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Employing Biot’s theory of wave propagation in liquid saturated poroelastic media, the propagation of
torsional vibrations in an infinite homogeneous, isotropic hollow poroelastic circular cylinder is inves-
tigated. Considering the boundaries to be stress free, the frequency equation of torsional vibrations is
obtained in presence of dissipation. The frequency equation is discussed for the first two modes in the
cases of a poroelastic thin shell, a poroelastic thick shell and a poroelastic solid cylinder. Phase velocity,
group velocity and attenuation are determined and computed for the first mode of vibration for two
different poroelastic materials as a function of frequency. These values are displayed graphically and
then discussed.

1. Introduction

An understanding of the free vibrations of any beam is a prerequisite to the understanding of its response
in forced vibrations. Propagation of elastic waves and vibrations in circular rods of uniform cross-section
has been extensively studied [Love 1944; Kolsky 1963]. Armenàkas [1965] studied the torsional waves
in composite infinite circular solid rods of two different materials. A study of inhomogeneous anisotropic
hollow cylinders was presented by Stanisic and Osburn [1967].

The study of torsional vibrations of an elastic solid is important in several fields, for example, soil
mechanics, transmission of power through shafts with flanges at the ends as integral parts of the shafts.
It is now recognized that virtually no high-speed equipment can be properly designed without obtaining
solution to what are essentially lateral or torsional vibration problems. Examples of torsional vibrations
are vibrations in gear train and motor-pump shafts. Thus, from engineering point of view the study of
torsional vibrations has great interest. Such vibrations, for example, are used in delay lines. Further,
based on reflections and refractions during the propagation of a pulse, imperfections can be identified.
The other use of torsional vibrations is the measurement of the shear modulus of a crystal.

The dynamic equations of a poroelastic solid are given in Biot [1956]. Biot’s model consists of
an elastic matrix permeated by a network of interconnected spaces called pores, saturated with liquid.
Following Biot’s theory of wave propagation, Tajuddin and Sarma [1980] studied torsional vibrations
of poroelastic cylinders. Coussy et al. [1998] presented two different approaches for dealing with the
mechanics of a deformable porous medium. Dynamic poroelasticity of thinly layered structures was
studied by Gelinsky et al. [1998]. Degrande et al. [1998] studied the wave propagation in layered dry,
saturated and unsaturated poroelastic media. Malla Reddy and Tajuddin [2000] studied the plane-strain
vibrations of thick-walled hollow poroelastic cylinders. Wisse et al. [2002] presented the experimental
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results of guided wave modes in porous cylinders. The edge waves of poroelastic plates under plane-
stress conditions were studied by Malla Reddy and Tajuddin [2003]. Chao et al. [2004] studied the
shock-induced borehole waves in porous formations. Tajuddin and Ahmed Shah [2006] studied the
circumferential waves of infinite hollow poroelastic cylinders in the presence of dissipation.

In the present analysis, the frequency equation of torsional vibrations of a homogeneous and isotropic
poroelastic hollow circular cylinder of infinite extent is derived in the presence of dissipation and then
discussed. Let the boundaries of the hollow poroelastic cylinder be free from stress. The frequency
equation is discussed for the first mode in the case of a poroelastic thin shell, a poroelastic thick shell
and a poroelastic solid cylinder. This progression is intended to describe the transition from the case
of a plate — regarded as the limit of a curved thin shell as the thickness tends to zero — to the case of
a poroelastic solid cylinder. Two values are considered for the ratio h/r1 of wall thickness h to inner
radius r1. As this ratio tends to zero, the modes of an infinite poroelastic plate of thickness equivalent to
wall thickness are obtained. All the modes of the thick-walled hollow poroelastic cylinder asymptotically
approach the analogous modes for a poroelastic solid cylinder of radius h as the ratio r1/h tends to zero.
The expressions for nondimensional phase velocity, group velocity and attenuation are presented and
then computed for the first mode as a function of nondimensional frequency for two types of poroelastic
materials and then discussed.

2. Solution of the problem

Let (r, θ, z) be the cylindrical polar coordinates. Consider a homogeneous, isotropic hollow infinite
poroelastic circular cylinder with inner and outer radii r1 and r2, respectively, whose axis is in the
direction of z-axis. Then the thickness of the hollow poroelastic cylinder is h[= (r2 − r1)] > 0. Let
the boundaries of the isotropic poroelastic cylinder be free from stress. The only nonzero displacement
components of solid and liquid media are u(0, v, 0) and U(0, V, 0), respectively. These displacements
are functions of r , z and time, t . Then the equations of motion [Biot 1956] reduce to

N
(
∇

2
−

1
r2

)
v =

∂2

∂t2 (ρ11v + ρ12V ) + b ∂

∂t
(v − V ),

0 =
∂2

∂t2 (ρ12v + ρ22V ) − b ∂

∂t
(v − V ),

(1)

where ρ11, ρ12, ρ22 are mass coefficients following Biot [1956], N is the shear modulus, b is the dissipa-
tion coefficient and ∇

2 is the well-known Laplacian operator. Let the propagation mode shapes of solid
and liquid v and V be

v = f (r)ei(kz+ωt), V = F(r)ei(kz+ωt), (2)

where k is the wavenumber, ω is the frequency of wave and i is complex unity or i2
= −1. Substitution

of Equation (2) in (1) results in {
N1 f = −ω2(K 11 f + K12 F),

0 = −ω2(K 12 f + K22 F),
(3)
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where

1 =
d2

dr2 +
1
r

d
dr

−
1
r2 − k2,

K11 = ρ11 −
ib
ω

,

K12 = ρ12 +
ib
ω

,

K22 = ρ22 −
ib
ω

.

The second equation in (3) gives

F = −
K12

K22
f. (4)

Substituting Equation (4) into the first equation of (3), we obtain(
d2

dr2 +
1
r

d
dr

−
1
r2 + α2

3

)
f = 0, (5)

where V3 is the shear wave velocity [Biot 1956] and α2
3 is

α2
3 = ξ 2

3 − k2, ξ 2
3 =

ω2(K 11K22 − K 2
12)

N K 22
, V 2

3 =
N K 22

K11K22 − K 2
12

. (6)

A solution of Equation (5) is

f (r) = C1 J1(α3r) + C2Y1(α3r).

Thus the displacement of the solid is

v =
(
C1 J1(α3r) + C2Y1(α3r)]ei(kz+ωt), (α3 6= 0). (7)

When α3 = 0, Equation (5) reduces to the form(
d2

dr2 +
1
r

d
dr

−
1
r2

)
f = 0, (8)

and thus its bounded solution is
f (r) = C1r.

Therefore the propagation mode shapes are given by the displacement solutions

v =

{(
C1 J1(α3r) + C2Y1(α3r)

)
ei(kz+ωt) α3 6= 0

C1r α3 = 0
. (9)

Here C1 and C2 are constants.
From Equation (2), it can be seen that the normal strains err , eθθ and ezz are all zero. Therefore

the dilatations of solid and liquid media are both zero. Hence the liquid pressure s following Biot
[1956] is identically zero. Accordingly for torsional vibrations no distinction between a pervious and an
impervious surface is made. Considering the boundary to be stress free, the frequency equation obtained
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for torsional vibrations is the same for both pervious and impervious surfaces. Then the only nonzero
computed stress, σrθ (see [Biot 1956]), is

σrθ = −N
(
C1 J2(α3r) + C2Y2(α3r)

)
ei(kz+ωt). (10)

3. Frequency equation

The stress-free boundary conditions for torsional vibrations at the inner and outer surfaces of the hollow
poroelastic cylinder are at r = r1 and r = r2,

σrθ = 0, s = 0,
∂s
∂r

= 0. (11)

First two equations of (11) are to be satisfied for a pervious surface, while the first and third equations
of (11) are to be satisfied for an impervious surface. Since the considered vibrations are shear vibrations,
the dilatations of solid and liquid media are both zero, thus liquid pressure s developed in solid-liquid
aggregate will be identically zero and no distinction between pervious and impervious surface is made.
Thus the second and third equations of (11) are satisfied identically. Equations (11) together with Equa-
tion (10) yield a system of two homogeneous equations in two constants C1 and C2. By eliminating
these constants, one can obtain

J2(α3r1)Y 2(α3r2) − J2(α3r2)Y 2(α3r1) = 0. (12)

Equation (12) is the frequency equation of torsional vibrations of an infinite hollow poroelastic cylinder
whether the surface is pervious or impervious. By eliminating liquid effects from (12), the results for a
purely elastic solid [Gazis 1959, Equation (43)] are obtained as a special case. The roots will increase
with increasing r1 tending to infinity as r1 tends to r2. Two cases of special interest for limiting values
of ratio of thickness to inner radius h/r1 when these values are too small and too large are considered:

3.1. For thin poroelastic cylindrical shell. When h/r1 � 1, under the verifiable assumption of nonzero
α3h it is seen that α3r1 � 1 and α3r2 � 1. By using Hankel–Kirchhoff asymptotic approximations for
Bessel functions [Abramowitz 1964]

J2(x) ≈ −

√
2

πx

[
cos

(
x −

π

4

)
−

15
8x

sin
(

x −
π

4

)]
,

Y2(x) ≈ −

√
2

πx

[
sin

(
x −

π

4

)
+

15
8x

cos
(

x −
π

4

)]
,

the frequency equation of torsional vibrations, that is, Equation (12), reduces to

sin α3h −
15α3h

8α2
3r1r2

cos α3h = 0. (13)

Equation (13) is the frequency equation of vibrations of a thin poroelastic cylindrical shell. In the
limiting case, when α3r1 → ∞, α3r2 → ∞, (13) simplifies to

sin α3h = 0, (14)
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and hence
α3h = πq, q = 1, 2, 3, . . .

so that

ω = V3

(
q2π2

h2 + k2
) 1

2

, q = 1, 2, 3, . . . (15)

which are the frequencies of poroelastic plate of thickness h. Moreover near the origin h/r1 = 0, and
substituting

α3h = qπ + ε∗, ε∗
� 1, (16)

into the frequency equation of torsional vibrations of a thin poroelastic cylindrical shell, Equation (13),
gives

ε∗
=

15
8(qπ)

( h
r1

)2
, q = 1, 2, 3, . . . (17)

Substituting Equation (17) into (16) gives the frequency values obtained from (15) in the form

ω =
V3

h

(
q2π2

[
1 +

15
8(qπ)2

( h
r1

)2
]2

+ k2h2
) 1

2

, q = 1, 2, 3, . . . . (18)

These are the frequencies of torsional vibrations of a poroelastic plate of thickness h near the origin.

3.2. For poroelastic solid cylinder. When h/r1 � 1, the frequency equation, (12), tends asymptotically
to

J2(α3h) = 0, (19)

which is the frequency equation of torsional vibrations of a poroelastic solid cylinder of radius h discussed
in Tajuddin and Sarma [1980]. The limiting cases hr1

−1
� 1 and hr1

−1
� 1 cover the torsional vibrations

of thick-walled poroelastic hollow cylinders in the entire range from 0 to ∞. Thus we are modeling the
transition from plate (hence shell) vibrations to the vibrations of a poroelastic solid cylinder.

If the wave number k is zero, the problem reduces to the special case of axially symmetric shear
vibrations studied in Malla Reddy and Tajuddin [2000, Sections 5.1.1 and 5.1.2], where a thin poroelastic
cylindrical shell and a solid poroelastic cylinder are discussed in detail. Accordingly the case k 6= 0 is of
special interest, and that is what we discuss below.

To analyze further the frequency equation, it is convenient to introduce the following nondimensional
variables:

m11 = ρ11ρ
−1, m12 = ρ12ρ

−1, m22 = ρ22ρ
−1, b1 = bh(c0ρ)−1,

� = ωhc0
−1, g = r2r1

−1,
(20)

so that hr1
−1

= g − 1, where b1, � are nondimensional dissipation and frequency, and

ρ = ρ11 + 2ρ12 + ρ22, c0
2
= Nρ−1.

Let
Rn

2
= α2

3h2,
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where α2
3 is given in Equation (6). From these equations, we can write

N (R2
n + k2h2)

ρω2h2 = Er − i E i , (21)

where Er and Ei are

Er =
�2m22(m11m22 − m2

12) + b2
1

�2m2
22 + b2

1
, Ei =

b1�(m12 + m22)
2

�2m2
22 + b2

1
. (22)

To investigate the values of Rn , the frequency equation (12) in nondimensional form is

J2

(
Rn

g − 1

)
Y2

(
Rng

g − 1

)
− J2

(
Rng

g − 1

)
Y2

(
Rn

g − 1

)
= 0. (23)

In (23) g is the ratio of outer to inner radius.
Three cases of physical interest have been considered, varying the g value: 1.034, 3, and infinity.

These three cases represent a thin poroelastic shell, thick poroelastic shell and poroelastic solid cylinder,
respectively. The phase and group velocities and attenuation can be determined for the first two modes,
which have been computed from the frequency equation (23) for ω > |kV3|. The values for the said cases
are 3.1423, 6.2835; 3.736, 6.6477; and 5.1356, 8.4172.

4. Phase velocity, group velocity and attenuation

Due to the dissipative nature of the medium, the wave number k is complex. The waves generated obey
a diffusion process, and therefore get attenuated. Let k = kr + iki ; then the phase velocity cp, group
velocity cg and attenuation xh , respectively, are

cp = Real part (ωk−1) =
ω

|kr |
, cg =

dω

dk
and xh =

1
|ki |

,

which in turn reduces to nondimensional form as

cpc−1
0 =

√
2�(B1 + B2)

−
1
2 , (24)

cgc−1
0 = 2

√
2B−1

3 (B1 + B2)
1
2 , (25)

and
xhh−1

=
√

2(B1 − B2)
−

1
2 . (26)

In Equations (24)–(26), B1, B2 and B3 are

B1 =
(
�4(E2

r + E2
i ) − 2�2 Er R2

n + R4
n
) 1

2 ,

B2 = (�2 Er − R2
n),

B3 = �2G1(1 + �2 Er B−1
1 − R2

n B−1
1 )

+ 2�Er (1 − R2
n B−1

1 )

+ �3 B−1
1

(
�Ei G2 + 2(E2

r + E2
i )

)
,

(27)
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Material Parameter m11 m12 m22

Material I 0.901 −0.001 0.101

Material II 0.877 0 0.123

Table 1. Properties of materials I and II.

where � is nondimensional frequency and Rn denotes modes of vibration, Er and Ei are given in (22)
while G1 and G2 are

G1 =
2b2

1(Er − 1)

�(�2m2
22 + b2

1)
, G2 =

(b2
1 − �2m2

22)Ei

�(�2m2
22 + b2

1)
. (28)

The nondimensional phase velocity, group velocity and attenuation equations of a poroelastic plate
are similar to (24)–(26), respectively, wherein Rn is to be replaced by qπ (q = 1, 2, 3, . . .). Different
values of q represent different modes of vibration. It is interesting to note that the first two modes of a
poroelastic plate tally with the first two modes of a thin poroelastic shell.

5. Results and discussion

Two types of poroelastic materials are considered to carry out the computational work: sandstone sat-
urated with kerosene, which we call Material I [Fatt 1959], and sandstone saturated with water, called
Material II [Yew and Jogi 1976]. Their physical parameters are defined in Table 1.

For a given material, the nondimensional phase velocity, group velocity and attenuation are determined
as a function of nondimensional frequency (�). The different dissipation parameters (b1) chosen are 0.01,
0.1 and 1.

The phase velocity as a function of frequency is presented for first mode for the two materials in Figure
1 (top) for different dissipations in the case of a thin shell. The phase velocity has nearly the same shape
when b1 = 0.01 and 0.1 in material I. This is also true for material II. For b1 = 1, the phase velocity is
almost identical in both materials. The group velocity with respect to frequency is presented in Figure 1
(middle) for the first mode in case of a thin poroelastic shell. The results are true for all three dissipations
considered, and are almost same as the phase velocity for both materials. The attenuation is presented
in Figure 1 (bottom) for the first mode. When b1 = 0.01, the attenuation is almost the same for both
materials, and for b1 = 0.1 and 1 it is virtually the same for both materials. Besides, it is clear that as
b1 increases from 0.01 to 1 the attenuation is decreasing. The nondimensional phase velocity and group
velocity as a function of frequency is presented in Figure 2 for the two materials, for a thick poroelastic
shell.

From Figure 2 (top) it is clear that for the first mode, the phase velocity is increasing in 0 < � < 5,
and then decreasing in 5 ≤ � < 10, and when � ≥ 10 it is constant for both the referred materials and
for different dissipations. The phase velocity decreases as the dissipation b1 increases, and it is less for
material I than for material II. The same figure also shows that when b1 = 1, the phase velocity is same
for both materials. In Figure 2 (middle), the group velocity as a function of frequency is presented for
first mode. It is clear that for b1 = 0.1 and 1, both materials have the same group velocity, while when
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Figure 1. Torsional vibrations of hollow poroelastic cylinder, thin shell. The graphs
show the phase velocity (top), group velocity (middle) and attenuation (bottom) as func-
tions of frequency for the first mode, using reduced (nondimensional) variables.
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Figure 2. Torsional vibrations of hollow poroelastic cylinder, thick shell. The graphs
show the phase velocity (top), group velocity (middle) and attenuation (bottom) as func-
tions of frequency for the first mode, using reduced (nondimensional) variables.
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Figure 3. Torsional vibrations of solid poroelastic cylinder. The graphs show the phase
velocity (top), group velocity (middle) and attenuation (bottom) as functions of fre-
quency for the first mode, using reduced (nondimensional) variables.
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b1 = 0.01 the group velocity in material II is less than that of material I for 0 < � < 5. When � ≥ 5 the
group velocity in materials I and II is almost the same for all dissipations. The attenuation is presented
in Figure 2 (bottom) for a thick poroelastic shell in the case of the first mode. Its variation is similar to
that of a thin shell.

The phase velocity of a poroelastic solid cylinder for the first mode is shown in Figure 3 (top). The
phase velocity takes the same path for both materials when b1 = 0.01, 0.1 and 1, but it decreases as
dissipation increases. The group velocity for a poroelastic solid cylinder for the first mode is shown in
Figure 3 (middle). Its variation is similar to that of the phase velocity (top figure). The group velocity of
a poroelastic solid cylinder is seen to be less than the phase velocity for both materials. The attenuation
of a poroelastic solid cylinder for the first mode is presented in Figure 3 (bottom). The attenuation in
both materials is the same when b1 = 0.01, 0.1 and 1; the figure also shows that the attenuation is higher
for b1 = 0.01 than for b1 = 0.1 and 1.

6. Concluding remarks

The investigation of torsional vibrations of hollow poroelastic cylinders for different dissipations in the
cases of a thin poroelastic shell, a thick poroelastic shell and a poroelastic solid cylinder has lead to the
following conclusion:

(i) The phase velocity increases as we progress from a hollow poroelastic cylinder through thin and
thick poroelastic shells to a poroelastic solid cylinder.

(ii) In general, the group velocity is less than the phase velocity.

(iii) The presence of a coupling parameter reduces the phase and group velocities.

(iv) It is observed that the increasing of the mass of a solid reduces both phase and group velocities.

(v) An increase in dissipation reduces the phase and group velocities as well as the attenuation for both
materials.

(vi) There is no significant variation in attenuation between a thin poroelastic shell, a thick shell and a
poroelastic solid cylinder.

(vii) The phase and group velocities for the second mode are in general higher than the corresponding
values for the first mode, in all cases.
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