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This paper presents the results of an extensive series of experiments conducted on Fe70Pd30 using a
recently developed apparatus, the Magneto-Mechanical Testing Machine. These experiments were de-
signed to investigate the ferromagnetic shape-memory behavior of Fe70Pd30 and test the predictions of a
theory that assumes the magnetizations of the material are constrained to lie in the easy directions and
the material strains are constrained to be the shape-memory transformation strains. It was found that
a specimen made of Fe70Pd30 single crystal lengthens when a magnetic field is applied along its c axis
(short axis of FCT lattice) while the specimen is under uniaxial compression in the c direction. This be-
havior agrees with the predictions of the constrained theory and magnetic anisotropy measurements. The
maximum field-induced strain change measured in this material is about 0.009 at 5500 G and −1 MPa,
which is one fifth of the theoretical prediction. This is attributed to the magnetization rotation away
from the easy directions caused by insufficient magnetic anisotropy. Under −12 MPa of compression
the field-induced strain change is considerably smaller reaching only about 0.0008, but this change gives
the largest work output observed of 9.6 × 103 J/m3. This work output is very close to the work output of
Terfenol-D under this amount of compressive stress.

1. Introduction

Shape memory alloys (SMAs) are materials that undergo a reversible, diffusionless structural transfor-
mation. At temperatures above the transformation temperature, these materials typically have a cubic
crystal structure which is called the austenite phase. Below this transformation temperature the material
structure has less symmetry in what is called the martensite phase. This reduction in symmetry gives
rise to the formation of variants of the martensitic phase. The variants are related by the symmetry of
the parent austenitic phase and in the absence of biasing stress all have the same free energy. If the SMA
is also ferromagnetic (an FSMA) then there exists the possibility of rearranging the martensite variants
using a magnetic field. Such a rearrangement can give changes in shape that involve strains one order of
magnitude larger than those possible in “giant” magnetostrictive materials such as Terfenol-D.

Rearranging martensite variants by a magnetic field is a novel idea and has received considerable
attention recently. The concept of combining martensitic phase transformation with magnetic field was
first introduced by James and Kinderlehrer [1993]. Vasil’ev et al. [1996] measured the magnetostriction
in 〈110〉 directions of a specimen made of Ni2MnGa single crystal, and suggested the existence of field-
induced shape memory effect. Ullakko et al. [1996] demonstrated field-induced variant rearrangement
involving a 0.002 strain in unstressed Ni2MnGa single crystal. In 1998, a larger reversible field-induced
strain of 0.006 under cyclic fields of 10 kG has been achieved in Fe70Pd30 [James and Wuttig 1998].
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Tickle et al. [1999] reported a field-induced strain of 0.045 in Ni2MnGa. In their experiments, the move-
ment of twin interfaces was directly observed verifying the basic FSMA mechanism. More recently, a
field-induced strain of 0.094 was demonstrated by Sozinov et al. [2002]. Theories of field induced variant
rearrangement have been developed in [James and Wuttig 1998; DeSimone and James 2002; O’Handley
1998]. According to the theory of James, Desimone, and Wuttig, if the magneto-crystalline anisotropy
and elastic moduli of the material are large relative to the applied stress and magnetic fields, the strain-
magnetization pair, (E(x), m(x)), can be reasonably assumed to only take the values at local energy
minima (bottoms of the energy wells). In this case the free energy is reduced to only involving loading
device and demagnetization terms and the minimization process becomes a process of determining the
compatible microstructure and domain patterns that minimize this energy. From the solution to this
constrained energy minimization problem, the microstructures and shape change of the material can be
predicted as a function of the applied stress and magnetic fields. This constrained theory was applied to
Fe70Pd30 [James and Wuttig 1998] and Ni2MnGa [Tickle et al. 1999], and qualitative agreement between
the theory and the experimental results was achieved. O’Handley [1998] approached the problem phe-
nomenologically. He proposed a model for the magnetization process and field-induced twin boundary
motion. His model includes an energy contribution associated with moving a twin interface and provides
a simple explanation for the nearly linear field dependence of strain on magnetic field below saturation.

To date, Ni2MnGa and Fe70Pd30 are the only two alloys reported exhibiting giant (>0.005) field-
induced strain. The alloy Ni2MnGa has received considerable attention recently, while Fe70Pd30 has
attracted less attention. While the martensitic behavior of Fe70Pd30 had been previously studied exten-
sively [Somura and Oshima and Fujita 1980; Oshima 1981; Oshima and Sugiyama 1982; Sugiyama
et al. 1984; 1985; 1986; Muto et al. 1988; Oshima et al. 1988; 1990; Muto et al. 1990a; 1990b; 1990c;
Tanaka and Oshima 1991; Oshima et al. 1992; Tanaka et al. 1992], only recently has the FSM behavior
of this alloy been investigated [Cui and James 2001; Cui et al. 2004]. It was found that the FCC-FCT
transformation in Fe70Pd30 is a weak first order thermoelastic transition. The average lattice parameters
are a = 3.822±0.001 Å and c = 3.629±0.001 Å for the FCT martensite, and a0 = 3.755±0.001 Å for the
cubic austenite. The latent heat is 10.79 ± 0.01 J/cm3. The Curie temperature is 450◦C. The saturation
magnetization is 1220±10 emu/cm3 for the martensite and 1080±10 emu/cm3 for the austenite; the easy
axis is in [100] or [010] direction (a axes of FCT lattice). The magnetic anisotropy is −5±2×103 erg/cm3

for the austenite at 60◦C, and 3.46 ± 0.02 × 105 erg/cm3 for the martensite at −20◦C.
In this paper, a brief summary of the constrained theory is given, followed by the results of a series

of magneto-mechanical tests. A comparison of the predictions of constrained theory with the results of
these experiments is made and finally some conclusions are drawn.

2. Constrained theory

Constrained theory [DeSimone and James 2002] restricts the range of possible strain-magnetization pairs
to those values that give absolute minima in the strain and anisotropy energies. This considerably reduces
the complexity of the problem of predicting the microstructures and domain patterns that will form. In
this section this theory and the process of solving problems using it will be summarized.
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2.1. Constrained free energy. The free energy for a ferromagnetic shape memory material can be writ-
ten as

F =

∫
�

{φ(F, m, θ)− h0 · m − σ0 · E}dx +
1

8π

∫
R3

| 5ζm |
2 dx,

where � is the region occupied by the material in the reference configuration. The first term, φ(F, m, θ),
combines the strain and magnetic anisotropy energies and depends on the deformation gradient F, mag-
netization m, and temperature θ . The applied magnetic field is h0, the applied stress is σ0, and the strain
is E. The second integral is the demagnetization energy, where the magnetostatic potential ζm is obtained
by solving the magnetostatic equation

div(−Oζm + 4πm) = 0,

which itself follows from Maxwell’s equations,

curl h = 0 (h = −Oζm),

div(h + 4πm) = 0.

According to the constrained theory of DeSimone and James [2002], if the magnetic anisotropy and
elastic moduli of the material are large compared to the applied stress and magnetic field, the strain-
magnetization pair (E(x), m(x)) will be close to the energy wells, which are given by

φ(F, m, θ) = 0. (1)

Assuming the solution is constrained to be exactly on bottom of these energy wells, the constrained free
energy is then given by ∫

�

{−h0 · m − σ0 · E}dx +
1

8π

∫
R3

| Oζm |
2 dx. (2)

2.2. Average microstructural behavior. If the magnetization-strain states are combined to form a com-
patible microstructure and it is assumed that this microstructure consists of very fine twins, then the
problem can be further relaxed (in the terminology of [DeSimone and James 2002]) and only the average
values of the strain and magnetization need be considered. These average values lie in the convex hull
of the energy wells, C, which is defined as follows. The alloy Fe70Pd30 has three tetragonal variants
and each variant has a strain and two easy directions that satisfy (1) (at a fixed temperature). Thus the
constrained theory strain-magnetization pairs for this alloy are

E1 =

 ε2 0 0
0 ε1 0
0 0 ε1

 and any of
±[m2

1 = mse2],

±[m3
1 = mse3],

E2 =

 ε1 0 0
0 ε2 0
0 0 ε1

 and any of
±[m1

2 = mse1],

±[m3
2 = mse3],

(3)

E3 =

 ε1 0 0
0 ε1 0
0 0 ε2

 and any of
±[m1

3 = mse1],

±[m2
3 = mse2],
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where ε1 = a/a0−1 and ε2 = c/a0−1 are the transformation strains and ms is the saturation magnetization
of the martensite. The strain tensor and magnetization vector components are in the cubic crystallographic
coordinates of the parent austenite phase, which has basis vectors ek , k = 1, 2, 3.

The set C, which is comprised of average strain, 〈E〉, and average magnetization, 〈m〉, pairs, is given
by a sum of the combinations in (3); thus (〈E〉, 〈m〉) lies in C if and only if two conditions are satisfied:

〈m〉 = λ1m2
1 + λ2(−m2

1) + λ3m3
1 + λ4(−m3

1) + λ5m1
2 + λ6(−m1

2)

+ λ7m3
2 + λ8(−m3

2) + λ9m1
3 + λ10(−m1

3) + λ11m2
3 + λ12(−m2

3), (4)

〈E〉 = (λ1 + λ2 + λ3 + λ4)E1 + (λ5 + λ6 + λ7 + λ8)E2 + (λ9 + λ10 + λ11 + λ12)E3,

where λi , i = 1 . . . 12 are the volume fractions of the domains inside the variants that have magnetizations
±mk

j and strains Ei in the combinations given in (3). The volume fractions are subject to the constraints

12∑
i=1

λi = 1, 0 ≤ λi ≤ 1, i = 1 . . . 12. (5)

Figure 1 presents a geometrical interpretation of the convex hull.
Equation (4) can be simplified as follows. Let ξ j = λ2 j−1 +λ2 j and η j = λ2 j−1 −λ2 j , where j = 1 . . . 6.

Then note that ξ1 + ξ2, ξ3 + ξ4 and ξ5 + ξ6 are the volume fractions of variants E1, E2 and E3 and
η1 + η2, η3 + η4 and η5 + η6 are the net magnetization associated with these strains, respectively. The
average magnetization in (4) then reduces to

〈m〉 = η1m2
1 + η2m3

1 + η3m1
2 + η4m3

2 + η5m1
3 + η6m2

3,

which for the specific forms of mk
j in (3) has components

〈m〉 = ms

 η3 + η5

η1 + η6

η2 + η4

 .

ê1ê2ê3

E1 E2 E3

�3
�1�4�2 �5�6

�7
�8 �10 �9 �12 �11

Figure 1. Schematic drawing of an FCT lattice and its three possible variants is shown.
The tetragonality of the lattice is exaggerated. The arrows labeled with λ1...12 are the
possible magnetization directions (easy axes) for each variant in the constrained theory.
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The average strain defined in (4) also reduces to

〈E〉 = (ξ1 + ξ2)E1 + (ξ3 + ξ4)E2 + (ξ5 + ξ6)E3, (6)

where the nonzero components of 〈E〉 are

〈E〉11 = (ξ1 + ξ2)ε2 + (ξ3 + ξ4 + ξ5 + ξ6)ε1,

〈E〉22 = (ξ3 + ξ4)ε2 + (ξ1 + ξ2 + ξ5 + ξ6)ε1,

〈E〉33 = (ξ5 + ξ6)ε2 + (ξ1 + ξ2 + ξ3 + ξ4)ε1,

using the forms of Ei in (3). The constraints (5) in terms of ξ j and η j are

6∑
j=1

ξ j = 1, 1 ≥ ξ j ≥ |η j |, j = 1 . . . 6.

In the limit as the microstructure becomes infinitely fine the demagnetization energy can be calculated
using the results for a uniformly magnetized body [DeSimone and James 2002], which is 1

2〈m〉 · D〈m〉,
where D is the magnetometric demagnetization matrix for the specimen geometry. Then the constrained
free energy (2) reduces to

−h0 · 〈m〉 − σ0 · 〈E〉 +
1
2〈m〉 · D〈m〉,

which is to be minimized over (〈E〉, 〈m〉) ∈ C. This is an exact result if the specimen has an ellipsoidal
shape and an approximation for any other geometry.

For the case of a rectangular specimen with a square base and a height in the x1 direction which
is much longer than the two other dimensions, the demagnetization matrix can be approximated by
the demagnetization matrix of an infinitely long cylinder, D = diag(0, 2π, 2π). If the applied field is
restricted to the (x1, x2) plane and the applied stress is uniaxial in the x1 direction with magnitude σ ,
then the constrained free energy, E, becomes

E =−h1ms(η3+η5)−h2ms(η1+η6)+πm2
s
(
(η1+η6)

2
+(η2+η4)

2)
−σ (ξ3+ξ4+ξ5+ξ6)(ε1−ε2)−σε2.

(7)

2.3. Energy minimization. Finding the minimizers of the constrained free energy given by Equation
(7) can be broken into two steps: First, a minimization over ξ j , j = 1 . . . 6, is performed using linear
programming. In the second step the energy is minimized with respect to the remaining variables, η j ,
j = 1 . . . 6.

Figure 2 and Table 1 summarize results of this process for a magnetic field with h1 ≥ 0 and h2 ≥ 0
combined with a uniaxial stress, σ ≤ 0. As shown on this figure, the solution can be divided into four
distinct regions, which involve three possible microstructures. In region A, only martensite variant E1

is present, and its net magnetization is given by η1mse2 which depends on the magnitude and direction
of magnetic field h2. In region D, martensite variants E2 and E3 may coexist. Their net magnetizations
are η3mse1 and η5mse1, respectively. In the remaining regions, B and C, all three variants may be
present. The admissible microstructures that these variants may form in each of these solution regions
are discussed next.
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2πm2
s

σ(ε2 − ε1) msh1

msh2

B

E1/E3 and E2/E3

A
E1

C

E1/E2 and E2/E3

D
E2/E3

Figure 2. Summary of the minimum energy solution for h1 ≥ 0, h2 ≥ 0 with constant
applied stress σ < 0, is shown. The volume fraction values for the areas labeled A–D
are given in Table 1. The pairs of strains listed in each region are those that minimize
the energy and are magnetically compatible across one or both of their possible twin
interfaces.

Table 1 shows the results of the energy minimization for the variables η j only. This is because the
variables ξ j cannot be always fully determined. For example, in region A energy minimization gives
η1(= λ1 − λ2) = 1, and because of the constraint λi ≤ 1, i = 1 . . . 12, the solution is λ1 = 1 and λi = 0,
i = 2 . . . 12 and the ξ j are fully determined. In region C, energy minimization gives 5 equations and
3 inequalities, plus the constraints. Many combinations of the λi satisfy these conditions, so ξ j cannot
be determined. However, without knowing the values of ξ j , the overall strain of the specimen can still

Area η1 η3 η5 E

A 1 0 0 −h2ms + πm2
s − |σ |ε2

B
h2

2πms
0 0 −

h2
2

4π
− |σ |ε2

C
(h2−h1)ms − |σ |(ε1−ε2)

2πm2
s

1 − η1 − η5 ≥ 0 −

(
(h2−h1)ms − |σ |(ε1−ε2)

)2

4πm2
s

0 <, < 1 ≥ 0 −h1ms − |σ |ε1

D 0 1 − η5 ≥ 0 −h1ms + |σ |ε1

Table 1. Values for the areas A–D of Figure 2. For all areas shown, η2 = η4 = η6 = 0.



FERROMAGNETIC SHAPE MEMORY EFFECTS IN AN IRON PALLADIUM ALLOY 511

E1/E2 E1/E3 E2/E3
√

2a/γ [1̄10] [110] [101] [1̄01] [01̄1] [011]
√

2n̂ [1̄1̄0] [11̄0] [101̄] [1̄01̄] [01̄1̄] [011̄]

Table 2. Twin solutions from linear geometric martensite theory. The normal to the twin
plane is n̂ and the shape strain is a. Each pair of variants can form two different twins.
The magnitude of the shape strain is γ = |ε1 − ε2| = 0.0515.

be evaluated. For example, in region D, both variants E2 and E3 can coexist, and it is not possible to
fully determine the values λi . Nonetheless, the specimen can be determined to be at its maximum length
because both variant E2 and E3 have their long axes aligned with the long axis of the specimen.

2.4. Magnetoelastic compatibility and energy minimizing microstructures. Without considering kine-
matic and magnetic compatibility, free energy minimization predicts three possible combinations of
variants. However, some of these combinations may not be compatible and must be excluded as possible
energy minimizing microstructures. The microstructures that are magnetoelastically compatible for h1 ≥

0, and h2 ≥ 0 are discussed below. Microstructures in the other three quadrants can be found by symmetry.
If martensite variants Ei and E j meet at a planar interface, linearized kinematic compatibility requires

Ei − E j =
1
2(a ⊗ n̂ + n̂ ⊗ a), (8)

where the vector a is the shape strain and n̂ is the normal to the interface. Given a pair of variant strains,
equation (8) can be solved for a and n̂. In the tetragonal case considered here, there are two solutions
of (8) for each pair of variants, which gives a total of six possible twin interfaces in this material. These
are listed in Table 2.

Once the twin interface is determined from kinematics, magnetic compatibility across this interface
must also be satisfied. This requires that the jump in the normal component of the magnetization across
the interface must be zero, that is,

(mi − m j ) · n̂ = 0, (9)

where mi and m j are net magnetization of variants Ei and E j , respectively. The minima presented
in Figure 2 and Table 1 will next be checked that they satisfy (9) for interfaces between the predicted
variants.

The solution in area A of Figure 2 involves only variant E1, thus there are no twin interfaces across
which compatibility must be satisfied.

The microstructure in area D consists of variants E2 with a net magnetization of η3mse1, and E3

with a net magnetization of η5mse1. The two possible twin interfaces between these two variants have
normals [01̄1̄] and [011̄]. The difference between these two magnetizations is (η3 − η5)mse1, which is
perpendicular to both of these twin plane normals for any values of η3 and η5. Thus this microstructure
is magnetically compatible.

Areas B and C may contain microstructures that involve all three variants. Possible combinations are
E1 with E2, E1 with E3, and E2 with E3. The last case is the same as that for area D, and because it was
found to be always magnetically compatible, both areas B and C may contain twins with variants E2 and
E3. The other two possible twins will be considered in turn.
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For the combination of E1 and E2, the possible interface normals between these two variants are [1̄1̄0]
and [11̄0]. From the results of energy minimization, the net magnetization within these two variants are
η1mse2 and η3mse1, respectively. Their difference is (−η3, η1, 0), which is perpendicular to the interface
normal [1̄1̄0] if η1 = η3 and perpendicular to [11̄0] if η1 = −η3. Because both η1 and η3 are required to be
positive by the minimization, the second interface is not possible in either area B or C. Area B minimiza-
tion requires η3 = 0; thus unless h2 = 0, the remaining twin interface is not possible in area B. In area C,
the requirement that η1 = η3 restricts η5 = 1 − 2η1, which is possible and thus so is this twin in area C.

For the combination of E1 and E3, the normals to the possible interfaces between these two variants
are [101̄] and [1̄01̄]. Energy minimization determined the net magnetization within these two variants
to be η1mse2 and η5mse1, respectively. Their difference is (−η5, η1, 0), which is perpendicular to these
interface normals only if η5 = 0. This is already required by minimization in area B, thus this twin is
allowed in this area. In area C, η5 is nonzero in general and thus this twin is not allowed in this area.

Figure 2 summarizes the results of both energy minimization and the requirements of compatibility
and it shows the valid twin combinations in each of the four regions. The applied loading, σ , is in the
x1 direction and the change in length of the material in this direction is of interest because it is the
deformation that does work against the applied stress. In area A the normal strain in the x1 direction is
ε2 which is less than one for this material. The microstructure in area D is a combination of variants that
both have ε1 as their normal strain in the x1 direction. Thus selecting an applied field path that goes from
area A to area D will result in a change in the x1 direction normal strain of ε1 − ε2 = (a −c)/a0 = 0.0515.
The experiments discussed below were designed to test this prediction.

3. Equipment and sample preparation

Combined mechanical and magnetic tests were performed with a facility called the Magneto-Mechanical
Test Machine (MMTM). Details of this machine can be found in [Shield 2003]. Two Fe70Pd30 single
crystal specimens, MM6 and MM10, were used in the magneto-mechanical tests that are reported here.
They were cut in close proximity to each other from the single crystal boule FePd4 (see [Cui et al. 2004]
for more information regarding this boule). The composition of both specimens MM6 and MM10 is
near 29.6 at.% Pd. Their martensitic/austenitic transformation temperatures are Ms≈20◦C, M f ≈16◦C,
As≈18◦C, and A f ≈25◦C. Specimen MM6 has dimensions of 2.12×2.10×6.52 mm3, and specimen
MM10 has dimensions of 2.11×2.10×8.65 mm3. Both specimens are rectangular bars with {100} sur-
faces. The long dimension of each specimen is used as the loading direction and will be called the
longitudinal specimen direction. The transverse direction is perpendicular to the longitudinal direction
and it is along a short specimen dimension. Their orientation was checked by x-ray diffractometry at
60◦C. The surface normals vary by about 0.7◦ from 〈100〉 for MM6, and 0.5◦ for MM10. Both of them
were polished at 70◦C with 0.1 µm diamond suspension.

4. Test design

A series of tests with different temperatures, amounts of compressive stress and magnetic field paths are
summarized in Table 3. This table lists twenty-five tests divided into four sets in the order they will be
discussed below. For each test there are three groups of columns. Initially all tests start with the specimen
at 35◦C and at the conditions (stress and field) listed in the first group of columns. The specimen is then
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Start at 35◦C Ferro. Strain Measurements End to 35◦C
Test Field Stress Temp. Stress Field Path(s) Field Stress

(G) (MPa) (◦C) (MPa) (G) (MPa)

————————————— Set 1 —————————————
T5,T10 0 −1.0 11 −1.0 Rot-9radii 0 −1.0
T6 0 −2.0 11 −2.0 Rot-9radii 0 −2.0
T7 0 −4.0 11 −4.0 Rot-9radii 0 −4.0
T11 0 −6.0 11 −6.0 Rot-9radii 0 −6.0
T8 0 −8.0 11 −8.0 Rot-9radii 0 −8.0
T9 0 −12.0 11 −12.0 Rot-9radii 0 −12.0

————————————— Set 2 —————————————
T13b 0 −1.0 20 −1.0 Rot2-5515 0 −1.0
T13c 0 −1.0 15 −1.0 Rot2-5515 0 −1.0
T13d 0 −1.0 10 −1.0 Rot2-5515 0 −1.0
T14a 0 −1.0 5 −1.0 Rot2-5515 0 −1.0
T14b 0 −1.0 0 −1.0 Rot2-5515 0 −1.0
T14c 0 −1.0 −5 −1.0 Rot2-5515 0 −1.0

————————————— Set 3 —————————————
T12,T15 0 −12.0 11 −1.0 Rot20-5515 0 −1.0
T16 0 −1.0 11 −1.0 Rot20-5515 0 −1.0
T17 0 −1.0 11 −1.0 Rot20-3818 0 −1.0

————————————— Set 4 —————————————
T2 0 0 11 −2.0 Lin-4242, Arc-4242

11 −1.0 Lin-4242, Arc-4242 0 −1.0
T3 0 −2.0 11 −2.0 Lin-4242, Arc-4242

11 −2.0 Rot1-4242
11 −1.0 Lin-4242, Arc-4242
11 −1.0 Rot1-4242 0 −1.0

T4 T4242 −2.0 11 −2.0 Lin-4242, Arc-4242
11 −2.0 Rot1-4242
11 −1.0 Lin-4242, Arc-4242
11 −1.0 Rot1-4242 0 −1.0

Table 3. Tests conducted on specimens MM6 and MM10. Terms such as T4242, Lin-
4242, Arc-4242, and so on are explained in Section 4.

cooled, at approximately 1◦C/min to the temperature listed in the second group of columns. The second
group of columns includes three columns. The first two are the temperature and the bias stress at which
the measurements conducted and the third column describes the path(s) of the magnetic field applied
during the test. After the applied magnetic field path(s) have been completed, the specimen temperature
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is raised back up to 35◦C under the conditions listed in the last group of columns. Tests in Set 1 have two
different sets of field paths that were performed under two different amounts of compressive stress. By
starting all tests at 35◦C, which is above the austenite finish temperature, all martensitic microstructure
is removed from the specimen. This makes sure each test starts from identical and repeatable conditions.

In Table 3 the magnetic field conditions and paths are specified with labels. For the only field applied
during cooling, the label T4242 indicates a field applied along the transverse direction of the specimen
[100] at a magnitude of 4242 G. There are two basic field paths applied to the specimen to measure
its FSM response. Linear paths follow radial lines that start or end at zero field. Rotation or arc paths
follow circles or parts of circles, which keep the magnitude of the applied field constant and change
its direction. Field path Lin-4242 consists of two segments: first, the magnetic field is applied on the
transverse direction of the specimen [100] from 0.0 G to 4242 G, then back to 0.0 G along the same
direction; second, it increases on the longitudinal [001] direction from 0.0 G to 4242 G, and returns back
to 0.0 G on [001] axis. For the Arc-4242 path, the field first increases along the transverse [100] direction
from 0.0 G to 4242 G, then rotates 90◦ counterclockwise (CCW) toward the longitudinal [001] direction
with constant magnitude. Once the rotation is complete, the field decreases from 4242 G to 0.0 G along
longitudinal direction. The field rate is 60 G/sec on all segments of both Lin-4242 and Arc-4242 paths.
These two paths were designed to investigate the path dependence of the FSM effect, as they both include
the points at 4242 G in both the transverse and then the longitudinal directions.

The path Rot-9radii has nine circular segments. It starts by increasing the field in transverse [100]
direction from zero to 424 G at a rate of 60 G/sec, the field is then rotated 360◦ CCW at a rate of 6 G/sec,
the first segment finishes when the field returns to 424 G in the transverse direction. The second segment
starts at the end of the first segment, the field increases in the transverse direction from 424 G to a new
magnitude, 848 G, at a rate of 12 G/sec. It then rotates 360◦ CCW at a rate of 12 G/sec, and finishes by
returning to 848 G in the transverse direction. The next seven segments are similar to the two segments
described above with larger field magnitudes. Finally the field is decreased back to 0.0 G while pointing
in the transverse direction. The radii of the nine circles are 424, 848, 1273, 1697, 2121, 2969, 3818, 4666,
and 5515 G, which are completed at field rates of 6, 12, 18, 24, 30, 42, 54, 66, and 78 G/sec, respectively.
These rates result in each 360◦ circle being completed in 444 seconds.

The path Rot1-4242 consists of a single circle. The field first increases in the transverse [001] direction
of the specimen from 0.0 G to 4242 G. Then the field rotates 360◦ CCW with constant magnitude. After
the rotation is complete the field decreases from 4242 G to 0.0 G while pointing in the transverse direction.
The field rate is 60 G/sec for the entire path. Paths Rot2-5515 and Rot20-5515 are similar paths that
repeat the same circular path twice and twenty times, respectively. In both paths the magnetic field is
first applied in the transverse [100] direction of the specimen and increased from 0.0 G to 5515 G. Then
the field rotates 720◦ and 7200◦ CCW, respectively. After the rotations are complete, the field then
decreases from 5515 G to 0.0 G while pointing in the transverse direction. The field rates are 60 G/sec
for the linear segments, and 78 G/sec for the circles. The field path Rot20-3818 is similar to the path
Rot20-5515, except that the magnitude of the field is 3818 G with a rate of 54 G/sec.

Tests T5 to T10 were designed to study work output, but they also provide information on the effects
of stress on phase transformation temperatures. However, due to the limitation of the space, phase trans-
formation effects will be discussed in another paper, along with some other tests which were designed
to study the effect of magnetic field on phase transformation temperature [Cui et al. ≥ 2008].
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5. Experimental results

We now give the results of the experiments and compare them to the constrained theory presented above.

5.1. Ferromagnetic strain, blocking stress and work output. The key property of interest for FSMAs
is the field-induced (or ferromagnetic) strain amplitude, which is defined as the amplitude of the strain
change in the specimen caused by an application of a cyclic magnetic field holding stress and temperature
constant. In many materials, when the stress exceeds a critical level there will be no ferromagnetic strain
no matter how large the applied magnetic field is, and this critical stress is called the blocking stress.
Another important property is the work output, which is defined as the product of the ferromagnetic
strain amplitude and the constant stress at which this ferromagnetic strain is achieved.

The tests listed in set 1 of Table 3 were designed to give a complete picture of the ferromagnetic
strain amplitudes achievable in Fe70Pd30 over a wide range of applied field magnitudes and compressive
stresses. In Figure 3, the applied magnetic field and the strain are plotted verses time for tests T6 to T11.
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Figure 3. Top: A time history of the applied magnetic fields for field path Rot-9radii.
Solid curve is the transverse component of field, and dashed curve is the longitudinal
component. Bottom: Time history of the strains measured in tests T5-T9 on specimen
MM6 at 11◦C.
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Because a 180◦ change in field direction results in a complete ferromagnetic strain cycle, the measured
strain goes through two cycles for every 360◦ of field rotation. The figure shows that the amplitude
of the ferromagnetic strain decreases with increasing compressive stress and increases with increasing
magnetic field amplitude. The strain at −1 MPa started to oscillate in response to the field after the
amplitude of the field exceeded about 800 G; the amplitude of the ferromagnetic strain then increased
rapidly with increasing field amplitude until the field reached approximately 3000 G. After this point,
the strain amplitude only increased slightly with further increases in the field. The −2 MPa curve is
similar to the −1 MPa curve with slightly smaller ferromagnetic strain. The −4 MPa curve has a much
smaller strain amplitude than the lower stress curves and the specimen starts to respond to the field at
smaller value, 424 G. The −6 MPa curve was significantly different from the −1, −2, and −4 MPa curves
because it does not oscillate until the field exceeds 1700 G. The −8 and −12 MPa curves are similar to
the −6 MPa curve except that the field-induced strains are even smaller.

Table 4 and Figure 4 summarize the field-induced strain amplitude and work output at various stress
levels for both specimens. Figure 4 also includes data on Terfenol-D [Clark 1980] and Ni2MnGa [Tickle
and James 1999] for comparison. The ferromagnetic strain amplitude was calculated using the maximum
and minimum strain within a single strain cycle due to the largest magnetic field. The ferromagnetic strain
amplitude decreases quickly with increasing compressive stress. After −4 MPa, the rate of decrease slows
and it is not clear at what stress level the amplitude will decrease to zero. This unusual behavior seems
to indicate that there is no blocking stress for this material or that there is a combination of effects active
at the same time. In fact, both specimens still responded to field even at −12 MPa. At this level, the
field-induced strain and work output of MM10 is similar to that of Terfenol-D, and is larger than that of
Ni2MnGa. Figure 4 shows that Ni2MnGa has a higher strain at smaller stresses, but stops responding
to magnetic field after −8 MPa. Terfenol-D on the other hand stays active beyond −50 MPa, and its
largest work output occurs near −20 MPa. The strain available in Terfenol-D is far less than Ni2MnGa
at low stress levels. The behavior of Fe70Pd30 is in between these two materials. Compared to Ni2MnGa,
Fe70Pd30 has less strain at small stresses and more strain at higher stress levels. When Fe70Pd30 is
compared to Terfenol-D, the situation is reversed. The behavior of Fe70Pd30 beyond −12 MPa could not

Stress Sample MM6 Sample MM10
(MPa) Strain Work output (J/m3) Strain Work output (J/m3)

−1 0.0084 8.4×103 0.0059 5.9×103

−2 0.0070 1.4×104 0.0042 8.4×103

−4 0.0025 1.0×104 0.0025 1.0×104

−6 0.0019 1.1×104 0.0016 9.8×103

−8 0.0016 1.3×104 0.0011 8.8×103

−12 0.0017 2.1×104 0.0008 9.6×103

Table 4. Ferromagnetic strain amplitude at various bias stresses and the corresponding
work output. The MM6 strains are from the crosshead displacement, while the MM10
strains are from the capacitive sensor.
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Figure 4. Strains induced by magnetic field at various load conditions and correspond-
ing work output for Fe70Pd30 specimen MM10 (solid triangle), Ni2MnGa (circle) [Tickle
and James 1999], and Terfenol-D (square) [Clark 1980].

be determined because of the presence of the FCT to BCT transformation, which is not reversible. There
is some evidence that the yield stress of Fe70Pd30 is higher than −20 MPa (possible slip bands appeared
on one specimen that was overloaded).

The details of the strain induced by magnetic field at different levels of stress are provided in Figure 5,
which gives the strain verses both the transverse and longitudinal components of applied field. Each
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nent of field at various load conditions for specimen MM6 are given. Each curve has the
same magnetic field path (Rot-9radii) and temperature of 11◦C.
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set of curves at one load level includes data for all nine field levels in the path Rot-9radii. The curves
at −1 MPa show that the changes in strain were small when the transverse component of the field was
between −4500to 4500 G, and were substantial between 4500 to 5515 G and −4500 to −5515 G. If the
curves are examined from the perspective of the longitudinal component of field, the changes of the strain
were substantial between −1000 to 1000 G, and they were smaller over the rest of the range. This point
is better illustrated by Figure 6, which shows the strain versus the angle of the applied magnetic field.
In that figure, the maximum and minimum strain were not located at the 90◦, 180◦, and 270◦: there was
an approximately 10◦ shift toward larger angles, which is also the direction of the field rotation (CCW).
This indicates the existence of hysteresis. Examining the third quadrant (190◦ to 280◦ of the field angle),
the specimen was at its shortest length when the field angle was approximately 190◦, because of the
combined effects of the compressive stress and the transverse field favored the variant with its short
axis parallel to the loading direction. When the field rotated away from 190◦, the component of the
field in the transverse direction decreased and the component of the field in the longitudinal direction
increased. As result, the specimen started to lengthen. When the field reached 225◦, approximately 2/3 of
the ferromagnetic strain has been achieved, and the remaining 1/3 of ferromagnetic strain was achieved
during the rest of the 45◦ of this quadrant. In other words, the changes in strain occurred faster in the
first 45◦ of rotation than it did in the second 45◦ of the field rotation.

The surfaces of the specimens were observed optically during the experiments using a microscope
equipped with DIC that allows the surface relief to be observed in false color. The images in Figure 7
were taken when the field was 5500 G in [001] and [1̄00] directions. The strains were −0.013 and
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Figure 6. Strain vs. magnetic field rotation angle for test T5 at −1 MPa on specimen MM6.
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Figure 7. Microstructures of specimen MM6 when magnetic field is 5515 G in [001]
(top) and in [1̄00] (bottom). The images are from test T5 at −1 MPa and the field of
view is approximately 0.3 mm wide. In these images the vertical [001] direction is up
and the transverse [100] direction is horizontal.

−0.020. The strain difference between these two states is 0.007, which is about 14% of the theoretical
ferromagnetic strain of 0.0515. However, comparison of these two images shows no clear differences.
When the images are alternated on a computer screen a few small differences are visible in the thickness
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Test Temperature Ferromagnetic
(◦C) Strain

T13b 20 0.0048
T13c 15 0.0071
T13d 10 0.0065
T14a 5 0.0069
T14b 0 0.0071
T14c −5 0.0076

Table 5. Ferromagnetic strain amplitudes measured at various temperatures and under
−1 MPa of stress for specimen MM6.

and configuration of the E1/E3 twin bands. The fact that the measured strain is so much smaller than
that predicted from lattice parameters is the primary unresolved issue about the behavior of Fe70Pd30.

To assess the variation in the ferromagnetic strain amplitude with temperature, a series of measure-
ments of the ferromagnetic strain at the various temperatures was conducted. The results of tests T13b-d
and T14a-c (see Table 3 for test descriptions) are given in Table 5. These results show that the ferro-
magnetic strain does not depend on temperature, once the phase transformation is complete. Test T13b
at 20◦C is the temperature at which the martensite transformation begins, so at this temperature there is
still a significant amount of austenite in the specimen. This accounts for the decreased strain amplitude
measured in this test. The phase transformation is complete by 16◦C and all experiments below this
temperature have essentially the same strain amplitude.

5.2. Effects of initial microstructures and loading paths. The ferromagnetic shape-memory effect re-
lies on the ability of the magnetic field to rearrange the martensitic variants. Thus the microstructure in
the material plays a crucial role in the FSM behavior of the material. If the microstructure is arranged in
such a way as to make twin boundary motion easy then the FSM behavior will be enhanced. On the other
hand, if a complicated microstructure forms on cooling that does not easily lend itself to field-induced
boundary motion, the FSM behavior may be adversely affected. Thus experiments were designed to
attempt to generate different microstructures on cooling and compare their responses to applied fields.
In addition, different field paths between identical field values where also used to assess the dependence
of the FSM effect on the actuation path.

The amount of compressive stress applied to the specimen can be visually observed to affect the
microstructure that forms on cooling. Small amounts of compressive stress allow microstructures with
vertical twin bands (E2/E3 twins) to form, and in some cases remain, in the specimen during transfor-
mation. Larger values of compressive stress cause the transformation to form only horizontal twin bands
(E1/E3 twins, such as those in Figure 7). Test T12 involved cooling the specimen under −12 MPa of
stress to 11◦C and then reducing the applied stress to −1 MPa before the magnetic field path Rot20-5515
was performed. Test T16 was cooled under −1 MPa of stress and then the same field path was performed.
Figure 8 compares the strain responses during the first cycle of each of these tests. The results from T12
are at consistently larger (compressive) strain values, which is as expected due to the microstructural bias
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Figure 8. Strain versus field from tests T12 and T16 at −1 MPa and 11◦C for speci-
men MM6 are shown. Test T12 included a bias stress of −12 MPa during the phase
transformation, while test T16 had a bias stress of −1 MPa during cooling.

applied by the −12 MPa under which T12 cooled. A large fraction of this extra compressive strain is
recovered on the application of the longitudinal field, which favors lengthening of the specimen, however,
this recovery does not reverse on the removal of the field and the amplitude of the cyclic strain change is
very similar in both tests. Ignoring the first 90◦ of field change when the irreversible recovery occurs, the
average strain amplitude over the rest of the data shown in the figure is 0.0049 in test T12, and 0.0057
in test T16. It should be noted that the specimen is not fully detwinned by the −12 MPa stress, a small
number of thin twin bands are still visible on the specimen surface after cooling is complete. When the
stress is reduced to −1 MPa the bands become thicker and more numerous.

To study the effects of the field path, the paths Lin-4242 and Arc-4242 were designed. The results from
two of the tests using these paths are shown in Figure 9. The strain verses longitudinal field component
behavior is almost identical for the two tests. The large difference in the strain verses transverse field
component plots is due to the fact that the arc path also has a longitudinal component to the field that
grows as the transverse component is reduced. The solid circle and square symbols mark corresponding
points on the arc path curves in both plots. This growing longitudinal component causes the specimen
to lengthen on the arc path while the linear path causes no lengthening with its purely transverse field.
The numerical values of the strain amplitudes for tests T2, T3, and T4 are given in Table 6. These data
show that there is essentially no difference in the amplitudes measured for these two different field paths
at the two different stress levels considered.

5.3. Comparison with constrained theory. Test T5 with a compressive stress of −1 MPa was selected
for comparison with the results of the micromagnetic theory. As shown in Figure 10, there is a large
discrepancy in the magnitude of the ferromagnetic strain predicted by theory and the experimental mea-
surements. The theory predicts a ferromagnetic strain amplitude of 0.0515 compared to a measured
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Test Stress Ferromagnetic Strain
(MPa) Lin-4242 Arc-4242

T2 −2 0.0076 0.0074
T2 −1 0.0098 0.0090
T3 −2 0.0074 0.0068
T3 −1 0.0099 0.0090
T4 −2 0.0078 0.0068
T4 −1 0.0095 0.0085

Table 6. Ferromagnetic strain amplitudes measured in the tests T2, T3, and T4 at 11◦C
on specimen MM6.
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Figure 9. Strain versus field of test T3 at −1 MPa for specimen MM6. Dashed lines
represent the strain response of the specimen when the field path is the arc rotation, and
solid lines represent those with linear path. The dot and square indicate corresponding
points on the two curves from the arc path.
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value of 0.007. The basic shapes of the two sets of curves are similar and the constrained theory
cannot be expected to capture smooth transitions between states that must occur due to the presence
of microstructure and demagnetization. Because the theory assumed an infinite specimen, the finite
nonellipsoidal shape of the specimen and its effects on the M-H curves were ignored. These effects
give the M-H curves its gradual transition to saturation and will similarly affect the strain-field behavior
of the specimen. Nonetheless, the curves do show a relative flat minimum when the magnitude of the
longitudinal field is less than 440 G, and a tendency to flatten at higher fields. The sign of the strain
changes agrees with the theory and this confirms that the long axis of the FCT martensite is the easy axis,
otherwise a longitudinal field would make the specimen shorten. In addition, deviations from constrained
theory are quite possible due to the finite values of the elastic moduli and magnetic anisotropy of the
material. The magnetic anisotropy of Fe70Pd30 was found to be an order of magnitude smaller than
that of Ni2MnGa [Cui et al. 2004]. This small anisotropy means that it may be energetically less costly
for the magnetization to rotate away from the easy directions in the material compared to moving a
twin boundary that would result in a change in strain. This may be the reason for the small amount of
ferromagnetic strain measured in this material.

6. Conclusions

The results presented above confirm that Fe70Pd30 is a FSM material and that its behavior agrees quali-
tatively with the predictions of the constrained theory for FSM materials. However, there are two results
that are unexplained. The first is the small amount of ferromagnetic strain amplitude measured in this
material. As just discussed in the previous paragraph, this may be due to the small magnetic anisotropy
of this material. However, there are also a couple of unusual aspects to the shape-memory behavior of
this material that may also contribute to the small strain amplitude. Observations of the microstructure
that forms when this material is cooled through the transformation temperature are quite different from
what is typically observed in shape memory materials (compared say to CuAlNi). Instead of a sharp
planar austenite-martensite (A-M) interface with finely twinned martensite, the martensite in Fe70Pd30

grows into the austenite in a disorderly fashion. The predominate microstructure with a small volume
fraction of martensite is a horizontal needle that appears to consist of a pair of martensite variants with
a twin boundary down its middle. These needles grow into the austenite and then merge to give the final
twinned martensite structure when the transformation is complete. Often the tips of these needles are
arranged along what appears to be a roughly 45◦ line (the crystallographic theory of martensite predicts
an A-M interface at nearly 45◦ with horizontal martensite twin interfaces) and they sometimes appear
to move in unison, but this is far from the distinct A-M interface typically observed in shape memory
materials. This type of behavior may indicate the Fe70Pd30 deviates substantially from the constrained
theory. Because this transformation behavior is solely shape-memory related, this would indicate that
the deviation is related to the elastic behavior of the material. Thus, elastic deformations may play an
important role in the microstructure formation. Without accurate predictions of the microstructures in
FSM materials, it will be very difficult to predict their behavior.

The second unusual aspect of the behavior of Fe70Pd30 involves its behavior in the martensitic state.
When cooled under a stress of −12 MPa there are still some horizontal twin bands visible on the specimen
surface when cooling is complete. Typical shape-memory materials would be completely detwinned by
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this stress once the transformation was complete. Even more interesting, is that when the stress is reduced
to −1 MPa from the −12 MPa applied during cooling (see the results for test T12) some twin boundary
motion occurs. The twin bands thicken and the specimen lengthens. It is not known what force could be
driving twin boundary motion that would grow the variants with their a axes in the compression direction
at the expense of the variant with its shorter c axis in this direction when the amount of compressive
stress is reduced. A typical shape memory material would not retwin until the stress became tensile. If
there is some unknown microstructure related driving force in this material, the applied magnetic field
would have to overcome this force to cause the FSM effect thus reducing the amount of strain achieved.
Because there are only three tetragonal variants, it may be that there is a fair amount of elastic strain near
the ends of specimen because of the lack of enough microstructural degrees of freedom to form a stress
free microstructure there. These elastic strains could provide the energy needed for this type of behavior.

The second unexplained aspect of the behavior of Fe70Pd30 is the apparent lack of a blocking stress.
Figure 4 shows that while the strain amplitude decays with increasing applied compressive stress, it is
not decaying fast enough for the work output to decay as well. The results at −12 MPa are particularly
notable. Aside from this data point, the work output does appear to have reached a maximum at ap-
proximately −4 MPa and is beginning to decrease. Because the strains measured at −12 MPa are the
smallest, the relative error in this measurement will be the largest. If the strain was only 25% less than
the reported value, the decreasing trend in the work output would continue to this stress level as well.
The results reported in Figure 4 are from specimen MM10 using the capacitive sensor to measure the
displacements. A constant bias or calibration error in this measurement would not effect the trends in the
data. Additionally, the measurements are made under a constant stress so any elastic displacements of
the compression fixture should cancel out in the amplitude calculation. Strain gauges are difficult to use
on these materials, because they tend to debond during the phase transformation due to the large strains
involved.

Future work on this material will focus on answering these questions. Measurement of the average
magnetization of the material during testing will allow the possibility of magnetization rotation away from
the easy axes to be assessed. In addition the shape-memory behavior will be studied further to provide a
better understanding of the types of behaviors that have just been discussed. Finally, improvements to the
constrained theory, such as including the specimen geometry, and the possibility of including deviations
from constrained theory will be considered.

References

[Clark 1980] A. Clark, Ferromagnetic materials, North-Holland, Amsterdam, 1980.

[Cui and James 2001] J. Cui and R. D. James, “Study of Fe3Pd and related alloys for ferromagnetic shape memory”, IEEE
Trans. Magn. 37:4 (Part 1) (2001), 2675–2677.

[Cui et al. 2004] J. Cui, T. W. Shield, and R. D. James, “Phase transformation and magnetic anisotropy of an iron-palladium
ferromagnetic shape-memory alloy”, Acta Mater. 52:1 (2004), 35–47.

[Cui et al. ≥ 2008] J. Cui, T. W. Shield, and R. D. James, “Effects of stress and magnetic field on the phase transformation in
iron-palladium ferromagnetic shape memory alloys”. In preparation.

[DeSimone and James 2002] A. DeSimone and R. D. James, “A constrained theory of magnetoelasticity”, J. Mech. Phys. Solids
50:2 (2002), 283–320.

[James and Kinderlehrer 1993] R. D. James and D. Kinderlehrer, “Theory of magnetostriction with applications to
Tbx Dy1−x Fe2”, Philos. Mag. B 68 (1993), 237–274.



FERROMAGNETIC SHAPE MEMORY EFFECTS IN AN IRON PALLADIUM ALLOY 527

[James and Wuttig 1998] R. D. James and M. Wuttig, “Magnetostriction of martensite”, Philos. Mag. A 77:5 (1998), 1273–
1299.

[Muto et al. 1988] S. Muto, S. Takeda, R. Oshima, and F. E. Fujita, “High resolution electron microscopy of the tweed mi-
crostructure in an Iron-Palladium alloy”, Jpn. J. Appl. Phys. 2 27:8 (1988), 1387–1389.

[Muto et al. 1990a] S. Muto, R. Oshima, and F. E. Fujita, “Consideration of the tweed structure of Fe-Pd alloys by continuum
elasticity theory”, pp. 65–70 in Martensitic transformations: proceedings of the 6th International Conference (Sydney, 1989),
vol. 1, edited by B. C. Muddle, Materials Science Forum 56, Trans Tech Publications, Aedermannsdorf, Switzerland, and
Brookfield, VT, 1990.

[Muto et al. 1990b] S. Muto, S. Takeda, and R. Oshima, “Analysis of lattice modulations in the tweed structure of an Fe-Pd
alloy by image processing of a high resolution electron micrograph”, Jpn. J. Appl. Phys. 1 29:10 (1990), 2066–2071.

[Muto et al. 1990c] S. Muto, S. Takeda, R. Oshima, and F. E. Fujita, “High resolution electron microscopy of tweed microstruc-
ture in Fe-Pd alloys”, pp. 45–50 in Martensitic transformations: proceedings of the 6th International Conference (Sydney,
1989), vol. 1, edited by B. C. Muddle, Materials Science Forum 56, Trans Tech Publications, Aedermannsdorf, Switzerland,
and Brookfield, VT, 1990.

[O’Handley 1998] R. C. O’Handley, “Model for strain and magnetization in magnetic shape-memory alloys”, J. Appl. Phys.
83:6 (1998), 3263–3270.

[Oshima 1981] R. Oshima, “Successive martensitic transformations in Fe-Pd alloys”, Scr. Metall. 15:8 (1981), 829–833.

[Oshima and Sugiyama 1982] R. Oshima and M. Sugiyama, “Martensite transformations in iron-palladium alloys”, J. Phys.
(Paris) Colloq. 43:C4 (1982), 383.

[Oshima et al. 1988] R. Oshima, M. Sugiyama, and F. E. Fujita, “Tweed structures associated with FCC-FCT transformations
in Fe-Pd alloys”, Metall. Trans. A 19:4 (1988), 803–810.

[Oshima et al. 1990] R. Oshima, K. Tanaka, A. Taniyama, and F. E. Fujita, “Study of BCT martensite of Fe-Pd alloys”, pp. 175–
180 in Martensitic transformations: proceedings of the 6th International Conference (Sydney, 1989), vol. 1, edited by B. C.
Muddle, Materials Science Forum 56, Trans Tech Publications, Aedermannsdorf, Switzerland, and Brookfield, VT, 1990.

[Oshima et al. 1992] R. Oshima, S. Muto, and F. E. Fujita, “Initiation of FCC-FCT thermoelastic martensite transformation
from premartensitic state of Fe-30 at Pd alloys”, Mater. Trans. (JIM) 33:3 (1992), 197–202.

[Shield 2003] T. W. Shield, “A magnetomechanical testing machine for ferromagnetic shape-memory alloys”, Rev. Sci. Instrum.
74:9 (2003), 4077–4088.

[Somura and Oshima and Fujita 1980] T. Sohmura, R. Oshima, and F. E. Fujita, “Thermoelastic FCC-FCT martensitic trans-
formation in Fe-Pd alloy”, Scr. Metall. 14:8 (1980), 855–856.

[Sozinov et al. 2002] A. Sozinov, A. A. Likhachev, and K. Ullakko, “Crystal structures and magnetic anisotropy properties of
Ni-Mn-Ga martensitic phases with giant magnetic-field-induced strain”, IEEE Trans. Magn. 38:5 (Part 1) (2002), 2814–2816.

[Sugiyama et al. 1984] M. Sugiyama, R. Oshima, and F. E. Fujita, “Martensitic transformation in the Fe-Pd alloy system”,
Trans. Jpn. Inst. Met. 25:9 (1984), 585–592.

[Sugiyama et al. 1985] M. Sugiyama, S. Harada, and R. Oshima, “Change in Young’s modulus of thermoelastic martensite
Fe-Pd alloys”, Scr. Metall. 19:3 (1985), 315–317.

[Sugiyama et al. 1986] M. Sugiyama, R. Oshima, and F. E. Fujita, “Mechanism of FCC-FCT thermoelastic martensite transfor-
mation in Fe-Pd alloys”, Trans. Jpn. Inst. Met. 27:10 (1986), 719–730.

[Tanaka and Oshima 1991] K. Tanaka and R. Oshima, “Role of annealing twin in the formation of variant structure of Bct
martensite in Fe-Pd alloy”, Mater. Trans. (JIM) 32:4 (1991), 325–330.

[Tanaka et al. 1992] K. Tanaka, K. Hiraga, and R. Oshima, “Origin of tetragonality of BCT martensite in substitutional Fe-Pd(-
Ni) disordered alloys”, Mater. Trans. (JIM) 33:3 (1992), 215–219.

[Tickle and James 1999] R. Tickle and R. D. James, “Magnetic and magnetomechanical properties of Ni2MnGa”, J. Magn.
Magn. Mater. 195:3 (1999), 627–638.

[Tickle et al. 1999] R. Tickle, R. D. James, T. W. Shield, M. Wuttig, and V. V. Kokorin, “Ferromagnetic shape memory in the
NiMnGa system”, IEEE Trans. Magn. 35:5 (Part 3) (1999), 4301–4310.



528 JUN CUI AND TOM SHIELD

[Ullakko et al. 1996] K. Ullakko, J. K. Huang, C. Kantner, R. C. O’Handley, and V. V. Kokorin, “Large magnetic-field-induced
strains in Ni2MnGa single crystals”, Appl. Phys. Lett. 69:13 (1996), 1966–1968.

[Vasil’ev et al. 1996] A. N. Vasil’ev, S. A. Klestov, R. Z. Levitin, and V. V. Snegirev, “Magnetoelastic interaction in the
martensitic transformation in an Ni2MnGa single crystal”, J. Exp. Theor. Phys. 82:3 (1996), 524–526.

Received 29 Dec 2005. Accepted 18 Sep 2006.

JUN CUI: cui@research.ge.com
GE Global Research Center, K1-2D47, One Research Circle, Niskayuna, NY 12302, United States

TOM SHIELD: shield@aem.umn.edu
Department of Aerospace Engineering and Mechanics, University of Minnesota, 107 Akerman Hall, 110 Union St. SE,
Minneapolis, MN 55455, United States


