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A rigid inclusion perfectly embedded in a thin plate is considered as a two-dimensional elastostatic
composite structure to solve the inverse problem of finding the inclusion shape around which the local
maximum of the von Mises equivalent stresses attain the global minimum under shear loading at infinity.
Absent optimality preconditions such as the equistress principle for bulk-type loading, a fast and accurate
assessment of a given shape is developed by combining complex-valued series expansions with a new
infinite summation scheme. This approach to solving the direct problem is then included into a genetic
algorithm optimization over the set of shapes obtained from a circle by a finite-term conformal mapping
with square symmetry. Compared to a circular inclusion, the stresses may thus be lowered by 15–25%,
depending on the Poisson’s ratio of the plate. The numerical results presented allow us to conjecture that
the von Mises stresses around the optimal shape are uniform. The inclusion that minimizes the induced
energy increment is also identified by the same approach. Both shapes appear to be very similar, though
not identical.

1. Introduction

Grained and fibre-reinforced composites find broad use as construction elements. For this reason, their
mechanical behavior is the subject of extensive study in elasticity. Such two-phase structures are idealized
here as an infinite zero-thickness plate with perfectly bonded foreign inclusions, which may represent
either a two-dimensional grain or the cross-section of a long cylindrical fibre. These mathematically
equivalent cases are known as plane stress and plane strain, respectively [Muskhelishvili 1975].

We further simplify the model by assuming that the inclusions are remote from each other, so that one
may neglect their interaction and consider a single inclusion in an unbounded matrix under a homoge-
neous elastic field σ∞

xx , σ∞
yy , σxy = 0 at infinity.

At finite distances, this field is distorted by the inclusion. With the layout above, the resulting stresses
depend only on the inclusion geometry. This brings us to the optimization problem of finding the inclu-
sion shape that minimizes a certain criterion. Two practically important criteria are commonly used in
shape optimization: the inclusion-induced strain energy increment δW divided by the inclusion area, and
the maximum M of von Mises equivalent stresses σM [Cherepanov 1997] along the material interface.
On a free-traction hole, σM coincide with the hoop stresses, but on a rigid or elastic inclusion they involve
bilinearly all the boundary stresses which, in a general way, should differ from zero to ensure the assumed
perfect contact between the phases.

The exact formulation of the problem reads:

Keywords: plane elasticity problem, Kolosov–Muskhelishvili potentials, shape optimization, effective energy, extremal elastic
structures, genetic algorithm.
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276 SHMUEL VIGDERGAUZ

Given the topology of the single inclusion in the matrix, the uniform static far loading and the
elastic properties of the matrix, find, among all continuous curves, the rigid inclusion shape
that minimizes either of the two above-mentioned criteria.

Beginning with the pioneering work of Cherepanov [1974], it was realized that the sign of the ratio
β = σ∞

yy /σ
∞
xx is the main factor driving the complexity of this shape optimization problem. As applied

to rigid inclusions, two basic cases are of particular interest:

• The far loading is hydrostatic tension or compression (β = 1). Here, attention is focused on the
equistress contours [Cherepanov 1974; Vigdergauz 1976; Grabovsky and Kohn 1994], at which matrix-
side boundary tractions reduce to uniform normal stresses. Remarkably, these contours not only exist for
a variety of geometries but also provide the global minima for both criteria simultaneously. The single
equistress inclusion is simply a circle. For interacting inclusions the equistress condition is used as a
prerequisite to find their shapes by analytical or numerical solving of the coupled Dirichlet problem; see,
for instance, [Grabovsky and Kohn 1994]. In other words, the optima are found without touching the
direct problem of solving the stress field around any given inclusion.

• The far load is that of pure shear (β = −1). In this context, neither δW - nor M-optimal shapes are
known so far, because the equistress principle is no longer valid and no other optimal precondition has
yet been developed instead. For this reason, the more effective strategy is the standard numerical one,
where a search space of admissible shapes is first defined through a finite number of parameters, which
are then optimized by repetitively solving the criterion function over many curves.

As parameters, we choose the first N Laurent coefficients dk , k = 1, N , dk = 0, k > N of the conformal
map from the exterior of the unit circle to the exterior of a given inclusion. The adoption of these
coefficients not only allows the use the whole machinery of complex variable theory, but they are also
naturally ordered, in the sense that the higher the coefficient, the less its global impact on the inclusion
shape. Owing to this, the finite-term mapping approach of [Muskhelishvili 1975], or its revised version
(see [Kalandia 1975]), performs well in the numerical treatment of the direct problem, as demonstrated
in the classical book by Savin [1961] and more recently in [Jasiuk 1995].

However, such solving of the local stresses involves sums of Fourier series that are actually infinite
at any N , and hence may imply an unacceptably large N to attain a reasonable accuracy in optimization
practice. The finite differences scheme proposed by us in the similar context of hole shape optimization
[Vigdergauz 2006] overcomes this drawback by computing the infinite sums involved exactly, as rational
functions of {dk}, k ≤ N . This can be done with the proviso that the first N items of the sums are solved
from the N × N system of linear algebraic equations expressing the matrix-inclusion contact conditions.
In fact, just this novelty makes the considered optimization problem numerically tractable. A further
computational saving can be achieved due to an assumed rotational symmetry of the inclusion by which
the set {dk} partially vanishes. For the most part, we treat here the case of square symmetry, which
appears to provide the best optimal response like for a shear-loaded plate with a hole [Vigdergauz 2006].

After all these considerations, the problem to be solved is a moderate-size problem of minimizing a
rational function of the arguments dk , k = 1, N , subject to the two-side inequalities of mapping uniqueness
[Schinzinger and Laura 1991]. This nonlinear optimization problem with linear constraints is neverthe-
less a computationally expensive task, which is solved by a genetic algorithm (GA), an optimization
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method imitating adaptive schemes found in nature (see [Gen and Cheng 1997; Osyczka 2001] and
references therein). GAs have a twofold benefit over gradient-based schemes: the latter find a local
optimum, while a GA is a global optimization algorithm; and no differentiation with respect to the
optimized parameters is needed at any stage.

The main results so obtained show that the δW - and M-optimal square symmetric rigid inclusions are
almost the same except for a hardly compressible or incompressible matrix material, and that their shape
is close to a slightly rounded square rotated by 45 degrees with respect to the main stresses σ∞

xx , σ
∞
yy .

The paper is structured as follows. Section 2 covers some basics of conformal mapping in two-
dimensional elasticity, together with new algebraic identities derived for later use. Section 3 describes the
summation scheme for the boundary stresses in the direct problem which is the basis for further considera-
tions. After these lengthy preliminaries, the reformulated optimization problem is rather straightforward
and simple. First, the one-term mapping approximation is derived analytically (Section 4) to obtain
qualitative properties of the solution. The multiterm approximations are next found by the standard
GA briefly described in Section 5. Numerical results are displayed and discussed in Section 6. Finally,
conclusions and proposed extensions of the work can be found in Section 7.

2. Complex variable technique in plane elastostatics

2.1. The local stress-strain relations. Consider the setup in Figure 1. Let an infinite elastic plane E be
strengthened by a perfectly bonded rigid inclusion with a piecewise smooth boundary 0 enclosing the
origin of the Cartesian system x Oy. The curve 0 divides the plane into the inclusion region S1, of finite
area f1, and the unbounded region S2 = E \ S1, filled with a linearly elastic phase. Let the plane be

P

Q

L

S2

X

Y

S1

P

Q

Figure 1. The problem schematic: an infinite plate with a perfectly bonded inclusion
under uniform stresses, the cases P = Q and P = −Q correspond to remote bulk and
shear, respectively. The piecewise smooth inclusion boundary possesses a certain rota-
tional symmetry and may have a finite number of angular points.
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remotely loaded by uniform nontangential stresses

σ∞

xx = P, σ∞

yy = Q, σ∞

xy = 0. (1)

The load-induced stresses in S2 are governed by the biharmonic Airy function which, though useful
as a theoretical tool, becomes ineffective in computing local displacements. Far more advantageous is
the complex variable approach of replacing the Airy function with a pair of holomorphic functions (the
KM potentials; see [England 1971; Muskhelishvili 1975, §§47–51]) linked along the material interface
through the contact conditions. The resulting boundary value problem is then solved using complex
variable techniques. For holes and rigid inclusions the boundary conditions are further simplified by use
of a conformal mapping z = ω(ζ ) from the connected matrix domain S2 to the exterior 62 of a unit circle
γ . The reason is that the following identities hold on γ , in contrast to any other shape:

ξ = ξ−1,

∫
γ

ξ
m
ξ ndξ =

∫
γ

ξ n−mdξ = 2π iδm−n,1, ξ ∈ γ, (2)

where δi, j is the Kronecker delta. The mutual orthogonality of (2) makes the stress-strain computations
much easier.

The KM potentials 8(ζ),9(ζ ) present the transformed stresses in 62 + γ as [Muskhelishvili 1975]

σρρ(ζ )+ σθθ (ζ )= 4 Re8(ζ), ζ = ρ exp(iθ) : ζ ∈62 + γ, ρ ≥ 1, (3a)

σρρ(ζ )− iσrθ (ζ )= 2 Re8(ζ)−
ζ 2

ρ2ω′(ζ )

(
ω(ζ )8′(ζ )+ω′(ζ )9(ζ )

)
. (3b)

The zero-displacement condition at the rigid interface γ is [Muskhelishvili 1975]

λϕ(ξ)−ω(ξ)
ϕ′(ξ)

ω′(ξ)
−ψ(ξ)= 0; ξ ∈ γ, (4)

λ=
3−νstress
1+νstress

, νstress ∈ [0; 1] for plane stress, (5a)

λ= 3 − 4νstrain, νstrain =
νstress

1+νstress
∈ [0.5; 1] for plane strain, (5b)

where
ϕ′(ζ )≡8(ζ)ω′(ζ ), ψ ′(ζ )≡9(ζ)ω′(ζ ). (6)

To save room, nonobservable negative values of ν will be excluded from the numerical simulations
(Section 6). Then, both cases form the same interval 1 ≤ λ ≤ 3 for λ, which thus serves as a unified
elastic parameter of the problem. The minimum value λ= 1 corresponds to a rigid inclusion in a soft
incompressible matrix.

Finally, integration of (3b) with the multiplier ξ 2ω′(ξ) dξ along γ results in the boundary stress con-
dition [Muskhelishvili 1975] structurally similar to (4):

ϕ(ξ)+ω(ξ)
ϕ′(ξ)

ω′(ξ)
+ψ(ξ)= f (ξ), ξ ∈ γ, (7)
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where the tractions f (ξ) take the form

f (ξ)=

∫
γ

(
σρρ(ξ)− iσrθ (ξ)

)
ξ 2ω′(ξ) dξ. (8)

2.2. One-potential formulation of the forward rigid inclusion problem. The homogeneous boundary
condition (4) allows us to derive new relations which, though simple, have not, to our knowledge, been
noticed in the literature so far. They give the stress components along γ through only one rather than
both KM potentials, and are crucial for further analysis. To this end, we combine (4) and (7) to obtain

(λ+ 1)φ(ξ)= f (ξ), ξ ∈ γ. (9)

Differentiating (9) in view of Equations (3a), (6), (8) yields for the real and imaginary parts of 8(ξ)

σρρ(ξ)= (λ+ 1)Re8(ξ), σθθ (ξ)= (3 − λ)Re8(ξ), σρθ (ξ)= (λ+ 1) Im8(ξ), ξ ∈ γ. (10)

At λ= −1 (the Dundurs correspondence, [Jasiuk 1995]), the identities in (10) formally turn into the
traction-free conditions along a hole:

σρρ(ξ), σρθ (ξ)= 0, σθθ (ξ)= 4 Re8(ξ), (11)

or, equivalently, in KM terms, the homogeneous condition (7)

ϕ(ξ)+ω(ξ)
ϕ′(ξ)

ω′(ξ)
+ψ(ξ)= 0, ξ ∈ γ, (12)

explicitly repeated here for future reference. Namely the resemblance of the zero-traction and the zero-
displacements boundary conditions (12), (4) leads to the resolving relations (10).

Except in these two homogeneous cases, the computation of boundary stresses does involve the second
potential 9(ξ), which presents additional difficulties.

In this context, a disadvantage of the mapping technique is that it returns the local stresses (10) from 62

to the physical domain S2 only as two invariant combinations I1, I2 rather than separately [Muskhelishvili
1975]:

I1(ζ )= σρρ(ζ )+ σθθ (ζ )= I1(z)= σrr (z)+ σt t(z), (13a)

I2(ζ )= σ 2
ρθ − σρρ(z)σθθ (z)= I2(z)= σ 2

rϑ − σrr (z)σϑϑ(z), (13b)

z = ω(ζ )= r exp(iϑ).

However, this is sufficient for our purpose of minimizing the von Mises equivalent stresses σM(ζ )

along 0:
σ 2

M(z)= σ 2
M(ζ )= I 2

1 (ζ )+ 3I2(ζ ), ζ ∈62 + γ, z = ω(ζ ) ∈ S2 +0. (14)

Through the use of (13), we can express the stresses in terms of 8(ξ) (ξ = exp iθ ∈ γ , t = ω(ξ) ∈ 0):

σ 2
M(t)= D1(λ)Re28(ξ)+ D2(λ) Im28(ξ), D1(λ)= 7 − 6λ+ 3λ2, D2(λ)= 3(1 + λ)2, (15a)

M ≡ max
t∈0

|σM(t)| = max
0≤θ≤2π

|σM(θ)|. (15b)
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Further, the boundary value function 9(ξ) is routinely eliminated from the homogeneous condition
(9) by integrating over γ with the kernel (ξ−η)−1, ξ, η ∈ γ [Muskhelishvili 1975]. This leads to a
Cauchy-type singular integral equation in 8(ξ):

1
2

F(η)+
1

2π i

∫
γ

F(ξ)
η− ξ

dξ = (1 − λ)8(∞)+9(∞), (16a)

F(ξ)≡ 2ξ 2ω′(ξ)Re8(ξ)−ω(ξ)8′(ξ), ξ, η ∈ γ, (16b)

where the function’s asymptotic behavior is dictated by the applied loads (1) (see [Muskhelishvili 1975]):

48(ζ)= P + Q + O(|ζ |−2), 29(ζ)= Q − P + O(|ζ |−2), |ζ | → ∞. (17)

For a circular integration path, substitution of the convergent Laurent expansions

ω(ζ )= ζ +

∞∑
k=1

dkζ
−k, 8(ζ )=

P + Q
4

+

∞∑
k=2

akζ
−k, ζ ∈62 + γ (18)

transforms (16a), with the use of (2), into a more easily handled infinite system of linear algebraic
equations in {ak}, k ≥ 2:

−λam+2+λ
m∑

k=2
(m − k + 1)d̄m−k+1ak−(m + 1)

∞∑
k=2

d̄m+k+1āk = Am,

m = 0, 1, . . . , A0 = P, A1 = 0, 2Am = −(P + Q)(m + 1)d̄m+1, m ≥ 2.
(19)

In conformity with the asymptotics (17) we have a1 = 0, so the first sum is omitted in (19) when m = 0, 1.
At λ = −1, Equations (19) again go over to the resolving system for a traction-free circular hole

derived by [Kalandia 1975] and extensively used in [Vigdergauz 2006].
Finally, with pure shear

Q = −P = 1, 8(ζ )= O(|ζ |−2), (20)

the normalized energy increment possesses the form (see for instance [Jasiuk 1995])

δW (0)= 4π f −1
1 a2, Q = −P = 1, (21)

while all but the first equation in (19) become homogeneous:

A0 = 1, Am = 0 for m > 0. (22)

This completes the one-potential formulation (19) of the forward problem of finding the criteria (15b),
(21) for inclusion shape 0 as given by the mapping function (18). Concluding this section, we note
that the energy criterion (21) is computationally much simpler then M, since it involves only the first
Laurent term a2. In the current context, the δW value is a byproduct of the direct problem solution for
σM . For this reason, the δW -optimization is further addressed as a problem accompanying the M-shape
optimization.
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3. Analytical truncation of the forward problem

In numerical applications, the infinite system (19) has to be truncated in some way. This is usually done
by keeping only the first N equations, that is, by dropping high-order expansion terms both in ω(ζ ), so
that

ω(ζ )= ζ +

N∑
k=1

dkζ
−k (dk = 0 for k > N ), (23)

and in 8(ζ), so that

8(ζ)=

N∑
k=2

akζ
−k, (ak = 0 for k > N ); (24)

see [Jasiuk 1995; Cherkaev et al. 1998] and [Tsukrov and Novak 2004], where the resolving system for
8(ζ) is derived by collocating the contact conditions at a finite number of points along the interface.

The N -term solution so obtained amounts to a finite approximation in inverse powers for the potential
8(ζ). This algorithm solves well the energy criterion (21) but it is too time-consuming for finding the
boundary stresses (13), (14). Indeed, due to their local nature, double truncation (DT) requires a rather
large value of N ; otherwise spurious oscillations are produced along the interface, as exemplified in
[Vigdergauz 2006]. As a remedy, we use here the specific structure of Equations (19) to restrict the
truncations only to (23), while keeping all the coefficients ak , k = 2, 3, . . . , as in (18). This single
truncation (ST) scheme allows us to perform this infinite sum analytically for any finite-term expansion
of the mapping function ω(ζ ), and so yields a finite semianalytic approach for solving the infinite system
(19). The ST scheme was proposed and detailed for a free-traction hole in [Vigdergauz 2006]. For
reference, we go over it briefly, focusing on the differences between the earlier case and the one discussed
here.

To begin with, the coefficients {dm} obey the necessary conditions of mapping univalency, namely

−
1

√
m

≤ dm ≤
1

√
m
, m = 1, 2, . . . , (25)

following from the nonnegativeness of the area f1 inside 0 [Schinzinger and Laura 1991]:

f1 = π

(
1 −

∞∑
k=1

k|dk |
2
)

≥ 0.

Though the asymptotics for the interval width is only m−1/2 as m → ∞, the coefficients {dm} actually
tend to zero much faster, at least as fast as m−2, provided 0 is a continuous curve [Schinzinger and
Laura 1991]. It is precisely this asymptotic behavior that makes the assumed mapping truncation (23)
numerically reasonable.

With the truncation (23), the second sum in (19) is also finite. It contributes to the first N−2−m
unknown entries a2, . . . , aN−1−m in the m-th equation, where m < N − 2, and hence disappears in all
equations from m = N−2 onward. As a result, each matrix row contains either N (at m < N ) or N+1
(at m = N , N+1, . . . ) nonzero entries arranged as shown schematically on the next page for for N = 3
and the shear-type right-hand side (22).
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× × ×

× × ×

× × ×

× × × ×

× × × ×

× × × ×

. . . . . . . . .





a2

a3

a4

a5

a6

a7
. . .


=



1
0
0
0
0
0
. . .


(26)

Put differently, the finite expansion (23) decomposes the initial system (19) into two subsystems.
The first is just the DT-reduced N × N nonhomogeneous system to solve the first N coefficients ak ,
for k = 2, 3, . . . , N + 1. The second ST-specific homogeneous subsystem in the rest of unknowns ak ,
k > N + 1, is neglected in the DT-scheme. An important point is that its (N+1)-width band matrix
comprises an infinite linear system of finite differences [Levy and Lessman 1959]

am+2 −

N∑
k=1

kdkam−k+1 = 0, m = N , N+1, . . . , (27)

with constant coefficients 1, 0,−d1,−2d2, . . . ,−NdN , which define the N -term Laurent expansion of
ω′(ζ ), as seen from (23). In contrast to the first subsystem, these equations are free of the matrix param-
eter λ.

Solving (27) by a standard finite-differences approach [Levy and Lessman 1959] we obtain 8(ζ) after
some algebra as a simple rational function of ζ−1:

8(ζ)=
RN (ζ

−1)

ζω′(ζ )
(28)

Here RN (ζ ) is a degree-N polynomial in ζ with coefficients linearly composed of the first {dk}, k ≤ N :

RN (ζ )=

N∑
k=1

rkζ
k, with r1 = a2, rm = am+1 +

m−1∑
j=1

(−1)m− j (m− j+1)dm− j+1a j for m ≥ 2, (29)

which in turn are to be solved for from the first N × N subsystem. In passing we note that r0 = 0 to
match the shear-type asymptotics (20).

The proposed algorithm works faster than its basic counterpart [Muskhelishvili 1975], which requires a
time-consuming precomputation of the N -term expansion of the composed function ω(ζ )/ω′(1/ζ ). This
is of particular value when the same forward problem is repeatedly solved many times in evolutionary
optimization methods.

The truncation (23) and the resulting finite expressions (28)–(29) allow us at last to reformulate the
optimization problem in a numerically tractable form.

For a given finite number N of mapping coefficients and pure shear field B = 0, find the M-
optimal rigid inclusion shape on which

M ≡ max
t∈0N

σM(t)≡ max
0≤θ≤2π

σM(ξ ≡ exp iθ)−−−−−−−→
{0N }

min, (30)
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where {0N } denotes the set of all curves mapped onto the unit circle by ω(ζ ) with any admissi-
ble finite set {dm,m = 1, N }, and dm = 0,m > N .

The accompanying δW -optimization problem is posed similarly.

4. One-term analytical relations at a rigid interface

It is well known that even a one-term conformal mapping covers a wide variety shape geometries: from
a rectilinear cut (with the Zhukovsky function ω(ζ ) = ζ + ζ−1 — see [Schinzinger and Laura 1991])
to a (p+1)-cusped hypocycloid (with ω(ζ ) = ζ + p−1ζ−p, p = 2, 3, . . . ). With this in view, the one-
term closed expressions for δW and σM are derived and analyzed below to gain qualitative insight into
the optimal solution, which appears to depend on the rotational symmetry of the contour sought. This
symmetry is defined through an integer parameter p = 1, 2, . . . , defined so that α = 2π/(p + 1) is the
minimal rotation angle transforming the contour to itself:

ω(eiαζ )= eiαω(ζ ),

or, equivalently,
ω(ζ )= ζ +

∞∑
k=1

dpkζ
−pk .

In particular, the one-term mapping takes the form

ω(ζ )= ζ + dpζ
−p, ω′(ζ )= 1 − pdpζ

−p−1, f1 = π(1 − pd2
p), (31)

and hence the summation coefficients in (29) simplify: rm = am+1, m ≥ 1. As in the hole case [Vigdergauz
2006], this results in

8(ζ)=
a2ζ

p−1
+ ap−1ζ

2

ζ p+1 − pdp
, (32a)

σM(θ)= D1(λ)F1(θ)+ D2(λ)F2(θ), (32b)

F1(θ)=

(
a2(cos 2θ − pdp cos(p−1)θ)+ ap−1(cos(p−1)θ−pdp cos 2θ)

1 − 2pdp cos(p+1)θ + p2d2
p

)2

, (32c)

F2(θ)=

(
a2(sin 2θ + pdp sin(p−1)θ)+ ap−1(sin(p−1)θ + pdp sin 2θ)

1 − 2pdp cos(p+1)θ + p2d2
p

)2

, (32d)

where the dependence on λ is hidden in the Laurent coefficients a2, ap−1 of the potential 8(ζ). They are
found by solving the first nonvanishing equations (19). For p ≤ 3, the second term ap−1 is zero and should
be dropped from (31). The one-term results so obtained are detailed below for different symmetries. For
convenience, the criteria are henceforth normalized to the interval [0, 1] by their counterparts δW0,M0

for a circular inclusion, when γ ≡ 0, ω(ζ ) = ζ , f1 = π , 8(ζ) = −1/λζ 2 [Muskhelishvili 1975] and
hence, with (21), (15),

δW0 = −4/λ, σ 2
M(θ)= D1(λ) cos2 2θ + D2(λ)

2 sin2 2θ, (33a)

M0 = max
θ
σM(θ)= σM(π/4)= D1/2

2 (λ)/λ= (λ+ 1)
√

3/λ, 1 ≤ λ≤ 3. (33b)
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To avoid confusion, we note that the Dundurs correspondence (λ= −1, a traction-free circular hole under
shear) does not hold for (33b). Here,

max σM(θ)= σM(0)= D1/2
1 (−1)= 2,

min σM(θ)= σM(π/4)= D1/2
2 (−1)= 0.

4.1. Twofold ( p = 1) and triangular symmetry ( p = 2). Here

a2 = −
1
λ
, δW2 = −

1
1 − 2d2

2
: d(min)

p = 0, min
dp
δWp = 1. (34)

A simple numerical check of (32b) in the univalency interval (25) shows further that mindp M = 1 at
dp = 0, independently of λ.

4.2. Square symmetry ( p = 3). Here

a2 = −
1

λ+d3
, δW3 =

λ

(λ+ d3)(1 − 3d2
3 )
, |d3| ≤

1
√

3
,

d(min)
3 =

√
λ2 + 1 − λ

3
; min

d3
δW3 =

9λ

2(2λ+
√
λ2 + 1)(1 − λ2 + λ

√
λ2 + 1)

.

(35)

In contrast to the case (34), the square symmetric δW -optimal inclusion differs from a circle. It is shaped
as a rounded square rotated by 45 degrees with respect to the axes X, Y . The roundness depends on λ
and is measured by the deviation of d(min)

3 from the first mapping coefficient d(square)
3 = 1/6 [Jasiuk 1995]

of an exact square shape. It varies from ≈ 0.0286 at λ= 1 to ≈ 0.1126 at λ= 3. As a result, the energy
δW (square)

3 exceeds the minimum (35) by ≈ 0.00308 at λ= 1 (min δW3 ≈ 0.93198, δW (square)
3 ≈ 0.93506)

and by ≈ 0.04251 at λ= 3 (min δW3 ≈ 0.99099, δW (square)
3 ≈ 1.03349). The latter comparison shows

that just small local improvements of an exact square shape near the angular points allow one to go
beyond the circle-related value δW (circle)

= 1. This is also true for the multiterm approximation (Section
6) with δW (square)

= 1 at λ≈ 1.88149.
Another observation shows that at λ= 1 (an incompressible matrix) the optimal coefficient d(min)

3 =

(
√

2 − 1)/3 is equal in value but opposite in sign to its counterpart for a hole under shear [Cherkaev et al.
1998; Vigdergauz 2006]. In other words, both one-term shapes are the same, differing only in orientation
about the axes.

Similarly, the M-optimal shape is also a rotated rounded square though with somewhat different value
of the mapping coefficient.

The already noted resemblance of the energy optimal hole and the rigid inclusion at λ= 1 is of general
nature and holds for any pair of mutually rotated square-symmetric shapes. Indeed, the mapping function

ω(ei π4 ζ )= e
π
4 ζ +

∞∑
k=1

e(1−4k) π4
d4k−1

ζ 4k−1 = ei π4

(
ζ +

∞∑
k=1

(−1)k
d4k−1

ζ 4k−1

)
, (36)

with alternating signs of the Laurent coefficients rotates a shape by 45 degrees. Substitution of (36) into
the system (19) while putting λ= −1 results in a system equivalent to the traction-free hole conditions
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(12), whose solution evidently takes the form

a(hole)
4k−2 = (−1)ka(λ=1)

4k−2 ; k = 1, 2, . . . .

In particular a(hole)
2 = −a(λ=1)

2 and hence both (no normalized) energy increments are the same up to the
sign.

4.3. Higher symmetry ( p ≥ 4).

a2 = −
λ

λ2 − (p − 2)d2
p
, ap−1 =

(p − 2)dp

λ2 − (p−2)d2
p
, |dp| ≤

1
√

p
,

δWp =
λ2

(λ2 − (p − 2)d2
p)(1 − pd2

p)
, min

dp
δWp = 1, d(min)

p = 0.

Again, as in Section 4.1, M-optimal contour appears to be a circle with M = 1.
The one-term results suggest that the most promising for further analysis is the fourfold (p = 3)

symmetry case when the δW - and M-optima are achieved at similarly rotated square-like shapes. As
numerically shown in Section 6, this pattern is preserved for multiterm N > p = 3 approximations.

5. The GA scheme

As described above, the shape optimization problem is solved by minimizing either M or δW criterion
over a N -parameter set of closed curves. In principle, the single truncation approach (27)–(29) explicitly
provides all the information required by a standard gradient-based optimization. However, this results
in too complicated analytical manipulations and time-consuming calculations. A good alternative is a
relatively novel genetic algorithm, which mimics the Darwinian evolution paradigm, both in the concept
and in the terms. Devised by Holland [1975], the GA finds wide application in engineering. In the
current context, the relevant information is detailed in [Vigdergauz 2006], where a fairly standard GA is
applied to find the stress-minimizing hole under remote shear.

The GA optimization process is governed by a number of parameters that control its performance.
Here parameter tuning is of lesser importance due to the relatively small problem size (the first five
nonzero mapping terms appear to provide a good convergence in the square symmetric case). For this
reason, we use the parameter values found in the process of hole shape optimization [Vigdergauz 2006].

6. Multiterm numerical results

In quantifying the shape optimization effect on the matrix stress-strain state, we first find a compromise
truncation number N to achieve a reasonable numerical accuracy at a not-too-large computational cost.
Tables 1 and 2 display the optimization results obtained by sequentially truncating the resolving system
(19) at the first nonvanishing equation in the square symmetric case.

The observed fast convergence is explained differently for either criterion. As noted in Section 2, the
higher mapping coefficients go to zero rather rapidly and hence have little or no effect on the integral-type
energy increment δW . On the other hand, they are responsible for forming large curvature isolated shape
points (see Figure 2) which may only worsen the local criterion M. In this respect, of special interest is
the von Mises stress distribution along the M-optimal interface as depicted in Figure 3 in dependence of
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Figure 2. A quarter of the M-optimal rigid inclusion under simple shear for different
number of the first mapping terms.
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Figure 3. Distribution of the normalized von Mises equivalent stresses along the square-
like M-optimal rigid inclusion in dependence of the problem mapping size beginning
with a circle (N = 0). The δW -optimal distribution (dotted) is also added for comparison.
The inset shows the inclusion orientation.
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N d3 d7 d11 d15 d19 δWmin δW (square)

3 0.078689 0.980356 1.006993
7 0.080125 0.006922 0.979970 1.005677

11 0.080356 0.007244 0.001794 0.979929 1.005269
15 0.080415 0.007319 0.001910 0.000671 0.979921 1.005102
19 0.080434 0.007342 0.001942 0.000722 0.000303 0.979919 1.005083

Table 1. A rigid square symmetric inclusion under remote shear at λ = 2: the global
minimum δWmin and its mapping coefficients for the first values of N . The energy values
for an exact square shape are also added for comparison.

N . The curves are seen to converge to the uniform distribution, with successively diminishing deviations
occurring near the angles θl = lπ/2, l = 0, 1, . . . In some contrast, the δW -optimal von Mises stresses
(the dotted line) show diminishing local peaks, though generally this is a very similar pattern. The same
situation is numerically observed everywhere in the interval 1 ≤ λ ≤ 3. This allows us to conservatively
conclude that the full-size optimal solution should led to to the exactly uniform distribution of the von
Mises stresses along the rigid inclusion shape with their level depending on λ.

Of course, it is only a numerical conjecture rather than a rigorous analytical proof which is outside of
our current scope.

The rest of the numerical results is obtained by holding the first five terms d = 44k−1, k = 1, . . . , 5,
or, equivalently by truncating the system at N = 19.

Figure 4 exemplifies the von Mises stress levels around the M-optimal inclusion at νstress = 1/3, (λ= 2).
As one might expect, the maximum stress gradient occurs near the angles θl where the level lines thicken.

Figure 5 displays the M- and δW -optimal shapes for the limiting values of λ. The δW -optimal shapes,
as compared to their M-optimal counterparts, have angular points. Though distinct, they do not reach
the critical openings α(λ) where the stresses become singular, contrary to a physical possibility for real
material.

N d3 d7 d11 d15 d19 Kmin δW

3 0.067933 0.834158 0.980727
7 0.007981 0.005158 0.808959 0.979996

11 0.084671 0.006868 0.001245 0.800220 0.979997
15 0.086647 0.007422 0.001631 0.000394 0.796231 0.980050
19 0.088398 0.008069 0.002011 0.000642 0.000194 0.793977 0.980122

Table 2. A rigid square symmetric inclusion under remote shear at λ= 2: the conformal
mapping coefficients and the local criterion Kmin resulted from the GA optimization
process for different values of N . The corresponding global criterion δW is also shown,
for comparison with its optimal values in Table 1.
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Figure 4. A quarter of the M-optimal rigid inclusion under simple shear: von Mises
equivalent stress contours at λ= 2.

The formation of the angles is comprehensively analyzed by [Cherkaev et al. 1998]. Here we only
note that α(λ) are in the numerically found interval

α(1)≤ α(λ)≤ α(3), α(1)≈ 102.5◦, α(3)≈ 152.5◦.

Another observation is that the δW -optimal shape is flatter than its M-optimal counterpart at λ= 1 and
quite the reverse at λ= 3. This suggest that there is an intermediate value λ∗ at which the shapes and
their criteria come the closest together. The computation gives λ∗

≈ 1.712 . . . .
Finally, Figure 6 gives the criteria at hand for either of the two optimal shapes in dependence of λ. It is

seen that the δW -criterion of the M-optimal shapes markedly exceeds min δW only near the point λ= 1.
Contrastingly, the M-criterion of the δW -optimal shapes is substantially above its minimum everywhere
except near the above-found point λ∗. Put it differently, the δW -optimization is performed partly at the
penalty of increasing the M-criterion

7. Conclusions and future applications

We have presented a novel semianalytical solution for isolated, nondeformable inclusion subjected to
pure remote shear. An inclusion shape is presented as a finite-term conformal map of a circle rather than
by more traditional nodal points. This allows to pose the optimization as a small-size numerical problem
with linear constraints particularly amenable to the GA search. Another essential idea is to express the
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Figure 5. The M-optimal and δW -optimal (dotted) inclusion shapes for the limiting
values of the elastic parameters λ.

stresses through only one KM potential whose infinite Laurent tail is summed in a closed form. The
numerical accuracy so achieved permits to solves the yet unconsidered problem of globally minimizing
the von Mises local criterion over a broad range of continuous curves. The results obtained are in strong
parallel to those for the optimal hole [Vigdergauz 2006]:

• The both shapes differ from a circle only in the square symmetric case when they are close to a
slightly rounded square located in a specifically rotated position relative to each other;
• For the δW -criterion the roundness is combined with four distinct angular points whose opening is
greater than the critical values which bring stress singularities;
• The δW - and M-optimal shapes are very similar though not exactly the same;
• Under the M-criteria, the von Mises stress distribution becomes uniform along the optimal interfaces.

Of course, these conclusions are arrived at only numerically and the analytical proof would be very
desirable.

It is worthy of note that the conformal mapping is used not only for the shape description but also
to transform the stress field around the shape. This may be done only for a hole or a rigid inclusion
which exhaust the setup with a single deformable region. In order to fill gap between these limiting
cases, an optimal shaping of elastic inclusion should be considered. This problem is far too complicated
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because both elastic regions may not be mapped simultaneously. Nevertheless, the proposed mapping
parameterization inside the GA seems to be potentially useful here too.
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