
Journal of

Mechanics of
Materials and Structures

MIXED PIEZOELECTRIC PLATE ELEMENTS WITH CONTINUOUS
TRANSVERSE ELECTRIC DISPLACEMENTS

Erasmo Carrera and Christian Fagiano

Volume 2, Nº 3 March 2007

mathematical sciences publishers



JOURNAL OF MECHANICS OF MATERIALS AND STRUCTURES
Vol. 2, No. 3, 2007

MIXED PIEZOELECTRIC PLATE ELEMENTS WITH CONTINUOUS
TRANSVERSE ELECTRIC DISPLACEMENTS

ERASMO CARRERA AND CHRISTIAN FAGIANO

This paper proposes mixed finite elements, FEs, with an a priori continuous transverse electric displace-
ment component Dz . The Reissner Mixed Variational Theorem (RMVT) and the Unified Formulation
(UF) are applied to the analysis of multilayered anisotropic plates with embedded piezoelectric layers.
Two forms of RMVT are compared. In a first, partial, form (P-RMVT), the field variables are displace-
ments u, electric potential Φ and transverse stresses σ n . The second, full, form (F-RMVT) adds Dz as an
independent variable. F-RMVT allows the a priori and complete fulfillment of interlaminar continuity
of both mechanical and electrical variables.

We treat both equivalent single-layer models (ESLM), where the number of variables is kept indepen-
dent of the number of layers, an layerwise models (LWM), in which the number of variables depends in
each layer. According to the UF the order N of the expansions assumed for the u, φ, σ n and Dz fields
in the plate thickness direction z as well as the number of the element nodes Nn have been taken as free
parameters.

In most cases the results of the classical formulation which are based on Principle of Virtual Displace-
ments (PVD) are given for comparison purposes. The superiority of the F-RMVT results, with respect
to the P-RMVT and to PVD ones, is shown by few examples for which three-dimensional solution
is available. In particular, the F-RMVT results to be very effective for the evaluation of interlaminar
continuous Dz fields.

1. Introduction

In recent years piezoelectric materials have been integrated with structural systems to build smart struc-
tures which are the candidates for next generation structures of aerospace vehicles as well as for some
advanced products in the automotive and ship industries. Piezoelectric materials are, in fact, capable
of altering the response of the structures through sensing and actuation [Tiersten 1969]. By integrating
the surface bonded and embedded actuators in structural systems, the desired localized strains may be
induced in the structures thanks to the application of an appropriate voltage to the actuators. Such an
electromechanical coupling allows closed-loop control systems to be built up, in which piezomaterials
play the role of both the actuators and the sensors. An intelligent structure can therefore be built in which,
for instance, thermomechanical deformations or vibrations can be reduced by using appropriate control
laws. For details see [Chopra 1996; 2002] and the related literature.

In order to successfully incorporate actuator/sensors in a structures, the mechanical interaction be-
tween the piezoelectric layers and the hosting structure must be completely understood, that is, an
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appropriate use of piezoelectric materials, requires an accurate description of both the electrical and
mechanical fields in the constitutive layers. Early mechanical models were developed by Crawley and
de Luis [1987], Lee [1990] and Mitchell and Reddy [1995], among others. More recent works are [Yang
and Batra 1995; Wang et al. 1997; Vidoli and Batra 2000; Batra and Vidoli 2002]. A recent assessment
of classical and refined theories with displacements and electrical variables for plates can be found in
[Ballhause et al. 2005]. Equivalent single-layer (ESL) and layerwise (LW) theories have been compared
in the framework of the application of the Principle of Virtual Displacement (PVD) applications (it is
intended that the number of independent variables is kept independent by the number of the layers in the
ESL models). Numerous benchmark, exact solution analyses have been conduced for piezoelectric plates;
some are given in [Heyliger and Saravanos 1995]. However, these benchmark solutions are restricted
to simple geometries and special boundary conditions. The treatment of more realistic problems would
require the use of efficient computational tools such as the finite element method (FEM).

The present paper focuses on FEM electromechanical two-dimensional modelings of smart structures
with embedded piezo layers. Finite element studies were conducted by Robbins and Reddy [1991]. A
finite element that accounts for a first order shear deformation theory (FSDT) description of displacement
and layerwise form of the electric potential was developed in [Sheikh et al. 2001]. The numerical,
membrane and bending behavior of the FEs based on FSDT was analyzed in [Auricchio et al. 2001] in
the framework of a suitable variational formulation. The third-order theory was applied by Thornbuegh
and Chattopadhyay [2002] to derived finite elements that account for electromechanical coupling. Similar
elements have more recently been considered in [Shu 2005]. Extension of the third-order Ambartsumian
zigzag multilayered theory [Carrera 2003a] to the finite analysis of electromechanical problems has been
proposed by Oh and Cho [2004]. An extension of numerically efficient plate/shell elements based on
mixed interpolation of tensorial components (MITC) to piezoelectric plates has recently been provided
by Kögl and Bucalem [2005a; 2005b]. We also mention the review papers [Saravanos and Heyliger 1999;
Benjeddou 2000; Wang and Yang 2000].

Our contributions to the application of the Reissner Mixed Variational Theorem (RMVT) to multilay-
ered made structures started with [Carrera 1995; 1996; 2001], and have included closed-form solution
analyses [Carrera 1999a; 1999b] and FE applications [Carrera and DeMasi 2002a; 2002b], showing the
RMVT is a very suitable tool to provide quasi-3D description of stress and strain fields in anisotropic
laminated structures. The RMVT was also employed in the framework of Unified Formulation (UF),
dealt with in detail in [Carrera 2001]. The main feature of UF is that it allows one to formulate both
ESLM and LW models in terms of a few fundamental nuclei whose forms do not depend on either the
order of the expansion N used for the various variables (in the thickness direction) or on by the number of
nodes of the element Nn . The Murakami zigzag Function (MZZF) [Carrera 2001] was used to reproduce
the zigzag form of displacement field in the ESLM case. A classical formulation, based on PVD, was
developed for comparison purposes.

A first application of RMVT to piezoelectric plates was provided in [Carrera 1997], where an MITC-
type plate element was extended to nonlinear dynamic analysis of piezoelectric, composite plate. The
UF formulation was applied, in the PVD framework, to piezoelectric plates in [Ballhause et al. 2005];
attention was restricted to analytical closed form solutions. RMVT closed form solutions were presented
in [D’Ottavio and Kröplin 2006], while extension to shell has been provided in [Carrera et al. 2005].
Finite element applications have also been provided recently [Carrera and Boscolo 2006].
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All these RMVT works have been restricted to the a priori fulfillment of the interlaminar continuity of
the mechanical variables (transverse normal and shear stress fields), that is, the continuity of transverse
normal component Dz of the electric displacement vector was not a priori guaranteed. This form of
RMVT is herein referred to as the partial form, or P-RMVT. RMVT has also been applied in [Garcia Lage
et al. 2004a] to develop LW piezoelectric plate elements in the static case. The transverse component
of electric displacement Dz was considered as an assumed variable. We refer to such an extension as
full RMVT applications, namely F-RMVT. Garcia Lage and his coauthors restricted their attention to the
quadratic distribution of displacements (mechanical and electrical) and transverse stress unknowns, and
treated only a layerwise model. These restrictions have not allowed us to analyze the features of the a
priori assumption of interlaminar continuous transverse electric displacement.

Here we compares P-RMVT and F-RMVT in the framework of UF, extending the analysis of [Carrera
and Boscolo 2006] to include the normal electrical displacement Dz as an assumed a priori variable.
A number of new finite elements are derived and systematically compared to those based on P-RMVT
and PVD. ESLM and LW variable description analyses are compared to available 3D solutions. Up to
forth-order expansions in the thickness plate/layers have been implemented.

The paper is organized as follows. Section 2 gives the necessary preliminaries. Section 3 introduces
the two RMVT forms for piezoelectric continua along with variationally consistent constitutive equations.
The UF for finite element applications are derived in Section 3, and the FE matrices themselves in Section
5. Section 6 contains numerical results and discussion.

2. Preliminaries

Figure 1 shows the geometry and the coordinate system of a laminated plate with Nl layers, including
piezoelectric layers. The reference system is denoted by x, y, z; the correspondent plate dimensions are
denoted by a, b, h, the last of which is the thickness.

The material properties of a piezoelectric continuum can be expressed in different forms; we use the
so-called e-form [Ikeda 1996]. The relevant energy is then the electric Gibbs energy G2, which takes the
form

G2 =
1
2εT CEε − ET eε −

1
2 ET εεE, (1)

x
y

z

h
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Figure 1. Geometry of Piezoelectric Plate
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where εT
= {εxx , εyy, εzz, εxz, εyz, εxy} is the strain tensor (we use bold letters for arrays and T to denote

transposition), ET
= {Ex , Ey, Ez} is the electric field vector, CE is the stiffness matrix calculated at con-

stant E, e is the piezoelectric matrix that couples electrical and mechanical fields, and εε
= {εxx , εyy, εzz}

is the permittivity matrix calculated at ε-constant.
The constitutive equations will be written out in Section 3 in a form suitable for the F-RMVT applica-

tion.

Geometrical relations. The strain-displacement geometrical (subscript G) relations in the linear case are

εk
pG = D p uk, εk

nG = (Dnp + Dnz)uk . (2)

The superscript k is the layer index. Strains have been split into in-plane (subscript p) and out-of-plane
(subscript n, for “normal”) components:

εk
p = {εxx , εyy, εxy}, εk

n = {εxz, εyz, εzz},

while uk
= {ux , u y, uz} is the vector of the displacement components. The differential matrices are given

explicitly by

D p =

 ∂x 0 0
0 ∂y 0
∂y ∂x 0

 , Dnp =

 0 0 ∂x

0 0 ∂y

0 0 0

 , Dnz =

 ∂z 0 0
0 ∂z 0
0 0 ∂z

 . (3)

The electric field E is related to the electric potential by the gradient relation

EkT
=

[
−∂x −∂y −∂z

]
Φk . (4)

The electric potential Φ being a scalar, one obtains by separating in-plane and normal components the
equality

Ek
=

(
Dep + Dez

)
Φk, (5)

where
DT

ep =
[
−∂x −∂y 0

]
, DT

ez =
[

0 0 −∂z
]
. (6)

3. Variational statements for piezoelectric continua

The classical variational tool most often used to develop FEs, is the principle of virtual displacements
(PVD), which, for a piezoelectric continuum, can be written

Nl∑
k=1

∫
�k

∫
Ak

(
δεkT

pGσ k
pC + δεkT

nGσ k
nC − δEkT

G Dk
C
)

d�k dz = δLe. (7)

Here δ denotes virtual variations, Ak is the layer domain in the thickness direction, �k denotes the
reference surface of the layer, and δLe denotes the virtual variation of the work made by applied loadings.
The in-plane and out-of-plane stress components are

σ T
p = {σxx , σyy, σxy}, σ T

n = {σxz, σyz, σzz}.
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The electrical work is obtained via the electrical displacement vector:

D = {Dx , Dy, Dz}.

A subscript C will denote stress and electrical displacements from the constitutive law, and a subscript
G strains and electrical fields from the geometrical relation. The PVD allows one to assume two in-
dependent fields for u and Φ. The remaining variables are obtained from the constitutive law of the
piezoelectric layers.

The RMVT was proposed in [Reissner 1984] for purely mechanical problems. A critical review on
its use was given in [Carrera 2001]. A main feature of the RMVT is that it allows one to assume two
independent fields for displacements u and transverse stresses σ n . This allows the a priori fulfillment of
the necessary continuity (equilibrium) conditions of transverse normal and shear stresses at each layer
interfaces. In the static case, for pure mechanical problems RMVT states that

Nl∑
k=1

∫
�k

∫
Ak

(
δεkT

pGσ k
pC + δεkT

nGσ k
nM − δσ kT

nM (εk
nG − εk

nC)
)

d�k dz = δLe. (8)

The second term in the integrand forces the compatibility of transverse strain obtained by the material’s
constitutive law (which are different from those related to PVD applications) and by the geometric rela-
tion. The subscript M denotes those variables which are assumed in a given model.

By introducing the electrical work, we can write the RMVT for piezoelectric continua as

Nl∑
k=1

∫
�k

∫
Ak

(
δεkT

pGσ k
pC + δεkT

nGσ k
nM − δEkT

G Dk
C − δσ kT

nM (εk
nG − εk

nC)
)

d�k dz = δLe. (9)

This form of the RMVT will be called the partial extension of RMVT to piezoelectric continua, or
P-RMVT.

A full extension of the RMVT can be obtained by introducing the transverse components of electric
displacement Dz as additional variables. The RMVT then assumes the following full form, or F-RMVT:

Nl∑
k=1

∫
Ak

∫
hk

(
δεkT

pGσ k
pC + δεkT

nGσ k
nM − δEkT

pGDk
pC − δEkT

nGDk
nM + δσ kT

nM (εk
nG − εk

nC)

− DT
nM(Ek

nG − Ek
nC)

)
d Ak dz = δLe. (10)

The electrical displacement and electrical field vectors have been split into in-plane and normal compo-
nents (as for the stresses σ and strains ε):

Dp = {Dx , Dy}, Dn = {Dz}, Ep = {E x , Ey}, En = {Ez}.

The constitutive equations of the k-layer are conveniently written as

σ k
pC = Ck

ppε
k
pG + Ck

pnε
k
nC − ek

pp
T

Ek
pG − ek

np
T

Ek
nC ,

σ k
nM = Ck

pn
T
εk

pG + Ck
nnε

k
nC − ek

pn
T

Ek
pG − ek

nn
T

Ek
nC ,

Dk
pC = ek

ppε
k
pG + ek

pnε
k
nC + εk

ppEk
pG + εk

pnEk
nC ,

Dk
nC = ek

npε
k
pG + ek

nnε
k
nC + εk

pn
T
Ek

pG + εk
nnEk

nC ,
(11)

where we have introduced the following arrays:
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• Stiffness matrices:

Ck
pp =

 C11 C12 C16

C12 C22 C26

C16 C26 C66

k

, Ck
pn =

 0 0 C13

0 0 C23

0 0 C36

k

, Ck
nn =

 C55 C45 0
C45 C44 0
0 0 C33

k

. (12)

• Piezoelectric matrices:

ek
pp =

[
0 0 0
0 0 0

]k

, ek
pn =

[
e15 e14 0
e25 e24 0

]k

, ek
np =

[
e31 e32 e33

]k
, ek

nn =
[

0 0 e33
]k

. (13)

• Permittivity matrices:

εk
pp =

[
ε11 ε12

ε12 ε22

]k

, εk
pn =

[
0
0

]k

, εk
nn =

[
ε33

]k
. (14)

Application of the F-RMVT requires one to express the in-plane stresses σ pC , the normal strains εnC , the
normal electric field EnC and the in-plane electric displacements DpC in terms of the remaining variables.
Thus the constitutive equations (11) can be solved as follows:

σ pC = Ĉspmε pG + Ĉsnmσ nM + ĈspeEpG + ĈsneDnM ,

εnC = Ĉdpmε pG + Ĉdnmσ nM + ĈdpeEpG + ĈdneDnM ,

DpC = Ĉ f pmε pG + Ĉ f nmσ nM + Ĉ f peEpG + Ĉ f neDnM ,

EnC = Ĉepmε pG + Ĉenmσ nM + ĈepeEpG + ĈeneDnM .

(15)

The matrices above are obtained from by those in (11) by means of the relations

C̄k
dpm = −Ck

nn
−1CkT

pn −
(
Ck

nn
−1ekT

nn
)(

ek
nn Ck

nn
−1ekT

nn + εk
nn

)−1(ek
np − ek

nn Ck
nn

−1CkT
pn

)
,

C̄k
dnm = Ck

nn
−1

−
(
Ck

nn
−1ekT

nn
)(

ek
nn Ck

nn
−1ekT

nn + εk
nn

)−1(ek
nn Ck

nn
−1)

,

C̄k
dpe = Ck

nn
−1ekT

pn −
(
Ck

nn
−1ekT

nn
)(

ek
nn Ck

nn
−1ekT

nn + εk
nn

)−1(ek
nn Ck

nn
−1ekT

pn + εkT
pn

)
,

C̄k
dne =

(
Ck

nn
−1ekT

nn
)(

ek
nn Ck

nn
−1ekT

nn + εk
nn

)−1
,

C̄k
epm = −

(
ek

nn Ck
nn

−1ekT
nn + εk

nn
)−1(ek

np − ek
nn Ck

nn
−1CkT

pn
)
,

C̄k
enm = −

(
ek

nn Ck
nn

−1ekT
nn + εk

nn
)−1(ek

nn Ck
nn

−1)
,

C̄k
epe = −

(
ek

nn Ck
nn

−1ekT
nn + εk

nn
)−1(ek

nn Ck
nn

−1ekT
pn + εkT

pn
)
,

C̄k
ene =

(
ek

nn Ck
nn

−1ekT
nn + εk

nn
)−1

,

C̄k
spm = Ck

pp + Ck
pn C̄k

dpm − ekT
np C̄k

epm, C̄k
snm = Ck

pn C̄k
dnm − ekT

np C̄k
enm,

C̄k
spe = Ck

pn C̄k
dpe − ekT

pp − ekT
np C̄k

epe, C̄k
sne = Ck

pn C̄k
dne − ekT

np C̄k
ene,

C̄k
f pm = ek

pp + ek
pn C̄k

dpm + εk
npC̄k

epm, C̄k
f nm = ek

pn C̄k
dnm + εk

pn C̄k
enm,

C̄k
f pe = ek

pn C̄k
dpe + εk

pp + εk
pn C̄k

epe, C̄k
f ne = ek

pn C̄k
dne + εk

pn C̄k
ene.
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It must be noted that

Ĉ
k
dnm = Ĉ

kT
dnm, Ĉ

k
spm = Ĉ

kT
spm, Ĉ

k
f pe = Ĉ

kT
f pe, Ĉ

k
ene = Ĉ

kT
ene,

Ĉ
k
dpm = −Ĉ

kT
snm, Ĉ

k
dne = Ĉ

kT
enm, Ĉ

k
dpe = Ĉ

kT
f nm, Ĉ

k
epm = Ĉ

kT
sne.

4. Unified formulation for plate elements

The unified formulation is a technique that allows one to handle in a unified manner a large variety of
plate modelings and finite elements. In this formulation, the finite element matrices are written in terms
of a few fundamental nuclei, which do not formally depend on: the expansion N used in the z-direction,
the number of the node Nn of the element, or the variables description (LW or ESL).

The unknown variables u, σ n , Φ and Dz are expressed in terms of the layer thickness coordinate:(
uk(x,y,z),ϕk(x,y,z),σ k

n(x,y,z),Dk
n(x,y,z)

)
= Fb(z)

(
uk

b(x,y),ϕk
b(x,y),σ k

nb(x,y),Dk
nb(x,y)

)
+ Fr (z)

(
uk

r (x,y),ϕk
r (x,y),σ k

nr (x,y),Dk
nr (x,y)

)
+ Ft(z)

(
uk

t (x,y),ϕk
t (x,y),σ k

nt(x,y),Dk
nt(x,y)

)
. (16)

The subscript t and b denote the linear part of the thickness expansion (t and b will be used to denote
top- and bottom-layer variable values in layerwise cases), while subscript r refers to higher-order terms:
r = 2, . . . , N−1. In compact form,(

uk(x,y,z),ϕk(x,y,z),σ k
n(x,y,z),Dk

n(x,y,z)
)
= Fτ (z)

(
uk(x,y),ϕk(x,y),σ k

n(x,y),Dk
n(x,y)

)
τ
. (17)

Here
(
uk(x, y), φk(x, y), σ k

n(x, y), Dk
n(x, y)

)
τ

are two-dimensional unknowns, the Fτ (z) are the base
functions of the expansion, and the summation convention over repeated index has been adopted. The
base functions could be, in general, different for each variable. Different choices for Fτ (z) will lead
to different plate/shell theories. The choices made in our study are briefly discussed below; detailed
descriptions can be found in the works cited.
. Layer-wise elements.

The thickness functions are given by combinations of Legendre polynomials Pj as

Ft =
P0(ζk) + P1(ζk)

2
, Fb =

P0(ζk) − P1(ζk)

2
, Fr = Pr (ζk) − Pr−2(ζk), r = 2, 3, . . . , N , (18)

for ζ = zk/2hk , where zk is the local layer thickness coordinate and hk is the layer thickness, so −1 ≤

ζk ≤ 1. As mentioned, t and b denote top and bottom; that is, the chosen functions have the properties

ζk =

{
1 : Ft = 1, Fb = 0, Fr = 0,

−1 : Ft = 0, Fb = 1, Fr = 0,
(19)

Thanks to these properties the interlaminar continuity of the assumed variables can be easily linked in
the assembly procedure from layer-level matrices to multilayer-level matrices.

The resulting elements will be denoted by the acronyms LFM1 to LFM4, in which L means layerwise,
FM states that F-RMVT has been employed, and the digit is the order of the expansion. Particular cases
of P-RMVT and PVD will also be used in the numerical analysis; these applications will be denoted by
LPM1 to LPM4 and LD1 to LD4, respectively.
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Equivalent single-layer model. In this case the layerwise expansion is preserved for the transverse stresses,
electric potential and electric displacements, while a Taylor-type expansion is used for the displacement
components:

u(x, y, z) = uτ (x, y) zτ , τ = 0, N

The base functions related to displacements can be chosen as

Fb(z) = 1, Fr (z) = zr , r = 1, N − 1, Ft(z) = zN .

These theories will be denoted with the acronyms EFMC1 to EFMC3, in which E means equivalent
single-layer, FM means full mixed, and C that interlaminar continuity conditions are fulfilled for trans-
verse stresses, electric potential and transverse electric displacement. The digit, as before, denotes the
expansion order. Results related to P-RMVT application will be denoted by EPMC1 to EPMC3. When
the Murakami zigzag function is used (which allows the introduction of piecewise continuous displace-
ment fields in the thickness plate direction; see [Carrera 2001]), the resulting elements are referred to as
EFMZC1 to EFMZC3 and EPMZC1 to EPMZC3 for the full and partial cases.

Finite element approximations. Finite element approximations to the plate reference surface domain are
introduced by means of isoparametric descriptions for the various field variables:(

uk
τ , Φ

k
τ , σ k

nτ , Dk
nτ

)
(x, y) = Ni (x, y)

(
qk

τ i , gk
τ i , f k

τ i , dk
τ i

)
, i = 1, 2, . . . , Nn, (20)

where the Ni (x, y) are the shape functions, qk
τ i the nodal unknown displacements, gk

τ i the nodal unknown
electric potentials, f k

τ i the nodal unknowns normal stresses and dk
τ i the nodal unknown normal electrical

displacements. The cases of 9, 8 and 4 nodes are considered in the numerical implementation referred to
as Q9, Q8 and Q4 finite elements [Carrera and DeMasi 2002b].

5. Derivation of finite element matrices

This section is devoted to the fundamental nuclei of the F-RMVT finite element matrices. The RMVT
and PVD matrices can be found in [Carrera and DeMasi 2002a; Carrera and Boscolo 2006].

By starting from Equation (10), the fundamental nuclei are derived in several steps:

1. The constitutive relations (15) are introduced in the F-RMVT statement at (10).

2. The geometric relations are used to express strain in terms of displacements and electric field in
terms of electric potential.

3. The through-the-thickness assumptions by means of the Unified Formulation are introduced.

4. The FE shape functions are used to eliminate the in-plane plate coordinates by numerical integration.

5. Matrix products are made, yielding the explicit forms of the fundamental nuclei.
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We omit the details for brevity. The final form of the governing equations is

δqk
τ i

T
: K kτ si j

uu qk
s j + K kτ si j

uσ f k
s j + K kτ si j

ue gk
s j + K kτ si j

ud dk
s j = Pk

uτ ,

δ f kT
τ i : K kτ si j

σu qk
s j + K kτ si j

σσ f k
s j + K kτ si j

σe gk
s j + K kτ si j

σd dk
s j = 0,

δgk
τ i

T
: K kτ si j

eu qk
s j + K kτ si j

eσ f k
s j + K kτ si j

ee gk
s j + K kτ si j

ed dk
s j = Pk

eτ ,

δdk
τ i

T
: K kτ si j

du qk
s j + K kτ si j

dσ f k
s j + K kτ si j

de gk
s j + K kτ si j

dd dk
s j = 0.

(21)

The mechanical and electrical loading terms on the right-hand side are

Pk
uτ = K kτ si j

up ps j , Pk
eτ = −K kτ si j

e f 9s j . (22)

The explicit forms of the fundamental nuclei thus obtained are

K kτ si j
uu =
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�

(
DT

p Ni Ĉ
k
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τ s D p N j
)

d�,

K kτ si j
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�
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τ s N j + Ni DT
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τ s N j + Ni I T Euσ
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)
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∫
�
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k
dpm Eσu
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)
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∫
�
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)
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)
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k
dne Eσe

τ s N j
)

d�,

K kτ si j
eu = −

∫
�

(
DT

ep Ni Ĉ
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K kτ si j
de =

∫
�

(
− Ni Edφ

τ s ,z I∗N j + Ni Ĉ
k
epe Edφ

τ s Dep N j
)

d�,

K kτ si j
dd =

∫
�

(
Ni Ĉ

k
ene Edd

τ s N j
)

d�,

K kτ si j
up =

∫
�

F1
τ (Ni N j mk

s ) F1
s d�,

K kτ si j
e f =

∫
�

F1
τ (Ni N j nk

s ) F1
s d�.

I is the unit matrix and I?T
= {0, 0, −1}. The following integrals have been defined:

Eαβ
τ s =

∫
Ak

Fα
τ Fβ

s dz, Eαβ
τ,zs =

∫
Ak

Fα
τ,z

Fβ
s dz, Eαβ

τ s,z =

∫
Ak

Fα
τ Fβ

s,z
dz,

where α and β can assume any of the values u, σ,Φ, D to denote thickness function used for the related
variables.

Table 1 summarizes the dimensions of the nuclei. By varying the subscripts τ, s, k, i, j over their
ranges one obtains the element matrices; see [Carrera 2003b].

K kτ si j
uu [3×3] K kτ si j

eu [1×3]

K kτ si j
uσ [3×3] K kτ si j

eσ [1×3]

K kτ si j
ue [3×1] K kτ si j

ee [1×1]

K kτ si j
ud [3×1] K kτ si j

ed [1×1]

K kτ si j
e f [1×1] K kτ si j

up [3×3]

K kτ si j
σu [3×3] K kτ si j

du [1×3]

K kτ si j
σσ [3×3] K kτ si j

dσ [1×3]

K kτ si j
σe [3×1] K kτ si j

de [1×1]

K kτ si j
σd [3×1] K kτ si j

dd [1×1]

Mkτ si j
uü [3×3]

Table 1. Dimensions of the fundamental nuclei.

6. Numerical results

This section shows the performance of the mixed FEs developed on the basis of interlaminar a priori
continuous transversal electric displacements Dz , comparing it with a mixed elements approach that does
not incorporate such continuity, as with one based of PVD applications. Further comparisons are given
with the results in [Garcia Lage et al. 2004b] and with three dimensional solutions in [Heyliger 1994]. To
compare the analysis with closed-form exact solutions, attention has been restricted to simply supported
square plates. We retain the reduced integration technique that was successfully applied in [Carrera and
DeMasi 2002b]. LW as well as ESL analyses have been performed for Q4, Q8 and Q9 elements.

We consider four-layer plates, with the two inner layers consisting of cross-ply [0◦/90◦
] carbon fiber

and the external skins made of piezoceramic material PZT-4. The material properties are shown in Table
2 on page 432. The two composite layers have thickness h2 = h3 = 0.4h and the skins have h1 = h4 = 0.1h.
The unit value is assigned to the plate thickness. A bisinusoidal distribution of transversal pressure with
amplitude p̂z = 1 is applied to the top surface (this coincides with a sensor configuration case).
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Figure 2 shows the in-plane displacement u y distribution in the thickness direction for the selected
plate elements (z is the horizontal axis). Better results are obtained for the LFM and EFMZC analyses
with respect to ones based on P-RMVT. The number of elements for the plate side Ne has been placed to
the right of the acronym. Layerwise analysis leads to much better results than ESL.
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Figure 2. Performance of various FEs in predicting the displacement u y(a/2, 0) versus
z. The a/h ratio equals 4. Curves labeled “3D” show the exact solution reported in
[Heyliger 1994]; the remaining curves show the results obtained from FE approaches
based on F-RMVT and P-RMVT (upper left), ESL theory (upper right); LW theory
(lower left), and ESL theory incorporating Murakami’s zigzag function (lower right).
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Property PZT-4 Gr/Ep PVDF Property PZT-4 Gr/Ep PVDF

E1 (GPa) 81.3 132.38 236.99 e15 (C/m2) 12.72 0 −0.01
E2 (GPa) 81.3 10.756 23.19 e24 (C/m2) 12.72 0 −0.01
E3 (GPa) 64.5 10.756 10.43 e31 (C/m2) −5.20 0 −0.13
ν12 0.329 0.24 0.1541 e32 (C/m2) −5.20 0 −0.14
ν13 0.432 0.24 0.1787 e33 (C/m2) 15.08 0 −0.28
ν23 0.432 0.49 0.1780 ε11/ε0 1475 3.5 12.50
G23 (GPa) 25.6 3.606 2.15 ε22/ε0 1475 3.0 11.98
G13 (GPa) 25.6 5.6537 4.4 ε33/ε0 1300 3.0 11.98
G12 (GPa) 30.6 5.6537 6.43 ρ 1 1 1

Table 2. Mechanical and electrical material properties.

The same conclusions can be drawn for the transversal normal stress evaluation in Figure 3. The use
of LW elements with at least a parabolic distribution (N = 2) in each layer is required. Remarkable
improvements are obtained when the Murakami zigzag function is used.

Data related to the transversal electrical displacement Dz , shown in Figure 4, are of particular interest.
Various numbers of nodes for elements and FE meshes are compared (top left). There are difficulties
when certain FEs are used to predict Dz in the piezoelectric layers (top right pane of figure); the results’
accuracy is very much dependent on the choice of a model, and the use of elements of type LM2 (at least)
appears to be necessary for correct predictions. This suggests that the use of F-RMVT may be mandatory
for the accurate computation of interlaminar continuous Dz at a reasonable computational cost, and that
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Figure 3. Performance of various FEs in predicting the transverse normal stress
σzz(a/2, b/2) versus z. The ratio a/h equals 4.
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3D [Heyliger 1994] / 160.58 /
LFM4 261.73 161.50 137.55
LPM4 316.30 301.4 941.94
LD4 284.94 212.66 439.78
LFM3 263.79 161.89 137.70
LPM3 306.17 299.41 942.06
LD3 286.90 213.17 417.54
LFM2 254.67 153.87 130.17
LPM2 310.83 290.39 923.49
LD2 300.96 223.83 430.72
EFMZC3 549.81 371.98 350.39
EFMC4 516.85 357.11 346.49

Figure 4. Top: performance of various FEs in predicting the transverse electric displace-
ment Dz(a/2, b/2) versus z, with a/h = 4. (Left: LW elements with various number of
nodes per element; right: LW and ESL elements for the Q4 case.) Bottom left: Conver-
gence analysis for Q4 elements. Bottom right: Dependence of Dz(a/2, b/2, h) × 1013

on the ratio a/h, for a [12 × 12] mesh and Q4 element.

P-RMVT and ESL results may be unacceptable. (Since the electric charge Q over a piezoelectric patch
is obtained by integrating the Dz distribution over the patch’s surface, wrong Dz values lead to wrong Q
values, potentially rendering the closed-loop control completely meaningless.)

Note that the accuracy obtainable with LFM2 is comparable with what we get with LPM4, confirming
that the use of P-RMVT is advantageous as far as computational effort is concerned. For the sake of
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completeness, Figure 4 shows the convergence rate of the Q4 elements; they are consistent with those
found for of pure mechanical problems in our earlier work. Various plate thickness ratio values are
considered in the table at the bottom right of Figure 4, showing the importance of UF as a tool to establish
an assessment of simplified, classical and advanced FEs for piezoelectric plate analysis.

These results are confirmed in the evaluation of the electrical voltage distribution versus, shown in
Figure 5. The largest discrepancies among the theories are experienced in the evaluation of electrical
displacements.
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Figure 5. Top: performance of various FEs in predicting the transverse electric potential
Φ(a/2, b/2) versus z, with a/h = 4, a [6 × 6] mesh and a Q9 element.
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a/h 2 4 10 a/h 2 4 10

exact 3D / 30,03 / LFM1 4.751 30.13 587.4
LFM4 4.949 30.27 587.1 LPM1 4.761 30.16 587.8
LPM4 4.947 30.27 587.1 EFMZC3 4.731 31.11 623.4
LD4 4.909 30.03 582.2 EPMZC3 4.487 28.91 579.3
LFM3 4.953 30.27 587.1 EFMZC2 4.719 24.55 566.2
LPM3 4.952 30.27 587.1 EPMZC2 2.881 21.26 529.5
LD3 4.909 30.03 582.2 EFMC4 5.224 31.66 623.6
LFM2 4.928 30.23 586.9 EPMC4 5.564 28.97 579.4
LPM2 4.928 30.23 587.0 EFMC3 4.956 30.95 621.2
LD2 4.894 29.98 581.9 EPMC3 4.713 28.96 578.2

Table 3. Evaluation of uz(a/2, b/2, 0)× 1011; mesh [6 × 6] and Q9 elements. The exact
3D data are taken from [Heyliger 1994].

Table 3 compares our results, for both mechanical and electrical variables, with the three-dimensional
exact solution and the results of Garcia Lage et al. [2004b]. A square plate is considered with a lay-up
[0◦/90◦/0] for the internal layers; two piezoelectric layers of PVDF materials (see Table 2) are used as
external skins. As in this last reference, the peak value of the applied pressure is 3 Pa. The relative errors
are displayed in Table 4. The superiority of the full implementation of RMVT is still remarkable.

7. Concluding remarks

The paper extends the Unified Formulation and the Reissner Mixed Variational Theorem to the develop-
ment of finite elements for the static analysis of piezoelectric plates with a priori continuous transverse
electrical displacement components Dz . The following main conclusions can be drawn.

(1) It has been confirmed that UF is a valuable tool in the hierarchical analysis of piezoelectric plates us-
ing the finite element method. The implemented FEs, in fact, can provide very accurate descriptions
of both mechanical and electrical fields.

(2) FEs with interlaminar continuous Dz appear to be very suitable for piezoelectric plate analysis.
Better results are obtained with respect to the other FEs herein compared.

(3) In order to preserve computational efforts, the use of the proposed elements would seem to be
mandatory if accurate evaluations of Dz and the related electric charge are required.

Future developments should be directed towards considering the analysis of piezoelectric plate with
localized patches as sensors and/or actuators. Other plate lay-ups and the effect of additional bound-
ary conditions and geometries should be examined. The case of imposed Dz at the interface should in
particular be analyzed.
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