = [τ32 − ζ ′τ31]L2, (10)

where

ζ ′
=

∞∑
n=1

(ζneinpx
− ζ−ne−inpx)inp.

The boundary condition given in (10) can be expressed in terms of displacements as

µT1

∂u1

∂y
− ζ ′µL1

∂u1

∂x
= µT2

∂u2

∂y
− ζ ′µL2

∂u2

∂x
. (11)

Substituting Equations (5)–(8) into the boundary conditions (9) and (11), we obtain

A0 exp
(
−iηωζ

c1

)
+ A exp

(
iηωζ

c1

)
+

∞∑
n=1

(
A+

n exp
(

iη+

n
ωζ

c1

)
e−inpx

+ A−

n exp
(

iη−

n
ωζ

c1

)
einpx

)

= B exp
(
−iη0

ωζ

c2

)
+

∞∑
n=1

(
B+

n exp
(
−iη+

0n
ωζ

c2

)
e−inpx

+ B−

n exp
(
−iη−

0n
ωζ

c2

)
einpx

)
(12)

and

−A0µT1
η

c1
exp

(
−iηωζ

c1

)
+ AηµT1

c1
exp

(
iηωζ

c1

)
+

∞∑
n=1

µT1

c1

(
A+

n η
+

n exp
(

iη+

n
ωζ

c1

)
e−inpx

+ A−

n η
−

n exp
(

iη−

n
ωζ

c1

)
einpx

)

+ ζ ′µL1

c1

(
sin θ

(
A0 exp

(
−iηωζ

c1

)
+ A exp

(
iηωζ

c1

))

+

∞∑
n=1

(
A+

n

(
sin θ+npc1

ω

)
exp

(
iη+

n
ωζ

c1

)
e−inpx

+A−

n

(
sin θ−npc1

ω

)
exp

(
iη−

n
ωζ

c1

)
einpx

))

=
µT2

c2

(
−Bη0 exp

(
−iη0

ωζ

c2

)
−

∞∑
n=1

(
B+

n η
+

0n exp
(
−iη+

0n
ωζ

c2

)
e−inpx

+ B−

n η
−

0n exp
(
−iη−

0n
ωζ

c2

)
einpx

))

+ ζ ′µL2

c2

(
B sinφ exp

(
−iη0

ωζ

c2

)
+

∞∑
n=1

(
B+

n

(
sinφ+

npc2
ω

)
exp

(
−iη+

0n
ωζ

c2

)
e−inpx

+B−

n

(
sinφ−

npc2
ω

)
exp

(
−iη−

0n
ωζ

c2

)
einpx

))
.

(13)

Equations (12) and (13) provide the reflection and transmission coefficients for any order of approxima-
tion of corrugation.
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4. Solution for the first order approximation

Since we assume that the corrugation and slope of the interface are small, the first order approximation
to the exponential term containing ζ can be written as

exp
(
±iηωζ

c1

)
= 1 ± iη

ωζ

c1
, etc. (14)

Substituting Equations (4) and (14) into the boundary conditions (12) and (13), and comparing the term
independent of x and ζ in both sides of the equations, we have

−
A
A0

+
B
A0

= 1, µT1η
A

A0c1
+µT2η0

B
A0c2

=
ηµT1

c1
. (15)

Comparing the coefficients of e−inpx for A+
n and B+

n on both sides of the equations, we get

A+
n

A0
−

B+
n

A0
= iζ−nω

((
1 −

A
A0

) η
c1

−
Bη0

c2 A0

)
, (16)

µT1η
+

n
A+

n

A0c1
+µT2η

+

0n
B+

n

A0c2

= iζ−n

(
µL1np

sin θ
c1

−µT1ω
η2

c2
1
+

(
µL1np

sin θ
c1

−µT1ω
η2

c2
1

)
A
A0

+

(
−µL2np

sin θ
c1

+µT2ω
η2

0

c2
2

)
B
A0

)
. (17)

Similarly, comparing the coefficients of einpx for A−
n and B−

n , we obtain

A−
n

A0
−

B−
n

A0
= iζnω

((
1 −

A
A0

) η
c1

−
Bη0

c2 A0

)
, (18)

µT1η
−

n
A−

n

A0c1
+µT2η

−

0n
B−

n

A0c2

= iζn

(
−µL1np

sin θ
c1

−µT1ω
η2

c2
1
−

(
µL1np

sin θ
c1

+µT1ω
η2

c2
1

)
A
A0

+

(
µL2np

sin θ
c1

+µT2ω
η2

0

c2
2

)
B
A0

)
. (19)

Solving the system of equations (15), we obtain the reflection and transmission coefficients of the regu-
larly reflected and transmitted SH waves as

A
A0

=
1 − M
1 + M

,
B
A0

=
2

1 + M
, (20)

where M = (µT2η0c1)/(µT1ηc2). These are the reflection and transmission coefficients of the SH wave
at a plane interface between two different fiber-reinforced elastic half-spaces.

Solving the systems (16)–(17) and (18)–(19), we obtain

A+
n

A0
=
1A+

n

1+
n
,

B+
n

A0
=
1B+

n

1+
n
,

A−
n

A0
=
1A−

n

1−
n
,

B−
n

A0
=
1B−

n

1−
n
, (21)
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where

1A+
n

= iζ−n

(
µT2ω

η+
onη

c1c2
+µL1np

sin θ
c1

−µT1ω
η2

c2
1

+

(
µL1np

sin θ
c1

−µT1ω
η2

c2
1
−ωµT2

η+
onη

c1c2

)
A
A0

+

(
−µL2np

sin θ
c1

+µT2ω
η2

0

c2
2
−ωµT2

η+
onη0

c2
2

)
B
A0

)
,

1B+
n

= iζ−n

(
µT2ω

η+
onη

c1c2
+µL1np

sin θ
c1

−µT1ω
η2

c2
1

−µT1ω
ηη+

n

c2
1

−µT2ω
ηη+

0n

c1c2

+

(
µL1np

sin θ
c1

−µT1ω
η2

c2
1

−ωµT2

η+
onη

c1c2
+ω

η

c1

(η+
n µT1

c1
+
η+

0nµT2

c2

)) A
A0

+

(
−µL2np

sin θ
c1

+µT2ω
η2

0

c2
2

−ωµT2

η+
onη0

c2
2

+ω
η0

c2

(η+
n µT1

c1
+
η+

0nµT2

c2

)) B
A0

)
,

1A−
n

= iζn

(
µT2ω

η−
onη

c1c2
−µL1np

sin θ
c1

−µT1ω
η2

c2
1

−

(
µL1np

sin θ
c1

+µT1ω
η2

c2
1

+ωµT2

η−
onη

c1c2

)
A
A0

+

(
µL2np

sin θ
c1

+µT2ω
η2

0

c2
2

−ωµT2

η−
onη0

c2
2

)
B
A0

)
,

1B−
n

= iζn

(
µT2ω

η−
onη

c1c2
−µL1np

sin θ
c1

−µT1ω
η2

c2
1

−µT1ω
ηη−

n

c2
1

−µT2ω
ηη−

0n

c1c2

−

(
µL1np

sin θ
c1

+µT1ω
η2

c2
1

+ωµT2

η−
onη

c1c2
+ω

η

c1

(η−
n µT1

c1
+
η−

0nµT2

c2

)) A
A0

+

(
µL2np

sin θ
c1

+µT2ω
η2

0

c2
2

−ωµT2

η−
onη0

c2
2

+ω
η0

c2

(η−
n µT1

c1
+
η−

0nµT2

c2

)) B
A0

)
,

1+

n =
η+

n µT1

c1
+
η+

0nµT2

c2
, 1−

n =
η−

n µT1

c1
+
η−

0nµT2

c2
.

The formulae in Equation (21) give reflection and transmission coefficients of irregularly reflected and
transmitted waves for the first order approximations. Note that these coefficients depend on the elastic
parameter of the medium, angle of incidence, corrugation parameter, and frequency of the incident wave.

5. Solution for second order approximation

For the second order approximation, we assume that the corrugation of the interface is so small that we
can neglect the term containing the third and higher powers of ζ :

exp
(
±iηωζ

c1

)
= 1 ± iηωζ

c1
−

(
η
ωζ

c1

)2
, etc. (22)

Substituting Equations (4) and (22) into the boundary conditions (12) and (13), and comparing the term
independent of x , the coefficients of e−inpx , and those of einpx separately on both sides of the resulting
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equations, one obtains six equations in six unknowns (see Appendix). The reflection and transmission
coefficients of the reflected and transmitted waves at the corrugated interfaces for the second order ap-
proximation can be obtained by solving these equations for any value of n.

6. The case of a simple harmonic interface

We now obtain the reflection and transmission coefficients of incident plane SH waves at an interface
given by ζ = d cos px . This equation for the interface can be obtained by setting ζ1 = ζ−1 =

1
2 d and

ζn = ζ−n = 0 for n = 2, 3, . . . in Equation (4). In this case, 2π/p is the wavelength and d is the amplitude
of corrugation. Thus, the reflection and transmission coefficients for the first order approximation of the
corrugation can be obtained by setting n = 1 in Equation (21), and we obtain

A+

1

A0
=

1A+

1

1+

1
,

B+

1

A0
=

1B+

1

1+

1
,

A−

1

A0
=

1A−

1

1−

1
,

B−

1

A0
=

1B−

1

1−

1
, (23)

where

1A+

1
=

id
2

(
µT2ω

η+

o1η

c1c2
+µL1 p sin θ

c1
−µT1ω

η2

c2
1

+
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7. Energy equation

The expression of the energy flux for SH waves is obtained by multiplying the total energy per unit
volume, which is twice the mean kinetic energy density, by the velocity of the propagation and the area
of the wave front involved. The area of the wave front is proportional to the cosine of the angle between
the wave normal and the vertical. The modulus of energy ratio of the regularly and irregularly reflected
and transmitted SH waves are expressed as

ERF =
| A |

2

| A0 |2
, E+

RF−n =
| A+

n |
2 cos θ+

n

| A0 |2 cos θ
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,

where ERF is the ratio of the energy of regularly reflected wave to the energy of the incident wave,
E±

RF−n are the ratios of the energy of an irregularly reflected wave for the n-th spectrum to the energy
of an incident wave, ETR is the ratio of the energy of a regularly transmitted wave to the energy of an
incident wave, and E±

TR−n are ratios of the energy of an irregularly transmitted wave for n-th spectrum
to the energy of an incident wave. Thus, the energy partitioning equation at the corrugated interface is
given by∣∣∣∣ A
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When n = 1, Equation (24) reduces to∣∣∣∣ A
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Thus, the sum of energy ratios of the reflected and transmitted waves at the interface ζ = d cos px must
be equal to unity.

8. Particular case

When the fiber-reinforced elastic half-spaces L1 and L2 are reduced to isotropic half-spaces, we have
µT1 =µL1 =µ1, c2

1 =µ1/ρ1, µT2 =µL2 =µ2, c2
2 =µ2/ρ2, η=cos θ and η0 =cosφ. With these values, the

reflection and transmission coefficients at the plane interface between two uniform elastic half-spaces can
be obtained from Equation (20), with a modified value M given by M = (µ2c1 cosφ)/(µ1c2 cos θ). This
result perfectly matches those given in Achenbach [1976]. (For the relevant problem, refer to Equations
(5.77) and (5.78) on page 184).
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Moreover, in this case, the values of η+
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01 and η−

01 reduce to η+
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1 . The reflection and transmission coefficients for the first-order approximation of
corrugation are given by Equation (23), with the modified values

1A+

1
=

id
2

(
µ2ω

cosφ+

1 cos θ
c1c2

+µ1 p
sin θ

c1
−µ1ω

cos2 θ

c2
1

+

(
µ1 p

sin θ
c1

−µ1ω
cos2 θ

c2
1

−ωµ2
cosφ+

1 cos θ
c1c2

)
A
A0

+

(
−µ2 p

sin θ
c1

+µ2ω
cos2 φ

c2
2

−ωµ2
cosφ+

1 cosφ
c2

2

)
B
A0

)
,

1B+

1
=

id
2

(
µ2ω

cosφ+

1 cos θ
c1c2

+µ1 p
sin θ

c1
−µ1ω

cos2 θ

c2
1

−µ1ω
cos θ cos θ+

1

c2
1

−µ2ω
cos θ cosφ+

1

c1c2

+

(
µ1 p

sin θ
c1

−µ1ω
cos2 θ

c2
1

−ωµ2
cosφ+

1 cos θ
c1c2

+ω
cos θ

c1

(cos θ+

1 µ1

c1
+

cosφ+

1 µ2

c2

)) A
A0

+

(
−µ2 p

sin θ
c1

+µ2ω
cos2 φ

c2
2

−ωµ2
cosφ+

1 cosφ
c2

2
+ω

cosφ
c2

(cos θ+

1 µ1

c1
+

cosφ+

1 µ2

c2

)) B
A0

)
,

1A−

1
=

id
2

(
µ2ω

cosφ−

1 cos θ
c1c2

−µ1 p
sin θ

c1
−µ1ω

cos2 θ

c2
1

−

(
µ1 p

sin θ
c1

+µ1ω
cos2 θ

c2
1

+ωµ2
cosφ−

1 cos θ
c1c2

)
A
A0

+

(
µ2 p

sin θ
c1

+µ2ω
cos2 φ

c2
2

−ωµ2
cosφ−

1 cosφ
c2

2

)
B
A0

)
,

1B−

1
=

id
2

(
µ2ω

cosφ−

1 cos θ
c1c2

−µ1 p
sin θ

c1
−µ1ω

cos2 θ

c2
1

−µ1ω
cos θ cos θ−

1

c2
1

−µ2ω
cos θ cosφ−

1

c1c2

−

(
µ1 p

sin θ
c1

+µ1ω
cos2 θ

c2
1

+ωµ2
cosφ−

1 cos θ
c1c2

+ω
cos θ

c1

(cos θ−

1 µ1

c1
+

cosφ−

1 µ2

c2

)) A
A0

+

(
µ2 p

sin θ
c1

+µ2ω
cos2 φ

c2
2

−ωµ2
cosφ−

1 cosφ
c2

2
+ω

cosφ
c2

(cos θ−

1 µ1

c1
+

cosφ−

1 µ2

c2

)) B
A0

)
,

1+

1 =
cos θ+

1 µ1

c1
+

cosφ+

1 µ2

c2
, 1−

1 =
cos θ−

1 µ1

c1
+

cosφ−

1 µ2

c2
.

For the normal incidence, that is, when θ = φ = 0 and from spectrum theorem given by Equation (8), we
have cos θ+

1 = cos θ−

1 , cosφ+

1 = cosφ−

1 . In this case of normal incidence, we see that A+

1 /A0 = A−

1 /A0

and B+

1 /A0 = B−

1 /A0. These are the same results as obtained by Asano [1960] for the relevant problem.
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9. Numerical results and discussion

To study the effect of various parameters on reflection and transmission coefficients, we computed the
latter for a specific model having a simple cosine law interface, ζ = d cos px . We used the following
relevant elastic parameters in the fiber-reinforced media:

In medium L1, µL1 = 4.4×109 N/m2, µT1 = 1.89× 109 N/m2 and ρ1 = 5.60× 103 kg/m3. In medium
L2, µL2 = 5.66 × 109 N/m2, µT2 = 2.46 × 109 N/m2, and ρ2 = 7.80 × 103 kg/m3. Unless otherwise
specified, ωd/c1 = 0.12, pd = 0.00155 and θ = 25◦.

Figures 2 and 3 show the variation of the modulus of reflection and transmission coefficients and
energy ratios of reflected and transmitted waves with angle of incidence θ . Figure 2, top, shows that the
reflection coefficient A/A0 decreases, while the transmission coefficient B/A0 increases with increasing
θ . It is also clear that the reflection and transmission coefficients at plane interface between two fiber-
reinforced half-spaces possess reverse behavior with angle of incidence.

In Figure 2, bottom, the reflection coefficients A+

1 /A0 and A−

1 /A0 of irregularly reflected waves at
angles θ+

1 and θ−

1 start from a certain value which increases up to θ = 12◦, and thereafter decrease
with increasing angle of incidence. The transmission coefficient B+

1 /A0 of irregularly transmitted waves
at angle φ+

1 increases with increasing angle of incidence, while the transmission coefficient B−

1 /A0 of
irregularly transmitted waves at angle φ−

1 starts from a certain value which increases up to θ = 14◦

and thereafter decreases with angle of incidence. Figure 3 shows the variation of energy ratios with θ .
Note that ERF increases and ETR decreases with the angle of incidence. However, the rate of increase
or decrease is very slow up to θ = 60◦ but at a very fast rate thereafter. At normal incidence, ETR has
maximum value and ERF has minimum value. The energy ratios E+

RF−1 and E−

RF−1 of irregularly reflected
waves at angles θ+

1 and θ−

1 , respectively, start from a certain value, increase slightly up to θ = 13◦, and
thereafter decrease with θ , achieving minimum values near grazing incidence. The energy ratio E+

TR−1
increases with increase in the angle of incidence in an almost similar pattern as that of ERF with θ . The
energy ratio E−

TR−1 starts from a certain value at normal incidence and then increases until θ = 16◦. It
then decreases to certain value and again starts increasing, achieving maximum value at θ = 83◦. Beyond
this point, the energy ratio decreases with the angle of incidence. These figures show that for the incident
energy, the maximum amount of energy is carried by regularly reflected and transmitted waves, and a
very small amount by irregular waves. The sum of energy ratios is very close to unity, which shows that
there is no dissipation during transmission.

Figures 4 and 5 show the variation of the modulus of reflection and transmission coefficients and
energy ratios with the frequency parameter (ωd/c1), when the SH wave is incident at θ = 250. We see
that the reflection and transmission coefficients of regular waves and their corresponding energy ratios
are not influenced by the frequency parameter. The reflection coefficients A+

1 /A0, and A−

1 /A0, and the
transmission coefficients B+

1 /A0, and B−

1 /A0 of the irregular waves increase linearly with the increase
in the frequency parameter. Thus the reflection and transmission coefficients of irregular waves are
influenced by the frequency parameter. Figure 5, bottom, shows that the energy ratios of irregular waves
increase with increasing frequency parameter.

Figures 6 and 7 show the variation of the modulus of reflection and transmission coefficients and
energy ratios with the corrugation parameter pd. The top part of Figures 6 and 7 show that reflection
and transmission coefficients of regular waves and their corresponding energy ratios are not influenced by
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Figure 2. Variation of the modulus of reflection and transmission coefficients of regular
(top) and irregular (top) waves with angle of incidence, when pd = 1.55 × 10−3 and
ωd/c1 = 0.12.
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Figure 3. Variation of the modulus of the energy ratios of regularly (top) and irregularly
(bottom) reflected and transmitted SH waves, when pd = 1.55 × 10−3 and ωd/c1 = 0.12.
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ωd/c1, when pd = 1.55 × 10−3 and θ = 25◦.
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and θ = 25◦.
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Figure 6. Variation of the modulus of reflection and transmission coefficients of regu-
larly (top) and irregularly (bottom) reflected and transmitted SH waves with corrugation
parameter pd, when ωd/c1 = 0.12 and θ = 25◦.
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Figure 7. Variation of the modulus of energy ratios of regularly (top) and irregularly
(bottom) reflected and transmitted SH waves with corrugation parameter pd, when
ωd/c1 = 0.12 and θ = 25◦.
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the corrugation parameter, as was expected. Figure 6, bottom, shows that the reflection coefficient A+

1 /A0

and the transmission coefficient B+

1 /A0 increase as the corrugation parameter pd increases, while the
reflection coefficient A−

1 /A0 and the transmission coefficient B−

1 /A0 decrease as pd increases. Hence,
the coefficients corresponding to irregular waves are found to be influenced by the corrugation parameter
pd . In Figure 7, bottom, we see that as the corrugation parameter pd increases, the energy ratios E+

RF−1
and E−

RF−1 decrease at a very small rate, the energy ratio E+

TR−1 increases, and the energy ratio E−

TR−1
decreases but at very small rate.

10. Conclusions

The reflection and transmission phenomena of an incident SH wave at a corrugated interface between two
dissimilar elastic fiber-reinforced half-spaces are studied. It is assumed that amplitude and slope of the
corrugated interface are small and the formulae for reflection and transmission coefficients for the first
and second order approximations of corrugation are presented using Rayleigh’s method of approximation.
These coefficients are expressed in the closed form for the first order approximation of corrugation, and
for a special type of interface. The energy partition equation at a corrugated interface is also obtained.
Numerically, these coefficients and energy ratios are calculated for a specific model and the results
obtained are shown graphically. We conclude that

(i) The reflection and transmission coefficients are functions of elastic parameters and the angle of
incidence. Moreover, the coefficients of irregularly reflected and transmitted waves, and hence the
energy ratios, are functions of the corrugation parameters and frequency of the incident wave.

(ii) The reflection and transmission coefficients of regularly reflected and transmitted SH waves are
independent of the corrugation and frequency parameters. But there is a significant effect of cor-
rugation and frequency on the reflection and transmission coefficients of irregularly reflected and
transmitted waves. Reflection and transmission coefficients of irregularly reflected and transmitted
waves increase as the normalized frequency ωd/c1 and corrugation parameter pd increase.

(iii) The reflection and transmission coefficients of regular waves are greater than those of irregular
waves. It is also noted that the energy ratio of regular waves is greater than the energy ratios of
irregular waves,

(iv) The coefficients and energy ratios of irregular waves increase with increasing frequency and corru-
gation parameter. The sum of the energy ratios of reflected and transmitted waves for first order
approximation of corrugation is found to be very close to unity.
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Appendix: Equations for the second-order approximation(
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ON TORSIONAL VIBRATIONS OF INFINITE HOLLOW POROELASTIC
CYLINDERS

M. TAJUDDIN AND S. AHMED SHAH

Employing Biot’s theory of wave propagation in liquid saturated poroelastic media, the propagation of
torsional vibrations in an infinite homogeneous, isotropic hollow poroelastic circular cylinder is inves-
tigated. Considering the boundaries to be stress free, the frequency equation of torsional vibrations is
obtained in presence of dissipation. The frequency equation is discussed for the first two modes in the
cases of a poroelastic thin shell, a poroelastic thick shell and a poroelastic solid cylinder. Phase velocity,
group velocity and attenuation are determined and computed for the first mode of vibration for two
different poroelastic materials as a function of frequency. These values are displayed graphically and
then discussed.

1. Introduction

An understanding of the free vibrations of any beam is a prerequisite to the understanding of its response
in forced vibrations. Propagation of elastic waves and vibrations in circular rods of uniform cross-section
has been extensively studied [Love 1944; Kolsky 1963]. Armenàkas [1965] studied the torsional waves
in composite infinite circular solid rods of two different materials. A study of inhomogeneous anisotropic
hollow cylinders was presented by Stanisic and Osburn [1967].

The study of torsional vibrations of an elastic solid is important in several fields, for example, soil
mechanics, transmission of power through shafts with flanges at the ends as integral parts of the shafts.
It is now recognized that virtually no high-speed equipment can be properly designed without obtaining
solution to what are essentially lateral or torsional vibration problems. Examples of torsional vibrations
are vibrations in gear train and motor-pump shafts. Thus, from engineering point of view the study of
torsional vibrations has great interest. Such vibrations, for example, are used in delay lines. Further,
based on reflections and refractions during the propagation of a pulse, imperfections can be identified.
The other use of torsional vibrations is the measurement of the shear modulus of a crystal.

The dynamic equations of a poroelastic solid are given in Biot [1956]. Biot’s model consists of
an elastic matrix permeated by a network of interconnected spaces called pores, saturated with liquid.
Following Biot’s theory of wave propagation, Tajuddin and Sarma [1980] studied torsional vibrations
of poroelastic cylinders. Coussy et al. [1998] presented two different approaches for dealing with the
mechanics of a deformable porous medium. Dynamic poroelasticity of thinly layered structures was
studied by Gelinsky et al. [1998]. Degrande et al. [1998] studied the wave propagation in layered dry,
saturated and unsaturated poroelastic media. Malla Reddy and Tajuddin [2000] studied the plane-strain
vibrations of thick-walled hollow poroelastic cylinders. Wisse et al. [2002] presented the experimental

Keywords: Biot’s theory, torsional vibrations, phase velocity, group velocity, attenuation.
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results of guided wave modes in porous cylinders. The edge waves of poroelastic plates under plane-
stress conditions were studied by Malla Reddy and Tajuddin [2003]. Chao et al. [2004] studied the
shock-induced borehole waves in porous formations. Tajuddin and Ahmed Shah [2006] studied the
circumferential waves of infinite hollow poroelastic cylinders in the presence of dissipation.

In the present analysis, the frequency equation of torsional vibrations of a homogeneous and isotropic
poroelastic hollow circular cylinder of infinite extent is derived in the presence of dissipation and then
discussed. Let the boundaries of the hollow poroelastic cylinder be free from stress. The frequency
equation is discussed for the first mode in the case of a poroelastic thin shell, a poroelastic thick shell
and a poroelastic solid cylinder. This progression is intended to describe the transition from the case
of a plate — regarded as the limit of a curved thin shell as the thickness tends to zero — to the case of
a poroelastic solid cylinder. Two values are considered for the ratio h/r1 of wall thickness h to inner
radius r1. As this ratio tends to zero, the modes of an infinite poroelastic plate of thickness equivalent to
wall thickness are obtained. All the modes of the thick-walled hollow poroelastic cylinder asymptotically
approach the analogous modes for a poroelastic solid cylinder of radius h as the ratio r1/h tends to zero.
The expressions for nondimensional phase velocity, group velocity and attenuation are presented and
then computed for the first mode as a function of nondimensional frequency for two types of poroelastic
materials and then discussed.

2. Solution of the problem

Let (r, θ, z) be the cylindrical polar coordinates. Consider a homogeneous, isotropic hollow infinite
poroelastic circular cylinder with inner and outer radii r1 and r2, respectively, whose axis is in the
direction of z-axis. Then the thickness of the hollow poroelastic cylinder is h[= (r2 − r1)] > 0. Let
the boundaries of the isotropic poroelastic cylinder be free from stress. The only nonzero displacement
components of solid and liquid media are u(0, v, 0) and U(0, V, 0), respectively. These displacements
are functions of r , z and time, t . Then the equations of motion [Biot 1956] reduce to

N
(
∇

2
−

1
r2

)
v =

∂2

∂t2 (ρ11v+ ρ12V )+ b ∂
∂t
(v− V ),

0 =
∂2

∂t2 (ρ12v+ ρ22V )− b ∂
∂t
(v− V ),

(1)

where ρ11, ρ12, ρ22 are mass coefficients following Biot [1956], N is the shear modulus, b is the dissipa-
tion coefficient and ∇

2 is the well-known Laplacian operator. Let the propagation mode shapes of solid
and liquid v and V be

v = f (r)ei(kz+ωt), V = F(r)ei(kz+ωt), (2)

where k is the wavenumber, ω is the frequency of wave and i is complex unity or i2
= −1. Substitution

of Equation (2) in (1) results in {
N1 f = −ω2(K 11 f + K12 F),

0 = −ω2(K 12 f + K22 F),
(3)
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where

1=
d2

dr2 +
1
r

d
dr

−
1
r2 − k2,

K11 = ρ11 −
ib
ω
,

K12 = ρ12 +
ib
ω
,

K22 = ρ22 −
ib
ω
.

The second equation in (3) gives

F = −
K12

K22
f. (4)

Substituting Equation (4) into the first equation of (3), we obtain(
d2

dr2 +
1
r

d
dr

−
1
r2 +α2

3

)
f = 0, (5)

where V3 is the shear wave velocity [Biot 1956] and α2
3 is

α2
3 = ξ 2

3 − k2, ξ 2
3 =

ω2(K 11K22 − K 2
12)

N K 22
, V 2

3 =
N K 22

K11K22 − K 2
12
. (6)

A solution of Equation (5) is

f (r)= C1 J1(α3r)+ C2Y1(α3r).

Thus the displacement of the solid is

v =
(
C1 J1(α3r)+ C2Y1(α3r)]ei(kz+ωt), (α3 6= 0). (7)

When α3 = 0, Equation (5) reduces to the form(
d2

dr2 +
1
r

d
dr

−
1
r2

)
f = 0, (8)

and thus its bounded solution is
f (r)= C1r.

Therefore the propagation mode shapes are given by the displacement solutions

v =

{(
C1 J1(α3r)+ C2Y1(α3r)

)
ei(kz+ωt) α3 6= 0

C1r α3 = 0
. (9)

Here C1 and C2 are constants.
From Equation (2), it can be seen that the normal strains err , eθθ and ezz are all zero. Therefore

the dilatations of solid and liquid media are both zero. Hence the liquid pressure s following Biot
[1956] is identically zero. Accordingly for torsional vibrations no distinction between a pervious and an
impervious surface is made. Considering the boundary to be stress free, the frequency equation obtained
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for torsional vibrations is the same for both pervious and impervious surfaces. Then the only nonzero
computed stress, σrθ (see [Biot 1956]), is

σrθ = −N
(
C1 J2(α3r)+ C2Y2(α3r)

)
ei(kz+ωt). (10)

3. Frequency equation

The stress-free boundary conditions for torsional vibrations at the inner and outer surfaces of the hollow
poroelastic cylinder are at r = r1 and r = r2,

σrθ = 0, s = 0,
∂s
∂r

= 0. (11)

First two equations of (11) are to be satisfied for a pervious surface, while the first and third equations
of (11) are to be satisfied for an impervious surface. Since the considered vibrations are shear vibrations,
the dilatations of solid and liquid media are both zero, thus liquid pressure s developed in solid-liquid
aggregate will be identically zero and no distinction between pervious and impervious surface is made.
Thus the second and third equations of (11) are satisfied identically. Equations (11) together with Equa-
tion (10) yield a system of two homogeneous equations in two constants C1 and C2. By eliminating
these constants, one can obtain

J2(α3r1)Y 2(α3r2)− J2(α3r2)Y 2(α3r1)= 0. (12)

Equation (12) is the frequency equation of torsional vibrations of an infinite hollow poroelastic cylinder
whether the surface is pervious or impervious. By eliminating liquid effects from (12), the results for a
purely elastic solid [Gazis 1959, Equation (43)] are obtained as a special case. The roots will increase
with increasing r1 tending to infinity as r1 tends to r2. Two cases of special interest for limiting values
of ratio of thickness to inner radius h/r1 when these values are too small and too large are considered:

3.1. For thin poroelastic cylindrical shell. When h/r1 � 1, under the verifiable assumption of nonzero
α3h it is seen that α3r1 � 1 and α3r2 � 1. By using Hankel–Kirchhoff asymptotic approximations for
Bessel functions [Abramowitz 1964]

J2(x)≈ −

√
2
πx

[
cos
(

x −
π

4

)
−

15
8x

sin
(

x −
π

4

)]
,

Y2(x)≈ −

√
2
πx

[
sin
(

x −
π

4

)
+

15
8x

cos
(

x −
π

4

)]
,

the frequency equation of torsional vibrations, that is, Equation (12), reduces to

sinα3h −
15α3h

8α2
3r1r2

cosα3h = 0. (13)

Equation (13) is the frequency equation of vibrations of a thin poroelastic cylindrical shell. In the
limiting case, when α3r1 → ∞, α3r2 → ∞, (13) simplifies to

sinα3h = 0, (14)



ON TORSIONAL VIBRATIONS OF INFINITE HOLLOW POROELASTIC CYLINDERS 193

and hence
α3h = πq, q = 1, 2, 3, . . .

so that

ω = V3

(
q2π2

h2 + k2
) 1

2

, q = 1, 2, 3, . . . (15)

which are the frequencies of poroelastic plate of thickness h. Moreover near the origin h/r1 = 0, and
substituting

α3h = qπ + ε∗, ε∗
� 1, (16)

into the frequency equation of torsional vibrations of a thin poroelastic cylindrical shell, Equation (13),
gives

ε∗
=

15
8(qπ)

( h
r1

)2
, q = 1, 2, 3, . . . (17)

Substituting Equation (17) into (16) gives the frequency values obtained from (15) in the form

ω =
V3

h

(
q2π2

[
1 +

15
8(qπ)2

( h
r1

)2
]2

+ k2h2
) 1

2

, q = 1, 2, 3, . . . . (18)

These are the frequencies of torsional vibrations of a poroelastic plate of thickness h near the origin.

3.2. For poroelastic solid cylinder. When h/r1 � 1, the frequency equation, (12), tends asymptotically
to

J2(α3h)= 0, (19)

which is the frequency equation of torsional vibrations of a poroelastic solid cylinder of radius h discussed
in Tajuddin and Sarma [1980]. The limiting cases hr1

−1
� 1 and hr1

−1
� 1 cover the torsional vibrations

of thick-walled poroelastic hollow cylinders in the entire range from 0 to ∞. Thus we are modeling the
transition from plate (hence shell) vibrations to the vibrations of a poroelastic solid cylinder.

If the wave number k is zero, the problem reduces to the special case of axially symmetric shear
vibrations studied in Malla Reddy and Tajuddin [2000, Sections 5.1.1 and 5.1.2], where a thin poroelastic
cylindrical shell and a solid poroelastic cylinder are discussed in detail. Accordingly the case k 6= 0 is of
special interest, and that is what we discuss below.

To analyze further the frequency equation, it is convenient to introduce the following nondimensional
variables:

m11 = ρ11ρ
−1, m12 = ρ12ρ

−1, m22 = ρ22ρ
−1, b1 = bh(c0ρ)

−1,

�= ωhc0
−1, g = r2r1

−1,
(20)

so that hr1
−1

= g − 1, where b1, � are nondimensional dissipation and frequency, and

ρ = ρ11 + 2ρ12 + ρ22, c0
2
= Nρ−1.

Let
Rn

2
= α2

3h2,
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where α2
3 is given in Equation (6). From these equations, we can write

N (R2
n + k2h2)

ρω2h2 = Er − i E i , (21)

where Er and Ei are

Er =
�2m22(m11m22 − m2

12)+ b2
1

�2m2
22 + b2

1
, Ei =

b1�(m12 + m22)
2

�2m2
22 + b2

1
. (22)

To investigate the values of Rn , the frequency equation (12) in nondimensional form is

J2

(
Rn

g − 1

)
Y2

(
Rng

g − 1

)
− J2

(
Rng

g − 1

)
Y2

(
Rn

g − 1

)
= 0. (23)

In (23) g is the ratio of outer to inner radius.
Three cases of physical interest have been considered, varying the g value: 1.034, 3, and infinity.

These three cases represent a thin poroelastic shell, thick poroelastic shell and poroelastic solid cylinder,
respectively. The phase and group velocities and attenuation can be determined for the first two modes,
which have been computed from the frequency equation (23) for ω > |kV3|. The values for the said cases
are 3.1423, 6.2835; 3.736, 6.6477; and 5.1356, 8.4172.

4. Phase velocity, group velocity and attenuation

Due to the dissipative nature of the medium, the wave number k is complex. The waves generated obey
a diffusion process, and therefore get attenuated. Let k = kr + iki ; then the phase velocity cp, group
velocity cg and attenuation xh , respectively, are

cp = Real part (ωk−1)=
ω

|kr |
, cg =

dω
dk

and xh =
1

|ki |
,

which in turn reduces to nondimensional form as

cpc−1
0 =

√
2�(B1 + B2)

−
1
2 , (24)

cgc−1
0 = 2

√
2B−1

3 (B1 + B2)
1
2 , (25)

and
xhh−1

=
√

2(B1 − B2)
−

1
2 . (26)

In Equations (24)–(26), B1, B2 and B3 are

B1 =
(
�4(E2

r + E2
i )− 2�2 Er R2

n + R4
n
) 1

2 ,

B2 = (�2 Er − R2
n),

B3 =�2G1(1 +�2 Er B−1
1 − R2

n B−1
1 )

+ 2�Er (1 − R2
n B−1

1 )

+�3 B−1
1

(
�Ei G2 + 2(E2

r + E2
i )
)
,

(27)
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Material Parameter m11 m12 m22

Material I 0.901 −0.001 0.101

Material II 0.877 0 0.123

Table 1. Properties of materials I and II.

where � is nondimensional frequency and Rn denotes modes of vibration, Er and Ei are given in (22)
while G1 and G2 are

G1 =
2b2

1(Er − 1)
�(�2m2

22 + b2
1)
, G2 =

(b2
1 −�2m2

22)Ei

�(�2m2
22 + b2

1)
. (28)

The nondimensional phase velocity, group velocity and attenuation equations of a poroelastic plate
are similar to (24)–(26), respectively, wherein Rn is to be replaced by qπ (q = 1, 2, 3, . . .). Different
values of q represent different modes of vibration. It is interesting to note that the first two modes of a
poroelastic plate tally with the first two modes of a thin poroelastic shell.

5. Results and discussion

Two types of poroelastic materials are considered to carry out the computational work: sandstone sat-
urated with kerosene, which we call Material I [Fatt 1959], and sandstone saturated with water, called
Material II [Yew and Jogi 1976]. Their physical parameters are defined in Table 1.

For a given material, the nondimensional phase velocity, group velocity and attenuation are determined
as a function of nondimensional frequency (�). The different dissipation parameters (b1) chosen are 0.01,
0.1 and 1.

The phase velocity as a function of frequency is presented for first mode for the two materials in Figure
1 (top) for different dissipations in the case of a thin shell. The phase velocity has nearly the same shape
when b1 = 0.01 and 0.1 in material I. This is also true for material II. For b1 = 1, the phase velocity is
almost identical in both materials. The group velocity with respect to frequency is presented in Figure 1
(middle) for the first mode in case of a thin poroelastic shell. The results are true for all three dissipations
considered, and are almost same as the phase velocity for both materials. The attenuation is presented
in Figure 1 (bottom) for the first mode. When b1 = 0.01, the attenuation is almost the same for both
materials, and for b1 = 0.1 and 1 it is virtually the same for both materials. Besides, it is clear that as
b1 increases from 0.01 to 1 the attenuation is decreasing. The nondimensional phase velocity and group
velocity as a function of frequency is presented in Figure 2 for the two materials, for a thick poroelastic
shell.

From Figure 2 (top) it is clear that for the first mode, the phase velocity is increasing in 0<�< 5,
and then decreasing in 5 ≤�< 10, and when �≥ 10 it is constant for both the referred materials and
for different dissipations. The phase velocity decreases as the dissipation b1 increases, and it is less for
material I than for material II. The same figure also shows that when b1 = 1, the phase velocity is same
for both materials. In Figure 2 (middle), the group velocity as a function of frequency is presented for
first mode. It is clear that for b1 = 0.1 and 1, both materials have the same group velocity, while when
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Figure 1. Torsional vibrations of hollow poroelastic cylinder, thin shell. The graphs
show the phase velocity (top), group velocity (middle) and attenuation (bottom) as func-
tions of frequency for the first mode, using reduced (nondimensional) variables.
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Figure 2. Torsional vibrations of hollow poroelastic cylinder, thick shell. The graphs
show the phase velocity (top), group velocity (middle) and attenuation (bottom) as func-
tions of frequency for the first mode, using reduced (nondimensional) variables.
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Figure 3. Torsional vibrations of solid poroelastic cylinder. The graphs show the phase
velocity (top), group velocity (middle) and attenuation (bottom) as functions of fre-
quency for the first mode, using reduced (nondimensional) variables.
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b1 = 0.01 the group velocity in material II is less than that of material I for 0<�< 5. When �≥ 5 the
group velocity in materials I and II is almost the same for all dissipations. The attenuation is presented
in Figure 2 (bottom) for a thick poroelastic shell in the case of the first mode. Its variation is similar to
that of a thin shell.

The phase velocity of a poroelastic solid cylinder for the first mode is shown in Figure 3 (top). The
phase velocity takes the same path for both materials when b1 = 0.01, 0.1 and 1, but it decreases as
dissipation increases. The group velocity for a poroelastic solid cylinder for the first mode is shown in
Figure 3 (middle). Its variation is similar to that of the phase velocity (top figure). The group velocity of
a poroelastic solid cylinder is seen to be less than the phase velocity for both materials. The attenuation
of a poroelastic solid cylinder for the first mode is presented in Figure 3 (bottom). The attenuation in
both materials is the same when b1 = 0.01, 0.1 and 1; the figure also shows that the attenuation is higher
for b1 = 0.01 than for b1 = 0.1 and 1.

6. Concluding remarks

The investigation of torsional vibrations of hollow poroelastic cylinders for different dissipations in the
cases of a thin poroelastic shell, a thick poroelastic shell and a poroelastic solid cylinder has lead to the
following conclusion:

(i) The phase velocity increases as we progress from a hollow poroelastic cylinder through thin and
thick poroelastic shells to a poroelastic solid cylinder.

(ii) In general, the group velocity is less than the phase velocity.

(iii) The presence of a coupling parameter reduces the phase and group velocities.

(iv) It is observed that the increasing of the mass of a solid reduces both phase and group velocities.

(v) An increase in dissipation reduces the phase and group velocities as well as the attenuation for both
materials.

(vi) There is no significant variation in attenuation between a thin poroelastic shell, a thick shell and a
poroelastic solid cylinder.

(vii) The phase and group velocities for the second mode are in general higher than the corresponding
values for the first mode, in all cases.
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