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THERMOMECHANICS OF MARTENSITIC PHASE TRANSITIONS IN SHAPE
MEMORY ALLOYS

I. CONSTITUTIVE THEORIES FOR SMALL AND LARGE DEFORMATIONS

DIRK HELM

This article deals with the geometrically linear and nonlinear modeling of martensitic phase transitions in
shape memory alloys. A geometrically nonlinear theory is required for the thermomechanical simulation
of complex structures like endoscopic devices and stents. However, in certain situations like the simula-
tion of pipe couplers, it is sufficient to apply a geometrically linear theory. In both cases, a free energy
function is introduced, evolution equations for internal variables are postulated, and the dependence of
the fraction of oriented martensite on the transformation strains is represented by a novel constitutive
equation. In all, the developed constitutive theories are able to depict the thermomechanically coupled
behavior of shape memory alloys. This is demonstrated in Part II of this article (to appear in this journal,
in coauthorship with M. Schäfers). For this purpose, the theories are numerically treated in the framework
of the finite element method in order to solve initial-boundary-value problems. These illustrate the main
features of the constitutive theories by means of numerical test calculations. The results are compared
with experimental data.

1. Introduction

The exceptional material behavior of shape memory alloys is based on martensitic phase transitions,
which can be initiated and propagated by thermomechanical processes. In contrast to other kinds of
phase changes, martensitic phase transitions take place without diffusion processes. These phase transi-
tions are the result of cooperative movements of atomic layers until the crystal structure of the product
phase is reached. The underlying physical processes on the micro scale are well understood [Funakubo
1987; Otsuka and Ren 1999; Otsuka and Wayman 1998; Patoor et al. 2006]. During the last decades,
the material behavior including the fatigue properties of different shape memory alloys like NiTi and
CuAlNi has been elaborately investigated in uniaxial tests; see, for example, [Funakubo 1987; Huo and
Müller 1993; Otsuka and Wayman 1998; Shaw and Kyriakides 1995; Eggeler et al. 2004]. Moreover,
the material properties under combined tension-torsion loads were studied by [Rogueda et al. 1996;
Lim and McDowell 1999; Helm and Haupt 2001; Raniecki et al. 2001; McNaney et al. 2003]. Above
the so-called austenite finish temperature Af, martensitic phase transitions from austenite into oriented
(detwinned) martensite occur at a certain stress level. Due to the involved crystal structure of the austenite
and martensite phase, the occurring phase transitions are dominated by shear deformations and lead to
macroscopic inelastic deformations. If the material is unloaded, the material returns back to its parent
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Figure 1. Sketch of the pseudoelasticity and the shape memory effects. A: austenite; EM:
oriented (detwinned) martensite.

phase (austenite) and initial shape. This behavior is called pseudoelasticity or superelasticity, and is illus-
trated in Figure 1a. In the case of polycrystalline nickel-titanium shape memory alloys, the pseudoelastic
deformations are in the magnitude of about 5–10% engineering strain.

On condition that the austenitic material is loaded below the austenite finish temperature Af but above
the martensite start temperature Ms (see Figure 1b and c), martensitic phase transitions occur during
mechanical loading, but after unloading inelastic deformations remain in the shape memory alloy, be-
cause the detwinned martensite still exists (see Figure 1b). This effect is called pseudoplasticity due to
martensitic phase transitions. Of course, the pseudoplastic behavior (r-pseudoplasticity) is also observed
below Mf: in this situation, the shape memory alloy consists of martensite twins in the stress-free state,
which can be oriented and reoriented by appropriate mechanical loads. In the present study, this effect
is not regarded in the model, but the basic structure of the constitutive theory [Helm 2001; Helm and
Haupt 2003] also includes the description of this phenomenon.
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In addition to the pseudoelastic and pseudoplastic behavior, appropriate thermomechanical processes
lead to one-way and two-way shape memory effects. The one-way shape memory effect takes place if the
detwinned martensite is heated at sufficient small mechanical loads. Between the As- and Af-temperature,
the oriented martensite transforms back into austenite (see Figure 1b), the inelastic deformations disap-
pear, and the material regains its original shape. Therefore, this material behavior is called one-way
shape memory effect.

Under certain circumstances, shape memory alloys exhibit a two-way shape memory effect. Therefore,
oriented martensite must be produced by an appropriate stress field in the microstructure, which can be
the result of residual stresses or external forces. This stress field must be affected on the microstructure
during a subsequent heating and cooling process between the Af- and Mf-temperature (see Figure 1c).
In analogy to the one way-shape memory effect, the material regains approximately its undeformed
shape during heating. However, the required temperature to initiate and propagate the martensitic phase
transitions is higher than in the case of the one-way shape memory effect, because the existing stress state
increases the characteristic phase transition temperatures. In contrast to the one-way shape memory effect,
the induced stress state during the cooling process leads to phase transitions from austenite into oriented
martensite. Consequently, the material regains its deformed shape. In the used definition of the two-way
shape memory effect, which is advantageously for the modeling of the material behavior, the two-way
shape memory effect is released by a suitable stress field, which interacts with the microstructure, and
an appropriate variation in the temperature field. This usage of the term two-way shape memory effect
differs from the classical definition (see the explanations in [Funakubo 1987; Otsuka and Wayman 1998]):
in the classical definition, the two-way shape memory effect is only released by residual stress fields. The
other phenomenon is called two-way behavior of a shape memory alloy with a one-way characteristic
[Funakubo 1987].

More than twenty years ago, the first constitutive theories for shape memory alloys were published
[Achenbach and Müller 1982; Bertram 1982; Tanaka and Nagaki 1982; Falk 1983]. Since these pioneer-
ing studies, many different constitutive theories have been developed, and a number of models are able to
predict the uniaxial behavior of shape memory alloys; see, for example, [Liang and Rogers 1990; Khan
and Lagoudas 2002; Seelecke 2002; Paiva et al. 2005]. Such theories are well applicable to simulate
the behavior of one-dimensional structures like the usage of wires in actuator applications. However,
the simulation of applications like stents or pipe couplers requires three-dimensional formulated con-
stitutive theories. For this purpose, a large number of phenomenological models were suggested: for
example, Bertram [1982] and Graesser and Cozzarelli [1994] developed constitutive theories, which are
not discussed in a thermodynamic framework. In contrast to these concepts, constitutive theories in the
framework of continuum thermomechanics have been proposed in [Boyd and Lagoudas 1994; Raniecki
et al. 1992; Raniecki and Lexcellent 1994; Leclercq and Lexcellent 1996; Souza et al. 1998; Juhász
et al. 2000; Entchev and Lagoudas 2002; Helm and Haupt 2003; Lexcellent et al. 2006]. These models
consist of a thermodynamic function for the free energy (Helmholtz free energy) or the free enthalpy
(Gibbs free energy), which depends on state and internal variables. Moreover, evolution equations for
certain internal variables are introduced to represent the history dependent material behavior as well as
dissipation phenomena. An elaborate review about the phenomenological modeling of shape memory
alloys was recently published in [Lagoudas et al. 2006]. In addition to the discussions in that paper, it
should be mentioned that a part of the phenomenological models subdivide the evolution of the phase
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transition strains into an evolution equation for the forward phase transition and an evolution equation for
the reverse phase transition; see, for example, [Bondaryev and Wayman 1988; Boyd and Lagoudas 1994;
Auricchio et al. 1997; Helm 2001; Lagoudas et al. 2006]. In contrast to this, the approaches in [Graesser
and Cozzarelli 1994; Delobelle and Lexcellent 1996; Souza et al. 1998; Juhász et al. 2000; Helm and
Haupt 2003; Auricchio and Stefanelli 2004] utilize only one evolution equation for both directions of
phase transitions. In addition to these phenomenological concepts, different types of micromechanically
motivated theories have also been proposed in the literature; see, for instance, [Patoor et al. 1994; Lex-
cellent et al. 1996; Huang et al. 2000; Lim and McDowell 2002; Tanaka et al. 2002; Anand and Gurtin
2003; Thamburaja and Anand 2003; Jung et al. 2004; Novák and Sittner 2004; Patoor et al. 2006],
which are able to model the influence of the microstructure on the macroscopic behavior. Most of the
proposed constitutive theories are formulated in the framework of a geometrically linear theory. However,
the simulation of certain problems like stents or endoscopic devices requires a geometrically nonlinear
theory. Referring to this, only a few geometrically nonlinear concepts have been proposed in the common
literature: on the one hand, phenomenological theories were published in [Auricchio and Taylor 1997;
Qidwai and Lagoudas 2000; Helm 2001; Müller and Bruhns 2004]. On the other hand, in [Anand and
Gurtin 2003; Thamburaja and Anand 2003; Jung et al. 2004], the focus has been on micromechanical
models at finite deformations.

For many applications, it is sufficient to apply a geometrically linear theory. However, a geomet-
rically nonlinear constitutive theory is generally required, because different types of applications are
characterized by large rotations. Therefore, the present work is concerned with the thermomechanical
modeling in the case of small and also finite deformations. Our previous studies [Helm and Haupt 2003;
Helm 2005] are geometrically linear theories and contain singularities in the phase transition function.
Moreover, the concept of the former paper also contains a singularity in the phase transition rule. In
certain cases, both types of singularities are removable if a simple von Mises phase transition function
is applied. In contrast to these previous studies, the present constitutive theory does not contain such
types of singularities, because the dependence of the fraction of oriented martensite on the transformation
strains is modeled by a novel constitutive equation. In addition to this mathematical improvement, the
modified constitutive relation leads also to a more precise depiction of the observed material behavior:
e.g., the modeling of residual martensite after unloading at temperatures above Af.

The first part of the article is organized as follows: in Section 2, the kinematics for representing
inelasticity with respect to small and finite deformations are outlined. Thereafter, the basic structure of
the constitutive theories to model the multiaxial behavior of shape memory alloys in the framework of
continuum thermomechanics is developed (geometrically linear theory: Section 3; geometrically nonlin-
ear theory: Section 4). In both cases, a free energy function and two evolution equations for internal
variables are introduced. Both models are able to represent the basic phenomena of shape memory alloys
due to martensitic phase transitions: i.e. pseudoelasticity and pseudoplasticity as well as one-way and
two-way shape memory effect. Moreover, the representation of other effects like tension-compression
asymmetries or the cyclic behavior of shape memory alloys is possible, if certain parts of the model are
slightly changed. A second part of this article ([Helm and Schäfers 2006]) will deal with the numerical
treatment of these constitutive theories in the framework of the finite element method. For this purpose,
the system of differential equations is numerically integrated to obtain the stress state as well as the
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Figure 2. Reference, current, and intermediate configuration.

accompanying heat production. The capabilities of these constitutive theories are demonstrated with
illustrative examples and the results of the constitutive theories are compared to experimental data.

2. Kinematics

The continuum mechanics is based on the assumption that a material body B consists of material points
P and its motion is depicted by a continuous sequence of configurations (see Figure 2). If a reference
configuration is selected, the motion is representable by the one-to-one mapping: x = χR(X, t). The local
changes in space of the motion are depicted by the deformation gradient F(X, t)= Grad χR(X, t), which
is the Fréchet-derivative of the motion x = χR(X, t). The deformation gradient transforms material line
elements dX of the reference configuration KR into material line elements of the current configuration
KM: i.e., dx = FdX .
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The following theory for finite deformations makes use of the multiplicative split F = F∗ F̄, which can
be traced back to [Flory 1961]: in this multiplicative split, the deformation gradient F is decomposed
into a volumetric part F∗ and an isochoric part F̄ if the operators

( · )∗ : F 7→ F∗
= (det F)1/31 and ( · ) : F 7→ F̄ = (det F)−1/3F (1)

are applied. Throughout the whole article, these operators are used in a more general sense: the tensor
Ā = (det A)−1/3A is the unimodular part of A and the remaining nonunimodular part of A is denoted by
A∗

= (det A)1/31.

2.1. Multiplicative decompositions of the deformation gradient. In finite deformation theories for mod-
eling the inelastic behavior of different types of materials, the multiplicative decomposition of the defor-
mation gradient F = F̂eFi into an elastic part F̂e and an inelastic part Fi is often applied (see [Kröner
1960; Lee 1969; Lee and Liu 1967; Lubliner 1985; Haupt 2002]). In the present framework, the related
multiplicative decomposition F = F̂eFt is used: therein, F̂e is the elastic part of the deformation gradient
and Ft represents the inelastic part of the deformation gradient resulting from martensitic phase transi-
tions see [Auricchio and Taylor 1997; Helm 2001]. The multiplicative decomposition of the deformation
gradient implies a stress-free intermediate configuration K̂t (see Figure 2). Already in [Eckart 1948]
and [Kröner 1958], stress-free intermediate configurations were introduced to define inelastic states. It is
common knowledge that the multiplicative decomposition F = F̂eFt leads to an incompatible intermediate
configuration; see [Eckart 1948; Lee 1969; Mandel 1972; Haupt 2002].

As a result of our previous studies [Helm and Haupt 2003; Helm 2005], the consideration of internal
stress fields is a useful concept to model the material behavior of shape memory alloys. It is known
from viscoplasticity [Lion 2000] that an additional multiplicative decomposition of the inelastic part is
appropriate to model internal stress fields in a geometrically nonlinear theory. Therefore, this concept
is transferred to the present study (see [Helm 2001]): the inelastic part Ft = F̌sFd of the deformation
gradient is decomposed into two parts F̌s and Fd. In the present theory, the part F̌s is used to model energy
storage effects during the evolution of internal stress fields while the remainder part Fd is introduced to
account for the accompanied dissipative phenomena. In addition to the intermediate configuration K̂t,
the additional decomposition of Ft = F̌sFd formally results in a further intermediate configuration Ǩd

(see Figure 2).

2.2. Strain tensors.

2.2.1. Finite strains. Provided that the multiplicative decomposition is used, the Green strain tensor
E = [C − 1] /2 cannot be separated into purely elastic and inelastic parts. Therein, the tensor C = FTF is
the right Cauchy–Green tensor. However, the transformation of the Green strain tensor to the intermediate
configuration K̂t leads to a strain measure (see [Haupt 1985])

0̂ = F−T
t EF−1

t = 0̂e + 0̂t with 0̂e =
1
2

(
Ĉe − 1

)
and 0̂t =

1
2

(
1 − B̂−1

t
)
, (2)

which is additively decomposable into an elastic part 0̂e and an inelastic part 0̂t. Therein, the tensors
Ĉe = F̂T

e F̂e and B̂t = FtFT
t are defined in analogy to the right and left Cauchy–Green tensors, C = FTF

and B = FFT. If 0̂e and 0̂t are expressed in terms of the reference configuration KR,

Ee = FT
t 0̂eFt =

1
2

(
FT

t ĈeFt − FT
t Ft

)
and Et = FT

t 0̂tFt =
1
2

(
FT

t Ft − 1
)
, (3)
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it becomes clear that the transformation strain state Et depends only on Ft, but the elastic strain state Ee

is a function of F̂e and Ft.
On the basis of the foregoing discussion, an internal variable to represent internal stress fields can

be introduced with respect to the intermediate configuration Ǩd: the transformation of Et or 0̂t to the
intermediate configuration Ǩd leads to an internal variable Y̌ of strain type,

Y̌ = F−T
d EtF−1

d = F̌T
s 0̂tF̌s = Y̌s + Y̌d, (4)

which can be additively decomposed into Y̌s and Y̌d:

Y̌s =
1
2

(
Čs − 1

)
and Y̌d =

1
2

(
1 − B̌−1

d

)
. (5)

In analogy to the left and right Cauchy–Green tensors, the tensors Čs = F̌T
s F̌s and B̌d = FdFT

d are defined.

Remark 1 (Notation). In order to distinguish between the different configurations the following terminol-
ogy is applied (see Figure 2): Stress and strain tensors operating in the intermediate configuration K̂t are
denoted by ˆ( · ). In contrast to this, the stress and strain measures in the second intermediate configuration
Ǩd are denoted by ˇ( · ). For the stress tensors in the reference configurationKR the notation ˜( · ) is used and
for the strain tensors the letters like E and C are applied. In the case of the theory for small deformations
(see Eq.(6) and (7)), the distinction of different configurations is not required. Moreover, the quantities
F̌s and F̂e are denoted with ˇ( · ) and ˆ( · ), because they transforms material line elements from different
intermediate configurations.

2.2.2. Small strains. The previously introduced strain measures on the basis of the multiplicative de-
compositions are not required in their exact forms if the special case of a theory for small deformations
is considered: according to [Casey 1985], the multiplicative decomposition of the deformation gradient
F = F̂eFt corresponds in a geometrically linear theory to the additive decomposition of the linearized
Green strain tensor,

E = Ee + Et, (6)

into an elastic part Ee and an inelastic part Et, which represent the transformation strain state. Finally,
the other multiplicative decomposition Ft = F̌sFd merge into the additive decomposition

Y = Et = Ys + Yd, (7)

if the assumption of small deformations is applied. Consequently, the geometrically linear theory can be
formulated on the basis of the additive decomposition (6) and (7).

3. Constitutive theory in relation to small deformations

3.1. Free energy. In shape memory alloys different types of energy storage mechanisms play an impor-
tant role: for example the change in internal energy due to the thermoelasticity of a single-phase material,
the energy change on account of the phase transitions, as well as energy storage phenomena resulting from
internal stress fields. Consequently, it is assumed that the free energy of the proposed model depends on
the elastic part of the linearized Green strain tensor Ee (see Equation (6)), the absolute thermodynamic
temperature θ , the fraction z ∈ [0, 1] of oriented martensite, and the internal variable Ys:

ψ(Ee, θ, z,Ys)= ψ̂e(Ee, θ, z)+ ψ̂s(Ys, θ). (8)
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In this assumption, the thermoelastic part ψe represents the mixture of two thermoelastic single-phase
materials (austenite (A) and martensite (M)):

ρψe = ρψ̂e(Ee, θ, z)= zρψM
e (Ee, θ)+ (1 − z)ρψA

e (Ee, θ)

= µ̃(θ, z)ED
e · ED

e +
κ̃(θ, z)

2
(tr Ee)

2
− 3α̃(θ, z) (tr Ee) (θ − θ0)

+ zρ
∫ θ

θ0

cM
d0
(θ̄)dθ̄ + (1 − z)ρ

∫ θ

θ0

cA
d0
(θ̄)dθ̄ + ρ

[
uA

0 + z1u0
]

− θ

[
zρ

∫ θ

θ0

cM
d0
(θ̄)

θ̄
dθ̄ + (1 − z)ρ

∫ θ

θ0

cA
d0
(θ̄)

θ̄
dθ̄ + ρ

[
ηA

0 + z1η0
]]
. (9)

Therein, the effective elasticity parameters

µ̃(θ, z)= zµM(θ)+ (1 − z)µA(θ), (10)

κ̃(θ, z)= zκM(θ)+ (1 − z)κA(θ), and (11)

α̃(θ, z)= zαM(θ)κM(θ)+ (1 − z)αA(θ)κA(θ) (12)

contain the elasticity parameters of the different phases (ω= A, M): µω is the shear modulus, κω the bulk
modulus, and αω the linear expansion coefficient. Moreover, θ0 represents the reference temperature, cωd0

is a certain part of the specific heat at constant deformation, and the initial internal energy and the initial
entropy are denoted by uω0 and ηω0 . Furthermore the constants 1u0 = uM

0 − uA
0 and 1η0 = ηM

0 − ηA
0 are

of special interest in the thermomechanical modeling of phase transitions (see [Huo and Müller 1993;
Helm and Haupt 2003]): for instance, they play a dominant role in the description of latent heat effects.
The thermomechanical interactions between the austenite and martensite phase in the microstructure of
the material are strongly simplified due to the assumption of equal thermoelastic strain and temperature
states in both phases.

The other part ψ̂s(Ys) of the free energy models the energy storage due to the generation and variation
of internal stresses. Each grain of a polycrystalline shape memory alloy contains a lot of imperfections
like precipitations and impurities. Consequently, the martensitic phase transitions are obstructed by
the imperfections and by the surrounding grains. As a macroscopical result of these microstructural
phenomena, the associated part ψs of the free energy function is assumed to be

ρψs = ρψ̂s(θ,Ys)=
c(θ)

2
Ys · Ys. (13)

Therein, c(θ) is a nonnegative material function of temperature.

3.2. Evolution equations for internal variables. In order to develop a thermodynamically consistent
theory, the basic structure of the free energy function according to Equation (8) is introduced into the
internal dissipation inequality ρδi = −ρψ̇ − ρθ̇η+ T · Ė ≥ 0 (for details see [Helm and Haupt 2003] or
Section 4):

ρδi =

[
T − ρ

∂ψe

∂Ee

]
· Ėe − ρ

[
∂ψ

∂θ
+ η

]
θ̇ − ρ

∂ψe

∂z
ż − ρ

∂ψs

∂Ys
· Ẏs + T · Ėt ≥ 0. (14)
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Therein, η is the entropy and the material density is denoted by ρ. For arbitrary rates of Ee, θ , z, Ys, and
Et, this inequality implies potential relations for the stress tensor T,

T = ρ
∂ψe

∂Ee
= 2µ̃(θ, z)ED

e + κ̃(θ, z)(tr Ee)1 − 3α̃(θ, z) (θ − θ0) 1, (15)

and the entropy η = −∂ψ/∂θ , if ż, Ẏs, and Ėt do not depend on Ėe and θ̇ (see [Coleman and Gurtin
1967]). Furthermore, the remaining dissipation inequality motivates the definition of the thermodynamic
quantity 4= ρ∂ψe/∂z,

4=
∂µ̃(θ, z)
∂z

ED
e · ED

e +
1
2
∂κ̃(θ, z)
∂z

(tr Ee)
2
− 3

∂α̃(θ, z)
∂z

(tr Ee) (θ − θ0)

+ ρ

[∫ θ

θ0

[
cM

d0
(θ̄)− cA

d0
(θ̄)

]
dθ̄ +1u0

]
− ρθ

[∫ θ

θ0

cM
d0
(θ̄)− cA

d0
(θ̄)

θ̄
dθ̄ +1η0

]
, (16)

and the internal stress field Xε:

Xε = ρ
∂ψs

∂Ys
= c(θ)Ys = c(θ) [Et − Yd] . (17)

The thermodynamic quantity 4 plays an important role in view of the depiction of the stress state, which
is required to initiate and propagate the martensitic phase transitions. The other internal variable Xε

incorporates the fact that the cooperative motion of the atoms during the martensitic phase transitions
is limited by defects in the microstructure like impurities and precipitations. In classical theories of
plasticity, Xε is denoted as back stress.

With these definitions, the remaining dissipation inequality takes the following form:

ρδi = −4 ż + T · Ėt − Xε · Ẏs ≥ 0. (18)

To complete the material model, constitutive equations for the internal variables z, Et, and Yd = Et − Ys

have to be defined. On account of the physical understanding of the deformation mechanisms (see
[Miyazaki and Otsuka 1989], for instance) and also based on experimental studies, the martensitic phase
transitions between austenite and oriented martensite are accompanied by inelastic deformations. In
polycrystalline materials, the required constitutive relation between the oriented martensite fraction z and
the transformation strain tensor Et is quite difficult to identify. However, the following physical aspects
should be considered in a constitutive theory for shape memory alloys: if the material is completely in the
austenite phase, the transformation strains must vanish, i.e. Et = 0. Moreover, if a complex deformation
path is performed, which starts and ends at Et = 0, it must be guaranteed that the fraction of oriented
martensite is always zero if Et = 0. Both z = ẑ(Et) with the restriction ẑ(0) = 0 and Et = Ēt(z) with
the constraint Ēt(0)= 0 are appropriate strategies to model the observations. In the present concept the
fraction of oriented martensite z = ẑ(Et) is depicted as function of Et. It should be emphasized that such
a relation is only meaningful between the fraction of detwinned martensite and the inelastic strain state,
because the fraction of twinned martensite does not depend on the inelastic strain state.
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Remark 2. Instead of a function z = ẑ(Et), it is possible to apply an evolution equation for z, namely
ż = Z(Et) · Ėt. Then, the relation

z =

∮
Z(Et) · dEt = 0 (19)

must be fulfilled if an arbitrary deformation process starts at Et = 0. This relation guarantees that z
vanishes after an arbitrary multiaxial process, which starts and ends at Et = 0. Of course, Equation (19)
is fulfilled, if and only if Z(Et) is equal to dz/dEt.

For an isotropic material, the fraction z of oriented martensite depends on the basic invariants (Jt1 = tr Et,
Jt2 = tr E2

t , and Jt3 = tr E3
t ): z = ẑ(Et) = z̃(Jt1, Jt2, Jt3). In the remaining dissipation inequality, the

material time derivative of z = z̃(Jt1, Jt2, Jt3) is required:

ż =
dẑ
dEt

· Ėt with
∂ ẑ
∂Et

=
∂ z̃
∂ Jt1

1 + 2
∂ z̃
∂ Jt2

Et + 3
∂ z̃
∂ Jt3

E2
t . (20)

Martensitic phase transitions are accompanied by small volume changes (see [Shimizu and Tadaki 1987],
for instance), which may be neglected. For example, in NiTi the volume change by phase transitions
between austenite and martensite amounts 0.34%. Consequently, the underlying deformation mechanism
is nearly volume preserving. As a result of this material property, the influence of the first invariant Jt1

in the function of z can be omitted. Furthermore, the transformation strains are small and dominated by
shear deformations. Therefore, the influence of the second invariant is much more important than that of
the third invariant. However, for the modeling of tension-compression asymmetries in the strain space, the
first and third invariants may be important quantities. Ignoring these possibilities, the fraction of oriented
martensite is introduced to be a function of the second invariant Jt2: z = z̃(Jt2). In phenomenological
theories for shape memory alloys; see, for example, [Levitas 1998; Juhász et al. 2000; Helm and Haupt
2003], the fraction of oriented martensite is commonly depicted in the following form:

z = ẑ(Et)= z̃(Jt2)=
‖Et‖√

3
2γt

⇒ ż =
Et · Ėt√
3
2γt‖Et‖

. (21)

Therein, the norm of Et is given by ‖Et‖ =
√

Et · Et and γt represents the maximum transformation
strain, which can be measured in a uniaxial test. It should be mentioned that a similar relation was
suggested by Bertram [1982] in terms of the so-called limit function. As pointed out in [Helm and Haupt
2003], the evolution equation (phase transition rule) for the transformation strains incorporates the time
derivative of z according to Equation (21)2. Therefore, the applied phase transition rule (see Equation
(27) and the internal variable Xθ according to Equation (24) for γ0 = 0) and likewise the introduced
phase transition function are singular, if a process starts at Et = 0. In certain cases, these singularities
are removable, but difficulties in numerical implementation still remain. Similar problems exist in the
theories of Souza et al. [1998], Juhász et al. [2000], and Auricchio and Stefanelli [2004]. In order to avoid
this problem, Auricchio and Petrini [2004] introduce a regularized norm operator. Moreover, the shape
memory materials often show a smooth transition from the retransformation plateau into the elastic region
(see region II in Figure 1a): in previous models, such as that of [Helm and Haupt 2003], this smooth
transition cannot be described. Therefore, an improved constitutive equation for representing the fraction
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of oriented martensite as a function of the transformation strain tensor is proposed in the present article:

z = ẑ(Et)= z̃(Jt2)=

√
2
3 Et · Et + γ

2
0

γt
− z0. (22)

In this constitutive relation, γt is still the maximum transformation strain. In contrast to the constitutive
relation (21), the positive parameters γ0 and z0 are additionally introduced. The parameter z0 is pre-
determined, because the physical understanding of the occurring martensitic phase transitions between
austenite and oriented martensite requires z = ẑ(0)= 0. Consequently, this condition leads to z0 = γ0/γt.
The parameter γ0 has an important influence on the rate of z (Equation (22)),

ż =
Et · Ėt√

3
2γt

√
Et · Et +

3
2γ

2
0

, (23)

because the influence of γ0 on z is only negligible if ‖Et‖ � γ0. In order to obtain the final form of the
internal dissipation inequality (18), the time derivative of z according to Equation (23) is inserted, the
time derivative of Ys = Et − Yd is replaced by usage of Equation (7), and the internal variable Xθ of
stress type (see the discussion in [Helm and Haupt 2003]):

Xθ =4
dẑ
dEt

=
4Et√

3
2γt

√
Et · Et +

3
2γ

2
0

, (24)

as well as X = Xε + Xθ is considered:

ρδi = [T − X] · Ėt + Xε · Ẏd ≥ 0. (25)

The introduced internal variable Xθ has a physical meaning, because Xθ is responsible for the depiction
of the temperature-dependence of the required stress state to initiate and progress the martensitic phase
transitions. Due to the applied thermoelastic mixture, the thermodynamic quantity 4 strongly depends
on temperature. The most important term in 4 is given by ρ(1u0 −θ1η0). Therefore, if suitable material
parameters are used, the model predicts a nearly linear temperature-dependence of the required phase
transition stress over a certain temperature range. This is the stress state, which is necessary to initiate and
progress the martensitic phase transitions. In contrast to [Helm 2001; Helm and Haupt 2003], the internal
variable Xθ is a continuous function of Et. For a simple tension-compression load, the 11-component of
Xθ is proportional to

εt√
ε2

t + γ 2
0 .

This function is plotted in Figure 3 for different values of γ0.
The final inequality (25) is an excellent basis to introduce a phase transition function

f = ‖TD
− XD

‖ −

√
2
3 k(θ) (26)

and the evolution equations for the internal variables Et and Yd. In the phase transition function, the
quantity k(θ) is the radius of the phase transition surface. In general, it is also possible to introduce
the phase transition radius as function of the fraction of oriented martensite in order to model isotropic
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Figure 3. Illustration of e1 · Xθ e1 ∼ εt/

√
ε2

t + γ 2
0 for uniaxial tension-compression load.

transformation hardening. Such transformation hardening functions are commonly used in the modeling
of shape memory alloys (see discussions in [Lagoudas et al. 2006]). Moreover, it is assumed that only
deviatoric stress states influence the value of the phase transition function: TD

= T − (tr T)/3 1. Due to
the fact that phase transition function f depends on the internal variable Xθ according to Equation (24),
the model is restricted to a temperature range, which implies 4≥ 0 at Ee = 0.

It should be mentioned that the simple v. Mises-type phase transition function leads initially to a
symmetric tension-compression behavior. Such a behavior is almost observable for the first cycle in
the uniaxial tension-compression experiments of Lim and McDowell [1995] on NiTi. In the case of
a polycrystalline NiTi shape memory alloy without texture, the micromechanical studies of Gall and
Sehitoglu [1999] lead to the result that, at the macroscopic level, merely a small tension-compression
asymmetry is observable. In contrast to these results, a tension-compression asymmetry is experimentally
observed and theoretically investigated in different types of shape memory alloys: see [Patoor et al. 1996;
Gall and Sehitoglu 1999; Lim and McDowell 1999; Qidwai and Lagoudas 2000; Raniecki et al. 2001;
Lexcellent et al. 2006]. Both the induced set of active martensite variants by the applied stress state
and the texture of the material influence the tension-compression asymmetry. Consequently, depending
on the underlying shape memory alloy and its microstructure, an appropriate phase transition function
should be applied; see [Patoor et al. 1996; Qidwai and Lagoudas 2000].

Finally, the evolution equations for the internal variables Et and Yd are postulated.

• It is assumed that the transformation strain state Et evolves according to the phase transition rule

Ėt = λt N with the normal N =
∂ f
∂T

=
TD

− XD

‖TD − XD‖
. (27)
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In analogy to [Helm and Haupt 2003] and [Helm 2005], a nonnegative inelastic multiplier

λt =


1

ηt(θ)

〈
f
rt

〉mt(θ) A → EM if z < 1 and Et · N ≥ 0,

EM → A if z > 0 and Et · N< 0,

0 in all other cases

(28)

of Perzyna-type is assumed [Perzyna 1963; Hohenemser and Prager 1932]. Therein, ηt(θ) > 0 and mt(θ)

are temperature-dependent material functions and rt is introduced to obtain a dimensionless argument
to the operator: 〈x〉 = (|x | + x)/2. The introduced inelastic multiplier leads to a rate-dependent theory.
However, if ηt(θ)→ 0 (but always ηt(θ) > 0) or if sufficiently slow processes are considered, the material
model approximates a rate-independent theory in the sense of an asymptotic limit. This property is well
known in thermoviscoplasticity [Haupt et al. 1992; Haupt 2002].

For representing the history-dependent material behavior of shape memory alloys, a few case distinc-
tions are introduced: the phase transition from austenite to oriented martensite takes place if the phase
transition function f is positive, austenite is available (z < 1), and the fraction of oriented martensite
increases (dz ∼ Et · N ≥ 0). In contrast to the forward transition, the retransformation occurs if oriented
martensite is available (z > 0) and the fraction of oriented martensite decreases (dz ∼ Et · N < 0). In
comparison with the magnitude of the isochoric deformations, the occurring volume changes during the
martensitic phase transitions are negligible. Therefore, a deviatoric evolution of Et is assumed; that is,

ED
t = Et − (tr Et)/3 1.

As pointed out in [Helm and Haupt 2003], the applied evolution equation (27) is able to predict
the direction of the transformation strain-rate in accordance with the experimental studies of [Lim and
McDowell 1999]. The main reason for this result is that the internal variable Xθ significantly influences
the direction of the transformation strain-rate.

• Furthermore, the evolution of Yd is proposed to be proportional to the internal stress tensor Xε:

Ẏd = ζd Xε. (29)

The introduced proportional factor ζd ≥ 0 is assumed to be

ζd =
B(θ, z, ż)

c(θ)
ṡt with ṡt =

√
2
3‖Ėt‖ (30)

and the function

B(θ, z, ż)=

{
1
2

(
tanh [−β(θ)(z − γ (θ))] + 1

)
b(θ) if ż > 0,

b(θ) if ż < 0.
(31)

Here, ṡt is the rate of the accumulated phase transition strain st. Therein, b, β, and γ are nonnegative
and generally temperature-dependent material functions. The constitutive model for the evolution of the
internal stress fields (Equation (13), (30), and (31)) is a modification of a classical Armstrong–Frederick
type approach: thus the strong stress slope as well as the different slope in the loading and unloading
paths at the end of the phase transition plateau (see region I in Figure 1a and the experiments in [Huo and
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Müller 1993; Shaw and Kyriakides 1995; Helm and Haupt 2001]) are all incorporated in the suggested
constitutive theory.

On account of the internal stress tensor Xε (Equation (17)) and the accompanying evolution equation
for the internal variable Yd (Equation (29)), the evolution of the internal stress state Xε depends on
the deformation history and leads to an anisotropic behavior of the model, because the value of the
phase transition function f (Equation (26)) depends on Xε. Therefore, the characteristic phase transition
stresses and temperatures depends also on the deformation history.

If both evolution equations are introduced into the remaining dissipation inequality (25),

ρδi = λt‖TD
− XD

‖ + ζd ‖Xε‖
2
≥ 0, (32)

it is discernible that the proposed constitutive theory is thermodynamically consistent, because of λt ≥ 0
and ζd ≥ 0 according to Equation (28) and (30).

4. Constitutive theory in relation to finite deformations

In the foregoing section, a small strain theory has been constructed to model the thermomechanical
behavior of shape memory alloys due to martensitic phase transitions. To formulate a relation between
the fraction of oriented martensite and the transformation strain tensor, a new constitutive equation in
form of Equation (22) was introduced. In this section, the developed constitutive theory is enhanced
on the basis of [Helm 2001] to a finite strain theory. In that work we introduced a basic concept for
shape memory alloys at finite deformations. This concept is based on a twofold multiplicative decom-
position of the deformation gradient in order to distinguish between elastic and inelastic deformations
as well as to incorporate the influences of internal stress states. Furthermore, the theory contains two
evolution equations for the phase transition strain: one evolution equation models the phase transition
from austenite into oriented martensite and the other evolution equation represents the retransformation.
In the present section, the finite deformation theory of our earlier work is revised in order to obtain a
constitutive theory, which requires only one simple constitutive equation to describe the evolution of the
phase transition strains, which is valid for the forward and the reverse phase transition as well.

4.1. Free energy. According to [Helm 2001] and in analogy to the proposed geometrically linear the-
ory in the foregoing section, the main energy storage phenomena are describable if the free energy is
introduced as a function of the elastic strain state 0̂e, the absolute thermodynamic temperature θ , and
the fraction of martensite z as well as an internal variable Y̌s:

ψ = ψ̂(0̂e, θ, z, Y̌s)= ψ̂e(0̂e, θ, z)+ ψ̂s(Y̌s, θ). (33)

In analogy to the small strain theory, the thermoelastic part ψe of the free energy results from the simple
mixture of two single phase materials:

ψe(θ, 0̂e, z)= zψM
e (θ, 0̂e)+ (1 − z)ψA

e (θ, 0̂e). (34)
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Here, it is assumed that the elastic strains in the austenite and martensite phase are equal. Each single
phase material is depicted by a finite thermoelasticity relation (see [Helm 2001; 2006]):

ψωe =
1

2ρR
κω(θ)

(
ln

(
det Ĉe

)1/2
)2

+
1

2ρR
µω(θ)

(
tr ¯̂Ce − 3

)
−

1
ρR
κω(θ) ln

(
1 +αω(θ) [θ−θ0]

)3 ln
(
det Ĉe

)1/2
+

∫ θ

θ0

cωd (θ̄)dθ̄ + uω0 − θ

[∫ θ

θ0

cωd (θ̄)

θ̄
dθ̄ + ηω0

]
. (35)

Therein, the first part describes the energy storage due to volumetric deformations (see [Simo and Pister
1984]), and the free energy contribution of isochoric deformations is given by the second term (see
[Simo 1985: 1988]), which is of neo-Hooke type. Moreover, the third term represents the thermoelastic
coupling phenomena. Applying the useful assumption of small thermoelastic strains αω(θ) [θ − θ0], this
term can be written in its approximation κω(θ) ln

[
(1 +αω(θ) [θ − θ0])3

]
≈ 3κω(θ)αω(θ) [θ − θ0]. The

last term in Equation (34) models the energy storage due to caloric effects. The meaning of the material
parameters in the free energy function of a single-phase material are already known from the small strain
theory (see Section 3.1).

If the free energy of the single phase material (35) is inserted into the mixture relation (34), the free
energy of the two-phase material is given by

ρRψe =
κ̃(θ, z)

2

(
ln

(
det Ĉe

)1/2
)2

+
1
2
µ̃(θ, z)

(
tr ¯̂Ce − 3

)
− 3α̃(θ, z) (θ − θ0) ln

(
det Ĉe

)1/2

+zρR

∫ θ

θ0

cM
d0
(θ̄)dθ̄ + (1 − z)ρR

∫ θ

θ0

cA
d0
(θ̄)dθ̄ + ρR

[
uA

0 + z1u0
]

−θ

[
zρR

∫ θ

θ0

cM
d0
(θ̄)

θ̄
dθ̄ + (1 − z)ρR

∫ θ

θ0

cA
d0
(θ̄)

θ̄
dθ̄ + ρR

[
ηA

0 + z1η0
]]
. (36)

According to Equation (10)–(12), the material functions κ̃(θ, z), µ̃(θ, z), and α̃(θ, z) are already known.
Altogether, the main thermoelastic effects are representable by the proposed finite thermoelasticity rela-
tion.

In addition to the thermoelastic part of the free energy, a constitutive equation for the inelastic part is
assumed to be (see [Helm 2001])

ψs =
1

4ρR
c(θ)

(
tr ¯̌Cs − 3

)
. (37)

Therein, the tensor ¯̌Cs is the unimodular part of Čs.

4.2. Evolution equations for internal variables. In a finite deformation theory it is important to intro-
duce conjugate variables and associated time derivatives. The concept of dual variables [Haupt and
Tsakmakis 1989; Haupt 2002] implies that the variables T̃ (second Piola–Kirchhoff stress tensor) and
E are not only conjugate but also dual variables. Other dual variables result from the postulate that the
invariance of the following physically significant inner products is fulfilled: the scalar product between
the second Piola–Kirchhoff stress tensor T̃ and the Green strain tensor E (T̃ · E), the stress power T̃ · Ė,
the complementary stress power ˙̃T · E, and finally the incremental stress power ˙̃T · Ė. In relation to the
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intermediate configuration K̂t, the stress tensor Ŝ = FtT̃FT
t and the strain tensor 0̂ (see Equation (2)) are

dual variables, because this pair does not influence, for example, T̃ · E = Ŝ · 0̂ and

T̃ · Ė = tr (FtT̃FT
t︸ ︷︷ ︸

Ŝ

F−T
t ĖF−1

t︸ ︷︷ ︸
4

0̂

)= Ŝ ·

4

0̂. (38)

Therein,
4

0̂ represents the Oldroyd derivative of 0̂,
4

0̂ =
˙̂
0 + L̂T

t 0̂ + 0̂L̂t with
4

ˆ( · )=
˙̂
( · )+ L̂T

t
ˆ( · )+ ˆ( · )L̂t, (39)

which is an associated time derivative, formulated relative to the intermediate configuration K̂t. This Ol-
droyd derivative of 0̂t is calculated on the basis of the inelastic deformation rate L̂t = ḞtF−1

t . Furthermore,
the relation

4

0̂ =

4

0̂e +

4

0̂t, with
4

0̂e =
˙̂
0e + L̂T

t 0̂e + 0̂eL̂t and
4

0̂t =
˙̂
0t + L̂T

t 0̂t + 0̂tL̂t (40)

is valid, because the Oldroyd derivative is a linear operator. It should be mentioned that the relation
4

0̂t =
1
2

[
L̂t + L̂T

t
]
= D̂t (41)

is valid for the Oldroyd derivative of 0̂t. This relation underlines that the Oldroyd rate of 0̂t depends
only on Ft and its material time derivative. In contrast to this, the Oldroyd derivative of 0̂e is influenced
by F̂e, Ft and their material time derivatives.

In analogy to Section 3.2, the basic structure of the constitutive theory is developed on the basis of the
internal dissipation inequality, given by ρRδi = −ρRψ̇ − ρRθ̇η+ T̃ · Ė ≥ 0. Here, ρR is the mass density
with respect to the reference configuration. Inserting the free energy function (33), the identity (38), and
the relation (40) into the internal dissipation inequality, the resulting inequality is given by

δi = −
∂ψ̂e

∂0̂e
·
˙̂
0e −

∂ψ̂e

∂z
ż −

[
η+

∂ψ̂

∂θ

]
θ̇ −

∂ψ̂s

∂Y̌s
·
˙̌Ys +

1
ρR

Ŝ ·

4

0̂e +
1
ρR

Ŝ ·

4

0̂t. (42)

In the next step, ˙̂
0e is replaced by its Oldroyd derivative according to Equation (40)2. In the same way,

˙̌Ys is substituted by an associated time derivative: with respect to the intermediate configuration Ǩd, an
internal stress tensor X̌ε = FtX̃εFT

t is defined, which represents the transformation of the internal stress
state X̃ε from the reference configuration to the intermediate configuration Ǩd. Its dual strain tensor
in the reference configuration is named as Ỹ and the variable Y̌ is the associated strain tensor in the
intermediate configuration Ǩd. The analysis of the stress power,

X̃ε ·
˙̃Y = tr (FdX̃εFT

d︸ ︷︷ ︸
X̌ε

F−T
d

˙̃YF−1
d︸ ︷︷ ︸

4

Y̌

)= X̌ε ·

4

Y̌, (43)

leads to the associated time derivative:
4

Y̌ =
˙̌Y + ĽT

d Y̌ + Y̌Ľd,
4

ˇ( · )=
˙̌
( · )+ ĽT

d
ˇ( · )+ ˇ( · )Ľd, (44)
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with Ľd = ḞdF−1
d . Consequently,

4

Y̌ represents an Oldroyd derivative relative to the intermediate config-
uration Ǩd. Since this Oldroyd derivative is also a linear operator, the relation

4

Y̌ =

4

Y̌s +

4

Y̌d with
4

Y̌s =
˙̌Ys + ĽT

d Y̌s + Y̌sĽd and
4

Y̌d =
˙̌Yd + ĽT

d Y̌d + Y̌dĽd (45)

is likewise valid. In analogy to Equation (41), the Oldroyd derivative of Y̌d is representable as

4

Y̌d =
1
2

[
Ľd + ĽT

d
]
= Ďd. (46)

Consequently, the identities according to Equation (40)2 and also Equation (45)2 are used to replace in
Equation (42) the material time derivative of 0̂e and Y̌s by their Oldroyd derivatives. Additionally, the
additive relation according to Equation (45)1 is applied in Equation (42):

δi =
1
ρR

[
Ŝ − ρR

∂ψ̂e

∂0̂e

]
·

4

0̂e −

[
η+

∂ψ̂

∂θ

]
θ̇ −

∂ψ̂e

∂z
ż −

∂ψ̂s

∂Y̌s
·

4

Y̌ +
1
ρR

Ŝ ·

4

0̂t

+
∂ψ̂s

∂Y̌s
·

[ 4

Y̌d + ĽT
d Y̌s + Y̌sĽd

]
︸ ︷︷ ︸[

Čs
∂ψ̂s

∂Y̌s

]
·

4

Y̌d

+
∂ψ̂e

∂0̂e
·

[
L̂T

t 0̂e + 0̂eL̂t

]
︸ ︷︷ ︸[

Ĉe
∂ψ̂e

∂0̂e

]
·

4

0̂t

≥ 0. (47)

As shown in the last line of Equation (47), these terms can be replaced if ∂ψ̂s/∂Y̌s is an isotropic
tensor function of Y̌s and if ∂ψ̂e/∂0̂e is an isotropic tensor function of 0̂e [Mandel 1972; Haupt 2002].
Furthermore, the relation

∂ψ̂s

∂Y̌s
·

4

Y̌ = F̌s
∂ψ̂s

∂Y̌s
F̌T

s · F̌−T
s

4

Y̌F̌−1
s = F̌s

∂ψ̂s

∂Y̌s
F̌T

s ·

4

0̂t. (48)

is valid for the last term in the first line of the inequality (47). Considering these identities into the
internal dissipation inequality (47), the resulting inequality

ρRδi =

[
Ŝ − ρR

∂ψ̂e

∂0̂e

]
·

4

0̂e − ρR

[
η+

∂ψ̂

∂θ

]
θ̇ − ρR

∂ψ̂e

∂z
ż +

[
ČsρR

∂ψ̂s

∂Y̌s

]
·

4

Y̌d +

[
ĈeŜ − F̌sρR

∂ψ̂s

∂Y̌s
F̌T

s

]
·

4

0̂t

≥ 0 (49)

implies a potential relation for the stress tensor

Ŝ = ρR
∂ψ̂e

∂0̂e
= 2ρR

∂ψ̃e

∂Ĉe
= µ̃(θ, z)

(
det Ĉe

)−1/3
[
1 −

1
3

(
tr Ĉe

)
Ĉ−1

e

]
+

[
κ̃(θ, z) ln

(
det Ĉe

)1/2
− 3α̃(θ, z) (θ − θ0)

]
Ĉ−1

e , (50)

which is related to the intermediate configuration K̂t, and the entropy η = −∂ψ̂/∂θ , if ż, ˙̌Yd, and
4

0̂t do
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not depend on
4

0̂e and θ̇ [Coleman and Gurtin 1967]. Furthermore, the remaining internal dissipation
inequality

ρRδi = − ρR
∂ψ̂e

∂z︸ ︷︷ ︸
4

ż +

[
Čs

X̌ε︷ ︸︸ ︷
ρR
∂ψ̂s

∂Y̌s

]
·

4

Y̌d +

[
ĈeŜ︸︷︷︸

P̂

− F̌s

X̌ε︷ ︸︸ ︷
ρR
∂ψ̂s

∂Y̌s
F̌T

s︸ ︷︷ ︸
P̂Xε

]
·

4

0̂t (51)

motivates the introduction of four definitions: the partial derivative in the first term is interpretable as a
thermodynamic force 4= ρR ∂ψe/∂z,

4=
1
2
∂µ̃

∂z

(
tr ¯̂Ce − 3

)
+

1
2
∂κ̃

∂z

(
ln

(
det Ĉe

)1/2
)2

− 3
∂α̃

∂z
(θ − θ0) ln

(
det Ĉe

)1/2

+ ρR

[∫ θ

θ0

[
cM

d0
(θ̄)− cA

d0
(θ̄)

]
dθ̄ +1u0

]
− ρRθ

[∫ θ

θ0

cM
d0
(θ̄)− cA

d0
(θ̄)

θ̄
dθ̄ +1η0

]
, (52)

which is already known from the geometrically linear theory. Furthermore, the partial derivative in the
second term,

X̌ε = ρR
∂ψ̂s

∂Y̌s
= 2ρR

∂ψ̂s

∂Čs
=

c(θ)
2

(
det Čs

)−1/3
[
1 −

1
3

(
tr Čs

)
Č−1

s

]
, (53)

can be understood as the internal stress tensor (back stress tensor) on the intermediate configuration Ǩd.
The stress tensor

P̂ = ĈeŜ = κ̃(θ, z) ln
(
det Ĉe

)1/21 + µ̃(θ, z) ¯̂CD
e − 3α̃(θ, z) (θ − θ0) 1 (54)

is known as the Mandel stress tensor [1972] (see also [Lubliner 1990]). Due to the assumption that
∂ψ̂e/∂0̂e is an isotropic tensor function of 0̂e, the Mandel-stress tensor P̂ is symmetric. In contrast to
this, the stress tensor

M̌Xε = ČsX̌ε =
c(θ)

2
¯̌CD

s (55)

has the structure of a Mandel stress tensor and the stress tensor

P̂Xε = F̌sX̌εF̌T
s =

c(θ)
2

¯̂BD
s (56)

is the transformation of X̌ε from the intermediate configuration Ǩd onto K̂t. The stress tensor P̂Xε is of
Mandel-type, too.

Using these definitions, the remaining dissipation inequality (see [Helm 2001]) is given by

ρRδi = −4 ż + M̌Xε ·

4

Y̌d +
[
P̂ − P̂Xε

]
·

4

0̂t ≥ 0. (57)

In shape memory alloys, the martensitic phase transitions between austenite and oriented martensite result
from a cooperative movement of the atomic lattice. In analogy to Equation (22), a constitutive equation is
required for incorporating this coupling phenomenon between the fraction of oriented martensite and the
transformation strain. Already in [Helm 2001] the coupling between the fraction z of oriented martensite
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and the inelastic Cauchy–Green tensor Ct was represented in a finite-strain concept by the constitutive
relation

z =
1

√
3γt

√
tr

[
C̄t

]
− 3. (58)

According to the definition in Equation (1), the tensor C̄t is the unimodular part of Ct = FT
t Ft. However, if

the relation (58) was applied in the present context, the model would contain a phase transition criterion
and a phase transition rule, which would be singular at C̄t = 1 (see the discussions in [Helm 2001;
Helm and Haupt 2003]). Moreover, the smooth transition from the retransformation plateau into the
elastic region (see region II in Figure 1a) cannot be depicted. Therefore, a new constitutive equation is
suggested in analogy to Equation (22):

z =
1

√
3γt

√
tr

[
C̄t

]
− 3(1 − γ 2

0 )− z0. (59)

Therein, γ0 is a positive material parameter and z0 = γ0/γt follows from the condition ẑ(C̄t = 1)= 0. On
account of the introduced material parameter γ0 > 0, the resulting model does not contain any singularity.

In the dissipation inequality (57), the material time derivative of z is required:

ż =

(det Ct)
−1/3

[
1 −

1
3 tr (Ct)C−1

t

]
√

3γt

√
tr C̄t − 3(1 − γ 2

0 )

·
1
2

Ċt. (60)

Multiplying the time derivative of z with the thermodynamic quantity 4 and transforming the participated
variables from the reference configuration KR to the intermediate configuration K̂t, the resulting relation
(B̂t = FtFT

t )

4 ż =
4

¯̂BD
t ·

4

0̂t
√

3γt

√
tr ¯̂Bt − 3(1 − γ 2

0 )

= P̂Xθ ·

4

0̂t, (61)

motivates the definition of an internal variable P̂Xθ of stress type:

P̂Xθ =
4

¯̂BD
t

√
3γt

√
tr ¯̂Bt − 3(1 − γ 2

0 )

. (62)

Owing to P̂X̂θ , which is a continuous function of ¯̂Bt, the present constitutive model is able to represent
the temperature-dependence of the phase transition stress.

Remark 3 (Interpretation of P̂Xθ ). The internal variable P̂Xθ can be better understood if a simple inelastic
shear deformation is regarded: Ft = 1 + γ12 e1 ⊗ e2. On account of

B̂t =
¯̂Bt = 1 + γ12 (e1 ⊗ e2 + e2 ⊗ e1)+ γ

2
12 e1 ⊗ e1, (63)

the 12-component of P̂Xθ can be calculated:

e1 · P̂Xθ e2 =
4

√
3γt

γ12√
γ 2

12 + 3 γ 2
0

. (64)
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For γ12 � γ0, the value of this shear stress is given by 4/(
√

3γt), because the other term is approximately
±1. Consequently, the effect of the introduced constitutive relation for P̂Xθ on the whole theory is similar
to the influence of the internal variable Xθ in the small strain theory (see Equation (24) and Figure 3).

Remark 4 (Trace of a unimodular tensor). The first invariant IA of a unimodular tensor A (i.e., IIIA =

det A = 1 is valid) has a lower bound IA = tr A ≥ 3 [Haupt 2002, (9.91)]. Therefore, the term

f ( ¯̂Bt)=

√
tr ¯̂Bt − 3(1 − γ 2

0 )≥
√

3γ0 (65)

in Equation (62) has likewise a lower bound and the ratio 1/ f ( ¯̂Bt) is always defined, because γ0 > 0 is
required in the model.

If the important relation 4 ż = P̂Xθ ·

4

0̂t according to Equation (61) is inserted into the remaining
dissipation inequality (57), the resultant inequality (see [Helm 2001])

ρRδi = M̌Xε ·

4

Y̌d +
[
P̂ − P̂X

]
·

4

0̂t ≥ 0 (66)

with the definition P̂X = P̂Xε + P̂Xθ , is a suitable basis to specify the phase transition function

f = ‖P̂D
− P̂D

X‖ −

√
2
3

k(θ) (67)

and the required evolution equations for the internal variables 0̂t and Y̌d.

• In the case of the transformation strain tensor 0̂t the phase transition rule

4

0̂t = λt P̂N with P̂N =
∂ f

∂P̂
=

P̂D
− P̂D

X

‖P̂D − P̂D
X‖

(68)

is suggested. Therein, λt ≥ 0 is the inelastic multiplier. This evolution equation states that
4

0̂t is a devi-
atoric tensor. Consequently, the model incorporates the assumption of isochoric inelastic deformations:
det Ft = 1.

In analogy to the inelastic multiplier of the small deformation theory, a Perzyna-type (see [Perzyna
1963; Hohenemser and Prager 1932]) multiplier λt is introduced:

λt =


1

ηt(θ)

〈
f
rt

〉mt(θ) A → EM if z < 1 and ¯̂BD
t · P̂N ≥ 0,

EM → A if z > 0 and ¯̂BD
t · P̂N < 0,

0 in all other cases.

(69)

The material parameters and the case distinctions have the same meaning as in the small strain theory,
but the condition of increasing martensite requires dz ∼

¯̂BD
t · P̂N ≥ 0 and the martensite decreases, if

dz ∼
¯̂BD

t · P̂N < 0 is fulfilled.
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• For the internal variable Y̌d, the evolution equation

4

Y̌d = ζd M̌Xε = ζd ČsX̌ε, (70)

is proposed. Likewise in the case of finite deformations, ζd is introduced in form of

ζd =
B(θ, z, ż)

c(θ)
ṡt with ṡt =

√
2
3‖

4

0̂t‖. (71)

Therein, B(θ, z, ż) is given according to Equation (31) and st is the accumulated transformation strain.

It should be mentioned that no further constitutive equations are required to represent the evolution
of the internal variables 0̂t and Y̌d according to (68) and (70), because it is not necessary to determine
the orthogonal part Rt of the polar decomposition Ft = RtUt and the orthogonal part Rd of the polar
decomposition Fd = RdUd in the proposed constitutive theory for an isotropic elastic material (see [Haupt
2002] or [Helm and Schäfers 2006], for example). Only the evolution of the stretch tensors Ut and Ud is
represented by the evolution equations (68) and (70).

If the evolution equations (68) and (70) are inserted into the inequality (66) the internal dissipation is
written in the following form:

ρRδi = ζd ‖M̌Xε‖
2
+ λt‖P̂D

− P̂D
X‖. (72)

Obviously (λt ≥ 0 and ζd ≥ 0), the postulated geometrically nonlinear constitutive theory is thermody-
namically consistent for arbritrary thermomechanical processes.

Remark 5 (Mandel stress tensors). In the context of a constitutive theory for viscoplastic materials,
Mandel [1972] proposed to consider the stress tensor P̂ = ĈeŜ in the yield function. Mandel’s theory has
been formulated on the basis of the multiplicative decomposition of the deformation gradient in an elastic
and inelastic part. In order to describe the kinematic hardening behavior of metals in a finite deformation
theory using continuum thermomechanics, Tsakmakis [1996] found out that the yield function should
depend on a back stress tensor of Mandel-type.

5. Conclusions

In the present article, two basic concepts for modeling martensitic phase transitions in shape memory
alloys are developed: the first model is based on the assumption of small deformations, and the second
concept is formulated in the context of finite deformations. In both cases, the energy storage and release
phenomena during thermomechanical processes are represented by a free energy function. Moreover, evo-
lution equations for two internal variables are introduced in order to model the history-dependent material
behavior and the dissipation phenomena. An essential element of the developed theories is that the de-
formation and the strain-like internal variables are decomposed into volumetric and isochoric parts. This
leads to a simple representation of the occurring mechanisms. In contrast to other constitutive theories
for shape memory alloys, the developed concept is formulated in the framework of thermoviscoplasticity.
Therefore, the system of constitutive equations has a strong resemblance to classical models, which depict
the viscoplastic behavior of metals by using the concept of kinematic hardening. The present approach of
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finite thermoviscoplasticity is based on [Lion 2000], which introduces a multiple multiplicative decom-
position of the deformation gradient for the modeling of kinematic hardening in the framework of finite
deformations. In analogy to [Helm 2001], only a double multiplicative decomposition of the deformation
gradient is introduced without any thermal intermediate configuration. Therefore, the entropy results
immediately from the free energy function by means of a potential relation. Similar strategies for incor-
porating the kinematic hardening at finite strains were discussed in [Dettmer and Reese 2004; Tsakmakis
and Willuweit 2004]. In the present constitutive theory, all energy storage phenomena due to isochoric
deformations are depicted by modified neo-Hooke-type models. This strategy leads to a simple repre-
sentation of the occurring energy storage mechanisms and the kinematic hardening behavior. In all, the
developed concept can be easily transformed to give the thermoviscoplastic behavior of metals if only a
few modifications are considered: e.g. γt = ∞, Xθ = 0 or P̂Xθ = 0, and a single phase material is modeled.

It is important to mention that the number of material parameters or functions is identical for both
theories. Provided that the material functions do not depend on temperature, the model includes 20
material parameters: the modeling of the thermoelastic material properties of a two-phase material re-
quires eleven material parameters (µA, µM, κA, κM, αA, αM, cA

d0
, cM

d0
, ρ, 1u0, and 1η0). The evolution

of the transformation strain tensor is adjusted by the parameters ηt and mt. The limit case ηt → 0
results in a rate-independent theory. Moreover, the material parameters c (modulus for Xε), b (saturation
value), γ (parameter in B(θ, z, ż)), and β (parameter in B(θ, z, ż)) are used to model the internal stress
field Xε. The height of the hysteresis is influenced by the phase transition radius k and the relation
between the fraction of oriented martensite and the transformation strain state is adjusted by γt (maximum
transformation strain) and γ0. Of course, the identification of all these parameters is a challenge: e.g.
the determination of all thermoelasticity parameters requires an elaborate testing equipment. In [Helm
2005] it is demonstrated that a certain part of the set of material parameters can be identified by common
experiments in combination with the method of neural networks.

The present constitutive theory models only the material behavior of shape memory alloys due to
martensitic phase transitions. For simplicity, the influence of the orientation and reorientation of marten-
site twins on the material behavior of shape memory alloys is not considered. However, it is possible to
combine the current theory with the proposed strategy in [Helm and Haupt 2003] for the representation
of the orientation and reorientation of martensite twins. To do this, it is necessary to separate the fraction
of martensite into the fraction of self-accommodated martensite (twinned martensite) and the fraction of
oriented martensite (detwinned martensite); compare the discussion in [Lagoudas et al. 2006].

From a mathematical point of view, the theories developed are particularly suitable for the numerical
solution of initial-boundary value problems, because the introduced internal variables to describe the
temperature-dependent phase transition stress are continuous functions of the transformation strain tensor.
The numerical treatment of the proposed material models is discussed in the second part of this article
[Helm and Schäfers 2006]. Moreover, the main features of the theories are demonstrated in numerical
examples, which include the comparison to experimental data.
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