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A PROPOSED METHOD FOR FATIGUE CRACK DETECTION AND
MONITORING USING THE BREATHING CRACK PHENOMENON AND

WAVELET ANALYSIS

VIET KHOA NGUYEN AND OLUREMI A. OLATUNBOSUN

In this paper the dynamic behavior of a fatigue cracked beam is investigated. The purpose is to reveal
the nonlinear behavior of the structure with fatigue damage by using wavelet transform. A cracked
cantilever beam is modeled by the finite element (FE) method using ALGOR™ software. A breathing
crack is described in the FE method as a surface to surface contact of the two edges of the crack during
vibration. Strain time history in the area adjacent to the crack has been analyzed using data processing
techniques. Nonlinear effects in signals are usually difficult to detect by conventional data processing
methods such as fast Fourier transform. However wavelet transform has recently been shown to be an
effective method of detecting such nonlinear effects in signals. Modulus maxima, an important property
of wavelet transform, have been used as an indicator of the crack size. Numerical results obtained
from the FE analysis are presented in this paper, as well as some experimental results. It is shown that
detection of fatigue cracks using breathing behavior and wavelet transform can be used to develop a
vibration-based crack detection technique.

1. Introduction

Fatigue cracks of a structural member often occur after a period of loading cycles. This leads to structural
failure. For this reason, methods of detecting and localizing cracks have been the subject of intensive
investigation in the last two decades. In these methods, nondestructive methods for crack detection
that are based on the changes in the dynamic properties of the structure caused by damage have been
developed as an important tool for early detection of imminent failure in mechanical and civil engineering
structures.

There are two main categories of crack models used in the methods: open crack models and breathing
crack models. Most researchers have assumed that the crack in a structural member is open and remains
open during vibration. This assumption was made to avoid the complexity resulting from nonlinear
behavior when a breathing crack is presented. Nevertheless, during vibration, a crack will open and close
due to an externally applied loading. During the vibration of a structure, edges of the crack come into and
out of contact, leading to sudden changes in the dynamic response of the structure. This phenomenon
is known as the breathing process of the crack. By introducing the concept of a breathing crack, an
intensive investigation can reveal small changes in the dynamic response of the cracked element. These
changes in dynamic response can be useful for detection of cracks.

Keywords: crack detection, crack monitoring, fatigue crack, breathing crack, closing crack, wavelet transform, wavelet
analysis.

399



400 VIET KHOA NGUYEN AND OLUREMI A. OLATUNBOSUN

Nash [1969] investigated the dynamic response of a cracked beam under impact load. In this research,
the governing equation of a cracked beam was derived with the aid of a variational principle developed by
Gurtin [1964]. The governing equation was then solved by the approximate method known as the small
increment method presented by Timoshenko [1913]. Carlson [1974] and Gudmundson [1983] studied the
influences of closing cracks on the dynamical characteristics of a cracked cantilever beam. The relative
increase in natural frequencies due to the closing crack phenomenon has been found to be much smaller
than the decrease due to an open crack. Closing cracks in beams have been investigated by Chen and
Chen [1988], Actis and Dimarogonas [1989], and Collin et al. [1992] in terms of nonlinear behavior of
the longitudinal free and forced vibration using direct numerical integration. Kisa and Brandon [2000]
studied the effects of closure of cracks on the dynamics of a cracked cantilever beam using successive
modal transformations. Xastrau [1985] used the finite element method to study the steady state responses
of a simply supported beam with multiple closing cracks. Matveev and Bovsunovsky [2002] investigated
nonlinear distortions of the vibration characteristics due to fatigue damage. In their studies, the level
of nonlinear distortions of the displacement, acceleration and strain waves of the cracked beam were
studied and the comparative evaluation of their sensitivity was carried out using a successive algorithm
(cycle by cycle). The Euler–Bernoulli beam model is used widely for breathing crack studies, but not
the Timoshenko beam model. This is because the Timoshenko model is much more complicated when
the effects of shearing deflection and rotational inertia are taken into account [Timoshenko and Young
1955]. However analytical results of the two models are the same for general slender beams [Kikidis and
Papadopoulos 1992]. The existence of nonlinear dynamic behavior due to a breathing crack was proved
by these authors. They related the breathing crack to changes in natural frequency and mode shapes.
However they were not able to establish practical methods of detecting a crack using the changes in
frequency and mode shapes because of the difficulty in detecting minute changes in frequency and mode
shapes.

On-line methods for crack detection are preferred to other methods because they do not require the test
to be stopped for inspection of the test specimen for damage during testing, thus providing considerable
saving in time and cost. Most of these on-line methods are based on changes in dynamic characteristics
of the object, for example, frequencies, mode shapes, transfer functions, and so on. In the field of signal
processing, Fourier transform has been very useful and has been widely applied for a long time. However,
when transforming a signal from the time domain (or space domain) into the frequency domain using
Fourier transform, the time (or space) information is lost so that it is impossible to examine simulta-
neously the time and frequency characteristics of an event. Moreover, Fourier transform mainly works
with stationary signals, while in practice many signals appear in the form of nonstationary signals. To
overcome this shortcoming of the original Fourier transform, some signal processing methods based on
Fourier transform have been developed. For example, short-time Fourier transform (STFT) was proposed
by Gabor [1946]. By this method, the transformed signal can retain some information in the time domain.
Nevertheless, this information is less precise when only one constant window is applied to the whole
data set.

The wavelet transform method, like STFT, analyzes the signal in two dimensions: time (or space)
and frequency. Instead of using only a constant width window as in STFT, wavelet transform uses a
variable parameter called scale. The scale in wavelet transform can play a role similar to frequency in
STFT. Because of this, wavelet transform is able to analyze signals locally. From its wavelet transform,
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hidden details or irregular changes in a signal could be revealed efficiently. The vibration signal of a
damaged structure might contain irregular events, thus, damaged structures could be examined by wavelet
transform.

Ovanesova and Suarez [2004] used wavelet transform to analyze the deflection of an open cracked
beam. The position of the crack was found using bior6.8 wavelet. These authors have also developed
the method for application to frame structures and obtained satisfactory results. Douka et al. [2004]
presented a method for crack identification in plates based on wavelet analysis. The crack is considered
to be open. The position of the crack is determined by the sudden change in the spatial variation of the
transformed displacement response. To estimate the depth of the crack, an intensity factor is defined
which relates the depth of the crack to the coefficients of the wavelet transform. However, there are
practical difficulties in applying these methods since they are based on minute changes in mode shapes
or deflections which are very difficult to measure in practice. Also, a large number of transducers are
required for such measurement. Furthermore, the assumption of open cracks may be inaccurate as many
fatigue cracks are breathing cracks in practice.

In brief, the existence of breathing cracks has been proved by a series of papers. Some authors have
tried applying the breathing crack phenomenon in order to detect cracks but it is still complicated or
difficult to deploy in practice. Crack detection using wavelet transform is mainly based on the change
of mode shapes of the structure after it is damaged but the practical measurement of mode shapes of
structures is not easy.

In this paper a new approach, using a combination of the nonlinear behavior of a cracked beam during
vibration and wavelet transform to detect cracks is presented. For this approach, the signal that needs to
be measured to detect the crack is simple: the strain time history at one point close to the crack position.
When a crack appears under load, based on the breathing crack phenomenon, strain time history will
include distortion during subsequent dynamic loading. Therefore application of wavelet transform to the
strain time history signal provides a means of monitoring the appearance of a crack and its depth.

2. Breathing crack

Consider a cracked Euler–Bernoulli cantilever beam as in Figure 1. Free bending vibration of a beam is
described by the differential equation

∂4z(x, t)
∂x4 +

ρA
E I

∂2z(x, t)
∂t2 = 0, (1)

where E is the Young’s modulus, ρ is the material density of the beam, A and I = bh3/12 are the cross
section area and inertia moment, respectively, and b and h are the width and the height of the cross
section, respectively.

The solution of Equation (1) is written in the form

z(x, t)=

∞∑
i=1

wi (x)(Pi sinωi t + Ri cosωi t), (2)
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Figure 1. A cantilever beam with a crack.

where wi (x) is the i-th mode shape and ωi is the i-th natural frequency. Mode shapes are expressed in
the form [Matveev and Bovsunovsky 2002]

wi (x)= Ai S(ki x)+ Bi T (ki x)+ CiU (ki x)+ Di V (ki x), (3)

where k4
i =

ω2
i ρA
E I . S, T , U , and D are Krylov functions such that

S(x)= sin(x)− sinh(x), T (x)= cos(x)− cosh(x),

U (x)= sin(x)+ sinh(x), D(x)= cos(x)+ cosh(x).

The coefficients Ai , Bi , Ci , Di can be calculated from the boundary conditions.
A cantilever with a crack can be modelled in sections. The crack is modeled by a short section with

reduced cross section moment of inertia, while the sections on either side of the crack have the full cross
section moment of inertia. For this model, the general solution of Equation (1) for the section j will be

zoj (x, t)=

∞∑
i=1

wi j (x)(Poi sinωoi t + Roi cosωoi t), (4)

and
wi j (x)= Ai j S(ki j x)+ Bi j T (ki j x)+ Ci jU (ki j x)+ Di j V (ki j x), (5)

where wi j (x) is the i-th mode shape of j-th section, and k4
i j =

ω2
oiρA
E I j

; j = 1, 2. The subscript o means
the open crack.
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A beam with a breathing crack is modeled as follows: at the half-cycles while the crack is closed, the
vibrations of the beam are described by Equation (2) (with the assumption that there is no reduction of
cross section at the crack position, this leads to the assumption that the stiffness of the intact beam and
the stiffness of the beam with a closed crack are the same); at the half cycles while the crack is open, the
vibration of the beam is described by Equation (4). Thus, the vibration of a cracked beam is described
by a combination of Equations (2) and (4).

Matveev and Bovsunovsky [2002] presented the solutions of the vibration of the beam in two halves
of one complete cycle with certain initial conditions as

z(x, t)= ws(x) sinωs t, (6)

zoj (x, t)= Posws j (x) sinωos t. (7)

Solution (6) is the vibration of the beam in the first half-cycle with amplitude ws(x) and solution (7) is
the vibration of the beam in the second half-cycle with amplitude Posws j (x), where s denotes the initial
mode shape, and Pos < 1 and Pos is dependent on crack depth and material of the beam. Therefore, the
amplitudes of the vibration of the beam are different in two halves of one complete cycle. This means that
a breathing crack causes a distortion or singularity of the harmonic time functions, describing vibration
characteristics such as displacement, strain, or acceleration. It is shown in [Matveev and Bovsunovsky
2002] that, for the different half cycles of vibration while the crack is closed or open, the normalized
distribution function of strain along the beam length can be expressed as

ε̄(x, t)= M̄s(x) sinωs t, (8)

ε̄o(x, t)= fε(x, γ )Pcs M̄s j sinωos t, (9)

where s signifies the initial mode shape, fε(x, γ ) is distortion function due to the crack’s effect on strain
distribution, and M̄s(x) and M̄i j (x) are normalized distribution functions of bending moment along the
length of intact and cracked beams, respectively.

3. The wavelet transforms

Wavelet transform analysis uses a little wavelike function known as a wavelet. A more accurate de-
scription is that a wavelet is a function which has local wavelike properties. In mathematical terms, the
wavelet transform is a convolution of the wavelet function with the signal. A wavelet transform is defined
as [Daubechies 1992]

W f (a, b)=
1

√
a

∫
+∞

−∞

f (t)ψ∗

( t − b
a

)
dt, (10)

where f (t) is the input signal, a is a real number called scale or dilation, and b is a real number called
position. W f (a, b) are wavelet coefficients of the function f , ψ

( t−b
a

)
is the wavelet function, and ∗

denotes complex conjugation.
Let ψa,b(t)=

1
√

aψ
∗
( t−b

a

)
. Equation (10) can be rewritten as

W f (a, b)=

∫
+∞

−∞

f (t)ψa,b dt, (11)
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which describes the continuous wavelet transform (CWT). The CWT has an inverse transform:

f (t)= C−1
ϕ

∫
+∞

−∞

∫
+∞

−∞

W f (a, b)ψa,b db
da
a2 , (12)

Cϕ = 2π
∫

∞

−∞

|ψ̂(ξ)|2

|ξ |
dξ <∞. (13)

Modulus maxima. An important factor for detection of singularity are the local maxima of wavelet
coefficients W fa,b, which are the local maxima of the derivative of f (t) smoothed by φ(t). Mallat
and Hwang [1992] presented a method using local maxima to detect singularity, and gave definitions as
follows:

(i) Modulus maxima are points (a0, t0) such that |C(a0, t)|< |C(a0, t0)|, when t belongs to either the
right or the left neighborhood of t0, and |C(a0, t)| ≤ |C(a0, t0)| when t belongs to the other side of
the neighborhood of t0.

(ii) The maxima line is any connected curve in the scale space (a, b) along which all points are modulus
maxima.

There is a connection of the regularity of a function at a point t = t0 with the decay of the local maxima of
the wavelet modulus across scales. To detect singularities, the asymptotic decay of the wavelet modulus
maxima must be examined as the scale tends to zero. If the coefficients decay at the same rate as the
scale decreases to zero, then t0 is a singular point of f (t). According to Mallat,

log2(|W f (a, b)|)≤ log2 A + h log2(a), (14)

where A is a constant and h is the Lipschitz regularity of function or Lipschitz exponent [Mallat and
Hwang 1992]. The Lipschitz exponent gives more precise information about the differentiability of a
function. For example, a function is not differentiable at t = u if 0 < h < 1. Therefore, the Lipschitz
exponent h characterizes the nature of the singularity of the function f (t) at t = u. A and h can be easily
calculated from the intercept and gradient of the straight line (14) that is the asymptotic line of the curve
log2(|W f (a, b)|) versus log2(a). It is important to note that the Lipschitz exponent h describes the type
of a singularity, as will be shown in more detail in the next sections.

4. Phase shift distribution

4.1. Definition. The definition of phase shift distribution is as follows:

(i) During vibration, the difference phase between two strain time history signals at two points on a
structure is called the phase shift.

(ii) For a set of points along the structure, a set of phase shifts between these points and one reference
point is called the phase shift distribution.

Methods for calculating phase shift distribution differ depending on types of excitation. Here, we consider
two types: harmonic and random excitation.
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4.2. Phase shift under harmonic excitation. It is known that under harmonic excitation at one fre-
quency, the response of a structure will be a harmonic function of the same frequency, generally with
a phase shift. The calculation of phase shift between output and harmonic input signal is presented as
follows [Elsden and Ley 1969]. Assuming that the input signal is f (t)= A sinωt and the output signal
is σ(t)= R sin(ωt +φ), the integrator outputs are

1
N T

∫ N

0
R sin(ωt +φ) sinωt · dt =

1
2

R cosφ =
a
2
, (15)

1
N T

∫ N

0
R sin(ωt +φ) cosωt · dt =

1
2

R sinφ =
b
2
, (16)

where R =

√
(a2 + b2), and N T is the integration time of N cycles of the wave form of period T .

Dividing (16) by (15) we have

φ = tan−1
(b

a

)
. (17)

For M signals {σi (t)}, and i = 1 ÷ M corresponding to measurement points from 1 to M , we have M
phase shifts with the reference as the input signal. If one signal, for example σ1(t), in {σi (t)}, is selected
to be the reference signal, the phase shift distribution is defined as

8= {0, φ2 −φ1, φ3 −φ1, . . . , φM −φ1}. (18)

4.3. Phase shift under random excitation. For random excitation, the phase shift distribution can be
obtained from the concept of frequency response function [Wirsching et al. 1995]. A frequency re-
sponse function is a mathematical representation of the relation between the input and output of a linear
time-invariant system. If x(t) and y(t) are the input and output signals, the transfer function for every
frequency ω is written in the form

|H( jω)| =
Y ( jω)
X ( jω)

, (19)

where Y ( jω) and X ( jω) are Fourier transforms of x(t) and y(t).
The phase shift for any frequency ω can be calculated as

φ(ω)= angular [H( jω)]

= angular [Y ( jω)] − angular [X ( jω)].
(20)

If y∗(t) is another output signal, the phase shift between y∗(t) and x(t) is

φ∗(ω)= angular [H∗( jω)]

= angular [Y ∗( jω)] − angular [X ( jω)],
(21)

where Y ∗ is Fourier transform of y∗(t), and H∗ is frequency response function between x(t) and y∗(t).
From (20) and (21), the phase shift between two output signals y(t) and y∗(t) is calculated as

φ∗(ω)−φ(ω)= angular [H∗(ω)] − angular [H(ω)]

= angular [Y ∗( jω)] − angular [Y ( jω)].
(22)
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Case Crack depth (%)

1 0
2 10
3 20
4 30
5 40
6 50
7 60

Table 1. Seven cases with cracks of varying depths at crack position x = 30 mm.

Similar to harmonic excitation situation, if we have M signals {σi (t)} corresponding to measurement
points from 1 to M , the phase shift distribution with reference to σ1(t) is defined as

8=
{
0, φ2 −φ1, φ3 −φ1, . . . , φN −φ1

}
. (23)

5. Numerical studies

5.1. Strain analysis. To analyze the dynamic response of a cracked beam, the ALGOR - finite element
software was used. The crack is described as shown in Figure 1. In this model the crack includes two
close edges. In ALGOR, a surface to surface contact tool is used in a mechanical event simulation (MES)
to model the breathing crack. It is expected that when the load is a sinusoidal function, the strain function
should not be completely sinusoidal, but should be distorted when the crack closes.

From the definition of a wavelet transform, Equation (10), it is obvious that wavelet coefficients are
proportional to vibration amplitude. On the other hand, vibration amplitude of the beam is proportional
to load amplitude. This leads to the fact that the distortion of strain is proportional to force level. For
this reason, a normalization of strain time history is needed before data processing, to detect the level of
the crack.

Seven levels of the crack from zero to 60% were examined. These seven cases are numbered as in
Table 1. The two types of applied forces are harmonic and random functions.

5.2. Detection of crack existence and crack depth using wavelet transforms.

5.2.1. Detection of crack existence. The wavelet transforms were applied for analyzing strain-time sig-
nals at the point adjacent to the crack under dynamic load for seven levels of crack depth. The wavelet
function used was db2, which is the Doubachives wavelet family with two vanishing moments. In this
analysis, the discrete wavelet transform was applied. The original signal is strain time history.

Figures 2–5 describe strain-time history and its wavelet transform for specific levels of the crack. In
each figure, the upper graph shows strain time history and the lower graph shows its wavelet transform.
Obviously, the nonlinear phenomena of strain signals cannot be detected visually in all strain-time history
graphs. To reveal the nonlinear phenomena caused by the appearance of the crack, wavelet transform is
applied. As can be seen in the lower graphs, when there is no crack, or the crack depth is smaller than
30%, no discontinuity in the wavelet transform is shown. However, when the crack depth is equal or
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Figure 2. Intact specimen.
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Figure 3. Specimen with 20% crack depth.
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Figure 4. Specimen with 40% crack depth.
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Figure 5. Specimen with 60% crack depth.



FATIGUE CRACK AND DETECTION AND MONITORING 409

y = 1.6618x - 9.5469

y = 1.5931x - 8.3768

y = 1.5718x - 7.7719

y = 1.5603x - 7.4107

-1.00E+01

-9.00E+00

-8.00E+00

-7.00E+00

-6.00E+00

-5.00E+00

-4.00E+00

-3.00E+00

-2.00E+00

0 0.5 1 1.5 2 2.5 3 3.5

log2(a)

ol
g

2
(W

)f

Figure 6. Maxima lines versus scale for five levels of crack: the lowest line is for the
crack of 30% and the highest line is for the crack of 60%.

greater than 30%, the wavelet transform clearly shows discontinuities at moments when breathing of the
crack occurs. These discontinuities of the wavelet transform indicate that the test specimen contains a
crack.

5.2.2. Detection of crack depth. To determine crack depth, the modulus maxima lines of the wavelet
transform have to be investigated. For this purpose, Equation (14) is used to describe the relationship
between crack depth and the coefficients of the wavelet transform.

As can be seen in Figure 6 the wavelet maxima lines versus scale are shown for crack depths varying
from 30 % to 60% of the wavelet transform. These four lines are parallel lines of the same slope, or in
other words, of the same Lipschitz exponent. The Lipschitz exponent for all cases has a constant value of
1.6, which indicates that singularities of the same type are caused by the same physical process — in this
case, the existence of a crack. From Figure 6, when the Lipschitz exponent h is fixed, only the intercept
A changes when the crack depth changes. Thus, each parallel line can be distinguished by its intercept
A. This intercept increases when crack depth increases. The intercept A therefore can be considered as
an intensity factor which relates the extent of the fatigue crack to the wavelet coefficients.

Establishing a graph of intercept A versus crack depth from Figure 6, a relationship between intercept
A (or intensity factor) and crack depth is obtained as shown in Figure 7. The values of A plotted are the
linear values derived from the log-log plot in Figure 6. It can be seen that this relationship is the straight
line in semilog plot. Because of this, Figure 7 can be used to predict the crack depth if the intensity
factor is known.

5.3. Detection of crack position. A method of detection of crack position using phase shift distribution
of strain signals along the structure is proposed. The idea is that the strain wave traveling along the beam
might be influenced by a sudden change in its transmission direction, such as a crack. Therefore, a phase
shift of the strain signal at points along the beam could be influenced as well and could be used to detect
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Figure 7. Intensity factor versus crack depth.

the position of the crack. Due to the existence of damage, the phase shift distribution of a damaged
structure is expected to differ from that of an intact structure, at the position of the damage.

To investigate the phase shift distribution, six strain time history signals are obtained at six points,
from finite element (FE) analysis as shown in Figure 8. The relative positions of the six points labeled
from 1 to 6 are 0, 5.5, 10.6, 16.4, 22.7, and 28.7 mm, respectively. The crack position is between points
3 and 4, at a position of 13.5 mm.

5.3.1. Detection of crack position using phase shift under harmonic excitation. Figures 9–12 present
phase shift distributions calculated from FE analysis results for the beam with increasing crack depth
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Figure 8. Positions of the six points along the beam.



FATIGUE CRACK AND DETECTION AND MONITORING 411

-0.03

-0.02

-0.01

0

0.01

0.02

0.03

0.04

0.05

0.06

0 5 10 15 20 25 30

Measurement position (mm)

s
a

h
P

i
h

s 
e

ft
( 
d

r
g

e
)

e
e

Figure 9. Phase shift distribution of the intact beam.

in the case of harmonic excitation. As can be seen in Figure 9, when the beam has no crack, the phase
shift distribution is smooth. In Figure 10 when the crack depth increases to 20%, there is a distortion in
the phase shift distribution at a position between point 3 and point 4. It is interesting that the shape of
the distortion remains the same, and only the amplitude increases when the crack depth increases (see
Figures 11 and 12).

From this result, it is obvious that the crack position can be detected as the position of the distortion
in the phase shift distribution.

5.3.2. Detection of crack position using phase shift under random excitation. Figures 13–16 show phase
shift distribution of the beam under random excitation for specific cases when crack depth increases from
zero to 60%. The phase shift distribution is calculated at the resonant frequency.

Clearly, the shape and position of the distortion in phase shift distribution changes when the excitation
and crack depth vary. This means that under random excitation, there is no rule to relate the position of
the crack to the distortion of phase shift distribution. In other words, phase shift distribution cannot be
used to detect the crack position under random excitation.
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Figure 10. Phase shift distribution of the beam with crack of 20% depth.
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Figure 11. Phase shift distribution of the beam with crack of 40% depth.
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Figure 12. Phase shift distribution of the beam with crack of 60% depth.
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Figure 13. Phase shift distribution of the intact beam.
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Figure 14. Phase shift distribution of the beam with crack of 20% depth.
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Figure 15. Phase shift distribution of the beam with crack of 40% depth.
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Figure 16. Phase shift distribution of the beam with crack of 60% depth.
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Figure 17. Crack shape of the specimen.

6. Experimental results

To validate the method for crack detection using the breathing crack model and wavelet analysis, fatigue
tests on a cantilever beam have been carried out. A specimen made from mild steel BS970 was used,
with a size similar to the beam in the FE model (see Figure 1). The excitation force was generated using
an electro-hydraulic actuator and was controlled by LabView using a National Instruments device and
Kelsey Instruments controller. Exciting frequency was 10 Hz. The crack shape obtained from experiment
is quite similar to the numerical case: the crack line is fairly straight and edges of the crack are reasonably
flat (see Figure 17).

6.1. Detection of crack existence. Figures 18–21 describe strain time history and its wavelet transform
for six cases taken at different stages during the fatigue test on the specimen. In these figures, wavelet
transform at level 2 and wavelet function db2 are applied.

Visually, the distortions in strain time histories caused by the crack are not apparent (see upper graphs
in Figures 18–21). However, these distortions are highlighted from the wavelet transform (lower graphs
in Figures 19–21). Figure 18 shows the measured strain and its wavelet transform for the specimen at
the beginning of the test when no crack has yet developed. Obviously, there is no peak in the wavelet
transform for this case. It means that when there is no crack, the wavelet transform does not give any
information about the crack. As can be seen in Figures 18–21, when the crack is from 19% to 58%, the
wavelet transforms show clear peaks. This indicates the presence of distortion in the strain time history
and, hence a crack in the specimen. However, the peaks in wavelet transform of the measured signals are
not as clean as in the FEM results. This can be explained by the background noise in the measured signals
during testing, resulting from sources such as the electro-hydraulic pump and the exciter mechanism.

6.2. Detection of crack depth. Figure 22 shows a comparison of the relationship between crack depth
and the intercept A in two cases: experimental and FE analysis. As can be seen in this figure, the
relationship in semilog plot between crack depth and value of intercept A obtained from experimental
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Figure 18. Strain and its wavelet transform; crack is 0%.
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Figure 19. Strain and its wavelet transform; crack is 19%.
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Figure 20. Strain and its wavelet transform; crack is 41%.
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Figure 21. Strain and its wavelet transform; crack is 58%.
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Experimental result:

y = 0.0654x - 11.062
FE analysis result:

y = 0.0701x - 11.433
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Figure 22. Relationship between crack depth and intercept. The red line is the experi-
mental result, and the blue line is the FE analysis result.

results is linear. The intercept A increases when the crack depth increases. Note that there are still
differences between numerical and experimental results. The Lipschitz exponent from the experiment is
1.0 and differs from FE analysis, where the value of the Lipschitz exponent is 1.6. This can be explained
by the fact that the two edges of the crack do not come into contact purely, but rather the contact of these
two edges may contain sticking, frictionless sliding, and friction sliding phenomena. On the other hand,
the surfaces of two edges of a crack are not as smooth as when modeled in FE analysis. Background
noise, as mentioned in Section 6.1, may also be a contributory factor to the difference between numerical
and experimental results.

6.3. Detection of crack position. To measure phase shift distribution, four strain gauges are used. The
relative positions of these points from 1–4 are 0, 17 , 25, and 46 mm, respectively. Three tests have been
carried out and gave the same results. The actual crack position is found at 20 mm which means the
crack is between point 2 and point 3. Figures 23–26 show the phase shift distribution for specific cases
taken at different stages during the fatigue test on the specimen.

Figure 23 shows the phase shift distribution for the specimen at the beginning of the test when no
crack has yet developed. As can be seen in this figure, the phase shift distribution when there is no crack
is above the horizontal axis and quite smooth as expected. From Figures 24–26, when the crack for these
cases is from 19% to 58%, the shapes of phase shift distributions remain the same while the distortion
is found clearly at a position between point 2 and point 3. Thus, it can be said that the crack position is
well detected by the phase shift distribution.

7. Conclusions

A method for crack detection in a beam based on the breathing crack phenomenon and wavelet transform
has been presented. The appearance of the crack is detected by the singularities in strain time history
caused by the breathing phenomenon of the crack. Such singularities are usually difficult to discriminate
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visually. However, applying the wavelet transform has given clear pictures of these singularities. The re-
lationship between crack depth and intensity factor was also determined. The linear relationship between
crack depth and intensity factor in a semilog plot has been obtained in both numerical and experimental
data.

A fatigue test with a simple specimen has been carried out in the laboratory. The experimental results
are in agreement with the results of FE analysis in terms of detecting the appearance of the crack. When
there is no crack or the crack depth is small, there is no discontinuity in the wavelet transform. Although
the experimental signals were noisy, the appearance of the crack was detected quite clearly by peaks
in the wavelet transform. The estimation of crack depth based on experimental data has been carried
out. The relationship between crack depth and the intensity factor A is established. It is shown that the
intensity factor (intercept A) increases when the crack depth increases. However, there is a significant
difference in experimental results when compared with numerical analysis in terms of detecting crack
depth, due to the influences of real conditions during the test.

A new approach based on phase shift distribution for the detection of crack position is also proposed.
The position of the crack is accurately detected when the specimen is excited under harmonic load. The
crack position is determined by the position of the distortion in phase shift distribution. The phase
distribution has to be determined under harmonic excitation, as it has been shown that this technique
does not work under random excitation.

To conclude, the method of combining the breathing crack phenomenon and wavelet transform is ad-
equate to apply for monitoring the appearance of a crack in the test specimen. The nonlinearity resulting
from the breathing crack phenomenon is clearly shown by wavelet transform of the strain time history.
The advantages of this technique are that it is capable of being implemented in a practical manner, and
the strain time history signal can be easily measured in practice. Also, the amount of measured data
required for crack detection is easily manageable for the implementation of on-line crack detection and
monitoring.

This paper has established the proposed technique for structural health monitoring using a simple
structure. Further studies on real components under real test conditions are now in progress.
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Figure 23. Phase shift distribution of the intact beam.
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Figure 24. Phase shift distribution of the beam with crack of 19% depth.
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Figure 25. Phase shift distribution of the beam with crack of 41% depth.
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Figure 26. Phase shift distribution of the beam with crack of 58% depth.
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MIXED PIEZOELECTRIC PLATE ELEMENTS WITH CONTINUOUS
TRANSVERSE ELECTRIC DISPLACEMENTS

ERASMO CARRERA AND CHRISTIAN FAGIANO

This paper proposes mixed finite elements, FEs, with an a priori continuous transverse electric displace-
ment component Dz . The Reissner Mixed Variational Theorem (RMVT) and the Unified Formulation
(UF) are applied to the analysis of multilayered anisotropic plates with embedded piezoelectric layers.
Two forms of RMVT are compared. In a first, partial, form (P-RMVT), the field variables are displace-
ments u, electric potential Φ and transverse stresses σ n . The second, full, form (F-RMVT) adds Dz as an
independent variable. F-RMVT allows the a priori and complete fulfillment of interlaminar continuity
of both mechanical and electrical variables.

We treat both equivalent single-layer models (ESLM), where the number of variables is kept indepen-
dent of the number of layers, an layerwise models (LWM), in which the number of variables depends in
each layer. According to the UF the order N of the expansions assumed for the u, φ, σ n and Dz fields
in the plate thickness direction z as well as the number of the element nodes Nn have been taken as free
parameters.

In most cases the results of the classical formulation which are based on Principle of Virtual Displace-
ments (PVD) are given for comparison purposes. The superiority of the F-RMVT results, with respect
to the P-RMVT and to PVD ones, is shown by few examples for which three-dimensional solution
is available. In particular, the F-RMVT results to be very effective for the evaluation of interlaminar
continuous Dz fields.

1. Introduction

In recent years piezoelectric materials have been integrated with structural systems to build smart struc-
tures which are the candidates for next generation structures of aerospace vehicles as well as for some
advanced products in the automotive and ship industries. Piezoelectric materials are, in fact, capable
of altering the response of the structures through sensing and actuation [Tiersten 1969]. By integrating
the surface bonded and embedded actuators in structural systems, the desired localized strains may be
induced in the structures thanks to the application of an appropriate voltage to the actuators. Such an
electromechanical coupling allows closed-loop control systems to be built up, in which piezomaterials
play the role of both the actuators and the sensors. An intelligent structure can therefore be built in which,
for instance, thermomechanical deformations or vibrations can be reduced by using appropriate control
laws. For details see [Chopra 1996; 2002] and the related literature.

In order to successfully incorporate actuator/sensors in a structures, the mechanical interaction be-
tween the piezoelectric layers and the hosting structure must be completely understood, that is, an

Keywords: piezoelectric plates, finite elements, mixed method, transverse continuity, unified formulation.
This work has been carried out in the framework of STREP EU project CASSEM under contract NMP-CT-2005-013517.
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appropriate use of piezoelectric materials, requires an accurate description of both the electrical and
mechanical fields in the constitutive layers. Early mechanical models were developed by Crawley and
de Luis [1987], Lee [1990] and Mitchell and Reddy [1995], among others. More recent works are [Yang
and Batra 1995; Wang et al. 1997; Vidoli and Batra 2000; Batra and Vidoli 2002]. A recent assessment
of classical and refined theories with displacements and electrical variables for plates can be found in
[Ballhause et al. 2005]. Equivalent single-layer (ESL) and layerwise (LW) theories have been compared
in the framework of the application of the Principle of Virtual Displacement (PVD) applications (it is
intended that the number of independent variables is kept independent by the number of the layers in the
ESL models). Numerous benchmark, exact solution analyses have been conduced for piezoelectric plates;
some are given in [Heyliger and Saravanos 1995]. However, these benchmark solutions are restricted
to simple geometries and special boundary conditions. The treatment of more realistic problems would
require the use of efficient computational tools such as the finite element method (FEM).

The present paper focuses on FEM electromechanical two-dimensional modelings of smart structures
with embedded piezo layers. Finite element studies were conducted by Robbins and Reddy [1991]. A
finite element that accounts for a first order shear deformation theory (FSDT) description of displacement
and layerwise form of the electric potential was developed in [Sheikh et al. 2001]. The numerical,
membrane and bending behavior of the FEs based on FSDT was analyzed in [Auricchio et al. 2001] in
the framework of a suitable variational formulation. The third-order theory was applied by Thornbuegh
and Chattopadhyay [2002] to derived finite elements that account for electromechanical coupling. Similar
elements have more recently been considered in [Shu 2005]. Extension of the third-order Ambartsumian
zigzag multilayered theory [Carrera 2003a] to the finite analysis of electromechanical problems has been
proposed by Oh and Cho [2004]. An extension of numerically efficient plate/shell elements based on
mixed interpolation of tensorial components (MITC) to piezoelectric plates has recently been provided
by Kögl and Bucalem [2005a; 2005b]. We also mention the review papers [Saravanos and Heyliger 1999;
Benjeddou 2000; Wang and Yang 2000].

Our contributions to the application of the Reissner Mixed Variational Theorem (RMVT) to multilay-
ered made structures started with [Carrera 1995; 1996; 2001], and have included closed-form solution
analyses [Carrera 1999a; 1999b] and FE applications [Carrera and DeMasi 2002a; 2002b], showing the
RMVT is a very suitable tool to provide quasi-3D description of stress and strain fields in anisotropic
laminated structures. The RMVT was also employed in the framework of Unified Formulation (UF),
dealt with in detail in [Carrera 2001]. The main feature of UF is that it allows one to formulate both
ESLM and LW models in terms of a few fundamental nuclei whose forms do not depend on either the
order of the expansion N used for the various variables (in the thickness direction) or on by the number of
nodes of the element Nn . The Murakami zigzag Function (MZZF) [Carrera 2001] was used to reproduce
the zigzag form of displacement field in the ESLM case. A classical formulation, based on PVD, was
developed for comparison purposes.

A first application of RMVT to piezoelectric plates was provided in [Carrera 1997], where an MITC-
type plate element was extended to nonlinear dynamic analysis of piezoelectric, composite plate. The
UF formulation was applied, in the PVD framework, to piezoelectric plates in [Ballhause et al. 2005];
attention was restricted to analytical closed form solutions. RMVT closed form solutions were presented
in [D’Ottavio and Kröplin 2006], while extension to shell has been provided in [Carrera et al. 2005].
Finite element applications have also been provided recently [Carrera and Boscolo 2006].
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All these RMVT works have been restricted to the a priori fulfillment of the interlaminar continuity of
the mechanical variables (transverse normal and shear stress fields), that is, the continuity of transverse
normal component Dz of the electric displacement vector was not a priori guaranteed. This form of
RMVT is herein referred to as the partial form, or P-RMVT. RMVT has also been applied in [Garcia Lage
et al. 2004a] to develop LW piezoelectric plate elements in the static case. The transverse component
of electric displacement Dz was considered as an assumed variable. We refer to such an extension as
full RMVT applications, namely F-RMVT. Garcia Lage and his coauthors restricted their attention to the
quadratic distribution of displacements (mechanical and electrical) and transverse stress unknowns, and
treated only a layerwise model. These restrictions have not allowed us to analyze the features of the a
priori assumption of interlaminar continuous transverse electric displacement.

Here we compares P-RMVT and F-RMVT in the framework of UF, extending the analysis of [Carrera
and Boscolo 2006] to include the normal electrical displacement Dz as an assumed a priori variable.
A number of new finite elements are derived and systematically compared to those based on P-RMVT
and PVD. ESLM and LW variable description analyses are compared to available 3D solutions. Up to
forth-order expansions in the thickness plate/layers have been implemented.

The paper is organized as follows. Section 2 gives the necessary preliminaries. Section 3 introduces
the two RMVT forms for piezoelectric continua along with variationally consistent constitutive equations.
The UF for finite element applications are derived in Section 3, and the FE matrices themselves in Section
5. Section 6 contains numerical results and discussion.

2. Preliminaries

Figure 1 shows the geometry and the coordinate system of a laminated plate with Nl layers, including
piezoelectric layers. The reference system is denoted by x, y, z; the correspondent plate dimensions are
denoted by a, b, h, the last of which is the thickness.

The material properties of a piezoelectric continuum can be expressed in different forms; we use the
so-called e-form [Ikeda 1996]. The relevant energy is then the electric Gibbs energy G2, which takes the
form

G2 =
1
2εT CEε − ET eε −

1
2 ET εεE, (1)

x
y

z

h

a

p x y p
z z
( , )= sin sin( ) ( )^
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a a

Figure 1. Geometry of Piezoelectric Plate
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where εT
= {εxx , εyy, εzz, εxz, εyz, εxy} is the strain tensor (we use bold letters for arrays and T to denote

transposition), ET
= {Ex ,Ey,Ez} is the electric field vector, CE is the stiffness matrix calculated at con-

stant E, e is the piezoelectric matrix that couples electrical and mechanical fields, and εε = {εxx , εyy, εzz}

is the permittivity matrix calculated at ε-constant.
The constitutive equations will be written out in Section 3 in a form suitable for the F-RMVT applica-

tion.

Geometrical relations. The strain-displacement geometrical (subscript G) relations in the linear case are

εk
pG = D p uk, εk

nG = (Dnp + Dnz)uk . (2)

The superscript k is the layer index. Strains have been split into in-plane (subscript p) and out-of-plane
(subscript n, for “normal”) components:

εk
p = {εxx , εyy, εxy}, εk

n = {εxz, εyz, εzz},

while uk
= {ux , u y, uz} is the vector of the displacement components. The differential matrices are given

explicitly by

D p =

 ∂x 0 0
0 ∂y 0
∂y ∂x 0

 , Dnp =

 0 0 ∂x

0 0 ∂y

0 0 0

 , Dnz =

 ∂z 0 0
0 ∂z 0
0 0 ∂z

 . (3)

The electric field E is related to the electric potential by the gradient relation

EkT
=
[
−∂x −∂y −∂z

]
Φk . (4)

The electric potential Φ being a scalar, one obtains by separating in-plane and normal components the
equality

Ek
=

(
Dep + Dez

)
Φk, (5)

where
DT

ep =
[
−∂x −∂y 0

]
, DT

ez =
[

0 0 −∂z
]
. (6)

3. Variational statements for piezoelectric continua

The classical variational tool most often used to develop FEs, is the principle of virtual displacements
(PVD), which, for a piezoelectric continuum, can be written

Nl∑
k=1

∫
�k

∫
Ak

(
δεkT

pGσ k
pC + δεkT

nGσ k
nC − δEkT

G Dk
C
)

d�k dz = δLe. (7)

Here δ denotes virtual variations, Ak is the layer domain in the thickness direction, �k denotes the
reference surface of the layer, and δLe denotes the virtual variation of the work made by applied loadings.
The in-plane and out-of-plane stress components are

σ T
p = {σxx , σyy, σxy}, σ T

n = {σxz, σyz, σzz}.
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The electrical work is obtained via the electrical displacement vector:

D = {Dx ,Dy,Dz}.

A subscript C will denote stress and electrical displacements from the constitutive law, and a subscript
G strains and electrical fields from the geometrical relation. The PVD allows one to assume two in-
dependent fields for u and Φ. The remaining variables are obtained from the constitutive law of the
piezoelectric layers.

The RMVT was proposed in [Reissner 1984] for purely mechanical problems. A critical review on
its use was given in [Carrera 2001]. A main feature of the RMVT is that it allows one to assume two
independent fields for displacements u and transverse stresses σ n . This allows the a priori fulfillment of
the necessary continuity (equilibrium) conditions of transverse normal and shear stresses at each layer
interfaces. In the static case, for pure mechanical problems RMVT states that

Nl∑
k=1

∫
�k

∫
Ak

(
δεkT

pGσ k
pC + δεkT

nGσ k
nM − δσ kT

nM (ε
k
nG − εk

nC)
)

d�k dz = δLe. (8)

The second term in the integrand forces the compatibility of transverse strain obtained by the material’s
constitutive law (which are different from those related to PVD applications) and by the geometric rela-
tion. The subscript M denotes those variables which are assumed in a given model.

By introducing the electrical work, we can write the RMVT for piezoelectric continua as

Nl∑
k=1

∫
�k

∫
Ak

(
δεkT

pGσ k
pC + δεkT

nGσ k
nM − δEkT

G Dk
C − δσ kT

nM (ε
k
nG − εk

nC)
)

d�k dz = δLe. (9)

This form of the RMVT will be called the partial extension of RMVT to piezoelectric continua, or
P-RMVT.

A full extension of the RMVT can be obtained by introducing the transverse components of electric
displacement Dz as additional variables. The RMVT then assumes the following full form, or F-RMVT:

Nl∑
k=1

∫
Ak

∫
hk

(
δεkT

pGσ k
pC + δεkT

nGσ k
nM − δEkT

pGDk
pC − δEkT

nGDk
nM + δσ kT

nM (ε
k
nG − εk

nC)

− DT
nM(E

k
nG − Ek

nC)
)

d Ak dz = δLe. (10)

The electrical displacement and electrical field vectors have been split into in-plane and normal compo-
nents (as for the stresses σ and strains ε):

Dp = {Dx ,Dy}, Dn = {Dz}, Ep = {E x ,Ey}, En = {Ez}.

The constitutive equations of the k-layer are conveniently written as

σ k
pC = Ck

ppε
k
pG + Ck

pnε
k
nC − ek

pp
T

Ek
pG − ek

np
T

Ek
nC ,

σ k
nM = Ck

pn
T
εk

pG + Ck
nnε

k
nC − ek

pn
T

Ek
pG − ek

nn
T

Ek
nC ,

Dk
pC = ek

ppε
k
pG + ek

pnε
k
nC + εk

ppEk
pG + εk

pnEk
nC ,

Dk
nC = ek

npε
k
pG + ek

nnε
k
nC + εk

pn
T
Ek

pG + εk
nnEk

nC ,
(11)

where we have introduced the following arrays:
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• Stiffness matrices:

Ck
pp =

 C11 C12 C16

C12 C22 C26

C16 C26 C66

k

, Ck
pn =

 0 0 C13

0 0 C23

0 0 C36

k

, Ck
nn =

 C55 C45 0
C45 C44 0
0 0 C33

k

. (12)

• Piezoelectric matrices:

ek
pp =

[
0 0 0
0 0 0

]k

, ek
pn =

[
e15 e14 0
e25 e24 0

]k

, ek
np =

[
e31 e32 e33

]k
, ek

nn =
[

0 0 e33
]k
. (13)

• Permittivity matrices:

εk
pp =

[
ε11 ε12

ε12 ε22

]k

, εk
pn =

[
0
0

]k

, εk
nn =

[
ε33

]k
. (14)

Application of the F-RMVT requires one to express the in-plane stresses σ pC , the normal strains εnC , the
normal electric field EnC and the in-plane electric displacements DpC in terms of the remaining variables.
Thus the constitutive equations (11) can be solved as follows:

σ pC = Ĉspmε pG + Ĉsnmσ nM + ĈspeEpG + ĈsneDnM ,

εnC = Ĉdpmε pG + Ĉdnmσ nM + ĈdpeEpG + ĈdneDnM ,

DpC = Ĉ f pmε pG + Ĉ f nmσ nM + Ĉ f peEpG + Ĉ f neDnM ,

EnC = Ĉepmε pG + Ĉenmσ nM + ĈepeEpG + ĈeneDnM .

(15)

The matrices above are obtained from by those in (11) by means of the relations

C̄k
dpm = −Ck

nn
−1CkT

pn −
(
Ck

nn
−1ekT

nn
)(

ek
nn Ck

nn
−1ekT

nn + εk
nn
)−1(ek

np − ek
nn Ck

nn
−1CkT

pn
)
,

C̄k
dnm = Ck

nn
−1

−
(
Ck

nn
−1ekT

nn
)(

ek
nn Ck

nn
−1ekT

nn + εk
nn
)−1(ek

nn Ck
nn

−1)
,

C̄k
dpe = Ck

nn
−1ekT

pn −
(
Ck

nn
−1ekT

nn
)(

ek
nn Ck

nn
−1ekT

nn + εk
nn
)−1(ek

nn Ck
nn

−1ekT
pn + εkT

pn
)
,

C̄k
dne =

(
Ck

nn
−1ekT

nn
)(

ek
nn Ck

nn
−1ekT

nn + εk
nn
)−1
,

C̄k
epm = −

(
ek

nn Ck
nn

−1ekT
nn + εk

nn
)−1(ek

np − ek
nn Ck

nn
−1CkT

pn
)
,

C̄k
enm = −

(
ek

nn Ck
nn

−1ekT
nn + εk

nn
)−1(ek

nn Ck
nn

−1)
,

C̄k
epe = −

(
ek

nn Ck
nn

−1ekT
nn + εk

nn
)−1(ek

nn Ck
nn

−1ekT
pn + εkT

pn
)
,

C̄k
ene =

(
ek

nn Ck
nn

−1ekT
nn + εk

nn
)−1
,

C̄k
spm = Ck

pp + Ck
pn C̄k

dpm − ekT
np C̄k

epm, C̄k
snm = Ck

pn C̄k
dnm − ekT

np C̄k
enm,

C̄k
spe = Ck

pn C̄k
dpe − ekT

pp − ekT
np C̄k

epe, C̄k
sne = Ck

pn C̄k
dne − ekT

np C̄k
ene,

C̄k
f pm = ek

pp + ek
pn C̄k

dpm + εk
npC̄k

epm, C̄k
f nm = ek

pn C̄k
dnm + εk

pn C̄k
enm,

C̄k
f pe = ek

pn C̄k
dpe + εk

pp + εk
pn C̄k

epe, C̄k
f ne = ek

pn C̄k
dne + εk

pn C̄k
ene.
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It must be noted that

Ĉ
k
dnm = Ĉ

kT
dnm, Ĉ

k
spm = Ĉ

kT
spm, Ĉ

k
f pe = Ĉ

kT
f pe, Ĉ

k
ene = Ĉ

kT
ene,

Ĉ
k
dpm = −Ĉ

kT
snm, Ĉ

k
dne = Ĉ

kT
enm, Ĉ

k
dpe = Ĉ

kT
f nm, Ĉ

k
epm = Ĉ

kT
sne.

4. Unified formulation for plate elements

The unified formulation is a technique that allows one to handle in a unified manner a large variety of
plate modelings and finite elements. In this formulation, the finite element matrices are written in terms
of a few fundamental nuclei, which do not formally depend on: the expansion N used in the z-direction,
the number of the node Nn of the element, or the variables description (LW or ESL).

The unknown variables u, σ n , Φ and Dz are expressed in terms of the layer thickness coordinate:(
uk(x,y,z),ϕk(x,y,z),σ k

n(x,y,z),D
k
n(x,y,z)

)
= Fb(z)

(
uk

b(x,y),ϕ
k
b(x,y),σ

k
nb(x,y),D

k
nb(x,y)

)
+ Fr (z)

(
uk

r (x,y),ϕ
k
r (x,y),σ

k
nr (x,y),D

k
nr (x,y)

)
+ Ft(z)

(
uk

t (x,y),ϕ
k
t (x,y),σ

k
nt(x,y),D

k
nt(x,y)

)
. (16)

The subscript t and b denote the linear part of the thickness expansion (t and b will be used to denote
top- and bottom-layer variable values in layerwise cases), while subscript r refers to higher-order terms:
r = 2, . . . , N−1. In compact form,(

uk(x,y,z),ϕk(x,y,z),σ k
n(x,y,z),D

k
n(x,y,z)

)
= Fτ (z)

(
uk(x,y),ϕk(x,y),σ k

n(x,y),D
k
n(x,y)

)
τ
. (17)

Here
(
uk(x, y), φk(x, y), σ k

n(x, y),Dk
n(x, y)

)
τ

are two-dimensional unknowns, the Fτ (z) are the base
functions of the expansion, and the summation convention over repeated index has been adopted. The
base functions could be, in general, different for each variable. Different choices for Fτ (z) will lead
to different plate/shell theories. The choices made in our study are briefly discussed below; detailed
descriptions can be found in the works cited.
. Layer-wise elements.

The thickness functions are given by combinations of Legendre polynomials Pj as

Ft =
P0(ζk)+ P1(ζk)

2
, Fb =

P0(ζk)− P1(ζk)

2
, Fr = Pr (ζk)− Pr−2(ζk), r = 2, 3, . . . , N , (18)

for ζ = zk/2hk , where zk is the local layer thickness coordinate and hk is the layer thickness, so −1 ≤

ζk ≤ 1. As mentioned, t and b denote top and bottom; that is, the chosen functions have the properties

ζk =

{
1 : Ft = 1, Fb = 0, Fr = 0,

−1 : Ft = 0, Fb = 1, Fr = 0,
(19)

Thanks to these properties the interlaminar continuity of the assumed variables can be easily linked in
the assembly procedure from layer-level matrices to multilayer-level matrices.

The resulting elements will be denoted by the acronyms LFM1 to LFM4, in which L means layerwise,
FM states that F-RMVT has been employed, and the digit is the order of the expansion. Particular cases
of P-RMVT and PVD will also be used in the numerical analysis; these applications will be denoted by
LPM1 to LPM4 and LD1 to LD4, respectively.
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Equivalent single-layer model. In this case the layerwise expansion is preserved for the transverse stresses,
electric potential and electric displacements, while a Taylor-type expansion is used for the displacement
components:

u(x, y, z)= uτ (x, y) zτ , τ = 0, N

The base functions related to displacements can be chosen as

Fb(z)= 1, Fr (z)= zr , r = 1, N − 1, Ft(z)= zN .

These theories will be denoted with the acronyms EFMC1 to EFMC3, in which E means equivalent
single-layer, FM means full mixed, and C that interlaminar continuity conditions are fulfilled for trans-
verse stresses, electric potential and transverse electric displacement. The digit, as before, denotes the
expansion order. Results related to P-RMVT application will be denoted by EPMC1 to EPMC3. When
the Murakami zigzag function is used (which allows the introduction of piecewise continuous displace-
ment fields in the thickness plate direction; see [Carrera 2001]), the resulting elements are referred to as
EFMZC1 to EFMZC3 and EPMZC1 to EPMZC3 for the full and partial cases.

Finite element approximations. Finite element approximations to the plate reference surface domain are
introduced by means of isoparametric descriptions for the various field variables:(

uk
τ , Φ

k
τ , σ

k
nτ ,Dk

nτ

)
(x, y) = Ni (x, y)

(
qk
τ i , gk

τ i , f k
τ i , dk

τ i

)
, i = 1, 2, . . . , Nn, (20)

where the Ni (x, y) are the shape functions, qk
τ i the nodal unknown displacements, gk

τ i the nodal unknown
electric potentials, f k

τ i the nodal unknowns normal stresses and dk
τ i the nodal unknown normal electrical

displacements. The cases of 9, 8 and 4 nodes are considered in the numerical implementation referred to
as Q9, Q8 and Q4 finite elements [Carrera and DeMasi 2002b].

5. Derivation of finite element matrices

This section is devoted to the fundamental nuclei of the F-RMVT finite element matrices. The RMVT
and PVD matrices can be found in [Carrera and DeMasi 2002a; Carrera and Boscolo 2006].

By starting from Equation (10), the fundamental nuclei are derived in several steps:

1. The constitutive relations (15) are introduced in the F-RMVT statement at (10).

2. The geometric relations are used to express strain in terms of displacements and electric field in
terms of electric potential.

3. The through-the-thickness assumptions by means of the Unified Formulation are introduced.

4. The FE shape functions are used to eliminate the in-plane plate coordinates by numerical integration.

5. Matrix products are made, yielding the explicit forms of the fundamental nuclei.
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We omit the details for brevity. The final form of the governing equations is

δqk
τ i

T
: K kτ si j

uu qk
s j + K kτ si j

uσ f k
s j + K kτ si j

ue gk
s j + K kτ si j

ud dk
s j = Pk

uτ ,

δ f kT
τ i : K kτ si j

σu qk
s j + K kτ si j

σσ f k
s j + K kτ si j

σe gk
s j + K kτ si j

σd dk
s j = 0,

δgk
τ i

T
: K kτ si j

eu qk
s j + K kτ si j

eσ f k
s j + K kτ si j

ee gk
s j + K kτ si j

ed dk
s j = Pk

eτ ,

δdk
τ i

T
: K kτ si j

du qk
s j + K kτ si j

dσ f k
s j + K kτ si j

de gk
s j + K kτ si j

dd dk
s j = 0.

(21)

The mechanical and electrical loading terms on the right-hand side are

Pk
uτ = K kτ si j

up ps j , Pk
eτ = −K kτ si j

e f 9s j . (22)

The explicit forms of the fundamental nuclei thus obtained are

K kτ si j
uu =

∫
�

(
DT

p Ni Ĉ
k
spm Euu

τ s D p N j
)

d�,

K kτ si j
uσ =

∫
�

(
DT

p Ni Ĉ
k
snm Euσ

τ s N j + Ni DT
np Euσ

τ s N j + Ni I T Euσ
τ,zs N j

)
d�,

K kτ si j
ue =

∫
�

(
DT

p Ni Ĉ
k
spe Eue

τ s Dep N j
)

d�,

K kτ si j
ud =

∫
�

(
DT

p Ni Ĉ
k
sne Eue

τ s N j
)

d�,

K kτ si j
σu =

∫
�

(
Ni Eσu

τ s Dnp N j + Ni Eσu
τ s,z I N j − Ni Ĉ

k
dpm Eσu

τ s D p N j
)

d�,

K kτ si j
σσ = −

∫
�

(
Ni Ĉ

k
dnm Eσστ s N j

)
d�,

K kτ si j
σe = −

∫
�

(
Ni Ĉ

k
dpe Eσe

τ s Dep N j
)

d�,

K kτ si j
σd = −

∫
�

(
Ni Ĉ

k
dne Eσe

τ s N j
)

d�,

K kτ si j
eu = −

∫
�

(
DT

ep Ni Ĉ
k
f pm Eeu

τ s D p N j
)

d�,

K kτ si j
eσ = −

∫
�

(
Ni DT

epĈ
k
f nm Eeσ

τ s N j
)

d�,

K kτ si j
ee = −

∫
�

(
Ni DT

epĈ
k
f pe Eee

τ s Dep N j
)

d�,

K kτ si j
ed = −

∫
�

(
Ni DT

epĈ
k
f ne Eee

τ s Dep N j + I∗Ni Eσe
τ,zs N j

)
d�,

K kτ si j
du =

∫
�

(
Ni Ĉ

k
epm Edu

τ s D p N j
)

d�,

K kτ si j
dσ =

∫
�

(
Ni Ĉ

k
enm Edσ

τ s N j
)

d�,
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K kτ si j
de =

∫
�

(
− Ni Edφ

τ s ,z I∗N j + Ni Ĉ
k
epe Edφ

τ s Dep N j
)

d�,

K kτ si j
dd =

∫
�

(
Ni Ĉ

k
ene Edd

τ s N j
)

d�,

K kτ si j
up =

∫
�

F1
τ (Ni N j mk

s ) F1
s d�,

K kτ si j
e f =

∫
�

F1
τ (Ni N j nk

s ) F1
s d�.

I is the unit matrix and I?T
= {0, 0,−1}. The following integrals have been defined:

Eαβτ s =

∫
Ak

Fατ Fβs dz, Eαβτ,zs =

∫
Ak

Fατ,z Fβs dz, Eαβτ s,z =

∫
Ak

Fατ Fβs,z dz,

where α and β can assume any of the values u, σ,Φ,D to denote thickness function used for the related
variables.

Table 1 summarizes the dimensions of the nuclei. By varying the subscripts τ, s, k, i, j over their
ranges one obtains the element matrices; see [Carrera 2003b].

K kτ si j
uu [3×3] K kτ si j

eu [1×3]

K kτ si j
uσ [3×3] K kτ si j

eσ [1×3]

K kτ si j
ue [3×1] K kτ si j

ee [1×1]

K kτ si j
ud [3×1] K kτ si j

ed [1×1]

K kτ si j
e f [1×1] K kτ si j

up [3×3]

K kτ si j
σu [3×3] K kτ si j

du [1×3]

K kτ si j
σσ [3×3] K kτ si j

dσ [1×3]

K kτ si j
σe [3×1] K kτ si j

de [1×1]

K kτ si j
σd [3×1] K kτ si j

dd [1×1]

Mkτ si j
uü [3×3]

Table 1. Dimensions of the fundamental nuclei.

6. Numerical results

This section shows the performance of the mixed FEs developed on the basis of interlaminar a priori
continuous transversal electric displacements Dz , comparing it with a mixed elements approach that does
not incorporate such continuity, as with one based of PVD applications. Further comparisons are given
with the results in [Garcia Lage et al. 2004b] and with three dimensional solutions in [Heyliger 1994]. To
compare the analysis with closed-form exact solutions, attention has been restricted to simply supported
square plates. We retain the reduced integration technique that was successfully applied in [Carrera and
DeMasi 2002b]. LW as well as ESL analyses have been performed for Q4, Q8 and Q9 elements.

We consider four-layer plates, with the two inner layers consisting of cross-ply [0◦/90◦
] carbon fiber

and the external skins made of piezoceramic material PZT-4. The material properties are shown in Table
2 on page 432. The two composite layers have thickness h2 = h3 = 0.4h and the skins have h1 = h4 = 0.1h.
The unit value is assigned to the plate thickness. A bisinusoidal distribution of transversal pressure with
amplitude p̂z = 1 is applied to the top surface (this coincides with a sensor configuration case).
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Figure 2 shows the in-plane displacement u y distribution in the thickness direction for the selected
plate elements (z is the horizontal axis). Better results are obtained for the LFM and EFMZC analyses
with respect to ones based on P-RMVT. The number of elements for the plate side Ne has been placed to
the right of the acronym. Layerwise analysis leads to much better results than ESL.
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Figure 2. Performance of various FEs in predicting the displacement u y(a/2, 0) versus
z. The a/h ratio equals 4. Curves labeled “3D” show the exact solution reported in
[Heyliger 1994]; the remaining curves show the results obtained from FE approaches
based on F-RMVT and P-RMVT (upper left), ESL theory (upper right); LW theory
(lower left), and ESL theory incorporating Murakami’s zigzag function (lower right).
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Property PZT-4 Gr/Ep PVDF Property PZT-4 Gr/Ep PVDF

E1 (GPa) 81.3 132.38 236.99 e15 (C/m2) 12.72 0 −0.01
E2 (GPa) 81.3 10.756 23.19 e24 (C/m2) 12.72 0 −0.01
E3 (GPa) 64.5 10.756 10.43 e31 (C/m2) −5.20 0 −0.13
ν12 0.329 0.24 0.1541 e32 (C/m2) −5.20 0 −0.14
ν13 0.432 0.24 0.1787 e33 (C/m2) 15.08 0 −0.28
ν23 0.432 0.49 0.1780 ε11/ε0 1475 3.5 12.50
G23 (GPa) 25.6 3.606 2.15 ε22/ε0 1475 3.0 11.98
G13 (GPa) 25.6 5.6537 4.4 ε33/ε0 1300 3.0 11.98
G12 (GPa) 30.6 5.6537 6.43 ρ 1 1 1

Table 2. Mechanical and electrical material properties.

The same conclusions can be drawn for the transversal normal stress evaluation in Figure 3. The use
of LW elements with at least a parabolic distribution (N = 2) in each layer is required. Remarkable
improvements are obtained when the Murakami zigzag function is used.

Data related to the transversal electrical displacement Dz , shown in Figure 4, are of particular interest.
Various numbers of nodes for elements and FE meshes are compared (top left). There are difficulties
when certain FEs are used to predict Dz in the piezoelectric layers (top right pane of figure); the results’
accuracy is very much dependent on the choice of a model, and the use of elements of type LM2 (at least)
appears to be necessary for correct predictions. This suggests that the use of F-RMVT may be mandatory
for the accurate computation of interlaminar continuous Dz at a reasonable computational cost, and that
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Figure 3. Performance of various FEs in predicting the transverse normal stress
σzz(a/2, b/2) versus z. The ratio a/h equals 4.
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Figure 4. Top: performance of various FEs in predicting the transverse electric displace-
ment Dz(a/2, b/2) versus z, with a/h = 4. (Left: LW elements with various number of
nodes per element; right: LW and ESL elements for the Q4 case.) Bottom left: Conver-
gence analysis for Q4 elements. Bottom right: Dependence of Dz(a/2, b/2, h)× 1013

on the ratio a/h, for a [12 × 12] mesh and Q4 element.

P-RMVT and ESL results may be unacceptable. (Since the electric charge Q over a piezoelectric patch
is obtained by integrating the Dz distribution over the patch’s surface, wrong Dz values lead to wrong Q
values, potentially rendering the closed-loop control completely meaningless.)

Note that the accuracy obtainable with LFM2 is comparable with what we get with LPM4, confirming
that the use of P-RMVT is advantageous as far as computational effort is concerned. For the sake of
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completeness, Figure 4 shows the convergence rate of the Q4 elements; they are consistent with those
found for of pure mechanical problems in our earlier work. Various plate thickness ratio values are
considered in the table at the bottom right of Figure 4, showing the importance of UF as a tool to establish
an assessment of simplified, classical and advanced FEs for piezoelectric plate analysis.

These results are confirmed in the evaluation of the electrical voltage distribution versus, shown in
Figure 5. The largest discrepancies among the theories are experienced in the evaluation of electrical
displacements.
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Figure 5. Top: performance of various FEs in predicting the transverse electric potential
Φ(a/2, b/2) versus z, with a/h = 4, a [6 × 6] mesh and a Q9 element.
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a/h 2 4 10 a/h 2 4 10

exact 3D / 30,03 / LFM1 4.751 30.13 587.4
LFM4 4.949 30.27 587.1 LPM1 4.761 30.16 587.8
LPM4 4.947 30.27 587.1 EFMZC3 4.731 31.11 623.4
LD4 4.909 30.03 582.2 EPMZC3 4.487 28.91 579.3
LFM3 4.953 30.27 587.1 EFMZC2 4.719 24.55 566.2
LPM3 4.952 30.27 587.1 EPMZC2 2.881 21.26 529.5
LD3 4.909 30.03 582.2 EFMC4 5.224 31.66 623.6
LFM2 4.928 30.23 586.9 EPMC4 5.564 28.97 579.4
LPM2 4.928 30.23 587.0 EFMC3 4.956 30.95 621.2
LD2 4.894 29.98 581.9 EPMC3 4.713 28.96 578.2

Table 3. Evaluation of uz(a/2, b/2, 0)× 1011; mesh [6 × 6] and Q9 elements. The exact
3D data are taken from [Heyliger 1994].

Table 3 compares our results, for both mechanical and electrical variables, with the three-dimensional
exact solution and the results of Garcia Lage et al. [2004b]. A square plate is considered with a lay-up
[0◦/90◦/0] for the internal layers; two piezoelectric layers of PVDF materials (see Table 2) are used as
external skins. As in this last reference, the peak value of the applied pressure is 3 Pa. The relative errors
are displayed in Table 4. The superiority of the full implementation of RMVT is still remarkable.

7. Concluding remarks

The paper extends the Unified Formulation and the Reissner Mixed Variational Theorem to the develop-
ment of finite elements for the static analysis of piezoelectric plates with a priori continuous transverse
electrical displacement components Dz . The following main conclusions can be drawn.

(1) It has been confirmed that UF is a valuable tool in the hierarchical analysis of piezoelectric plates us-
ing the finite element method. The implemented FEs, in fact, can provide very accurate descriptions
of both mechanical and electrical fields.

(2) FEs with interlaminar continuous Dz appear to be very suitable for piezoelectric plate analysis.
Better results are obtained with respect to the other FEs herein compared.

(3) In order to preserve computational efforts, the use of the proposed elements would seem to be
mandatory if accurate evaluations of Dz and the related electric charge are required.

Future developments should be directed towards considering the analysis of piezoelectric plate with
localized patches as sensors and/or actuators. Other plate lay-ups and the effect of additional bound-
ary conditions and geometries should be examined. The case of imposed Dz at the interface should in
particular be analyzed.
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A SEMI-INFINITE HIGHER-ORDER DISPLACEMENT DISCONTINUITY
METHOD AND ITS APPLICATION TO THE QUASISTATIC ANALYSIS

OF RADIAL CRACKS PRODUCED BY BLASTING

HASAN HOSSEINI_NASAB AND MOHAMMAD FATEHI MARJI

We introduce a higher-order indirect boundary element method in a traction-free half-plane known as
semi-infinite displacement discontinuity method. The method is modified to use the linear elastic fracture
mechanics principles for radial crack analysis in brittle materials like rocks. In this numerical method
there is no need to discretize the traction-free boundary of the half-plane into higher-order elements
thus decreasing the number of elements without affecting the accuracy of the solution to the desired
problems. The use of higher-order elements increases the accuracy so that it is possible to discretize both
the boundary of the body and radial cracks by the same higher-order elements, therefore there may be no
need to use the more complicated hybrid methods. A special crack tip element is added for each crack
tip to increase the accuracy of displacement discontinuities near the crack ends due to their singularities.
Based on the brittle behavior of most rocks, linear elastic fracture mechanics principles have been used
to find the fracture mechanics parameters (mode-I and mode-II mixed mode stress intensity factors) of
radial cracks occurring in common blasting operations. Arbitrary fracture criteria can be implemented in
this code, but here a simple maximum tangential stress criterion is used to predict the angle of deviation
(initiation) of radial cracks. Although this code is specially designed to include the traction-free half-
plane problems, it is somewhat comprehensive so that any number of radial cracks with any length in
the finite, infinite and semi-infinite planes can be treated easily. The validity of the method is proved by
solving simple examples and some previously solved problems in the literature.

1. Introduction

In this work we formulate a new higher-order semi-infinite displacement discontinuity method and use
it to analyze a number of crack problems. This method assumes linear or quadratic variation of dis-
placement discontinuity in a semi-infinite body with a traction-free surface. It is based on the use of
two or three collocation points (for linear or quadratic displacement discontinuity variation, respectively)
over a two-element or three-element “patch” centered at the source element. This method is suitable
for solving some fracture mechanics problems, because the special crack tip elements can easily be
incorporated in this algorithm. We adopt the hybrid element formulation: higher-order elements are
used for the discretization of all boundaries excluding the crack tips, and a special crack tip element is
used for discretization of the crack ends.

Fracture mechanics has been suggested as a possible tool for solving a variety of rock engineering
problems, such as rock cutting, hydrofracturing, explosive fracturing, rock stability, etc. In 1957, Irwin
modified the basic theory of fracture of Griffith [1925] and introduced the important parameters called

Keywords: DDM, half-plane problems, higher-order elements, radial cracks, LEFM.
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stress intensity factors (SIFs), to express the stress and displacement fields near the crack tip. Three SIFs,
denoted by K I , K II and K III , were introduced, corresponding to three basic fracture modes: opening or
tensile (mode I), sliding or shearing (mode II) and tearing (mode III).

Recently linear elastic fracture mechanics (LEFM) principles have been widely used in rock fracture
mechanics (RFM) [Rossmanith 1983; Whittaker et al. 1992; Aliabadi 1998]. Based on LEFM principles,
a superposition of the three fracture modes describes the general case of loading called mixed mode load-
ing. For a given cracked body under a certain type of loading, the SIFs are known and the displacements
and stresses near the crack tip are accordingly determined. Therefore, the problem of LEFM reduces to
the determination of the crack tip SIFs. Hybrid element formulations have been used in the literature of
fracture mechanics [Guo et al. 1992; Scavia 1992; Scavia 1995; Tan et al. 1996; Carpinteri and Yang
1997; Bobet 2001; Shen et al. 2004]. Because of their complexity, fracture mechanics problems are
usually solved numerically by using the complicated hybrid methods [Scavia 1995; Stephansson 2002].
Due to brittle behavior of most rocks, the linear elastic fracture mechanics principles have been used to
find the fracture mechanics parameters; that is, the (I and II) mixed-mode stress intensity factors (SIFs)
of radial cracks occur in the common blasting operations. For the prediction of crack initiation and its
angle of deviation the maximum tangential stress criterion introduced in [Erdogan and Sih 1963], is used
which compares the computed SIFs with the fracture toughness (material properties like yield strength)
that should be obtained experimentally [Huang and Wang 1985; Ouchterlony 1988; Stephansson et al.
2001; Backers et al. 2004; Shen et al. 2004]. A general numerical modeling for quasistatic crack analysis
in semi-infinite plane is given and as a practical problem, the radial cracks around the blast holes are
numerically analyzed. Any number of blast holes with any gas pressurization ratios along the emanating
cracks can be studied by this model. Suitable normal gas pressurization ratios along the radial cracks are
used, to solve the problem. As it was expected, the radial crack propagation takes place under tension
(Mode I or opening mode of fracture), which is mainly responsible for rock blasting [Ouchterlony 1983].

2. Higher order (linear and quadratic elements) displacement discontinuity in a half-plane

General solutions and higher-order elements. Many boundary-value problems are set in traction-free
half-spaces. Here we consider a two-dimensional traction-free half-plane. To implement the higher-
order displacement discontinuity elements numerically, we need the analytical solution to the problem
of a constant displacement discontinuity Di integrated over a line element along the x-axis in an infinite
elastic solid Crouch [1976] showed that the general solution to this problem, over a line element of length
2a, can be expressed in terms of two harmonic functions f (x, y) and g(x, y) of x and y, in which the
displacements are

ux =
(
2(1 − ν) f,y − y f,xx

)
+
(
−(1 − 2ν)g,x − yg,xy

)
,

u y =
(
(1 − 2ν) f,x − y f,xy

)
+
(
2(1 − ν)g,y − yg,yy

) (1)

and the stresses are
σxx = 2Gs(2 f,xy + y f,xyy)+ 2Gs(g,yy + yg,yyy),

σyy = 2Gs(−y f,xyy)+ 2Gs(g,yy − yg,yyy),

σxy = 2Gs(2 f,yy + y f,yyy)+ 2Gs(−yg,xyy),

(2)

where f,x = ∂ f ∂x and so on.
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Shou and Crouch [1995] proposed a new higher-order displacement discontinuity method for solving
plane elasticity problems, exploiting the use of quadratic elements for analysis of crack problems in
infinite bodies. In this paper the same kind of the higher-order displacement discontinuity elements is
used for the analysis of crack problems in semi-infinite bodies, but both linear and quadratic elements
are considered. The general higher-order expression of harmonic functions f (x, y) and g(x, y) can be
rearranged as

f (x, y)=
−1

4π(1 − ν)

k∑
j=1

D j
x F j (I j−1), g(x, y)=

−1
4π(1 − ν)

k∑
j=1

D j
y F j (I j−1). (3)

Here k ranges over 1, 2 for linear elements and over 1, 2, 3 for quadratic elements. Similarly, the higher-
order displacement discontinuity Di (ε) can be expressed as

Di (ε)=

k∑
j=1

N j (ε)D
j
i with k as above and i = x, y. (4)

The displacement discontinuity using linear elements is based on analytical integration of linear collo-
cation shape functions over collinear, straight-line displacement discontinuity elements. Figure 1a shows
the linear displacement discontinuity distribution, which can be written as

Di (ε)= N1(ε)D1
i + N2(ε)D2

i , i = x, y, (5)

where D1
i and D2

i are the linear nodal displacement discontinuities and

N1(ε)= −(ε− a1)/2a1, N2(ε)= (ε+ a1)/2a1 (6)

are the linear collocation shape functions using a1 = a2. A linear element has two nodes, which are at
the centers of its two equal subelements (Figure 1a).

Similarly, the quadratic element displacement discontinuity is based on the analytic integration of
quadratic collocation shape functions over collinear, straight-line displacement discontinuity elements.
Figure 1b shows the quadratic displacement discontinuity distribution, which can be written as

Di (ε)= N1(ε)D1
i + N2(ε)D2

i + N3(ε)D3
i , i = x, y, (7)
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Figure 1. Linear (left) and quadratic (right) collocations for the higher-order displace-
ment discontinuity elements.
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where D1
i , D2

i , and D3
i are the quadratic nodal displacement discontinuities and

N1(ε)= ε(ε− 2a1)/8a1
2, N2(ε)= −(ε2

− 4a2
1)/4a1

2, N3(ε)= ε(ε+ 2a1)/8a1
2 (8)

are the quadratic collocation shape functions using a1 = a2 = a3. A quadratic element has three nodes,
at the centers of its three equal subelements (Figure 1b).

Considering a linear variation for Di (ε) as given in (5), the common function F j in (3) is defined as

F j (I0, I1)=

∫
N j (ε) ln

(
(x − ε)+ y2)

1/2
dε, j = 1, 2. (9)

Here the integrals I0 and I1 are expressed as

I0(x, y)=

∫ a

−a
ln
(
(x − ε)2 + y2)1/2

dε = y(θ1 − θ2)− (x − a) ln(r1)+ (x + a) ln r2 − 2a (10)

I1(x, y)=

∫ a

−a
ε ln

(
(x − ε)2 + y2)1/2

dε = xy(θ1 − θ2)+
1
2(y

2
− x2

+ a2) ln
r1

r2
− ax, (11)

where we have defined

θ1 = arctan
y

x − a
, θ2 = arctan

y
x + a

, r1 =
(
(x − a)2 + y2)1/2

, r2 =
(
(x + a)2 + y2)1/2

. (12)

Similarly, considering a quadratic variation for Di (ε) as given in Equation (7), the common function
F j in (3) is defined as

F j (I0, I1, I2)=

∫
N j (ε) ln

(
(x − ε)+ y2)1/2

dε, j = 1, 2, 3, (13)

where I0 and I1 are as in (5) and (13) and

I2(x, y)=

∫ a

−a
ε2 ln

(
(x − ε)2 + y2)1/2

dε

=
y
3
(3x2

−y2)(θ1−θ2)+
1
3(3xy2

−x3
+a3) ln(r1)−

1
3(3xy2

−x3
−a3) ln(r2)−

2a
3

(
x2

−y2
+

a2

3

)
.

(14)

A routine computation yields the partial derivatives of the integrals I0, I1 and I2 with respect to x and
y. These derivatives are needed in the calculation of displacements and stresses in semi-infinite plane
problems. As an example,

I2,yyyy = −2
(
(x − a)

r2
1

−
(x + a)

r2
2

)
+ 2a

(
(x − a)2 − y2

r4
1

+
(x + a)2 − y2

r4
2

)

−2a2
(
(x − a)2(r2

1 − 4y2)

r6
1

−
(x + a)2(r2

2 − 4y2)

r6
2

)
,

where r1, r2, θ1, and θ2 are defined in (12).
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Figure 2. The actual and image displacement discontinuities in half-plane y ≤ 0.

Half-plane solution. The analytical solution to a constant element displacement discontinuity over the
line segment |x | ≤ a, y = 0 in the semi-infinite region y ≤ 0 is found in [Crouch and Starfield 1983]
using the method of images to be

ui = u A
i + u I

i + uS
i , σi j = σ A

i j + σ I
i j + σ S

i j , (15)

where the displacements and stresses due to the actual displacement discontinuity are denoted by a
superscript A, those due to its image by I and those resulting from the supplementary solution by S.

Based on the local x̄ , ȳ coordinates and the image local x̄ ′, ȳ′ coordinates shown in Figure 2, the dis-
placements and stresses given in (15) can be obtained in global x , y coordinates by using the coordinate,
displacement and stress transformation rules explained in [Crouch and Starfield 1983]. Considering the
geometry shown in Figure 2, the displacements and stresses due to actual displacement discontinuities can
be written directly from (1) and (2). The local x̄ , ȳ coordinates are related to the global x , y coordinates
by the transformation formulas

x̄ = (x − cx) cosβ + (y − cy) sinβ,

ȳ = −(x − cx) sinβ + (y − cy) cosβ.
(16)

Denoting the common potential function F j (x, y) by F A
j (x̄, ȳ)= F A

j1 and its derivatives by F A
j,x̄ = F A

j2,
F A

j,ȳ = F A
j3, F A

j,xy = F A
j4, F A

j,xx = −F A
j,yy = F A

j5, F A
j,x̄ yy = F A

j6, F A
j,yyy = F A

j7, for the actual displacement
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discontinuities, the actual displacements in terms of the global x, y coordinates are given by

u A
x =

−1
4π(1 − ν)

3∑
J=1

((
−(1 − 2ν) sinβF A

j2 + 2(1 − ν) cosβF A
j3 + ȳ(sinβF A

j4 − cosβF A
j5)
)
D j

x̄

+
(
−(1 − 2ν) cosβF A

j2 − 2(1 − ν) sinβF A
j3 − ȳ(cosβF A

j4 + sinβF A
j5)
)
D j

ȳ

)
,

u A
y =

−1
4π(1 − ν)

3∑
J=1

((
(1 − 2ν) cosβF A

j2 + 2(1 − ν) sinβF A
j3 − ȳ(cosβF A

j4 + sinβF A
j5)
)
D j

x̄

+
(
−(1 − 2ν) sinβF A

j2 + 2(1 − ν) cosβF A
j3 − ȳ(sinβF A

j4 − cosβF A
j5)
)
D j

ȳ

)
, (17)

and the actual stresses by

σ A
xx =

−2G
4π(1 − ν)

3∑
j=1

(
2 cos2 βF A

j4 + sin 2βF A
j5 + ȳ(cos 2βF A

j6 − sin 2βF A
j7
)
D j

x̄

+
(
−F A

j5 + ȳ(sin 2βF A
j6 + cos 2βF A

j7)
)
D j

ȳ

)
,

σ A
yy =

−2G
4π(1 − ν)

3∑
j=1

((
2 sin2 βF A

j4 − sin 2βF A
j5 − ȳ(cos 2βF A

j6 + sin 2βF A
j7)
)
D j

x̄

+
(
−F A

j5 − ȳ(sin 2βF A
j6 + cos 2βF A

j7)
)
D j

ȳ

)
,

σ A
xy =

−2G
4π(1 − ν)

3∑
j=1

((
sin 2βF A

j4 − cos 2βF A
j5 + ȳ(sin 2βF A

j6 + cos 2βF A
j7)
)
D j

x̄

− ȳ(cos 2βF A
j6 − sin 2βF A

j7)D
j
ȳ

)
. (18)

The displacements and stresses due to the image displacement discontinuity can be expressed in term
of a single function F I

j (x̄
′, ȳ′) in which the image local x̄ ′, ȳ′ coordinates (as shown in Figure 2) are

related to the x, y coordinates by the transformation formula

x̄ ′
= (x − cx) cosβ − (y + cy) sinβ,

ȳ′
= (x − cx) sinβ + (y + cy) cosβ,

(19)

which is obtained by replacing cy and β in (16) by cy and −β.
It can be shown that the supplementary solution for the displacements and stresses can be expressed in

term of the function F I
j (x̄

′, ȳ′) and its derivatives. The final expressions for the combined displacements
u I

i + uS
i and stresses σ I

i j + σ S
i j as given in the Appendix.

The displacement discontinuity functions Di (ε) in (4) can be used either in a constant element form
or in a higher-order element form as follows, to solve the displacements and stresses of (1), (2) and (15).
Two degrees of freedom are used for each node at the center of each element. Crawford and Curran
[1982] have developed a higher-order displacement discontinuity for linear and quadratic elements using
four and six degrees of freedom respectively. Shou and Crouch [1995] have introduced a new higher-
order displacement discontinuity for two-dimensional infinite plane problems using only two degrees of
freedom for each element while still preserving the advantages of the approach in [Crawford and Curran
1982].
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In this study, Shou and Crouch’s approach is extended and modified for both linear and quadratic
displacement discontinuity variations (the original formulation covers only quadratic displacement vari-
ations in infinite plane problems) in order to solve the half-plane boundary-value problems with traction-
free surfaces. For linear and quadratic displacement variations, the interpolation of displacement values
over two- and three-element patches, respectively, is the basis of our formulation (recall Figure 1).

The general solution to plane elasticity problems involves two types of boundary conditions: the stress
boundary conditions σs

i
= (σs

i )0, σn
i
= (σn

i )0 and the displacement boundary conditions us
i
= (us

i )0,
un

i
= (un

i )0. In these equations the right-hand sides stand for the given boundary values of the stresses
and displacements for the local s and n coordinates (that is, the same as the local x̄, ȳ coordinates shown
in Figure 2) defining at the center of each two-element patch (linear variation) or three-element patch
(quadratic variation). Finally, then, we obtain a system of 2 × 2N or 2 × 3N algebraic equations in as
many unknown displacement discontinuity components:

bi
s =

N∑
j=1

Css(i, j)D j
s +

N∑
j=1

Csn(i, j)D j
n , bi

n =

N∑
j=1

Cns(i, j)D j
s +

N∑
j=1

Cnn(i, j)D j
n , i = 1, N . (20)

The quantities bi
s and bi

n stand for the known boundary values of stress and displacement, and Css(i, j),
etc., are the corresponding influence coefficients [Crouch and Starfield 1983]. For the solution of
cracked body problems in half-planes with traction-free surfaces, we developed two computer programs:
SIDDLCR for semi-infinite displacement discontinuity method using linear displacement discontinuity
elements for crack analysis and SIDDQCR for semi-infinite displacement discontinuity method using
quadratic displacement discontinuity elements for crack analysis. Since the solution of the infinite plane
case is part of the solution of the half-plane problems (i.e., the actual solution part given in (17) and (18)),
these two computer codes can actually solve general elasticity problems in finite, infinite and semi-infinite
planes.

3. Crack tip element formulation and stress intensity factor computation

Consider a body of arbitrary shape with a crack of arbitrary size, subjected to arbitrary tensile and shear
loadings (mode-I and mode-II loading). The stresses and displacements near the crack tip are given
in [Rossmanith 1983; Whittaker et al. 1992] and other textbooks; but since we use the displacement
discontinuity method here we need the formulations given for the SIFs K I and K II in terms of the
normal and shear displacement discontinuities [Whittaker et al. 1992; Scavia 1995]:

K I =
G

4(1 − ν)

(2π
a

)1/2
Dy(a), K II =

G
4(1 − ν)

(2π
a

)1/2
Dx(a). (21)

Due to the singularity variations 1/
√

r and
√

r for the stresses and displacements in the vicinity of the
crack tip the accuracy of the displacement discontinuity method decreases, and usually a special treatment
of the crack at the tip is necessary. A special crack tip element which already has been introduced in
literature (see [Crouch and Starfield 1983], for example) is used here to represent the singularity. Using
a special crack tip element of length 2a as shown in Figure 3, we obtain the parabolic displacement
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Figure 3. Displacement correlation technique for the special crack tip element.

discontinuity variations along this element as

Di (ε)= Di (a)(ε/a)1/2, i = x, y, (22)

where ε is the distance from crack tip and Dy(a) and Dx(a) are the opening (normal) and sliding (shear)
displacement discontinuities at the center of special crack tip element.

The potential functions fC(x, y) and gC(x, y) for the crack tip element can be expressed as

fC(x, y)=
−1

4π(1 − ν)

∫ a

=a

Dx(a)
a1/2 ε1/2 ln

(
(x − ε)2 + y2)1/2dε,

gC(x, y)=
−1

4π(1 − ν)

∫ a

=a

Dy(a)
a1/2 ε1/2 ln

(
(x − ε)2 + y2)1/2dε.

(23)

These functions have a common integral of the form

IC =

∫ 2a

0
ε1/2 ln

(
(x − ε)2 + y2)1/2dε. (24)

The derivatives of this integral, which are used in calculation of the crack tip displacement disconti-
nuities in semi-infinite plane problems, are easily computed:

Ic,x =

∫ 2a

0

ε1/2(x − ε)

(x − ε)2 + y2 dε = x A1 − A2, Ic,y =

∫ 2a

0

ε1/2 y
(x − ε)2 + y2 dε = y A1,
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where we have introduced

A1 =
1
ρ

(
1
2

(
cosϕ−

x
y

sinϕ
)

ln
2a − 2

√
2aρ cosϕ+ ρ2

2a + 2
√

2aρ cosϕ+ ρ2
+

(
sinϕ+

x
y

cosϕ
)

arctan
(

2
√

2aρ sinϕ
ρ2 − 2a

))
,

A2 = ρ

(
1
2

(
cosϕ+

x
y

sinϕ
)

ln
2a − 2

√
2aρ cosϕ+ ρ2

2a + 2
√

2aρ cosϕ+ ρ2
+

(
sinϕ+

x
y

cosϕ
)

arctan
(

2
√

2aρ sinϕ
ρ2 − 2a

))
,

with ρ = (x2
+ y2)1/4 and ϕ =

1
2 arctan(y/x). Moreover,

Ic,xy = y A1,x ,

Ic,yy = A1 + y A1,y = −Ic,xx ,

Ic,xyy = A1,x + y A1,xy,

Ic,yyy = 2A1,y + y A1,yy,

Ic,xyyy = 2A1,xy + y A1,xyy,

Ic,yyyy = 3A1,yy + y A1,yyy .

4. Crack initiation and direction of its propagation

Several mixed mode fracture criteria are well known from the literature [Ingraffea 1981; 1987; Huang
and Wang 1985; Zipf and Bieniawski 1989; Ouchterlony 1988; Stephansson et al. 2001; Rao et al. 2003;
Backers et al. 2004; Shen et al. 2004], any of them can be applied to crack analysis problems using this
model. In this study as the blast hole radial cracks are mostly in opening mode case, the simple maximum
tangential stress criterion or σ -criterion is used here to predict the angle of crack initiation. This criterion
is a mixed mode fracture criterion which is widely used and well fitted with the experimental results
[Ingraffea 1983; Broek 1989; Guo et al. 1992; Carpinteri and Yang 1997].

Based on this criterion the crack tip will start propagating when

cos
θ0

2

(
K I cos2 θ0

2
−

3
2

K II sin θ0
2

)
= K I C , (25)

where K I C is the mode-I fracture toughness of the material and θ0 is the propagation angle. The latter
value corresponding to the crack tip should satisfy the condition

K I sin θ0 + K II (3 cos θ0 − 1)= 0. (26)

5. Verification of higher-order semi-infinite displacement discontinuity

Verification of this method is made through the solution of simple example problems. We first take a
center slant crack in an infinite body, as shown in Figure 4. The slant angle, β, changes counterclockwise
from the x-axis, and the tensile stress σ = 10 MPa acts parallel to the x-axis. A half crack length b =

1 meter, modulus of elasticity E = 10 GPa, Poisson’s ratio ν = 0.2, fracture toughness K I C = 2 MPa
√

m
are assumed. The analytical solution of the first and second mode stress intensity factors K I and K II for
the infinite body problem are given as (see [Guo et al. 1990; Whittaker et al. 1992])

K I = σ(πb)1/2 sin2 β H⇒
K I

σ
√
πb

= sin2 β,

K II = σ(πb)1/2 sinβ cosβ H⇒
K II

σ
√
πb

= sinβ cosβ.
(27)
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Figure 4. Center slant cracks in an infinite body under far-field tension.

The normalized mixed mode stress intensity factors, K I /(σ
√
πb) and K II /(σ

√
πb), are obtained analyt-

ically for different crack inclination from Equations (27), and numerically by means of the two software
programs SIDDLCR and SIDDQCR (page 445), using a total of 98 nodes and a crack tip length equal to
one-tenth the half crack length — that is, an L/b ratio of 0.1. Some of the results obtained are tabulated
in Table 1, and give an idea of the accuracy and usefulness of the programs.

To investigate the effect of the number of elements on accuracy, we solved numerically two problems,
respectively with 45◦ and 30◦ slanted cracks, choosing L/b = 0.1 and a varying number of nodes. The
normalized numerical results are given in Table 2. They show that using any number of nodes above 24
gives very accurate values for both SIDDLCR and SIDDQCR.

K I /(σ
√
πb) K II /(σ

√
πb)

Angle β Analytic SIDDQCR SIDDLCR Analytic SIDDQCR SIDDLCR

10◦ 0.0302 0.0302 0.0309 0.1711 0.1711 0.1752
20◦ 0.1170 0.1171 0.1198 0.3214 0.3216 0.3292
30◦ 0.2500 0.2502 0.2561 0.4330 0.4334 0.4435
40◦ 0.4132 0.4135 0.4176 0.4924 0.4920 0.4977
50◦ 0.5868 0.5864 0.5932 0.4924 0.4921 0.4977
60◦ 0.7500 0.7495 0.7581 0.4330 0.4327 0.4369
70◦ 0.8830 0.8824 0.8926 0.3214 0.3212 0.3249
80◦ 0.9696 0.9692 0.9803 0.1711 0.1709 0.1713
90◦ 1.0000 0.9996 1.011 0.0000 0.0000 0.0000

Table 1. Analytical and numerical values of the normalized stress intensity factors for
the slant center crack at different orientation from the loaded axis (x-axis), for L/b = 0.1
and 98 nodes.
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K I /(σ
√
πb) (45◦) K I /(σ

√
πb) (30◦) K II /(σ

√
πb) (30◦)

Nodes SIDDQCR SIDDLCR SIDDQCR SIDDLCR SIDDQCR SIDDLCR

12 0.5116 0.5396 0.2558 0.2698 0.4431 0.4673
24 0.5014 0.5160 0.2507 0.2580 0.4342 0.4469
36 0.4999 0.5097 0.2500 0.2549 0.4330 0.4414
48 0.4997 0.5069 0.2499 0.2535 0.4327 0.4390
60 0.4997 0.5054 0.2498 0.2527 0.4327 0.4377
72 0.4997 0.5044 0.2498 0.2522 0.4327 0.4368
84 0.4998 0.5038 0.2499 0.2517 0.4328 0.4363
96 0.4998 0.5033 0.2499 0.2516 0.4328 0.4358

108 0.4999 0.5029 0.2499 0.2514 0.4328 0.4355
120 0.4999 0.5026 0.2499 0.2513 0.4329 0.4353

Table 2. Numerical values of the stress intensity factors for the 45◦ and 30◦ slant center
cracks using varying number of nodes and L/b = 0.1.

Finally, to show the effect of the length of the crack tip element on the accuracy of the results, the
same two problems are solved numerically using 98 nodes and different L/b ratios. The results are given
in Table 3. We see that for any L/b ratio above 0.025, both programs give very accurate values.

Because of its simplicity, the center slant crack problem has been solved by various investigators
such as Guo et al. [1990], who used constant element displacement discontinuity with a special crack
tip element for angles 30◦, 40◦, 50◦, 60◦, 70◦ and 80◦. These authors used a different fracture criterion
for evaluating the crack initiation angle θ0 and compared their results with the results obtained by other

K I /(σ
√
πb) (45◦) K I /(σ

√
πb) (30◦) K II /(σ

√
πb) (30◦)

L/b SIDDQCR SIDDLCR SIDDQCR SIDDLCR SIDDQCR SIDDLCR

0.025 0.5028 0.5166 0.2514 0.2614 0.4354 0.4467
0.050 0.5000 0.5072 0.2500 0.2536 0.4330 0.4393
0.075 0.4998 0.5045 0.2498 0.2523 0.4328 0.4369
0.100 0.4998 0.5033 0.2499 0.2516 0.4328 0.4358
0.125 0.4999 0.5026 0.2499 0.2513 0.4329 0.4352
0.150 0.5001 0.5021 0.2500 0.2511 0.4331 0.4349
0.175 0.5003 0.5019 0.2501 0.2510 0.4333 0.4347
0.200 0.5005 0.5018 0.2503 0.2509 0.4335 0.4346
0.225 0.5008 0.5018 0.2504 0.2509 0.4337 0.4346
0.250 0.5011 0.5019 0.2506 0.2510 0.4340 0.4347
0.275 0.5015 0.5021 0.2507 0.2510 0.4343 0.4348
0.300 0.5019 0.5023 0.2509 0.2512 0.4346 0.4350

Table 3. Numerical values of the stress intensity factors for the 45◦ and 30◦ slant center
cracks using varying L/b ratios and 98 nodes.
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θ0, present work θ0 as reported in [Guo et al. 1990]
Angle β SIDDQCR SIDDLCR σ -criterion S-criterion Exper. Numer.

30 60.00 60.00 60.2 63.5 62.4 67.0
40 55.65 55.65 55.7 56.7 55.1 59.0
50 50.29 50.29 50.2 49.5 51.1 51.0
60 43.22 43.22 43.2 41.9 43.1 41.0
70 33.26 33.26 33.2 31.8 30.7 29.0
80 18.91 18.91 19.3 18.5 17.3 15.0

Table 4. Crack initiation angle θ0 obtained by different methods for the center slant
crack problem.

researchers using different fracture theories. Table 4 compares the results obtained for crack initiation
angle θ0 with SIDDLCR and SIDDQCR, using the maximum tangential stress theory proposed by Er-
dogan and Sih [1963], and the results obtained by other methods as given by Guo et al. The numerical
results obtained here are very close to those predicted by the σ -criterion.

For the verification of the semi-infinite higher-order displacement discontinuity method, the problem
of a 45◦ slant crack with different depths (C/b ratio) from the free surface of the half-plane is considered.
This is the problem shown in Figure 5, where C = Cy is the depth at the center of the slant crack from
the free surface of the half-plane as shown in Figure 3.

The normalized stress intensity factors K I /(σ
√
πb) and K II /(σ

√
πb) of the upper and lower crack

tips were obtained using SIDDQCR. The numerical results for the 45◦ crack are given in Table 5, where

2b

0
θ

y

σx=σ

β

x

C

Figure 5. Slant cracks in a semi-infinite body under far field tension.
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K I /(σ
√
πb) K II /(σ

√
πb)

C/b ratio Upper Tip Lower Tip Upper Tip Lower Tip

1 0.6147 0.5278 0.4603 0.5530
2 0.5115 0.5067 0.4669 0.4957
3 0.4989 0.4996 0.4785 0.4907
4 0.4959 0.4971 0.4841 0.4905
5 0.4951 0.4961 0.4874 0.4911
6 0.4950 0.4958 0.4895 0.4919
7 0.4951 0.4958 0.4909 0.4927
8 0.4953 0.4959 0.4920 0.4930
9 0.4956 0.4960 0.4929 0.4938

10 0.4958 0.4962 0.4935 0.4943

Table 5. Normalized stress intensity factors K I /(σ
√
πb) and K II /(σ

√
πb) of the upper

and lower crack tips for a 45 degrees inclined crack in a semi-infinite body with different
C/b ratios, using 98 nodes and L/b = 0.1.

we have used a total of 98 nodes (including the two crack tip elements) and an L/b ratio of 0.1. The table
shows that as the crack becomes very close to the free surface of the half-plane, the mode-I stress intensity
factor K I of the upper crack tip (the one nearer the free surface) increases more rapidly compared to that
of the lower tip, but the mode-II stress intensity factor K II decreases. The analytical solution for the 45◦

center slant crack in an infinite plate gives K I /(σ
√
πb)= K II /(σ

√
πb)= 0.5, and as can be seen from

the table, the numerical values tend to this analytical value as the depth C increases to infinity.

6. Numerical analysis of radial cracks in blasting

Radial crack propagation in blasting operations is a complicated and interesting phenomenon. The initi-
ation and propagation mechanisms have been investigated in [Ingraffea 1983; Mortazavi and Katsabanis
2001; Cho et al. 2004]. Generally, two forms of radial crack analysis have been used: dynamic crack
analysis (considering stress wave and/or gas pressurization theories) and quasistatic crack analysis (con-
sidering only gas pressurization theory); see [Kutter and Fairhurst 1971; Courtesen 1979; Ash 1985;
Donzé et al. 1997; Cho et al. 2004]. Dynamic crack analysis is far beyond our scope; instead we briefly
consider quasistatic radial crack analysis due to gas pressurization, to show the effectiveness of the present
model for solving some crack problems occurring in rock fracture mechanics. Analytical solutions of the
radial crack propagation in an infinite elastic rock have been discussed in the literature; see [Ouchterlony
1983; Whittaker et al. 1992] and references therein. Ouchterlony has extensively analyzed various load
configurations in relation to rock blasting and determined the stress intensity factors for them by using
the conformal mapping method. This has provided valuable information on crack-growth behavior due
to internal pressure, and the effect of gas penetration in the radial cracks has also been investigated.

In this section we discuss bench blasting problems based on Outcherlony’s setup and the present
approach. We solve the problems shown in Figure 6, considering two limiting cases: empty cracks,
meaning that no gas pressure penetrates through the radial cracks during blasting; and fully pressurized
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Figure 6. Pressurized circular holes (blast holes) with radial cracks in infinite planes.
The examples shown have two (left) and eight (right) radial cracks.

cracks, meaning that the gas pressure fully penetrates the radial cracks, so the gas pressure in the radial
cracks equals the total blast hole pressure.

SIDDLCR and SIDDQCR have been used for the numerical solution. The following assumptions and
data have used throughout: hole radius, R = 1 m; inside pressure, p = 10 MPa; modulus of elasticity,
E = 10 GPa; Poisson’s ratio, ν = 0.2; rock fracture toughness, K I C = 2 MPa m1/2; ratio of crack tip
element to crack length, L/b = 0.1. Exploiting symmetry, 30 quadratic elements or 40 linear elements
are used to discretize the boundary of a circular hole, and 10 quadratic elements or 15 linear elements
are used for the discretization of each radial crack (excluding the crack tip elements). We compute
numerically the normalized mode-I stress intensity factor K I /(p

√
πµR) for different crack length ratios

µ = (b + R)/R of a pressurized blast hole under uniform inside pressure p with 2 and 8 symmetric
radial cracks emanating from the hole. These numerical results, for empty and fully pressurized radial
cracks, are compared in Figures 7 and 8 with the corresponding analytical values given in [Ouchterlony
1983]. We see that, particularly for long radial cracks, the analytical and numerical values of normalized
stress intensity factors (mode-I) are very close to each other. The blasting pressures p are around 0.56
to 1.0 GPa, but the results plotted here are normalized in the form of K I /(p

√
πµR).

In a similar manner we analyzed numerically the problem shown in Figure 9 using SIDDQCR. The
calculated fracture parameters are shown in Table 6 for the two extreme cases of empty cracks and fully
pressurized cracks against different ratios B/R of burden radius to blast hole (B/R can be viewed as
a normalized hole depth relative to the free surface of the half-plane). All these results were obtained
through SIDDQCR, using a constant value of µ= 2.5 for the crack length ratio.

The analytical results for the problem of a pressurized circular hole with four symmetric empty radial
cracks in an infinite plane are: K I /(p

√
πµR)= 0.1966 and K II /(p

√
πµR)= 0.0, and for the fully pres-

surized radial cracks are: K I /(p
√
πµR)= 0.9085 and K II /(p

√
πµR)= 0.0 respectively [Ouchterlony

1983].
Table 6 compares the different results obtained for the upper crack (the crack near to the free surface

of the half-plane), and the lower crack. The results given in this table show that as the burden (B/R ratio)
increases the mixed mode stress intensity factors K I and K II tend to their corresponding analytical values
for the infinite plane case.
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Figure 8. Blast hole with 2 and 8 fully pressurized radial cracks: comparison of analyt-
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√
πµR) for varying crack length ratio µ.

The results obtained in this paper show that, as the Mode II stress intensity factor (K II ) is very small
compared to the Mode I (K I ), and for the practical problems; the crack initiation angle θ0 is also very
small, for both upper and lower cracks, then it may be concluded that the radial cracks produced in
blasting operations propagates nearly in their own planes due to the high influence of K I . However,
when the radial cracks become very close to the free surface (that is, for small B/R ratios), the upper
cracks divert away from the free surface in the direction of the crack deviation angle θ0.
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Figure 9. A blast hole in a semi-infinite plane with 4 symmetric radial cracks.

7. Conclusion

The higher-order displacement discontinuity method is used to solve boundary value problems in finite,
infinite and semi-infinite plane problems. The special crack tip formulation is also modified and used for
solving the crack problems in semi-infinite planes. Then based on the formulation derived in Sections 2
and 3, the two computer programs SIDDLCR (semi-infinite displacement discontinuity method with
linear elements for crack analysis) and SIDDQCR (semi-infinite displacement discontinuity method with
quadratic elements for crack analysis) were developed. These programs use a special crack tip element

K I /(p
√
πµR) K II /(p

√
πµR) θ0 (degrees)

B/R Up. crack Lo. crack Up. crack Lo. crack Up. crack Lo. crack

2.00 2.2036 1.3534 0.1954 0.0194 −10.0 −1.6
2.25 1.8940 1.2366 0.1230 −0.0307 −7.4 2.8
2.50 1.6993 1.1766 0.1285 −0.0465 −8.6 4.5
2.75 1.5298 1.1352 0.1229 −0.0565 −9.1 5.7
3.00 1.3937 1.1022 0.1109 −0.0626 −9.0 6.5
3.25 1.2690 1.0578 0.0949 −0.0552 −8.5 5.9
3.50 1.1927 1.0392 0.0862 −0.0573 −8.2 6.3
3.75 1.1116 1.0230 0.0609 −0.0587 −6.2 6.5
4.00 1.0344 1.0085 0.0470 −0.0580 −5.5 6.5
4.25 1.0114 0.9960 0.0362 −0.0573 −4.1 6.5
4.50 0.9863 0.9903 0.0223 −0.0523 −2.5 6.0
4.75 0.9582 0.9816 0.0091 −0.0510 −1.1 5.9
5.00 0.9390 0.9745 0.0044 −0.0487 −0.5 5.7

Table 6. Normalized stress intensity factors and crack propagation angle θ0 for a pres-
surized hole under uniform inside pressure p, with four fully pressurized radial cracks,
for varying values of B/R (corresponding to different depths).
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with a simple mixed mode fracture criterion — the maximum tangential stress criterion, based on linear
elastic fracture mechanics principles — to quasistatically analyze the radial cracks. For the verification of
this method some example problems of cracked bodies in infinite and semi-infinite planes are solved and
the results are compared with their existing analytical results and/or with the results obtained by some
previous researchers. The computed results obtained by these codes are very accurate as compared to the
previous results (given in the literature), which proves the validity and accuracy of the proposed method.
For completeness, some of the necessary formulations which are derived and used in these computer
codes are also given in the appendices of this paper.

Appendix: Supplementary and image solutions for displacements and stresses

We maintain the notation of Section 2 and Figure 2 and define

F I
j8(x̄

′, ȳ′)==
∂4 F I

j (x̄
′, ȳ′)

∂ x̄ ′∂ ȳ′3 , F I
j9(x̄

′, ȳ′)=
∂4 F I

j (x̄
′, ȳ′)

∂ ȳ′4 .

The combined displacements u I
i + uS

i are

u I
x + uS

x =
−1

4π(1 − ν)

×

3∑
j=1

((
(1 − 2ν) sinβF I

j2 − 2(1 − ν) cosβF I
j3 +

(
(3 − 4ν)(y sin 2β − ȳ sinβ)+ 2y sin 2β

)
F I

j4

+
(
(3 − 4ν)(y cos 2β − ȳ cosβ)− y(1 − 2 cos 2β)

)
F I

j5

+ 2y(y sin 3β − ȳ sin 2β)F I
j6 − 2y(y cos 3β − ȳ cos 2β)F I

j7

)
D j

x̄

+

(
(1 − 2ν) cosβF I

j2 + 2(1 − ν) sinβF I
j3 −

(
(3 − 4ν)(y cos 2β − ȳ cosβ)− y

)
F I

j4

+ (3 − 4ν)(y sin 2β − ȳ sinβ)F I
j5

− 2y(y cos 3β − ȳ cos 2β)F I
j6 − 2y(y sin 3β − ȳ sin 2β)F I

j7

)
D j

ȳ

)
,

u I
y + uS

y =
−1

4π(1 − ν)

×

3∑
j=1

((
(1 − 2ν) cosβF I

j2 − 2(1 − ν) sinβF I
j3 −

(
(3 − 4v)(y cos 2β − ȳ cosβ)+ y(1 − 2 cos 2β)

)
F I

j4

+
(
(3 − 4ν)(y sin 2β − ȳ sinβ)− 2y sin 2β)

)
F I

j5

+ 2y(y cos 3β − ȳ cos 2β)F I
j6 + 2y(y sin 3β − ȳ sin 2β)F I

j4

)
D j

x̄

+

(
(1 − 2ν) sinβF I

j2 − 2(1 − ν) cosβF I
j3 − (3 − 4v)(y sin 2β − ȳ sinβ)F I

j4

−
(
(3 − 4ν)(y cos 2β − ȳ cosβ)+ y

)
F I

j5

+ 2y(y sin 3β − ȳ sin 2β)F I
j6 − 2y(y cos 3β − ȳ cos 2β)F I

j7

)
D j

ȳ

)
,

The stresses σ I
i j + σ S

i j associated with these displacements are
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σ I
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−2G
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cos 2βF I

j4 − sin 2β
)
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(
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F I
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(
2y(sinβ − 3 sin 3β)+ 3ȳ sin 2β
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(
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IN-SITU OPTIMIZED PWAS PHASED ARRAYS FOR LAMB WAVE
STRUCTURAL HEALTH MONITORING

LINGYU YU AND VICTOR GIURGIUTIU

The use of piezoelectric wafer active sensors (PWAS) phased arrays for Lamb wave damage detection in
thin-wall structures is presented. The PWAS capability to tune into specific Lamb-wave modes (which
is an enabling factor for our approach) is first reviewed. Then, a generic beamforming formulation that
does not require the conventional parallel-ray approximation is developed for PWAS phased arrays in
connection with the delay-and-sum beamforming principles. This generic formulation is applied to a 1-D
linear PWAS phased array. Particularly, 1-D PWAS array beamforming reduces to the simplified parallel
ray algorithm when the parallel ray approximation is invoked. The embedded ultrasonic structural radar
(EUSR) algorithm is presented. A couple of simple experiments are used to show that the linear EUSR
PWAS phased array system can successfully detect cracks in large aluminum thin plates.

To improve the EUSR image quality, advanced signal processing is studied for possible integration
into the EUSR system. The approaches include Hilbert transform for envelope detection, thresholding
techniques for removing background noise, discrete wavelet transform for denoising, continuous wavelet
transform for single frequency component extraction, and cross-correlation for time-of-flight detection.

The optimization of linear PWAS arrays is studied next. First we consider the effect of several pa-
rameters affecting the phased-array beamforming: (1) number of elements M ; (2) elementary spacing d;
(3) steering angle φ0; (4) location of the target r . Second, we examine the so-called nonuniform PWAS
arrays which are generated by assigning different excitation weights to each of the array elements. The
design of two nonuniform linear PWAS arrays, the binomial array and the Dolph–Chebyshev array, is
presented. Significant improvement of the EUSR image is observed when using these nonuniform arrays.

1. Introduction

The current use of nondestructive evaluation (NDE) technologies is limited by the fact that the NDE
inspection can be carried out only if the area to be inspected is accessible. In most cases, this can be
achieved only during maintenance checks. For economic reasons, more frequent inspections or even con-
tinuous monitoring are not feasible with the existing NDE techniques [Beral and Speckmann 2003]. One
method of conducting in-service monitoring of structural hot spots is through structural health monitoring
(SHM) using guided waves and in-situ sensors. Guided waves can travel large distance with very little
amplitude loss and inspect large area from a single transducer position [Rose 1995; 1999; 2001]. In-situ
sensors, if sufficiently light and reliable, would offer on-demand structural interrogation capabilities.

Keywords: phased array, piezoelectric wafer , active sensors, embedded ultrasonics structural radar, beamforming, Lamb
waves, damage detection, structural health monitoring, EUSR, PWAS, SHM, NDE.
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1.1. Motivation. Traditionally, guided waves are generated by ultrasonic transducers that obliquely im-
pinge onto a thin-wall structure. However, such ultrasonic transducers are unsuitable for in-situ SHM due
to their cost, weight, and size. They cannot be attached in large numbers onto a structure without incur-
ring important cost and weight penalties. The advent of commercially-available low-cost piezoelectric
wafers has opened new opportunities for ultrasonic testing. Piezoelectric wafer active sensors (PWAS)
are inexpensive lightweight unobtrusive transducers, which are well suited for SHM applications. These
devices can be permanently attached to the structures for the generation and detection of guided waves
[Giurgiutiu and Zagrai 2000]. Typical PWAS weigh 68 mg, are 0.2 mm thick, and cost less than US$10.

The advantages of using a phased array of transducers for ultrasonic testing are multiple [Moles et al.
2005]. Ultrasonic phased arrays use ultrasonic elements and electronic time delays to create wave beams
by constructive wave interference. Rather than using a single transducer, the phased array utilizes a group
of transducers located at distinct spatial locations. By sequentially firing the individual elements of an
array at slightly different times, the ultrasonic wave front can be focused or steered in specific directions
[Krautkramer and Krautkramer 1990]. The relative amplitudes of the signals radiated by the individual
array elements determine the effective radiation pattern of the array. If the amplitude at a certain distance
is the same for all directions, the wave field of the ultrasonic element is called omnidirectional. An array
constructed of such elements, will have an effective radiation pattern that is uniquely determined by
the beam steering algorithm alone. Inspection of a wide area can be achieved from a single location by
electronically sweeping and/or refocusing the wave beam without physically manipulating the transducer.
The backscattered ultrasonic signals received and stored in the computer can be numerically analyzed
and mapped into an inspection image.

Current ultrasonic phased array technology employs pressure waves generated by ultrasonic trans-
ducers through normal impingement on the structural surface. Such phased arrays have shown clear
advantages in the inspection of very thick specimens and in the sidewise inspection of thick slabs, where
electronic beam scanning and focusing have produced significant improvements in the inspection effi-
ciency. However, they cannot be efficiently used in thin-wall structures because of the small relative
thickness of such structures. New transducers are therefore needed for efficient Lamb wave SHM using
phased array technology.

PWAS phased arrays are capable of in-situ scanning of a large structural area using guided waves but
without the need for actual physical scanning being performed. This advantage steers from the capability
of PWAS phased array to see large areas from a single location [Giurgiutiu and Bao 2002]. A permanently
mounted array of unobtrusive PWAS transducers was shown to map an entire half-plate and detect a small
crack using the embedded ultrasonics structural radar (EUSR) methodology [Giurgiutiu et al. 2006]. The
EUSR image resembles the C-scan of conventional ultrasonic surface scanning but without the need for
actual physical motion of the transducer over the structural surface. Building onto these earlier results,
this paper presents the results of a sustained effort to improve the EUSR-PWAS phased array concept
through a generic phased-array formulation and the use of advanced signal processing methods. Phased-
array design optimization is also discussed for better wave beam steering. This effort has resulted in
increased detection capability, refined detection resolution, and extended detection range [Giurgiutiu and
Yu 2006].
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1.2. Background. The PWAS phased array technique is based on two important concepts: the use of
PWAS for Lamb wave generation and detection, and the tuning between Lamb waves and PWAS that
permits the transmission and reception of selective Lamb-wave modes, as appropriate for phased-array
implementation. These concepts are briefly reviewed in this section.

PWAS coupled Lamb waves. When guided waves travel between two parallel surfaces which are suffi-
ciently close, for example, a plate having a thickness of the order of a wavelength or so, they are called
Lamb waves [Viktorov 1967]. In our work, Lamb waves were excited and detected using PWAS. PWAS
operates on the piezoelectric principle that couples the electrical and mechanical variables in the material

Si j = s E
i jkl Tkl + dki j Ek, D j = d jkl Tkl + εT

jk Ek,

where s E
i jkl is the mechanical compliance of the material measured at zero electric field (E = 0), εT

jk is the
dielectric permittivity measured at zero mechanical stress (T = 0), and dki j represents the piezoelectric
coupling effect. In Lamb wave application, PWAS couple their in-plane motion with the Lamb wave
particle motion on the material surface. As an active sensor, PWAS can be used as transmitters and
receivers to excite and detect Lamb waves. A surface mounted PWAS will couple with both the symmetric
Lamb wave modes (S0, S1, S2, . . . ) and the antisymmetric Lamb wave modes (A0, A1, A2, . . . ).
Figure 1 illustrates PWAS interaction with the S0 and A0 Lamb wave modes. Similarly to conventional
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 Figure 1. PWAS interaction with Lamb modes: top, symmetric mode S0; bottom, anti-
symmetric mode A0 [Giurgiutiu 2005].
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ultrasonic transducers, PWAS can be used in pitch-catch, pulse-echo, phased array, etc. An extensive
description of the use of PWAS for SHM can be found in [Giurgiutiu et al. 2006].

Lamb wave mode selection through PWAS tuning. Lamb waves are dispersive, that is, their phase velocity
varies with the frequency, f , and the thickness of the material, 2d . In addition, for any given frequency, at
least two modes are present. The simultaneous presence of two or more Lamb wave modes complicates
the use of Lamb waves for detecting structural damage. Besides, certain damage is more detectable with
certain Lamb wave modes. In particular, the S0 wave mode is better for the detection of through-the-
thickness cracks and A0 mode is better for corrosion and disbonding. For PWAS phased array application,
it is better to selectively excite low-dispersion Lamb wave modes, such as S0 at low f d value. Given
the PWAS length 2a, wall thickness 2d, and material properties µ and λ, it is possible to find tuning
frequencies at which only one mode is excited; see [Giurgiutiu 2005]. A plane-strain analysis of the
PWAS-structure interaction using the space-domain Fourier analysis was developed in the same paper
to illustrate the principle of PWAS Lamb-wave mode tuning and open a path for a more comprehensive
analysis. The analysis yielded the forward wave solution in the form

εx(x, t)= − j
aτ0

µ

∑
ξ S

sin ξ Sa
NS(ξ

S)

D′

S(ξ
S)

e j (ξ S x−ωt)dξ − j
aτ0

µ

∑
ξ A

sin ξ Aa
NA(ξ

A)

D′

A(ξ
A)

e j (ξ Ax−ωt)dξ, (1)

where τ0 is the interfacial shear stress and ξ S , ξ A are the symmetric and antisymmetric wave numbers.
The expressions for NS, DS, NA, DA are detailed in [Giurgiutiu 2005] and will not be repeated here. The
summations in (1) cover all the symmetric (ξ S) and antisymmetric (ξ A) Lamb wave modes that exist for
a given value of ω in a given structure. The function sin(ξa) in (1) displays maxima when the PWAS
length 2a equals an odd multiple of the half wavelength. Several such maxima and minima exist, each
associated with a certain Lamb wave mode and its wavelength. These maxima and minima allow us to
achieve Lamb mode tuning. A selected Lamb mode can be tuned by choosing the appropriate frequency
for given PWAS dimensions. A plot of the strain solution in the 0 ∼ 700 kHz bandwidth for 7-mm square
PWAS installed on a 1-mm thick aluminum plate is presented in Figure 2, left, while the right half of
the figure gives the dispersion curves. An S0 tuning frequency can be found around 210 kHz, where the
amplitude of the A0 mode is minimized while that of the S0 is still strong. In this way, we achieve tuning
of the S0 mode and reject the A0 mode. Lamb wave tuning offers considerable advantages by allowing
us to select the Lamb waves that are most appropriate for the particular application.

2. Lamb waves PWAS phased array design and implementation

One can employ various methods to steer and focus ultrasonic waves in certain directions. Among
these methods, delay-and-sum beamforming is the oldest and simplest [Johnson and Dudgeon 1993].
The delay-and-sum beamforming was implemented in PWAS phased arrays as the embedded ultrasonic
structural radar (EUSR) algorithm [Giurgiutiu et al. 2006; Yu and Giurgiutiu 2005b]. EUSR assumes
that data from an M-element PWAS array is collected in a round-robin fashion by using one element at
a time as transmitter and all the elements as receivers. With a total of M2 data signals, EUSR conducts
the beam scanning in virtual time as a signal post-processing operation. The EUSR beamforming and
scanning procedure does not require complex devices, nor multichannel electronic circuitry as needed
by the conventional ultrasonic phased array equipment. EUSR implementation of PWAS phased arrays
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Figure 2. Lamb wave S0 mode tuning. Left: predicted Lamb wave strain curve of a
1 mm aluminum plate installed with a 7 mm square PWAS. Right: dispersion curves
within 0 ∼ 700 kHz range.

requires only a function generator, an oscilloscope, a switching device, and a computer [Giurgiutiu et al.
2006].

The original EUSR algorithm uses the parallel rays approximation to simplify the beamforming cal-
culation. This simplifying assumption is only valid if the target is far away from the phased array. If
the scanning field is not sufficiently far away, the parallel ray approximation error is not negligible and
the method breaks down. This can be explained as follows. When the target is not sufficiently far away
from the array, that is, it is in the near field (Figure 3a), the propagating wave front is curved (circular
wave front) and the wave propagating directions vary with the PWAS location. In this situation, wave
propagation direction varies from PWAS element to PWAS element and individual direction vectors need
to be assigned to each PWAS. Using antenna theory [Johnson and Dudgeon 1993], we define the near
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Figure 3. Wave fronts of a PWAS array: (a) near field; (b) far field.



464 LINGYU YU AND VICTOR GIURGIUTIU

field and far field, respectively, as the regions in which

0.62

√
D3

λ
< Rnear ≤

2D2

λ
, Rfar >

2D2

λ
, (2)

where D is the array aperture and λ is the excitation wavelength. Only when the target meets the far
field criterion, the wave fronts are plane waves and wave propagation directions are the same for all of
the array elements.

In the region R ≤ 0.62
√

D3/λ, phased array theory is no longer valid; however, other methods for
damage detection such as PWAS electromechanical impedance technique [Zagrai and Giurgiutiu 2001]
can be employed.

2.1. Generic beamforming formulation for PWAS Lamb waves phased arrays. We developed generic
PWAS beamforming formulas for wave beam steering at any point either in the near field or in the far
field. The following assumptions are made:

• All the PWAS elements in the array lie in the same plane and behave as point-wise sources and
receivers (omnidirectional);

• Monochromatic excitation and reception, without considering the dispersion of guided waves and
the waves are propagating at a constant speed c in an isotropic material;

• Simultaneous excitation along the array elements.

The beamforming onto a target P(Er , φ) using an M-PWAS phased array with elements {Esm} is con-
sidered. The origin of coordinate system is defined in the phase center, that is,

∑
Esm/M = 0, for

m = 0, 1, . . . ,M − 1. For all waves arriving at the target P , the delay-and-sum beamforming consists of
two steps:

(1) applying a delay 1m and a weighting factor wm to the propagating wave from the m-th PWAS,
f (Erm, t);

(2) summing up the output signals of the total of M PWAS.

This procedure can be expressed as

z(Er , t)=

M−1∑
m=0

wm f (Erm, t −1m).

For a single-tone radial wave, the wave front at a point Er away from the source can be expressed as

f (Er , t)=
A√
|Er |

e j (ωt−Ek·Er) (3)

with Ek is the wave number, Ek = Eξ ·ω/c, and ω is wave frequency of the wave. For an M-element array,
we apply (3) to each array element m, where m = 0, 1, . . . ,M−1 (see Figure 4). The m-th element is
assumed at location Esm , whereas the direction vector from m-th element to the target is defined as Eξm .
The following notations apply

Eξ =
Er
r
, r = |Er |, Ek = Eξ ·

ω

c
, Erm = Er − Esm, rm = |Erm |, Eξm =

Erm

|Erm |
, Ekm = Eξm ·

ω

c
,
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Figure 4. Schematic of the geometry of the m-th PWAS and the target at P(Er , φ).

where Ekm is the wave number of the wave propagating in the direction of Eξm .
The synthetic wave front arriving at target P(Er , φ) resulting from the superposition of the waves

generated by the M sources can be written as

z(Er , t)=

M−1∑
m=0

wm f (Erm, t)=

M−1∑
m=0

wm ·
A

√
rm

e j[ωt−Ekm ·Erm ]. (4)

Generic beamforming: the triangular algorithm. Equation (4) is rewritten in the form

z(Er , t)= f
(

t −
r
c

)
·

M−1∑
m=0

wm
1

√
rm/r

e jω
r−rm

c , (5)

where the first multiplier represents the wave front emitting from a single source at the origin and is
independent of the array elements. This wave is to be used as a reference for calculating the needed time
delay for each elementary wave. The second multiplier is a summation which is the total effects caused
by individual sources, various weighting factors and locations. Equation (5) shows that the synthetic
signal z(Er , t) is controlled by the multiplier

M−1∑
m=0

wm
1

√
rm/r

e jω
r−rm

c ,

which depends on the weighting factors wm , the location r of the target, and the locations Esm of the
PWAS sources. We identify this multiplier as the beamforming factor, BF , given by

BF(wm, r, sm)=

M−1∑
m=0

wm
1

√
rm/r

e jω
r−rm

c . (6)

Equation (6) is the direct beamforming of a group of M-PWAS fired simultaneously. To achieve beam-
forming in a certain direction φ0, we apply certain delays to the signals from each element. The delays
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are defined as 1m(φ0), m = 0, 1, . . . ,M − 1. Then, the beamforming formula in (6) gives

BF
(
wm, r, sm, φ0,1m(φ0)

)
=

M−1∑
m=0

wm
1

√
rm/r

e jω
( r−rm

c −1m(φ0)
)
,

where rm is a function of sm and φ0. Beamforming is achieved when the delays 1m(φ0) are chosen in
such a way as to maximize BF . We observe that a maximum of BF

(
wm, r, sm, φ0,1m(φ0)

)
is achieved

if the exponential in summation equal to one, that is,

r − rm

c
−1m(φ0)= 0 (beamforming condition), (7)

which yields the delays to be applied to each element:

1m(sm, φ0)=
r(φ0)− rm(sm, φ0)

c
, m = 0, 1, . . . ,M − 1. (8)

Notice that the delays not only depend on the desired maximum beamforming direction, but also depend
on the location of the PWAS sources. Using the delays 1m(sm, φ0), the beamforming factor at the
particular direction φ0 reaches a maximum, that is,

BFmax(wm, r, sm, φ0)=

M−1∑
m=0

wm
1

√
rm(sm, φ0)/r

.

The maximum beamforming depends on the beamforming direction φ0, besides the weighting wm , target
P(r, φ), and PWAS source location sm .

Further manipulation of the beamforming can be obtained by adjusting the weighting factors wm . Thus
far, we conclude that by applying proper time delays and weightings, the phased array beamforming at
a desired direction can be achieved. When the beam steering direction φ0 changes, the phased array
beamforming will accomplish scanning.

Far field beamforming: the parallel algorithm. If the target meets the far field condition, the parallel ray
assumption applies. The generic formulas developed in the previous section can be simplified to become
independent of the target radial position. Since the propagation directions of the waves are now parallel
to each other, we have

Erm ‖ Er , Eξm ≈ Eξ,
√

rm ≈
√

r , Ekm ≈ Eξ ·
ω

c
= Ek, m = 0, 1, . . . ,M − 1.

After applying delay and weighting, the beamforming factor becomes

BF(wm, Esm, φ0)=

M−1∑
m=0

wme jω
( Eξ ·Esm

c −1m(φ0)
)
. (9)

For a particular direction φ0, the beamforming factor can be achieved by setting 1m(φ0) = Eξ · Esm/c.
Substituting that into (9) gives a beamforming factor that depends only on weight wm , that is,

BF max(wm)=

M−1∑
m=0

wm .
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Figure 5. Schematic of an M-PWAS phased array. The coordinate origin is located in
the middle of the array.

2.2. Directional beamforming of 1-D linear PWAS array. The generic PWAS phased array beamform-
ing formulas derived in the previous section will be first applied to the simplest and also one of the most
practical arrays, the 1-D linear array. This is achieved by placing the PWAS along a straight line. Here, a
M-PWAS linear array uniformly spaced at d is considered, as illustrated in Figure 5. The span (aperture)
D of the array is D = (M − 1) · d. With the coordinate system origin located in the middle of the array,
the location vector of the m-th element and the vector rm are

Esm =

[
d
(

m −
M−1

2

)
, 0
]
, Erm = Er − Esm .

Recall from Equation (5) that the synthetic wave front received at P(r, φ) from the M-PWAS array is

z(Er , t)= f
(

t −
r
c

)
·

M−1∑
m=0

wm
1

√
rm/r

e jω
r−rm

c .

The first multiplier represents a wave emitting from the origin and it is independent of the array elements.
This wave is to be used as a reference for calculating the needed time delay for each elementary wave.
The second multiplier, which controls the array beamforming, can be simplified by normalizing rm by
the quantity r , resulting in the beamforming factor

BF(wm,M)=
1
M

·

M−1∑
m=0

wm

exp
(

j 2π
λ
(1 − rm)

)
√

rm
.

The scale factor 1/M is used to normalize the beamforming factor. By further introducing two new
parameters, d/λ and r/d , the beamforming is rewritten as

BF
(
wm,M,

d
λ
,

r
d

)
=

1
M

·

M−1∑
m=0

wm

exp
(

j2π d
λ

r
d
(1 − rm)

)
√

rm
. (10)
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Figure 6. The original beamforming and directional beamforming at 45◦ of an 8 PWAS
phased array with d/λ= 0.5, r/d = 10, {wm} = 1.

For the far field situation, the simplified beamforming is independent of r/d , that is,

BF
(
wm,M,

d
λ

)
=

1
M

·

M−1∑
m=0

wm exp
(

j2π
d
λ

(
m −

M−1
2

)
cosφ

)
. (11)

The beamforming factor in (10) and (11) has a maximum value for φ0 = 90◦. This is the inherent
beamforming of the linear array. The inherent beamforming for an 8-PWAS array with {wm} = 1, d/λ=

0.5, and r/d = 10 is shown in Figure 6 (solid line). Notice that, indeed, the maximum beam is obtained
at 90◦.

Now applying “delays” δm(φ0) to steer the beam towards a preferred direction φ0 the beamforming is

BF
(
wm,M, d

λ
,

r
d
, φ0

)
=

1
M

·

M−1∑
m=0

wm

exp
(

j2π d
λ

r
d
(1 − rm − δm(φ0))

)
√

rm
. (12)

The beamforming factor of (12) reaches its maximum in direction φ0 when the delay δm(φ0) is

δm(φ0)= 1 − rm(φ0)= 1 −
|Er(φ0)− Esm |

|Er(φ0)|
.

By changing the value of φ0 from 0◦ to 180◦, we can generate a scanning beam. Simulation results of
the directional beamforming at φ0 = 45◦ are also shown in Figure 6.

2.3. PWAS array implementation: embedded ultrasonic structural radar (EUSR). The embedded ul-
trasonic structural radar (EUSR) methodology [Giurgiutiu and Bao 2002] was first developed under the
parallel rays approximation and the assumption of a 1-D linear PWAS array permanently attached onto
the structure. We generalize the original EUSR algorithm by implementing the beamforming of a generic
array configuration using the exact wave propagation paths theory presented in previous sections.
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For an M-PWAS array, with all elements fired simultaneously with the same excitation sT (t), the total
signal arriving at target P(r, φ0) is

sP(t)=

M−1∑
m=0

wm
1

√
rm

sT

(
t −

r
c

+
r − rm

c

)
, (13)

where 1/
√

rm represents the decay due to the omnidirectional 2-D wave radiation, r/c is the time traveling
to the target from the origin O , and (r − rm)/c is the time to the target from the m-th element. Wave-
energy conservation, that is, no dissipation, is assumed. If the elements are fired with certain delays
rather than simultaneously, that is, 1m(φ)= (r − rm)/c, Equation (13) becomes

sP(t)= sT

(
t −

r
c

) M−1∑
m=0

wm
1

√
rm
.

This shows a factor of the sum over the signal magnitude of the individual excitation sT (t).
If the delay 1m(φ) is taken at φ = ±φ0, a maximum transmitting wave directed to the target P(r, φ0)

is thus obtained through implementing delays in the firing of the elements in the array.
After the transmission signals arrive at target P , they will be scattered and picked up by the array.

The PWAS transducers serve now as receivers. The signal received at the m-th PWAS will arrive quicker
by 1m(φ) = (r − rm)/c. To synchronize all the received signals, we simply need to delay them with
1m(φ) = (r − rm)/c. Assume that at P(r, φ0) the incoming signal is backscattered with a backscatter
coefficient A; thus, the signal received at each PWAS will be

1
√

rm
sT

(
t −

r
c

+
r − rm

c

)
A

M−1∑
m=0

wm
1

√
rm
.

The receiver beamforming is obtained by assembling all the signals arriving at the same time, that is,

sR(t)=

( M−1∑
m=0

w′

m
1

√
rm

)
sT

(
t −

r
c

)
A

M−1∑
m=0

wm
1

√
rm
, (14)

where appropriate delays 1m(φ)= (r − rm)/c were used, and w′
m as the weighting for reception beam-

forming. Thus, the assembled received signal is further scaled by the factor
∑M−1

m=0 w
′
m/

√
rm .

If the location of target P(r, φ0) is indicated by the angle φ0, the coarse estimation of φ0 can be
implemented by using the φ0 sweeping method. For linear PWAS array, the EUSR algorithm scans
through 0◦ to 180◦ by incrementing φ0 at 1◦ each time, and then finding the direction where the maximum
received energy, max ER(φ0), is obtained. The received energy, ER(φ0) is defined as

ER(φ0)=

∫ tp+ta

tp

|sR(t)|2dt .

2.4. Proof-of-concept laboratory experiments. A smoothed toneburst signal of carrying frequency fc

was used to excite S0 Lamb wave mode in the PWAS array experiments. The PWAS Lamb-wave tuning
principles [Giurgiutiu 2005; Bottai and Giurgiutiu 2005] were used to achieve the tuning frequency. The
general form of the tone-burst excitation was sT (t) = s0(t) cos 2π fct , where s0(t) is a short-duration
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Figure 7. EUSR experiment using an 8-PWAS array: specimen layout and experiment setup.

smoothing Hanning window between 0 and tp that is applied to the carrier signal of frequency fc. The
values tp is calculated by tp = Nc/ fc where Nc is the count number. Since S0 is quasi-nondispersive for
our f d range, we assume a constant wave speed c, and the wavelength λ was determined as λ= c/ fc.

The laboratory proof-of-concept experiments use a set of 1220 mm square 2024 T3 aluminum plates
of 1 mm thickness with different damage types. A PWAS array consisting of eight 7-mm round PWAS
spaced at 8 mm pitch was installed in the center of the plate, as illustrated in Figure 7, left. The damage
was simulated by fully penetrated 1-mm wide and 20-mm long slits representing cracks and pin holes
of various diameters. A 3-count toneburst signal was used as the excitation. The carrying frequency fc

was defined in the range 100 ∼ 600 kHz until the S0 modes was tuned at 300 kHz.
The experimental setup (Figure 7, right) includes a HP33120 function generator to send the excitation

and a TDS210 digital oscilloscope to collect the signals. The collected signals were stored in a computer
through the GPIB interface. A round-robin pattern was used for signal excitation and collection. At
each time, one PWAS acted as transmitter to send out the excitation signal and all the PWAS served as
receivers to pick up the reflection signals.

Then all the elements in the array serve as transmitters in turn. By this means, when the round-robin
data collection is done, a total of M2 signals are recorded. The switch between transmitters and receivers
is implemented through the PWAS-ASCU unit described in [Liu and Giurgiutiu 2005]. A typical raw
signal recorded in the experiments is shown in Figure 8. The signal-to-noise ratio for the raw signal is
found to be 7.6.

The delay-and-sum beamforming procedure was processed as a post processing routine to generate a
virtual scanning beam using the improved EUSR algorithm. This is advantageous and different from the
traditional phased arrays instruments which have high device requirements for sending out all the phased
signals simultaneously through parallel channels.

The virtual scanning result from the EUSR is visualized as a 2-D image by mapping the wave magni-
tude. In addition, a display of an A-scan signal at a user selected direction is also provided. Figure 9 gives
an example of using the PWAS array EUSR to scan a specimen (plate #1) with a broadside crack located
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Figure 8. A typical raw signal collected in the proof-of-concept experiment with close-
up plot of echo from crack.

about 305 mm in front of the array. The excitation frequency was tuned to 300 kHz where the S0 wave
was dominant (Figure 9c). At this frequency, the S0 wave propagates at speed 5440 m/s with λ= 18 mm.
The dark stripe seen in Figure 9b at position of 90◦ and about 305 mm away from the array indicated
the presence of the broadside crack. Figure 9d gives the A-scan signal at 90◦ and 30◦. Note here that
an observation window is used to maximize the display by removing the initial bang and the reflections
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Figure 9. Proof-of-concept PWAS EUSR scanning experiment for detecting a broadside
crack: (a) schematic of half a plate with a broadside crack; (b) mapped EUSR scanning
image; (c) S0 mode tuning curve for using 8 mm round PWAS in a 1 mm thick aluminum
plate; (d) selected A-scan at 90◦.
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from the boundaries. The estimated signal-to-noise ratio for the crack echo was signal-to-noise ratio of
approximately 38, a great enhancement when compared with the raw signal.

The scanning image obtained from the experiment shows that EUSR can correctly show the presence
of the crack and indicates that the crack is centered at 90◦ and around 305 mm in front of the array. These
results match quite well the actual situation. However, there are a couple of dark stripes on the picture
in Figure 9b and the estimation of the crack size is rather coarse. Further work was found needed to
improve the image quality, as shown in the next section.

3. Advanced signal processing for EUSR

Observing the A-scan signals in Figure 9d, it is realized that the multiple lines shown in scanned image
is actually caused by the multiple local maxima in the rectified signal. Such an influence can be removed
by rectifying the signal and replacing it with its envelope. Moreover, background noise is present at
all the time, resulting the circular ripples in the scanned image. To remove these problems, we added
the Hilbert transform and thresholding to the post-processing of the EUSR system. These modules we
inserted immediately after the beamforming algorithm and before the visualization section. In addition,
we applied denoising and filtering at a particular frequency component using wavelet analysis and time-
of-flight detection through cross correlation methods.

3.1. Essential signal processing. Two methods, the Hilbert transform and the thresholding process, are
used as essential signal processing to enhance the EUSR image quality.

Envelop extraction using Hilbert transform. Envelope represents the absolute amplitude of a signal. It
can be easily extracted through the Hilbert transform. Hilbert transform is widely used to construct an
analytical signal which has the envelope of the original signal. The Hilbert transform of a signal x(t) is
defined as (see [Poularikas 2006, Chapter 10])

H(x(t))= −
1
π

∫
+∞

−∞

x(τ )
t − τ

dt .

To build an analytical signal x̃(t), the original signal x(t) is employed to construct the real part, the
Hilbert transform H(x(t)) is employed to construct the imaginary part, that is, x̃(t)= x(t)+ j H(x(t)).
The analytical signal x̃(t) has the property that it has the same envelope as the original signal, that is,
|x̃(t)| = |x(t)|. Hence we can find the envelop of the original signal x(t) by taking the magnitude of the
analytical signal x̃(t). Figure 10 demonstrates the envelope of an A-scan signal recorded at 90◦ extracted
with the Hilbert transform [Yu and Giurgiutiu 2005a]. The original echo of the crack shows many local
maxima, which introduces difficulties in automatically detecting the location of the crack (as the case
shown in Figure 9b). After extracting the envelope, there is only one peak to consider, and peak detection
method can be easily applied.

Thresholding. As shown in Figure 9b, some background noise shows up in the image, resulting in the
ripples in the image. To remove these ripples, a thresholding process is included after the Hilbert trans-
form. By this means, noise signal below the threshold value will be discarded. The original and improved
EUSR scanning image of the broadside crack specimen are shown in Figure 11.
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Figure 10. Envelope extraction by the Hilbert transform.

3.2. Additional advanced signal processing. As options, more modules have been developed for more
signal processing objective as well. These modules include denoising by discrete wavelet transform,
single frequency component filtering by continuous wavelet transform, and precise measurement of TOF
by cross correlation method. Details of this development can be found in Yu and Giurgiutiu [2005a]. An
overview is given next.

Denoising by discrete wavelet transform (DWT). Based on multiresolution analysis (MRA), the discrete
Wavelet transform (DWT) provides a tool for decomposing signals into a set of elementary mutually-
orthogonal building blocks, called wavelets. The DWT is defined as

cm,n =

∫
+∞

−∞

x(t)9m,n(t)dt, 9m,n(t)= 2−m/29(2−m t − n),

where 9m,n(t) are orthonormal wavelets obtained by shifting and dilating a mother wavelet 9(t). The
coefficients cm,n are usually considered as the result of a filter being applied to the signal; the filter is
working as a highpass filter and a lowpass filter to extract the signal’s approximation and detail informa-
tion, respectively. After each filtering process, half of the frequencies of the original signal are removed.
At the same time, half the signal samples can be discarded by a downsampling process of a factor of 2

(a)

 

(b)

 

 

Figure 11. EUSR inspection results: original image (left) and improved image after
Hilbert transform and thresholding process (right).
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Figure 12. A 3-level DWT denoising using Mayer wavelet: (a) original signal from
broadside experiment; (b) denoised clean signal; (c) removed noise.

consistent with the Nyquist rule. Such a decomposition process will continue for l times (called DWT
level) until data remaining is within the user-defined allowable error range, defined in the filter bank
theory [Boggess and Narcowich 2001]. Therefore, the original signal is separated into two parts, the
approximation part, that is, the denoised signal, and the details part, that is, the removed noise. As an
example, a raw signal recorded in the broadside experiment was processed by a 3 level DWT using
the Mayer wavelet. Figure 12a shows the processed original data. Note that, in this proof-of-concept
experiment, the noise level is not severe. After DWT denoising, certain noise (shown in Figure 12c at
a zoomed scale) was removed and a much cleaner signal was obtained (Figure 12b). The small ripples
were significantly reduced (see the circled segments between wave packets). The large components at
the beginning of the noise caused by truncation in initial bang, which were not removed, but they will
be later discarded through time windowing.

Filtering by continuous wavelet transform (CWT). Another way to remove disturbance is offered by the
continuous wavelet transform (CWT). The CWT of signal x(t) using the mother wavelet ψ(t) is

CW T (a, τ )=
1

√
|a|

∫
x(t)ψ∗

( t−τ
a

)
dt, (15)

where a is the scale (or dilation) factor, τ is the translation (or time shift) of the wavelet with respect to
the signal, and the factor 1/

√
|a| is introduced for energy normalization at different scales. The resulting

scale-frequency representation of the magnitude squared, |CW T (a, τ )|2, is the scalogram

|CW T (a, τ )|2 =
1
|a|

∣∣∣∣∫ x(t)ψ∗

( t−τ
a

)
dt
∣∣∣∣2.
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Figure 13. CWT filtering at 300 kHz using Mayer wavelet: (a) original signal; (b) CWT
filtered result.

The relation between the scale and the filtering frequency f is

f =
dimensionless center frequency of the wavelet

(scale) × (sampling interval)
. (16)

With Equations (15) and (16), we see that a certain frequency component of interest can be extracted by
performing the CWT at the corresponding single scale. We named this process CWT filtering. In PWAS
array application, though excitation at tuned frequency is employed, the signal contains multifrequency
components due to tone-burst characteristics (having certain bandwidth). With CWT filtering, only the
frequency component at the wavelet level corresponding to the excitation frequency is used in the recep-
tion signals, reducing the influence of spectrum spread and dispersion. By this means, disturbances from
other frequencies can be removed. Figure 13 gives the filtering result of the same raw signal as used in
the DWT denoising. The CWT filtering used the Mayer wavelet to extract the frequency component at
300 kHz, which is the excitation frequency. Filtered result is shown in Figure 13b. In addition to the
reduced background noise, it is interesting to observe that the 300 kHz component in the initial bang was
also extracted with more focused energy. This illustrates the advantage of CWT over DWT filtering.

TOF detection by cross correlation. Cross correlation is widely used to detect similarities in two signals.
The cross correlation Rxy(m) of two discrete signals x(n) and y(m) of length N is defined by

Rxy(m)=
1
N

N−1∑
n=0

x(n)y(n − m).

When the input signal x(n) slides along the time axis of the correlated signal y(m) with a small step,
the similarity of the overlapped part of two signals is compared. If the two signals are completely not
similar (unrelated), the correlation coefficient is 0, while if they are identical, the correlation coefficient
is 1. For real signals, the cross correlation method can reduce the noise since the noise is not related to
the signals and not auto-related either.

In our application, since the reflection caused by the damage resembles the original excitation, its
arrival time (TOF) can be extracted using the cross correlation method. Figure 14 illustrates this idea. A
signal received at PWAS (Figure 14b) is correlated with the 3-count toneburst excitation (Figure 14a),



476 LINGYU YU AND VICTOR GIURGIUTIU

Local maxima 

Arriving time 

of the echo 

(a)

(b)

(c) 

Figure 14. Cross-correlation for detecting TOF of the echo from the crack: (a) window-
smoothed tone-burst excitation; (b) received signal; (c) cross-correlation coefficients of
the signals.

generating a sequence of cross correlation coefficients (Figure 14c). The local maxima represent the
time instants when the wave packets have largest similarity with the toneburst, that is, at the arrival time
of the wave packet. To locate the TOF of echo from the crack, a time window can be used to cut off
influences from the initial bang and boundary reflections. After the TOF is obtained, the location of the
crack l can be estimated using the wave propagation speed c, that is, l = c · TOF.

3.3. Experiments with improved EUSR. To further confirm EUSR detection ability, more experiments
were conducted on different specimens. These specimens include: (1) plate #2 with a broadside crack
inclined at 30◦; (2) plate #3 with a horizontally positioned offside crack located at 137◦; (3) plate #4
with a broadside pin hole of increasing diameter (0.5 mm, 1 mm, 1.57 mm, 2 mm); (4) plate #5 with
two aligned horizontally positioned offside cracks at 67◦ and 117◦, respectively. Specimen schematics
are shown in Figure 15. All plates have the same dimension as the one used in the proof-of-concept
experiment and the perpendicular distances from the damage to the array are 301 mm for all the plates.

To compare the imaging of the horizontal broadside crack specimen and the 30◦-inclined crack spec-
imen, these EUSR images are presented side-by-side in Figure 16. It is noticed that the image of the
inclined crack is a little further away from the array. This is because some incipient waves were reflected
away due to the slope. The inclined-crack footprint in the EUSR image is also smaller than the parallel
crack. This leads to the idea of an effective crack length, Le = L cosα, where α = 30◦. The slope of the
crack was not clearly indicated in Figure 16, right. We believe that this is due to the lack of resolution
inherent in the 300 kHz S0 Lamb wave used in the detection, which is with the crack length (λS0 ≈ 16 mm
at 300 kHz).

The pin hole damage detection in plate #4 was started from diameter 0.5 mm and then gradually
enlarged to 1 mm, 1.57 mm, and 2 mm (in accordance with available drill bit sizes). EUSR failed to
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Figure 15. EUSR proof-of-concept experimental specimen schematics (all cracks are
20 mm long, 1 mm wide).

detect the pin hole of 0.5 mm diameter. Neither did it detect the pin hole of 1 mm diameter. When the
hole was enlarged to 1.57 mm, EUSR gave a precise indication for the pin hole location, as shown in
Figure 17, left. We considered this dimension as the minimum detectable damage dimension at this
inspection frequency. The EUSR image of the 2 mm pin hole was even stronger, as shown by Figure 17,
right, which is more intense than the left counterpart for the 1.57-mm pin hole.

Figure 18, left, shows the EUSR scanning image of the plate #3, which has a single offside crack
at 137◦. Since the crack orientation is parallel to the array alignment, most of the incipient waves are
reflected away and no specular reflection is present. However, diffraction at crack tips creates suffi-
cient back scatter waves to permit detection. The resulting EUSR image shows the presence the crack,
verifying that EUSR PWAS phased array can detect cracks which are located in nonoptimal positions.
The scanning of plate #5, which has two offside cracks at 67◦ and 117◦, is shown in Figure 18, right.

(a)

 
Plate #1

(b)

 
Plate #2

 

Figure 16. EUSR scanning images of the broadside crack specimens. Left: EUSR
image of plate #1 with a broadside crack. Right: EUSR image of plate #2 with an
inclined broadside crack.
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Figure 17. EUSR scanning images of the pin hole specimen. Left: EUSR image of the
1.57 mm pin hole. Right: EUSR image of the 2 mm pin hole.

 (a) 
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 (b) 
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Figure 18. EUSR scanning images of the offside crack specimens. Left: EUSR image
of plate #3 with an offside crack at 137◦. Right; EUSR image of plate #5 with two
offside cracks at 67◦ and 137◦, respectively.

Both cracks are clearly detected in the image with correct center positions. This proves the multicrack
detection capabilities of the EUSR PWAS method.

4. PWAS phased array optimization

The PWAS phased array beamforming at certain direction φ0 is affected by several parameters:

• spacing between neighboring PWAS, d;

• number of PWAS, M ;

• steering angle, φ0;

• weighting factors, {wm}.

Among these parameters, the effect of spacing d is always measured by the wavelength λ. Since
λ= c/ f , when the wavelength λ changes with the frequency, the ratio of d/λ will also change. For the
triangular beamforming, there is an extra parameter needed to be considered, the ratio of r/d . Therefore,
the effect of parameter d can be represented by the ratio d/λ and the ratio r/d. If all the weighting
factors are the same ({wm} = constant), that is, all PWAS in the array are excited uniformly, this type
of phased array is called uniform array. Otherwise, it is called nonuniform array. We will use the
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Figure 19. Beamforming at 120◦ of an eight PWAS phased array spacing at 0.5λ with
various r/D value.

triangular beamforming algorithm to explore how these parameters affect the uniform PWAS phased
array beamforming and then find out how the beamforming is modified by the weighting factors.

4.1. Uniform PWAS phased array. First we consider an M-element uniform PWAS array equally spaced
at pitch d with equal weights, wm = 1.

Effect of the r/d ratio. The ratio r/d determines whether a target is located in the far field or the near
field of the phased array. If the target is in the near field, we have to use the exact triangular algorithm.
Otherwise, we use the parallel ray approximation. To better quantify this ratio, the array span D is used
instead of d using D = (M − 1)d . The field definitions of (2) can be expressed in terms of r/D

0.62

√
(M − 1)

d
λ
<
( r

D

)
near

≤ 2(M − 1)
d
λ
,

( r
D

)
far
> 2(M − 1)

d
λ
.

These definitions show that, for a particular application of an eight PWAS array spaced at half wavelength
(d = λ/2), the near field is contained in the interval r ∈ (1.16D, 7D], while the far field is the outside
area (r > 7D). Beamforming simulations with r/D value evolving from 1, to 2, 5, 7, and 10 are shown
in Figure 19 for a PWAS array directed at 120◦.

The simulation used parameters from the laboratory experiments, that is, aluminum plate of 1 mm
thickness and 3-count toneburst at fc = 300 kHz. Figure 19 shows that very close to the array field
(r/D = 1), directional beamforming does no longer exist (dashed line). However, as the target moves
away from the array (entering near field, r/D = 2), directional beamforming starts to take shape. The
beamforming is getting better when far-field conditions are approached (r/D = 5). In far field, where
parallel rays approximation applies, the effect of r/D vanishes. No significant difference can be noticed
between r/D = 7 and r/D = 10.

Effect of the d/λ ratio. The ratio d/λ shows the influence of spacing on array beamforming. Simulation
results of an eight PWAS array directed at 120◦ with various d/λ values are shown in Figure 20. By
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Figure 20. Beamforming at 120◦ of an eight-PWAS array with r/D = 10 using various
d/λ: (a) d/λ≤ 0.5; (b) d/λ > 0.5.

comparing the beams, it can be seen that the beam width becomes smaller and smaller as d/λ increases.
However, the number of sidelobes also increases. For larger d/λ value, narrow beam width (better
resolution/directivity) is achieved, but more sidelobe disturbing are also presented.

It is also noticed that, for beamforming at d/λ= 0.75 and beyond (Figure 20b), besides the mainlobe
at the desired angle of 120◦, there are other strong and disturbing lobes showing up at other undesired
directions. Such lobes are called grating lobes; they are caused by spatial aliasing [Johnson and Dudgeon
1993]. Grating lobes can have magnitudes as big as the mainlobe magnitude. The grating lobes are
not desired and should be avoided because they give misleading scanning results. According to the
spatial sampling theorem [Johnson and Dudgeon 1993], in order to avoid spatial aliasing, the spacing
d between elements should be smaller or equal to the half wavelength (d/λ≤ 0.5). Otherwise grating
lobes may appear. In practical implementation, this rule should be verified after frequency tuning. For
the 300 kHz tuning frequency used in the proof-of-concept experiments, the ratio d/λ has the value
d/λ= 0.44 (d = 8 mm; c = 5440 m/s). Therefore, no grating lobes are were yet presented.

Effect of the number M of PWAS in the array. The discussion about the influence of the spacing pitch
on the array beamforming indicates that larger spacing may give better directional beams despite of their
byproduct, larger sidelobes. However, the spacing cannot be unlimitedly increased because of the spatial
sampling theorem. The number of elements in the array is another factor that affects the beamforming.
Figure 21 demonstrates how beamforming is modified by different M values, for example, M = 8 and
M = 16. The comparison shows the beamforming of a 16-PWAS array yields a much narrower mainlobe
and slightly stronger sidelobes than that of an 8-PWAS array. Increasing the number of elements is a
simple way to enhance beamforming with the small penalty of larger sidelobes. However, in practice,
more elements will result in wiring issue and will be limited by the available installation space.

Effect of the steering angle φ0. Steering angle φ0 (beamforming direction) is another factor that affects
the beamforming. Figure 22a and b shows beamforming at 0◦, 30◦, 60◦, 90◦, 120◦, 150◦ directions using
eight-PWAS and sixteen-PWAS are arrays, respectively.

An overall examination of Figure 22 indicates that the best beamforming is achieved at φ0 = 90◦, with
a slender and focused beam. As the angle moves to either side of the 90◦ position, the beamforming
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Figure 21. Beamforming at 120◦ of PWAS array with r/D = 10 and d = 0.5λ using
different M . The beam in dash is obtained with M = 8 and the beam in solid is obtained
with M = 16.
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Figure 22. Beamforming at various steering angles with D/r = 10 and d = 0.5λ: (a)
an eight PWAS array; (b) a sixteen PWAS array.

worsens. At 0◦ and 180◦, the beamforming breaks down. In fact, at 0◦, the beamforming split into
two identical halves, one at 0◦, the other at 180◦. Such a lobe at 180◦ is called backlobe. As the
direction increases to 30◦ and 60◦, the back lobe shrinks and the main lobe becomes more directional.
Beamforming at 120◦ and 150◦ are symmetrical about the vertical center to that at 60◦ and 30◦. When
the mainlobe gets closer to 180◦ (such as 150◦), the back lobe starts again increasing. The directional
mainlobe is completely lost again at 180◦. This observations show that a linear PWAS array does not
have a complete 180◦ view but a smaller one. The result in Figure 22b confirms the conclusion, but
certain improvements due to the increased number of elements are apparent. Comparing the results for
M = 8 to those for M = 16, we see that an array with larger M gives larger view area. No directional
beam was obtained at 30◦ by the eight-PWAS array, but it was achieved by the sixteen-PWAS array.

4.2. Nonuniform PWAS phased array. Now we consider the case of having different excitations for the
array’s elements, that is, beamforming of a nonuniform PWAS array. The various excitations, if known,
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can be processed as weighting factors and implemented in the EUSR algorithm, that is,

BF
(
wm,M,

d
λ
,

r
d
, φ0

)
=

1
M

·

M−1∑
m=0

wm

exp
(

j2π d
λ

r
d
(1 − rm − δm(φ0))

)
√

rm
.

Two widely used distributions, the binomial distribution and the Dolph–Chebyshev distribution, will be
used to determine the effect of relative excitation amplitudes in the array.

Binomial array. The coefficients wm for a binomial array can be obtained by using the binomial expan-
sion of the expression (1 + x)M [Johnson and Dudgeon 1993], that is,

(1 + x)M−1
= 1 + (M − 1)x +

(M − 1)(M − 2)
2!

x2
+
(M − 1)(M − 2)(M − 3)

3!
x3

+ · · · .

The positive coefficients of the series at different values of M serve as the relative amplitude distribution
wm for an M-PWAS array. Such a nonuniform array is thereby named a binomial array. For M = 8,
the amplitude weights are {1, 7, 21, 35, 35, 21, 7, 1}. Beamforming simulation results for a binomial
array at different d/λ values are shown in Figure 23a. Larger d/λ yields thinner mainlobe, that is, better
resolution/directivity. Figure 23a also shows that the beamforming of the binomial array has no sidelobes.
Actually, this is the most significant characteristic of binomial arrays. Comparison with the beamforming
of an equivalent uniform array is given in Figure 23b (at d/λ= 0.5). Although the binomial array has a
wider mainlobe, it has no sidelobe at all which gives stronger signal suppression in undesired directions.

The disadvantage of using binomial array becomes, however, apparent if we look at directional beam-
forming away from 90◦, for example, φ0 = 45◦. Figure 23c shows that the binomial array had already
a deteriorated beamforming at 45◦ whereas the equivalent uniform array still has a directional beam. In
addition, the zero sidelobe advantage is lost as we move away from vertical. The binomial arrays have
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Figure 23. Beamforming of eight PWAS binomial array with r/D = 10: (a) beamform-
ing at 90◦ of a binomial array with various d/λ values; (b) beamforming at 90◦ of a
binomial array and an equivalent uniform array with d/λ= 0.5; (c) beamforming at 45◦

of a binomial and equivalent uniform array with d/λ= 0.5.
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Figure 24. Beamforming of an eight PWAS Dolph-Chebyshev array with r/D = 10 and
d/λ= 0.5: (a) beamforming at 90◦ and 45◦; (b) beamforming at 90◦ of all three arrays;
(c) beamforming at 45◦ of all three arrays.

smaller view area than the equivalent uniform arrays and sidelobes may show up when departing from
front focus.

Dolph–Chebyshev array. Though binomial arrays have the unique property of zero sidelobe at 90◦,
they give larger beam width and smaller view area. Another feasible nonuniform array is the Dolph–
Chebyshev array utilizing the Chebyshev distribution. By assigning a sidelobe level, that is, the ratio
of mainlobe magnitude to the first sidelobe magnitude, the Dolph–Chebyshev array coefficients can be
derived [Balanis 2005]. To build an 8-PWAS Dolph–Chebyshev array, for a desired sidelobe level of 20,
the normalized coefficients wm are given by {0.357, 0.485, 0.706, 0.89, 1, 1, 0.89, 0.706, 0.485, 0.357}.
Beamforming at 90◦ and 45◦ of this Dolph–Chebyshev array with d/λ= 0.5 and r/D = 10 is shown in
Figure 24a. It can be seen that, with the designed sidelobe level, the sidelobes are significantly suppressed.
If beamforming at 90◦ of all the three arrays are compared (Figure 24b), we see

(1) considering the sidelobe level, the binomial array has the smallest sidelobes (zero sidelobe), followed
by the Dolph–Chebyshev array while the uniform array has the highest sidelobe level;

(2) considering the mainlobe width (directionality), the uniform array has the thinnest mainlobe and
the Dolph–Chebyshev array is slightly larger, with the binomial array of largest width.

Beamforming at 45◦ is shown in Figure 24c. At this direction, the Dolph–Chebyshev array still has low
sidelobes and directional beamforming. In summary, the Dolph–Chebyshev array is a good compromise
between sidelobe level and mainlobe width. While sidelobes are suppressed, its directivity at off angles
is still well maintained.

4.3. Experiments with weighted EUSR for nonuniform arrays. The simulation results presented in the
previous section have shown that the Dolph–Chebyshev array is expected to have much smaller sidelobes
when compared to the equivalent uniform array, while having almost the same mainlobe width. For the
binomial array, it is expected to have much smaller sidelobe level but with enlarged mainlobe width.
Using the experimental data from the broadside crack specimen collected with the 8-PWAS uniform
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Figure 25. Crack detection using weighted EUSR algorithms on eight PWAS nonuni-
form arrays: (a) image of the original uniform array; (b) image of the Dolph–Chebyshev
array; (c) image of the binomial array.

array, we implemented the nonuniform arrays with the weighted EUSR algorithm. Figure 25a gives
the uniform array’s EUSR image before thresholding process. A phantom shadow is present as a ring
in which the crack shows up. Recalling the beamforming simulation results in Figure 24b, we know
that this is caused by the sidelobe effect. With either the Dolph–Chebyshev array or the binomial array,
the corresponding weighted EUSR algorithm should give better images with the phantom removed or
reduced. The scanning results of the two nonuniform arrays are shown in Figure 25b and Figure 25c,
respectively.

Immediately we observe that the sidelobe phantom has been sufficiently suppressed in both images,
as expected. But the crack size in the binomial array image is much wider than that of the uniform array.
The wider crack image further verifies that the binomial array produces the largest mainlobe width among
the three array considered in this study.

5. Conclusions

In this paper, we presented new developments of a novel SHM method, the embedded ultrasonic structural
radar (EUSR) [Giurgiutiu et al. 2006]. The EUSR method uses piezoelectric wafer active sensors (PWAS)
phased array to create directional Lamb wave for systematically interrogating large areas of a thin-wall
structure. After a brief presentation of using PWAS transducers to send and receive Lamb waves, we
introduced the frequency tuning technique that enables the application of phased array theory to PWAS
coupled Lamb waves.
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Original EUSR algorithm was developed on the parallel rays approximation in order to simplify the
beamforming calculation. However, the simplifying assumption is only valid when the target is far away
from the phased array and if the scanning field is not sufficiently far away, the method will deteriorate.
To overcome this problem, a generic beamforming formula, called triangular algorithm, was developed
by using exact wave traveling path for the calculation. Research results show that by applying proper
time delays and weightings, the phased array beamforming at a desired direction can be achieved through
this generic algorithm.

To verify the damage detection ability of PWAS phased array algorithm, a set of laboratory experiments
using a linear 8-PWAS array were conducted to detect various damages in aluminum plates. The beam-
forming is implemented as the signal post-processing algorithm, known as the EUSR method. This post
processing approach used in PWAS phase array implementation is advantageous over the conventional
ultrasonic phased arrays methods since sophisticated multichannel electronic devices are not needed to
precisely delay the individual signals going to the phased array elements. EUSR system collects data in
a round-robin fashion, then performs the scanning in virtual time, and presents the result as a 2-D image.
A proof-of-concept experiment was conducted and successfully verified the crack detection ability of the
EUSR approach.

To improve the display image quality, several advanced signal processing methods were discussed
for current or potential applications in EUSR routine. Signal preprocessing methods include the DWT
denoising to remove the noise and CWT fc-component filtering to eliminate the influence resulted from
spectrum spreading and Lamb waves dispersion. The signal post-processing after EUSR algorithm in-
cludes two steps. First Hilbert transform is used to extract the A-scan signal envelope thus avoiding
the ambiguity caused by multiple local peaks. Then the thresholding process is applied to remove the
background noise. Thus, a clear image with sharp contrast can be obtained to indicate the presence
of damage in the structure with better precision. To locate the position of the crack, TOF detection
module using the cross-correlation method was also implemented. Several experiments were conducted
to estimate the detection ability of the EUSR algorithm.

Beamforming properties of linear PWAS array were investigated. We found that several parameters
can be used to manipulate the output beamforming. They are: ratio d/λ, ratio r/d, number of elements
M , steering angle φ0, and weighting factors wm . The effects are concluded as following:

• Larger d/λ results in thinner mainlobe width. However, the requirement of d/λ ≤ 0.5 should be
met to observe the spatial sampling theorem. Otherwise, grating lobes are present.

• Larger r/d ratio results in better beamforming for the triangular algorithm.

• Larger M results in thinner mainlobe though the sidelobe level gets larger which wiring may become
an issue.

• The effective viewable area of linear arrays is less than 180◦. The actual range is affected by number
of elements and weighting.

• Weighting can further modify the beamforming, affecting, the mainlobe width, the sidelobes, and
viewable area.

Experimentally, two types of nonuniform PWAS arrays were implemented, the Dolph–Chebyshev
array and the binomial array. This was done by using a weighted EUSR algorithm. The results coincide
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with the simulation results: (1) in terms of mainlobe width, uniform array is the best, followed by the
Dolph–Chebyshev array while the binomial array yields the largest mainlobe; (2) in terms of sidelobes,
the binomial array can achieve the “no sidelobe” effect at 90◦ when spaced at half wavelength, while the
Dolph–Chebyshev array has manipulated sidelobe levels.

In a summary, the original contributions of this paper can be summarized as follows:

1. The paper presents an exact beamforming formulation using the exact wave traveling path rather
than using the conventional parallel ray approximation.

2. The paper explores how the PWAS phased array beamforming is affected by several phased array
parameters.

3. The paper presents how advanced signal processing methods can be used to improve the PWAS
phased array performance.

4. The paper verifies the potential application of nonuniform PWAS phased array in the pattern of
binomial array and Dolph–Chebyshev array.

Using proof-of-concept experiments, we have shown that the PWAS phased arrays implemented with
the EUSR algorithm has great potential for in-situ structural health monitoring. To apply this technique
to structures with complicated geometries or to detect small targets (weak reflectors) etc., more research
needs to be done. The use of the generic PWAS array beamforming formulas can be applied to 2-D
array configurations to obtain full range 360◦ scanning. Sustained theoretical research and technological
development will continue to be conducted to more this technique toward practical SHM implementation.

References

[Balanis 2005] C. A. Balanis, Antenna theory analysis and design, Wiley, Hoboken, NJ, 2005.

[Beral and Speckmann 2003] B. Beral and H. Speckmann, “Structural health monitoring (SHM) for aircraft structures: a
challenge for system developers and aircraft manufacturers”, pp. 12–29 in Proceedings of Structural Health Monitoring 2003:
From diagnostics and prognostics to structural health monitoring (Stanford, CA), edited by F.-K. Chang, Destech, Lancaster,
PA, 2003.

[Boggess and Narcowich 2001] A. Boggess and F. Narcowich, A first course in wavelets with Fourier analysis, Prentice-Hall,
Upper Saddle River, NJ, 2001.

[Bottai and Giurgiutiu 2005] G. Bottai and V. Giurgiutiu, “Simulation of the lamb wave interaction between piezoelectric
wafer active sensors and host structure”, pp. 259–270 in Smart structures and materials 2005: sensors and smart structures
technologies for civil, mechanical, and aerospace systems (San Diego), edited by M. Tomizuka, Proceedings of SPIE 5765,
SPIE, Bellingham, WA, 2005.

[Giurgiutiu 2005] V. Giurgiutiu, “Tuned lamb wave excitation and detection with piezoelectric wafer active sensors for struc-
tural health monitoring”, J. Intell. Mater. Syst. Struct. 16:4 (2005), 291–306.

[Giurgiutiu and Bao 2002] V. Giurgiutiu and J. Bao, “Embedded-ultrasonics structural radar for the nondestructive evaluation
of thin-wall structures”, pp. paper # 2002–39017 in Proceedings of the 2002 ASME International Mechanical Engineering
Congress and Exposition (New Orleans), ASME, New York, 2002.

[Giurgiutiu and Yu 2006] V. Giurgiutiu and L. Yu, “Optimized embedded ultrasonics structural radar (EUSR) with piezoelec-
tric wafer active sensors (PWAS) phased arrays for in-situ wide-area damage detection during SHM and NDE”, invention
disclosure submitted to USC-USCRF, June 2006.

[Giurgiutiu and Zagrai 2000] V. Giurgiutiu and A. Zagrai, “Characterization of piezoelectric wafer active sensors”, J. Intell.
Mater. Syst. Struct. 11 (2000), 959–976.



IN-SITU OPTIMIZED PWAS PHASED ARRAYS FOR LAMB WAVE MONITORING 487

[Giurgiutiu et al. 2006] V. Giurgiutiu, J. Bao, and A. N. Zagrai, “Structural health monitoring system utilizing guided Lamb
waves embedded ultrasonic structural radar”, US Patent No. US6996480B2, Feb. 7 2006.

[Johnson and Dudgeon 1993] D. H. Johnson and D. E. Dudgeon, Array signal processing: concepts and techniques, Prentice-
Hall, Upper Saddle River, NJ, 1993.

[Krautkramer and Krautkramer 1990] J. Krautkramer and H. Krautkramer, Ultrasonic testing of materials, vol. Berlin, 4th rev.
ed., Springer, 1990.

[Liu and Giurgiutiu 2005] W. Liu and V. Giurgiutiu, “Automation of data collection for PWAS-based structural health monitor-
ing”, pp. 1139–1147 in Smart structures and materials 2005: sensors and smart structures technologies for civil, mechanical,
and aerospace systems, edited by M. Tomizuka, Proceedings of SPIE 5765, SPIE, Bellingham, WA, 2005.

[Moles et al. 2005] M. Moles, N. Dube, S. Labbe, and E. Ginzel, “Review of ultrasonic phased arrays for pressure vessel and
pipeline”, J. Pressure Vessel Technol. 127:3 (2005), 351–356.

[Poularikas 2006] A. D. Poularikas (ed.), The transforms and applications handbook, CRC Press, Boca Raton, FL, 2006.

[Rose 1995] J. L. Rose, “Recent advances in guided wave NDE”, pp. 761–770 in 1995 IEEE ultrasonics symposium, 1995.

[Rose 1999] J. L. Rose, Ultrasonic waves in solid media, Cambridge University Press, 1999.

[Rose 2001] J. L. Rose, “A vision of ultrasonic guided wave inspection potential”, pp. 1–5 in Proceeding of the 7th ASME NDE
topical conference, NDE Topical Conference 20, 2001.

[Viktorov 1967] I. A. Viktorov, Rayleigh and Lamb waves: physical theory and applications, Plenum Press, New York, 1967.

[Yu and Giurgiutiu 2005a] L. Yu and V. Giurgiutiu, “Advanced signal processing for enhanced damage detection with embed-
ded ultrasonics structural radar using piezoelectric wafer active sensors”, Smart Struct. Syst. 1:2 (2005), 185–215.

[Yu and Giurgiutiu 2005b] L. Yu and V. Giurgiutiu, “Improvement of damage detection with the embedded ultrasonics struc-
tural radar for structural health monitoring”, pp. 1081–1090 in Proceedings of Structural Health Monitoring 2005: Advances
and challenges for implementation (Stanford, CA), edited by F.-K. Chang, Destech, Lancaster, PA, 2005.

[Zagrai and Giurgiutiu 2001] A. Zagrai and V. Giurgiutiu, “Electro-mechanical impedance method for crack detection in thin
plates”, J. Intell. Mater. Syst. Struct. 12:10 (2001), 709–718.

Received 20 Jul 2006. Accepted 12 Jan 2007.

LINGYU YU: yu3@engr.sc.edu
Department of Mechanical Engineering, University of South Carolina, Columbia, SC 29208, United States

VICTOR GIURGIUTIU: giurgiut@engr.sc.edu
Department of Mechanical Engineering, University of South Carolina, Columbia, SC 29208, United States



JOURNAL OF MECHANICS OF MATERIALS AND STRUCTURES
Vol. 2, No. 3, 2007

ONE-DIMENSIONAL THERMOELASTIC WAVES IN ELASTIC HALF-SPACE
WITH DUAL PHASE-LAG EFFECTS

SNEHANSHU KR. ROYCHOUDHURI

The theory of thermoelasticity with dual phase-lag effects is employed to study the problem of one-
dimensional disturbances in an elastic half-space with its plane boundary subjected to (i) a constant step
input of temperature and zero stress, and (ii) a constant step input of stress and zero temperature. The
Laplace transform method is used to solve the problem. Expressions for displacement, temperature and
stress fields are obtained for small values of time. It is found that the solutions consist of two coupled
waves both of which propagate with finite speeds and attenuation, influenced by the two delay times
and thermoelastic coupling constant. The discontinuities that occur at the wave fronts are obtained. The
characteristic features of the underlying theory are analyzed by comparing the results of the present
analysis with their counterparts in coupled thermoelasticity theory (CTE) and in other generalized ther-
moelasticity theories ETE, TRDTE and TEWOED.

1. Introduction

Thermoelasticity theories which involve finite speed of thermal signals (second sound) have created much
interest during the last three decades. The conventional coupled dynamic thermoelasticity theory (CTE),
based on the mixed parabolic-hyperbolic governing equations of [Biot 1956; Chadwick 1960], predicts
an infinite speed of propagation of thermoelastic disturbances. To remove the paradox of infinite speed
for propagation of thermoelastic disturbances, several generalized thermoelasticity theories have been de-
veloped, which involve hyperbolic governing equations. Among these generalized theories, the extended
thermoelasticity theory (ETE) proposed by Lord and Shulman [1967] involving one relaxation time
(called single-phase-lag model) and the temperature-rate-dependent theory of thermoelasticity (TRDTE)
proposed by Green and Lindsay [1972] involving two relaxation times are two important models of
generalized theory of thermoelasticity. Experimental studies [Kaminski 1990; Mitra et al. 1995; Tzou
1995a; 1995b] indicate that the relaxation times can be of relevance in the cases involving a rapidly
propagating crack tip, a localized moving heat source with high intensity, shock wave propagation, laser
technique etc. Because of the experimental evidence in support of finiteness of heat propagation speed,
the generalized thermoelasticity theories are considered to be more realistic than the conventional theory
in dealing with practical problems involving very large heat fluxes at short intervals like those occurring
in laser units and energy channels. For a review of the relevant literature, see [Chandrasekharaiah 1986;
Ignaczak 1989].

Green and Naghdi [1977; 1992; 1993] formulated three different models of thermoelasticity among
which, in one of these models, there is no dissipation of thermoelastic energy. This model is referred to as

Keywords: thermoelastic waves, dual phase-lag effects, thermoelastic half-space.
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the G–N model of thermoelasticity without energy dissipation (TEWOED). Problems concerning gener-
alized thermoelasticity theories and G–N theory have been studied by many authors [RoyChoudhuri and
Debnath 1983; RoyChoudhuri 1984; 1985; 1987; Dhaliwal and Rokne 1988; 1989; RoyChoudhuri 1990;
Chandrasekharaiah and Murthy 1993; Chandrasekhariah and Srinath 1996; RoyChoudhuri and Banerjee
2004; RoyChoudhuri and Bandyopadhyay 2005; RoyChoudhuri and Dutta 2005; 2005]. Tzou [1995a;
1995b] and Ozisik and Tzou [1994] have developed a new model called dual phase-lag model for heat
transport mechanism in which Fourier’s law is replaced by an approximation to a modification of Fourier’s
law with two different time translations for the heat flux and the temperature gradient. According to this
model, classical Fourier’s law Eq = −k E∇T has been generalized as Eq(P, t + τq) = −k E∇T (P, t + τT )

where the temperature gradient E∇T at a point P of the material at time t + τT corresponds to the heat
flux vector Eq at the same point at time t + τq . Here k is the thermal conductivity of the material. The
delay time τT is interpreted as that caused by the microstructural interactions (small-scale heat transport
mechanisms occurring in microscale) and is called the phase-lag of the temperature gradient. The other
delay time is τq interpreted as the relaxation time due to the fast transient effects of thermal inertia
(small-scale effects of heat transport in time) and is called the phase-lag of the heat flux. If τq = τ ,
τT = 0, Tzou [1995a; 1995b] refers to the model as the single phase-lag model. The case τq 6= τT (6= 0)
corresponds to the dual phase-lag model of the constitutive equation connecting the heat flux vector and
the temperature gradient. The case τq = τT (6= 0) becomes identical with the classical Fourier’s law.
Further for materials with τq > τT , the heat flux vector is the result of a temperature gradient and for
materials with τT > τq , the temperature gradient is the result of a heat flux vector. For a review of the
relevant literature, see [Chandrasekharaiah 1998]. A hyperbolic thermoelastic model was developed in
this same reference, taking into account the phase-lag of both temperature gradient and heat flux vector
and also the second order term in τq in Taylor’s expansion of heat flux vector and the first order term in
τT in Taylor’s expansion of the temperature gradient in the generalization of classical Fourier’s law. It
may be pointed out that ETE was formulated by taking into account the thermal relaxation time, which
is in fact the phase-lag of the heat flux vector (single phase-lag model).

The purpose of the present paper is to consider thermoelastic interaction in an elastic half-space in
the context of the thermoelasticity theory based on the Tzou model [1995a; 1995b] of heat transport
mechanism with dual phase-lag effects. The plane boundary is subjected to (i) a constant step input of
temperature and zero stress and (ii) a constant step input of stress and zero temperature. Laplace transform
is used as a mathematical tool. The expressions for displacement, temperature and stress in the half-space
are derived for small times. The solution for displacement, temperature and stress consist of two waves
– one, the predominantly elastic wave (E-wave) and the other, the predominantly thermal wave (T-wave)
in nature, both propagating with finite speeds modified by the nondimensional delay times τ ∗

q and τ ∗

T .
It is observed that the displacement is continuous at both the wave fronts while both the temperature
and stress fields suffer finite jumps at these locations. Further the waves suffer exponential attenuation
at both the wave fronts as in ETE and TRDTE. Similar problems have been studied in [Dhaliwal and
Rokne 1988; 1989] in the context of ETE and TRDTE, and in [Chandrasekhariah and Srinath 1996] in the
context of TEWOED. The results of the present analysis are compared with those derived in the context
of ETE, TRDTE, TEWOED and CTE. The present investigation has brought to light some similarities
and differences for the theories ETE, TRDTE, TEWOED and CTE.
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2. Formulation of the problem: basic equations

An isotropic elastic homogeneous half-space is considered. The plane boundary is subjected to a constant
step input of temperature and zero stress. We study the disturbances produced in the half-space. The solid
is subjected to one-dimensional deformation so that all the field variables are functions of the spatial co-
ordinate x and time t . If θ is the temperature increase at time t above the uniform reference temperature
θ0 and Eu the displacement vector, the heat transport equation which includes dual phase-lag effects (see
[Ozisik and Tzou 1994; Tzou 1995a; 1995b] ) is

k
(

1 + τT
∂

∂t

)
∇

2θ =

(
1 + τq

∂

∂t
+

1
2
τ 2

q
∂2

∂t2

)
(ρcv θ̇ +βθ01̇− ρR), (1)

where τT and τq are the phase-lag of the temperature gradient and of the heat flux respectively, often
referred to as the delay times, k is the thermal conductivity of the solid, and R is the heat source term.
In addition, 1= div ū and β = (3λ+ 2µ)αt . The displacement equation of motion is

µ∇
2
Eu + (λ+µ) grad1−β grad θ + ρ EF = ρ Ëu. (2)

Here λ and µ are Lamé constants, ρ is the constant mass density of the solid, αt is the coefficient of
linear thermal expansion of the material, k is the thermal conductivity, cv is the specific of the solid.

For one-dimensional deformation Eu = (u(x, t), 0, 0) and θ = θ(x, t). In absence of heat source and
body forces, the Equations (1) and (2), in case of one- dimensional disturbances, reduce to

k
(

1 + τT
∂

∂t

)∂2θ

∂x2 =

(
1 + τq

∂

∂t
+

1
2
τ 2

q
∂2

∂t2

)(
ρcv θ̇ +βθ0

∂2u
∂x∂t

)
(3)

and

(λ+ 2µ)
∂2u
∂x2 −β

∂θ

∂x
= ρ

∂2u
∂t2 . (4)

We introduce the following nondimensional variables

ξ =
c1x
κ
, η =

c2
1t
κ
, 2=

θ

θ0
, U =

c1(λ+ 2µ)u
κβθ0

,

where κ = k/ρcv is the thermal diffusivity. The Equations (3)–(4) reduce to the following nondimensional
forms (

1 + τ ∗

T
∂

∂η

)∂22

∂ξ 2 =

(
1 + τ ∗

q
∂

∂η
+

1
2
τ ∗

2

q
∂2

∂η2

)(∂2
∂η

+ ε
∂2U
∂ξ∂η

)
(5)

and
∂2U
∂ξ 2 −

∂2

∂ξ
=
∂2U
∂η2 , (6)

where

τ ∗

q =
τqc2

1

κ
, τ ∗

T =
τT c2

1

κ
, ε =

β2θ0

ρ2cvc2
1
, τ =

σxx

βθ0
=
∂U
∂ξ

−2

are respectively the nondimensional delay times, the thermoelasticity coupling, and the nondimensional
stress.

If τ ∗
q

2 is neglected and τ ∗

T = 0, on setting τ ∗
q = τ = thermal relaxation parameter, the equation (5) and

(6) reduce to L-S theory.
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Further if τ ∗
q

2 is neglected and τ ∗

T 6= 0, Equation (5) reduces to(
1 + τ ∗

T
∂

∂η

)∂22

∂ξ 2 =

(
1 + τ ∗

q
∂

∂η

)(∂2
∂η

+ ε
∂2U
∂ξ∂η

)
. (7)

This equation with the equation of motion (6) then constitutes a coupled system of field equations of a
thermoelasticity theory with non-Fourier heat transport equation (7).

3. Solution of the problem in the Laplace transform domain

We now proceed to study one-dimensional thermoelastic disturbances in the half-space ξ ≥ 0 on the basis
of Equations (5)–(6). We define the Laplace transforms of the functions U(ξ, η) and 2(ξ, η) by{

U (ξ, s),2(ξ, s)
}

=

∫
∞

0
{U (ξ, η),2(ξ, η)}e−sηdη,

where Re(s) > 0, s is the Laplace transform parameter. We assume that the medium is at rest at η = 0
and has its temperature, temperature-velocity and temperature acceleration equal to zero at η = 0. This
means that

U =
∂U
∂η

=
∂2U
∂η2 = 0 and 2=

∂2

∂η
=
∂22

∂η2 = 0, for η = 0, ξ ≥ 0. (8)

If the disturbances are caused by the sudden application of a constant step in temperature on the boundary
which is stress-free at time η > 0 (Danilovskaya’s problem [1950]), then this leads to the boundary
conditions

2(0, η)=20 H(η), τ (0, η)= 0, η > 0,

where 20 is a positive constant, and H(η) is the Heaviside unit step function, taking the value 1 if η > 0
and 0 if η ≤ 0.

On using stress-strain-temperature relations, the conditions become

θ(0, η)=20 H(η),
∂U
∂ξ
(0, η)=20 H(η), for η > 0. (9)

Alternatively, if the thermoelastic interactions are caused by a uniform step in the stress applied to the
boundary of the half-space, which is held at reference temperature θ0, then the following boundary
conditions hold:

τ(0, η)= −τ0 H(η), 2(0, η)= 0, η > 0,

where τ0 is a positive constant, or

∂U
∂ξ
(0, η)= −τ0 H(η), 2(0, η)= 0, for η > 0. (10)

Now the equations (5) and (6), on taking Laplace transform, reduce to

(N D2
− M)2= εM DU , (11)

(D2
− s2)U = D2, (12)



ONE-DIMENSIONAL THERMOELASTIC WAVES WITH DUAL PHASE-LAG EFFECTS 493

where

D =
d

dξ
, M = s

(
1 + τ ∗

q s +
1
2
τ ∗

q
2s2
)
, N = 1 + τ ∗

T s.

This leads to the following equation satisfied by U and 2[
N D4

− (Ns2
+ M + Mε)D2

+ Ms2](U ,2)= 0. (13)

The solutions of equation (13), vanishing as ξ → ∞, are assumed to take the form

U = c1e−m1ξ + c2e−m2ξ , 2= c1
1e−m1ξ + c1

2e−m2ξ , (14)

where m1,2 are the roots with positive real part of the equation

Nm4
− (Ns2

+ M + Mε)m2
+ Ms2

= 0. (15)

Again, on taking the Laplace transform of the boundary conditions (9) we have

2=
20

s
and

dU
dξ

=
20

s
, on ξ = 0. (16)

Substituting the solutions (14) into (12) and equating the coefficients of like exponentials, we obtain

c1
1 =

c1(s2
− m2

1)

m1
, c1

2 =
c2(s2

− m2
2)

m2

Using the conditions (16) and solving for c1, c2, we arrive at the following solutions in the Laplace
transform domain:

Case (i):
U =

20
s

1
(m2

2−m2
1)

[
m1e−m1ξ − m2e−m2ξ

]
,
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20
s

1
(m2
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− m2
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2) e−m2ξ

]
,

τ =
20s

(m2
2−m2

1)

[
e−m2ξ − e−m1ξ

]
, for ξ > 0.

(17)

Case (ii):

U =
τ0

s3(m2
1 − m2
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m1(s2

− m2
2) e−m1ξ − m2(s2

− m2
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− m2
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2
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e−m1ξ − e−m2ξ

]
,

τ =
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s(m2
1 − m2

2)

[
−(s2

− m2
2) e−m1ξ + (s2

− m2
1) e−m2ξ

]
, for ξ > 0.

(18)

The roots of the biquadratic equation (15) are given by

m2
1,2 =

1
2N

[
Ns2

+ M(1 + ε)±
{
(Ns2

+ M(1 + ε))2 − 4M Ns2}1/2
]
. (19)
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Clearly the roots given by (19) are real if s is real, since

(Ns2
+ M(1 + ε))2 − 4M Ns2

= (M − Ns2)2 + M2ε2
+ 2Mε(M + Ns2) > 0.

The inverse Laplace transforms of (17)–(18) then determine U,2, τ . Since m1,2 involve the Laplace
parameter s, determination of U,2, τ is difficult. Since the second sound effects are short-lived, it is
sufficient to derive and analyze the solutions for small η. This is done by taking Laplace parameter s to
be large.

Taking the sign + in (19), we have for large s,

m1 ∼=
s
v1

+
1
2
λ2
λ1

1
v1

+
1

2v1

(
λ3
λ1

−
1
4
λ2

3
λ2

1

)
1
s
. (20)

Taking the sign − in (19), we have for large s
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2
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1
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)
1
s
, (21)

where λ1 = A +
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A2 − 4F , λ2 = B +
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We note that

A2
− 4F =

1
4

[(
2τ ∗

T − τ ∗

q
)2

+ ε2τ ∗

q
4
+ 4τ ∗

T τ
∗

q
2
ε
]
> 0

and A > 0.
This indicates that v1,2 are both real.
Clearly λ1, µ1 > 0 since A >

√
A2 − 4F and F > 0. Further λ1 > µ1 implies v2 > v1.
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Now we are to prove that, under suitable restrictions on material constants, λ2 and µ2 are positive.
We have

λ2 = B +
L1

2

√
A2 − 4F −

A +
√

A2 − 4F
τ ∗

T
, µ2 = B −

L1

2

√
A2 − 4F −

A −
√

A2 − 4F
τ ∗

T
.

Now

λ2 > 0, if B +
L1

2

√
A2 − 4F >

A +
√

A2 − 4F
τ ∗

T
.

That is, if

B >
A
τ ∗

T
+

√
A2 − 4F
τ ∗

T

(
1 −

L1τ
∗

T

2

)
.

Similarly,

µ2 > 0, if B >
A
τ ∗

T
−

√
A2 − 4F
τ ∗

T

(
1 −

L1τ
∗

T

2

)
.

We impose the restriction on material parameters such that 1 > L1
2 τ

∗

T . Then since A, τ ∗

T > 0, B
must be positive under the restriction 1> L1

2 τ
∗

T . The required restriction, on substitution for L1, yields
A2

− 4F > τ ∗

T (AB − 2D). This leads to the inequality

(τ ∗

q − 2τ ∗

T )[(1 + ε)τ ∗
2

q − 2τ ∗

T (1 − ε)]> 0.

This is satisfied if τ ∗
q > 2τ ∗

T and

(1+ε)τ ∗
2

q −2τ ∗

T (1−ε) > (1+ε)4τ ∗
2

T −2τ ∗

T (1−ε)= 2τ ∗

T {2(1+ε)τ ∗

T +ε−1}> 0 or 2(1+ε)τ ∗

T > 1−ε.

Thus the two conditions are 2(1 + ε)τ ∗

T > 1 − ε, that is,

τT ∗>
1 − ε

2(1 + ε)
and τ ∗

q >

√
2τ ∗

T (1 − ε)

(1 + ε)
.

Further since τ ∗
q > 2τ ∗

T , we must have

τ ∗

q >
1 − ε

1 + ε
=: ε0.

The required restrictions on material constants for λ2 > 0 then reduce to

τq >
kε0

ρcvc2
1

and τT >
k

2ρcvc2
1
ε0.

Since λ2 > 0 implies µ2 > 0, the inequalities

τq >
kε0

ρcvc2
1

and τT >
kε0

2ρcvc2
1

imply that µ2 > 0. Using the results

m1 ∼=
s
v1

+
1
2
λ2

λ1

1
v1

and m2 ∼=
s
v2

+
1
2
µ2

µ1

1
v2



496 SNEHANSHU KR. ROYCHOUDHURI

for large s, we obtain the following results after simplification:

m1

s(m2
2 − m2

1)
∼=

1
L0v1

1
s2 −

1
L0

(
M0

L0
+
λ2

2λ1

)
1
v1

1
s3 ,

m2

s(m2
2 − m2

1)
∼=

1
L0v2

1
s2 −

1
L0

(
M0

L0
+
µ2

2µ1

)
1
v2

1
s3 ,

s2
− m2

2

s(m2
2 − m2

1)
∼=

1
L0

(
v2

2 − 1
v2

2

1
s

−

(M0

L0

v2
2 − 1
v2

2
+

µ2

µ1v
2
2

) 1
s2 +

( λ2

λ1v
2
1

M0

L0
+
v2

1 − 1
v2

1

(M2
0 − N0L0)

L2
0

) 1
s3

)
,

s2
− m2

1

s(m2
2 − m2

1)
∼=

1
L0

(
v2

1 − 1
v2

1

1
s

−

(M0

L0

v2
1 − 1
v2

1
+

λ2

λ1v
2
1

) 1
s2 +

( µ2

µ1v
2
2

M0

L0
+
v2

2 − 1
v2

2

(M2
0 − N0L0)

L2
0

) 1
s3

)
,

(s2
− m2

1)(s
2
− m2

2)

s3(m2
1 − m2

2)
∼= −

1
L0

(
(v2

1 − 1)(v2
2 − 1)

v2
1v

2
2

1
s

−

((v2
1 − 1)µ2

v2
1 ·µ1v

2
2

+
(v2

2 − 1)
v2

2
α1

) 1
s2

+

( µ2

µ1v
2
2
α1 +

(v2
2 − 1)
v2

2
α2

) 1
s3

)
,

where

L0 =
1
v2

2
−

1
v2

1
, M0 =

µ2

µ1v
2
2

−
λ2

λ1v
2
1
, N0 =

1
4

(
µ2

2

µ2
1v

2
2

−
λ2

2

λ2
1v

2
1

)
,

α1 =
M0

L0

(v2
1 − 1)
v2

1
+

λ2

λ1v
2
1
, α2 =

λ2

λ1v
2
1

M0

L0
+
(v2

1 − 1)
v2

1

(M2
0 − N0L0)

L2
0

.

Finally we obtain the following solutions for displacement, temperature and stress fields in the Laplace
transform domain for large s:

Case (i):

U (ξ, s)∼=20

[{
1

L0v1

1
s2 −

1
L0

(
M0

L0
+
λ2

2λ1

)
1
v1

1
s3

}
e−

(
s
v1

+
λ2

2λ1v1

)
ξ

−

{
1

L0v2

1
s2 −

1
L0

(
M0

L0
+
µ2

2µ1

)
1
v2

1
s3

}
e−

(
s
v2

+
µ2

2µ1v2

)
ξ

]
,

2(ξ, s)∼=
20

L0

[{
(v2

1 − 1)
v2

1

1
s

−

(
M0

L0

v2
1 − 1
v2

1
+

λ2

λ1v
2
1

)
1
s2

+

(
λ2

λ1v
2
1

M0

L0
+
(v2

1 − 1)
v2

1

(M2
0 − N0L0)

L2
0

)
1
s3

}
e−

(
s
v1

+
λ2

2λ1v1

)
ξ
−

{
(v2

2 − 1)
v2

2

1
s

−

(
M0

L0

(v2
2 − 1)
v2

2
+

µ2

µ1v
2
2

)
1
s2

+

(
µ2

µ1v
2
2

M0

L0
+
(v2

2 − 1)
v2

2

(M2
0 − N0L0)

L2
0

)
1
s3

}
e−

(
s
v2

+
µ2

2µ1v2

)
ξ

]
,
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τ(ξ, s)∼=
20

L0

[
−

{
1
s

−
M0

L0

1
s2 +

M2
0 − L0 N0

L2
0

1
s3

}
e−

(
s
v1

+
λ2

2λ1v1

)
ξ

+

{
1
s

−
M0

L0

1
s2 +

M2
0 − L0 N0

L2
0

1
s3

}
e−

(
s
v2

+
µ2

2µ1v2

)
·ξ

]
.

Case (ii):

U (ξ, s)∼=
τ0

L0

[
−

1
v1

{
(v2

2 − 1)
v2

2

1
s2 −

(
M0

L0

v2
2 − 1
v2

2
+

µ2

µ1v
2
2

)
1
s3

+

(
µ2

µ1v
2
2

M0

L0
+
(v2

2 − 1)
v2

2

(M2
0 − N0L0)

L2
0

)
1
s4

}
e−

(
s
v1

+
λ2

2λ1v1

)
ξ

+
1
v2

{
(v2

1 − 1)
v2

1

1
s2 −

(
M0

L0

(v2
1 − 1)
v2

1
+
λ2

λ1

1
v2

1

)
1
s3

+

(
λ2

λ1v
2
1

M0

L0
+
(v2

1 − 1)
v2

1

(M2
0 − N0L0

L2
0

)
1
s4

}
e−

(
s
v2

+
µ2

2µ1v2

)
ξ

]
,

2(ξ, s)∼= −
τ0

L0

[
(v2

1 − 1)(v2
2 − 1)

v2
1v

2
2

1
s

−

{
(v2

1 − 1)µ2

v2
1v

2
2µ1

+
(v2

2 − 1)
v2

2

(
M0

L0

(v2
1 − 1)
v2

1
+

λ2

λ1v
2
1

)}
·

1
s2

+

{
µ2

µ1v
2
2
α1 +

v2
2 − 1
v2

2
α2

}
1
s3

]
×

{
e−

(
s
v1

+
λ2

2λ1v1

)
ξ
− e−

(
s
v2

+
µ2

2µ1v2

)
ξ
}
,

τ (ξ, s)∼=
τ0

L0

[{
(v2

2 − 1)
v2

2

1
s

−

(
M0

L0

(v2
2 − 1)
v2

2
+

µ2

µ1v
2
2

)
1
s2

+

(
µ2

µ1v
2
2

M0

L0
+
(v2

2 − 1)
v2

2

(M2
0 − N0L0)

L2
0

)
1
s3

}
e−

(
s
v1

+
λ2

2λ1v1

)
ξ

−

{
(v2

1 − 1)
v2

1

1
s

−

(
M0

L0

(v2
1 − 1)
v2

1
+

λ2

λ1v
2
1

)
1
s2

+

(
λ2

λ1v
2
1

M0

L0
+
(v2

1 − 1)(M2
0 − L0 N0

v2
1 L2

0

)
1
s3

}
e−

(
s
v2

+
µ2

2µ1v2

)
ξ

]
.

4. Derivation of small-time solutions

Inverse Laplace transforms of the expressions yield the following small-time solutions for displacement,
temperature and stress fields.
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Case (i):

U (ξ, η)∼=20

[
e−

λ2
2λ1v1

ξ

{
1

L0v1

(
η−

ξ

v1

)
−

1
L0

(M0

L0
+
λ2

2λ1

) 1
v1

1
2

(
η−

ξ

v1

)2
}

H
(
η−

ξ

v1

)
− e−

µ2
2µ1v2

ξ

{
1

L0v2

(
η−

ξ

v2

)
,

−
1
L0

(M0

L0
+
µ2

2µ1

) 1
v1

1
2

(
η−

ξ

v2

)2
}

H
(
η−

ξ

v2

)]
, (23)

2(ξ, η)∼=
20

L0

[
e−

λ2
2λ1v1

ξ

{
(v2

1 − 1)
v2

1
−

(
M0

L0

(v2
1 − 1)2

v2
1

+
λ2

λ1v
2
1

)(
η−

ξ

v1

)

+

(
λ2

λ1v
2
1

M0

L0
+
(v2

1 − 1)
v2

1

(M2
0 − N0L0)

L2
0

)
1
2

(
η−

ξ

v1

)2
}

H
(
η−

ξ

v1

)

−e−
µ2

2µ1v2
ξ

{
(v2

2 − 1)
v2

2
−

(
M0

L0

(v2
2 − 1)
v2

2
+

µ2

µ1v
2
2

)(
η−

ξ

v2

)

+

(
µ2

µ1v
2
2

M0

L0
+
(v2

2 − 1)
v2

2

(M2
0 − N0L0)

L2
0

)
1
2

(
η−

ξ

v2

)2
}

H
(
η−

ξ

v2

)]
, (24)

τ(ξ, η)∼=
20

L0

[
−e−

λ2
2λ1v1

ξ

{
1 −

M0

L0

(
η−

ξ

v1

)
+

M2
0 − L0 N0

L2
0

1
2

(
η−

ξ

v2

)2
}

H
(
η−

ξ

v1

)
+e−

µ2
2µ1v2

ξ

{
1 −

M0

L0

(
η−

ξ

v2

)
+
(M2

0 − L0 N0)

L2
0

1
2

(
η−

ξ

v2

)2
}

H
(
η−

ξ

v2

)]
. (25)

Case (ii):

U (ξ, η)∼=
τ0

L0

[
−

e
v1

−
λ2

2λ1v1
ξ
{
(v2

2 − 1)
v2

2

(
η−

ξ

v1

)
−

(
M0

L0

v2
2 − 1
v2

2
+

µ2

µ1v
2
2

)
1
2

(
η−

ξ

v1

)2

+

(
µ2

µ1v
2
2

M0

L0
+
(v2

2 − 1)
v2

2

(M2
0 − N0L0)

L2
0

)
1
6

(
η−

ξ

v1

)3
}

H
(
η−

ξ

v1

)

+
e−

µ2
2µ1v2

ξ

v2

{
(v2

1 − 1)
v2

1

(
η−

ξ

v2

)
−

(
M0

L0

v2
1 − 1
v2

1
+
λ2

λ1

1
v2

1

)
1
2

(
η−

ξ

v2

)2

+

(
λ2

λ1v
2
1

M0

L0
+
(v2

1 − 1)
v2

1

(M2
0 − N0L0)

L2
0

)
1
6

(
η−

ξ

v2

)3
}

H
(
η−

ξ

v2

)]
, (26)
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2(ξ, η)∼= −
τ0

L0

[
φ
(
η−

ξ

v1

)
H
(
η−

ξ

v1

)
e−

λ2
2λ1v1

ξ
−ϕ

(
η−

ξ

v2

)
H
(
η−

ξ

v2

)
e−

µ2
2µ1v2

ξ

]
, (27)

τ(ξ, η)∼=
τ0

L0

[
e−

λ2
2λ1v1

ξ

{
v2

2 − 1
v2

2
H
(
η−

ξ

v1

)
−

(
M0

L0

v2
2 − 1
v2

2
+

µ2

µ1v
2
2

)(
η−

ξ

v1

)
H
(
η−

ξ

v1

)

+

(
µ2

µ1v
2
2

M0

L0
+
(v2

2 − 1)
v2

2

(M2
0 − N0L0)

L2
0

)
1
2

(
η−

ξ

v1

)2
H
(
η−

ξ

v1

)}

−e−
µ2

2µ1v2
ξ

{
v2

1 − 1
v2

1
H
(
η−

ξ

v2

)
−

(
M0

L0

(v2
1 − 1)
v2

1
+

λ2

λ1v
2
1

)(
η−

ξ

v2

)
H
(
η−

ξ

v2

)

+

(
λ2

λ1v
2
1

M0

L0
+
(v2

1 − 1)(M2
0 − N0L0)

v2
1 L2

0

)
1
2

(
η−

ξ

v2

)2
H
(
η−

ξ

v2

)}]
, (28)

where

ϕ(η)=
(v2

1 − 1)(v2
2 − 1)

v2
1v

2
2

−

{
(v2

1 − 1)µ2

v2
1v

2
2µ1

+
(v2

2 − 1)
v2

2

(
M0

L0

(v2
1 − 1)
v2

1
+

λ2

λ1v
2
1

)}
η+{
µ2

µ1v
2
2
α1 +

v2
2 − 1
v2

2
α2

}
1
2
η2.

5. Analysis of the solutions

The short-time solutions (23)–(28) for displacement, temperature, and stress fields reveal the existence
of two waves. Each of U , 2 and τ is composed of two parts and that each part corresponds to a wave
propagating with a finite speed. The speed of the wave corresponding to the first part is v1 and that
corresponding to the second part is v2. The faster wave has its speed equal to v2 and the slower wave
has its speed equal to v1.

One cannot classify (5) independently of (6) (as hyperbolic or parabolic), since a type of the coupled
system (5)–(6) must be determined.

For τ ∗
q

2
= 0, we obtain from (22),

A = τ ∗

T , B = 1 + (1 + ε)τ ∗

q ,

C = 1 + ε, D = τ ∗

T τ
∗

q ,

E = τ ∗

T + τ ∗

q , F = 0,

λ1 = 2τ ∗

T , λ2 = 2ετ ∗

q ,

µ1 = 0, µ2 = 2τ ∗

q ,
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L1 =
2 + 2τ ∗

q (ε− 1)

τ ∗

T
,

L2 =
{
(1 − τ ∗

q )
2
+ ε2τ ∗

q
2
+ 2ετ ∗

q (1 + τ ∗

q )+ 2τ ∗

T (ε− 1)
}
(τ ∗

T )
2.

These give

v2 = ∞, v1 −→ 1, L0 −→ −1, M0 = −ετ ∗

q /τ
∗

T , N0 = −
ε2τ ∗

q
2

4τ ∗

T
2 .

Therefore, for τ ∗
q

2
= 0, the system of equations (5)–(6) is of the mixed parabolic-hyperbolic type.

For τ ∗
q

2
6= 0, and τ ∗

T 6= 0, v2 corresponds to the modified speed of thermal signals and v1 corresponds
to the modified elastic dilatational wave speed, both modified by delay times in the thermoelastic solid
with dual phase-lag effects. Since v1 < v2, the faster wave is the predominantly modified Tzou wave (T-
wave) and the slower is a predominantly modified elastic wave (E-wave). The first term of the solutions
(23)–(28) represents the contribution of the E-wave near its wave front ξ = v1η and the second term
represents the contribution of the T-wave near its wave front ξ = v2η. We observe also that both the waves
experience decay exponentially with the distance (attenuation), which is also the case in CTE, ETE and
TRDTE, but not the case in TEWOED where the waves do not experience attenuation (see [Dhaliwal and
Rokne 1988;1989; Chandrasekhariah and Srinath 1996;1997]. From (23)–(28), we further note that all
of U,2, τ are identically zero for ξ > v2η. This implies that at a given instant of time η∗, the points of
the solid ξ > 0 that are beyond the faster wave front ξ = v2η∗ do not experience any disturbances. This
observation confirms that, like ETE, TRDTE, TEWOED the thermoelasticity theory with dual phase-lag
effects is also a wave thermoelasticity theory. Moreover it is interesting to record that at a given instant,
the region 0 < ξ < v2η∗ is the domain of influence of the disturbance, contrary to the result that this
domain extends and the effects occur instantaneously everywhere in the solid as predicted by CTE, see
[Boley and Tolins 1962].

By direct inspection of the solutions (23)–(28), we find that in both cases U is continuous whereas
both 2 and τ are discontinuous at both the wave fronts. The finite jumps experienced by temperature
and stress at the wave fronts are as follows:

Case (i):

[2]ξ=v1η = −
20

L0

v2
1 − 1
v2

1
e−

λ2
2λ1
η
,

[2]ξ=v2η =
20

L0

v2
2 − 1
v2

2
e−

µ2
2µ1

η
,

[τ ]ξ=v1η =
20

L0
e−

λ2
2λ1
η
,

[τ ]ξ=v2η = −
20

L0
e−

µ2
2µ1

η
.
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Case (ii):

[2]ξ=v1η =
τ0

L0

(v2
1 − 1)(v2

2 − 1)
v2

1v
2
2

e−
λ2

2λ1
·η
,

[2]ξ=v2η = −
τ0

L0

(v2
1 − 1)(v2

2 − 1)
v2

1v
2
2

e−
µ2

2µ1
·η
,

[τ ]ξ=v1η = −
τ0

L0

v2
2 − 1
v2

2
e−

λ2
2λ1

·η
,

[τ ]ξ=v2η = +
τ0

L0

v2
1 − 1
v2

1
e−

µ2
2µ1

·η
.

(29)

Here [ f ] denotes the jump of the function f across a wave front. The finite jumps are not constants
but they decay exponentially with distance from the boundary. The same results are observed to occur in
ETE, TRDTE [Dhaliwal and Rokne 1988;1989], but not in TEWOED where the jumps are all constants
[Chandrasekhariah and Srinath 1996;1997]. However the discontinuity in temperature and stress at both
the wave fronts is a situation common in the context of ETE, TRDTE and TEWOED [Norwood and
Warren 1969; Sherief and Dhaliwal 1981; Dhaliwal and Rokne 1988;1989; Chandrasekhariah and Srinath
1996]. Clearly the finite jumps of 2 and τ in the present analysis depend on the delay times τ ∗

T , τ
∗
q

and the thermo elastic coupling ε. The magnitudes of these jumps are exact, valid for short times and
hold for all possible values of ε, τ ∗

T and τ ∗
q . The expressions for jumps for case (ii) reveal another

interesting phenomenon. The temperature is discontinuous at both the wave fronts in spite of the fact that
the boundary load is purely mechanical in nature. This implies that the application of a discontinuous
mechanical load on the boundary does generate discontinuities in temperature. This phenomenon is
present in ETE as well, see [Sharma 1987] but absent in TRDTE [Chandrasekharaiah and Keshavan
1992]. According to TRDTE, the temperature is continuous when the applied load is purely mechanical
in nature [Chandrasekharaiah and Keshavan 1992]. A similar observation has been made in the half-
space problem in the context of TEWOED [Chandrasekharaiah 1996; Chandrasekharaiah and Srinath
1997].

If the effect of τ ∗
q

2 is neglected with τ ∗

T 6= 0, v1 → 1, and v2 → ∞, then there exists only one wave
front ξ = η (E-wave front) and the T-wave propagates with infinite speed as expected from Equations
(5)–(6) with τ ∗

q
2

= 0. In this case the jumps of 2 and τ at the elastic wave front ξ = η are given as
follows:

Case (i):

[2]ξ=η = 0, [τ ]ξ=η = −20e
−

1
2 ε

τ∗q
τ∗T
ξ
.

Case (ii):

[2]ξ=η = 0, [τ ]ξ=η = τ0 · e
−

1
2 ε·

τ∗q
τ∗T
ξ
. (30)

The jumps of temperature disappear at the E-wave front whereas that of stress τ exists and depends on
ε, τ ∗

T , τ
∗
q . These results are in complete agreement (for τ ∗

T = τ ∗
q ) with the corresponding results obtained

in the context of CTE with classical Fourier’s law, see [Boley and Tolins 1962]. Moreover, it is interesting
to record from solutions (25) and (28) that because of delay times, the position of jumps of stress shifts
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from ξ = η in CTE to ξ = v1η in the present analysis. Also the dual phase-lag model introduced by
[Tzou 1995a;1995b] brings to light the jumps of temperature 2 at the E-wave front too, which are not
encountered in CTE.
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FERROMAGNETIC SHAPE MEMORY EFFECTS
IN AN IRON PALLADIUM ALLOY

JUN CUI AND TOM SHIELD

This paper presents the results of an extensive series of experiments conducted on Fe70Pd30 using a
recently developed apparatus, the Magneto-Mechanical Testing Machine. These experiments were de-
signed to investigate the ferromagnetic shape-memory behavior of Fe70Pd30 and test the predictions of a
theory that assumes the magnetizations of the material are constrained to lie in the easy directions and
the material strains are constrained to be the shape-memory transformation strains. It was found that
a specimen made of Fe70Pd30 single crystal lengthens when a magnetic field is applied along its c axis
(short axis of FCT lattice) while the specimen is under uniaxial compression in the c direction. This be-
havior agrees with the predictions of the constrained theory and magnetic anisotropy measurements. The
maximum field-induced strain change measured in this material is about 0.009 at 5500 G and −1 MPa,
which is one fifth of the theoretical prediction. This is attributed to the magnetization rotation away
from the easy directions caused by insufficient magnetic anisotropy. Under −12 MPa of compression
the field-induced strain change is considerably smaller reaching only about 0.0008, but this change gives
the largest work output observed of 9.6 × 103 J/m3. This work output is very close to the work output of
Terfenol-D under this amount of compressive stress.

1. Introduction

Shape memory alloys (SMAs) are materials that undergo a reversible, diffusionless structural transfor-
mation. At temperatures above the transformation temperature, these materials typically have a cubic
crystal structure which is called the austenite phase. Below this transformation temperature the material
structure has less symmetry in what is called the martensite phase. This reduction in symmetry gives
rise to the formation of variants of the martensitic phase. The variants are related by the symmetry of
the parent austenitic phase and in the absence of biasing stress all have the same free energy. If the SMA
is also ferromagnetic (an FSMA) then there exists the possibility of rearranging the martensite variants
using a magnetic field. Such a rearrangement can give changes in shape that involve strains one order of
magnitude larger than those possible in “giant” magnetostrictive materials such as Terfenol-D.

Rearranging martensite variants by a magnetic field is a novel idea and has received considerable
attention recently. The concept of combining martensitic phase transformation with magnetic field was
first introduced by James and Kinderlehrer [1993]. Vasil’ev et al. [1996] measured the magnetostriction
in 〈110〉 directions of a specimen made of Ni2MnGa single crystal, and suggested the existence of field-
induced shape memory effect. Ullakko et al. [1996] demonstrated field-induced variant rearrangement
involving a 0.002 strain in unstressed Ni2MnGa single crystal. In 1998, a larger reversible field-induced
strain of 0.006 under cyclic fields of 10 kG has been achieved in Fe70Pd30 [James and Wuttig 1998].

Keywords: ferromagnetic shape memory, FePd, iron-palladium alloy.
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Tickle et al. [1999] reported a field-induced strain of 0.045 in Ni2MnGa. In their experiments, the move-
ment of twin interfaces was directly observed verifying the basic FSMA mechanism. More recently, a
field-induced strain of 0.094 was demonstrated by Sozinov et al. [2002]. Theories of field induced variant
rearrangement have been developed in [James and Wuttig 1998; DeSimone and James 2002; O’Handley
1998]. According to the theory of James, Desimone, and Wuttig, if the magneto-crystalline anisotropy
and elastic moduli of the material are large relative to the applied stress and magnetic fields, the strain-
magnetization pair, (E(x),m(x)), can be reasonably assumed to only take the values at local energy
minima (bottoms of the energy wells). In this case the free energy is reduced to only involving loading
device and demagnetization terms and the minimization process becomes a process of determining the
compatible microstructure and domain patterns that minimize this energy. From the solution to this
constrained energy minimization problem, the microstructures and shape change of the material can be
predicted as a function of the applied stress and magnetic fields. This constrained theory was applied to
Fe70Pd30 [James and Wuttig 1998] and Ni2MnGa [Tickle et al. 1999], and qualitative agreement between
the theory and the experimental results was achieved. O’Handley [1998] approached the problem phe-
nomenologically. He proposed a model for the magnetization process and field-induced twin boundary
motion. His model includes an energy contribution associated with moving a twin interface and provides
a simple explanation for the nearly linear field dependence of strain on magnetic field below saturation.

To date, Ni2MnGa and Fe70Pd30 are the only two alloys reported exhibiting giant (>0.005) field-
induced strain. The alloy Ni2MnGa has received considerable attention recently, while Fe70Pd30 has
attracted less attention. While the martensitic behavior of Fe70Pd30 had been previously studied exten-
sively [Somura and Oshima and Fujita 1980; Oshima 1981; Oshima and Sugiyama 1982; Sugiyama
et al. 1984; 1985; 1986; Muto et al. 1988; Oshima et al. 1988; 1990; Muto et al. 1990a; 1990b; 1990c;
Tanaka and Oshima 1991; Oshima et al. 1992; Tanaka et al. 1992], only recently has the FSM behavior
of this alloy been investigated [Cui and James 2001; Cui et al. 2004]. It was found that the FCC-FCT
transformation in Fe70Pd30 is a weak first order thermoelastic transition. The average lattice parameters
are a = 3.822±0.001 Å and c = 3.629±0.001 Å for the FCT martensite, and a0 = 3.755±0.001 Å for the
cubic austenite. The latent heat is 10.79 ± 0.01 J/cm3. The Curie temperature is 450◦C. The saturation
magnetization is 1220±10 emu/cm3 for the martensite and 1080±10 emu/cm3 for the austenite; the easy
axis is in [100] or [010] direction (a axes of FCT lattice). The magnetic anisotropy is −5±2×103 erg/cm3

for the austenite at 60◦C, and 3.46 ± 0.02 × 105 erg/cm3 for the martensite at −20◦C.
In this paper, a brief summary of the constrained theory is given, followed by the results of a series

of magneto-mechanical tests. A comparison of the predictions of constrained theory with the results of
these experiments is made and finally some conclusions are drawn.

2. Constrained theory

Constrained theory [DeSimone and James 2002] restricts the range of possible strain-magnetization pairs
to those values that give absolute minima in the strain and anisotropy energies. This considerably reduces
the complexity of the problem of predicting the microstructures and domain patterns that will form. In
this section this theory and the process of solving problems using it will be summarized.
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2.1. Constrained free energy. The free energy for a ferromagnetic shape memory material can be writ-
ten as

F =

∫
�

{φ(F,m, θ)− h0 · m − σ0 · E}dx +
1

8π

∫
R3

| 5ζm |
2 dx,

where � is the region occupied by the material in the reference configuration. The first term, φ(F,m, θ),
combines the strain and magnetic anisotropy energies and depends on the deformation gradient F, mag-
netization m, and temperature θ . The applied magnetic field is h0, the applied stress is σ0, and the strain
is E. The second integral is the demagnetization energy, where the magnetostatic potential ζm is obtained
by solving the magnetostatic equation

div(−Oζm + 4πm)= 0,

which itself follows from Maxwell’s equations,

curl h = 0 (h = −Oζm),

div(h + 4πm)= 0.

According to the constrained theory of DeSimone and James [2002], if the magnetic anisotropy and
elastic moduli of the material are large compared to the applied stress and magnetic field, the strain-
magnetization pair (E(x),m(x)) will be close to the energy wells, which are given by

φ(F,m, θ)= 0. (1)

Assuming the solution is constrained to be exactly on bottom of these energy wells, the constrained free
energy is then given by ∫

�

{−h0 · m − σ0 · E}dx +
1

8π

∫
R3

| Oζm |
2 dx. (2)

2.2. Average microstructural behavior. If the magnetization-strain states are combined to form a com-
patible microstructure and it is assumed that this microstructure consists of very fine twins, then the
problem can be further relaxed (in the terminology of [DeSimone and James 2002]) and only the average
values of the strain and magnetization need be considered. These average values lie in the convex hull
of the energy wells, C, which is defined as follows. The alloy Fe70Pd30 has three tetragonal variants
and each variant has a strain and two easy directions that satisfy (1) (at a fixed temperature). Thus the
constrained theory strain-magnetization pairs for this alloy are

E1 =

 ε2 0 0
0 ε1 0
0 0 ε1

 and any of
±[m2

1 = mse2],

±[m3
1 = mse3],

E2 =

 ε1 0 0
0 ε2 0
0 0 ε1

 and any of
±[m1

2 = mse1],

±[m3
2 = mse3],

(3)

E3 =

 ε1 0 0
0 ε1 0
0 0 ε2

 and any of
±[m1

3 = mse1],

±[m2
3 = mse2],
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where ε1 = a/a0−1 and ε2 = c/a0−1 are the transformation strains and ms is the saturation magnetization
of the martensite. The strain tensor and magnetization vector components are in the cubic crystallographic
coordinates of the parent austenite phase, which has basis vectors ek , k = 1, 2, 3.

The set C, which is comprised of average strain, 〈E〉, and average magnetization, 〈m〉, pairs, is given
by a sum of the combinations in (3); thus (〈E〉, 〈m〉) lies in C if and only if two conditions are satisfied:

〈m〉 = λ1m2
1 + λ2(−m2

1)+ λ3m3
1 + λ4(−m3

1)+ λ5m1
2 + λ6(−m1

2)

+ λ7m3
2 + λ8(−m3

2)+ λ9m1
3 + λ10(−m1

3)+ λ11m2
3 + λ12(−m2

3), (4)

〈E〉 = (λ1 + λ2 + λ3 + λ4)E1 + (λ5 + λ6 + λ7 + λ8)E2 + (λ9 + λ10 + λ11 + λ12)E3,

where λi , i = 1 . . . 12 are the volume fractions of the domains inside the variants that have magnetizations
±mk

j and strains Ei in the combinations given in (3). The volume fractions are subject to the constraints

12∑
i=1

λi = 1, 0 ≤ λi ≤ 1, i = 1 . . . 12. (5)

Figure 1 presents a geometrical interpretation of the convex hull.
Equation (4) can be simplified as follows. Let ξ j = λ2 j−1 +λ2 j and η j = λ2 j−1 −λ2 j , where j = 1 . . . 6.

Then note that ξ1 + ξ2, ξ3 + ξ4 and ξ5 + ξ6 are the volume fractions of variants E1, E2 and E3 and
η1 + η2, η3 + η4 and η5 + η6 are the net magnetization associated with these strains, respectively. The
average magnetization in (4) then reduces to

〈m〉 = η1m2
1 + η2m3

1 + η3m1
2 + η4m3

2 + η5m1
3 + η6m2

3,

which for the specific forms of mk
j in (3) has components

〈m〉 = ms

 η3 + η5

η1 + η6

η2 + η4

 .

ê1ê2ê3

E1 E2 E3

�3
�1�4�2 �5�6

�7
�8 �10 �9 �12 �11

Figure 1. Schematic drawing of an FCT lattice and its three possible variants is shown.
The tetragonality of the lattice is exaggerated. The arrows labeled with λ1...12 are the
possible magnetization directions (easy axes) for each variant in the constrained theory.
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The average strain defined in (4) also reduces to

〈E〉 = (ξ1 + ξ2)E1 + (ξ3 + ξ4)E2 + (ξ5 + ξ6)E3, (6)

where the nonzero components of 〈E〉 are

〈E〉11 = (ξ1 + ξ2)ε2 + (ξ3 + ξ4 + ξ5 + ξ6)ε1,

〈E〉22 = (ξ3 + ξ4)ε2 + (ξ1 + ξ2 + ξ5 + ξ6)ε1,

〈E〉33 = (ξ5 + ξ6)ε2 + (ξ1 + ξ2 + ξ3 + ξ4)ε1,

using the forms of Ei in (3). The constraints (5) in terms of ξ j and η j are

6∑
j=1

ξ j = 1, 1 ≥ ξ j ≥ |η j |, j = 1 . . . 6.

In the limit as the microstructure becomes infinitely fine the demagnetization energy can be calculated
using the results for a uniformly magnetized body [DeSimone and James 2002], which is 1

2〈m〉 · D〈m〉,
where D is the magnetometric demagnetization matrix for the specimen geometry. Then the constrained
free energy (2) reduces to

−h0 · 〈m〉 − σ0 · 〈E〉 +
1
2〈m〉 · D〈m〉,

which is to be minimized over (〈E〉, 〈m〉) ∈ C. This is an exact result if the specimen has an ellipsoidal
shape and an approximation for any other geometry.

For the case of a rectangular specimen with a square base and a height in the x1 direction which
is much longer than the two other dimensions, the demagnetization matrix can be approximated by
the demagnetization matrix of an infinitely long cylinder, D = diag(0, 2π, 2π). If the applied field is
restricted to the (x1, x2) plane and the applied stress is uniaxial in the x1 direction with magnitude σ ,
then the constrained free energy, E, becomes

E =−h1ms(η3+η5)−h2ms(η1+η6)+πm2
s
(
(η1+η6)

2
+(η2+η4)

2)
−σ (ξ3+ξ4+ξ5+ξ6)(ε1−ε2)−σε2.

(7)

2.3. Energy minimization. Finding the minimizers of the constrained free energy given by Equation
(7) can be broken into two steps: First, a minimization over ξ j , j = 1 . . . 6, is performed using linear
programming. In the second step the energy is minimized with respect to the remaining variables, η j ,
j = 1 . . . 6.

Figure 2 and Table 1 summarize results of this process for a magnetic field with h1 ≥ 0 and h2 ≥ 0
combined with a uniaxial stress, σ ≤ 0. As shown on this figure, the solution can be divided into four
distinct regions, which involve three possible microstructures. In region A, only martensite variant E1

is present, and its net magnetization is given by η1mse2 which depends on the magnitude and direction
of magnetic field h2. In region D, martensite variants E2 and E3 may coexist. Their net magnetizations
are η3mse1 and η5mse1, respectively. In the remaining regions, B and C, all three variants may be
present. The admissible microstructures that these variants may form in each of these solution regions
are discussed next.
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2πm2
s

σ(ε2 − ε1) msh1

msh2

B

E1/E3 and E2/E3

A
E1

C

E1/E2 and E2/E3

D
E2/E3

Figure 2. Summary of the minimum energy solution for h1 ≥ 0, h2 ≥ 0 with constant
applied stress σ < 0, is shown. The volume fraction values for the areas labeled A–D
are given in Table 1. The pairs of strains listed in each region are those that minimize
the energy and are magnetically compatible across one or both of their possible twin
interfaces.

Table 1 shows the results of the energy minimization for the variables η j only. This is because the
variables ξ j cannot be always fully determined. For example, in region A energy minimization gives
η1(= λ1 − λ2)= 1, and because of the constraint λi ≤ 1, i = 1 . . . 12, the solution is λ1 = 1 and λi = 0,
i = 2 . . . 12 and the ξ j are fully determined. In region C, energy minimization gives 5 equations and
3 inequalities, plus the constraints. Many combinations of the λi satisfy these conditions, so ξ j cannot
be determined. However, without knowing the values of ξ j , the overall strain of the specimen can still

Area η1 η3 η5 E

A 1 0 0 −h2ms +πm2
s − |σ |ε2

B
h2

2πms
0 0 −

h2
2

4π
− |σ |ε2

C
(h2−h1)ms − |σ |(ε1−ε2)

2πm2
s

1 − η1 − η5 ≥ 0 −

(
(h2−h1)ms − |σ |(ε1−ε2)

)2

4πm2
s

0<, < 1 ≥ 0 −h1ms − |σ |ε1

D 0 1 − η5 ≥ 0 −h1ms + |σ |ε1

Table 1. Values for the areas A–D of Figure 2. For all areas shown, η2 = η4 = η6 = 0.
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E1/E2 E1/E3 E2/E3
√

2a/γ [1̄10] [110] [101] [1̄01] [01̄1] [011]
√

2n̂ [1̄1̄0] [11̄0] [101̄] [1̄01̄] [01̄1̄] [011̄]

Table 2. Twin solutions from linear geometric martensite theory. The normal to the twin
plane is n̂ and the shape strain is a. Each pair of variants can form two different twins.
The magnitude of the shape strain is γ = |ε1 − ε2| = 0.0515.

be evaluated. For example, in region D, both variants E2 and E3 can coexist, and it is not possible to
fully determine the values λi . Nonetheless, the specimen can be determined to be at its maximum length
because both variant E2 and E3 have their long axes aligned with the long axis of the specimen.

2.4. Magnetoelastic compatibility and energy minimizing microstructures. Without considering kine-
matic and magnetic compatibility, free energy minimization predicts three possible combinations of
variants. However, some of these combinations may not be compatible and must be excluded as possible
energy minimizing microstructures. The microstructures that are magnetoelastically compatible for h1 ≥

0, and h2 ≥ 0 are discussed below. Microstructures in the other three quadrants can be found by symmetry.
If martensite variants Ei and E j meet at a planar interface, linearized kinematic compatibility requires

Ei − E j =
1
2(a ⊗ n̂ + n̂ ⊗ a), (8)

where the vector a is the shape strain and n̂ is the normal to the interface. Given a pair of variant strains,
equation (8) can be solved for a and n̂. In the tetragonal case considered here, there are two solutions
of (8) for each pair of variants, which gives a total of six possible twin interfaces in this material. These
are listed in Table 2.

Once the twin interface is determined from kinematics, magnetic compatibility across this interface
must also be satisfied. This requires that the jump in the normal component of the magnetization across
the interface must be zero, that is,

(mi − m j ) · n̂ = 0, (9)

where mi and m j are net magnetization of variants Ei and E j , respectively. The minima presented
in Figure 2 and Table 1 will next be checked that they satisfy (9) for interfaces between the predicted
variants.

The solution in area A of Figure 2 involves only variant E1, thus there are no twin interfaces across
which compatibility must be satisfied.

The microstructure in area D consists of variants E2 with a net magnetization of η3mse1, and E3

with a net magnetization of η5mse1. The two possible twin interfaces between these two variants have
normals [01̄1̄] and [011̄]. The difference between these two magnetizations is (η3 − η5)mse1, which is
perpendicular to both of these twin plane normals for any values of η3 and η5. Thus this microstructure
is magnetically compatible.

Areas B and C may contain microstructures that involve all three variants. Possible combinations are
E1 with E2, E1 with E3, and E2 with E3. The last case is the same as that for area D, and because it was
found to be always magnetically compatible, both areas B and C may contain twins with variants E2 and
E3. The other two possible twins will be considered in turn.
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For the combination of E1 and E2, the possible interface normals between these two variants are [1̄1̄0]
and [11̄0]. From the results of energy minimization, the net magnetization within these two variants are
η1mse2 and η3mse1, respectively. Their difference is (−η3, η1, 0), which is perpendicular to the interface
normal [1̄1̄0] if η1 = η3 and perpendicular to [11̄0] if η1 = −η3. Because both η1 and η3 are required to be
positive by the minimization, the second interface is not possible in either area B or C. Area B minimiza-
tion requires η3 = 0; thus unless h2 = 0, the remaining twin interface is not possible in area B. In area C,
the requirement that η1 = η3 restricts η5 = 1 − 2η1, which is possible and thus so is this twin in area C.

For the combination of E1 and E3, the normals to the possible interfaces between these two variants
are [101̄] and [1̄01̄]. Energy minimization determined the net magnetization within these two variants
to be η1mse2 and η5mse1, respectively. Their difference is (−η5, η1, 0), which is perpendicular to these
interface normals only if η5 = 0. This is already required by minimization in area B, thus this twin is
allowed in this area. In area C, η5 is nonzero in general and thus this twin is not allowed in this area.

Figure 2 summarizes the results of both energy minimization and the requirements of compatibility
and it shows the valid twin combinations in each of the four regions. The applied loading, σ , is in the
x1 direction and the change in length of the material in this direction is of interest because it is the
deformation that does work against the applied stress. In area A the normal strain in the x1 direction is
ε2 which is less than one for this material. The microstructure in area D is a combination of variants that
both have ε1 as their normal strain in the x1 direction. Thus selecting an applied field path that goes from
area A to area D will result in a change in the x1 direction normal strain of ε1 − ε2 = (a −c)/a0 = 0.0515.
The experiments discussed below were designed to test this prediction.

3. Equipment and sample preparation

Combined mechanical and magnetic tests were performed with a facility called the Magneto-Mechanical
Test Machine (MMTM). Details of this machine can be found in [Shield 2003]. Two Fe70Pd30 single
crystal specimens, MM6 and MM10, were used in the magneto-mechanical tests that are reported here.
They were cut in close proximity to each other from the single crystal boule FePd4 (see [Cui et al. 2004]
for more information regarding this boule). The composition of both specimens MM6 and MM10 is
near 29.6 at.% Pd. Their martensitic/austenitic transformation temperatures are Ms≈20◦C, M f ≈16◦C,
As≈18◦C, and A f ≈25◦C. Specimen MM6 has dimensions of 2.12×2.10×6.52 mm3, and specimen
MM10 has dimensions of 2.11×2.10×8.65 mm3. Both specimens are rectangular bars with {100} sur-
faces. The long dimension of each specimen is used as the loading direction and will be called the
longitudinal specimen direction. The transverse direction is perpendicular to the longitudinal direction
and it is along a short specimen dimension. Their orientation was checked by x-ray diffractometry at
60◦C. The surface normals vary by about 0.7◦ from 〈100〉 for MM6, and 0.5◦ for MM10. Both of them
were polished at 70◦C with 0.1 µm diamond suspension.

4. Test design

A series of tests with different temperatures, amounts of compressive stress and magnetic field paths are
summarized in Table 3. This table lists twenty-five tests divided into four sets in the order they will be
discussed below. For each test there are three groups of columns. Initially all tests start with the specimen
at 35◦C and at the conditions (stress and field) listed in the first group of columns. The specimen is then
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Start at 35◦C Ferro. Strain Measurements End to 35◦C
Test Field Stress Temp. Stress Field Path(s) Field Stress

(G) (MPa) (◦C) (MPa) (G) (MPa)

————————————— Set 1 —————————————
T5,T10 0 −1.0 11 −1.0 Rot-9radii 0 −1.0
T6 0 −2.0 11 −2.0 Rot-9radii 0 −2.0
T7 0 −4.0 11 −4.0 Rot-9radii 0 −4.0
T11 0 −6.0 11 −6.0 Rot-9radii 0 −6.0
T8 0 −8.0 11 −8.0 Rot-9radii 0 −8.0
T9 0 −12.0 11 −12.0 Rot-9radii 0 −12.0

————————————— Set 2 —————————————
T13b 0 −1.0 20 −1.0 Rot2-5515 0 −1.0
T13c 0 −1.0 15 −1.0 Rot2-5515 0 −1.0
T13d 0 −1.0 10 −1.0 Rot2-5515 0 −1.0
T14a 0 −1.0 5 −1.0 Rot2-5515 0 −1.0
T14b 0 −1.0 0 −1.0 Rot2-5515 0 −1.0
T14c 0 −1.0 −5 −1.0 Rot2-5515 0 −1.0

————————————— Set 3 —————————————
T12,T15 0 −12.0 11 −1.0 Rot20-5515 0 −1.0
T16 0 −1.0 11 −1.0 Rot20-5515 0 −1.0
T17 0 −1.0 11 −1.0 Rot20-3818 0 −1.0

————————————— Set 4 —————————————
T2 0 0 11 −2.0 Lin-4242, Arc-4242

11 −1.0 Lin-4242, Arc-4242 0 −1.0
T3 0 −2.0 11 −2.0 Lin-4242, Arc-4242

11 −2.0 Rot1-4242
11 −1.0 Lin-4242, Arc-4242
11 −1.0 Rot1-4242 0 −1.0

T4 T4242 −2.0 11 −2.0 Lin-4242, Arc-4242
11 −2.0 Rot1-4242
11 −1.0 Lin-4242, Arc-4242
11 −1.0 Rot1-4242 0 −1.0

Table 3. Tests conducted on specimens MM6 and MM10. Terms such as T4242, Lin-
4242, Arc-4242, and so on are explained in Section 4.

cooled, at approximately 1◦C/min to the temperature listed in the second group of columns. The second
group of columns includes three columns. The first two are the temperature and the bias stress at which
the measurements conducted and the third column describes the path(s) of the magnetic field applied
during the test. After the applied magnetic field path(s) have been completed, the specimen temperature
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is raised back up to 35◦C under the conditions listed in the last group of columns. Tests in Set 1 have two
different sets of field paths that were performed under two different amounts of compressive stress. By
starting all tests at 35◦C, which is above the austenite finish temperature, all martensitic microstructure
is removed from the specimen. This makes sure each test starts from identical and repeatable conditions.

In Table 3 the magnetic field conditions and paths are specified with labels. For the only field applied
during cooling, the label T4242 indicates a field applied along the transverse direction of the specimen
[100] at a magnitude of 4242 G. There are two basic field paths applied to the specimen to measure
its FSM response. Linear paths follow radial lines that start or end at zero field. Rotation or arc paths
follow circles or parts of circles, which keep the magnitude of the applied field constant and change
its direction. Field path Lin-4242 consists of two segments: first, the magnetic field is applied on the
transverse direction of the specimen [100] from 0.0 G to 4242 G, then back to 0.0 G along the same
direction; second, it increases on the longitudinal [001] direction from 0.0 G to 4242 G, and returns back
to 0.0 G on [001] axis. For the Arc-4242 path, the field first increases along the transverse [100] direction
from 0.0 G to 4242 G, then rotates 90◦ counterclockwise (CCW) toward the longitudinal [001] direction
with constant magnitude. Once the rotation is complete, the field decreases from 4242 G to 0.0 G along
longitudinal direction. The field rate is 60 G/sec on all segments of both Lin-4242 and Arc-4242 paths.
These two paths were designed to investigate the path dependence of the FSM effect, as they both include
the points at 4242 G in both the transverse and then the longitudinal directions.

The path Rot-9radii has nine circular segments. It starts by increasing the field in transverse [100]
direction from zero to 424 G at a rate of 60 G/sec, the field is then rotated 360◦ CCW at a rate of 6 G/sec,
the first segment finishes when the field returns to 424 G in the transverse direction. The second segment
starts at the end of the first segment, the field increases in the transverse direction from 424 G to a new
magnitude, 848 G, at a rate of 12 G/sec. It then rotates 360◦ CCW at a rate of 12 G/sec, and finishes by
returning to 848 G in the transverse direction. The next seven segments are similar to the two segments
described above with larger field magnitudes. Finally the field is decreased back to 0.0 G while pointing
in the transverse direction. The radii of the nine circles are 424, 848, 1273, 1697, 2121, 2969, 3818, 4666,
and 5515 G, which are completed at field rates of 6, 12, 18, 24, 30, 42, 54, 66, and 78 G/sec, respectively.
These rates result in each 360◦ circle being completed in 444 seconds.

The path Rot1-4242 consists of a single circle. The field first increases in the transverse [001] direction
of the specimen from 0.0 G to 4242 G. Then the field rotates 360◦ CCW with constant magnitude. After
the rotation is complete the field decreases from 4242 G to 0.0 G while pointing in the transverse direction.
The field rate is 60 G/sec for the entire path. Paths Rot2-5515 and Rot20-5515 are similar paths that
repeat the same circular path twice and twenty times, respectively. In both paths the magnetic field is
first applied in the transverse [100] direction of the specimen and increased from 0.0 G to 5515 G. Then
the field rotates 720◦ and 7200◦ CCW, respectively. After the rotations are complete, the field then
decreases from 5515 G to 0.0 G while pointing in the transverse direction. The field rates are 60 G/sec
for the linear segments, and 78 G/sec for the circles. The field path Rot20-3818 is similar to the path
Rot20-5515, except that the magnitude of the field is 3818 G with a rate of 54 G/sec.

Tests T5 to T10 were designed to study work output, but they also provide information on the effects
of stress on phase transformation temperatures. However, due to the limitation of the space, phase trans-
formation effects will be discussed in another paper, along with some other tests which were designed
to study the effect of magnetic field on phase transformation temperature [Cui et al. ≥ 2008].
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5. Experimental results

We now give the results of the experiments and compare them to the constrained theory presented above.

5.1. Ferromagnetic strain, blocking stress and work output. The key property of interest for FSMAs
is the field-induced (or ferromagnetic) strain amplitude, which is defined as the amplitude of the strain
change in the specimen caused by an application of a cyclic magnetic field holding stress and temperature
constant. In many materials, when the stress exceeds a critical level there will be no ferromagnetic strain
no matter how large the applied magnetic field is, and this critical stress is called the blocking stress.
Another important property is the work output, which is defined as the product of the ferromagnetic
strain amplitude and the constant stress at which this ferromagnetic strain is achieved.

The tests listed in set 1 of Table 3 were designed to give a complete picture of the ferromagnetic
strain amplitudes achievable in Fe70Pd30 over a wide range of applied field magnitudes and compressive
stresses. In Figure 3, the applied magnetic field and the strain are plotted verses time for tests T6 to T11.
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Figure 3. Top: A time history of the applied magnetic fields for field path Rot-9radii.
Solid curve is the transverse component of field, and dashed curve is the longitudinal
component. Bottom: Time history of the strains measured in tests T5-T9 on specimen
MM6 at 11◦C.
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Because a 180◦ change in field direction results in a complete ferromagnetic strain cycle, the measured
strain goes through two cycles for every 360◦ of field rotation. The figure shows that the amplitude
of the ferromagnetic strain decreases with increasing compressive stress and increases with increasing
magnetic field amplitude. The strain at −1 MPa started to oscillate in response to the field after the
amplitude of the field exceeded about 800 G; the amplitude of the ferromagnetic strain then increased
rapidly with increasing field amplitude until the field reached approximately 3000 G. After this point,
the strain amplitude only increased slightly with further increases in the field. The −2 MPa curve is
similar to the −1 MPa curve with slightly smaller ferromagnetic strain. The −4 MPa curve has a much
smaller strain amplitude than the lower stress curves and the specimen starts to respond to the field at
smaller value, 424 G. The −6 MPa curve was significantly different from the −1, −2, and −4 MPa curves
because it does not oscillate until the field exceeds 1700 G. The −8 and −12 MPa curves are similar to
the −6 MPa curve except that the field-induced strains are even smaller.

Table 4 and Figure 4 summarize the field-induced strain amplitude and work output at various stress
levels for both specimens. Figure 4 also includes data on Terfenol-D [Clark 1980] and Ni2MnGa [Tickle
and James 1999] for comparison. The ferromagnetic strain amplitude was calculated using the maximum
and minimum strain within a single strain cycle due to the largest magnetic field. The ferromagnetic strain
amplitude decreases quickly with increasing compressive stress. After −4 MPa, the rate of decrease slows
and it is not clear at what stress level the amplitude will decrease to zero. This unusual behavior seems
to indicate that there is no blocking stress for this material or that there is a combination of effects active
at the same time. In fact, both specimens still responded to field even at −12 MPa. At this level, the
field-induced strain and work output of MM10 is similar to that of Terfenol-D, and is larger than that of
Ni2MnGa. Figure 4 shows that Ni2MnGa has a higher strain at smaller stresses, but stops responding
to magnetic field after −8 MPa. Terfenol-D on the other hand stays active beyond −50 MPa, and its
largest work output occurs near −20 MPa. The strain available in Terfenol-D is far less than Ni2MnGa
at low stress levels. The behavior of Fe70Pd30 is in between these two materials. Compared to Ni2MnGa,
Fe70Pd30 has less strain at small stresses and more strain at higher stress levels. When Fe70Pd30 is
compared to Terfenol-D, the situation is reversed. The behavior of Fe70Pd30 beyond −12 MPa could not

Stress Sample MM6 Sample MM10
(MPa) Strain Work output (J/m3) Strain Work output (J/m3)

−1 0.0084 8.4×103 0.0059 5.9×103

−2 0.0070 1.4×104 0.0042 8.4×103

−4 0.0025 1.0×104 0.0025 1.0×104

−6 0.0019 1.1×104 0.0016 9.8×103

−8 0.0016 1.3×104 0.0011 8.8×103

−12 0.0017 2.1×104 0.0008 9.6×103

Table 4. Ferromagnetic strain amplitude at various bias stresses and the corresponding
work output. The MM6 strains are from the crosshead displacement, while the MM10
strains are from the capacitive sensor.
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Figure 4. Strains induced by magnetic field at various load conditions and correspond-
ing work output for Fe70Pd30 specimen MM10 (solid triangle), Ni2MnGa (circle) [Tickle
and James 1999], and Terfenol-D (square) [Clark 1980].

be determined because of the presence of the FCT to BCT transformation, which is not reversible. There
is some evidence that the yield stress of Fe70Pd30 is higher than −20 MPa (possible slip bands appeared
on one specimen that was overloaded).

The details of the strain induced by magnetic field at different levels of stress are provided in Figure 5,
which gives the strain verses both the transverse and longitudinal components of applied field. Each



518 JUN CUI AND TOM SHIELD

Transverse Field (G)

S
tr

ai
n

-0.01

-0.06
6000-6000

1 MPa

2 MPa

4 MPa

6 MPa

8 MPa

12 MPa

Longitudinal Field (G)

S
tr

ai
n

-0.01

-0.06
6000-6000

-1 MPa

-2 MPa

-4 MPa

-6 MPa

-8 MPa

-12 MPa
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nent of field at various load conditions for specimen MM6 are given. Each curve has the
same magnetic field path (Rot-9radii) and temperature of 11◦C.
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set of curves at one load level includes data for all nine field levels in the path Rot-9radii. The curves
at −1 MPa show that the changes in strain were small when the transverse component of the field was
between −4500to 4500 G, and were substantial between 4500 to 5515 G and −4500 to −5515 G. If the
curves are examined from the perspective of the longitudinal component of field, the changes of the strain
were substantial between −1000 to 1000 G, and they were smaller over the rest of the range. This point
is better illustrated by Figure 6, which shows the strain versus the angle of the applied magnetic field.
In that figure, the maximum and minimum strain were not located at the 90◦, 180◦, and 270◦: there was
an approximately 10◦ shift toward larger angles, which is also the direction of the field rotation (CCW).
This indicates the existence of hysteresis. Examining the third quadrant (190◦ to 280◦ of the field angle),
the specimen was at its shortest length when the field angle was approximately 190◦, because of the
combined effects of the compressive stress and the transverse field favored the variant with its short
axis parallel to the loading direction. When the field rotated away from 190◦, the component of the
field in the transverse direction decreased and the component of the field in the longitudinal direction
increased. As result, the specimen started to lengthen. When the field reached 225◦, approximately 2/3 of
the ferromagnetic strain has been achieved, and the remaining 1/3 of ferromagnetic strain was achieved
during the rest of the 45◦ of this quadrant. In other words, the changes in strain occurred faster in the
first 45◦ of rotation than it did in the second 45◦ of the field rotation.

The surfaces of the specimens were observed optically during the experiments using a microscope
equipped with DIC that allows the surface relief to be observed in false color. The images in Figure 7
were taken when the field was 5500 G in [001] and [1̄00] directions. The strains were −0.013 and
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Figure 6. Strain vs. magnetic field rotation angle for test T5 at −1 MPa on specimen MM6.
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Figure 7. Microstructures of specimen MM6 when magnetic field is 5515 G in [001]
(top) and in [1̄00] (bottom). The images are from test T5 at −1 MPa and the field of
view is approximately 0.3 mm wide. In these images the vertical [001] direction is up
and the transverse [100] direction is horizontal.

−0.020. The strain difference between these two states is 0.007, which is about 14% of the theoretical
ferromagnetic strain of 0.0515. However, comparison of these two images shows no clear differences.
When the images are alternated on a computer screen a few small differences are visible in the thickness
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Test Temperature Ferromagnetic
(◦C) Strain

T13b 20 0.0048
T13c 15 0.0071
T13d 10 0.0065
T14a 5 0.0069
T14b 0 0.0071
T14c −5 0.0076

Table 5. Ferromagnetic strain amplitudes measured at various temperatures and under
−1 MPa of stress for specimen MM6.

and configuration of the E1/E3 twin bands. The fact that the measured strain is so much smaller than
that predicted from lattice parameters is the primary unresolved issue about the behavior of Fe70Pd30.

To assess the variation in the ferromagnetic strain amplitude with temperature, a series of measure-
ments of the ferromagnetic strain at the various temperatures was conducted. The results of tests T13b-d
and T14a-c (see Table 3 for test descriptions) are given in Table 5. These results show that the ferro-
magnetic strain does not depend on temperature, once the phase transformation is complete. Test T13b
at 20◦C is the temperature at which the martensite transformation begins, so at this temperature there is
still a significant amount of austenite in the specimen. This accounts for the decreased strain amplitude
measured in this test. The phase transformation is complete by 16◦C and all experiments below this
temperature have essentially the same strain amplitude.

5.2. Effects of initial microstructures and loading paths. The ferromagnetic shape-memory effect re-
lies on the ability of the magnetic field to rearrange the martensitic variants. Thus the microstructure in
the material plays a crucial role in the FSM behavior of the material. If the microstructure is arranged in
such a way as to make twin boundary motion easy then the FSM behavior will be enhanced. On the other
hand, if a complicated microstructure forms on cooling that does not easily lend itself to field-induced
boundary motion, the FSM behavior may be adversely affected. Thus experiments were designed to
attempt to generate different microstructures on cooling and compare their responses to applied fields.
In addition, different field paths between identical field values where also used to assess the dependence
of the FSM effect on the actuation path.

The amount of compressive stress applied to the specimen can be visually observed to affect the
microstructure that forms on cooling. Small amounts of compressive stress allow microstructures with
vertical twin bands (E2/E3 twins) to form, and in some cases remain, in the specimen during transfor-
mation. Larger values of compressive stress cause the transformation to form only horizontal twin bands
(E1/E3 twins, such as those in Figure 7). Test T12 involved cooling the specimen under −12 MPa of
stress to 11◦C and then reducing the applied stress to −1 MPa before the magnetic field path Rot20-5515
was performed. Test T16 was cooled under −1 MPa of stress and then the same field path was performed.
Figure 8 compares the strain responses during the first cycle of each of these tests. The results from T12
are at consistently larger (compressive) strain values, which is as expected due to the microstructural bias
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Figure 8. Strain versus field from tests T12 and T16 at −1 MPa and 11◦C for speci-
men MM6 are shown. Test T12 included a bias stress of −12 MPa during the phase
transformation, while test T16 had a bias stress of −1 MPa during cooling.

applied by the −12 MPa under which T12 cooled. A large fraction of this extra compressive strain is
recovered on the application of the longitudinal field, which favors lengthening of the specimen, however,
this recovery does not reverse on the removal of the field and the amplitude of the cyclic strain change is
very similar in both tests. Ignoring the first 90◦ of field change when the irreversible recovery occurs, the
average strain amplitude over the rest of the data shown in the figure is 0.0049 in test T12, and 0.0057
in test T16. It should be noted that the specimen is not fully detwinned by the −12 MPa stress, a small
number of thin twin bands are still visible on the specimen surface after cooling is complete. When the
stress is reduced to −1 MPa the bands become thicker and more numerous.

To study the effects of the field path, the paths Lin-4242 and Arc-4242 were designed. The results from
two of the tests using these paths are shown in Figure 9. The strain verses longitudinal field component
behavior is almost identical for the two tests. The large difference in the strain verses transverse field
component plots is due to the fact that the arc path also has a longitudinal component to the field that
grows as the transverse component is reduced. The solid circle and square symbols mark corresponding
points on the arc path curves in both plots. This growing longitudinal component causes the specimen
to lengthen on the arc path while the linear path causes no lengthening with its purely transverse field.
The numerical values of the strain amplitudes for tests T2, T3, and T4 are given in Table 6. These data
show that there is essentially no difference in the amplitudes measured for these two different field paths
at the two different stress levels considered.

5.3. Comparison with constrained theory. Test T5 with a compressive stress of −1 MPa was selected
for comparison with the results of the micromagnetic theory. As shown in Figure 10, there is a large
discrepancy in the magnitude of the ferromagnetic strain predicted by theory and the experimental mea-
surements. The theory predicts a ferromagnetic strain amplitude of 0.0515 compared to a measured
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Test Stress Ferromagnetic Strain
(MPa) Lin-4242 Arc-4242

T2 −2 0.0076 0.0074
T2 −1 0.0098 0.0090
T3 −2 0.0074 0.0068
T3 −1 0.0099 0.0090
T4 −2 0.0078 0.0068
T4 −1 0.0095 0.0085

Table 6. Ferromagnetic strain amplitudes measured in the tests T2, T3, and T4 at 11◦C
on specimen MM6.
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Figure 9. Strain versus field of test T3 at −1 MPa for specimen MM6. Dashed lines
represent the strain response of the specimen when the field path is the arc rotation, and
solid lines represent those with linear path. The dot and square indicate corresponding
points on the two curves from the arc path.
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for field-induced strain of specimen MM6 at −1 MPa and 10◦C. The total field-induced
strain in top figure is scaled to 1/5 of the theoretical prediction.
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value of 0.007. The basic shapes of the two sets of curves are similar and the constrained theory
cannot be expected to capture smooth transitions between states that must occur due to the presence
of microstructure and demagnetization. Because the theory assumed an infinite specimen, the finite
nonellipsoidal shape of the specimen and its effects on the M-H curves were ignored. These effects
give the M-H curves its gradual transition to saturation and will similarly affect the strain-field behavior
of the specimen. Nonetheless, the curves do show a relative flat minimum when the magnitude of the
longitudinal field is less than 440 G, and a tendency to flatten at higher fields. The sign of the strain
changes agrees with the theory and this confirms that the long axis of the FCT martensite is the easy axis,
otherwise a longitudinal field would make the specimen shorten. In addition, deviations from constrained
theory are quite possible due to the finite values of the elastic moduli and magnetic anisotropy of the
material. The magnetic anisotropy of Fe70Pd30 was found to be an order of magnitude smaller than
that of Ni2MnGa [Cui et al. 2004]. This small anisotropy means that it may be energetically less costly
for the magnetization to rotate away from the easy directions in the material compared to moving a
twin boundary that would result in a change in strain. This may be the reason for the small amount of
ferromagnetic strain measured in this material.

6. Conclusions

The results presented above confirm that Fe70Pd30 is a FSM material and that its behavior agrees quali-
tatively with the predictions of the constrained theory for FSM materials. However, there are two results
that are unexplained. The first is the small amount of ferromagnetic strain amplitude measured in this
material. As just discussed in the previous paragraph, this may be due to the small magnetic anisotropy
of this material. However, there are also a couple of unusual aspects to the shape-memory behavior of
this material that may also contribute to the small strain amplitude. Observations of the microstructure
that forms when this material is cooled through the transformation temperature are quite different from
what is typically observed in shape memory materials (compared say to CuAlNi). Instead of a sharp
planar austenite-martensite (A-M) interface with finely twinned martensite, the martensite in Fe70Pd30

grows into the austenite in a disorderly fashion. The predominate microstructure with a small volume
fraction of martensite is a horizontal needle that appears to consist of a pair of martensite variants with
a twin boundary down its middle. These needles grow into the austenite and then merge to give the final
twinned martensite structure when the transformation is complete. Often the tips of these needles are
arranged along what appears to be a roughly 45◦ line (the crystallographic theory of martensite predicts
an A-M interface at nearly 45◦ with horizontal martensite twin interfaces) and they sometimes appear
to move in unison, but this is far from the distinct A-M interface typically observed in shape memory
materials. This type of behavior may indicate the Fe70Pd30 deviates substantially from the constrained
theory. Because this transformation behavior is solely shape-memory related, this would indicate that
the deviation is related to the elastic behavior of the material. Thus, elastic deformations may play an
important role in the microstructure formation. Without accurate predictions of the microstructures in
FSM materials, it will be very difficult to predict their behavior.

The second unusual aspect of the behavior of Fe70Pd30 involves its behavior in the martensitic state.
When cooled under a stress of −12 MPa there are still some horizontal twin bands visible on the specimen
surface when cooling is complete. Typical shape-memory materials would be completely detwinned by
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this stress once the transformation was complete. Even more interesting, is that when the stress is reduced
to −1 MPa from the −12 MPa applied during cooling (see the results for test T12) some twin boundary
motion occurs. The twin bands thicken and the specimen lengthens. It is not known what force could be
driving twin boundary motion that would grow the variants with their a axes in the compression direction
at the expense of the variant with its shorter c axis in this direction when the amount of compressive
stress is reduced. A typical shape memory material would not retwin until the stress became tensile. If
there is some unknown microstructure related driving force in this material, the applied magnetic field
would have to overcome this force to cause the FSM effect thus reducing the amount of strain achieved.
Because there are only three tetragonal variants, it may be that there is a fair amount of elastic strain near
the ends of specimen because of the lack of enough microstructural degrees of freedom to form a stress
free microstructure there. These elastic strains could provide the energy needed for this type of behavior.

The second unexplained aspect of the behavior of Fe70Pd30 is the apparent lack of a blocking stress.
Figure 4 shows that while the strain amplitude decays with increasing applied compressive stress, it is
not decaying fast enough for the work output to decay as well. The results at −12 MPa are particularly
notable. Aside from this data point, the work output does appear to have reached a maximum at ap-
proximately −4 MPa and is beginning to decrease. Because the strains measured at −12 MPa are the
smallest, the relative error in this measurement will be the largest. If the strain was only 25% less than
the reported value, the decreasing trend in the work output would continue to this stress level as well.
The results reported in Figure 4 are from specimen MM10 using the capacitive sensor to measure the
displacements. A constant bias or calibration error in this measurement would not effect the trends in the
data. Additionally, the measurements are made under a constant stress so any elastic displacements of
the compression fixture should cancel out in the amplitude calculation. Strain gauges are difficult to use
on these materials, because they tend to debond during the phase transformation due to the large strains
involved.

Future work on this material will focus on answering these questions. Measurement of the average
magnetization of the material during testing will allow the possibility of magnetization rotation away from
the easy axes to be assessed. In addition the shape-memory behavior will be studied further to provide a
better understanding of the types of behaviors that have just been discussed. Finally, improvements to the
constrained theory, such as including the specimen geometry, and the possibility of including deviations
from constrained theory will be considered.
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MACROSCOPIC ELASTIC PROPERTIES OF RANDOMLY PACKED BALLOONS

ISAO TAGUCHI AND MICHIO KURASHIGE

Macroscopic elastic properties of sintered, randomly packed balloons are estimated for various degrees
of sintering and for a wide range of balloon wall thickness. Macroscopic elastic moduli are little affected
by a balloon’s inner/outer diameter ratio for thicker balloons, while those of thinner balloons are very
sensitive to the ratio. The elastic moduli rapidly decline with decreasing wall thickness. They are larger
in the direction of gravity than in the horizontal one, corresponding to gravity-affected packing structures.
Specific elastic moduli have a peak against porosity. Poisson’s ratios are negative in some cases of very
thin balloon walls and very low sintering degree. Comparison of the present random packing with the
regular simple cubic packing reveals that there is a significant difference between them in their elastic
properties and their structures of anisotropy, although both have almost the same coordination number.

1. Introduction

Cellular solids have many diverse applications such as hot gas and ion exchange filters, thermal protection
systems, energy and sound absorption systems, heat exchangers, catalyst supports and porous implants
for surgical treatments [Gibson and Ashby 1997; Ashby et al. 2000]. They may be regarded as porous
materials with a very high porosity or very low solid volume fraction [Torquato 2001]. Among the
cellular solids, foams are most commonly and widely used. The foams are usually classified by their
pore type of either open or closed cells.

The open-cell foams are neither as stiff nor as strong as the closed-cell foams, and they allow fluids
to flow through whereas the closed-cell foams do not. Because of this, they can be exploited in multi-
functional applications of load supporting and heat dissipation [Wadley 2002; Queheillalt et al. 2002].

Open-cell metallic foams typically achieve mechanical behaviors close to theoretical predictions. Al-
though the mechanical properties of closed-cell metallic foams theoretically exceed those of open-cell
foams, defects reduce their measured properties to values similar to those for the open-cell foams [An-
drews et al. 1999; Sanders and Gibson 2003b]. Bonded compacts of balloons may be a good alternative
in terms of mechanical properties as well as in their ability to allow fluids to flow through connected
pores.

In recent years, bonded compacts of balloons (or hollow spheres) made of ceramic, metal, inorganic
glass, carbon, etc. have started to become commercially available and have been applied to various
engineering practices [Torobin 1986; Norris and Gojny 1990; Andersen et al. 2000]. Because the ma-
terials made by bonding balloons contain both types of connected and closed pores, these structures
have significant potential for those multifunctional applications which require a combination of impact
energy absorption, acoustic attenuation [Gasser et al. 2004a] and/or thermal insulation, in addition to

Keywords: balloon, elastic modulus, random packing, transverse isotropy, negative Poisson’s ratio, optimum design.
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structural load support; the bonded balloons also have potential for improved mechanical properties and
high-porosity structures, that is, for high specific stiffness and strength.

Another important usage of the microballoons is as syntactic foams, which are mixtures of microbal-
loons and polymeric (or metallic) matrix material [Bardella and Genna 2001; Marur 2005]. Because
the microballoons are dispersed in the matrix material, the syntactic foams are closed-cell foams and do
not allow fluids to flow through connected pores. We will exclude the syntactic forms from the present
argument.

Using the finite element method, Sanders and Gibson [2003b] analyzed the mechanical properties of
simple cubic (SC) packed hollow-sphere foams, and compared them with those for the open-cell and
closed-cell foams. The results indicated that the theoretical values of moduli and strength stand between
those of the open- and closed-cell foams. Furthermore, they also obtained those of body-centered cubic
(BCC) and face-centered cubic (FCC) packings [Sanders and Gibson 2003a]. It was found that the FCC
packing gives the highest values of moduli and strength.

Like Sanders and Gibson [2003a], Gasser et al. [2003] investigated the uniaxial tensile elastic prop-
erties of regular FCC hollow sphere packings, and expressed three independent elastic constants of the
materials for FCC stacking in terms of polynomial expressions [Gasser et al. 2004b]. They compared the
results with the estimations from the formulae proposed by Sanders and Gibson [2003a]; it was shown
that the polynomial expressions are valid for the case where the size of necks is much smaller than 0.2
times the balloon radius.

All of the above studies have dealt with regular stackings. However, bonded balloon aggregates are
usually fabricated by dumping balloons into a container and in some cases by tapping it to obtain denser
packings, leading to random structures. Thus, we need to take into account the randomness of balloon
structures. It should be noted that the randomness hinders us from using the finite element analysis of
such unit cells as those in SC, BCC and FCC stackings; we have to resort to another method.

For randomly packed solid spherical particles, Kurashige et al. [1999a] proposed a three-step simula-
tion method. This method constructs a random packing of spheres in a computer by sequential deposition
of them, followed by replacing the packing, after sintering it, by a three-dimensional random network of
springs of six degrees of freedom, and then by estimating effective elasticity coefficients by conventional
structural analysis. The results by this simulation were in good agreement with experimental ones. More-
over, Kato et al. [2002] extracted a statistical characteristic of the random packing structure from data
on the random packing; although this kind of statistic is important to understand some relations between
the packing structures and their macroscopic characteristics, it cannot be obtained in other models, such
as the self-consistent models. They also estimated the mechanical properties (effective elastic moduli
and elastic wave speeds) by the same evaluation method as that in Kurashige et al. [1999a]. From
this evaluation, it was found that the packing structure of spherical particle random packings and the
elastic property of sintered compacts are of transverse anisotropy, due to gravity. Furthermore, Kurashige
et al. [1999b] applied the method to the thermal conductivity estimation of sintered solid particles; they
confirmed the usefulness of their method.

The present paper treats elastic properties of the bonded balloon random packing. We deal here with
the sintered balloons, which imply that the bonding material is identical to that of the balloons, but the
present method is applicable to blazed balloon random packings, or those bonded by other methods. We
carry out a thorough simulation using the above method [Kurashige et al. 1999a; Kato et al. 2002] to
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(c) Computer Simulation of Random Network

Random Network

Random Packings Six Degrees of Freedom Springs

(a) Geometrical Model Construction
(b) FEM Analysis

Extract

Figure 1. Three step simulation method: (a) geometrical model construction of ran-
domly packed balloon aggregate by the method of a rigid sphere free fall into a virtual
box; (b) evaluation of the characteristics of a microscopic structure by FEM analysis
of spring constants for a sintered balloon pair; (c) simulation of macroscopic material
properties by 3D structural analysis of a random network of springs, yielding desired
macroscopic elastic moduli.

examine statistical characteristics of the balloon packings and their macroscopic elastic properties and
to propose simple formulae to estimate the elasticities, by going through the following steps. (We will
use the term balloon packings, although there is no difference in packing structures and their statistical
characteristics between solid and hollow spheres.)

First, to generate a structural model of sintered balloon aggregates, we carry out a random packing
simulation of the sequential accumulation method of equal-sized balloons into a virtual box (see Figure
1a) combined with the use of periodic boundary conditions and random ups and downs of the box floor
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level. Some statistical characteristics of aggregate microstructures are examined by using such parame-
ters as porosity, coordination number, cumulative frequency of diameters of the circles appearing on a
cross-section created by cutting the aggregate and cumulative angular distribution of all contact points
within the aggregate.

Next, we extract a pair of connected spheres from the packing and regard it as a spring with six
degrees of freedom: one for elongation and torsion, and two for bending and shearing. Properties of the
microstructure element (that is, spring constants) are estimated by the finite element method; see Figure
1b.

Finally, we carry out tensile and shear tests of a random network of springs, with rigid hinges, of
six degrees of freedom with the spring constants already estimated by the finite element method (Figure
1c). From this simulation, we obtain the average tensile (or shear) stress and the average strain resulting
from the applied load. Thus, the desired macroscopic Young’s and shear moduli and Poisson’s ratios are
determined.

We also calculate Young’s modulus for the SC packing using the present three-step method to confirm
its validity. To consider an optimum design, macroscopic specific (that is, per weight) elastic moduli are
precisely estimated for a wide range of balloon thickness and sintering degree. Furthermore, we compare
the results for the present random packing with those for the regular packing obtained by Sanders and
Gibson [2003b].

2. Geometrical model construction

2.1. Equation of motion. To generate a spherical particle random packing structure in a computer, we
carry out the simulation by the method of rigid sphere free fall into a box. More details can be found in
[Taguchi et al. 2006].

We sequentially release a spherical particle with diameter D from random positions into a virtual box
in the computer. The motion equation of the sphere in a vectorial form can be expressed as:

c
dx
dt

= k1d − mgk, (1)

where x is the position vector of a falling sphere’s center, k is the unit vector along the z axis pointing
upward and 1d is the overlapping depth vector of the sphere in collision with another still one. Constants
c, k,m and g are the viscosity, the spring constant between two or more particles in collision, mass of
each particle, and the gravitational acceleration, respectively. We solve equation Equation (1) by the
Runge–Kutta–Gill method.

2.2. Simulation method. Consider the virtual box of 0 ≤ x ≤ B, 0 ≤ y ≤ B, 0 ≤ z ≤ H(B < H). We
do not stop introducing balloons until the cubic region 0 ≤ x ≤ B, 0 ≤ y ≤ B, 0 ≤ z ≤ H is completely
filled with balloons. For the box size B/D = 16 adopted, 5 runs were made with 5 different sets of
pseudo-random numbers, giving 5 samples. Five lists of final coordinates of all balloons’ centers will be
used to analyze the statistical characteristics and to estimate the elastic moduli of sintered balloons later
on.

The effects of the boundaries of the virtual box in which spheres accumulate are eliminated by intro-
ducing the cyclic boundary condition. The level of the box floor is moved up and down for each sphere
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B/D = 16

Sample 1 0.417439
Sample 2 0.417035
Sample 3 0.417106
Sample 4 0.416517
Sample 5 0.417406

Mean 0.417101

Standard deviation 0.000372

Table 1. Porosities of five samples; their mean and standard deviation.

by a magnitude given by pseudo-random numbers in order to avoid packing regularity on the floor. The
algorithm by Wichmann and Hill [1982] is used for the generation of the random numbers.

3. Statistical characteristics of geometrical model

3.1. Porosity. Porosity associated only with interstitial void space between the hollow spheres is one
of the most important parameters characterizing a random packing of particles. It should be cautioned
that the porosity excludes hollow space in the hollow spheres. The porosity of the random packing
constructed by the above method is evaluated from the center coordinate lists and shown in Table 1. As
seen from this table, the mean porosity is about 41.7%. This mean value is in good agreement with that
obtained by Kato et al. [2002].

In general, random packings are classified into three categories [Haughey and Beveridge 1969; Tory
et al. 1973]: very loose random packing (0.44 ≤ φ ≤ 0.47), random loose packing (0.41 ≤ φ ≤ 0.44),
and close random packing (φ ≈ 0.36).

The mean porosity shown in Table 1 reveals that our packings fall in the category of random loose
packing. The porosity φ = 0.417 obtained here is rather small in the range of the loose random packing,
because the present method allows no bridging.

3.2. Coordination numbers. Next, we examine the coordination number for our random packings for
the box size B/D = 16. The coordination number is defined as the number of contact points of a particle
with neighboring ones in a regular or irregular packing of particles. With a few regular packings, it is 6
for the SC, 8 for BCC and 12 for FCC; in contrast, there is a possibility that a sphere is in contact with
four to twelve other spheres for the random packing [Nolan and Kavanagh 1992].

Table 2 shows the mean coordination number for all particles for each sample and the mean value and
standard deviation for the five samples. The mean value 6.019 is in good agreement with that obtained by
Kato et al. [2002]. It is found that the average coordination number for the random packing constructed
is very near to that for the regular SC packings.

Figure 2 shows the distribution of the coordination numbers for the five samples. From this figure, it
can be seen that the coordination distribution has its peak at 6 and ranges from 4 — 8 for all samples;
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Coordination Number

Sample 1 6.016345
Sample 2 6.020791
Sample 3 6.020047
Sample 4 6.019235
Sample 5 6.020346

Mean 6.018755

Standard deviation 0.001921

Table 2. Coordination number for five samples; their mean and standard deviation.

it has negligibly small percentage for three and nine contact points and no sphere has more than then
contact points. Little difference in the distribution can be seen among the samples.

3.3. Cumulative frequency of diameters of circles appearing on a cross-section. If a randomly packed
aggregate of balloons is sectioned along a plane, a large number of double circles will appear on its
resultant cross-section; the outer circles have various values of diameter D′, which is naturally smaller
than or equal to D. Cumulative distribution of the diameter f (D′/D) is theoretically given by

f (D′/D)= 1 −

√
1 − (D′/D)2, (2)
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Figure 2. Coordination number distribution for all five samples.



MACROSCOPIC ELASTIC PROPERTIES OF RANDOMLY PACKED BALLOONS 535

Diameter Ratio (D'/D)

C
u
m
u
la

ti
v

e 
F

re
q
u

en
cy

 i
n
 t
h

e 
x
 C

o
n
st

an
t 
P
la
n

e
 (
%
)

(a)

C
u
m

u
la

ti
v

e 
F

re
q

u
en

cy
 i

n
 t

h
e 
z
 C
o

n
st

an
t 
P

la
n

e
 (
%
)

Diameter Ratio (D'/D)

(b)

Figure 3. Cumulative frequencies of diameters of circles appearing on x and z cross
sections created by cutting aggregate, corresponding to (a) and (b), respectively.

provided that the centers of packed balloons are distributed in a uniformly random manner [Debbas and
Rumpf 1966; Bennett 1972].

Figures 3a and 3b show the cumulative frequencies of diameters of simulated random packings for
all samples in terms of percentage for the x , z = constant cross sections, respectively. (The figure
for y = constant is omitted because it is similar to that for x = constant). Here, the solid line is the
theoretical prediction given by Equation (2). Each frequency is for each of five sectional planes x/D
or z/D = 0.1, 0.3, 0.5, 0.7 and 0.9. It is seen that the frequencies scatter more around the theoretical
value for the smaller diameter ratio. The scattering in [Kato et al. 2002] is smaller than the present one,
because there the frequencies were calculated by averaging over the five sectional planes. The cumulative
frequency for the z = constant planes is not different from that for the x = constant plane. This implies
that the centers of spheres are almost uniformly randomly distributed equally along the three mutually
orthogonal directions, although the scattering on the z = constant planes seems somewhat larger.

3.4. Distributions of branch orientations. A branch is defined as a segment connecting the centers of
balloons in contact; the spheres are judged to be in contact if the length of branch is equal to or smaller
than the diameter of sphere D, and not in contact if larger.

Although the sphere centers appear to be uniformly distributed as shown in the above subsection, it
may be important to examine orientations of all branches.

Kato et al. [2002] examined distributions, not cumulative ones, of the branch orientations in the similar
random packings. They divided the domain of zenithal and azimuthal angles into sub-domains by 10◦

step and calculated both the angular frequencies for each step, which were depicted in the form of a bar
chart. They concluded that the peak in the zenithal distributions appears around 45◦ from the vertical
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Figure 4. Cumulative azimuthal distributions of branch orientations.

line, while the distributions are uniform in the horizontal plane. In the present paper, we use both the
cumulative azimuthal and zenithal distributions of branch orientations in more detail and better accuracy.

Before calculating both of the angular distributions, let us introduce the spherical polar coordinate
(r, θ, ϕ), where θ and ϕ are the zenithal and azimuthal angles, respectively. The zenithal angle is
measured from the z-(vertical) axis, while the azimuthal angle is from the x-axis in the x − y plane.
The zenithal and azimuthal angles of the k-th branch (k = 1, 2, . . . , N , with N being the total number of
branches) are denoted by θk and ϕk , respectively.

First, to examine the azimuthal distribution of branch orientations, consider the domain of

ϕ, (−π/2, π/2].

If ϕk is in (π/2, π], ϕk should be replaced by ϕk −π ; similarly, that in (−π, π/2] by ϕk +π . Furthermore,
we rearrange the branches in ascending order of azimuthal angles in the range of (−π/2, π/2]. We define
the cumulative frequency of the branch orientations in the following way:

F(ϕ)=

(
1∑N

k=1 sin θk

N∑
k=1

sin θk H(ϕ−ϕk)

)
× 100(%), (3)

where H(ϕ) is the Heaviside step function. F(ϕ) with sin θk as weight shows the cumulative percentage
of the number of branches.

The cumulative azimuthal distribution defined above is calculated for all five samples. The results are
shown in Figure 4. It can be seen that the cumulative distribution is almost exactly a straight line with
gradient of 100/180. No sample seems to have any distinct characteristics. Thus, we conclude that the
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Figure 5. Cumulative zenithal distributions of branch orientations and their fitting curve
given by Equation (5).

structure of the obtained random packings is isotropic in the horizontal x − y plane in terms of the branch
orientations.

Next, we examine the cumulative zenithal distribution of branch orientations. Similarly to the cumu-
lative azimuthal distribution, θk should be replaced by θk − π/2 if it is in (π/2, π]. We rearrange the
branches in ascending order of azimuthal angles in the range of (0, π/2]. Since the circle made by θ = θk

on a sphere of unite radius is 2π sin θk in circumference, the cumulative frequency of branches per unit
area of the sphere F(θ) is defined by

F(θ)=

(
1∑N

k=1
1

sin θk

N∑
k=1

H(θ − θk)

sin θk

)
× 100(%). (4)

The cumulative frequency is calculated and shown in Figure 5 for all samples. From this figure, it can
be seen that the cumulative frequency distribution is not linear at all. Since the frequency distribution
of branches is an odd function both about θ = 0◦ and θ = 90◦, we can express the distribution by the
Fourier series of sin 2mθ . If we take into account only the first four terms, the distribution is

F(θ)= a0θ +

3∑
m=1

am

2m
sin 2mθ,

a0 = 63.043, a1 = −7.4308, a2 = −38.522, a3 = 7.5564,

(5)
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Figure 6. Zenithal distributions of branch orientations obtained from fitting curve, given
by Equation (6).

where the four coefficients am have been determined by the least square method. The fitting curve of
Equation (5) is drawn by a solid line in Figure 5; it cannot be distinguished from the original five curves,
which reveals that the fitting is complete.

Differentiating Equation (5) with respect to θ , we obtain

d F(θ)
dθ

=

3∑
m=0

am cos 2mθ. (6)

This equation shows the zenithal distribution of branches itself and its curve is drawn in Figure 6. It is
seen that the maximum frequency exists between 50◦ and 60◦ while the minimal is at θ = 0◦. By setting
the derivative of Equation (6) to zero, d2 F(θ)/dθ2

= 0, it is found that the frequency distribution has its
peak at θ = 50.1◦. This peak position is correct because the present evaluation is more precise than that
given by Kato et al. [2002]; their peak position θ = 45◦ was too rough.

From the arguments so far in this subsection, we can conclude that the packing structures are trans-
versely isotropic, indicating the effect of gravity. This conclusion comes from the viewpoint of branch
orientations.

4. Evaluation of spring constants of a sintered pair of balloons

4.1. Model of finite element. In the sintering of the balloon aggregate, necks are created around contact
points of the balloons by mass diffusion; the necks grow up with sintering time. However, we do not
simulate it, because we do not need to know its whole process, but need only to obtain the geometry of
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Figure 7. Geometry of a sintered (mass-added) balloon.

sintered state of aggregates. In order to represent the sintered geometry around the point of contact of
paired balloons, we add around it some mass of the same substance as that of the balloons; the added
volume is that bounded by the two contact balloons and a torus touching both of them, as shown in
Figure 7. The geometry made by adding some mass is not exactly the same as that of real sintered
balloon particles, but at least the shape of the void space in the mass-added spherical aggregate is much
more similar to the real one than the infinitely long needle shape [Kurashige et al. 1992], which was
assumed when the self-consistent models [Wu 1966; Berryman 1981] were applied. In Figure 7, D and
d are the outer and inner diameters of the balloon, respectively. This added geometry was also used in
[Sanders and Gibson 2003b; Sanders and Gibson 2003a].

The added volume per contact point can be calculated by simple geometrical consideration as

Vadd =
π

4

(1 − cos2
cos2

)2{
1 −

(π
2

−2
)

tan2
}

× D3, (7)

where 2 is the angle depicted in Figure 7. We will adopt the angle 2 as a parameter of sintering degree;
we call it a sintering degree angle. In [Sanders and Gibson 2003b; Sanders and Gibson 2003a], this is
called a bond angle.

4.2. Results of FEM analysis. The spring has six degrees of freedom: one for elongation and torsion,
and two for bending and shearing. The spring constants are defined in the same manner as in the con-
ventional structural analysis. Consider an hour glass shape of the two sintered half balloons shown in
Figure 7. Fix its one end and give some generalized displacement on the other end; then we calculate the
corresponding generalized forces, which provide the required spring constants. As a function of sintering
degree angle 2, we can obtain Kex and Mt x for axial elongation ux = 1 × 10−5 D and torsional angle
θr = 1 × 10−2, respectively; Kbx and Mbz for bending angle and Ksy and Msz for lateral displacement.
With respect to these notations, K and M correspond to the associated force and moment (or torque); the
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first subscript represents the deformation modes, while the second one describes displacement direction or
rotation axis. Notice that Ksz = Ksy , Msy = Msz and Kbz = Kby because of the geometrical axisymmetry.

We employ triangular ring elements. Numbers of nodes and elements are 2640 and 4949, respectively,
for the thickest-walled balloons, while the thinnest-walled model contains 9989 nodes and 18545 ele-
ments. The numbers of nodes and elements are enough to evaluate the spring constants, as has been
checked for the case of the smallest sintering angle by varying these numbers.

The FEM calculations have been carried out setting the Poisson’s ratio of the balloon material to 0.25.
It is reported in [Sanders and Gibson 2003b] that varying the Poisson’s ratio has a negligible effect on
the overall response.

All the spring constants normalized by Young’s modulus of the balloon substance Es versus the sin-
tering degree angle 2 are given in Figures 8a to 8f for various inner/outer diameter ratios d/D ranging
from 0.0 — 0.9 with their increment being 0.1. Figures 8a and 8b show Kex for the axial elongation
and Mt x for the torsion, respectively. Figures 8c and 8d depict Kbx and Mbz for the bending. Shown in
Figures 8e and 8f are Ksy and Msz for the lateral displacement with no gradient at the end, respectively.
For all inner/outer ratios, these spring constants monotonically increase with the sintering angle, seeming
to converge to zero with vanishing angle. Notice that Kbx = Msz because of the reciprocal relation. We
confirmed that these spring constants numerically satisfy this relation (see Figures 8c and 8f).

These spring constants will be used to evaluate the macroscopic, effective or overall elastic moduli
of the aggregate in the next section. Since the average coordination number for the random packing
constructed is approximately 6.02, and very near to 6 for the regular simple cubic packings, we will
simulate the tensile and shear tests up to the range of 2= 45◦ in the next section. The lower limit is set
to 3◦.

5. Macroscopic material properties

5.1. Simulation method. Now, we will do tensile and shear tests of a random network of springs, with
rigid hinges, of six degrees of freedom with the estimated spring constants. The random network is a
mechanical model of sintered balloons. The model might be satisfactory if deformation of each hourglass-
shaped spring is concentrated around its neck or near the sintered portion. This concentrated deformation
for all springs would account for the overall deformation of the sintered aggregate. To confirm this is the
case, we calculate strain energy density within the balloon pair from the above FEM analysis. The results
are shown in Figure 9 for the case of a rather thin and well sintered balloon, d/D = 0.9 and 2= 30◦.
From this figure, it is seen that the high density region is near the sintered portion. Although the results
are not illustrated here, the strain energy density obtained by the further FEM calculation depicts that the
deformation occurs only around the neck even in the case of a thin neck, e.g., 2= 5◦, independently of
the balloon wall thickness. This argument reveals that both ends of the hourglass-shaped spring, which
are far from the neck or sintered portion, is little deformed and plays a roll of the rigid hinge.

Since it was found that more spheres are in contact with others around the direction of θ = 50.1◦

from the vertical line, the porous media modeled by the random networks are expected to be transversely
isotropic in their elastic moduli. So, we carry out both the three different tensile tests and shear tests
of the networks. From the tensile tests, we obtain the macroscopic Young’s moduli E∗

x , E∗
y and E∗

z and
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Figure 8. Spring constants versus sintering degree angle for (a) elongation; (b) torsion;
(c) & (d) bending; and (e) & (f) shearing.
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(a) (b)

Figure 9. Distribution of strain energy density for (a) elongation and (b) torsion.

Poisson’s ratios νxy, νxz, νyx , νyz, νzx , νzy according to their definition. Furthermore, we obtain Gxy , Gxz

and G yz from the shear tests.
We use a program for the 3D structural analysis, which is borrowed from a textbook [Beaufait et al.

1970], to simulate both of the tests.

5.2. Numerical results. Figures 10 and 11 respectively show macroscopic Young’s moduli and shear
moduli versus the total porosity in the sintered state; it should be noted that this porosity accounts for
the hollow space of all the balloons as well, and that the added volume around all necks by sintering
is subtracted from the whole void space. Although we have calculated all these moduli for all samples,
we will present only graphs for sample 1, because we can see little difference among the samples for all
diameter ratios. In all the figures, the ordinate presents their macroscopic Young’s moduli E∗ or shear
moduli G∗ normalized by Young’s modulus of the balloon substance Es ; d/D is adopted as a geometrical
parameter.

Figure 10 shows the porosity dependence of Young’s moduli E∗
x/Es , while Figure 11 shows G∗

xy/Es .
Comparing the results in Figure 10 with those in the figure for E∗

z omitted for brevity, we find that the
value of E∗

z is roughly 20% larger than E∗
x over the entire region of porosity for all diameter ratios. This

can be understood from the following facts: all springs lying in the direction of around 50.1◦ from the
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Figure 10. Young’s moduli in isotropy plane versus porosity.
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Figure 11. Shear moduli in isotropy plane versus porosity.
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Figure 12. Three independent Poisson’s ratios versus porosity: (a) νxy , (b) νxz and
(c) νzx , for d/D ranging from 0.0 — 0.9

vertical line support forces in the z direction, while only some parts of them lying around the x − z plane
support forces in the x direction but some parts of them lying around the y − z plane do not. Similarly,
G∗

xy shown in Figure 11 is larger than G∗
xz , not shown, by more than approximately 30% over the whole

range of porosity. Furthermore, we can numerically confirm, although not shown, that E∗
x = E∗

y and
G∗

xz = G∗
yz . These observations show again that the packing structure of the simulation is of transverse

isotropy.



MACROSCOPIC ELASTIC PROPERTIES OF RANDOMLY PACKED BALLOONS 545

Next, we examine dependence of the elastic moduli on the degree of sintering and the diameter ratio;
each marker on an individual curve in both the figures corresponds to the sintering degree angle ranging
from 3◦ to 45◦ at the interval of 3◦; and progress toward the right on the curve makes the sintering degree
low. For each constant diameter ratio, the smaller the degree of sintering is, the smaller the elastic moduli.
Increases in the diameter ratio lower the curves as a whole, especially so for the higher degree of sintering.
They also shift the curves toward higher porosity as a whole, because the balloon wall becomes thinner.
The elastic moduli are little affected by the ratio if the ratio is smaller or for the thicker balloon wall. The
elastic moduli lowers rapidly if the diameter ratio is larger than 0.5. The elastic modulus of the aggregate
of hollow spheres with d/D = 0.9 is approximately a quarter of that of solid spheres. All these things
are valid for all the figures, including the omitted. This is also true for Young’s moduli E∗

y and for shear
moduli G∗

yz , as confirmed by further calculation.
It should be added that both Young’s and shear moduli go to zero as the sintering angle tends to zero

for all the diameter ratios even for a finite value of the porosity; the porosity depends on the diameter
ratio as well as on the sintering angle and packing structures.

In the above, we have mentioned that Young’s modulus E∗
z and shear modulus G∗

xz are larger than
E∗

x and G∗
xy by 20% and 30%, respectively. These moduli, however, depend on the diameter ratio and

sintering angle in a very complicated manner, so the degree of anisotropy cannot be described by a
simple multiplication factor. Therefore, it may be important for practical purposes to express all the
elastic moduli in terms of a simple—that is, polynomial—expression of the two geometrical parameters
d/D and 2. The expressions are determined by the conventional least square method as follows:

E∗
x

Es
=

(
4.24 × 10−3

+ 2.91 × 10−3 d
D

− 7.45 × 10−3
( d

D

)2
)
2

+

(
−5.42 × 10−6

− 2.57 × 10−5 d
D

+ 3.43 × 10−5
( d

D

)2
)
22, (8)

E∗
z

Es
=

(
5.28 × 10−3

+ 6.64 × 10−3 d
D

− 9.27 × 10−3
( d

D

)2
)
2

+

(
−1.16 × 10−5

− 3.42 × 10−5 d
D

+ 4.96 × 10−5
( d

D

)2
)
22, (9)

G∗
xy

Es
=

(
1.82 × 10−3

+ 1.27 × 10−3 d
D

− 3.16 × 10−3
( d

D

)2
)
2

+

(
−4.17 × 10−6

− 1.15 × 10−5 d
D

+ 1.6 × 10−5
( d

D

)2
)
22, (10)

G∗
xz

Es
=

(
2.25 × 10−3

+ 1.44 × 10−3 d
D

− 3.9 × 10−3
( d

D

)2
)
2

+

(
−2.07 × 10−6

− 1.33 × 10−5 d
D

+ 1.75 × 10−5
( d

D

)2
)
22. (11)
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All the equations are valid for 0.0 ≤ d/D ≤ 0.9 and 3◦
≤2≤ 45◦ to within 8.5%.

Now, we will move on to discuss Poisson’s ratio. The topic is a little more complicated than that of
the Young’s and shear moduli.

Figures 12a — c show the behavior of Poisson’s ratios, νxy , νxz , νzx , respectively, against the total
porosity for various inner/outer diameter ratios d/D ranging from 0.0 — 0.9 with their increment being
0.1; νxy means Poisson’s ratio in the isotropy plane; νxz denotes the contraction ratio in the z axis under
uniaxial tension in the x direction, while νzx the one in the x axis under z tension. The estimation of all
Poisson’s ratios here are based on the described definitions; in other words, not on some relations among
other elastic moduli estimated.

The macroscopic Poisson’s ratio obtained is smaller than that of the balloon substance ν = 0.25 with
exceptional cases of νzx , for very small porosity and small diameter ratios. It seems to be a general
tendency that Poisson’s ratio of porous materials is smaller than that of the original material. Few papers
report on this topic but Sanders and Gibson [2003a] give much smaller Poisson’s ratios for the BCC and
FCC packings than the original one.

In Figure 12, it can be seen that the dependence of Poisson’s ratios on porosity is similar to that of
Young’s and shear moduli. The ratios decrease with decreasing sintering degree angle for each diameter
ratio. They are little affected by the diameter ratio if it is smaller (or for the thicker balloon wall), more
precisely for d/D < 0.4. The Poisson’s ratios decrease rapidly if the diameter ratio is larger than 0.5.
Poisson’s ratio νxy in the isotropy plane is the smallest, while νzx is the largest; νxz lies between them.

It is interesting that all Poisson’s ratios sharply ascend with an approach of porosity to the nonsintered
state. This is supported by the similar ascent for the solid sphere aggregates obtained by Kato et al.
[2002], but it may be true on condition that these results are sufficient in their accuracy in the limit.

We have already given the formulae to estimate the four elastic moduli. The final modulus of five
independent moduli for transversely isotropic media, if we select νzx , can be expressed in terms of d/D
and 2 as follows:

νzx =

(
1.38 × 10−1

+ 3.19 × 10−3
( d

D

)2.2
− 5.41 × 10−1

( d
D

)5.2
)
20.1

+

(
8.1 × 10−3

− 2.16 × 10−3
( d

D

)1.2
+ 1.18 × 10−1

( d
D

)6.8
)
20.5. (12)

The equation describes the results for 0.0 ≤ d/D ≤ 0.9 and 9◦
≤ 2 ≤ 45◦ to within 10% in all cases.

Note that the lower limit of the sintering degree is 9◦ to avoid the rapid ascent in the ratio in approaching
the nonsintered state; the relative error is larger for the degree smaller than that. More important, the
expression given by Equation (12) is not a polynomial of d/D and 2, because the dependence of the
ratio on these parameters is too complicated to express by means of a polynomial.

For the transverse isotropy in elasticity, the reciprocal relations

νxz

E∗
x

=
νzx

E∗
z
,

νyz

E∗
y

=
νzy

E∗
z

(13)
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Figure 13. Relative Young’s modulus in [100] for SC packing calculated by present
method versus sintering degree angle together with that of [Sanders and Gibson 2003b].

must be fulfilled. Poisson’s ratio νxz can be determined from the first relation. In addition, νyz = νxz and
νzy = νzx . We have confirmed that the present results almost satisfy these relations.

Poisson’s ratio νxy can be expressed in terms of E∗
x and G∗

xy as

νxy =
E∗

x

2G∗
xy

− 1. (14)

However, Poisson’s ratios νxy calculated by Equation (14) differ considerably from the simulated ones. If
G∗

xy deviates by ±5% in Equation (14), the νxy varies by as much as 30%. Thus, we cannot use Equation
(14) to determine Poisson’s ratio νxy . Instead, it can be obtained from the following expression in terms
of d/D and 2 in a manner similar to that of Equation (12):

νxy =

(
7.96 × 10−2

− 2.24 × 10−1
( d

D

)1.9
+ 3.48 × 10−1

( d
D

)2.5
)
20.4

+

(
−1.01 × 10−2

− 5.2 × 10−2
( d

D

)1.9
+ 7.68 × 10−2

( d
D

)2.5
)
20.8. (15)

The equation describes the results for 0.0 ≤ d/D ≤ 0.9 and 9◦
≤2≤ 45◦ to within 10% in all cases.

We have determined the in-plane shear modulus G∗
xy from the shear tests. However, we can calculate

G∗
xy from only the tensile test using Equation (14). So we estimate G∗

xy from Equation (14). The results
fit those from the shear test to within ±5%.
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Figure 14. Specific Young’s moduli in isotropy plane versus porosity for d/D ranging
from 0.9 — 0.95.

6. Discussion

6.1. Validity of the proposed simulation method. We have simulated the elastic properties of randomly
packed sintered balloons using the three-step simulation method. Here, we will confirm validity of the
present method by applying it to the simple cubic packing.

[Sanders and Gibson 2003b] evaluated the mechanical properties of simple cubic packed hollow-
sphere foams by the FEM analysis of a unit cell with the periodic boundary conditions. We calculate the
relative Young’s and shear moduli for the same SC packings by the present method. Figure 13 compares
the relative Young’s modulus for the SC packing calculated by the present method with that obtained
from the formula given by [Sanders and Gibson 2003b]. A good agreement is seen between them for a
wider range of the sintering degree angle, although Sanders and Gibson pointed out that their formula is
applicable to the range from 10◦ to 40◦.

6.2. Better design; larger specific moduli. One of the advantageous properties of the sintered balloon
compacts is a high specific modulus. To consider the better design of compacts, we examine a specific
relative modulus, which is defined as the relative effective modulus divided by the relative effective
density of a sintered aggregate, where the term relative means the quantity divided by that of the original
balloon material. In what follows, this term will be omitted in almost all cases. We have calculated the
specific Young’s and shear moduli for a wide range of the diameter ratios, but will not show all of them.
In Figures 14 and 15, we will show the specific moduli only for the case of the diameter ratio larger than
0.9, because commercially available balloons have rather thin walls. Both figures illustrate the moduli
in the isotropy plane.
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Figure 15. Specific shear moduli in isotropy plane versus porosity for d/D ranging
from 0.9 — 0.95.
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Figure 16. Optimum sintering degree angle plotted as a function of inner/outer diameter
ratio for random and SC packings.



550 ISAO TAGUCHI AND MICHIO KURASHIGE

In the first place, we have to point out that the curves of the specific moduli against the porosity have
a peak both for Young’s and shear moduli in the isotropy plane. This is also true for those out of the
plane.

It seems that there is a complicated mechanism behind the peak occurrence. Let us consider the case
of Young’s modulus, so that it may be enough to refer to only Figure 14 and, in addition, Figure 10 for
comparison. See the curve of d/D = 0.9 in the latter figure; it can be seen that the modulus gradually
slows down with increase in porosity for the smaller porosity range and rapidly falls down for the larger
porosity, approaching the point contact state; the gradual slow-down is caused by deformation of upper
and lower thin shell parts around a neck and this deformation is not strongly affected by the sintering
degree, while the sharp falling is due to the concentrated deformation near a contact point because of
the less sintered state. On the other hand, because the balloon thickness is constant on the given curve,
decrease in the porosity implies increase in the sintering degree. This increase makes the specific density
rise; dividing the modulus depicted in Figure 10 by this increased specific density leads to the smaller
specific modulus shown in Figure 14.

In many cases, the largest specific modulus is the optimum porous material with respect to rigidity.
Figure 16 shows the optimum sintering angle for the Young’s modulus, in the z direction, of sintered
random packings, plotted as a function of the diameter ratio together with that given for the SC regular
packings by [Sanders and Gibson 2003b]. It is seen that the optimum angle of the random packings
higher than that of SC. It should be added that the Young’s and shear modulus (the latter is not shown)
in the isotropy plane have almost the same optimum sintering angle and the same thing is true for the
moduli out of the plane (not shown).

In the material design, therefore, we must select the best sintering condition from this result.

6.3. Negative Poisson’s ratios. Here, we will back to Figures 12a — 12c. Scrutinizing the figures, we
find that the Poisson’s ratios are negative in the case of very thin balloon wall and very low sintering
degree. Because of this interesting characteristic, we have calculated the Poisson’s ratios for the case of
d/D = 0.8 or more in detail and shown them in Figures 17a — 17c.

The negative Poisson’s ratio implies that the uniaxial tensile (compressive) load applied on a body
will lead to its expansion (contraction) in the direction orthogonal to the applied load.

A foam with negative Poisson’s ratio was first fabricated by Lakes [1987]. In general, typical mi-
crostructures of foams with negative Poisson’s ratio are of three types: inverted re-entrant cell shape
[Lakes 1987; Friis et al. 1988], solid particles attached to each other by elastic strips [Lakes 1991;
Prall and Lakes 1997] and nodes, connected by tensile springs, constrained by hinged inextensible rods
[Evans and Caddock 1989]. However, the slightly sintered random balloon aggregates have none of such
structures as mentioned just in the above.

Using the discrete element method for a random granular material, Bathurst and Rothenburg [1988]
and Alzebdeh and Ostoja-Starzewski [1999] showed that effective Poisson’s ratio for an aggregate of
two-dimensional irregular particles is negative in some cases even when the individual Poisson’s ratios
of particles are positive. Bathurst and Rothenburg [1988] examined negative Poisson’s ratio behavior by
varying the ratio of a normal stiffness and shear stiffness between particles. They found that the Poisson’s
ratio is negative when the shear stiffness is higher than the normal stiffness.
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Figure 17. Three independent Poisson’s ratios versus porosity: (a) νxy , (b) νxz and
(c) νzx , for d/D ranging from 0.8 — 0.95.

Following their discussion, we pick up only the shear stiffness Ksy and normal stiffness Kex of a
connected balloon pair from the six spring constants calculated in the above FEM analysis. For a solid
sphere of d/D = 0.0, if the sintering degree angle varies down from 45◦ to 3◦ (this descending degree
means the shift of the markers toward the right or higher porosity on each curve in Figure 12), their ratio
Ksy/Kex changes from 0.2 to 0.37, whereas, for a thinner balloon of d/D = 0.9, the ratio changes from
0.5 to 2.1. A rough estimate of the variation of the Poisson’s ratio against that of the stiffness ratio shows
that the Poisson’s ratios are negative when Ksy/Kex is greater than 2. More precisely, this critical value
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slightly differs from each other for the three independent Poisson’s ratios; remember that we have the
three distinct ratios because the sintered aggregates under consideration are transversely isotropic.

6.4. Comparison with SC packing. Finally, we compare the Young’s modulus of the present random
loose (RL) packing with that of the regular packing. Here, we select the SC packing from among regular
packings, because the average coordination number for the random packing constructed is approximately
6 and very near to that for the regular SC packings, whose coordination number is exactly 6. It should
be mentioned here that the present RL packing is of axial symmetry with the five independent elastic
moduli while the SC packing is of cubic symmetry with the three.

In Figure 18, the Young’s moduli, E∗
x and E∗

z , of the RL packing are plotted versus the sintering
degree in the case of d/D = 0.9. Also shown in the figure are the Young’s moduli in the [1 0 0], [1 1 0]

and [1 1 1] directions for the SC packing for the same d/D; these moduli are calculated by using the
standard transformations of elastic moduli from the three compliances, S11, S12 and S44, in the form of
the fitting formula given by [Sanders and Gibson 2003b].

A good agreement is seen between the Young’s modulus of the random packing in the z direction and
that of the SC in the [1 0 0] direction only when 2 < 20◦. However, for 2 > 20◦, the latter is greater
than the former; the difference between them increases with increasing sintering degree angle. For the
sintering degree angle 2 = 30◦ and diameter ratio d/D = 0.9, the relative Young’s modulus is 38%
greater in the [1 0 0] direction of SC than in the z direction for the RL packing. For the same sintering
degree angle and diameter ratio, the relative Young’s modulus in the [1 1 0] and [1 1 1] directions of SC
are 1.86 and 2.11 times that in the z direction for the RL packing.

Figure 19 shows the Young’s modulus versus porosity for both the RL and SC packings when we have
d/D = 0.9 and 0.95. For each diameter ratio, the Young’s modulus of RL packing is much smaller than
that of the regular SC stacking, although the difference between them is rather small when the sintering
degree angle is about 20◦. It can be concluded that, although the average coordination number for the
random packing constructed is very near to that for the regular SC packings, the macroscopic properties
of the RL packing are significantly different from those of the packing in elasticity and anisotropy.

7. Conclusions

We have evaluated the macroscopic elastic properties of the sintered, randomly packed balloons for
various degrees of sintering and for a wide range of the balloon wall thickness. The conclusions are
summarized below:

(1) The packing structure in the vertical direction is different from that in other directions. Branches lie
more frequently around the direction of 50.1◦ from the vertical line than other directions, whereas
they are uniformly distributed about the vertical line. The packings constructed by the present
method are of transverse isotropy; in other words, the structure is affected by gravity.

(2) The elastic moduli are little affected by the diameter ratio for thicker balloons whose ratio is less
than about 0.4, while the properties of thinner balloons are very sensitive to the ratio; they rapidly
decline with decreasing wall thickness of the balloons.

(3) The moduli are larger in the direction of gravity than in the horizontal one, as expected for the
gravity-affected packing structures.
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Figure 18. Relative Young’s modulus plotted against sintering degree angle for random
loose packing and SC packing.
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Figure 19. Relative Young’s modulus plotted against porosity for random loose packing
and SC packing for d/D = 0.9 and 0.95.
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(4) The specific elastic moduli are found to have a peak when the balloons have a diameter ratio larger
than about 0.9.

(5) The Poisson’s ratios are slightly negative in the case of very thin balloon walls and very low sintering
degree.

(6) The macroscopic properties of the RL packing are significantly different from those of the SC
packing in elasticity and anisotropy, although the both packings have almost the same coordination
number.
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CYLINDRICAL INDENTATION INDUCED DEFORMATION
IN FACE-CENTERED CUBIC METAL SINGLE CRYSTALS

YONG XUE GAN, YUKI SAITO AND XI CHEN

We investigate the deformation field induced by a cylindrical indentation on a face-centered cubic single
crystal of aluminum or copper. We first present experimental measurements of the load–displacement
curve and the crystal lattice rotation field (under plane strain condition) of an aluminum single crystal
subject to indentation, together with related results for a copper crystal. Next, finite element simulations
of the lattice rotation and displacement field associated with the cylindrical indentation are provided.
The numerical and experimental results about lattice rotation features are compared with theoretical
predictions based on the single crystal plasticity. Finally, the displacement fields obtained from the
numerical solutions and experiments are compared. Both electron backscatter diffraction experiments
using scanning electron microscopy and finite element simulations show the existence of different slip
sector boundaries in the single crystals, in agreement with theoretical predictions of active slip systems
and dislocation structures.

1. Introduction

As a localized impression testing technique, indentation has been extensively studied for evaluating
materials properties such as the modulus [He et al. 2006], hardness [Zhang et al. 2004], fracture toughness
[Tanaka et al. 2003], and creep properties [Wen et al. 2006]. Indentation has several advantages over other
mechanical property testing methods, as it can be easily carried out on small specimens with minimum
sample preparation [Sastry 2005a]. Compared with conical or wedge indenters, a cylindrical indenter
can apply an approximately constant load to the contact region, resulting in relatively stable stress and
deformation fields [Sastry 2005b]. Thus, cylindrical indentation is a very useful method to characterize
the constitutive behavior of materials.

Because the mechanical properties of hard materials are difficult to obtain by conventional tension,
compression or cyclic loading tests, the indentation method has recently been applied to such materials,
for instance in [Guillou et al. 1993] (ceramics), [Seo et al. 2003] (surface passive films) and [Stevenson
et al. 2001] (intermetallic compounds). Indentation has also been used for evaluating the deformation
behavior of ductile materials [Zhu et al. 2004; Fujiwara and Otsuka 1999]. Yamada and Ikeda [1975]
investigated the deformation mechanism of indentation onto the surface of a copper single crystal, finding
subgrain formation on the surface and misorientation. In [Kobayashi et al. 1990], indentation tests using
a steel ball were carried out on the (001), (011) and (111) faces of α-CuAl single crystals. The plastic

Keywords: indentation, single crystal, anisotropic plasticity, deformation field, lattice rotation map, numerical simulations.
This work is supported by a research initiation fund from Department of Mechanical Engineering at The Cooper Union. The
numerical work is supported by the National Science Foundation (CMS-0407743). The experimental work is also supported
in part by Columbia Nanomechanics Research Center. We acknowledge the usage of the shared experimental facilities at
Columbia University.
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deformation mechanism of the surface layer under different indentation configurations was interpreted.
Besides the details on slip trace distribution, the dislocation density around the indentation on the (111)
and (211) planes was revealed by etching pits on the surface.

The load-displacement behavior during nanoindentation of electrodeposited single crystal copper
nanowires (about 500 nm in size) was studied by Bansal et al. [2005], and compared with that of bulk
nanocrystalline and annealed copper. The hardness value for extruded polycrystalline copper nanowires
with 50 nm grain size was reported as 2.1 GPa; the value for single crystal copper nanowire was found
to be about 1.8 GPa.

Understanding the anisotropic properties associated with indentation into face-centered cubic (FCC)
single crystals is very important because the deformation field is determined by the contribution of each
active slip system. Kobayashi et al. [1990] report that the slip tends to occur in the [110] direction on the
(001) and (011) crystal planes if the indentation loading is applied on the (001) or (110) crystallographic
plane; they also found that in the case of indentation on the (111) plane, the slip occurred on two sets of
planes, located in truncated triangular pyramids, one diverging and the other converging into the single
crystal. Due to plastic anisotropy, the hardness of FCC single crystals is orientation-dependent. Based
on this property, a method for determining the orientation of a single crystal by indentation testing was
reported in [Chang and Sheu 1992]. In that work, the orientation of the crystal was determined through
an exam of the slip lines formed around the indented regions in Al-Li single crystals.

In this paper, we present the experimental, numerical and analytical results obtained from the investi-
gation of cylindrical indentation into FCC single crystals. Aluminum and copper crystals are employed
in the study because these metallic crystals possess typical elastic-plastic constitutive behaviors. The
indentation patterns, such as the slip line traces generated by cylindrical indenters, are sufficiently regular
and the deformation state is considerably stable.

Section 2 describes the materials and experimental procedures used. Section 3 deals with the finite
element simulation method and its implementation. The indentation load-displacement relationship and
the crystal lattice rotation field under plane strain conditions of an aluminum single crystal are presented
in Section 4. Also in the same section, finite element (FE) simulation solutions to the lattice rotation
and displacement field associated with the cylindrical indentation into face-centered cubic (FCC) single
crystals are provided. Correlation among the predictions on the deformation state by the single crystal
plasticity theory, the numerical FE solutions and the experimental results of the lattice rotation features
is established. In the last part of Section 4, a comparison is made of the indentation displacement field
obtained from numerical simulations and from experiments. Conclusions are summarized in Section 5.

2. Materials and experiments

Materials. Two types of FCC single crystals are employed in this work. The first is an aluminum single
crystal of 99.999% purity, grown from melt with the seeded Bridgman technique. The direction of
solidification is [11̄4]. The as-grown crystal was etched in a 20% (by weight) NaOH aqueous solution to
remove the surface oxide layer formed at the high temperatures required for crystal growth. Laue X-ray
diffraction was conducted to determine the crystallographic orientation to within ±1◦. After taking the
X-ray image, we reoriented the Al single crystal and performed a series of cuts using an electric discharge
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machine (EDM) so that the [110] is the surface normal; [1̄10] is aligned horizontally; and [001] is aligned
up vertically.

The second type of FCC single crystal used is copper single crystal. Pure copper single crystal was
supplied in cylindrical form with the axis oriented along [001] crystallographic direction. The crystal
was cut using the same electrical discharge machine, so that the (110) plane was exposed. Laue X-ray
diffraction for this crystal was also conducted to confirm the orientation.

Sandpaper with various grits from No. 120 to No. 1200, supplied by Buehler, Lake Bluff, IL, were
used in coarse polishing. Fabric polishing pads and diamond polishing compounds with 6 µm and 1µm
diamond particles, which were also acquired from Buehler, were used in fine polishing. Chemicals
including hydrochloric acid and phosphoric acid in ACS standard purity were used for removing the
surface oxide layer and for electrochemical polishing of the copper crystal; the chemicals were purchased
from Alfa Aesar, Ward Hill, MD. The nickel(II) sulfate and nickel anode for electroplating nickel on the
surface of the copper crystal were obtained from Alfa Aesar. Solvents such as trichloroethylene and
acetone supplied by Alfa Aesar were used for surface degreasing of the aluminum and copper single
crystals. Epoxy resin and the curing agent trademarked as DEVCON, used for bonding the single crystals,
were acquired from ITW Performance Polymers, Riviera Beach, FL.

Specimen preparation. The copper and aluminum crystals were cut into 20 × 10 × 10 mm3 blocks using
the EDM. The surface to be indented was polished using grit 120, 240, 320 and 400 silicon carbide
sandpaper. The surface of the single crystals was then mechanically polished following the procedures:
The grit 600 sandpaper was used to grind the surface under minimum pressure along one direction until
any deep scratches from the previous cutting process became invisible. During this process, water was
used as lubricant and coolant to prevent the surface from being overheated. The purpose of this polishing
procedure is to remove the possible deep deformation layer from the previous grinding processes. The
grinding/polishing along one direction can prevent the rounded corner formation along the edges of the
polished surface. The polishing direction was changed by 90◦ to continue polishing using the same
grit 600 sand paper, but even less pressure was applied until the scratches from the previous polishing
procedure became invisible. Water was supplied continuously for cooling and smooth grinding. The
purpose of this polishing procedure is to remove the possible residual stress layer generated from previous
polishing. The specimen was washed with tap water to prevent any coarse abrasive going into the next
polishing procedure.

Subsequent mechanical polishing was conducted using a grit 1200 sand paper to polish the surface
under minimum pressure along one direction until any rough scratches became invisible, lubricated by
water. After this procedure, the polish direction is changed by 90◦ to continue polishing using a grit
1200 sand paper repetitively until the scratches from the previous procedure became invisible. This
repeated procedure could help to further reduce the thickness of the surface deformation layer formed
in the previous polishing procedures. In addition, changing the polishing direction helps to remove any
texture built-up due to polishing along a fixed direction. After each polishing step, the specimen was
washed with tap water to prevent any coarse abrasive going into the next polishing procedure.

The following procedures were applied for polishing the surface of the single crystal with diamond
compound and using lapping oil as lubricant. The specimen is first polished with 6µm diamond paste
with minimum pressure until no deep scratches were shown. The specimens were then washed in soapy
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Figure 1. Schematic of cylindrical indentation experiment: (a) cylindrical indentation
into Al single crystal, (b) EDM cutting for exposing the midsection of the crystal, (c) ac-
tive slip systems in the single crystal under cylindrical indentation, (d) region for EBSD
measurement.

water. Ultrasonic cleaning was applied to remove any attached particles from the specimen. After that,
the specimens were polished using 1µm diamond paste with minimum pressure. The oil lubricant
was applied frequently to keep a very smooth polishing condition. The polishing was done until no
preferentially aligned scratches could be observed. Upon the completion of this polishing procedure, the
surface of the aluminum and copper crystals show mirror luster with shinny reflection under light.

Indentation. Cylindrical indention was performed on both aluminum and copper single crystal speci-
mens. The indenter with a diameter of 0.625 mm as shown in Figure 1(a) was made of tungsten carbide
bonded by a ferrous alloy. The indentation was under load control condition using a microindentation
fixture. The loading direction was [001̄] and the loading rate was approximately 5 × 10−4 mm/s. During
indentation, the load and the indentation displacement data were recorded by a LabView 7.0 program
and subsequently processed using a MATLAB code.

Electron microscopic examination. After the indentation, exposure of the mid-section of the single
crystal specimens with plane strain deformation conditions was performed by an EDM cut as shown in
Figure 1(b). After the cut, the aluminum single crystal was put into a compacted fixture and the indented
area was painted with a layer of epoxy for protection. The indented (001) surface of the copper single
crystal was electroplated with nickel to protect the indented region. The electrolyte and electroplating
conditions for this work were adapted from the nickel-plating formula given in [Lowenheim 1978], and
were as follows: nickel(II) sulfate hexahydrate, 250 g per liter; hydrochloric acid, 60 g (of 36.5% solution)
per liter; temperature, 50◦C; current density, 500 A/m2; time, 2 minutes. The anode was a nickel rod.

After electroplating, the copper crystal was carefully polished on the (110) plane following the same
procedures described on page 559. After mechanical polish, the copper single crystal was first degreased
using soapy water, then trichloroethylene, and finally acetone. The cleaned copper crystal was surface
activated in a 10% HCl aqueous solution followed by rinsing in distilled water. After that, the surface of
(110) of the single copper crystal was electropolished in an orthophosphoric acid solution. The compo-
sition of the solution and the detailed electropolishing procedures are given in [Ahmed et al. 1997] and
[Morse 2002], respectively.

The procedures for aluminum crystal preparation are as follows: The exposed surface from the mid-
section of the Al single crystal was protected by the epoxy coating and then coarse polished using 120,
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240, 320 and 400 grit silicon carbide sandpaper with water as a lubricant. Further polishing using 600 and
1200 grit sandpaper was performed under minimum pressure. After that, fine polishing with 6-micron
and 1-micron diamond compounds with oil as a lubricant was performed. After fine polishing with the
diamond paste, electropolishing of the single crystal was conducted in an electrolyte containing 30%
volume nitric acid (ACS purity, concentration 67%) and 70% volume methyl alcohol for 30 seconds at
−20◦C. Ultrasonic cleaning in solvents was performed after electropolishing. The specimens were then
used for scanning electron microscopic (SEM) examination and electron backscatter diffraction (EBSD)
measurements.

SEM examination and EBSD data acquisition at a specimen tilt angle of 70◦ were carried out on
a JEOL 5600 scanning electron microscope. Figure 1(c) schematically shows the slip traces of the
single crystals underneath the indented region. Such slip line features reveal three active slip systems as
predicted by the slip line theory [Rice 1973]. Figure 1(d) is the schematic showing the region for the
EBSD measurement. In Figure 2, left, the configuration of a specimen in the chamber of the microscope
is shown. Figure 2, right, is an SEM micrograph taken from the indented aluminum single crystal. The
area for the EBSD mapping is also shown. The typical step size for EBSD mapping is 3 ± 0.1µm. The
EBSD measurement data were analyzed using the HKL Channel 5 software. Backscatter electron (BSE)
microscopic examination on selected region of copper single crystal specimens was performed at 0◦

specimen tilt angle using a Hitachi 4700 field emission electron microscope to determine the indentation
displacement field, as will be discussed in more detail in Section 4.6.

3. Finite element simulations

Finite element analysis was performed using ABAQUS version 6.4-1. The user-material subroutine
for single crystal plasticity developed by Huang [1991] and modified by Kysar [1997] was used in the
implementation of finite element solutions for both aluminum and copper single crystals. The indentation
contact, loading and unloading were set under displacement control to achieve better convergence than in
the case of under load control. The critical shear stress for the aluminum single crystal, τ , was assumed to
be 1.0 MPa. This value for copper single crystal was 58.0 MPa according to Huang [1991]. The element
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Cylindrical indenter 

contact region

(110)

(001)

X

Y
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Mapped area

Figure 2. Illustrations of crystal lattice rotation measurement: specimen configuration
and SEM image showing EBSD mapping region.
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Figure 3. Schematic of the cylindrical indenter and the mesh for numerical analysis:
global view (left) and detail near the tip of the indenter. (In the global view, the small
mesh size collapses the lines into a band.)

used in the simulation was a plane strain reduced integration, hybrid element (CPE4RH) implemented in
ABAQUS. The cylindrical indenter was defined as analytically rigid. Figure 3 shows the configuration of
the cylindrical indenter and the mesh of the single crystals; note on the left-hand diagram that the density
of the mesh increases drastically in the vicinity of the indenter tip. In the finite element analysis, the
lattice rotation and displacements were solved incrementally by ABAQUS using a finite strain kinematic
structure described by Huang [1991]. The constitutive properties were taken to be elastic-plastic. The
power-law rate-dependent relationship was initially proposed by Hutchinson [1976], and described in
detail in [Connolly and McHugh 1999; Huang 1991; Kysar 2001; Peirce et al. 1983; Savage et al. 2004].
The function related to the critical resolved shear stress of the k-th slip system was taken as a constant.
The reference strain rate was γ̇0 = 10−3 s−1, and the rate sensitivity exponent m = 50. The Peirce–Asaro–
Needleman hardening model [Peirce et al. 1983] was used in the simulation. The parameters related to
the hardening were defined as in [Huang 1991]. During the simulation, the minimum iteration step used
is 1 × 10−9 and the maximum step is 5 × 10−5 and approximately 20000 increments were performed in
the loading simulation and unloading simulations, respectively.

4. Results and discussion

4.1. Load-displacement relation. Figure 4 shows the load-displacement curve for the aluminum sin-
gle crystal, where the large hysteresis loop indicates the finite plastic deformation occurred under the
cylindrical indentation. Since the deformation is dominated by plasticity, the elastic unloading region
is fairly small (the right-hand part of Figure 4). The deformation behavior can be explained by the
easy gliding (slip) property of an FCC single crystal under external loadings. In an FCC single crystal
such as aluminum single crystal, there are 12 favorable slip systems. Under certain loading conditions,
some of the slip systems become active. Thus, the plastic deformation dominated behavior is observed in
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Figure 4. Load-displacement relation associated with cylindrical indentation.

Figure 4. Such plastic deformation-dominated behavior makes the experimental results of lattice rotation
comparable with the slip line theory predictions, as will be discussed in detail in Section 4.4.

4.2. Crystal lattice rotation determined by EBSD measurement. Figure 5 is the out-of-plane crystal
lattice rotation map for the FCC aluminum single crystal. In the indenter penetrated region, it can be
seen that significant misorientation exists. This came from the severe plastic deformation of the indented
plane: (001).
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Figure 5. EBSD measurement results showing out-of-plane lattice rotation.
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Figure 6. EBSD measurement results showing in-plane lattice rotation.

However, in the lower part of Figure 5, the original orientation of (110) plane was preserved; the
out-of-plane rotation was essentially equal to zero in this region. This confirms that the midsection of
the single crystal was under plane strain deformation conditions.

In Figure 6, the in-plane lattice rotation map is shown with three distinct sectors in a quadrant. The
change in lattice rotation angle from one sector to another sector varies depending on the nature of the
boundary. For example, from slip sector 1 to 2 and vice versa, and again from 2 to 3, the change in
lattice rotation angle is about 15◦. However, the change in lattice rotation is doubled when crossing the
slip boundary between slip sector 1 and slip sector 3. That is why along the vertical sector boundary,
as defined by Kysar et al. [2005], a “jump” in lattice rotation can be found, which was shown through
experimental measurements in the region close to a microvoid within an FCC single crystal by Gan et al.
[2006]. Such a sharp transition of lattice rotation along the slip boundary between the slip system 1 and
slip system 3 is also revealed in this cylindrical indentation problem. The vertical line in the middle part
of Figure 6 schematically shows the location at which sharp transition of crystal lattice rotation occurred.
The lattice rotation results as shown in Figure 6 will be used to compare with that obtained from finite
element analysis in Section 4.3.

The crystal lattice rotation results of the copper single crystal specimen are found to have the similar
features as those for the aluminum single crystal. The out-of-plane rotation was essentially zero indicating
that the plane strain deformation state held in the midsection of the copper single crystal. The three
single slip systems are also revealed on the in-plane lattice rotation maps of the copper single crystal.
Nevertheless, the in-plane lattice rotation map of the copper single crystal shows the change in rotation
angle in the range of ±20◦ instead of ±30◦ for the aluminum single crystal as shown in Figure 6. Such
a difference in the magnitude of lattice rotation angle may come from the difference in the critical shear
strength of the two types of single crystals. The copper single crystal has a much higher critical shear
strength than the aluminum single crystal. Thus the lattice rotation of the copper single crystal under the
same indentation loading level is less than that of the aluminum single crystal. It is also noticed that the



DEFORMATION BY CYLINDRICAL INDENTATION IN FCC SINGLE CRYSTALS 565

19.4 o

35.3 o

35.3 o

(2)

(3)

(1) (110)

Figure 7. Numerical solution to crystal lattice rotation showing three deformation zones
in a quadrant.

indenter penetration depth for the copper single crystal is much less than that for the aluminum single
crystal.

4.3. Numerical solution to crystal lattice rotation. Figure 7 is the in-plane crystal lattice rotation map
obtained from the finite element simulation. The unit of the lattice rotation angle is degree, which was
calculated from one of the solution dependent variables (SDVs) in the ABAQUS finite element simulation
program. In this case, SDV80 refers to the in-plane crystal lattice rotation. Some features of the in-plane
lattice rotation from the simulation can be seen from this contour plot. In the left part of Figure 7, a
region with negative lattice rotation can be found. This is due to the active dislocation movement of the
slip system 1. The existence of such a negative lattice rotation region is also revealed by the experimental
results as illustrated by Figure 6 in Section 4.2.

In the middle of Figure 7, the lattice rotation is close to zero. This is the region where slip system 2,
with the slip direction parallel to [1̄10], is active. In the top-middle part of Figure 7 there is a positive
lattice rotation region, caused by the active dislocation movement of slip system 3. All these features
are comparable to the experimental results as shown in Figure 6. The in-plane lattice rotation predicted
by the numerical simulation is in qualitative agreement with the EBSD experimental results in the sense
that the three slip sectors in each quadrant are revealed. It is noted that the magnitude of the in-plane
lattice rotation in the experiment is much larger than that in the simulation because a significantly larger
strain was applied to the crystal specimen than in the simulation.

4.4. Correlation of the crystal lattice rotation features and the predictions by single crystal plasticity
theory. The salient feature of the crystal lattice rotation as revealed by the experimental results in Section
4.2 and the numerical solutions in Section 4.3 can be explained by the single crystal plasticity theory
[Schmid and Boas 1968]. In a single crystal, plastic deformation is anisotropic due to the motion of
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dislocations within the crystal on discrete slip systems. Under external loading, whether a slip system is
active or not is determined by Schmid’s law [1925] which states

n(k)i σi j s
(k)
j = ±τ (k), (1)

where n is the unit normal of the slip plane and s is the unit vector parallel to the slip direction. σi j is
the applied stress tensor and τ (k) is the critical resolved shear stress of the slip system.

According to Rice [1987], in an FCC single crystal, certain slip systems may act cooperatively to allow
plane strain deformation. In this case, the crystals were loaded along [001̄] crystallographic direction,
which causes the three slip systems active, as illustrated in Figure 8, left. There, t(k) is the dislocation
line vector of the k-th slip system with k = 1, 2, 3; b(k) is the Burgers vector of the k-th slip system;
n(k) is the surface normal of the slip plane; and s(k) is the slip direction vector. It is noted that slip
system 1 corresponds to the effective slip system: (11̄1)[1̄12], which is oriented at an in-plane angle of
φ1 = tan−1(

√
2) ≈ 54.7◦ counterclockwise relative to the [1̄10] direction. slip system 2 is parallel to

the [1̄10] direction; the slip angle φ2 is equal to 0. The notation slip system 3 refers to the effective slip
system of (1̄11)[11̄2]. It is oriented at an in-plane angle of φ3 = − tan−1(

√
2)≈ −54.7◦ relative to the

[1̄10] direction.
Under plane strain conditions (σ13 = σ23 = 0), Equation (1) can be expanded as

(s1n2 + s2n1)σ12 + 2s1n1
(σ11 − σ22)

2
= ±τ. (2)

If n and s in the crystal are projected onto the x1 − x2 plane of the crystal and rescaled as unit vectors N
and S, respectively, Equation (2) can be rewritten as

(S1 N2 + S2 N1)σ12 + 2S1 N1
(σ11 − σ22)

2
= ±βkτ, (3)

where βk is a constant specific to the slip system under consideration such that (2) and (3) are equivalent
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expressions. Rice [1987] noted that β1 = β3 = 2/
√

3 and that β2 =
√

3 for face-centered cubic crystals.
The sign for βk depends on whether the slip system is activated in positive or negative sense.

Since S1 = cosφk , S2 = sinφk , N1 = −S2 and N2 = S1, Equation (3) can be simplified as

σ12 = tan 2φk

(
σ11 − σ22

2

)
±

βkτ

cos 2φk
. (4)

The above yield conditions can be plotted in stress space for each of the three effective slip systems. A
hexagonal yield surface is obtained as shown in Figure 8, right. The positions of the vertices of the yield
surface are as follows:
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On the yield surface, the angle AOB equals to 70.6◦. This defines the angular sector region in physical
space. Since a θ degree angular region in physical space corresponds to a 2θ degree angular region in
stress space, the region defined as slip system 3 takes 70.6◦ in the stress space as shown by the angle AOB
in Figure 8, right. Thus, the slip system 3 can be determined in physical space as a circular region defined
by 0 ≤ θ ≤ 35.3◦. Such a prediction to the existence of slip system 3 and its exact location in physical
space from the single crystal plasticity theory can be confirmed by the experimental result of Figure
6. In the right-hand part of the figure, the positive in-plane crystal lattice rotation region (red-colored
region) takes about a 35.3◦ angular region. In the right-hand part of Figure 7(numerical solutions), a
similar positive lattice rotation region can be seen. The angle COB shown in Figure 8, right, is the active
region for slip system 2 in stress space. This region can be mapped into physical space as the angular
region 35.3◦

≤ θ ≤ 54.7◦, which defines slip sector 2 in physical space. Similarly, the angular region
54.7◦

≤ θ ≤ 90◦ is determined as slip sector 3. The locations for slip sector 2 and slip sector 3 are also
found in experiments. The experimental results are given in Figure 6. The numerical solutions as shown
in Figure 7 reveals such single slip regions. Therefore, the results from experiments and simulations are
in agreement with the analytical predictions.

It is also indicated that such a consistency is in a qualitative sense, because the single crystal plasticity
theory assumes the crystal is rigid-ideally plastic. Also assumed here is that the yield surface as shown in
Figure 8 holds at the incipient stage of yielding, where essentially no hardening behavior is considered.
However, in the finite element simulation, a small strain hardening was imposed to ensure the numerical
convergence. In the cylindrical indentation experiment, considerably large deformation was observed.
Although the average behavior as revealed by the load-displacement relation in Figure 4 is elastic-plastic,
localized strain hardening and strain gradient exist [Gan 2005]. That is why the regions related to the
slip system 1 and slip system 2 shrinks in the EBSD map of Figure 6. The actual measured slip sectors
from the active motion of the slip systems 1 and 2 are smaller than the analytical predictions due to the
sink-in of the crystal under large scale deformation and associated strain hardening.
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4.5. Numerical solutions to displacements. Finite element solutions for the 2-D displacement fields
were obtained for FCC single crystals. The results from the simulations for aluminum single crystals are
shown in Figure 9: horizontal displacement on the left and vertical displacement on the right. Qualita-
tively, both copper and aluminum have the same salient features in their indentation displacement fields.
The deformed state of the crystal under the cylindrical indentation is shown in a magnified way and a
factor of 10 was used to generate the plots in Figure 9. In the left half, the blue color stands for the zero
displacement along x-axis, while the red colored region reveals the greatest displacement along positive
x-axis. It can be seen that the region close to the indenter tip has zero horizontal movement, due to the
symmetrical deformation of the crystals under indentation.

In Figure 9, right, yellow-green indicates zero displacement along the y-axis, blue indicates the neg-
ative vertical displacement and red positive vertical displacement. It is evident that materials adjacent
to the indenter tip move downward, while the contact region far away from the indenter tip shows the
pile-up feature of the single crystals as illustrated in the upper right part of the figure.

4.6. Comparison of displacement fields between numerical solutions and experimental results. The
displacement fields associated with the cylindrical indentation into a copper single crystal were measured
experimentally. As shown in Figure 10(a), on the (110) plane of a well-polished copper single crystal,
regularly aligned patterns were generated by thin film technologies. First, a thin layer of photosensitive
polymer (a positive photoresist, AZ5412) was spin coated on the (110) plane with a thickness of 0.6µm.
Next, a photoresist was baked on a hot plate at 105◦C for 3 minutes. Subsequently, UV photolithography
was employed over a mask for 15 seconds. The mask has regularly aligned 5µm × 5µm chromium
patterns with a separation distance of 12.5µm. After UV exposure, a 1:4 diluted AZ400K aqueous
solution was used as a developer to obtain the microscale arrays of pattern. The following step was to
evaporate a gold thin film with a thickness of 0.02µm on the patterned polymeric layer. Since some part
of the copper single crystal was covered by the polymer, while the other part was not covered by the
polymer due to the photolithography process, gold coating only partially covered the (110) plane of the
copper single crystal. By soaking the gold coated single crystal into acetone for 30 seconds, the polymer
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Figure 10. Experiments for measuring displacement field: (a) generating gold pattern
on the (110) crystallographic plane of the single crystal, (b) cylindrical indentation into
the two pieces of the single crystal, (c) imaging selected indentation area.

coating (photoresist) was peeled off from the surface of the single crystal. While in the part with gold
directly being deposited on the single crystal, the gold coating was kept and the microscale square arrays
formed, as schematically shown in Figure 10(a).

During cylindrical indentation, two pieces of single crystals with the same dimension were stacked
together so that the two surfaces of the two pieces of crystals with microscale pattern were facing to-
gether as shown in Figure 10(b). This configuration kept the deformation state of the interface with
microscale pattern under the plane strain conditions. After indentation, a selected region as shown in
Figure 10(c) was examined using a Hitachi 4700 field emission electron microscope. A backscatter
electron micrograph is shown in Figure 11.

The displacement fields as shown in Figure 11 are comparable to that in Figure 9. For example,
the vertically aligned microscale patterns shift right with the increase of distance from the indenter tip.

x

y

Cylindrical Indenter 

Penetration Area

Figure 11. Backscatter scanning electron micrograph showing the plane strain deforma-
tion state.
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This means that positive x-displacements exist, which is in agreement with the trends predicted by the
finite element analysis results of Figure 9, left. In view of the vertical displacement, in the region
underneath the cylindrical indenter, the experimental results are consistent with the numerical solutions.
Negative vertical displacements are observed because of the sink-in of the single crystal under indentation
loading along −y direction. The difference in the vertical displacement results between the finite element
simulations and the experiments is as follows: The numerical solutions predict a significant pile-up in
the area underneath the right part of the indenter as shown by the positive displacement region in Figure
9, right. Nevertheless, the experimental results just show sink-in behavior, and no region of positive
vertical displacement can be found in Figure 11.

Measurement of both the lattice rotation field and displacement field is essential for determining the
stretching components and rotational components of a deformation gradient tensor. The results of the
crystal lattice rotation in Figures 5 and 6 are helpful in determining the lattice curvature tensor as defined
by Nye [1953]. From the lattice curvature tensor a correlation between the crystal lattice rotation tensor
and the deformation gradient tensor can be established. For the displacement fields shown in Figure 11,
they can be used to establish an explicit relationship with the stretching components of the deformation
tensor. Therefore, the lattice rotation field along with the displacement field provides a significant amount
of knowledge about the single crystals’ plastic deformation states under cylindrical indentation.

5. Conclusions

Based on the studies of cylindrical indentation induced deformation fields in face-centered cubic alu-
minum and copper single crystals, the following concluding remarks can be made.

1. The indentation load-displacement relationship shows plastic deformation dominated behavior of
the single crystals under cylindrical indentation.

2. Crystal lattice rotation field determined experimentally under plane strain conditions of the FCC
single crystals reveals three slip sectors, which is in agreement with the qualitative features determined
by finite element simulations. The lattice rotation features can also be correlated to the predictions to the
deformation field based on the single crystal plasticity theory.

3. The displacement field determined by the numerical simulations also reveals the existence of dif-
ferent slip sector boundaries in the single crystals.

4. Comparison on the displacement field between the numerical solutions and the experimental results
shows consistency in main features. The numerical solutions predict a significant pile-up in the area
underneath the right part of the cylindrical indenter as shown by a positive vertical displacement region.
However, the experimental results just show sink-in behavior; no region of positive vertical displacement
was found.

5. Measurement of both lattice rotation field and displacement field is essential for determining the
stretching components and rotational components of a deformation gradient tensor. The results of the
crystal lattice rotation as obtained in this work is helpful to establish a correlation between the crystal
lattice rotation tensor and the deformation gradient tensor. The displacement results can be used to
determine the stretching components of the deformation tensor. Therefore, the lattice rotation field and
the displacement field provide insight into the plastic deformation state of the FCC single crystals under
cylindrical indentation.
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ON THE NUMERICS AND CORRELATION OF SCRATCH TESTING

FREDRIK WREDENBERG AND PER-LENNART LARSSON

A numerical strategy based on the finite element method and intended for an accurate analysis of the
scratch test is presented. For simplicity, but not out of necessity, the material was described by classical
von Mises elastoplasticity utilizing large deformation theory. Based on this strategy numerous results
are presented and correlation of scratch properties is discussed within the framework of theory for
indentation testing. Furthermore, the existence of a representative plastic strain in the spirit of Tabor
was studied. The investigation also concerns details regarding frictional effects, normal vs. tangential
scratch hardness, similarities and differences between indentation and scratch test characteristics as well
as details regarding the behavior of local field variables at scratching.

1. Introduction

Indentation testing and scratch testing show many similar features. However, due to its relative simplicity,
indentation testing has been used much more frequently when, for example, material characterization is at
issue. A further reason for the popularity of indentation testing is that such tests are more easily analyzed
than scratch tests, and consequently a great deal of knowledge has been gained over the years regarding
the mechanical behavior at indentation. Most often, at least when modern experimental devices such as
the nanoindenter (or other types of instrumented indentation devices) are at issue, sharp indenters are
used for practical reasons. For such indenters semiempirical relations for material characterization were
derived and used by the late 1940’s and early 1950’s, in particular for metals and alloys [Tabor 1951]. In
short, from comprehensive experimental investigations [Tabor 1951] derives a relation

H = Cσ(εrepr), (1)

between the indentation hardness H , here defined as the mean contact pressure at indentation, and the
material yield stress at a representative value of the accumulated (effective) plastic strain εrepr. Further-
more in Equation (1), C is a constant that only depends on the geometry of the indenter. For a Vickers
indenter, Tabor [1951] determines the values C ≈ 3 and εrepr ≈ 8% while Atkins and Tabor [1965] find
C ≈ 2.54 and εrepr ≈ 11% for a conical indenter with an angle of β = 22◦ between the indenter and the
undeformed surface, as shown in Figure 1. Based partly on the above discussed results, further progress
is achieved by Johnson [1970; 1985], who shows from theoretical considerations that indentation testing
on different materials can be well correlated by using a parameter

3=
E tanβ

(1 − ν2)σrepr
, (2)

Keywords: scratch test, hardness, friction, finite elements, contact.
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β

Figure 1. The angle β of a conical indenter/stylus.

where E is Young’s modulus and ν is Poisson’s ratio. Johnson [1970; 1985] also suggests that indentation
properties for various materials will fall into one of three levels as shown in Figure 2. In level I, 3< 3,
very little plastic deformation occurs during the indentation test, and all global properties can be derived
from an elastic analysis. In level II, 3<3< 40, an increasing amount of plastic deformation is present,
and both the elastic and the plastic properties of the material will influence the outcome of a hardness
test, according to Johnson [1970; 1985]. Based on the fact that the stress field just beneath the indenter
in such a situation is almost hydrostatic, the process is very similar to the case of expansion of a spherical
cavity in a large solid due to an internal pressure, and the formula

H =
2
3
σrepr(1 + ln

E tanβ
3(1 − ν2)σrepr

) (3)
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Figure 2. Sketch of the characteristic behavior of indentation hardness [Johnson 1985].
The indentation hardness H divided by the stress σ(εrepr) is plotted against the nondi-
mensional strain parameter 3.



ON THE NUMERICS AND CORRELATION OF SCRATCH TESTING 575

is derived for the hardness. Finally, in level III, 3 > 40, plastic deformation is present all over the
contact area, and elasticity no longer influences the hardness value for the material. This is also the
region pertinent to most standard engineering materials, such as steel and many aluminum and copper
alloys, and it is also the region where Equation (1) applies.

The accuracy of the results above have been extensively tested (and improved) during the last ten
to fifteen years by computational simulations of the indentation of materials with tailored constitutive
properties that take advantage of modern computers and advanced numerical methods [Laursen and Simo
1992; Giannakopoulos et al. 1994; Larsson et al. 1996; Larsson 2001; Mata 2004]. In short, even though
significant improvements have resulted from such numerical investigations it can be concluded that the
validity of the overall findings by Tabor [1951] and Johnson [1970; 1985] have survived these scrutinizing
studies. This is particularly so when it comes to such features as the existence of a representative strain
at indentation, and the usefulness of the parameter in Equation (2) when it comes to correlation of
indentation results [Dao et al. 2001; Larsson 2001].

Nowadays, scratch testing is also a well established technique for hardness testing. Historically, one
of the earliest efforts was Mohs’ hardness scale (1824), which is based on the fact a that a harder material
will leave a visible scratch on a softer material if rubbed against it. The scratch test may also be used
for tribological testing, although it is being questioned for use on hard coatings [Bull 1999]. Throughout
the coating industry, the scratch test is used for adhesion testing of coatings. The adhesion test usually
consists of a loaded diamond tip that is drawn across a surface under continuously (or stepwise) increasing
load. At some load a well-defined failure occurs and the critical load is found. This technique is used
for the ranking of coating adhesion.

As indicated above, the fundamental knowledge about mechanical behavior at scratching is not nearly
as developed as for indentation testing. It should be mentioned, however, that early mechanical analyses
concerning different aspects of scratching of metals exist and have been presented by Goddard and
Wilman [1962], Childs [1970], Vathaire et al. [1981], and Gilormini and Felder [1983]. Furthermore, as
the scratch test is often used to determine characteristics of polymeric coatings, this issue is also under
investigation [Briscoe et al. 1996; Gauthier et al. 2001]. It goes almost without saying, however, that due
to the complexity of the boundary value problem, high accuracy of results at scratch analysis can only
be obtained by relying on numerical methods, preferably the finite element method (FEM). In recent
years quite a few such analyses have been presented. In this context, Bucaille et al. [2001] analyze
cone scratching of ideally plastic materials, and their results also indicate that the parameter 3 as given
in Figure 2 can indeed be used for correlating scratch parameters as well as indentation parameters.
Furthermore, Bucaille et al. [2001] find, as could be expected, that the strain levels at scratching are
much higher than at indentation, but as only ideally-plastic material behavior is at issue, this finding is
not explored in connection with the concept of representative strains. Further progress based on FEM
analyses of the scratch test is also achieved by Bucaille et al. [2004] for polymeric materials modeled
using standard elastoplasticity, corresponding to stage II rheology Figure 2.

Although beyond the scope of this work, investigations have also been performed for severe scratching,
that is, fracture, delamination, and similar phenomena during scratching, by Holmberg et al. [2003],
Subhash and Zhang [2002], Malzbender and de With [2001], and Thouless [1998]. Bull [1991] and
others find that a coating may fail in many modes including tensile cracking, buckling and spalling. To
account for the cracking behavior, Subhash and Zhang [2002] propose an elastic-plastic-cracking model
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both for indentation and scratching. In this model the material behavior is represented by tensile cracking
and compressive yielding, where a material point is assumed to fail in tension and be deleted from the
model if the crack opening displacement exceeds a critical value.

From the discussion above it should be clear that the mechanical behavior at scratching is very compli-
cated. But, based on using the finite element method, scattered progress in the understanding of different
features has been gained in recent years. It remains, however, to achieve a more complete understanding
of the behavior of different local and global scratch parameters, including the effect from strain-hardening,
friction, and the Johnson parameter 3. This will be attempted in the present investigation, which will also
include details regarding normal versus tangential scratch hardness, similarities and differences between
indentation and scratch test characteristics, as well as details regarding the behavior of local field variables
at scratching. In doing so, a numerical strategy based on the finite element method, and in particular the
commercial FEM package [ABAQUS 2004], was relied upon to yield results of sufficient accuracy. For
clarity and convenience, but not of necessity, the analysis was restricted to cone scratching of classical
elastoplastic (von Mises) materials, since in such a case no characteristic length was introduced into
the problem. Scratching of thin films was not analyzed in this initial work, but will be the subject of
forthcoming analyses using the present numerical scheme.

2. Theoretical background

The present analysis of scratching using a sharp conical stylus concerns a problem where quasistatic and
steady-state conditions prevail. Such a situation is of substantial practical importance and is relatively
easily achieved, at least during a scratch test under controlled experimental conditions. It is important to
emphasize that the interpretation of the experimental scratch results then becomes much simpler.

Assuming that quasistatic and steady-state conditions prevail, as in the case of normal indentation, the
problem is self-similar with no characteristic length present. Consequently, the normal hardness

Hnorm = Fnorm/Anorm, (4)

and the tangential hardness
Htan = Ftan/Atan, (5)

as well as a ratio h/
√

A (where h is the scratch depth), will be constant during the loading sequence of a
scratch test, and stresses and strains will be functions solely of material properties and the dimensionless
variable xi/

√
A (xi being Cartesian coordinates, as shown in Figure 3). In this context,

√
A should be

interpreted as a representative contact length and the indices norm and tan represent the normal and
tangential components of the scratch quantities. Clearly, the fact that the normal and tangential scratch
hardness are constant during a cone scratch test is valid for classical elastoplastic material behavior, as
assumed here, but it fails for strain gradient material behavior, since a characteristic length is present in
the constitutive equation [Fleck and Hutchinson 1993].

Due to the characteristics of the scratch test, at least as formulated presently, a possible route of attack
would be to take advantage of the prevailing steady-state conditions. Accordingly, a standard steady-
state transformation converting time derivatives into spatial derivatives, as is often used to analyze crack
problems, would transform the problem to a stationary one, which is certainly more attractive when a
numerical analysis is at issue. However, in the present study the numerical results clearly suggest that
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Figure 3. Cartesian coordinates xi (following the tip of the stylus). Scratching is per-
formed in the x2 direction.

large deformation theory must be relied upon, and this is also the case for the corresponding normal
indentation problem [Giannakopoulos et al. 1994; Larsson et al. 1996]. In addition, the strain levels
at scratching are even higher, as shown by, for example, [Bucaille et al. 2001], as well as the present
investigation. In such a case some of the boundary conditions resulting from a steady-state transforma-
tion become very complicated. Furthermore, the present numerical scheme will in the future be used
to solve problems including film/substrate systems and in that case, steady-state conditions no longer
apply. Accordingly, in the present study we relied upon a more straightforward FEM strategy, as will be
discussed below.

As the constitutive specification, the incremental, rate-independent Prandtl–Reuss equation for classi-
cal von Mises plasticity with isotropic hardening is

τ̂i j =
E

(1 + ν)

(
δikδ jl +

ν

(1 − 2ν)
δi jδkl −

3τ ′

i jτ
′

kl −
(
E/(1 + ν)

)
2τ 2

e
( 2

3 K +
E

(1+ν)

) )
Dkl, (6)

in a large strain formulation. In Equation (6), δi j is the Kronecker identity tensor, Di j is the rate of
deformation, and τ̂i j is the Jaumann rate of the Kirchhoff stress τi j .The Kirchhoff stress is related to
the Cauchy stress σi j as τi j = Jσi j , where J is the ratio of volume in the current state to volume in the
previous state. Furthermore, τe and τ̂i j are the von Mises effective stress and deviatoric stress, respectively.
Finally, K is the instantaneous slope of the uniaxial compressive Kirchhoff stress. Note that Equation
(6) is only valid at plastic loading when τe = τ(εp), the initial yield stress being given by τY = τ(0).
At elastic loading or unloading, a hypoelastic formulation of Hooke’s law, pertinent to the first part of
Equation (6), was relied upon. Obviously, within the present setting, kinematic hardening effects were
not included in the analysis. Such effects could certainly have influenced the outcome of scratch test
but would also have increased the number of required numerical computations substantially (due to an
increased number of constitutive parameters) and would have made a straightforward interpretation of
the results more difficult. For this reason, it was thought advisable as a first attempt to restrict the analysis
to classical von Mises plasticity with isotropic hardening, especially since the loading part of a scratch
test was of primary interest.
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To summarize the governing equations, Di j is connected with the material velocity u̇i , as

Di j =

(
∂ u̇i

∂x j
+
∂ u̇ j

∂xi

)
, (7)

while throughout the analysis, equilibrium equations in absence of body forces,

∂σi j

∂x j
= 0 (8)

must be satisfied. Regarding boundary conditions, the surface outside the contact area was assumed to
be traction free and within the area of contact unilateral kinematic constraints, given by the shape of the
conical indenter/stylus depicted in Figure 1, and these assumptions had to be accounted for.

3. Numerical analysis

Scratching was simulated using the commercial FE-program [ABAQUS 2004] (see Figure 4 for the FE
mesh). In the simulation a rigid conical stylus with attack angle β = 22◦ was first pressed normally into
the mesh and then dragged tangentially across the surface, until steady state conditions were achieved.
During the scratching process the stylus was held at a constant depth. The contact area and the reaction
forces were recorded during the process. As specified above, the material was described by classical von
Mises elasto-plasticity with isotropic hardening according to

σ(εp)= σY + σ0ε
n
p , (9)

where σ(εp) is the flow stress, σY the initial yield stress, εp the effective plastic strain, and n the hardening
exponent. The strength parameter σ0 was adjusted so that the stress at εp = 8% was twice that of the
initial yield stress. This choice is not of importance when the numerical results are evaluated; rather, it
was made by recalling the value of representative stress suggested by Tabor [1951], and it was convenient
for correlating scratch/indentation results in the spirit of Johnson [1970; 1985]. As discussed above, it
was found during simulations that the model experienced extremely large rotations/strains in the vicinity
of the stylus. Thus, the use of large strain theory was deemed necessary.

Simulations for small values of 3 were performed with implicit time stepping and full integration
elements. For larger 3, explicit time stepping and reduced integration elements needed to be used.
Full integration elements were used for small 3 to avoid the hour-glassing effect. It was also found
necessary to use adaptive meshing as 3 gets larger, due to extreme element distortion. To decrease CPU
time, the mesh was divided in half along the scratch, and symmetry conditions were applied. The mesh
was constructed from 30284 eight node linear brick elements. These elements were chosen since they
show a faster convergence with respect to mesh refinement than tetrahedral elements, and do not have
the inherent contact problems of quadratic elements [ABAQUS 2004]. During the simulation some 40
elements were in contact with the stylus at any given time. The mesh domain size was 10x10x22.5 mm3

and the scratch depth was 0.3 mm.
In Table 1 the convergence of the scratch hardness with respect to various parameters can be seen.

Mass scaling was introduced to increase the time step in the explicit analysis and thus decrease the
computational time. A mass scaling of 1000 was chosen for the analysis. The remeshing frequency was
kept as low as possible, so as not to lose too much precision but still maintain the undistorted element
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Figure 4. Finite elements mesh. Linear 8-node brick elements. Symmetry conditions
apply to the surface in view. The stylus is also shown.

shape, since every remapping of the mesh causes some diffusion of the solution [ABAQUS 2004]. In
Table 1 it can be seen that remeshing every 500th or 5000th time step made very little difference. The
scratch depth was varied to ascertain that enough elements were in contact. Table 1 indicates that ≈ 40
elements in contact were sufficient, equaling a contact radius of approximately 1 mm. With the numerical
precision secured, a parametric study was then performed for different values of 3, n, and the interfacial
coefficient of friction µi.

Furthermore, to simulate indentation, a finite element model developed by Larsson [2001] was used.
The simulated indentation hardness, and also other indentation quantities, could then be related to the
corresponding simulated scratch results.

4. Results and discussion

In this section the results from the numerical simulations are presented, and the results pertinent to the
most important features related to scratching will be discussed in some detail. It should be stressed
that most of the results below are pertinent to frictionless contact, but discussions about the influence

Parameter Used Hnorm/MPa Reference Hnorm/MPa

Mass scaling 1000 476 10000 480
Scratch depth (elements in contact) 0.3 (39) 476 0.4 (76) 472
Remeshing freq. 2e-3 476 2e-4 475

Table 1. Convergence analysis of scratch normal hardness Hnorm at scratching, for elas-
tic perfectly plastic material, 3= 100.
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of interfacial friction are included in each particular subchapter. Furthermore, if not stated otherwise, in
most of the figures, when nondimensionalized variables are introduced, a representative stress σ(εp = 8%)
was used, following Tabor [1951].

In the subchapters below, the following aspects concerning scratching and scratch testing are discussed:
Section 4.1, the contact area at scratching, Section 4.2, scratch normal and tangential hardness and the
concept of a representative strain, Section 4.3, the apparent coefficient of friction, and Section 4.4, scratch
testing versus indentation testing. It should be mentioned that in the last subchapters the behavior of
important field variables will also be discussed, and in particular those related to cracking.

4.1. The contact area at scratching. The contact area at indentation (and at scratching) is a very im-
portant parameter for material characterization, for one. Accordingly, it seems advisable to discuss
this feature first of all in the context of analytical and numerical estimates, and in particular with the
correlation of elastoplastic material parameters in mind.

An estimate of the normally projected contact area (Anorm) for large 3 is given by Goddard and
Wilman [1962] as

Anorm = (w/2)2
π

2
, (10)

where w is the scratch width (distance between the top levels of the residual groove). The tangentially
projected contact area (Atan) can be found through a simple geometric consideration as

Atan =
w2

4
tanβ. (11)

These expressions are based on solely geometrical considerations, assuming that the contact area is
semiconical.

In Figure 5 the actual contact area can be seen during simulation of scratching of an elastic perfectly
plastic material. The corresponding ratio of the actual normally projected area, Areal, to the contact
area estimated by Equation (10), is listed in Table 2. It is clear from Table 2 that the estimate Equation
(10) worked well for large 3 materials, despite the fact that the contact areas shown in Figure 5 are
not perfectly semiconical. This was indeed the case for both elastic perfectly plastic materials and strain
hardening materials at stage III rheology. Not so, however, for smaller 3, since contact then also occurred
on the rear face of the stylus.

3(εrepr = 8%) 10 100 1000

n = 0 1.39 1.10 1.10
n = 0.1 1.33 1.08 1.12
n = 0.17 1.20 1.00 1.09
n = 0.33 1.16 0.91 1.06
n = 1 1.43 1.05 0.91

Table 2. Ratio of simulated actual normal contact area to estimated normal contact area
by Equation (10) for different 3, for elastic plastic material with frictionless contact.
3(εrepr = 8%) = 1 yielded no measurable groove width, hence the estimate was not
applicable.
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Figure 5. Contact pressure distribution at 3= 1, 3= 10, 3= 100 and 3= 1000, for
elastic perfectly plastic material. Only half of the contact region is visible in the figure.
The scratch direction is upwards.

Furthermore, it should be emphasized here that an estimate of the contact area based on purely geomet-
ric considerations, Anom = 1/2πh2 cot2 β, assuming a nominal semicircular normally projected contact
area, is definitely not generally applicable during scratching, or during standard normal indentation test-
ing (see Figure 6) [Larsson 2001]. It is of fundamental importance, as proven by corresponding analyses
for indentation, to account correctly for piling up and sinking of material at the contact boundary when
constitutive specifications are at issue. However, in this context, elastic effects are very hard to account
for, and it was therefore thought advisable to present only results where rigid plasticity is dominant, as
is shown in Figure 6. This figure also shows corresponding indentation results, and clearly the nominal
area is far from a good approximation of the actual contact area during scratching even for predominantly
plastic deformation.

4.2. Scratch normal and tangential hardness and the concept of a representative strain. In the follow-
ing section the behavior of hardness values are considered. This concerns both the overall mechanical
behavior and its correlation at material characterization.

In Figure 7 the scratch normal hardness is divided by the yield stress at a plastic strain level of 8%
and plotted against Johnson’s parameter 3(εrepr = 8%). It is obvious from Figure 7 that 8% was not
a representative level of strain, since the curves do not coincide. Instead a different level of strain
was sought. By minimizing the deviation of the curves in Figure 7 for 3(εrepr = 8%) = 10, 100, and
1000 by means of the least-squares method, a representative level of plastic strain was found. The new
representative level of plastic strain was found to be approximately 35%. For εrepr = 35% the stress
H/σ(εrepr) was roughly constant for large 3 materials regardless of the strain hardening exponent n
(see Figure 8). Of course, this is not an obvious choice for a representative level, since, for example,
Wredenberg and Larsson [2005] showed that εrepr = 57% could also in some cases be used (except
where n = 1), and in addition a representative strain of 35% and 57% gives C ≈ 2.5 and C ≈ 2.4,
respectively (see Equation (1)). It is interesting to note that in previous studies of sharp indentation
problems, representative strain levels close to 35% are suggested [Larsson et al. 1996; Larsson 2001],
but this corresponds to a situation where a two-parameter model (with two representative strain levels)
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Figure 6. The actual normally projected contact area, Areal, divided by the nominal con-
tact area, Anom, plotted against the hardening parameter n. Results both for indentation
and scratching. 3(εrepr = 8%)= 1000.

was used according to

H = C1σl + C2σh. (12)

In Equation (12), C1 and C2 are constants analogous to C in Equation (1), and σl and σh are representative
stresses at different values of the effective plastic strain. In short, it is obvious that the strain levels at
scratching are significantly higher than the corresponding ones at indentation, indicating that the scratch
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Figure 7. Scratch normal hardness divided by the yield stress, at a plastic strain of 8 %,
for different 3(εrepr = 8%) and n.
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Figure 8. Scratch normal hardness divided by the yield stress at a plastic strain of 35 %,
for different 3(εrepr = 35%) and n.

test is much less appropriate for standard material characterization, as will be discussed further below.
Furthermore, the tangential hardness did not level out for large values of 3 (see Figure 9).

The scratch test is influenced by friction to a greater degree than is the standard indentation test. A
numerical study was performed for 3(εrepr = 8%) = 100, investigating this effect. For this material
the normal scratch hardness clearly decreased with increasing interfacial friction (see Figure 10). The
opposite effect was noted for the tangential hardness (see Figure 11) This certainly complicates the
interpretation of scratch experiments, particularly for material characterization based on the concept of a
representative strain, since it is necessary to know both the dependence on friction and the coefficient of
friction itself to draw any conclusion based on the scratch hardness. The representative level of plastic
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Figure 9. Scratch tangential hardness divided by the yield stress at a plastic strain of 35
% for different 3(εrepr = 35%) and n.
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Figure 10. The influence of friction on normal hardness for strain hardening materials
with different hardening n. Simulations with 3(εrepr = 8%)= 100.

strain varies with the coefficient of internal friction, which further complicates the matter. In fact, friction
did increase εrepr (for example, εrepr ≈ 0.5 for µi = 0.2) but it was still possible to determine accurate
values for this variable. Interestingly, Felder and Bucaille [2006] find that the scratch hardness, when
the contact area is calculated using Equation (10), is independent of the interfacial coefficient of friction.
This feature was not studied in detail here, as a precise determination of the scratch width w was hard to
achieve. However, preliminary results indicate that any frictional effect was within the margin of error.

Looking at the first principal stress distribution in Figures 17 and 18, it is clearly shown that the
increasing shear exerted by the frictional force substantially increased the tensile forces in the wake of
the stylus, potentially causing fracture.

It is also important to compare the values of the ratio of normal scratch hardness to tangential scratch
hardness. This ratio may be expressed as

Hnorm

Htan
=

Fnorm

Anorm

Atan

Ftan
. (13)

The ratio Fnorm/Ftan may be replaced with ( 2
π

tanβ)−1 using Equation (17) below, assuming frictionless
contact (see Section 4.3). The ratio of the tangentially projected area (Atan) to the normally projected
area (Anorm) can be written as

Atan

Anorm
=

w2

4 tanβ
(w/2)2 π2

=
2
π

tanβ (14)
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Figure 11. The influence of friction on tangential hardness for strain hardening materi-
als with different hardening n. Simulations with 3(εrepr = 8%)= 100.

using Equation (10) and (11). Thus the hardness ratio simplifies to

Hnorm

Htan
=

2
π

tanβ
2
π

tanβ
= 1. (15)

This result can be seen in Figure 12, where the ratio of Hnorm/Htan goes to unity as the Johnson parameter
3 increases. For smaller 3 contact was no longer only on the front face and hence the ratio Hnorm/Htan >

1. This was due to the effect of the contact pressure on the rear face which decreases the tangential force
Ftan, unlike the normal force Fnorm which is increased by the contact force on the rear face. It is worth
mentioning that Equation (15) applies to a conical stylus but not necessarily to styli of other shapes,
since the derivation of Equation (15) relies on the independence of the contact pressure p(r) from the
angle ϕ [Subhash and Zhang 2002]. This is almost true for the conical stylus (as shown by the numerical
calculations) but not necessarily for other shapes.

4.3. The apparent coefficient of friction. The tangential force divided by the normal force is known as
the apparent coefficient of friction µ0 or macroscopic friction at scratching. The apparent coefficient of
friction is of interest since it will influence the amount of shear exerted on the specimen and consequently
many other relevant scratch quantities.
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Figure 12. The ratio of normal hardness to tangential hardness at frictionless scratching.
Note that the ratio goes to unity as 3(εrepr = 35%) increases.

The frictional force is often decomposed into an adhesive or interfacial part and a plowing part [Bow-
den and Tabor 1950]. This allows the apparent coefficient of friction µ0 to be written as

µ0 = µi +µp, (16)

where µi is the interfacial coefficient of friction, and µp is the plowing coefficient of friction. An estimate
of the plowing coefficient of friction may be found by integrating the pressure vector over the surface.
Assuming that the contact pressure is axi-symmetric over the contact area [Subhash and Zhang 2002]
and that contact only occurs on the front face of the stylus with a constant contact radius [Goddard and
Wilman 1962], the plowing coefficient of friction may be found by

10−1 100 101 102 103
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Λ

µ p
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n=0.17
n=0.33
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Figure 13. The plowing coefficient of friction. 3 is evaluated using εrepr = 35%. Inter-
facial friction µi = 0.
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Figure 14. The apparent coefficient of friction µ0 as a function of interfacial friction µi.
Simulated with n = 0, n = 0.1, n = 0.17, n = 0.33, n = 1 and 3(εrepr = 8%) = 100.
Equation (18) is plotted as a reference.

µp =
Ftan

Fnorm
=

et ·
∫

A p(r)nd A
en ·

∫
A p(r)nd A

= tan(β)

∫
A cos(ϕ)p(r)d A∫

A p(r)d A
=

2
π

tanβ, (17)

where p(r) is the contact pressure, r is a radial coordinate, ϕ is the angle from the symmetry plane,
n = (sin(β) cos(ϕ), sin(β) sin(ϕ), cosβ) is the surface normal vector, and et and et are vectors in the
scratch direction and normal direction, respectively. Equation (17) gives µp ≈ 0.26 at frictionless contact
for a cone with β = 22◦. Assuming a constant pressure distribution, Goddard and Wilman [1962] come
to the same conclusion.

Previous simulations of frictionless scratching of elastic perfectly plastic materials (n = 0) show that
the plowing coefficient of friction varies with Johnson’s parameter 3 [Bucaille et al. 2001]. In Figure
13 it can be seen that all materials (with different hardening exponents) follow the same master curve
and that the plowing coefficient of friction levels out to an approximate value of 0.26, as predicted by
Equation (17). Choosing a different εrepr will only shift the curves along the x-axis. The coincidence of
the curves in Figure 13 is, however, very robust with respect to the chosen representative strain. In fact, it
is only the curve for n = 1 that was found to have a significant dependence on the chosen representative
plastic strain.
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Figure 15. Ratio of scratch normal hardness to indentation hardness. Simulations with
different n and 3(εrepr = 8%).

Such master curves could possibly be used for material characterization, in particular for polymers
where 3 is small. It should be emphasized, though, that interfacial friction severely influences the appar-
ent coefficient of friction, as shown in Figure 14. Thus it is of utmost importance to acquire an accurate
value of the interfacial friction to be able to use the curve in Figure 13 for material characterization,
which limits its practical usefulness.

To investigate the influence of hardening on the apparent coefficient of friction (when µi 6= 0) a series
of simulations for 3(εrepr = 8%)= 100 has been performed for a varying hardening parameter n. The
results in Figure 14 show that for moderate levels of interfacial friction the apparent coefficient of friction
µ0 is independent of the hardening exponent n for nonfrictionless scratching. It is clear that this is not true
for greater levels of interfacial friction. However, Figure 14 suggests that it is a reasonable approximation
for the determination of the apparent coefficient of friction for levels of interfacial friction of up to 0.25.
For materials with large 3, where the plowing part of the apparent coefficient friction is constant (≈ 0.26
for a conical stylus with angle β = 22◦), Equation (16) may be simplified using Equation (17) to

µ0 = µi + 0.26. (18)

4.4. Scratch hardness vs. indentation hardness. The ratio of normal scratch hardness to normal inden-
tation hardness is dependent on the hardening of the material in question. Since the scratch test is more
sensitive to hardening than the indentation test, that is, has larger representative strain, a high level of
hardening (n close to 1) gives a higher scratch hardness to indentation hardness ratio (see Figure 15). The
opposite holds for low hardening or perfectly plastic materials. Thus for moderate levels of hardening the
ratio of scratch normal hardness to indentation hardness is in the vicinity of 1. However, when interfacial
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Figure 16. Ratio of scratch normal hardness to indentation hardness at varying interfa-
cial friction µi. Simulations with different n and 3(εrepr = 8%)= 100.

friction was present as in Figure 16, the ratio of scratch normal hardness to indentation hardness was
substatially decreased and no longer larger than 1.

The constant C in Figure 2 was, as stated earlier, found to be approximately 2.5 for scratching of
predominately plastic materials. This is very close to the finding by Atkins and Tabor [1965] (C ≈ 2.54)
for conical indentation. However, it should be emphasized once again that the representative strain level
is much higher at scratching (35% at scratching and 11% at indentation). This suggests that the ratio
of scratch normal hardness to indentation hardness could simply be expressed as the ratio of the yield
stress at 11% plastic strain to the yield stress at 35% plastic strain for materials undergoing mainly plastic
deformation. However, this is not an exact relation, and in particular for higher levels of strain hardening
this relation is not accurate.

It seems appropriate in this context to also discuss to some extent the behavior of field variables at
scratching, particularly the stress fields, and specifically, to compare them to corresponding indentation
quantities. In a practical situation this is pertinent to such features as crack initiation and growth, which
are known to be of greater interest during scratching than during sharp (conical) indentation. In this
discussion it is assumed in a straightforward manner that cracking is governed by a simple stress criterion
such as

σ1 = σB, (19)

where σ1 and σB are maximum principal stress and uniaxial failure stress, respectively. Accordingly, an
approach based on fracture mechanics is not considered here.
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Figure 17. The first principal stress divided by the representative stress at frictionless
scratching of a 3(εrepr = 8%) = 100 material with hardening exponent n = 0.33 and
representative stress σ(εrepr = 35%)= 240 MPa.
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Figure 18. The first principal stress divided by the representative stress at scratching of
a 3(εrepr = 8%)= 100 material with hardening exponent n = 0.33, representative stress
σ(εrepr = 35%)= 240 MPa and interfacial friction µi = 0.25.
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Figure 19. The first principal stress (in Pa) at frictionless indentation of a 3(εrepr =

8%)= 100 material with hardening exponent n = 0.33 and representative stress σ(εrepr =

35%)= 240 MPa.

For this purpose, results for the maximum principal stress are shown for scratching in Figures 17 and
18, and for indentation in Figures 19 and 20, for frictionless as well as frictional contact (µi = 0.25).
The material in this case has a value of the Johnson parameter 3(εrepr = 8%)= 100, indicating mainly
plastic but also some elastic deformation during scratching. As can be seen in Figures 17 and 18, the
front of the stylus was exposed to compressive stresses during scratching as could be expected, while in
the wake of the stylus, high tensile stresses developed, potentially causing fracture based on Equation
(19). These tensile stresses substantially increased when frictional effects were accounted for, as shown
in Figure 18.

In comparing the scratch results with corresponding indentation results, two features were immediately
obvious from Figures 19 and 20. First, the tensile stresses at scratching were much higher than at
indentation and, second, scratch values were much more influenced (that is, they increased) by friction.
The same was also found, as indicated above, for global quantities such as hardness.

There are very few theoretical numerical studies concerned with the details of stress levels, specifically
with cracking during scratching. However, recently Holmberg et al. [2003] presented a FEM study of
scratching using a Rockwell indenter (a conical indenter with a spherical tip). In this study, scratching of
a film/substrate system was considered (a single material combination, a TiN coating of a steel substrate,
was explicitly investigated), which means that the present results and those of Holmberg et al. [2003]
are not directly comparable. However, good qualitative agreement between the two sets of results are
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Figure 20. The first principal stress (in Pa) at indentation of a 3(εrepr = 8%) = 100
material with hardening exponent n = 0.33 and representative stress σ(εrepr = 35%)=
240 MPa and interfacial friction µi = 0.25.

found. For example, both investigations report a location of the maximum tensile stress in the wake of
the stylus, which has also been noted in a number of previous studies.

5. Conclusions

The scratch test has been analyzed using a numerical approach based on the finite element method. The
most important findings can be summarized as follows:

• The geometric approximation of the contact area given by Goddard and Wilman [1962] works well
for materials where the plastic deformation is substantial. Not so, however, for materials with mainly
elastic deformation.

• The concept of a representative strain holds true for scratching. The representative strain was found
the be very large, approximately 35%.

• Interfacial friction will severely influence important scratch quantities.

• The numerical results suggest that other scratch quantities, such as the apparent coefficient of fric-
tion, can be used for material characterization.

• The normal scratch hardness and the tangential scratch hardness will be approximately equal for a
conical stylus scratching a metallic material at low friction. As the friction increases this ratio will
decrease since the normal hardness decreases and the tangential hardness increases.
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• A useful first approximation of the apparent coefficient of friction can be found by adding the
interfacial coefficient of friction to the master curve of friction (see Figure 13). For metallic materials
this may be expressed as µ0 = µi + 0.26. This explicit relation only holds for a conical stylus with
angle β = 22◦. Obviously the opposite, to find the interfacial coefficient of friction µi from µ0, is
also possible.

• The scratch normal hardness of a specimen is generally found to be equal to or higher than the
indentation hardness of the same specimen, for frictionless contact. In case of a highly strain
hardening material the scratch hardness will be substantially higher due to the much higher level of
representative strain at scratching. Not so, however, when friction is present.
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