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SYMMETRY CONDITIONS AND FINITE MECHANISMS

SIMON D. GUEST AND PATRICK W. FOWLER

Using group representation theory, a simplified criterion for the detection of finite symmetric mecha-
nisms is presented.

1. Introduction

The identification of finite mechanisms in statically and kinematically indeterminate structures is, in
general, a difficult problem. However, Kangwai and Guest [1999] showed that in certain cases finiteness
of mechanisms could be found using only symmetry arguments and a linear analysis. Here we revisit
Kangwai and Guest’s method to show that their symmetry arguments can be straightforwardly stated in
terms of representations of mechanisms and states of self-stress in the point group of the structure, giving
an immediate assessment of the finiteness of mechanisms for many cases.

For any kinematically indeterminate structure, it is possible to find a set of mechanisms, i.e., displace-
ments which to first order cause no deformation of structural elements. (Here it is usual to exclude
rigid body motions.) Mechanisms may be either finite, in which case there is a continuous displacement
path that is compatible at every point with zero deformation of the structure, or infinitesimal, in which
case there is deformation at second or higher order. Determination of the finite nature of a mechanism in
general requires nonlinear analysis [Tarnai 1989; Calladine and Pellegrino 1992; Salerno 1992; Connelly
and Servatius 1994; Tarnai and Szabó 2000; Garcea et al. 2005]. Kuznetsov [2000] has stressed the
difficulties that may arise with ‘singular’ (e.g., highly symmetric) configurations, but nonetheless, the
behaviour at points of high symmetry is often a useful guide to that of physical systems, where the
symmetry may be only approximate. Kangwai and Guest [1999] introduced, for specific symmetric
cases, a criterion that could determine the finiteness of a mechanism based on purely first-order analysis
combined with a symmetry argument, and has proved to be applicable to a wide variety of structures
[Kovács et al. 2004; Fowler and Guest 2005]. We show here that there is a simple and general way
of determining finiteness according to this criterion, obviating the need for explicit calculation in every
particular case.

The difficult cases for determining finiteness of mechanisms are those where structures are also stati-
cally indeterminate, and hence have states of self-stress, i.e., sets of internal stresses in self-equilibrium in
the absence of externally applied loads. Here is the symmetry finiteness criterion, as stated in [Kangwai
and Guest 1999]:

Proposition 1. If a mechanism is fully-symmetric in some subgroup of the symmetry group of the struc-
ture, with no equisymmetric state of self-stress, then that mechanism must be finite.
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However, the converse does not always hold: if such an equisymmetric state of self-stress exists, then
the mechanism may be stiffened, and hence be only infinitesimal, or may still be finite. A celebrated
example where the converse of the proposition would not apply is the cusp mechanism of Connelly and
Servatius [1994].

The present paper reformulates the symmetry finiteness criterion in a way that avoids the need to
consider subgroups of the symmetry group of the structure. Statement and proof of the new formulation in
cases where there is a mechanism belonging to a nondegenerate representation follows in Section 2. This
covers all cases that have been analysed so far with the symmetry finiteness criterion. For completeness,
the present paper briefly considers, in Section 3, the consequences of degeneracy. Section 4 contains a
number of examples of the criterion.

2. A symmetry finiteness criterion based on representations

For mechanisms that belong to a nondegenerate representation, it can be shown that the following propo-
sition is equivalent to the symmetry criterion stated by Kangwai and Guest.

Proposition 2. A mechanism that belongs to a nondegenerate representation will be finite if , in the
point group of the undisplaced object, there is neither a state of self-stress that is equisymmetric with the
mechanism, nor a totally symmetric state of self-stress.

The proposition can be proved as follows.
Suppose that a structure has a configuration with point-group symmetry G, and in that configuration

has mechanisms spanning the (reducible) representation 0(m) of G, and states of self-stress spanning
the representation 0(s). We will initially concentrate on one member of the set of mechanisms, m1, a
mechanism with nondegenerate, irreducible representation 0m1 . We can assume that the mechanism is
not totally symmetric, as if it were, Proposition 1 would apply directly: a totally symmetric mechanism
will be finite if there is no equisymmetric state of self-stress. Displacement of the structure along m1

gives a new configuration with point group symmetry H1; H1 is a subgroup of G defined entirely by 0m1 .
(Using notation that will be defined in Section 3, H1 is the kernel of G under 0m1 .)

Let G consist of symmetry operations Ri , i = 1 . . . |G| and let the characters of 0m1 be χm1(Ri ).
Then H1 is a subgroup of G, of order |H1| = |G|/2, comprising those operations Ri of G for which
χm1(Ri ) = +1. It is easy to see that this condition on the characters defines a group. As the characters of
a nondegenerate irreducible representation obey the group multiplication table, i.e., χ(Ri )χ(R j ) = χ(Rk)

for Ri R j = Rk , the set of operations with character +1 is closed under multiplication, includes the identity,
contains an inverse for every operation in the set, and inherits the associative property from G.

Suppose that 0(s) is not empty, and consider a state of self-stress with irreducible representation 0s ,
say, as a candidate for ‘blocking’ 0m1 , i.e., stiffening the mechanism m1. There are three possibilities:

(i) 0s is the totally symmetric representation, 00, in G;

(ii) 0s is 0m1 in G;

(iii) 0s is neither 00 nor 0m1 in G.

As a nondegenerate and non-totally symmetric irreducible representation, 0m1 has character +1 for
exactly half of the operations Ri of G, and character −1 for the other half (by orthogonality with 00). For
convenience, we will choose an ordering of the operations such that χm1(Ri ) = +1 for i = 1, . . . , |G|/2,
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and χm1(Ri ) = −1 for i = |G|/2 + 1, . . . , |G|. With this ordering, let the characters of the representation
of the state of self-stress, 0s , be χs(Ri ) = αi and χs(R(|G|/2+i)) = βi for i = 1, . . . , |G|/2 with

α =

|G|/2∑
i=1

αi ; β =

|G|/2∑
i=1

βi .

The various characters are summarized thus:
G R1 · · · R|G|/2 R|G|/2+1 · · · R|G|

00 +1 · · · +1 +1 · · · +1
0m1 +1 · · · +1 −1 · · · −1

0s α1 · · · α|G|/2 β1 · · · β|G|/2

In case (i), we have αi = βi = +1, and 0s = 00 in both G and H1. In case (ii), αi = −βi = +1, and
0s = 00 in H1, but not G. In case (iii), orthogonality of 0s to 00 gives

α + β = 0,

and orthogonality to 0m1 gives
α − β = 0,

and hence α = β = 0; α = 0 implies that 0s remains orthogonal to 00 (and hence to 0m1) in H1. Thus
in case (i) state of self-stress s may block mechanism m1 in both G and H1; in case (ii) s may block
m1 in H1; in case (iii) s does not block m1. Notice that the above applies equally to degenerate and
nondegenerate 0s . Case-by-case consideration has therefore shown the truth of Proposition 2.

Details of the identification of 0m1 and its associated group H1 can be filled in from standard character
and descent in symmetry tables; see, for example, [Atkins et al. 1970; Salthouse and Ware 1972; Altmann
and Herzig 1994].

So far we have considered a single nondegenerate mechanism. If the configuration that has G symme-
try allows several such mechanisms, but displacement occurs along only one of them, the above reasoning
applies directly. If, instead, displacement is along some linear combination of such mechanisms, the
consequences are easily worked out. For example, suppose that we have mechanisms m1 and m2 of
distinct symmetries in G, 0m1 and 0m2 . Displacement along a linear combination of m1 and m2 can be
analysed with the help of the character table below, where the operations of G have been separated into
equal-sized blocks according to their characters for the irreducible representations 0m1 and 0m2 .

G R1 · · · R|G|/4 R′

1 · · · R′

|G|/4 R′′

1 · · · R′′

|G|/4 R′′′

1 · · · R′′′

|G|/4
00 +1 · · · +1 +1 · · · +1 +1 · · · +1 +1 · · · +1
0m1 +1 · · · +1 +1 · · · +1 −1 · · · −1 −1 · · · −1
0m2 +1 · · · +1 −1 · · · −1 +1 · · · +1 −1 · · · −1
0m1 × 0m2 +1 · · · +1 −1 · · · −1 −1 · · · −1 +1 · · · +1
0s α1 · · · α|G|/4 β1 · · · β|G|/4 γ1 · · · γ|G|/4 δ1 · · · δ|G|/4

The operations {R1 . . . R|G|/4}+ {R′

1 . . . R′

|G|/4} constitute the group H1 which is reached from G by
a pure m1 distortion. Similarly the group H2 reached from G by a pure m2 distortion consists of the R
and R′′ operations. The R operations by themselves define the group H1×2, which is reached from G
by a displacement along a generic combination of m1 and m2. The relationships between the various
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Figure 1. The descent in symmetry from G arising from displacement along mecha-
nisms m1 and m2, alone and in combination.

subgroups of G are shown schematically in Figure 1. By definition, 0m1 and 00 become totally symmetric
in H1, and 0m2 and 00 become totally symmetric in H2. In the group H1×2, 0m1 , 0m2 , 0m1 × 0m2 and
00 become totally symmetric. Now consider a candidate state of self-stress, s. Its characters are defined
in the table, and we define the partial sums

α =

|G|/4∑
i=1

αi ; β =

|G|/4∑
i=1

βi ; γ =

|G|/4∑
i=1

γi ; δ =

|G|/4∑
i=1

δi .

There are five possibilities for 0s :

(i) 0s is the totally symmetric representation, 00, in G: αi = βi = γi = δi = +1, and 0s = 00 in G and
all subgroups. Thus state of self-stress s may block mechanism m1 and m2 in any combination.

(ii) 0s is 0m1 in G: αi = βi = −γi = −δi = +1, and 0s = 00 in H1 and H1×2, but not H2. Thus, s may
block all but pure m2.

(iii) 0s is 0m2 in G: αi = −βi = γi = −δi = +1, and 0s = 00 in H2 and H1×2, but not H1. Thus, s may
block all but pure m1;

(iv) 0s is 0m1 ×0m2 in G: αi = −βi = −γi = δi = +1, and 0s = 00 in H1×2, but not H1 or H2. Thus s
may block all but pure m1 or pure m2.

(v) 0s is none of the above. Orthogonality gives:

α + β + γ + δ = 0

α + β − γ − δ = 0

α − β + γ − δ = 0

α − β − γ + δ = 0

and hence α = 0, implying that 0s remains orthogonal to 00 in H1, H2 and H1×2. Hence, s does
not block m1, m2, or any combination of m1 and m2.

This reasoning can be extended to apply Proposition 2 to any combination of nondegenerate mechanisms.
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3. Mechanisms described by degenerate representations

When a mechanism is d-fold degenerate, the symmetry possibilities for distortion and blocking by states
of self-stress are more involved, as the system can visit different subgroups of G by following different
combinations of the d components of the mechanism. An established notation for the relations between
the various groups is used, for example, in vibrational spectroscopy McDowell [1965], and can be used
to frame some general remarks on how degenerate and nondegenerate mechanisms are blocked.

Let the irreducible representation of the mechanism be the d-fold degenerate 0md . The lowest symme-
try group, reached by a generic combination of the d components of the mechanism, is the kernel of 0md .
The kernel is an invariant subgroup of G and consists simply of those elements of G whose characters for
0md are equal to d. For any degenerate representation, the kernel is easily identified from the character
table. In the kernel, 0md reduces to d copies of 00. In the present context, it can be seen that, if no state
of self-stress becomes totally symmetric in the kernel, then all combinations of the d components of md

are finite mechanisms. Given that the kernel is not necessarily equal to the trivial group C1, it is possible
therefore for a system to support a number of states of self-stress that cannot block a given degenerate
finite mechanism.

Unlike the nondegenerate case, the symmetries accessible to a degenerate mechanism are not neces-
sarily restricted to the kernel group. By particular choices of combination, it may be possible to retain
symmetry elements additional to those in the kernel, and thus produce configurations belonging to point
groups of which the kernel is a subgroup. The accessible groups are the cokernels of 0md ; McDowell
[1965] discusses the identification of cokernels, and lists them for the degenerate representations of a
number of spectroscopically important point-groups.

The existence of cokernels for some degenerate representations widens the scope for finite degenerate
mechanisms. Even in cases where the generic mechanism is blocked in the kernel, there may be combi-
nations of the d components that access a cokernel in which no state of self-stress is totally symmetric,
and by Proposition 1, those specific combinations will remain finite.

As an example, consider a hypothetical system of D6h symmetry where 0(m) = E2g and 0(s) = A2g.
The relevant rows of the D6h character table are shown below.

D6h E 2C6 2C3 C2 3C ′

2 3C ′′

2 i 2S3 2S6 σh 3σd 3σv

A2g 1 1 1 1 −1 −1 1 1 1 1 −1 −1
E2g 2 −1 −1 2 0 0 2 −1 −1 2 0 0

McDowell gives the kernel of E2g as C2h , and this can be confirmed by inspection of the table above, as
the four columns with character +2 are those for E , C2, i and σh . It can also be seen by inspection that
0(s) = A2g becomes totally symmetric in C2h and hence we cannot state that the pair of mechanisms is
finite. However, the cokernel of E2g is D2h McDowell [1965], and as the table shows, A2g is not totally
symmetric in D2h (four characters are +1, four characters are −1 under these operations). Therefore it
is guaranteed that the combination of components that lead from D6h to D2h is a finite mechanism.

4. Examples

4.1. Structure stiffened by self-stress. Figure 2 shows a planar pin-jointed framework that has been
analysed by Kangwai and Guest [2000]. Considered in two dimensions, a structure with this connectivity
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Figure 2. (a) A planar structure in which all mechanisms are stiffened by a state of self-
stress; (b) the mechanism, showing directions of infinitesimal nodal displacement; (c)
the state of self-stress, showing relative bar tensions.

is generically both statically and kinematically determinate, but in the configuration shown has one state
of self-stress and one mechanism. The planar structure has point group C3v, with

0(m) = A2, 0(s) = A1.

The single mechanism has the symmetry of an in-plane rotation of a central triangle, and the state of
self-stress corresponds to a totally symmetric distribution of tensions in the bars. As the single state of
self-stress is totally symmetric in C3v, it can in principle stiffen any mechanism, and inspection, or a
formal analysis of the tangent stiffness (see [Guest 2006], for example) shows that the mechanism is
indeed stiffened.

We can also consider a structure in three dimensions that has the same set of connections. In a
generic configuration, such a structure has three mechanisms, and no state of self-stress. Clearly these
mechanisms must be finite. However, in the particular planar configuration shown, the structure attains
D3h symmetry, where it has a single state of self-stress and four mechanisms. The symmetry form of
the Maxwell rule for pin-jointed frameworks [Fowler and Guest 2000] gives a full account, and yields

0(m) − 0(s) = A′

2 + A′′

2 + E ′′

2 − A′

1.
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Figure 3. A ring structure with a finite mechanism.

As, by inspection, 0(s) = A′

1 ≡ 00, the four mechanisms span

0(m) = A′

2 + A′′

2 + E ′′

2 .

The state of self-stress is fully symmetric in this configuration, and hence can stiffen all mechanisms;
analysis of the tangent stiffness shows that this stiffening is effective for all four mechanisms.

4.2. Prestressable finite mechanism. Figure 3 shows a classic example of a type of pin-jointed structure
[Tarnai 1980] that satisfies Maxwell’s rule for pin-jointed frames [Calladine 1978], but nevertheless
admits a finite mechanism. The structure shown has a hexagonal ring of bars, connected in triangulated
fashion to a rigid base. Its point group is C3v , and as Kangwai and Guest [1999] have shown, the single
mechanism has symmetry

0(m) = B1

and the single state of self-stress has
0(s) = B2.

It follows immediately from Proposition 2 that the mechanism is finite: there is neither an equisymmetric
nor a totally symmetric state of self-stress here. The B1 mechanism leads to C3v configurations where
the state of self-stress has A2 symmetry.

Following the finite mechanism eventually takes the structure to an interesting point of kinematic
bifurcation, where the hexagon has degenerated into a triangle, as shown in Figure 4. At this point, a
new pair of states of self-stress spanning the E representation emerges [Kangwai and Guest 1999], and
hence 0(m) becomes

0(m) = A1 + E

with
0(s) = A2 + E .

The new states of self-stress do not affect the conclusion that there must be a finite A1 mechanism leading
out of this configuration. However, we cannot deduce the existence of further finite mechanisms: the
new states of self-stress are equisymmetric with the new mechanisms, and hence could stiffen generic
combinations. In fact, in this case, there are three additional finite paths leading away from the bifurcation
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Figure 4. The ring structure shown in Figure 3 displaced along the mechanism path
until a point of kinematic bifurcation has been reached.

(a) (b)

(c) (d)

Figure 5. A plan view showing the finite paths leading out of the point of kinematic
bifurcation shown in Figure 4; non-foundation joints are shown with a ring, foundation
joints without a ring. The displaced structure in (a) retains C3v symmetry; those in (b),
(c), (d) each have Cs symmetry about one of the σv reflection planes of the C3v geometry.

point, each of which retains Cs symmetry about one of the σv reflection planes of the C3v geometry
[Kumar and Pellegrino 2000]. Cs is the cokernel of E in C3v, whereas the kernel is the trivial group
C1. The paths are shown in Figure 5. Symmetry analysis shows only that stiffening of the mechanism
is predicted, but not that it must occur. As always, symmetry is most powerful when showing that a
phenomenon is forbidden, and hence detecting here when mechanisms must be finite, as blocking is not
allowed, rather than when they may be infinitesimal, as blocking is permitted.
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