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ASYMPTOTIC ANALYSIS AND REFLECTION PHOTOELASTICITY FOR THE
STUDY OF TRANSIENT CRACK PROPAGATION IN GRADED MATERIALS

NITESH JAIN AND ARUN SHUKLA

The behavior of a rapidly moving transient crack in functionally graded materials (FGMs) is investigated
theoretically and experimentally. First, a systematic theoretical analysis is presented for the development
of the transient elastodynamic local stress, strain, and displacement field expansions near a growing
mixed mode crack tip in FGMs. The crack propagation direction is assumed to be inclined to the di-
rection of the property variation. The displacement potential approach in conjunction with asymptotic
analysis is utilized to derive explicit expressions for stress, strain, and in-plane displacement fields. The
transient crack growth is assumed to include processes in which both the crack tip speed and the dynamic
stress intensity factor are differentiable functions of time. These stress fields are used to generate the
contours of constant maximum shear stress (isochromatics fringes) and the effect of transient crack
growth on these contours is discussed. To further understand the transient crack growth behavior, a
series of dynamic fracture experiments are performed with functionally graded material fabricated in-
house. The phenomenon of transition from a static crack to a dynamic mode I crack is examined in
these experiments. The full-field stress data around the crack is recorded using dynamic photoelasticity
and high-speed digital photography. Due to opaqueness of FGMs, birefringent coatings are employed
to obtain the full-field isochromatics around the crack tip. The stress field expansions developed in the
first part of the study are used to interpret the experimental observations. The results of the experiments
showed that the higher order transient expansion provides an accurate representation of crack tip fields
under severe transient conditions.

1. Introduction

Increasing multifunctional performance requirements in aerospace, power generation, microelectronics,
and bioengineering applications often demand properties that are unattainable with any single material.
Correspondingly, composite and layered materials are developed to invoke the desirable characteristic
of each constituent phase in order to meet such requirements. However, the internal stresses caused by
the elastic and the thermal property mismatch at an interface between two differing bulk materials can
mitigate the successful implementation of such composites. To address this problem, functionally gradi-
ent materials (FGMs) have been developed. FGMs accommodate a gradual transition of the properties
of different materials from one location to the other, such that the mismatch in mechanical and thermal
properties is minimized [Surendranath et al. 2003; Suresh and Mortensen 1998].

Keywords: functionally graded material, dynamic fracture, transient crack, asymptotic analysis, photoelasticity, high-speed
imaging.
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A fundamental understanding of the mechanics of crack formation, initiation, and growth is essential
for efficient design of critical components fabricated using FGMs. Several researchers have investigated
the behavior of embedded and edge cracks in graded materials subjected to quasistatic loading [Jin and
Noda 1994; Erdogan 1995; Gu and Asaro 1997; Chalivendra et al. 2003; Jain et al. 2004]. All these
studies concluded that the inverse square-root singularity at the crack tip is not affected by material
nonhomogeneities as long as the elastic modulus and Poisson’s ratio are sufficiently smooth functions of
spatial position. Although the stationary crack problem in FGMs has received considerable attention, less
is known about the behavior of a rapidly propagating crack in these materials. The problem of a crack
moving with a constant velocity in FGMs has been presented by [Atkinson and List 1978; Wang and
Meguid 1994; Nakagaki et al. 1998; Parameswaran and Shukla 1998; Marur and Tippur 2000; Rousseau
and Tippur 2001; Li and Weng 2002; Jain and Shukla 2004; Jain and Shukla 2006]. Recently, there has
been some work on the fracture mechanics of anisotropic functionally graded materials. Sladek et al.
[2005] proposed a meshless method based on the local Petrov–Galerkin approach for crack analysis in
anisotropic FGMs. Kim and Paulino [2004] presented an interaction integral formulation for evaluating
the elastic T-stress for a mixed mode crack in orthotropic nonhomogeneous materials. In most of these
investigations, it is presumed that the crack tip stress field depends upon the instantaneous crack velocity
and the instantaneous stress intensity factor. However, in many situations, reflecting stress waves pass
through the specimen constructively and destructively interfering with one another, and thus result in
a highly complex time-dependent stress intensity factor. Due to the nonhomogeneous nature of FGM
and resulting mathematical complexities, very few investigations on the transient dynamic response of
cracked FGMs have been reported in the literature [Zhang et al. 2003; Shukla and Jain 2004; Chalivendra
et al. 2003]. In all these investigations the crack is subjected to a single mode of loading, that is, either
an opening or a tearing mode. But from a practical viewpoint, strength-controlling flaws in load bearing
structures, in general, are expected to be inclined at random orientations to the applied principal stress.
Also, it has been reported in experimental and numerical studies that propagating cracks in FGMs can
follow inclined paths under various loading conditions due to spatial variation of properties in graded
materials [Li et al. 2000; Tilbrook et al. 2005; Abanto-Bueno and Lambros 2006]. The transient elasto-
dynamic solution for a crack growing in an arbitrary direction in FGMs is still not known. However, the
solution for a homogeneous material is presented in the work of [Freund and Rosakis 1992].

This paper provides a theoretical analysis for the derivation of transient, asymptotic, elastodynamic
near-tip fields for a crack growing in an arbitrary direction in an FGM. The transient elastodynamic
problem is formulated in terms of two displacement potentials, and an asymptotic analysis is performed to
develop explicit expressions for stress, strain, and in-plane displacement fields. In this context, transient
crack growth is understood to include processes in which both the crack tip speed and the dynamic
stress intensity factor are differentiable functions of time. These crack tip fields are needed to analyze
the full-field experimental data obtained from various experimental techniques such as photoelasticity,
Moiré interferometry, holographic interferometry, and coherent gradient sensing (CGS). The stress fields
developed in this paper are used to generate the contours of constant maximum shear stress (isochromatic
fringes) and the effect of the transient crack growth on these contours is discussed. This is followed by
a series of experiments to get further insight into the behavior of mode-I transient cracks in FGMs. The
full-field stress data around the propagating crack is recorded using dynamic photoelasticity and high
speed digital photography. Due to the opaqueness of FGMs, birefringent coatings are employed to obtain
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the full-field isochromatic fringes around the moving crack tip. A high speed camera capable of taking
200 million frames per second is used to record these isochromatic fringes. The stress field expansion
developed in the first part of the study is used to interpret these experimental observations, with the
conclusion that the higher order expansion provides an accurate representation of crack tip fields under
severe transient conditions.

2. Elastodynamic transient crack tip fields

2.1. Theoretical consideration. The variation of elastic and physical properties in FGMs is in general
limited to a single direction. At any given point in the material, the properties can be assumed to be the
same in all directions and hence, at a continuum level FGMs are isotropic nonhomogeneous solids. The
transient elastodynamic problem is formulated in terms of two displacement potentials and an asymptotic
analysis is performed to develop the stress, strain, and displacement fields around a propagating crack
in an FGM. The direction of transient crack propagation is assumed to be inclined to the direction of
property variation. The properties are assumed to vary exponentially with distance. When the crack is
inclined to the property gradation direction, the stress state near the crack tip is mixed mode, irrespective
of the far field loading.

2.2. Theoretical formulation. Consider a crack moving nonuniformly in an FGM as shown in Figure 1.
The original coordinate system is a spatially fixed Cartesian coordinate system X − Y . A moving co-
ordinate system x − y at the crack tip is now defined such that the crack velocity is in the x-direction.
Suppose that the crack propagates with a nonuniform speed, c(t), and the crack faces satisfy the traction
free boundary condition. Localized crack tip plasticity and three-dimensional effects are neglected in this
formulation. The shear modulus and mass density are assumed to vary exponentially in the X1 direction
as given in (1) and the Poisson’s ratio ν is assumed to be constant. The property gradation direction
forms an angle ϕ with the Y = 0 axis. We have

µ= µ0 exp(δX1), ρ = ρ0 exp(δX1), S =
λ

µ
, (1)

X

Y

X1

Y1
µ (X1)

?
x

y

c(t)

Figure 1. Propagating crack orientation with respect to the direction of property varia-
tion in a FGM.
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where µ and λ are the shear modulus and Lamé’s constant, µ0 and ρ0 are the shear modulus and mass
density at X = X1 = 0, and δ is the nonhomogeneity parameter, having the dimension of inverse length.
Equation (1) can be written in terms of (X, Y ) coordinates by using a simple transformation

µ(X, Y )= µo exp(αX +βY ), ρ(X, Y )= ρo exp(αX +βY ), (2)

α = δ cosϕ, β = δ sinϕ. (3)

The equations of motion for a plane problem in the absence of body forces in the fixed coordinate system
can be written as

σX X,X + σXY,Y = ρu,t t , σXY,X + σY Y,Y = ρv,t t , (4)

where σi j are in-plane stress components and u, v are in-plane displacements. The Hooke’s law for plane
elasticity problem can be written as

σX X = ((λ0 + 2µ0)u,X +λ0v,Y ) exp(αX +βY ),

σY Y = ((λ0 + 2µ0)v,Y +λ0v,Y ) exp(αX +βY ),

σXY = (u,Y +v,X )µ0 exp(αX +βY ).

(5)

Introducing the displacement potentials (8 and 9) as

u =8,X +9,Y , v =8,Y −9,X , (6)

substituting (6) into (5), and substituting the resulting equality into (4), the equation of motion can be
expressed in terms of displacement potentials 8 and 9 as

∂

∂X

(
(S + 2)∇28−

ρ0

µ0

∂28

∂t2

)
+
∂

∂Y

(
∇

29 −
ρ0

µ0

∂29

∂t2

)
+α

(
S∇

28+ 2
∂28

∂X2 + 2
∂29

∂X ∂Y

)
+β

(
2
∂28

∂X ∂Y
+
∂29

∂Y 2 −
∂29

∂X2

)
= 0,

∂

∂Y

(
(S + 2)∇28−

ρ0

µ0

∂28

∂t2

)
−

∂

∂X

(
∇

29 −
ρ0

µ0

∂29

∂t2

)
+α

(
∂29

∂Y 2 −
∂29

∂X2 + 2
∂28

∂X ∂Y

)
+β

(
(S + 2)

∂28

∂Y 2 − 2
∂29

∂X ∂Y
+ λ0

∂28

∂X2

)
= 0. (7)

Equations (7) can only be satisfied when (see [Jain and Shukla 2004])

(S + 2)∇28−
ρ0

µ0

∂28

∂t2 + (S + 2)
(
α
∂8

∂X
+β

∂8

∂Y

)
+

(
α
∂9

∂Y
−β

∂9

∂X

)
= 0,

∇
29 −

ρ0

µ0

∂29

∂t2 + S
(
α
∂8

∂Y
−β

∂8

∂X

)
+

(
α
∂9

∂X
+β

∂9

∂Y

)
= 0.

(8)

Now we introduce the moving crack tip coordinates x = X − ct and y = Y . The coordinate change
implies the substitutions

∂2

∂X2 =
∂2

∂x2 and
∂2

∂t2 = c2 ∂
2

∂x2 +
∂2

∂t2 − ċ
∂

∂x
− 2c

∂2

∂x∂t
, where ċ =

∂c
∂t
. (9)
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Using these transformations, Equation (8) becomes

α2
l
∂28

∂x2 +
∂28

∂y2 +

(
α
∂8

∂x
+β

∂8

∂y

)
−

1
S+2

(
α
∂9

∂y
−β

∂9

∂x

)
+

ρ0

µ0(S+2)

(
ċ
∂8

∂x
+ 2c

∂28

∂x∂t
−
∂28

∂t2

)
= 0,

α2
s
∂29

∂x2 +
∂29

∂y2 +

(
α
∂9

∂x
+β

∂9

∂y

)
+ S

(
α
∂8

∂y
−β

∂8

∂x

)
+

ρ0

µ0(S+2)

(
ċ
∂9

∂x
+ 2c

∂29

∂x∂t
−
∂29

∂t2

)
= 0,

(10)
where

αl =

(
1 −

ρ0c2

µ0(S + 2)

)1/2

, αs =

(
1 −

ρ0c2

µ0

)1/2

.

These equations reduce to the classical two-dimensional wave equations of motion if α and β equal zero.
In the case of nonhomogeneity, the equations lose their classical form and remain coupled in 8 and 9,
through the nonhomogeneity parameters α and β.

2.3. Asymptotic expansion of crack tip fields. At this point, we employ the standard asymptotic analysis
proposed in [Freund 1990]. We introduce coordinates η1 = x/ε, η2 = y/ε, where ε is a small arbitrary
positive parameter (0< ε < 1), used so that the region around the crack tip is expanded to fill the entire
region of observation. As ε becomes infinitely small, all the points in the x-y plane, except those very
near the crack tip, are pushed out of the field of observation in the η1-η2 plane, and the crack line occupies
the whole negative η1-axis. We assume that 8 and 9 can be expressed in powers of ε as

8(x, y)=8(εη1, εη2)=

∞∑
m=0

ε(m+3)/2φm(η1, η2),

9(x, y)=9(εη1, εη2)=

∞∑
m=0

ε(m+3)/2ψm(η1, η2).

(11)

The first term of series (m = 0) corresponds to the expected square root singular contribution proportional
to r−1/2 in the asymptotic near-tip stress field.

Substituting the assumed asymptotic form (11) into the governing Equation (10), we obtain two equa-
tions, in each of which the left-hand side is an infinite power series in ε and the right-hand side vanishes.
Since ε is an arbitrary number, the coefficient of each power of ε should vanish identically to satisfy
these resulting equations. Therefore, the governing equation reduces to a system of coupled differential
equations in 8 and 9. These equations have the general form

α2
l
∂2φm

∂η1
2 +

∂2φm

∂η2
2 +

(
α
∂φm−2

∂η1
+β

∂φm−2

∂η2

)
+

1
S + 2

(
α
∂ψm−2

∂η2
−β

∂ψm−2

∂η1

)
+

ρ0c1/2

µ0(S + 2)
∂

∂t

(
c1/2 ∂φm−2

∂η1

)
−

ρ0

µ0(S + 2)
∂2φm−4

∂t2 = 0,

α2
s
∂2ψm

∂η1
2 +

∂2ψm

∂η2
2 +

(
α
∂ψm−2

∂η1
+β

∂ψm−2

∂η2

)
+ S

(
α
∂φm−2

∂η2
−β

∂φm−2

∂η1

)
+
ρ0c1/2

µ0

∂

∂t

(
c1/2 ∂ψm−2

∂η1

)
−

ρ0

µ0(S + 2)
∂2ψm−4

∂t2 = 0, (12)
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where

φk, ψk =

{
φk, ψk for k ≥ 0,

0 for k < 0.

For m = 0 and m = 1, Equations (12) are not coupled in 8 and 9 and reduce to Laplace’s equation in
the coordinates η1, αlη2 or η1, αsη2 (similar to that for a homogeneous material having elastic properties
equal to the elastic properties of the FGM at the crack tip). Indeed, as will be seen, φ0 and ψ0 have the
same spatial structure in both transient and steady state cases. This is not so, however, for φm , ψm if
m > 1.

Since the crack is propagating at an angle to the direction of property gradation, the stress field near
the crack tip is a combination of both opening and shear modes (mixed mode). For the elastic solution,
the stress field related to the opening mode and the shear modes can be superposed to obtain the mixed
mode solution. The solutions for m = 0 and 1 are the same as for homogeneous material and can be
written as

φm(ρl, θl, t)= Am(t)ρ
(m+3)/2
l cos 1

2(m + 3)θl + Cm(t)ρ
(m+3)/2
l sin 1

2(m + 3)θl,

ψm(ρs, θs, t)= Bm(t)ρ(m+3)/2
s sin 1

2(m + 3)θs + Dm(t)ρ(m+3)/2
s cos 1

2(m + 3)θs

(13)

for m = 0, 1, where

ρl =
(
η2

1 +α2
l η

2
2

)1/2, tan θl =
αlη2

η1
, ρs =

(
η2

1 +α2
s η

2
2

)1/2, tan θs =
αsη2

η1
.

The solution (13) appears to be the same as for steady state crack growth. However, the two solutions
differ fundamentally in that the coordinates (ρl, θl) now depend upon time. It is the crack speed that
determines the degree of distortion of these coordinates, and the crack speed is now a function of time.
Also one should note that the coefficients of the series solution given in (13) are time dependent.

Using the definitions of dynamic stress intensity factors K ID and K IID for the opening and the shear
modes [Shukla and Chona 1987] and considering the crack face boundary conditions we get

A0(t)=
4(1 +α2

s )

3
(
4αsαl − (1 +α2

s )
2
) K ID(t)

µc
√

2π
, B0(t)= −

2αl

1 +α2
s

A0(t),

C0(t)=
8αs

3
(
4αsαl − (1 +α2

s )
2
) K IID(t)

µc
√

2π
, D0(t)=

1 +α2
s

2αl
C0(t).

(14)

The solution for higher orders of m can be obtained recursively (see [Jain and Shukla 2004]):

φ2 = A2(t)ρ
5/2
l cos 5

2θl −
1
4α

−2
l ρ

5/2
l

(
cos 1

2θl(αA0(t)+βC0(t))+ sin 1
2θl(αC0(t)−βA0(t))

)
−

2
5

αs

(k + 2)(α2
l −α2

s )
ρ5/2

s
(
cos 5

2θs(αB0(t)−βD0(t))− sin 5
2θs(αB0(t)+βD0(t))

)
+ ρ

5/2
l

(
1
6

(
Dl(A0(t))+ 1

2 B A
l (t)

)
cos 1

2θl −
1
8 B A

l (t) cos 3
2θl

+
1
6

(
Dl(C0(t))+ 1

2 BC
l (t)

)
sin 1

2θl +
1
8 BC

l (t) sin 3
2θl

)
,
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ψ2 = B2(t)ρ5/2
s sin 5

2θs −
1
4α

−2
s ρ5/2

s
(
cos 1

2θs(αB0(t)+βD0(t))+ sin 1
2θs(αB0(t)−βD0(t))

)
+

2
5

kαl

(α2
l −α2

s )
ρ

5/2
l

(
cos 5

2θl(αC0(t)−βA0(t))− sin 5
2θl(αA0(t)+βC0(t))

)
+ ρ5/2

s

(
1
6

(
Ds(B0(t))+ 1

2 B B
s (t)

)
sin 1

2θs +
1
8 B B

s (t) sin 3
2θs

+
1
6

(
Ds(D0(t))+ 1

2 B D
s (t)

)
cos 1

2θs −
1
8 B D

s (t) cos 3
2θs

)
. (15)

The coefficients appearing in this solution are defined in the Appendix.

2.4. Stress, strain, and displacement fields. The stress, strain, and displacement fields around the crack
tip can now be obtained using displacement potentials (8 and 9) found in the previous section. Detailed
expressions for the stress, strain, and displacements are not included here for brevity, but they are provided
in an online supplement to this paper. The authors can supply these expressions in machine readable
form upon request.

2.5. Discussions of solutions. To get an insight into the effects of transient terms on the dynamic fracture
process, contours of constant maximum shear stress (isochromatics) and contours of constant first stress
invariant (isopachics) are generated for mixed mode loading conditions. The asymptotic representation
of crack tip stress and displacement fields contain coefficients An(t), Bn(t), Cn(t), and Dn(t), which can
be related to fracture parameters such as stress intensity factor and nonsingular stress components as in
(14). The contours are generated for assumed values of the dynamic stress intensity factors (coefficient
A0 and C0), whereas the higher order coefficients A1, A2, C1, C2, B1, B2, D1 and D2 are assumed to be
zero. However, the nonhomogeneity and transient specific parts of the higher order terms, that have A0,
B0, C0 and D0 as the coefficients, are retained. The typical values of material properties and material
thickness used in generating contours are as follows: Poisson’s ratio = 0.3, shear modulus at the crack tip
µc = 1.5 GPa, density at the crack tip ρc = 1200 kg/m3, and thickness t = 0.01 m. The nonhomogeneity
parameter α for plotting these contours is obtained by fitting an exponential curve to the property variation
profile of the laboratory-fabricated FGMs [Jain and Shukla 2006]. The nonhomogeneity parameter α for
FGM fabricated in this study is 0.57. The crack velocity used in generating all the contours is 650 ms−1.
This choice of velocity is made on the basis of available experimental data on velocities that are typically
observed for this FGM [Jain and Shukla 2006].

2.5.1. Isochromatic fringe patterns. Isochromatic fringe patterns obtained in photoelasticity represent
contours of constant maximum shear stress and their generation is governed by the stress-optic law

N fσ
2h

= τmax =
σ1 − σ2

2
=

√(σx − σy

2

)2
+ τ 2

xy, (16)

where fσ is the material fringe value, N is the isochromatic fringe order and h is the thickness of the
specimen. Equation (16) is used to generate the isochromatic fringe patterns around the crack tip in
FGMs. In generating these contours the crack is assumed to be on the negative x-axis and the crack
tip is located at (0, 0). Also, the direction of crack propagation is assumed to be towards the positive
x-axis. Figure 2 shows the effect of the rate of change of mode-I stress intensity factor (d K ID(t)/dt) on
contours of constant maximum shear stress for mixed mode loading around the crack tip corresponding
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Rf

Rb

d K ID/dt = 0 d K ID/dt = 105 MPa m1/2 s−1

d K ID/dt = 106 MPa m1/2 s−1

Figure 2. Effect of the rate of change of mode-I stress intensity factor on the contours
of constant maximum shear stress around the crack tip in an FGM (α = 0.57, K ID(t)=
1 MPa m1/2, K IID(t)= 1 MPa m1/2, c = 650 ms−1, dc/dt = 0). The front and rear apogee
radii are marked in part (a) with R f and Rb, respectively.

to α = 0.57, K ID = K IID = 1.0 MPa m1/2, and c = 650 ms−1. As observed in [Dally and Shukla 1979]
the rate of change of K ID at crack initiation could be of the order of 105 MPa m1/2 sec−1, the values
of d K ID(t)/dt are varied over six orders of magnitude for generating the contours. The fringe order
increases as the crack tip is approached, with very high fringe orders in the close vicinity of the crack
tip. This is a direct consequence of the stress singularity that exists at the crack tip. As d K ID(t)/dt
increases, the fringes in front of the crack tip decrease in size and number, and the reverse happens for
fringes behind the crack tip. This effect can be quantified in terms of increase in apogee radius (see
Figure 2a) of a given fringe.
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Figure 3. Variation of apogee radii of the third order isochromatic fringe as a function
of (a) rate of change of mode-I stress intensity factor, and (b) crack tip acceleration.

The front and rear apogee radii of the third fringe order are determined from isochromatic fringe
patterns and are plotted in Figure 3a as functions of d K ID(t)/dt . The front apogee radius decreases from
20.7 mm to 5.7 mm as d K ID(t)/dt increases from 0 to 106 MPa m1/2 s−1. The corresponding increase
in the rear apogee radius is from 8.2 mm to 19.1 mm. The dependence of the fringe radius on the rate of
change of mode-I stress intensity factor is nonlinear; a rapid change in the front and rear apogee radii
are observed at higher values of d K ID(t)/dt .

An additional consequence of the variation of the rate of change of mode I stress intensity factor is
its effect on the tilt and shape of the isochromatic fringe contours surrounding the crack tip, as observed
in Figure 2. As d K ID(t)/dt increases the fringes on the front side of the crack tip bend towards the
direction of crack propagation and the fringes on the rear side bend away from the crack faces.

Figure 3b and Figure 4 show data obtained for a crack propagating in an FGM under different values
of crack acceleration. The value of dc/dt is varied over eight orders of magnitude. (Dally and Shukla
[1979] showed that the rate of change of velocity at crack initiation could be of the order of 107 ms−2 in
their work with homogeneous materials.) Figure 4 shows isochromatic fringes for dc/dt = 106, 107 and
108 ms−2. The changes in fringe size and shape until crack tip accelerations of 106 ms−2 are reached are
negligible. For dc/dt above 106 ms−2, as the crack acceleration increases, the front and rear fringe loops
decrease in size. Figure 3b shows the variation of the front and the rear apogee radii of the third order
fringe as a function of crack tip acceleration. It can be seen that the effect of dc/dt is more pronounced
at higher crack tip accelerations.

3. Experiments

To investigate the expediency of the analysis presented in this work, a sequence of dynamic fracture ex-
periments under mode-I conditions has been performed. In doing so, the phenomenon of transition from
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(a) dc/dt =1e6 m.s
-1 dc/dt = 106 m/s2 (b) dc/dt =1e7 m.s

-1dc/dt = 107 m/s2

(c) dc/dt =1e8 m.s
-1dc/dt = 108 m/s2

Figure 4. Effect of the crack tip acceleration on contours of the constant maximum
shear stress around the crack tip in an FGM (α = 0.57, K ID(t)= 1 MPa m1/2, K IID(t)=
1 MPa m1/2d K ID(t)/dt = 0, c = 650 ms−1).

a static crack to a dynamic crack is studied. Dynamic photoelasticity along with high-speed photography
is utilized to get the full field data around the crack tip during the transition.

3.1. Materials. The FGMs for this study were prepared as a particulate composite with continuously
varying particle volume fraction along a single dimension. An unsaturated polyester resin (MR 17090,
Ashland Chemical Company) was used as the matrix material. This highly cross-linked thermosetting
polymer is ideal for fracture studies due to its relatively brittle nature. Cenospheres (LV01-SG, Sphere
Services Inc.) particles with an average diameter of 127µm were used as the filler material in the
fabrication of the FGMs. These cenospheres, obtained from the fly ash of thermal power plants, are
hollow spheres made of aluminum silicates.
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FGM specimens were fabricated using a procedure developed in [Parameswaran and Shukla 2000].
The cenospheres have a low specific gravity of 0.67, compared to 1.18 for the resin. When the resin-
cenosphere mixture is poured into the mold, the top layer of the mixture which is rich in cenospheres
gets poured first and fills the bottom layer of the mold. Subsequently, the cenospheres diffuse towards
the top of the mold due to buoyancy. The resin takes approximately 4 to 5 hours for gelation and once it
gels and starts curing, further movement of spheres is arrested by the increased viscosity. This results in
a casting with a resin rich region in the bottom, a cenosphere rich region at the top, and an intermediate
region with continuously varying cenosphere content.

Detailed mechanical and physical characterization of the FGMs fabricated by the above procedure can
be found in [Jain and Shukla 2004].

3.2. Specimen geometry and loading. A modified single edge notch tension (M-SENT) specimen as
shown in Figure 5 is employed in this study. A first crack tip (starter crack) was made such that the
subsequent crack propagation is increasing fracture toughness direction. An INSTRON 5585 apparatus
is used to load the M-SENT specimens to a predetermined K Q (static stress intensity factor) before
the first crack tip is initiated by drawing a sharp knife-edge across the tip. After initiation the crack
propagates across the ligament, breaking a crack detection gauge before coming to rest temporarily at
the second crack tip. Breaking the crack detection gauge triggers an electronic circuit that causes the
high-speed camera to commence taking a sequence of photographs of the isochromatics associated with
the moving crack. At the second crack tip, the value of the stress intensity factor begins to increase

150
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crack-tip

Coating

25

FGM

280

Coating

Ligament 

First

crack-tip

75

Figure 5. Specimen geometry for investigation of the transient nature of the crack tip.
All dimensions are in mm.
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Figure 6. Photoelastic configuration for testing FGM specimens.

until it becomes sufficiently large to produce reinitiation of the crack. The bluntness of the second crack
tip is controlled so that the crack remains at rest for a relatively long time (approximately 200µs) and
reinitiation occurs at high values of K Q .

3.3. Birefringent coatings. In this study we use a split birefringent coating technique [Der and Barker
1978], in which the coating is placed on both sides of the specimen, and a small distance (2 mm) away
from the anticipated crack path. Birefringent coatings consisted of 3 mm thick polycarbonate sheets with
vacuum deposited aluminum on the back surface. The sheets are cut to desired dimensions while using
liberal amounts of cooling fluid to ensure minimum development of residual stresses. Extra fast-setting
epoxy adhesive is used to bond the sheets to the specimens. Details on the validation of this technique
can be found in [Jain and Shukla 2004].

3.4. High speed real time imaging of the transition from a static to a dynamic crack. A schematic of
the experimental setup for testing M-SENT FGM specimens is shown in Figure 6. High speed digital
imaging is employed along with dynamic photoelasticity to obtain real time, full field quantification
of the transition from a static to a dynamic crack. A circular polarizer is placed in front of the split
birefringent coatings to form a dark field circular polariscope. Power Light 2500DR xenon flash lamps
were used as light sources to illuminate the specimen. The xenon flash lamps are a broadband source of
light and therefore a monochromatic filter was placed just before the camera to ensure that the imaged
isochromatic fringe patterns correspond to a single wavelength of light (546 nm). Due to stress-induced
birefringence in the photoelastic coatings, this arrangement results in the formation of isochromatic fringe
patterns during the failure process.
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Images of the isochromatic fringes are captured using an Imacon 200 ultra-high speed digital camera.
This CCD based camera provides 16 independently programmable digital images of dynamic events up
to a maximum framing rate of 200 × 106 frames/s. The camera is operated with interframe times of
6µsec (170,000 frames/sec) so as to record the increase in K at the stationary crack prior to initiation,
and the dynamic value of K (t) immediately after the initiation.

3.5. Photoelastic analysis. When the load is applied, the surface displacements of the specimen at the
specimen-coating interface are transmitted to the coating. Observing the coating in a reflection polar-
iscope generates a fringe pattern, which is related to the surface strains in the specimen. The method to
determine the stress intensity factor is based on strain optic law applied to photoelastic coating, and on
the fact that there is perfect strain transfer between specimen and coating (that is, εS

1 − εS
2 = εC

1 − εC
2 ).

We have

εS
1 − εS

2 = εC
1 − εC

2 = FC R
N fε
2hC = FC R

1 + νC

EC

N fσ
2hC , (17)

where fσ is the material fringe constant associated with the incident light wave length, N is the isochro-
matic fringe order, h is the thickness of the coating, ν is Poisson’s ratio, and superscripts S and C refer
to specimen and coating, respectively.

FC R is a reinforcement correction factor that accounts for the fact that the coating carries a portion of
the load, causing the strain on the specimen to be reduced by a certain amount. FC R essentially depends
upon the relative thickness and properties of the coating and specimen [Dally and Riley 2005].

In the derivation of the crack tip fields, the FGM is assumed to be an isotropic nonhomogeneous solid,
which is justified because the size of the three-dimensional zone at the crack tip (thickness/2 = 6.3 mm)
is orders of magnitude larger than the cenosphere diameter (127µm). The strain expressions obtained
in Section 2.4 are substituted in (17) and the resulting equation is solved using an over-deterministic
nonlinear least squares method to obtain the fracture parameters. This involves fitting of a six parameter
theoretical solution, which includes K I , K I I , and σox (T -stress) and so on, to field data taken from the
isochromatic loops.

4. Experimental results

A series of experiments were conducted with K Q ranging from 1.0 to 1.25 MPa m1/2. Figure 7 shows
a set of six frames recorded during the transition from a static to a dynamic crack. Isochromatics from
each of the frames are analyzed using the aforementioned photoelastic procedure to obtain the stress
intensity factor history. The crack remains stationary until frame 6 and starts moving afterwards. The
size of the isochromatics decreases substantially as soon as the second crack starts to move, indicating
the reduction in the value of stress intensity factor around the crack tip. These isochromatics are analyzed
using the procedure described in the previous sections to obtain the dynamic stress intensity factor. The
photoelastic fringes were regenerated using the calculated fracture parameters from data analysis. A
good agreement between the regenerated fringes and the experimental fringes were observed.

Figure 8 shows the extension of the second crack with time. Measurements were repeated five times
and the 95% confidence interval obtained using the Student’s t-distribution is also shown. As the crack
starts to move, the velocity of the crack continuously increases until it reaches a certain value and then
stays constant. The crack initiation time is estimated to be 26.1µsec, from curve fitting.
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Figure 7. Isochromatic fringe patterns during crack initiation at a second crack tip.
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Figure 8. Crack tip position as a function of time.
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Figure 9. Crack tip acceleration as a function of time.

The crack propagation profile and time of initiation are subsequently used for calculating crack acceler-
ation. The acceleration profile is plotted in Figure 9 and shows that crack acceleration is 1.4 × 107 m/sec2

just after initiation and decreases afterwards. It is plausible that crack acceleration is even higher as crack
extension occurs by void coalescence and the crack jumps from zero to finite velocity.

Figure 10 shows the variation of the stress intensity factor with time. The stress intensity factor
increases monotonically at the arrested crack until K Q becomes large enough to produce initiation at
the second crack tip. The first frame was captured after 4µsec, which is approximately the time for
the shear wave to clear the near field region (r = 5 mm). It can be seen that the stress intensity factor
decreases rapidly from K Q = 1.38 MPa m1/2 to K (t) = 0.97 MPa m1/2 in 4µsec. The stress intensity
factor decreases further to 0.88 MPa m1/2 after which it shows monotonic increase.
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Figure 10. Stress intensity factor as a function of time.
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To investigate the effect of transient higher order terms, analysis is also performed neglecting the
transient higher order terms. The stress intensity factor history thus obtained using the steady state
solution is also shown in Figure 10. The average error introduced by neglecting transient higher order
terms is as high as 20%. It is also observed that after 60µsec, when the crack tip acceleration decreases
considerably, the instantaneous stress intensity factor obtained with transient fields and steady state fields
are in good agreement. This suggests that it is essential to include transient higher order terms in the
stress field expansion in order to obtain an accurate value of the instantaneous stress intensity factor
during highly transient phenomena.

Figure 10 also shows the stress intensity factor history obtained using just the homogeneous stress
field expansion. As expected, the error induced by just using homogeneous terms for analyzing the
isochromatics in FGMs can be as high as 30% in the estimation of the stress intensity factor.

5. Concluding remarks

Motivated by the transient nature of the elastic fields in the vicinity of a growing crack tip, an approx-
imation of the near-tip field in the form of an asymptotic expansion has been introduced. The analysis
is performed for a crack growing in an arbitrary direction in an FGM. The higher order terms in the
expansions take into account the recent history of the stress intensity factor and crack motion. The
solution thus obtained is used to examine the effect of the transient terms on the near-tip stress fields.
This is accomplished by discussing the effect of crack tip acceleration and rate of change of the stress
intensity factor on synthetically generated contours of constant maximum shear stress and constant first
stress invariant. To investigate the expediency of the analysis presented in this work, a sequence of
dynamic fracture experiments has been performed. In doing so, the phenomenon of transition from a
static crack to a dynamic crack is utilized. It is found that during this transition the crack tip accelerations
can be as high as 108 m/sec2. The full field data obtained from these transition experiments were analyzed
using the analytically derived equations. It is found that not including the transient higher order terms in
the stress field expansion during highly transient phenomena might give rise to errors as high as 20% in
the estimation of the stress intensity factor.

Appendix: Coefficients occurring in the expressions of φ2 and ψ2, pages 600–601.
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ASYMPTOTIC HOMOGENIZATION MODEL FOR THREE-DIMENSIONAL
NETWORK REINFORCED COMPOSITE STRUCTURES

KRISHNA S. CHALLAGULLA, ANASTASIS GEORGIADES AND ALEXANDER L. KALAMKAROV

The method of asymptotic homogenization is used to develop a comprehensive micromechanical model
pertaining to three-dimensional composite structures with an embedded periodic network of isotropic
reinforcements, the spatial arrangement of which renders the behavior of the given structures macroscop-
ically anisotropic. The model developed in this paper allows the transformation of the original boundary
value problem into a simpler one that is characterized by some effective elastic coefficients. These coeffi-
cients are calculated from a so-called unit cell or periodicity problem, and are shown to depend solely on
the geometric and material characteristics of the unit cell and are completely independent of the global
formulation of the boundary-value problem. As such, the effective elastic coefficients are universal in
nature and can be used to study a wide variety of boundary value problems. The model is illustrated
by means of several examples of a practical importance and it is shown that the effective properties of
a given composite structure can be tailored to satisfy the requirements of a particular application by
changing certain geometric parameters such as the size or relative orientation of the reinforcements. For
the special case in which the reinforcements form only a two-dimensional (in-plane) network, the results
converge to those of previous models obtained either by means of asymptotic homogenization or by
stress-strain relationships in the reinforcements.

1. Introduction

Recent trends have seen the integration of composite materials into new engineering platforms where
they replace or strategically compliment other traditional structural materials. Presently, composites can
be found in a wide range of applications ranging from sporting and recreational goods, to large-scale
structures in the mechanical, aerospace, transportation and civil engineering fields. The continued incor-
poration of composite materials into new applications can be facilitated if their macroscopic behavior
can be predicted at the design stage. To meet this objective, comprehensive micromechanical models
must be developed. The effectiveness of such models largely depends on the acknowledgment of the
fact that composites have to be approached from two different angles; microscopic and macroscopic.
The microscopic view-point addresses the unique behavior and individual characteristics of the various
constituents such as the reinforcing fibers and the matrix material, whereas the macroscopic perspective
treats the overall composite structure as a single entity. A successful micromechanical model is one
which takes both the local and the global aspects of the composite into consideration; it is sophisticated
enough to consider the geometrical orientation and mechanical interaction of the various constituents at

Keywords: asymptotic homogenization, composite structures, 3D spatial network, unit cell, effective elastic coefficients.
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the local level, but not too convoluted to be readily amenable to analytic and numerical treatments at the
macroscopic stress/strain level.

The problem of micromechanical modeling of composites made up of inclusions embedded in a ma-
trix has been the subject of investigation for many years. Among the earlier models developed were
the composite spheres model [Hashin 1962] pertinent to macroscopically isotropic composites, and the
composite cylinders model proposed by Hashin and Rosen [1964]. In the former model, the inclusions
are treated as spherical particles of radius a embedded in a region of matrix of radius b. The absolute
size of the particles is allowed to vary, but the ratio of a/b is kept constant. The model was used to
estimate the shear and bulk moduli of macroscopically isotropic composites. For the macroscopically
anisotropic (in particular, transversely isotropic) composite material, the composite cylinders model treats
the reinforcing fibers as cylindrical inclusions of radius a associated with a region of matrix of radius b.
As with the composite spheres model, the absolute size of the reinforcements is allowed to vary in order
to cover all the available continuous material, but the ratio a/b is kept constant.

Other early work includes the self-consistent scheme [Hill 1965; Budiansky 1965] where a composite
is modeled by rigid inclusions embedded in an incompressible matrix, and the Hashin and Shtrikman
model [Hashin and Shtrikman 1963a; 1963b]. In their work, Hashin and Shtrikman employed a vari-
ational approach to determine upper and lower limits for the effective elastic properties [Hashin and
Shtrikman 1963a] as well as electric and thermal conductivities [Hashin and Shtrikman 1963b] of mul-
tiphase materials (with quasiisotropic global characteristics). It was discovered that the upper and lower
bounds were close to one another (thus representing a reasonably accurate estimate of the properties of
the multiphase material) when the properties of the individual constituents were of comparable magni-
tude. Later on, Milton [1981; 1982] obtained higher-order bounds for the elastic, electromagnetic, and
transport properties of two-component composites. Eshelby [1957] studied the case of an ellipsoidal
inclusion or inhomogeneity within an infinite matrix and showed that knowing the uniform strain inside
the inclusion or homogeneity is sufficient to determine such quantities as the strain fields both near and
far from the inclusion/inhomogeneity, the total strain energy in the matrix, etc. Hill [1963] studied the
problem of two isotropic media forming perfect bond and having arbitrary volume fractions. Irrespective
of the geometry of either component, Hill obtained a complete solution for the special case when these
components have equal rigidities but different compressibilities. Russel [1973] studied the problem of
slender elastic illusions (of arbitrary cross-section) embedded in a preferred direction within an infinite
elastic medium strained uniformly at infinity. His model permitted the calculation of the longitudinal
tensile modulus and Poisson’s ratio, as well as the bulk modulus of the composite. The author then
applied the model to the special case of slender spheroidal inclusions. In the same work, Russel also
examined the effect of the inclusion’s volume fraction on the elastic properties of the composite. Other
work can be found, among others, in [Mori and Tanaka 1973; Sendeckyj 1974; Christensen 1990].

More recently, Drugan and Willis [1996] used the Hashin–Shtrikman variational principle general-
ized by the second author for random microstructures to derive constitutive equations for two-phase
composites of arbitrary isotropy; Kalamkarov and Liu [1998] developed a multiphase fiber-matrix com-
posite material model using a work conjugate approach to derive a so-called mesostructure; Zeman and
Šejnoha [2001] used the finite element method to determine effective elastic coefficients of graphite
epoxy composites having a random distribution of fibers in a transverse plane section of the composite
by extracting an approximate periodicity from the fiber distribution.
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Phenomena occurring in composite materials can often be described by means of partial differential
equations which are characterized by two vastly different scales: a microscopic scale which reflects the
periodicity of the regular composite and a macroscopic scale which is a manifestation of the global for-
mulation of the boundary value problem. The microscopic scale is of the same order of magnitude as the
size or spacing of the reinforcements, whereas the macroscopic scale has an order of magnitude similar
to a characteristic dimension of the composite structure. The coupling of these two scales in the original
problem renders the solution of the pertinent differential equations a very difficult task. To overcome
this difficulty, the method of asymptotic homogenization can be used to decouple the microscopic and
the macroscopic variations, so that each can be solved independently or sequentially. The mathematical
framework of asymptotic homogenization can be found in [Bensoussan et al. 1978; Sanchez-Palencia
1980; Kalamkarov 1992; Cioranescu and Donato 1999; Cioranescu and Paulin 1999] and others. In
recent years, asymptotic homogenization methods have been used to analyze periodic composite and
smart structures, see, for example, the pioneering work of Duvaut [1976] on inhomogeneous plates;
Caillerie [1984] applied a two-scale formalism directly to the three-dimensional problem of a thin non-
homogeneous layer. Accordingly, Caillerie introduced two sets of rapid coordinates. One of these, in the
tangential directions, is associated with rapid periodic oscillations in the composite properties. The other
is associated with the small thickness of the layer and takes into consideration that there is no periodicity
in this transverse direction; Kohn and Vogelius [1984], Kohn and Vogelius [1985] adopted this approach
in their study of the pure bending of a thin, linearly elastic homogeneous plate; Guedes and Kikuchi
[1990] used a finite element approach to compute effective elastic properties (including error estimates)
of composite materials. In his monograph, Kalamkarov [1992], studied a wide variety of elastic and
thermoelastic boundary-value problems using the asymptotic homogenization and derived expressions
for the effective properties of different structures such as laminated and reinforced plates and shells,
infinite cylinders with wavy surfaces, etc; Kalamkarov and Kolpakov [2001] used asymptotic homoge-
nization techniques to derive effective elastic and piezoelectric coefficients for a smart plate; Kalamkarov
and Georgiades [2002] applied the asymptotic homogenization method to general 3-dimensional smart
composites with nonhomogeneous boundary conditions (which generate boundary-layer like solutions)
and obtained effective elastic, piezoelectric, thermal expansion and hygroscopic expansion coefficients.
The same authors, Kalamkarov and Georgiades [2004] and Georgiades and Kalamkarov [2004], obtained
effective elastic, piezoelectric and thermal expansion coefficients pertinent to wafer- and rib-reinforced
smart plates; Georgiades et al. [2006] obtained effective coefficients for thin smart network-reinforced
plates.

The present paper develops a novel asymptotic homogenization model for three-dimensional network
reinforced composite structures; see Figure 1. In this model, the composite structure is made of periodi-
cally arranged unit cells and different elements of unit cell can be made of different materials.

The rest of the paper is organized as follows. The basic problem formulation and model development
is presented in Section 2. Section 3 derives the general model for three-dimensional network reinforced
composite structures and Section 4 uses it to analyze and discuss various examples. Finally Section 5
concludes the paper.
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2. Homogenization model for three-dimensional structures

2.1. General model. Consider a general composite structure representing an inhomogeneous solid occu-
pying domain G with boundary ∂G that contains a large number of periodically arranged reinforcements
as shown in Figure 2.

The elastic deformation of this structure can be described by means of the following set of equations:

∂σ εi j

∂x j
= fi in G, uε(x)= 0 on ∂G, (1)

where,

σ εi j

(
x,

x
ε

)
= Ci jkl

( x
ε

)
eεkl

(
x,

x
ε

)
(2)

eεi j

(
x,

x
ε

)
=

1
2

[ ∂ui

∂x j

(
x,

x
ε

)
+
∂u j

∂xi

(
x,

x
ε

)]
. (3)

Here, Ci jkl is the tensor of elastic coefficients, ekl is the strain tensor and u is the displacement field.
Finally, fi represent body forces. The elastic coefficients satisfy the familiar symmetry relationships
Ci jkl = C j ikl = Ckli j and we assume that they also satisfy the strong convexity relation Ci jklχi jχkl >

0 for any 3 × 3 real matrix χi j . It is also assumed in Equation (2) that the Ci jkl coefficients are all
periodic with a unit cell Y of characteristic dimension ε. It is assumed that ε is made nondimensional by
dividing length of unit cell by a certain characteristic dimension of the overall structure. Furthermore,
it is assumed that the other two dimensions of the unit cell are of the same order of magnitude as the
length. Consequently, the periodic composite structure in Figure 2 is seen to be made up of a large
number of unit-cells periodically arranged within the domain G. Let us also note at this point that if the
boundary conditions in Equation (1) were made nonhomogeneous, then the resulting field expansions
(displacement, strain, etc) would be characterized by boundary-layer type solutions [Kalamkarov and
Georgiades 2002]. However, the effective coefficients would not be affected in any way. Thus, for
simplicity, homogeneous displacement boundary conditions are chosen here.

Figure 1. Three-dimensional network reinforced composite structure.
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G

X3

ε

X1

X2

Y

Y1

Y3

Y2

Matrix

Reinforcement

Figure 2. Three-dimensional composite structure with its periodicity (unit) cell.

2.2. Asymptotic expansion, governing equation, and unit cell problem. Kalamkarov and Georgiades
[2002] develops the asymptotic homogenization model for the three-dimensional smart composite struc-
tures. In this section, only a brief overview of the steps involved in the development of the model are
given in so far as it represents the starting point of our current work. The first step is to define the
so-called fast or microscopic variables, as well as new rules of differentiation according to

yi =
xi

ε
,

∂

∂xi
→

∂

∂xi
+

1
ε

∂

∂yi
. (4)

The introduction of these variables transforms the boundary value problem, by separating variables xi

and yi , and corresponding stress field in Equations (1) and (2) into

∂σ εi j

∂x j
+

1
ε

∂σ εi j

∂y j
= fi in G, uε = 0 on ∂G, (5)

σ εi j (x, y)= Ci jkl( y)
∂uk

∂xl
(x, y). (6)

The displacement and stress fields are subsequently expressed as infinite power series in terms of the
small parameter ε:

uε(x, y)= u(0)(x, y)+ εu(1)(x, y)+ ε2u(2)(x, y)+ · · · ,

σ εi j (x, y)= σ
(0)
i j (x, y)+ εσ (1)i j (x, y)+ ε2σ

(2)
i j (x, y)+ · · · . (7)

Here all functions in y are periodic with the unit cell Y (see Figure 2). By substituting Equations (4)
and (6) into Equation (5) while considering at the same time the periodicity of u(i) in y j one can readily
show that u(0) is independent of the microscopic variable y. Subsequently, by substituting Equation (7)
into Equation (5) and equating like powers of ε one obtains a sequence of differential equations the first
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two of which are

∂σ
(0)
i j

∂y j
= 0, (8)

∂σ
(1)
i j

∂y j
+
∂σ

(0)
i j

∂x j
= fi , (9)

where,

σ
(0)
i j = Ci jkl

(
∂u(0)k

∂xl
+
∂u(1)k

∂yl

)
, (10)

σ
(1)
i j = Ci jkl

(
∂u(1)k

∂xl
+
∂u(2)k

∂yl

)
. (11)

Combination of Equations (8) and (10) yields the following expression:

∂

∂y j

(
Ci jkl

∂u(1)k (x, y)
∂yl

)
= −

∂Ci jkl( y)
∂y j

∂u(0)k (x)
∂xl

. (12)

The separation of variables on the right-hand-side of Equation (12) allows to write down the solution as

u(1)n (x, y)= Vn(x)+
∂u(0)k (x)
∂xl

N kl
n ( y), (13)

where functions N kl
m are periodic in y and satisfy

∂

∂y j

(
Ci jmn( y)

∂N kl
m ( y)
∂yn

)
= −

∂Ci jkl

∂y j
. (14)

It is seen that Equation (14) depends entirely on the fast variable y and is thus solved on the domain Y
of the unit cell remembering at the same time the periodicity of Ci jkl, N kl

m in yi . Consequently, Equation
(14) is appropriately referred to as the unit-cell problem.

The next important step in the model development is the homogenization process. This is achieved
by first substituting Equation (13) into Equation (10) and combining the result with Equation (9). The
resulting expression is finally integrated over the domain Y of the unit cell (with volume |Y |) remembering
to treat xi as a parameter as far as integration with respect to y is concerned. This gives

1
|Y |

∫
Y

∂σ
(1)
i j (x, y)
∂y j

dv+C̃i jkl
∂2u(0)k (x)
∂x j∂xl

= fi ,

where we have defined C̃i jkl as the effective or homogenized elastic coefficients

C̃i jkl =
1

|Y |

∫
Y

(
Ci jkl( y)+ Ci jmn( y)

∂N kl
m

∂yn

)
dv. (15)

One observes that the effective coefficients are free from the periodicity complications that characterize
their actual rapidly varying material counterparts, Ci jkl , and as such, are more amenable to analytical
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and numerical treatment. The effective coefficients shown above are universal in nature and can be used
to study a wide variety of boundary value problems associated with a given composite structure.

3. Three-dimensional network reinforced composite structures

For the problem at hand, we turn our attention to a general macroscopically anisotropic three-dimensional
composite structure reinforced with N families of reinforcements or bars, see, for example, Figure 1,
where a particular case of 3 families of reinforcements is shown. The members of each family are made
of generally different isotropic materials and are oriented at angles φn

1 , φn
2 , φn

3 , for n = 1, 2, . . . , N , with
the y1, y2, y3 axes respectively. Furthermore, they are assumed to be much stiffer than the surrounding
matrix so that we are justified in neglecting the contribution of the latter in the ensuing analysis. For
the particular case of framework or lattice network structures the surrounding matrix is absent and this
is modeled by assuming zero matrix rigidity. The nature of the network structure of Figure 1 is such
that it would be more efficient if we first considered a simpler type of unit cell made of only a single
reinforcement as shown in Figure 3. Having solved this, the effective elastic coefficients of more general
structures with several families of reinforcements can readily be determined by superposition of solution
for each of them found separately. In doing so, we accept of course the error incurred at the regions of
intersection between the reinforcements, but this error is highly localized and will not add significantly
to the integral over the unit cell. A mathematical justification for this kind of argument in the form of the
so-called principle of the split homogenized operator has been provided by Bakhvalov and Panasenko
[1984]. In order to calculate the effective coefficients for the simpler structure of Figure 3, one must first
solve the unit cell problem Equation (14) and then apply the formula in Equation (15).

3.1. Problem formulation. We begin the problem formulation for the structure of Figure 3 by introduc-
ing the following notation:

bkl
i j = Ci jmn( y)

∂N kl
m ( y)
∂yn

+ Ci jkl . (16)

Y1

Y2

Y3

Figure 3. Unit cell of composite network reinforced with a single reinforcement family.
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With this definition in mind, the unit cell problem of Equation (14) becomes ∂{bkl
i j }/∂y j = 0.

Because of the multiconstituent nature of the network structures under consideration, it is prudent to
also consider the interfacial conditions that exist between the matrix and the reinforcements. The first
such condition is a direct consequence of the continuity of the N kl

m (y) functions and may be stated as:

N kl
n (r)

∣∣
s = N kl

n (m)
∣∣
s . (17)

Furthermore, continuity of the displacement field leads to:

bkl
i j n j (r)

∣∣
s = bkl

i j n j (m)
∣∣
s . (18)

In Equations (17) and (18) the suffixes s, r,m stand for interface, reinforcement and matrix, respectively.
n j are the components of the unit normal vector to the interface. As mentioned earlier on, we will further
assume that the structure of interest is made of high modulus reinforcements and “soft” matrix. As such,
we may take bkl

i j (m)≈ 0 and thus, condition in Equation (18) becomes bkl
i j n j (r)

∣∣
s = 0.

In summary, the final problem that must be solved in conjunction with Equation (17) for the three-
dimensional network structure reinforced with a single family of isotropic bars is:

∂

∂y j

{
bkl

i j
}

= 0, bkl
i j n j (r)

∣∣
s = 0. (19)

3.2. Coordinate transformation. Before proceeding to the solution of the unit cell problem given in
Equation (19) we perform a coordinate transformation of the microscopic coordinates {y1, y2, y3} onto
{η1, η2, η3} as shown in Figure 4. The coordinate transformation is carried out in such a way that the η1

coordinate axis coincides with the direction of the reinforcement and η2, η3 are perpendicular to it.
Thus, derivatives transform according to

∂

∂yi
= q j i

∂

∂η j
,

where qi j are the components of the matrix of direction cosines characterizing the axis rotation.

Y1

Y2

Y3

η 3

η�1
η2

Figure 4. Unit cell in original and rotated macroscopic coordinates.
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With this choice of coordinate system, it is evident that problems in Equation (19) will be independent
of η1 and will only depend on η2 and η3. Consequently, derivatives with respect to η1 in the pertinent
differential equations vanish and the analysis of the problem is simplified.

3.3. Determination of elastic coefficients. With reference to Figure 4 we begin by rewriting Equation
(19) in terms of the ηi coordinates to get

bkl
i j = Ci jmnqpn

∂N kl
m

∂ηp
+ Ci jkl, (20)

bkl
i j q2i n′

2 + bkl
i j q3i n′

3

∣∣
s = 0. (21)

Here n′

i represent the components of the unit normal vector expressed in terms of the new coordinates.
Expanding Equation (20) remembering at the same time the independence of the problem on η1 gives:

bkl
i j = Ci jkl + Ci jm1q21

∂N kl
m

∂η2
+ Ci jm2q22

∂N kl
m

∂η2
+ Ci jm3q23

∂N kl
m

∂η2

+ Ci jm1q31
∂N kl

m

∂η3
+ Ci jm2q32

∂N kl
m

∂η3
+ Ci jm3q33

∂N kl
m

∂η3
. (22)

It is possible to solve the system of Equations (20) and (21) by assuming a linear variation of the N kl
i

functions in η2 and η3, that is,

N kl
1 = λ1η2 + λ2η3, N kl

2 = λ3η2 + λ4η3, N kl
3 = λ5η2 + λ6η3, (23)

where λi are constants to be determined from the boundary conditions. It should be noted that the values
of the constants λi are different for the different combinations of the suffixes k, l in Equation (23) and
in the sequel. From Equations (22) and (23), the elastic bkl

i j coefficients may be written as follows

bkl
11 = C11kl + C11q21λ1 + C11q31λ2 + C12q22λ3 + C12q32λ4 + C13q23λ5 + C13q33λ6,

bkl
22 = C22kl + C12q21λ1 + C12q31λ2 + C22q22λ3 + C22q32λ4 + C23q23λ5 + C23q33λ6,

bkl
33 = C33kl + C13q21λ1 + C13q31λ2 + C23q22λ3 + C23q32λ4 + C33q23λ5 + C33q33λ6,

bkl
23 = C23kl + C44q23λ3 + C44q33λ4 + C44q22λ5 + C44q32λ6,

bkl
13 = C13kl + C55q23λ1 + C55q33λ2 + C55q21λ5 + C55q31λ6,

bkl
12 = C12kl + C66q22λ1 + C66q32λ2 + C66q21λ3 + C66q31λ4.

(24)

Here Ci j are the elastic coefficients of the isotropic reinforcements in the contracted notation (see, for
example, [Reddy 1997]). Substituting Equation (24) in Equation (21) and letting j take on the values 1,



622 KRISHNA S. CHALLAGULLA, ANASTASIS GEORGIADES AND ALEXANDER L. KALAMKAROV

2, 3 results in 6 linear algebraic equations in λi for i = 1, 2, . . . , 6

A1λ1 + A2λ2 + A3λ3 + A4λ4 + A5λ5 + A6λ6 + A7 = 0,

A8λ1 + A9λ2 + A10λ3 + A11λ4 + A12λ5 + A13λ6 + A14 = 0,

A15λ1 + A16λ2 + A17λ3 + A18λ4 + A19λ5 + A20λ6 + A21 = 0,

A22λ1 + A23λ2 + A24λ3 + A25λ4 + A26λ5 + A27λ6 + A28 = 0,

A29λ1 + A30λ2 + A31λ3 + A32λ4 + A33λ5 + A34λ6 + A35 = 0,

A36λ1 + A37λ2 + A38λ3 + A39λ4 + A40λ5 + A41λ6 + A42 = 0,

(25)

where Ai are constants which depend on the direction of the reinforcement as well as its mechanical
properties. The explicit expressions for these constants are given in Appendix A. Once the system of
Equation (25) is solved, the determined λi coefficients are substituted back into Equation (24) to solve for
the bkl

i j coefficients. In turn, these are used to calculate the effective elastic coefficients of the structure of
Figure 3 by integrating over the volume of the unit cell as explained below in Section 3.4. Before closing
this section, it would not be amiss to mention that if Equation (23) were assumed to be polynomials of
a higher order, then after following the procedure outlined here and comparing terms of equal powers of
η2 and n3, all of the terms would vanish except the linear ones.

3.4. Effective elastic coefficients. The effective elastic coefficients of the network composite structure
of Figure 3 are obtained by means of the rule of homogenization in Equation (15), which, on account of
notation in Equation (16) becomes

C̃i jkl =
1

|Y |

∫
Y

bkl
i j dv.

Assuming that the length (within unit cell), cross-sectional area of the reinforcement and volume of the
unit cell in coordinates y1, y2, y3 are L , A, V , respectively, then the effective elastic coefficients are,

C̃i jkl =
AL
V

bkl
i j = V f bkl

i j ,

where bkl
i j is constant and V f is the volume fraction of the reinforcement within the unit cell. It can be

proved that the effective elastic coefficients C̃i jkl satisfy the same symmetry and convexity relationships
as their actual material counterparts Ci jkl [Bakhvalov and Panasenko 1984].

For network structures with more than a single family of reinforcements, the effective coefficients
can be determined by superposition ignoring stress concentration and other local complications at the
regions of intersections. For example, for a network composite structure with N families of isotropic
reinforcements, the effective elastic coefficients will be given by

C̃i jkl =

N∑
n=1

V (n)
f b(n)kl

i j , (26)

where the superscript (n) represents the n-th reinforcement family.
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4. Examples of network structures

Let us now apply above developed general theory to the analysis of some examples of practical impor-
tance.

Example 1 (Convergence of model for the case of 2D composite network). For the purposes of the first
example, we will verify the validity of our model for the case of 2D network structures whereby the
reinforcements lie entirely in the Y2-Y3 plane. Figure 5 shows the pertinent unit cell for such a structure.

Solving Equation (25) for λi and substituting the results into Equation (24) gives the following ex-
pressions for the all nonzero elastic coefficients:

b11
11 = E cos4 θ, b12

11 = E cos3 θ sin θ, b22
11 = b12

12 = E cos2 θ sin2 θ,

b12
22 = E cos θ sin3 θ, b22

22 = E sin4 θ, bkl
i j = bi j

kl ,

while the effective coefficients of the composite structure are

C̃11 =
AL
V

E cos4 θ, C̃22 =
AL
V

E sin4 θ, C̃12 = C̃66 =
AL
V

E cos2 θ sin2 θ,

C̃16 =
AL
V

E cos3 θ sin θ, C̃26 =
AL
V

E cos θ sin3 θ, C̃i j = C̃ j i .

where we have denoted by E Young’s modulus of the reinforcing material. These results are the same as
those earlier obtained by Kalamkarov [1992] who developed an asymptotic homogenization model for
a thin network-reinforced composite shell and Pshenichnov [1982] who used a different approach based
on stress-strain relationships in the reinforcements.

θ

Y1

Y2

Y3

Figure 5. Unit cell for (2D) structure with reinforcements in the Y1-Y2 plane.

Example 2. The second example pertains to the cubic structure of Figure 6. This composite structure
has three families of reinforcements, each family oriented along one of the coordinate axes.
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Noting that qi j = δi j , where δi j is the Kronecker symbol, the values of λi for the reinforcement in the
Y1 direction are readily obtained from Equation (25) to be as follows

λ1 =
−C12kl

C66
, λ2 =

−C13kl

C55
, λ3 =

C33C22kl − C23C33kl

C23
2
− C22C33

,

λ4 + λ5 =
−C23kl

C44
, λ6 =

C22C33kl − C23C22kl

C23
2
− C22C33

.

It is observed here that because the transformation tensor q equals the second-order identity sensor, the
number of equations is reduced from 6 to 5 and the unknowns λ4 and λ5 occur everywhere as the linear
combination of λ4 +λ5. The same result will occur with reinforcements oriented entirely along either the
Y2 or the Y3 directions. In both of these cases, a pair of the unknown λi occurs as a linear combination
and the number of equations is reduced to 5 (with correspondingly 5 unknowns). From Equation (24)
the bkl

i j coefficients are given by

bkl
11 = C11kl +

[C12C33 − C13C23]C22kl + [C13C22 − C12C23]C33kl

C2
23 − C22C33

.

After substituting expressions for elastic coefficients we obtain

b11
11 = E, b22

11 = b33
11 = b23

11 = b13
11 = b12

11 = 0, bkl
22 = bkl

33 = bkl
23 = bkl

13 = bkl
12 = 0. (27)

Repeating the procedure for the reinforcement in the Y2 direction yields b22
22 = E with the remaining

coefficients equal to zero, and for the reinforcement in the Y3 direction the only nonzero coefficient is
b33

33 = E .
We are now ready to compute the effective elastic coefficients of the cubic network structures shown

in Figure 6. Let the length (within unit cell) and cross-sectional area of the i-th reinforcement in the Yi

direction be L i and Ai respectively (in coordinates y1, y2, y3). Also let us assume that Ei is the Young’s
modulus of the reinforcement in the Yi direction. Then, for a unit cell of volume V , the corresponding
volume fraction vi is given by vi = Ai L i/V . Thus, from Equations (26) and (27) the nonzero effective
elastic coefficients for the composite network structure of Figure 6 are

C̃11 =
A1L1

V
E(1) = v1 E(1), C̃22 =

A2L2

V
E(2) = v2 E(2), C̃33 =

A3L3

V
E(3) = v3 E(3), (28)

Y1 

Y3 

Y2 

Figure 6. Cubic network structure with reinforcements in Y1, Y2, Y3 directions.
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where E(i) is the young’s modulus of the i-th reinforcement. In the case where the reinforcements have
the same material properties (namely Young’s modulus E) the expressions in Equation (28) become

C̃11 =
A1

V
E = v1 E, C̃22 =

A2

V
E = v2 E, C̃33 =

A3

V
E = v3 E .

It is observed that all the off-diagonal terms in the stiffness matrix are zero. This is partly because the
reinforcements in a particular direction have no effect on the stiffness of the structure in the directions
perpendicular to it and partly due to the fact that the matrix stiffness is neglected in this model.

Example 3. This example pertains to a composite network structure with a conical arrangement of
isotropic reinforcements. In this example (to be referred to as structure S1) the unit cell is made of three
reinforcements oriented as shown in Figure 7. The expressions for the effective coefficients are readily
determined from Equations (24)–(26). Although the expressions are too lengthy to be reproduced here,
some of these coefficients will be presented graphically in the next section.

Spatial arrangement of reinforcements 

as viewed from the top 

Y1 

Y2 

Figure 7. Unit cell for composite network structure with conical arrangement of
isotropic reinforcements (structure S1).

Example 4. In this example let us consider a general unit cell (S2) as shown in Figure 8. The general
unit cell consists of three reinforcements two of which span from different corners of the unit cell to the
diametrically opposite ones and the third reinforcement is oriented from the middle of the bottom edge
to the middle of the top edge on the opposite face.

The effective coefficients for this structure are calculated as for the ones in the previous examples.
The resulting expressions are too lengthy to be reproduced here. However as an illustration some of the
effective coefficients are plotted vs. the height of the unit-cell in the following section.

4.1. Plots of effective properties and discussion. The mathematical model and methodology presented
in Sections 3.1–3.4 can be used in analysis and design to tailor the effective elastic coefficients of any
three-dimensional composite network structure by changing the material, number, orientation and/or
cross-sectional area and material selection of the reinforcements. In this section typical effective coeffi-
cients will be computed and plotted. For illustration purposes, we will assume that the reinforcements
have a Young’s modulus and Poisson’s ratio equal to 200 GPa and 0.3, respectively.
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Y3 

Y2 

Y1 

1 

1 

h 

Figure 8. Structure S2.

We will begin with the plot of some of the effective coefficients for the structure shown in Figure 7.
The effective coefficients will be plotted vs. the total volume fraction of the reinforcements within the
unit cell. As expected, the effective coefficients increase with an increase in the overall reinforcement
volume fraction, see for example Figures 9 and 10.

It would also be of interest to plot the variation of some of the effective coefficients of structure S1 with
the angle of inclination of the reinforcements to the Y3 axis. As this angle increases, the reinforcements
are oriented progressively closer to the Y1 and Y2 axis and the stiffness in these directions is expected to
increase. Indeed a reference to Figures 11 and 12 shows precisely that. On the contrary, (see Figure 13)
at the same time as the stiffness in the Y1 and Y2 directions increases the corresponding value in the Y3

direction decreases because the reinforcements are oriented further away from the Y3 axis.

Total Reinforcement Volume Fraction 

  MPaC
~

11

Figure 9. Plot of C̃11 vs. reinforcement volume fraction for structure S1.
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  MPaC
~
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Total Reinforcement Volume Fraction 

Figure 10. Plot of C̃55 vs. reinforcement volume fraction for structure S1.

 

  MPaC
~

11

0.045 0.06 0.03 

Angle (degrees) of inclination of reinforcements with Y3 axis 

volume fraction of reinforcements 

Figure 11. Plot of the C̃11 effective coefficient vs. inclination of reinforcements with
the Y3 axis pertaining to structure S1 for reinforcement volume fractions equal to 0.03,
0.045, and 0.06.

 0.03 0.045 0.06 

Angle (degrees) of inclination of reinforcements with Y3 axis 

  MPaC
~

22

Figure 12. Plot of the C̃22 effective coefficient vs. inclination of reinforcements with
the Y3 axis pertaining to structure S1 for reinforcement volume fractions equal to 0.03,
0.045, and 0.06.
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 0.03 0.045 0.06 

Angle (degrees) of inclination of reinforcements with Y3 axis 

MPa 33C
~

Figure 13. Plot of the C̃33 effective coefficient vs. inclination of reinforcements with
the Y3 axis pertaining to structure S1 for reinforcement volume fractions equal to 0.03,
0.045, and 0.06.

We now turn our attention to the S2 composite structure (Figure 8) and plot some of the effective
coefficients by varying the relative height of the unit cell (height divided by length) but keeping the other
dimensions as well as the cross-sectional area of the reinforcements constant. It is noted that as the
relative height of the unit cell is varied, the lengths and orientations of reinforcements change.

Figure 14 shows a plot of effective coefficients C̃11, C̃22, C̃33, and C̃55 vs. the relative height of the unit
cell. As the relative height of the unit-cell increases, the volume fraction of the reinforcements decreases
and at the same time the reinforcements are oriented closer to the Y3 axis and further away from Y1, and
Y2 axis. Both of these effects contribute to the stiffness in the Y1, and Y2 direction decreasing. However,
C̃33 increases because the increase in stiffness due to a smaller angle of inclination with the Y3 axis
dominates the decrease in stiffness due to the reinforcements volume fraction decreasing.

MPa 

Relative Height of Unit Cell 

11C
~

22C
~

33C
~

55C
~

Figure 14. Plot of C̃11, C̃22, C̃33, and C̃55 effective coefficient vs. relative height of the
unit cell for S2 structure shown in Figure 8.
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Finally, we are interested to compare a typical effective coefficient of structures S1 and S2 by varying
the volume fraction. We vary the volume fraction of structure S1 by varying the reinforcement cross-
sectional area and of structure S2 by varying the relative height of the unit cell. From Figure 15 we see
that C̃33 for S1 increases as the volume fraction increases, as expected for larger diameter reinforcements.
However, pertinent to structure S2, increasing the volume fraction of the reinforcements is tantamount to
decreasing the relative height of the unit cell. This has the effect of increasing the deviation of the rein-
forcements from the Y3 axis which dominates the increase in the overall reinforcement volume fraction.
Consequently, the net effect is that a decrease in the relative height of the unit cell produces a reduction
(in a nonlinear fashion) in the stiffness of the composite structure in the Y3 direction. Thus, under these
circumstances, beyond a certain volume fraction, S1 is stiffer in the Y3 direction. Of course these trends
can be easily changed. For example, if the volume fraction of the reinforcements of S2 is changed
by keeping all dimensions of unit cell constant (that is, direction cosines pertinent to reinforcements
unchanged) and changing their cross-sectional area, then a higher volume fraction would increase C̃33,
and the relative stiffness between the two structures would be different than that depicted in Figure 15.
What is important is to realize that the model allows for complete flexibility in designing a structure with
desirable mechanical and geometrical characteristics.

Total Reinforcement Volume Fraction 

33

~
C MPa

S1 S2

Figure 15. Plot of C̃33 vs. total volume fraction for structures S1 (Figure 7) and S2

(Figure 8).

5. Conclusions

A comprehensive three-dimensional micromechanical model pertaining to globally anisotropic periodic
composite structures reinforced with a spatial network of isotropic reinforcements is developed. The
model, which is developed using the asymptotic homogenization technique, transforms the original
boundary value problem into a simpler one that is characterized by some effective elastic coefficients. The
effective coefficients are shown to depend only on the pertinent geometric and material characteristics
of the periodicity cell and are therefore independent of the global formulation of the problem.

The derived model is illustrated by means of different composite structures with cubic or conical
configurations of reinforcements. The usefulness of this work lies in the fact that the model can be used
to tailor the effective coefficients of any three-dimensional composite structure to meet the requirements
of a particular application by changing such geometric or other parameters as the material, number,
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cross-sectional dimensions, and relative angular orientation of the reinforcements. In the particular case
in which the reinforcements form only a two-dimensional (planar) network, the results are shown to con-
verge to previous models developed by Kalamkarov [1992] who also used the asymptotic homogenization
technique and Pshenichnov [1982] who used stress-strain relationships in the reinforcements.

Appendix A

A1 = q21
2C11 + q22

2C66 + q23
2C55, A2 = q21q31C11 + q22q32C66 + q23q33C55,

A3 = q21q22C12 + q21q22C66, A4 = q21q32C12 + q22q31C66,

A5 = q21q23C13 + q21q23C55, A6 = q21q33C13 + q23q31C55,

A7 = q21C11kl + q22C12kl + q23C13kl, A8 = q21q31C11 + q22q32C66 + q23q33C55,

A9 = q31
2C11 + q32

2C66 + q33
2C55, A10 = q31q22C12 + q21q32C66,

A11 = q31q32C12 + q32q31C66, A12 = q31q23C13 + q21q33C55,

A13 = q31q33C13 + q33q31C55, A14 = q31C11kl + q32C12kl + q33C13kl,

A15 = q21q22C66 + q21q22C12, A16 = q21q32C66 + q22q31C12,

A17 = q21
2C66 + q22

2C22 + q23
2C44, A18 = q21q31C66 + q22q32C22 + q23q33C44,

A19 = q22q23C23 + q22q23C44, A20 = q22q33C23 + q23q32C44,

A21 = q21C12kl + q22C22kl + q23C23kl, A22 = q31q22C66 + q21q32C12,

A23 = q31q32C66 + q32q31C12, A24 = q21q31C66 + q22q32C22 + q23q33C44,

A25 = q31
2C66 + q32

2C22 + q33
2C44, A26 = q32q23C23 + q22q33C44,

A27 = q32q33C23 + q33q32C44, A28 = q31C12kl + q32C22kl + q33C23kl,

A29 = q21q23C55 + q21q23C13, A30 = q21q33C55 + q23q31C13,

A31 = q22q23C44 + q22q23C23, A32 = q22q33C44 + q23q32C23,

A33 = q21
2C55 + q22

2C44 + q23
2C33, A34 = q21q31C55 + q22q32C44 + q23q33C33,

A35 = q21C13kl + q22C23kl + q23C33kl, A36 = q31q23C55 + q21q33C13,

A37 = q31q33C55 + q33q31C13, A38 = q23q32C44 + q22q33C23,

A39 = q32q33C44 + q33q32C23, A40 = q21q31C55 + q22q32C44 + q23q33C33,

A41 = q31
2C55 + q32

2C44 + q33
2C33, A42 = q31C13kl + q32C23kl + q33C33kl .
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THERMAL STRESS ANALYSIS OF FUNCTIONALLY GRADED COMPOSITES
WITH TEMPERATURE-DEPENDENT MATERIAL PROPERTIES

H. K. CHING AND J. K. CHEN

Thermomechanical deformation of a functionally graded composite (FGC) in elevated temperature envi-
ronments is investigated by the meshless local Petrov–Galerkin method. The FGC is modeled as a 2-D
linearly elastic solid which consists of ceramic ZrO2 and alloy Ti-6Al-4V with the volume fraction vary-
ing along a predefined direction. Unlike most investigations performed so far, temperature-dependent
thermophysical and thermomechanical properties are considered for both constituents in this work. The
effective material properties of the FGC are evaluated with the micromechanical models. An FGC hollow
cylinder under an internal temperature change is first studied; the numerical results agree very well with
those computed by the finite element method. The parametric studies with respect to different profiles
of graded FGCs are performed for a clamped-clamped thick beam and a square plate with a central hole,
respectively. It is found that inclusion of temperature dependence for the material properties has a great
impact on thermomechanical response prediction for FGCs in elevated temperature environments.

1. Introduction

Among functionally graded composites (FGCs), those made from ceramics and metals have received
considerable attention in the structural ceramic applications, including gas turbines, hot engine com-
ponents, packaging encapsulants, thermoelectric generators, and human implants, to name a few. The
reasons for receiving such a great attention are two-fold: (1) the ceramic phase provides corrosion, wear
and erosion resistance, possesses higher compressive strength, and can protect the structural components
from severe thermal or biological environments; (2) a microscopically heterogeneous FGC engineered
to a continuous spatial variation by grading the volume fraction of the material constituents can reduce
interfacial stresses in a coated structure, minimize stress concentration or intensity factors, and attenuate
stress waves, etc.

Numerous theoretical studies have been conducted for investigating linearly elastic thermomechanical
response of FGCs. Although analytical approaches provide closed-form solutions [Zimmerman and Lutz
1999; Tarn 2001; Sankar and Tzeng 2002; Vel and Batra 2002; 2003; Ootao and Tanigawa 2004; 2005],
they are limited to simple geometries, certain types of gradation of material properties (for example,
exponential or power law distribution), special types of boundary conditions and loadings. The above
constraints can be relaxed when numerical approaches are applied. In those with finite element methods
[Takahashi et al. 1992; Reddy and Chin 1998; Praveen et al. 1999; Wang and Mai 2005], homogeneous
elements with different effective material properties are often used to model the macro, nonhomogeneous
nature of FGCs. To better treat the nonhomogeneity of the material properties, meshless methods may

Keywords: functionally graded composites, thermomechanics, temperature-dependent material properties, micromechanical
model, meshless local Petrov–Galerkin method.

633



634 H. K. CHING AND J. K. CHEN

provide a more cost-effective approach for computer-aided design tools for FGM materials. One of the
unique features of meshless methods is that only a set of scattered nodes that need not be connected to
form closed polygons is required to model the physical domain. They not only can avoid the numeri-
cal difficulties of mesh entanglement and distortion during high intensity loading interactions as often
encountered in finite element and finite difference analyses, but lend themselves a natural way to treat
initiation and growth of voids/cracks as well. It is not our intention to give an exhaustive review for the
meshless particle methods; interested readers should refer to the literature for details. One of the well-
known meshless methods is the meshless local Petrov–Galerkin (MLPG) method proposed by Atluri and
Zhu [1998]. It is a truly mesh-free approach in terms of both interpolation of variables and integration
of energy because it does not require a background mesh to evaluate various integrals appearing in the
local weak formulation of the problem. Recently, the MLPG method has successfully been employed in
the thermomechanical analysis of FGCs [Qian and Ching 2004; Qian and Batra 2004; 2005; Sladek et al.
2003; 2005; Ching and Yen 2005; Ching and Chen 2006].

Most of the theoretical investigations reported so far have not taken into account the temperature
dependence for the material properties. Therefore, those results in general are only adequate for small
change of temperature in an FGC or the variation of material properties against temperature being in-
significant. To accurately describe thermomechanical behaviors of FGCs, temperature dependence on
the material properties should be considered. To our knowledge, only a few studies have included the
effects of temperature-dependent material properties [Praveen et al. 1999; Wang and Mai 2005; Wang and
Tian 2005]. The first two works examine deformation and stress in a 1-D axisymmetric hollow cylinder,
and the third solves transient heat conduction problems for a 1-D strip. All the effective temperature-
dependent properties used are evaluated using the simple rule of mixture, which does not account for
the interaction between phases, and thus only give rough approximate values for most of the effective
properties. As pointed out by Ching and Chen [2006], the effective material properties evaluated by
different homogenization schemes could lead to significantly different thermomechanical response for
an FGC material. Accordingly, a higher fidelity, micromechanics based model should be employed in
evaluation of the effective material properties.

In this paper, thermomechanical response of a linearly elastic FGC under temperature loading is in-
vestigated by using the MLPG method. The FGCs considered consist of spherical particulates ZrO2 and
alloy matrix Ti-6Al-4V with the volume fraction varying over a predefined direction. For simplicity,
it is modeled as a macro nonhomogeneous, isotropic, 2-D body. To accurately predict their thermo-
mechanical response, both the temperature-dependent thermophysical and thermomechanical properties
of the constituents are employed. The effective material properties of the FGC are evaluated with the
micromechanical models. A hollow FGC cylinder is first studied with the effective material properties
estimated by the rule of mixtures to validate the present MLPG solution with the finite element result
[Wang and Mai 2005]. Then, parametric studies are performed with respect to different profiles of
graded FGCs, for a clamped-clamped thick beam and a square plate with a central hole. The impact of
temperature dependence for the material properties on thermo-mechanical response prediction of FGCs
in elevated temperature environments is investigated.
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2. Governing equations

Consider a 2-D isotropic solid occupying the domain � bounded by the boundary 0 and unstressed at
a reference temperature. In rectangular Cartesian coordinates x = [x1 x2]

T , (where the superscript T
denotes transposition), the governing equations of elastostatics neglecting body forces and steady-state
thermal equilibrium in the absence of internal heat sources are given by

σi j, j = 0 in �, (1)

q j, j = 0 in �, (2)

where σi j and q j are the components of the Cauchy stress tensor and the heat flux vector, respectively. A
comma followed by index j denotes the partial differentiation with respect to coordinate x j of a material
point, and a repeated index implies summation over the range of the index. Equations (1) and (2) are
supplemented with the boundary conditions

ui = ūi on 0u, σi j n j = t̄i on 0t (3)

and
T = T̄ on 0T , q j n j = q̄ on 0q , q j n j = h(T − Ts) on 0h . (4)

In these equations the ui are the displacement components, T is the change of temperature with respect
to a reference state, ūi are the prescribed displacements on 0u and t̄i are the given tractions on 0t where
0u and 0t are the complementary parts of the boundary 0, that is, 0u ∩0t = ∅ and 0u ∪0t = 0. The
thermal conditions include a prescribed temperature T̄ specified on 0T , a given heat flux q̄ imposed on
0q , and a convection heat loss to an ambient temperature Ts occurring on 0h . Likewise, 0T , 0q and 0h

constitute another set of complementary parts of the boundary. h is the coefficient of the convection, and
n j are the components of the unit outward normal to 0.

The constitutive equation for thermal stresses is written in the matrix form

σ =
[
σ11 σ22 σ12

]T
= Dε−βT,

ε is the infinitesimal strain vector

ε =
[
ε11 ε22 γ12

]T
=

[
∂u1
∂x1

∂u2
∂x2

∂u2
∂x1

+
∂u1
∂x2

]T

, (5)

D is the stiffness matrix and β is the stress-temperature matrix. For a linearly elastic, isotropic 2-D solid

D =
Ē

1 − v̄2

1 v̄ 0
v̄ 1 0
0 0 1

2(1−v̄)

 , β = β
[
1 1 0

]T

in which Ē = E/(1−v2), v̄ = v/(1−v), and β = αE/(1−2v) for plane strain with E , v and α denoting
the Young’s modulus, Poisson’s ratio, and coefficient of thermal expansion, respectively, and Ē = E ,
v̄ = v, and β = αE/(1 − v) for plane stress. The Fourier law for heat flux is q j = −κT, j , where κ is
the thermal conductivity. For an FGC material, the material properties E, v, α, κ are functions of x in
general.
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3. The MLPG formulation

3.1. Nodal interpolation. In the MLPG method [Atluri and Zhu 1998] the moving least squares approx-
imation is adopted for forming the basis functions φi (x) for an unknown trial function. Let f h(x) be an
approximation of a scalar function f (x) given by

f h(x)= pT (x)a(x)=

m∑
j=1

p j (x)a j (x), (6)

where p(x1, x2) = [p1(x) p2(x) . . . pm(x)]T is a vector of the complete monomial basis of order m.
For a 2-D problem, p(x1, x2)= [1 x1 x2]

T for m = 3 and p(x1, x2)= [1 x1 x2 x2
1 x1x2 x2

2 ]
T for m = 6.

The m unknown coefficients a j (x) are determined by minimizing a weighted discrete L2 norm given as

J =

n∑
i=1

W (x − xi )
[

pT (xi )a(x)− f̂i
]2
, (7)

where n is the number of points in the neighborhood of point x for which the weight function W (x−xi )>

0, and f̂i refers to the nodal parameter of the function f .
Finding the extremum of J in Equation (7) with respect to a(x) leads to the system of linear equations

A(x)a(x)= B(x) f̂ , (8)

where the matrices A(x) and B(x) and the vector f̂ are

A(x)=

n∑
i=1

W (x − xi ) p(xi ) pT (xi ),

B(x)=
[
W (x − x1) p(x1) W (x − x2) p(x2) . . . W (x − xn) p(xn)

]
,

f̂ =
[

f̂1 f̂2 . . . f̂n
]T
.

Solving a(x) in Equation (8) and substituting it into Equation (6) results in the following relation for the
nodal interpolation

f h(x)=

n∑
i=1

φi (x) f̂i with φi (x)=

m∑
j=1

p j (x)[A−1(x)B(x)] j i ,

where φi (x) is called the basis function of the moving least squares approximation corresponding to
node i . Note that φi (x j ) need not equal the Kronecker delta δi j , and thus f̂i 6= f h(xi ) in general. For the
matrix A to be invertible the number of n points must not be smaller than m, that is, n ≥ m. For m = 3 or
6, Chati and Mukherjee [2000] utilized the moving least squares approximation in their boundary node
method and suggested that 15 ≤ n ≤ 30 gives acceptable results for 2-D elastostatic problems.

In this study, the following Gaussian function is adopted as the weight function:

W (x − xi )=
exp

(
−(di/ci )

2k
)
− exp

(
−(ri/ci )

2k
)

1 − exp
(
−(ri/ci )2k

) for 0 ≤ di ≤ ri ,
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where ci is the distance from node i to its third nearest neighboring node, di is the distance |x − xi |,
and ri is the radius of the circle outside of which W (x − xi ) vanishes, that is, W = 0 when di > ri . We
choose m = 6, k = 1 and ri = 4ci .

3.2. Weak formulation and discretization. This section presents weak (or variational) formulations cor-
responding to the governing equations (1)–(2) and the boundary conditions (3)–(4). The system equations
are obtained by discretizing the weak formulation using the moving least squares method.

Thermoelastic analysis. Let ξ(x)= [ξ1 ξ2]
T be a set of two linearly independent test functions defined

in �. We can obtain a useful relation by taking the inner product of Equation (1) with ξ and of Equation
(3), left, with χξ , integrating the resulting equations over � and 0u , respectively, and adding them. To
simplify it we integrate by parts, use the divergence theorem and impose the natural boundary condition
from Equation (3), right, on 0t , obtaining∫

�

ε̃Tσ d�−

∫
0u

εT Nσ d0−

∫
0t

εT t̄ d0+χ

∫
0u

εT (u − ū) d0 = 0, (9)

where the strain vector ε̃ is obtained from Equation (5) by replacing the displacement components ui

with the test functions ξi and matrix N is given by

N =

[
n1 0 n2

0 n2 n1

]
.

In Equation (9) χ is a penalty parameter. The penalty method is chosen here for imposing the essential
boundary condition in the equations ui = ūi and T = T̄ from (3) and (4), due to the lack of the Kronecker
delta property of the basis functions. Selection of the value of the penalty parameter still remains a
challenge as the parameter cannot be taken “very large” in order to avoid the case of the system matrix
being ill-defined. A suitable range for the value of the penalty parameter suggested by Zhu and Atluri
[1998] is χ = (103

∼ 107) · E .
The most distinguished feature of the MLPG method is that the weak formulation is based on a

local subdomain rather than a global problem domain. Consider that N nodes are in the domain � and
S1, S2, . . . , SN are smooth 2-D closed regions, not necessarily disjointed or having the same shape and
size. Let {φ1, φ2, . . . , φn} and {ψ1, ψ2, . . . , ψn} be two sets of linearly independent functions defined
over a region, say Sα . The unknown trial function u and the test function ξ can respectively be expressed
as

u(x)=

[
u1(x)
u2(x)

]
=

n∑
J=1

8J (x)̂uJ , ξ(x)=

[
ξ1(x)
ξ2(x)

]
=

n∑
I=1

9 I (x)̂ξI , (10)

where 8J = φJ I , 9 I = ψI I with I a 2 × 2 identity matrix and ûJ , ξ̂I are 2 × 1 arrays. Various options
of the test function that lead to different MLPG formulations have been discussed by Atluri [2005]. Here
we equal the test function to the weight function of the moving least squares approximation. Thus, the
strain vectors ε and ε̃ become

ε =

n∑
J=1

B J ûJ , ε̃ =

n∑
I=1

B̃ I ξ̂I , (11)
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where

B J =


∂φJ
∂x1

0

0 ∂φJ
∂x2

∂φJ
∂x2

∂φJ
∂x1

 , B̃ I =


∂ψI
∂x1

0

0 ∂ψI
∂x2

∂ψI
∂x2

∂ψI
∂x1

 .
Replacing the domain � of integration in Equation (9) by Sα, substituting for u, ξ , ε, and ε̃ from

Equations (10) and (11), and requiring that the resulting equations hold for all choices of ξ̂I , one arrives
at the following linear algebraic equations for ûJ :

n∑
J=1

∫
Sα

B̃
T
I DB J ûJ d�−

n∑
J=1

∫
0αu

9T
I SN DB J ûJ d0+

n∑
J=1

χ

∫
0αu

9T
I S8J ûJ d0

=

∫
Sα

B̃
T
I βT d�−

∫
0αu

9T
I SNβT d�+

∫
0αt

9T
I t̄ d0+χ

∫
0αu

9T
I ū d0 (12)

for I = 1, 2, . . . , n, where

S =

[
S1 0
0 S2

]
, Si =

{
1 if ui is prescribed on 0αu,

0 if ui is not prescribed on 0αu .

Symbolically, the simultaneous Equation (12) are written in the matrix form

Kαûα = Fα. (13)

The final system of equations can be obtained by assembling Equation (13) for all the N nodes over the
entire domain.

Nonlinear heat conduction analysis. Let η(x) be another test function defined over �. Following the pro-
cedure in the above thermoelastic analysis yields the weak form associated with the governing Equation
(2) and the boundary conditions given in Equation (4), we get∫

�

(∇Tη)q d�−

∫
0T

ηnT q d0−

∫
0q

ηq̄ d0−

∫
0h

ηh(T − Ts) d0+χ

∫
0T

η(T − T̄ ) d0 = 0, (14)

where q = [q1 q2]
T and n = [n1 n2]

T . With the unknown trial function T and the test function η
expressed in an interpolative form as

T (x)=

n∑
J=1

φJ (x)T̂J , η(x)=

n∑
I=1

ψI (x)̂ηI (15)

one has

∇T =

n∑
J=1

C J T̂J , ∇η =

n∑
I=1

C̃ I η̂I , (16)

where

C J =

∂φJ
∂x1
∂φJ
∂x2

 , C̃ J =

∂ψJ
∂x1

∂ψJ
∂x2

 .



THERMAL STRESS ANALYSIS OF FGMS WITH TEMPERATURE DEPENDENCE 639

Substituting for T, η,∇T,∇η from Equations (15) and (16) into Equation (14) for a region Sα and
requiring that the resulting equations hold for every choices of η̂I , we arrive at the following simultaneous
equations for I = 1, 2, . . . , n

n∑
J=1

L I J (T )T̂J =

n∑
J=1

G I , (17)

where

L I J =

∫
Sα

C̃
T
I κC J d�−

∫
0αT

ψ IκnT C J d0+

∫
0αh

hψ Iφ J d0−χ

∫
0αT

ψ Iφ J d0, (18)

G I = −

∫
0αq

ψ I q̄ d0−χ

∫
0αT

ψ I T̄ d0+

∫
0αh

hψ I T̄s d0. (19)

Repeating Equation (17) for all the N nodes in the domain leads to the system of equations for the
temperature field. It should be noted that the first two terms on the right-hand side of Equation (18)
become nonlinear if the thermal conductivity is temperature-dependent. Hence the system of equations
needs to be solved iteratively. The Newton–Raphson method [Cook et al. 1989] is adopted to solve the
system of equations here. The solution is assumed to have converged when the criterion√

N∑
i=1
(T̂ j+1

i − T̂ j
i )

2

/√
N∑

i=1
T̂ j2

i < 10−4, (20)

is met, where the superscript j denotes the iteration number.
To utilize the Gauss quadrature rule to evaluate the domain integral on Sα and the line integrals on

∂Sα in Equations (12), (18) and (19), the region Sα and its boundaries 0αu, 0αt , 0αq , 0αT and 0αh are
mapped onto a [−1, 1] × [−1, 1] square domain and a [−1, 1] straight line, respectively. Using this
approach no shadow cells are needed for the integration.

4. Temperature-dependent material properties and effective moduli

In this study a ceramic ZrO2 is taken as the particulate phase and alloy Ti-6Al-4V as the matrix phase. For
practice the FGC is treated as a macro-nonhomogeneous isotropic material. The temperature-dependent
material properties of the two constituents are given as follows [Tanigawa et al. 1997]:

ZrO2 : E = 132.2 − 50.3 × 10−3T − 31.4 × 10−6T 2 (GPa),

ν = 0.333,

κ = 1.71 + 0.21 × 10−3T + 0.116 × 10−6T 2 (W/mK )

α = 13.31 × 10−6
− 18.9 × 10−9T + 12.7 × 10−12T 2 (1/K ),

(21)

Ti-6Al-4V: E = 122.7 − 0.0565T (GPa),

ν = 0.289 + 32.0 × 0−6T,

κ = 1.1 + 0.017T (W/mK ),

α = 7.43 × 10−6
− 5.56 × 10−9T + 2.69 × 10−12T 2 (1/K ).

(22)
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The Poisson’s ratio ν of ZrO2 is assumed to be constant here since its dependence on temperature may
be weak [Dole and Hunter Jr. 1983]. The first (constant) terms in Equations (21) and (22) are the material
properties at temperature T = 0◦K , which is assumed as the reference state temperature in this work.
At elevated temperatures, for example, T = 1000◦K , the changes of the Young’s modulus, thermal con-
ductivity, and coefficient of thermal expansion are about −61.8%, 19.1%, and −46.6%, respectively, for
ZrO2 and about −46.1%, 1545.5% and −38.6% respectively for Ti-6Al-4V. Due to the nontrivial change
of the material properties, a significant difference of the thermomechanical response prediction can be
expected when the constant properties are used. To delineate the influence of temperature dependence
for the material properties on thermomechanical response of the FGCs, both the temperature-dependent
and constant material properties are incorporated in this paper.

Two homogenization schemes are frequently utilized to evaluate the effective material properties for
composites. One is the rule of mixtures, and the other is the micromechanical model. The former is
simple to use but does not include the effect of interaction between the different constituents. For a
two-phase composite it computes the effective value of a composite material property (P) by

P = Pm Vm + PcVc, (23)

where subscripts m and c are associated with the matrix and particulate phase, respectively; the volume
fractions satisfy Vm +Vc = 1. On the other hand, the latter evaluates the effective properties of a composite
based on elasticity theory by considering the inclusion of particulates or fibers in a matrix phase.

Several micromechanical models have been derived for the effective properties of composite materials
[Christensen 1979]. For a two-phase particulate composite the effective bulk and shear moduli K , µ
derived by Mori and Tanaka [1973] are given as

K − Km

Kc − Km
=

Vc

1 + (1 − Vc)(Kc − Km)/(Km + 4µm/3)
, (24)

µ−µm

µc −µm
=

Vc

1 + (1 − Vc)(µc −µm)/(µm + fm)
, (25)

with fm = µm(9Km + 8µm)/6(Km + 2µm). The effective Young’s modulus and Poisson’s ratio are re-
lated to the bulk and shear moduli by E = 9Kµ/(3K +µ) and ν = (3K − 2µ)/2(3K +µ), respectively.
The effective thermal conductivity κ derived by Hatta and Taya [1985] and the coefficient of thermal
expansion α derived by Rosen and Hashin [1970] are

κ − κm

κc − κm
=

Vc

1 + (1 − Vc)(κc − κm)/3κm
,

α−αm

αc −αm
=

1/K − 1/Km

1/Kc − 1/Km
. (26)

5. Results and discussion

A computer code based on the aforementioned MLPG formulation was developed and used to analyze the
steady-state thermoelastic response of 2-D FGCs in elevated temperature environments. Three examples
are examined: (1) a hollow cylinder under a temperature change at internal surface, (2) a clamped-
clamped thick beam with a temperature change on the top surface, and (3) a square plate with a central
hole subjected to a temperature change either at the hole surface or the outer boundary. The effective
properties of the FGCs are estimated with the rule of mixtures of Equation (23) for the first example for
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comparison with the finite element solution and with the micromechanical models of Equations (24)–(26)
for the other two examples.

5.1. A hollow cylinder under temperature change at internal surface. Here we consider a functionally
graded hollow cylinder with the inner radius of ri = 50 mm and outer radius of ro = 150 mm. Temperature
at the inner surface is suddenly increased to Ti = 1000◦K and then kept constant, while the temperature
on the outer surface is fixed at the reference temperature, that is, To = 0. The volume fraction of ceramic
phase ZrO2 is assumed to have the radial dependence by a power-law function as

Vc = V o
c + (V i

c − V o
c )

(
ro − r
ro − ri

)n

, (27)

where V i
c and V o

c are, respectively, the volume fractions of ZrO2 on the inner and outer surfaces, and n
is the power law index that dictates the volume fraction profile across the thickness of the cylinder. With
the symmetry boundary conditions, a quadrant of the circular cross-section of the cylinder is analyzed
as though it were essentially a 1-D axisymmetric problem. A total of 21 × 40 nodes are equally spaced
along the radial and circumferential directions, respectively. Plane strain condition is assumed. All the
results presented below are normalized by

[r̄ , T̄ , ūr , σ̄θ ] =

[
r
ri
,

T
Ti
,

10ur

(ro − ri )α
0
T i Ti

,
10σθ

E0
T iα

0
T i Ti

]
,

where σθ , E0
T i and α0

T i are the hoop stress, the (constant) Young’s modulus and thermal expansion coef-
ficient of Ti-6Al-4V at T = 0.

Figure 1 shows the through-the-thickness variation of the temperature and hoop stress respectively,
for the case of V i

c = 1, V o
c = 0 and n = 1. Apparently, the present MLPG solution agrees very well with
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Figure 1. Through-the-thickness variations of the normalized (a) temperature change
and (b) hoop stress obtained by the finite element method and MLPG method; effective
material properties are computed by the rule of mixtures with V o

c = 0, V i
c = 1 and n = 1.
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the 1-D axisymmetric finite element result [Wang and Mai 2005], which is obtained with 100 elements.
The FGC in each element is assumed to be homogeneous but different from one another. In the present
analysis 21 nodes are used through the thickness direction. The results computed with the constant
material properties are also included in Figure 1. It can be seen from Figure 1(b) that the resulting hoop
stress is quite different when the temperature dependence on the material properties is excluded. For
example, the dimensionless hoop stress on the inner surface computed with the temperature-dependent
material properties is about −4, and changes to −20 when the properties are assumed to be constant.
The discrepancy found here suggests that the temperature dependence of material properties should not
be ignored in thermomechanical analysis when an FGC is under severe thermal loading.

Figure 2 displays the through-the-thickness variation of the effective Young’s modulus, Poisson’s ratio,
thermal conductivity, and coefficient of thermal expansion for the case of V i

c = 1, V o
c = 0 and n = 1,
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Figure 2. Through-the-thickness variations of effective material properties computed
by the rule of mixtures for the case of V o

c = 0, V i
c = 1 and n = 1: (a) Young’s modulus,

(b) Poisson’s ratio, (c) thermal conductivity; (d) coefficient of thermal expansion.
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Figure 3. Distribution of the normalized (a) temperature change and (b) hoop stress
over the thickness of the cylinder for different values of V i

c with V o
c = 0 and n = 1,

calculated with the temperature-dependent material properties.

normalized by the corresponding constant properties of Ti-6Al-4V. For the case of constant material
properties, all the properties are linear functions of r as dictated by Equation (27). However, the linear
relations no longer exist when the temperature dependence of material properties is taken into account.
Figure 2(a) shows that the effective Young’s modulus monotonically increases from the inner surface
to the outer surface, whereas the trend is opposite when the temperature dependence is neglected. The
normalized values at the inner surface are 0.411 versus 1.08. Neither the thermal conductivity nor the
coefficient of thermal expansion vary monotonically; see Figures 2(c) and 2(d).

Variations of the temperature change and hoop stress are further evidenced in Figure 3 for different
values of V i

c with V o
c = 0 and n = 1, calculated with the temperature-dependent material properties. The

case of V i
c = 0 corresponds to a pure Ti-6Al-4V cylinder. Figure 3(a) shows the temperature decreases

with increase of the ceramic content except for those at the inner and outer surface, where the temperatures
remain constant specified by the boundary conditions. It is also found from Figure 3(b) that the magnitude
of the hoop stress reduces as the ceramic ZrO2 increases in the FGC.

Figure 4 shows the normalized radial displacement at the inner and outer surfaces as a function of n
with V i

c = 1 and V o
c = 0. An increase of the value in n means that the FGC cylinder has more composition

of Ti-6Al-4V. The pure ZrO2 cylinder is the limit case of n = 0. By comparing the results in the two
parts of the figure we can ascertain that the trend of net expansion of the wall thickness with n is opposite
when the temperature dependence of the material properties is neglected. In addition, use of the constant
material properties overestimates the net wall thickness expansion for small n, but underestimates the
expansion for large n.

5.2. A clamped-clamped thick beam with temperature change on top surface. A clamped-clamped
FGC beam of length L = 50 mm and thickness H = 10 mm is subjected to a sinusoidal temperature
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Figure 4. Variations of the normalized radial displacement on the inner and outer sur-
faces with the power law index n for V i

c = 1 and V o
c = 0: (a) temperature-dependent

material properties and (b) constant material properties.

change T = T0 sin(πx1/L) with T0 = 1000◦K , on the top surface; see Figure 5. The bottom surface
and the two edges of the beam are at the reference temperature. The origin of the rectangular Cartesian
coordinates (x1, x2) is located at the left bottom corner of the beam, and the x1-axis is parallel to the
long edges. Plane strain condition is assumed. The volume fraction of the ceramics phase varies over
the beam thickness by a power law function as

Vc = V −

c + (V +

c − V −

c )
( x2

H

)n
, (28)

where V +
c and V −

c are the volume fractions of ZrO2 on the top and the bottom surfaces, respectively,
and n is the power law index. Instead of using the rule of mixtures, the effective material properties are
computed with the micromechanical models described in Section 4.

L
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( )0 1
sinT T x Lπ=
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1
0u =
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Figure 5. An FGC thick beam subjected to a sinusoidal temperature load on the top surface.
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Due to the symmetry to the vertical centroidal plane, the left half of the domain is analyzed with a
uniform mesh of 55 nodes along x1-direction and 25 nodes along the x2-direction, for which the solution
has been tested to be convergent. The physical quantities presented below are normalized by[

x̄1, x̄2, T̄ , ū2, σ̄11, σ̄12
]
=

[
x1

L
,

x2

H
,

T
T0
,

10Hu2

α0
T i T0L2

,
10σ11

E0
T iα

0
T i T0

,
10Lσ12

E0
T iα

0
T i T0 H

]
. (29)

Figure 6 plots the distributions of the effective Young’s modulus, thermal conductivity, and coefficient
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Figure 6. Distributions of normalized effective properties computed with V +
c = 1, V −

c =

0 and n = 2.
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of thermal expansion normalized by the corresponding constants of Ti-6Al-4V. The values of V +
c = 1,

V −
c = 0 and n = 2 were chosen. The left-hand panes of the figure clearly show that, for constant material

properties, the dependence is on x1 only and the maximum value always occurs on the top surface (pure
ZrO2), basically following the volume fraction distribution of ZrO2 described by Equation (28). When
the temperature dependence is included, the overall material properties no longer follow the graded
material pattern; see left side of Figure 6.

Figure 7 shows the influence of temperature dependence of material properties on the deformation,
temperature, and longitudinal stress (σ11) in the beam for V +

c = 1, V −
c = 0 and n = 2. The top row
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Figure 7. Comparison of the thermomechanical response of the FGC beam with V +
c =

1, V −
c = 0 and n = 2 computed with temperature-dependent material properties and

constant material properties; deformations in (a) and (d) are enlarged by 20 times.
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shows that, when subjected to temperature rise on the top surface, the beam expands, but the amount
of expansion is different between the two cases. Apparently, use of the constant material properties not
only predicts a larger increase for the beam thickness, but a larger deflection as well. This can be seen
by examining the values of α1T and αE1T over the thickness. The impact of the temperature depen-
dence of material properties on the steady-state temperature response is less pronounced; see middle row
of Figure 7. With the temperature dependence, the resulting maximum normalized longitudinal stress,
however, can be decreased by nearly 100%, from −38.0 to −19.9; see bottom row of the figure.

Figure 8 displays the distribution of normalized temperature, transverse displacement, longitudinal
stress, and transverse shear stress over the thickness of the FGC beam for four different values of V +
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with V −
c = 0 and n = 2. These results are calculated with the temperature-dependent material properties.

Like the results in the previous cylinder case, the temperature change, transverse displacement and the
magnitude of stresses all decrease as V +

c increases.
Figure 9 illustrates the temperature change, transverse displacement, longitudinal stress, and trans-

verse shear stress as functions of the power index n at some points of interest. Again, the significant
differences between the two cases found here reveal the importance of the temperature dependence of
material properties in simulation of thermomechanical response of the FGCs in elevated temperature
environments.

5.3. A square plate with a central hole under temperature change along boundaries. The analysis for
a centrally-holed FGC square plate under the temperature change along boundaries is conducted. The
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edge length of the plate is L = 4 mm and the radius of the hole is ra = 1.5 mm. The origin of the
rectangular Cartesian coordinates (x1, x2) coincides with the center of the hole, and the x1-axis points
to the middle point of the right vertical edge. For convenience, a polar coordinate system (r, θ) is also
set at the center of the hole with θ measured counterclockwise from the positive x1-axis. The volume
fraction of the ceramic is assumed to vary along the radial direction r with

Vc = V −

c + (V +

c − V −

c )

(
r − ra

rd − ra

)n

,

where rd is the radial distance measured from a point on the surface of the hole to the corresponding
point at the outer boundary of the plate and V +

c and V −
c are the volume fractions of ZrO2 at the outer

boundary and the hole surface, respectively. Two temperature loadings are considered: (a) a temperature
rise of T0 = 1000◦K is applied on the outer boundary while the surface of the hole is kept at T = 0, and
(b) a temperature rise of T0 = 1000◦K is applied on the surface of the hole while the outer boundary
is kept at T = 0. Since a ceramic-rich layer usually is in the hotter region, V +

c = 1.0 and V −
c = 0 are

assumed for the loading condition (a) and V +
c = 0 and V −

c = 1.0 for the condition (b). Plane stress
condition is assumed.

Only the first quadrant of the plate is analyzed with the symmetric boundary conditions imposed on
the x1- and x2-axis. A total of 1025 nodes, the effect of which passed the convergence test for the nodal
density, is meshed. The results presented below are normalized as follows

[
x̄1, x̄2, σ̄22, σ̄θ , σ̄e

]
=

[
x1

a
,

x2

a
,

10σ22

E0
T iα

0
T i T0

,
10σθ

E0
T iα

0
T i T0

,
10σe

E0
T iα

0
T i T0

]
.

The normal stress σ̄22 along the x1-axis and the hoop stress σ̄θ around the surface of the hole for
different values of n are presented in Figure 10 for condition (a). As expected, the stress σ22 is in tension
near the hole and in compression near the edge regardless of the value of n. It is clear from the top
row of Figure 10 that for the case of temperature-dependent material properties the magnitude of σ22

increases as n increases; however, the trend is opposite when temperature dependence is excluded. The
tensile stress σ22 in the region near the hole computed with the temperature-dependent material properties
increases as n decreases. A similar conclusion also applies to the hoop stress σθ around the surface of
the hole; see bottom row of the figure. Maximum σθ occurs at θ = 0, ±π/2 and π , while the minimum
occurs at θ = ±π/4 and ±3π/4.

Figure 11 compares the normalized effective stress σ̄e in the plate for n = 2, calculated with and
without the temperature dependence on the material properties. It appears that the peak effective stress
occurs at the intersections between the surface of the hole and the x1- and x2-axis. A comparison of the
values of σ̄e in the two halves of Figure 11 indicates that use of the constant material properties would
underpredict the effective stress for the graded FGC with V +

c = 1.0, V −
c = 0 and n = 2.

For the condition (b) the resulting thermal stresses σ22 and σθ are in an opposite sense from those
for condition (a). Figure 12 exhibits the contour of the normalized effective stress σ̄e in the plate for
n = 2 calculated with and without the temperature dependence on the material properties. The maximum
effective stress is present at the middle points of the outer edges for the case of temperature-dependent
material properties, but at the intersections between the surface of the hole and the x1- and x2-axis for
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Figure 10. Variations of σ22 along the x1-axis and hoop stress along the surface of the
hole for different values of n with V +

c = 1 and V −
c = 0. Left: temperature-dependent

material properties; right: constant material properties. The temperature load is applied
on the outer boundary.

the case of the constant material properties. The difference of the maximum σ̄e calculated with the two
sets of the material properties is much larger for condition (b) than for condition (a).

6. Conclusions

Due to the complex features of material nonhomogeneity in FGC materials and the temperature depen-
dence on material properties it is almost impossible to obtain an exact solution for the thermomechanical
response. In this work we have analyzed the thermomechanical deformation in the 2-D ZrO2 and Ti-6Al-
4V FGCs under elevated temperature loading using the mesh-free MLPG particle method. Both the rule
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of mixtures and the micromechanical models are adopted to evaluate the effective material properties.
Three illustrated examples, including a hollow cylinder, a clamped-clamped thick beam, and a square
plate with a central hole, are presented. The numerical results show that the deformation and thermal
stresses in an FGC computed temperature-dependent material properties are quite different than those
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predicted with the constant material properties. Therefore, analyses that fail to consider the temperature
dependence of material properties could result in a considerable error in thermomechanical response for
an FGC in elevated temperature environments. More importantly, the FGC may not perform as initially
expected if it is graded based on the constant material properties.

To accurately predict the thermomechanical responses for nonhomogeneous FGCs a high fidelity nu-
merical tool is essential. Unlike the finite element method, the MLPG method requires only a set of
nodes for both the interpolation of the trial functions and the integration of the weak forms. Besides,
this method dictates the continuous material properties of FGMs directly to a quadrature point. These
prominent features make the MLPG method well suited in the analysis of functionally graded composite
structures.
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FINITE ELEMENT MODELING OF A LAYERED, MULTIPHASE
MAGNETOELECTROELASTIC CYLINDER SUBJECTED TO AN

AXISYMMETRIC TEMPERATURE DISTRIBUTION

N. GANESAN, A. KUMARAVEL AND RAJU SETHURAMAN

This paper presents finite element formulation for dynamic behavior of magnetoelectroelastic axisym-
metric cylinder coupled with a thermal field. The finite element formulation derived based on the
interaction between mechanical, electrical, magnetic and thermal fields. The formulation is reduced to
static case to analyze the static behavior of layered and multiphase magnetoelectroelastic axisymmetric
cylinder under the circumstances of axisymmetric temperature distribution. The finite element model
is developed using a four-noded axisymmetric element with four nodal degrees of freedom that is, two
elastic displacements (ur , uz) with two potentials, electric (φ) and magnetic (ψ). The static behavior of
axial and radial displacements, electric potential, magnetic potential and stresses on radially symmetric
magnetoelectroelastic cylinder is investigated. The numerical results are compared between layered and
multiphase magnetoelectroelastic cylinder with different boundary conditions.

1. Introduction

The combination of piezoelectric phase and piezomagnetic phase forms the layered and multiphase mag-
netoelectroelastic composites, which exhibit coupling effects between the mechanical/thermal, electrical
and magnetic fields. It is also observed that the piezoelectric and piezomagnetic composites used for
engineering structures, particularly in smart and intelligent structure systems in the recent years. Due to
their ability of converting energy from one form to the other (among magnetic, electric and mechanical
energies) these materials have been widely used in ultrasonic imaging devices, sensors, actuators, trans-
ducers and many other emerging components [Nan 1994; Harshe et al. 1993; Benveniste 1995; Ding et al.
2005]. There is a strong need for theories or techniques that can predict the coupled response of these
smart materials, as well as structure composed of them. Various numerical studies have been carried out to
study the behavior of composite laminates that consist of elastic and piezoelectric materials [Lee and Jian
1996; Heyliger 1997; Lee and Saravanos 1997, 2000; Vel and Batra 2000]. The generalized thermoelastic-
piezoelectric coupled finite element equations are derived by Tianhu et al. [2002], based on the theory
of Green–Lindsay with two relaxation times to solve the thermal shock problem. Buchanan [2003] has
studied the behavior of infinitely long magnetoelectroelastic cylindrical shells using semianalytical finite
element methods. Micro-mechanical analysis of fully coupled electromagnetothermoelastic composites
has been carried out by Aboudi [2001] for prediction of the effective moduli of magnetoelectroelastic
composites. Sunar et al. [2002] derived the finite element equations for thermopiezomagnetic medium
based on linear constitutive equations using Hamilton’s principle. Wang and Zhong [2003] analytically

Keywords: layered and multiphase, axisymmetric temperature distribution, magnetoelectroelastic composites, dynamic
behavior.
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investigated a long cylindrical shell of piezoelectric/piezomagnetic composite under pressure loading and
temperature change through the power series expansion method and the Fourier series expansion method.
Surveying the literature, we found that there have been no studies are on magnetoelectroelastic cylinder
using finite element method under thermal environment. In this paper layered and multiphase magne-
toelectroelastic cylinder subjected to axisymmetric temperature distribution under different boundary
conditions is investigated. Even though this paper presents the fully coupled finite element formulation,
the numerical study is carried out for the thermal field decoupled with other fields.

2. Finite element formulation

The generalized governing differential equations for magnetoelectrothermoelastic problem without body
force, free charge, free current density or inner heat source can be written as

σi, j = ρüi , Di,i = 0, Bi,i = 0, qi,i = −T0ρη̇,

where ρ represents the mass density and T0 represents the reference temperature. In a cylindrical
coordinate system (r, θ, z), the coupled constitutive equation for linearly magnetoelectroelastic three-
dimensional solid with thermal effect can be written as

σi = ci j S j − eik Ek − dik Hk −βi j2, Dl = el j S j + εlk Ek + mlk Hk + pl2,

Bl = dl j S j + mlk Ek +µlk Hk + τl2, ρη = βi j S j + pk Ek + τk Hk + a2,
(1)

where i, j = 1, . . . , 6 and l, k = 1, . . . , 3. The reduced notation has been used for each tensor representa-
tions, (σ1 = σrr , σ2 = σθθ , σ3 = σzz , σ4 = σθ z , σ5 = σr z and σ6 = σrθ ). σi , Dl, Bl, η are the components of
stress, electric displacement, magnetic induction and entropy per unit volume; ci j , εlk, µlk are the elastic,
dielectric and magnetic permeability coefficients; eki , dki ,mik are the piezoelectric, piezomagnetic and
magnetoelectric material coefficients; βi j , pl, τl,2 are stress temperature coefficient, pyroelectric con-
stant, pyromagnetic constant and temperature difference; S j , Ek, Hk are linear strain tensor, electric field
and magnetic field vectors. a = ρCE/T0, where CE is the specific heat of the material. and 2= T − T0

where T is absolute temperature and T0 is reference temperature. The discretization of the finite element
model is shown in Figure 1.

The strain-displacement, electric field-electric potential and magnetic field-magnetic potential are used
in the finite element analysis along with the constitutive Equation (1). The strain-displacement relation
for axisymmetric case can be written as

Srr = S1 =
∂ur

∂r
, Sθθ = S2 =

ur

r
, Szz = S3 =

∂uz

∂z
, Szr = S5 =

∂uz

∂r
+
∂ur

∂z
.

The electric fields Ei , magnetic fields Hi and heat flux qi are related to electric potential φ, magnetic
potential ψ and temperature distribution 2 for axisymmetric case as

Er = E1 = −
∂φ

∂r
, Ez = E3 = −

∂φ

∂z
, Hr = H1 = −

∂ψ

∂r
, Hz = H3 = −

∂ψ

∂z
,

qr = q1 = −krr
∂2

∂r
, qz = q3 = −kzz

∂2

∂z
,
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Figure 1. Schematic diagram of discretization of magnetoelectroelastic cylinder with
four noded axisymmetric element.

where k is thermal conductivity of the material. For an axisymmetric cylinder geometry, load and material
property does not vary in the circumferential direction. Semianalytical finite element approach for the
axisymmetric problem, the displacements, electric potential and magnetic potential are expressed using
Fourier series in the circumferential θ direction as

ur =

∑
un

r cos nθ, uθ =

∑
un
θ sin nθ, uz =

∑
un

z cos nθ, φ =

∑
φn cos nθ, ψ =

∑
ψn cos nθ,

where n = 0 for the axisymmetric problem. The analysis has been reduced for finite element in radial and
axial direction. The finite element formulation of the coupled magnetoelectrothermoelastic problem is
derived by approximating the displacement, electric potential, magnetic potential and temperature fields
on the element level using two sets of shape functions:

{u} = [N e
1 ]{ue

}, φ = [N e
2 ]{φe

}, ψ = [N e
2 ]{ψe

}, 2= [N e
2 ]{2e

},

where {ue
} = {ur uθ uz}

T is the displacement vector. For obtaining the element level governing equa-
tions, {S}, {E} and {H} are expressed in terms of derivatives of shape functions and elemental level
degrees of freedom as,

{S} = [B1]{ue
}, {E} = −[B2]{φ

e
}, {H} = −[B2]{ψ

e
}, {2′

} = [B2]{2
e
},

where [B] is the derivative of shape function matrix. It can be written as

[B1] =


∂
∂r 0
1
r 0

0 ∂
∂z

∂
∂z

∂
∂r


[

N1 0 N2 0 N3 0 N4 0

0 N1 0 N2 0 N3 0 N4

]
, [B2] =

[
− ∂
∂r

− ∂
∂z

] [
N1 N2 N3 N4

]
.
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Considering the body force { f }, the virtual displacement principle can be written as∫
V

(
δ{S}

T
{σ } − δ{E}

T
{D} − δ{H}

T
{B} − δ2T0{η}

)
dV =∫

V
δ{u}

T ({ f } − ρ{ü})dV +

∫
Aσ
δ{u}

T
{t̄}d A +

∫
Aq

δ2q̄d A, (2)

where {t̄} represents the components of the traction vector and q̄ represents the heat flux. Substituting
the constitutive relations from Equation (1) into Equation (2) and simplifying leads to∫

V
δ{S}

T
{σ }dV =

δ{ue
}

∫
V

[B1]
T
(
[c][B1]{ue

} − [e](−[B2]{φ
e
})− [d](−[B2]{ψ

e
})− {β}[N e

2 ]
T
{2e

}

)
dV =

δ{ue
}

T
(
[K e

uu]{u
e
} + [K e

uφ]{φ
e
} + [K e

uψ ]{ψe
} − [K e

u2]{2e
}

)
, (3)∫

V
(−δ{E}

T
{D})dV =

δ{φe
}

T
∫

V
[B2]

T
(
[e]T

[B1][ue
] + [ε](−[B2]{φ

e
})+ [m](−[B2]{ψ

e
})+ {p}[N e

2 ]
T
{2e

}

)
dV =

δ{φe
}

T
(
[K e

φu]{u
e
} − [K e

φφ]{φ
e
} − [K e

φψ ]{ψe
} + [K e

φ2]{2e
}

)
, (4)∫

V
(−δ{H}

T
{B})dV =

δ{ψe
}

T
∫

V
[B2]

T
(
[d]

T
[B1][ue

] + [m](−[B2]{φ
e
})+ [µ](−[B2]{ψ

e
})+ {τ }[N e

2 ]
T
{2e

}

)
dV =

δ{ψe
}

T
(
[K e

ψu]{u
e
} − [K e

ψφ]{φ
e
} − [K e

ψψ ]{ψe
} + [K e

ψ2]{2e
}

)
, (5)∫

V
(−δ2T0{η̇})dV =

− δ{2e
}

T
∫

V

(
T0[N e

2 ]){β}
T
[B1]{u̇e

} + {p}
T (−[B2]{φ̇

e
})+ {τ }T (−[B2]{ψ̇

e
})+ a[N e

2 ]
T
{2̇e

}

)
dV =

δ{2e
}

T
(
−[Ce

2u]{u̇
e
} + [Ce

2φ]{φ̇
e
} + [Ce

2ψ ]{ψ̇e
} − [Ce

22]{2̇e
}

)
, (6)∫

V
δ{2′

}
T
{q}dV = δ{2e

}
T

∫
V

[B2]
T (−[k][B2]{2

e
})dV = δ{2e

}
T (−[K e

22]{2e
}), (7)∫

V
δ{u}

T ({ f } − ρ{ü})dV = δ{ue
}

T
∫

V
[N e

1 ]
T
({ f } − ρ[N e

1 ]{üe
})dV = δ{ue

}
T ({ f e

m} − [Me
uu]{ü

e
}), (8)∫

Aσ
δ{u}

T
{t̄}d A = δ{ue

}
T

∫
Aσ

[N e
1 ]{t̄}d A = δ{ue

}
T
{T e

u }, (9)∫
Aq

δ2{q̄}d A = δ{2e
}

T
∫

Aq

[N e
2 ]{q̄}d A = δ{2e

}
T
{T e
2}. (10)
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From Equations (3)–(10) we can obtain

[Me
uu]{ü

e
} − [Ce

u2]{2̇e
} + [K e

uu]{u
e
} + [K e

uφ]{φ
e
} + [K e

uψ ]{ψe
} − [K e

u2]{2e
} = { f e

u } + {T e
u }

[K e
uφ]

T
{ue

} − [K e
φφ]{φ

e
} − [K e

φψ ]{ψe
} + [K e

φ2]{2e
} = 0

[K e
uψ ]

T
{ue

} − [K e
φψ ]

T
{φe

} − [K e
ψψ ]{ψe

} + [K e
ψ2]{2e

} = 0

[Ce
2u]{u̇

e
} − [Ce

2φ]{φ̇
e
} − [Ce

2ψ ]{ψ̇e
} + [Ce

22]{2̇e
} + [K e

22]{2e
} = −{T e

2}.

Above equation can be expressed in the matrix form
Me

uu 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0




üe

φ̈e

ψ̈e

2̈e

 +


0 0 0 −Ce

u2
0 0 0 0
0 0 0 0

Ce
2u −Ce

2φ −Ce
2ψ Ce

22




u̇e

φ̇e

ψ̇e

2̇e

 +


K e

uu K e
uφ K e

uψ −K e
u2

K e
φu −K e

φφ −K e
φψ K e

φ2

K e
ψu −K e

ψφ −K e
ψψ K e

ψ2

0 0 0 K e
22




ue

φe

ψe

2e

 =


f e
u + T e

u
0
0

−T e
2

 , (11)

where different elemental matrices in Equation (11) are defined as

[K e
uu] =

∫
V

[B1]
T
[c][B1]dV, [K e

uφ] =

∫
V

[B1]
T
[e][B2]dV,

[K e
uψ ] =

∫
V

[B1]
T
[d][B2]dV, [K e

φφ] =

∫
V

[B2]
T
[ε][B2]dV,

[K e
ψψ ] =

∫
V

[B2]
T
[µ][B2]dV, [Ce

2u] =

∫
V

T0[N2]
T
{β}

T
[B1]dV,

[Ce
2φ] =

∫
V

T0[N2]
T
{p}

T
[B2]dV, [Ce

2ψ ] =

∫
V

T0[N2]
T
{τ }T

[B2]dV,

[K e
u2] =

∫
V

[B1]
T
{β}[N2]

T dV, [K e
φψ ] =

∫
V

[B2]
T
[m][B2]dV,

[K e
φ2] =

∫
V

[B2]
T
{p}[N2]

T dV, [K e
ψ2] =

∫
V

[B2]
T
{τ }[N2]

T dV,

[Ce
22] =

∫
V

T0[N2]
T a[N2]dV, [K e

22] =

∫
V

[B2]
T
[k][B2]dV,

[Me
uu] =

∫
V

[N1]
Tρ[N1]dV, { f e

u } =

∫
V

[N e
1 ]{ f }dV,

{T e
u } =

∫
Aσ

[N e
1 ]

T
{t̄}d A, {T e

2} =

∫
Aq

[N e
2 ]q̄d A.

The volume integration is replaced with dV = 2πrdrdz for axisymmetric problems. From Equation
(11), assembling the all element contributions, the equation of motion can be written as,

[M]{v̈} + [D]{v̇} + [K ]{v} = {F}, (12)
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where

[M] =


Muu 0 0 0

0 0 0 0
0 0 0 0
0 0 0 0

 , [D] =


0 0 0 −Cu2

0 0 0 0
0 0 0 0

C2u −C2φ −C2ψ C22

 ,

[K ] =


Kuu Kuφ Kuψ −Ku2

Kφu −Kφφ −Kφψ Kφ2

Kψu −Kψφ −Kψψ Kψ2

0 0 0 K22

 , {F} =


fu + Tu

0
0

−T2

 , {v} =


u
φ

ψ

2

 ,
with {u} = [ur uz]

T . The equation of motion (12) can be used to investigate the dynamic behavior of
the magnetoelectrothermoelastic material where mechanical, electrical, magnetic and thermal fields are
fully coupled. To investigate the static behavior of magnetoelectroelastic cylinder the above equation is
reduced along with the following assumptions,

1. Absence of body force, free charge density and free current density.

2. The temperature distribution is evaluated explicitly assuming the coupling between mechanical,
electrical and magnetic fields.

The finite element equation can be written as,

[Kuu]{u} + [Kuφ]{φ} + [Kuψ ]{ψ} = {Fth},

[Kuφ]
T
{u} − [Kφφ]{φ} − [Kφψ ]{ψ} = 0,

[Kuψ ]
T
{u} − [Kφψ ]

T
{φ} − [Kψψ ]{ψ} = 0.

(13)

The thermal load vector can be written as {Fe
th} =

∫
V [B1]

T
{β}2dv. By using standard condensation

techniques, the equivalent stiffness matrix is derived by eliminating the electric potential φ and magnetic
potential ψ in Equation (13). The derived stiffness matrix [Keq ] and load vector {Fth} is used to solve
for nodal thermal displacements.

[Keq ]{u} = {Fth}, (14)

where [Keq ] = [Kuu] + [Kuφ][K I I ]
−1

[K I ] + [Kuψ ][K I V ]
−1

[K I I I ], and

[K I ] = [Kuφ]
T

− [Kφψ ][Kψψ ]
−1

[Kuψ ]
T , [K I I ] = [Kφφ] − [Kφψ ][Kψψ ]

−1
[Kφψ ]

T ,

[K I I I ] = [Kuψ ]
T

− [Kφψ ]
T
[Kφφ]

−1
[Kuφ]

T , [K I V ] = [Kψψ ] − [Kφψ ]
T
[Kφφ]

−1
[Kφψ ].

The coupled magnetoelectroelastic finite element Equation (14) is solved subject to thermal loading. The
four-point gaussian integration scheme has been adopted to evaluate the integrals involved in different
elemental stiffness matrices and thermal load vectors. The elemental stiffness matrices and thermal
load vectors are assembled to get the global stiffness matrices and global thermal load vector. The
coupled equivalent stiffness matrix [Keq ] of magnetoelectroelastic system has been inverted to evaluate
the thermal displacements. After evaluating the thermal displacements, the electric potential φ and
magnetic potential ψ can be derived at each nodal points using the following equations,

φ = [K I I ]
−1

[K I ]{u}, ψ = [K I V ]
−1

[K I I I ]{u}.
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Figure 2. Schematic diagram of layered magnetoelectroelastic hollow cylinder along
with thermal boundary conditions.

3. Evaluation of temperature distribution across the thickness of the axisymmetric cylinder under
steady state heat conduction

We consider steady state one-dimensional heat conduction analysis to evaluate the temperature distribu-
tion across the thickness of the magnetoelectroelastic cylinder under temperature boundary conditions.
The temperature along the length of the cylinder is constant subject to axisymmetric temperature distri-
bution. Figure 2 shows the schematic diagram of problem considered for steady state heat conduction
analysis and finite element discretization across thickness direction. The finite element formulation used
in the present work is based on the procedure reported in [Reddy 1984]. By neglecting the convective
and radiation heat transfers, the governing differential equation for steady state heat conduction equation
in radial direction is given by

−
d
dr

(
k(r)

dT
dr

)
= 0.

In the present study, thermal boundary conditions considered in such a way that Ti is the temperature
on the inner surface of the cylinder and T0 is the temperature on the outer surface of the cylinder, which
is normally ambient temperature. Applying variational principle on the governing equation, the finite
element equation [Kcond]{T } = 0, to evaluate temperature distribution due to heat conduction is obtained
[Ross 1990]. Here [Kcond] is the heat conduction matrix and {T } is the vector of nodal temperature.

The above equation is solved for the specified temperature boundary condition at the inner and outer
surface to obtain the temperature distribution across the radial direction.

4. Validation of the present formulation

The present formulation developed for the analysis of layered and multiphase magnetoelectroelastic
cylinder has been validated with the stresses reported in [Wang and Zhong 2003] under internal pressure
loading.

The dimensions of cylinder are as follows: length of the cylinder (l) = 4.0 m, inner radius (ri ) =

0.7 m and thickness of the cylinder (t)= 0.6 m. Figure 3 illustrates the comparison of results of axial
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Figure 3. Variation of normal radial stress σr and shear stress τzr on the outer surface
at r = ro along the axial direction subjected to internal pressure loading under simply
supported boundary condition.

stresses for B/F layered magnetoelectroelastic cylinder under internal pressuring loading with simply
supported boundary condition. The thermal load vector have been validated using commercial finite
element software [ANSYS 1999], by evaluating the thermal displacement along the axial length of simply
supported piezoelectric cylinder under uniform temperature rise of 75◦ C.

Figure 4 illustrates the comparison of results on thermal displacement for simply supported piezoelec-
tric cylinder. This was performed primarily because of the lack of literature on the evaluation of thermal

Figure 4. Variation (a) radial displacement ur and (b) axial displacement uz on the outer
surface at r = ro subjected to uniform temperature rise.
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stresses of magnetoelectroelastic cylinder using finite element method. Observe that the results obtained
by present formulation are in close agreement with the available literature and commercial finite element
software ANSYS.

5. Results and discussions

We consider a two layered and multiphase magnetoelectroelastic composite cylinder composed of piezo-
electric BaTiO3 and piezomagnetic CoFe2O4 materials. Two-layered cylinder is made of the inner surface
with piezoelectric BaTiO3 material and outer surface made of piezomagnetic CoFe2O4 material (B/F).
The multiphase magnetoelectroelastic cylinder made of piezomagnetic (CoFe2O4) matrix reinforced by
piezoelectric (BaTiO3) material for different volume fraction. The V f = 1.0 corresponds to piezoelectric
(BaTiO3) material and V f = 0.0 corresponds to piezomagnetic (CoFe2O4) material. The dimensions of
cylinder are as follows: length of the cylinder (l)= 4.0 m, inner radius (ri )= 0.995 m, thickness of the
cylinder (t) = 0.01 m, r/t ratio = 100, l/r ratio =4.0. The present finite element model is discretized
using 600 four-noded axisymmetric elements with 3355 degrees of freedom (dof): 2013 displacement
dof, 671 electric dof and 671 magnetic dof. The simply supported and clamped-clamped (ur = φ =ψ = 0
at simply supported edge and ur = uz = φ = ψ = 0 at clamped edge) boundary conditions are adopted.
The material constants listed in Table 1 reported by Aboudi [2001] are used for the present study. The
thermal conductivity k and the coefficient of thermal expansion α are obtained from the literature as
reported by Ootao and Tanigawa [2005]. In the above literature the coefficient of thermal expansion α
is taken for CoFe2O4. The diffusivities for BaTiO3 and CoFe2O4 given in [Ootao and Tanigawa 2005]
are not needed, since the present analysis assumed as steady state problem. Thermal properties are not
reported in the literature for different volume fraction. The coefficient of thermal expansion are evaluated
from the values of BaTiO3 and CoFe2O4 for different volume fractions of 0.2, 0.4, 0.6 and 0.8 using the
following expression [Tan and Tong 2002]:

α11 =c11

(
V f α

p
11

cp
11

+
(1 − V f )α

m
11

cm
11

)
, α33 = V f α

p
33+(1−V f )α

p
33+

c13α11

c11
−

V f cp
13α

p
11

cp
11

−
(1 − V f )cm

13α
m
11

cm
11

.

The densities reported by Ramirez et al. [2006] for BaTiO3 and CoFe2O4 are used for the present
analysis. The density and thermal conductivities are evaluated from the values of BaTiO3 and CoFe2O4

using the rule of mixture,

ρ = V f ρ
p
+ (1 − V f )ρ

m, k11 = k33 = V f k p
11 + (1 − V f )km

11,

where the superscript p stands for piezoelectric and m stands for piezomagnetic.

Evaluation of temperature distribution. The magnetoelectroelastic cylinder is discretized using two-
noded element with temperature degree of freedom as shown in Figure 2. These nodal temperatures are
used to evaluate the element temperature of four-noded axisymmetric element and utilized to evaluate
thermal load vector. Figure 5 shows the temperature distribution across thickness direction for layered
and multiphase magnetoelectroelastic cylinder.

Distribution of displacement, electric potential, magnetic potential and thermal stresses subjected to
simply supported boundary condition. Figure 6(a) shows the distribution of radial displacement ur on
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V f = 0.0 V f = 0.2 V f = 0.4 V f = 0.6 V f = 0.8 V f = 1.0

Elastic constants
c11 269.5 240 220 190 170 162
c12 = c13 170 145 125 110 100 78
c23 173 146 125 110 100 77
c22 = c33 286 250 225 200 175 166
c55 45.3 45 45 45 50 43

Piezoelectric constants
e11 0 4 7 11 14 18.6
e12 = e13 0 −2 −3 −3.5 −4 −4.4
e35 0 0 0 0 0 11.6

Dielectric constants
ε11 0.093 2.5 5.0 7.5 10 12.6
ε33 0.08 0.33 0.8 0.9 1.0 11.2

Magnetic permeability constants
µ11 1.57 1.33 1.0 0.75 0.5 0.1
µ33 −5.9 −3.9 −2.5 −1.5 −0.8 0.05

Piezomagnetic constants
q11 700 550 380 260 120 0
q12 = q13 580 410 300 200 100 0
q35 560 340 220 180 80 0

Magnetoelectric constants
m11 0 2000 2750 2500 1500 0
m33 0 2.8 4.8 6.0 6.8 0

Coefficient of thermal expansion
α11 10.0 9.72 9.15 8.37 7.44 6.4
α33 10.0 11.7 13.0 14.11 14.98 15.7

Density
ρ 5300 5400 5500 5600 5700 5800

Thermal conductivity
k11 = k33 3.2 3.06 2.92 2.78 2.64 2.5

Table 1. Material properties as a percentage (volume fraction V f ) of CoFe2O4 – BaTiO3,
where ci j is measured in 109 N/m2, ei j in C/m2, εi j in 10−9 C/Vm, qi j in N/Am, µi j in
10−4 Ns2/C2, mi j in 10−12 Ns/VC, αi j in 1/K , ρ in kg/m3, and ki j in W/mK.
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Figure 5. Distribution of temperature across thickness direction for layered and multi-
phase magnetoelectroelastic cylinder.

Figure 6. Distribution of (a) radial displacement ur and (b) axial displacement uz on
the outer surface at r = ro along the axial direction under simply-supported boundary
condition.

the outer surface along the axial direction for B/F layered and multiphase with different volume fraction
of magnetoelectroelastic cylinder. It is observed that the radial displacement ur of B/F layered cylinder
is slightly higher as compared to multiphase magnetoelectroelastic cylinder with V f = 1.0. The radial
displacement is increasing with volume fraction of multiphase magnetoelectroelastic cylinder and the
magnitude is higher near the simply supported edge. Figure 6(b) shows the axial displacement uz on the
outer surface along the axial direction. Observe that the magnitude of axial displacement uz is higher at
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Figure 7. Distribution of (a) electric potential φ and (b) magnetic potential ψ on the
outer surface at r = ro along the axial direction under simply-supported boundary condi-
tion.

the simply supported edge. The axial displacement uz is increasing with volume fraction of multiphase
magnetoelectroelastic cylinder.

Figure 7(a) shows the distribution of electric potential φ on the outer surface along the axial direction
for B/F layered and multiphase with different volume fraction of magnetoelectroelastic cylinder. It is
observed that the electric potential is higher for B/F layered case as compared to multiphase magneto-
electroelastic cylinder and magnitude is higher near the simply supported edge. Figure 7(b) shows the
distribution of magnetic potential ψ on the outer face along the axial direction.

The magnetic potential is higher for V f = 0.0 as compared to other volume fraction and B/F layered
cylinder. Figure 8(a) shows the distribution of radial displacement ur at z = l/2 along the radial direc-
tion for B/F layered and multiphase with different volume fraction of magnetoelectroelastic cylinder.
Observe that the B/F layered radial displacement ur is higher as compared to multiphase magneto-
electroelastic cylinder. It is increases with volume fraction for multiphase case. Figure 8(b) shows the
distribution of axial displacement uz at z = l along the radial direction for B/F layered and multiphase
magnetoelectroelastic cylinder. Note that the similar trend is observed for axial displacement uz .

Figure 9 illustrates the distribution of electric potential φ and magnetic potential ψ at z = l/2 along
the radial direction for B/F layered and multiphase multiphase magnetoelectroelastic cylinder. Observe
that the electric potential φ is higher for layered magnetoelectroelastic case and magnetic potential ψ is
higher for V f = 0.0. Note that variation of electric potential φ in the piezoelectric phase and constant in
the piezomagnetic phase. The electric potential φ is zero for V f = 0.0 due to the fact that the piezoelectric
constants are zero. Figure 9(b) illustrates the variation of magnetic potential ψ at z = l/2 along the radial
direction for B/F layered and multiphase magnetoelectroelastic cylinder.

Figure 10 illustrates the distribution of normal stress σr and shear stress τzr at r = 0.005 m along the
axial direction for B/F layered and multiphase magnetoelectroelastic cylinder. Observe that the normal
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Figure 8. Distribution of (a) radial displacement ur at z = l/2 and (b) axial displacement
uz at z = l along the radial direction under simply-supported boundary condition.

Figure 9. Distribution of (a) electric potential φ and (b) magnetic potential ψ at z = l/2
along the radial direction under simply-supported boundary condition.

stress σr for layered cylinder is higher as compared to multiphase cylinder and there is no significant
effect on shear stress τzr . Figure 11 illustrates the distribution of normal stress σr and σθ for B/F layered
magnetoelectroelastic cylinder at z = l/2 along the radial direction.

Note the discontinuity of radial stress σr at the material interface. Observe that the normal stress
σθ compressive in nature at the inner surface and tensile on the outer surface. Figure 12 shows the
distribution of normal stress σr and σθ at z = l/2 along the radial direction. It is noticed that the normal
stress σr increases with volume fraction decreases for multiphase magnetoelectroelastic cylinder. It can
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Figure 10. Distribution of (a) normal stress σr and (b) shear stress τzr at r = 0.005 m
along the axial direction under simply-supported boundary condition.

Figure 11. Distribution of normal stress σr and σθ for B/F layered magnetoelectroe-
lastic cylinder at z = l/2 along the radial direction under simply-supported boundary
condition.

be seen that the normal stress σθ compressive in nature at the inner surface and tensile on the outer
surface. Its magnitude is minimum for V f = 0.0 and maximum for V f = 1.0.

Distribution of displacement, electric potential, magnetic potential and thermal stresses subjected to
clamped-clamped boundary condition. Figure 13(a) shows the distribution of radial displacement ur on
the outer surface along the axial direction for B/F layered and multiphase with different volume fraction
of magnetoelectroelastic cylinder under clamped-clamped boundary condition.
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Figure 12. Distribution of (a) normal stress σr and (b) normal stress σθ at z = l/2 along
the radial direction under simply-supported boundary condition.

Figure 13. Distribution of (a) radial displacement ur (l = 2.0 to 4.0 m) and (b) axial
displacement uz (l = 0.0 to 4.0 m) on the outer surface at r = ro along the axial direction
under clamped-clamped boundary condition.

A similar trend is observed compared to simply supported boundary condition with higher radial
displacement. From Figure 13(b), it is observed that the maximum axial displacement occurs near the
clamped edge and the distribution is quite different as compared to simply supported boundary condition.
Figure 14(a) shows the distribution of electric potential φ on the outer surface along the axial direction
for clamped-clamped boundary condition. The maximum electric potential occurs close to the clamped
edge, further the electric potential decreases and remains constant in magnitude over the length of the
cylinder. The zero electric potential for V f = 0.0 due to fact that the piezoelectric constants are zero.
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Figure 14. Variation of (a) electric potential φ and (b) magnetic potential ψ on the outer
surface at r = ro along the axial direction under clamped-clamped boundary condition.

Figure 15. Distribution of radial displacement ur at z = l/2 along the radial direction
subjected to thermal loading under clamped-clamped boundary condition.

Figure 14(b) shows the distribution of magnetic potential ψ on the outer surface along the axial direction
for clamped-clamped boundary condition.

Figure 15 shows the distribution of radial displacement ur at z = l/2 along the radial direction subjected
to thermal loading under clamped-clamped boundary condition. Observe that the radial displacement ur

is higher as compared to simply supported boundary condition and increasing with volume fraction. This
is because the stiffness is greater for V f = 0.0 and less for V f = 1.0 due to elastic properties of materials.
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Figure 16. Distribution of (a) electric potential φ and (b) magnetic potential ψ at z = l/2
along the radial direction subjected to thermal loading under clamped-clamped boundary
condition.

Figure 17. Distribution of (a) normal stress σr and (b) shear stress τzr at r = 0.005 m
along the axial direction under clamped-clamped boundary condition.

Figure 16 illustrates the distribution of electric potential φ and magnetic potential ψ at z = l/2 along
the radial direction for clamped-clamped magnetoelectroelastic cylinder. A similar trend is observed with
higher magnitude compared to simply supported boundary condition. Figure 17 illustrates the distribution
of normal stress σr and shear stress τzr at r = 0.005 m along the axial direction for clamped-clamped
magnetoelectroelastic cylinder. Observe that the normal stress σr is higher for B/F layered cylinder.

There is no significant difference along the length and higher in the clamped end as compared to
Simply-Supported boundary condition. Figures 18 and 19 illustrate the distribution of normal stress σr
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Figure 18. Distribution of normal stress σr and σθ for B/F layered magnetoelectroelas-
tic shell at z = l/2 along the radial direction under clamped-clamped boundary condition.

Figure 19. Distribution of (a) normal stress σr and (b) normal stress σθ at z = l/2 along
the radial direction subjected to thermal loading under clamped-clamped boundary con-
dition.

and σθ for B/F layered magnetoelectroelastic cylinder at z = l/2 along the radial direction and normal
stress σr and σθ for multiphase magnetoelectroelastic cylinder at z = l/2 along the radial direction. A
similar behavior is observed compared to afore mentioned boundary condition.
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6. Conclusions

A semi-analytical finite element model is used for the analysis of layered and multiphase magnetoelectroe-
lastic cylinder under axisymmetric temperature distribution. The finite element formulation for transient
analysis of magnetoelectrothermoelastic cylinder has been derived from coupled constitutive equations.
The numerical results are presented based on the coupling between mechanical, electrical and magnetic
fields. The thermal field is coupled with mechanical fields alone. It is found that the layered magnetoelec-
troelastic cylinder have substantial effect on induced magnetic, electric and elastic fields as compared
to multiphase magnetoelectroelastic cylinder with different volume fraction under different boundary
conditions. We feel that the present numerical study is highly useful for design of magnetoelectroelastic
sensors and actuators.
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A LINEAR CURVED-BEAM MODEL FOR THE ANALYSIS OF GALLOPING IN
SUSPENDED CABLES

ANGELO LUONGO, DANIELE ZULLI AND GIUSEPPE PICCARDO

A linear model of curved, prestressed, no-shear, elastic beam, loaded by wind forces, is formulated.
The beam is assumed to be planar in its reference configuration, under its own weight and static wind
forces. The incremental equilibrium equations around the prestressed state are derived, in which shear
forces are condensed. By using a linear elastic constitutive law and accounting for damping and inertial
effects, the complete equations of motion are obtained. They are then greatly simplified by estimating
the order of magnitude of all their terms, under the hypotheses of small sag-to-span ratio, order-1 aspect
ratio of the (compact) section, characteristic section radius much smaller than length (slender cable),
small transversal-to-longitudinal and transversal-to-torsional wave velocity ratios. A system of two in-
tegrodifferential equations is drawn in the two transversal displacements only. A simplified model of
aerodynamic forces is then developed according to a quasisteady formulation. The nonlinear, nontrivial
equilibrium path of the cable subjected to increasing static wind forces is successively evaluated, and the
influence of the angle of twist on the equilibrium is discussed. Then stability is studied by discretizing the
equations of motion via a Galerkin approach and analyzing the small oscillations around the nontrivial
equilibrium. Finally, the role of the angle of twist on the dynamic stability of the cable is discussed for
some sample cables.

1. Introduction

The analysis of galloping oscillations of iced cables requires a careful formulation both of the mechanical
model and of the aeroelastic forces, especially concerning nonlinear regimes [Luongo and Piccardo
1998]. The forces are usually modeled referring to the quasisteady theory, and they depend on the
mean wind speed and on the angle of attack, which in turn depends on the velocity of the structure and
on its surrounding flow. The structure is generally modeled as a perfectly flexible cable, that is as a
one-dimensional continuum capable of translational displacements only [Luongo et al. 1984; Lee and
Perkins 1992]. This assumption is reliable, since the torsion stiffness of the single cable is usually high
and the bending stiffness is negligible, compared to the geometric one, because of the slenderness of
the structure. However, simplified models of cables have highlighted the importance of the twist angle
on the determination of aerodynamic forces and, therefore, on the dynamical behavior of the system.
In particular, although Yu et al. [1993a], McConnel and Chang [1986], and White et al. [1991] have
considered a sophisticated constitutive law, based on experimental results, in which the axial stress and
torque depend both on elongation and torsion, they have neglected the initial curvature of the cable; as
a result, the moment equilibrium around the tangent to the cable is violated, since the bending moment

Keywords: cables, twist, galloping, aeroelasticity, instability, bifurcation.
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is not taken into account. In an earlier paper [Luongo and Piccardo 1996] we have tried to correct
the classic model, adding an energy of pure torsion to the elastic potential energy of the flexible cable,
still ignoring every term of mechanical coupling. Therefore, the formulation of a consistent cable-beam
model is a matter of great interest, able to take into account all the stiffnesses involved in the problem. To
the best of our knowledge, similar models are usually employed in fully numerical approaches — see for
instance [Diana et al. 1998] in the linear field, or [Lu and Perkins 1994] in somewhat different nonlinear
problems — but they are not yet employed in semi-analytical analysis, like the one proposed here. A first
approach to the subject was presented in [Luongo et al. 2005].

In this paper a linear model of curved elastic prestressed beam, subjected to aerodynamic forces
induced by wind, is formulated. By taking into account the high slenderness of the body, the model is
remarkably simplified via an analysis of the magnitude orders of all terms in the equations of motion. As
a major result, it is shown that, at the leading order, the dynamic behavior of the cable is governed by the
same equations as the perfectly flexible model in which, however, the positional and velocity-dependent
forces also depend on the angle of twist, which is an integral function of the transversal displacements.
In other words, the twist is a passive variable, slave to the normal and binormal translations. The
reduced model thus obtained permits one to investigate the critical aeroelastic behavior of the cable, by
highlighting the role of torsion on the stability of the structure.

The paper is organized as follows. The complete equations of motion are derived in Section 2 under
the hypothesis of no-shear deformation of the beam. In Section 3 a reduced model is drawn from the
complete one by neglecting small terms and statically condensing the tangent displacement and the angle
of twist; therefore, two integrodifferential equations are obtained, in the transversal displacements only.
In Section 4 an approximate model for the aerodynamic forces acting on the cable is developed, consistent
with the approximations introduced. In Section 5 the nontrivial equilibrium path of the cable subjected
to static wind forces is evaluated, and bifurcations causing galloping (Hopf bifurcations) are detected.
Numerical results are discussed in Section 6, and some conclusions are drawn in Section 7.

2. Mechanical model

The cable is modeled as a beam constituted by a flexible centerline and rigid cross-sections. It is assumed
that the cable, under its self-weight and the static component of the wind forces, takes a planar equilibrium
configuration C̄ at time t = 0, which is selected as the reference configuration. The linear equations of
motion governing the small oscillations around such equilibrium position are sought.

Let x̄ = x̄(s) be the parametric equation of the centerline in C̄, where x̄ is the position vector and
s ∈ [0, `] is a curvilinear abscissa. It is supposed that the inertia principal axes of the section coincide in
C̄ with the Frenet triad β̄(s) := {ā1(s), ā2(s), ā3(s)}, where ā1 ≡ x̄′ (with ′

= d/ds) is the unit vector
tangent to the curve, ā2 is the normal and ā3 the binormal (Figure 1, left). According to the Frenet
formulas, it follows that ā′

1 = κ̄ ā2, ā′

2 = −κ̄ ā1, ā′

3 = 0, where κ̄ = κ̄(s) is the modulus of the curvature
vector κ̄ = κ̄ ā3 in C̄.

Now consider an adjacent configuration C, assumed by the cable at the time t > 0. Denoting by
u(s, t) and ϑ(s, t) the translation of the centerline and the (infinitesimal) rotation of the cross-section
at abscissa s, respectively, the position vector x(s, t) and the attitude of the inertia principal triad β :=
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Figure 1. Left: configurations of the cable. Right: forces and couples on an infinitesi-
mal element.

{a1(s, t), a2(s, t), a3(s, t)} in C are given by (see Figure 1, left):

x = x̄ + u, ai = āi +ϑ × āi for i = 1, 2, 3. (1)

The slenderness of the beam suggests one may neglect the shear deformation; therefore the cross-sections
are assumed to remain orthogonal to the centerline in any configuration. This internal constraint is
expressed by the condition x′

= (1 + ε)a1, a1 being normal to the section and dx/d S = x′/(1 + ε) the
unit vector tangent to the strained centerline at the actual abscissa S = S(s), with ε := d S/ds − 1 the
unit extension. By letting u = ua1 + va2 +wa3 and ϑ = ϑ1a1 +ϑ2a2 +ϑ3a3, and taking into account
that ε� 1, it follows that

ϑ2 = −w′, ϑ3 = v′
+ κ̄u (2)

and
ε = u′

− κ̄v.

Due to the constraints (2), the configuration variables u, v, w, ϑ1, ϑ2, ϑ3 are reduced to the three transla-
tion components and the unique rotation component ϑ := ϑ1, called the twist angle.

Finally, by defining the incremental curvature vector κ := ∂ϑ/∂s, using (2) and projecting on β̄, the
torsion κ1 and the bendings κ2 and κ3 are found to be

κ1 = ϑ ′
+ κ̄w′, κ2 = −w′′

+ κ̄ϑ, κ3 = v′′
+ (κ̄u)′. (3)

We next derive the equilibrium equations. By considering an infinitesimal cable element in the actual
configuration (Figure 1, right), and denoting by t(s, t) and m(s, t) the internal contact force and couple,
respectively, acting at abscissa s at time t , the balance equations become, in Lagrangian form,

t′ + b = 0, m′
+ x′

× t + c = 0, (4)

where b := b(s, t) and c := c(s, t) are the body force and couple densities per undeformed arc-length,
including inertial and damping effects. It is assumed that in the planar reference configuration C̄ the
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cable is loaded by body forces b̄(s) and no couples: c̄(s)≡ 0. By neglecting flexural effects in its own
plane, the cable is stressed in C̄ exclusively by axial forces, namely t̄ = T̄ ā1 and m̄ = 0, with t̄′ + b̄ = 0.
By subtracting this latter from (4)1, we obtain incremental equilibrium equations

(t′ − t̄′)+ b̂ = 0, m′
+ x′

× t + ĉ = 0,

with b̂ := b− b̄ and ĉ := c− c̄. By letting t = (T̄ + T̂1)a1 + T̂2a2 + T̂3a3, m = M̂1a1 + M̂2a2 + M̂3a3, using
(1) and projecting onto β̄, six scalar equations follow. After linearization in the incremental quantities
and condensation of the reactive stresses T̂2 and T̂3, the following four equilibrium equations are obtained
in the active stresses T̂1, M̂1, M̂2, M̂3 (hats omitted):

T ′

1 − T̄ κ̄(v′
+ κ̄u)+ M ′

3κ̄ + b̃1 = 0,

−M ′′

3 +
(
T̄ (v′

+ κ̄u)
)′

+ T1κ̄ + b̃2 = 0,

M ′′

2 + (M1κ̄)
′
+ (T̄w′)′ + b̃3 = 0,

M ′

1 − M2κ̄ + c1 = 0,

(5)

where
b̃1 := b1 + κ̄c3, b̃2 := b2 − c′

3, b̃3 := b3 + c′

2.

Finally, a linear, uncoupled, elastic law is assumed between the incremental active stress and strain
components:

T1 = EAε, M1 = G Jκ1, M2 = E I2κ2, M3 = E I3κ3, (6)

in which EA ,G J, E I2 and E I3 are the axial, torsional and flexural stiffnesses of the cable and hats have
been dropped. In view of (6), the equations of motion (5) become

EA(u′
− κ̄v)′ + E I3κ̄

(
v′′

+ (κ̄u)′
)′

− T̄ κ̄(v′
+ κ̄u)+ b̃a1 − cu u̇ − mü = 0,

EA κ̄(u′
− κ̄v)− E I3

(
v′′

+ (κ̄u)′
)′′

+
(
T̄ (v′

+ κ̄u)
)′

+ b̃a2 − cv v̇− mv̈ = 0,

E I2(−w
′′
+ κ̄ϑ)′′ + G J

(
κ̄(κ̄w′

+ ϑ ′)
)′

+ (T̄w′)′ + b̃a3 − cwẇ− mẅ = 0,

G J (κ̄w′
+ϑ ′)′ − E I2κ̄(−w

′′
+ κ̄ϑ)+ ca1 − cϑ ϑ̇ − J1ϑ̈ = 0,

(7)

where the body forces b̃i and couple c1 have been expressed as the sum of aerodynamic (index a), damp-
ing and inertia effects, cu, cv, cw, cϑ being structural damping coefficients, m the mass linear density and
J1 the inertia polar moment of the section. It is worth noting that Equations (7) are block-uncoupled; that
is, the in-plane oscillations of the cable are independent of out-of-plane oscillations, the latter involving
torsion. However, if the forces b̃i depend on the configuration variables, as occurs for the aerodynamic
forces, the equations are coupled.

Equations (7) must be accompanied by suitable boundary conditions. If the cable is restrained at both
ends by spherical hinges, the displacements and moments must vanish there:

u = 0, G J (ϑ ′
+ κ̄w′)= 0,

v = 0, E I2(−w
′′
+ κ̄ϑ)= 0,

w = 0, E I3
(
v′′

+ (κ̄u)′
)
= 0,

 at s = 0, `. (8)

The problem is completed by the initial conditions; here it is assumed that the body is at rest at t = 0.
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3. Reduced equations of motion

The equations of motion previously obtained are too complicated to be treated analytically; therefore, a
simplified model is developed in this Section. First, the classical hypothesis of small sag-to-span ratio d/`
is introduced [Luongo et al. 1984; Lee and Perkins 1992; Irvine and Caughey 1984], commonly accepted
for cables falling into the technical range. Then, advantage is drawn from the fact that the cable is a very
slender body; hence, the flexural-torsional effects are expected to be smaller than the funicular effects,
except close to the boundaries. On the other hand, bending effects cannot be completely neglected, since,
due to the (small but finite) initial curvature, the bending moment contributes to the moment equilibrium
around the tangent to the cable.

3.1. Order-of-magnitude analysis. According to the previous ideas, we perform an order-of-magnitude
analysis of all the terms in the equations of motion (7) and boundary conditions (8). First, equations (7)
and (8) are written in a nondimensional form. We set

s∗
=

s
`
, ω =

π

`

√
T̄
m
, t∗

= ωt, u∗
=

u
`
, v∗

=
v

`
, w∗

=
w

`
, ϑ∗

= ϑ,

c∗

α =
ω`2

EA
cα, c∗

ϑ =
ω

EA
cϑ , m∗

=
ω2`2

EA
m, J∗

1 =
ω2

EA
J1, b∗

ai
=

`

EA
b̃ai , c∗

a1
=

c̃a1

EA
, κ∗

= κ̄`,

(9)

where α assumes the values u, v, w, and we introduce the nondimensional quantities

δ =
8d
`
, τ =

T̄
EA

, % =
r
`
, β =

G J
E I

. (10)

The equations then become

(u′
− κv)′ + %2κ

(
v′′

+ (κu)′
)′

− τκ(v′
+ κu)+ ba1 − cu u̇ − mü = 0,

κ(u′
− κv)− %2(v′′

+ (κu)′
)′′

+
(
τ(v′

+ κu)
)′

+ ba2 − cv v̇− mv̈ = 0,

%2(−w′′
+ κϑ)′′ + %2β

(
κ(κw′

+ϑ ′)
)′

+ (τw′)′ + ba3 − cwẇ− mẅ = 0,

β%2(κw′
+ϑ ′)′ − %2κ(−w′′

+ κϑ)+ ca1 − cϑ ϑ̇ − J1ϑ̈ = 0,

(11)

together with
u = 0, β%2(ϑ ′

+ κw′)= 0,

v = 0, %2(−w′′
+ κϑ)= 0,

w = 0, %2(v′′
+ (κu)′

)
= 0

 at s = 0, 1. (12)

where the star has been omitted for the sake of simplicity, the dot stands for differentiation with respect
to t∗ and the prime stands for differentiation with respect to s∗. In (10), δ is the nondimensional sag,
τ the nondimensional prestress, % the nondimensional inertia radius r =

√
I/A of the section, assumed

to be circular (I2 = I3 ≡ I ), and β the nondimensional torsional stiffness. For a commonly employed
overhead transmission line, δ= O

(
10−1

)
, τ ≤ O

(
δ3

)
and %≤ O

(
δ3

)
, while β = O (1). Moreover, from the

catenary theory, it is well known that τ(s)= τ(1/2)+ δ2 f (s) and κ(s)= δ+ δ2g(s), with O( f (s))= 1,
O(g(s)) = 1. Therefore, according to parabolic cable theory (see [Irvine and Caughey 1984]), we can
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consider, with an error of second order in δ,

τ(s)= const, κ(s)= const.

Next we must estimate the order of magnitude of the displacement component ratios. We assume that

O
(u
v

)
= δ, O

(
ϑ

w

)
=

1
δ
, O

( v
w

)
= 1, (13)

together with
∂nu
∂sn = O (u) ,

∂nv

∂sn = O (v) ,
∂nw

∂sn = O (w) , n = 1, 2, . . . (14)

and
∂ϑ

∂s
= O (wδ) ,

∂2ϑ

∂s2 = O (wδ) . (15)

Equation (13)1 is suggested by the linear theory [Irvine and Caughey 1984], and by the fact that
u → 0 in the (prevalently) transversal motions (v � u) when δ → 0. Equations (14) also follow from
the linear theory, when the trigonometric nature of the eigenfunctions is recognized. Estimates (13)2 and
(15) are instead drawn by inspection of the solution of the linearized Equation (11)4 and the relevant
boundary conditions (see Appendix A). Equation (13)3 is self-explanatory. It is worth noting that, due
to the different boundary conditions, the translations u, v and w must vanish at the ends, and therefore
they are fast-varying functions in space (that is, their dimensional counterparts vary on a scale of typical
length `), whereas the twist angle ϑ , being different from zero at the ends, can vary in a much slower
manner (that is, on a scale of much larger typical length). As illustrated in detail in Appendix A, ϑ is
indeed a slow-varying function (in space) in symmetrical modes (in which ϑ = O (w/δ)), and again a
fast-varying function in antisymmetrical modes (in which ϑ = O (wδ)). The upper estimate of ϑ has
been adopted for all motions, in order to account also for nonsymmetrical modes of cables supported at
different levels.

By using previous the estimates in (11) and (12) and retaining only the dominant terms, we obtain a
set of reduced equations. Returning to dimensional form, they read

EA
(
u′

− κ̄v
)′

+ ba1 − cu u̇ − mü = 0,

EA κ̄(u′
− κ̄v)+ T̄ v′′

+ ba2 − cv v̇− mv̈ = 0,

T̄w′′
+ ba3 − cwẇ− mẅ = 0,

G Jϑ ′′
− E I κ̄2ϑ + (E I + G J )κ̄w′′

+ ca1 − cϑ ϑ̇ − J1ϑ̈ = 0,

(16)

with boundary conditions

u = 0, v = 0, w = 0, G J (ϑ ′
+ κ̄w′)= 0 at s = 0, `. (17)

The first three equations in (16) are identical to those of the flexible cable [Lee and Perkins 1992]. The
fourth (16) is also known in the literature, since it represents the moment equilibrium around the tangent
of a planar circular arch [Lee and Chao 2000]. It follows directly from Equations (3), (5)4 and (6),
since all its terms, being of the same order, were retained in the analysis. In spite of this apparently
simplistic result, and as a major finding of this paper, Equations (16) prove that the perfectly flexible
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cable and the twisting of a circular arch are consistent models. In other words, neglecting bending effects
in translational equilibrium, while retaining them in rotational equilibrium, does not entail ordering
violation from an asymptotic point of view.

From (16) it follows that, if the body forces are independent of ϑ or even zero (as happens in free
vibrations), the translational motion is independent of ϑ , which is therefore a passive variable, slave to
translations; whereas, if the body forces depend on ϑ , as in the aerodynamic case, the twist angle does
affect the dynamics of the body.

The reduced equations (16) inconsistently appear to be non-self-adjoint in the elastic part. Indeed, the
symmetry of the differential operator has been destroyed by the neglecting of the term (E I +G J )κ̄(ϑw′)′

in the out-of-plane equation of motion (16)3, compared to the dominant term T̄w′′. However, this incon-
sistency turns out to be only of formal type, as has been checked numerically (see Section 6.1); it can
easily be removed by reintroducing the small term.

Equations (16) are accompanied by the boundary conditions (17); equations expressing the vanishing
of the bending moments have been ignored, consistently with the approximation adopted, which does
not permit description of the boundary layers.

3.2. Static condensation. It is well known that, in the framework of parabolic cable theory, the tangential
inertia force −mü (and the damping force cu u̇) can be neglected in the prevalently transversal motions,
since the longitudinal natural frequencies are much higher than the transversal ones (quasisteady stretch-
ing). This allows one to statically condense the tangent displacement u by expressing it as an integral of
the transverse displacement v:

u(s, t)= κ̄

( ∫ s

0
v(ξ, t)dξ −

s
`

∫ `

0
v(ξ, t)dξ

)
, (18)

where ba1 = 0 has been considered for simplicity.
Here we apply an analogous procedure to the equation (16)4 governing the twist. First, observe that the

squared torsional frequencies of a single cable are much higher than the transversal ones. For example,
for the commonly used strand cables, which are relatively soft in torsion, this ratio is of the order of
10−2 (a case study is discussed in Section 6). The inertia couple −J1ϑ̈ and the damping couple cϑ ϑ̇
are neglected in (16)4, and ϑ is obtained in integral form (quasisteady twisting). Taking ca1 = 0 for
simplicity, we obtain

ϑ(s, t)= −
G J + E I
√

G J E I

∫ s

0
w′′(ξ, t) sinh [k(s − ξ)] dξ + A cosh ks + B sinh ks, (19)

where we have set k := κ̄
√

E I/G J and the arbitrary constants A and B are determined by the boundary
conditions in the second line of (8).

4. Aerodynamic forces

Modeling aerodynamic loads is a very difficult task, often handled in the literature under simplifying
hypotheses. The most popular model adopted for the structure is the unbounded rigid cylinder; however,
the iced cable problem adds further difficulties, due to the curvature of its centerline and the random
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variation of the section. To tentatively tackle the problem, a simple model is adopted here, by introduc-
ing the following assumptions: (a) quasisteady theory [Blevins 1990] is believed applicable, according
to which the loads acting on the moving body at a certain instant are identical to those exerted on
the body at rest in the same position; (b) the curvature of the cable is negligibly small; (c) loads are
evaluated in the current configuration C, by accounting for the twist angle ϑ , but neglecting the smaller
flexural rotations ϑ2,3 = O (ϑδ) (remember Equations (2) and (13)2), which, according to the so-called
cosine rule [Strømmen and Hjorth-Hansen 1995], have small influence; (d) the ice is assumed to be
uniformly distributed along the cable, consistently with the hypothesis of planar reference configuration;
(e) aerodynamic couples are neglected.

Now consider a wind flow of mean velocity U = Uaz , blowing horizontally and normally to the initial
(no wind) planar configuration of the cable (Figure 2, left). Three different attitudes of the cross-section
in its own plane are considered (Figure 2, right): (a) the initial configuration C0 (axes a20, a30 ≡ az), in
which the cable is only subjected to gravity; (b) the reference configuration C̄ (axes ā2, ā3), in which
the cable is also loaded by (uniform) static wind forces; (c) the actual configuration C (axes a2, a3), in
which the cable is also loaded by (non uniform) dynamic wind forces. The twist angle caused by the
static forces coincides, within small quantities of order O(δ2), with the angle of rotation ϕ experienced
by the cable passing from C0 to C̄ (see Figure 2), which depends only on the mean wind velocity U . The
twist angle ϑ caused by the dynamic forces depends, in addition to U , on the abscissa s and on time t .
The angle ϕ is assumed to be large; the angle ϑ is assumed to be small.

According to quasisteady theory, the flow exerts the following aerodynamic force on the section:

ba =
1
2ρa V r(cd(γ )V + cl(γ )a1 × V), (20)

ai0

āi

ax

az

ay

C0

C̄

−y(s)

U

U

ϕ

ϕ

ϕs

a20
ā2a2

a30
≡ az

ā3

a3

bd
bl

V

u̇

ϑ

ϑ
γ

G

Figure 2. Aerodynamic forces. Left: cable configuration. Right: transversal section,
mean wind velocity U, relative wind velocity V, angle of attack γ , drag force bd and lift
force bl .
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where ρa is the air density, V is the relative velocity of the wind with respect to the section, V = ‖V‖

its modulus, and cd and cl two aerodynamic coefficients, called of drag and lift, respectively. These
coefficients depend on the shape of the section and on the angle of attack,

γ := − arcsin
(V

V
· a2

)
, (21)

that is, the angle between V and a reference material axis, taken as a3 here. The two components of ba ,
along-wind bd and cross-wind bl , are usually known as drag and lift forces, respectively; see Figure 2,
right.

Equations (20) and (21) allow one to evaluate the force ba once the relative velocity V is known. If the
section underwent only a translation, the relative velocity would be easily obtained as V = U− v̇ā2 − ẇā3.
In contrast, a nonvanishing twist velocity ϑ̇ entails some difficulties, since V becomes a function of the
point P on the boundary. To overcome the problem, the notion of characteristic radius [Blevins 1990]
has been introduced in the literature, which consists of selecting a special point Pc on the boundary of
the section, in which to evaluate a “characteristic relative velocity” Vc, to be attributed to all the points
of the section. The problem at hand, however, is simpler. Indeed, the ratio between the velocity of
any point of the boundary due to the twist and the velocity of the centerline is of the order O(ϑ̇r/ẇ)=

O(ϑ̇∗%/ẇ∗). Since, by Equation (13)2, O(ϑ̇∗/ẇ∗)≤ 1/δ, the previous contribution is at most of the order
O (%/δ)= O(δ2), and therefore it is negligible. Hence, the twist velocity ϑ̇ has practically no effects on
the aerodynamic forces of cables not having evanescent sag. In contrast, the twist angle ϑ does affect
the forces via the angle of attack γ ; consequently ba = ba(ϑ, v̇, ẇ;ϕ(U ),U ).

By letting V = U − v̇ā2 − ẇā3 in (20) and (21) and linearizing these equations in v̇, ẇ and ϑ , we get

V = U
(

1 −
v̇

U
sinϕ−

ẇ

U
cosϕ

)
, (22)

γ = −ϕ−ϑ +
v̇

U
cosϕ−

ẇ

U
sinϕ. (23)

Equation (23) shows that when C approaches C̄, that is, when ϑ, v̇, ẇ approach zero, the angle γ ap-
proaches −ϕ. Hence, by expanding the aerodynamic coefficients cα(γ ) (α = d, l) around γ = −ϕ, one
has

cα(γ )= c̄α + (γ +ϕ)c̄′

α +
1
2(γ +ϕ)2c̄′′

α + · · · , α = d, l, (24)

where c̄α, c̄′
α, . . . , are the values assumed by cα and its derivatives at C̄. Finally, by substituting (22)–(24)

into (20) and projecting this last equation onto the ā2 and ā3 axes, the following force components are
derived:

ba2 = b̄a2(ϕ)+ c2ϑ(ϕ)ϑ + c2v(ϕ)v̇+ c2w(ϕ)ẇ,

ba3 = b̄a3(ϕ)+ c3ϑ(ϕ)ϑ + c3v(ϕ)v̇+ c3w(ϕ)ẇ.
(25)

In these equations, the b̄ai are the static forces, and ci j are coefficients depending on cd , cl and their
derivatives with respect to γ , all evaluated at C̄; they are reported in Appendix B.

5. Equilibrium path and stability

Consider the cable in the equilibrium reference configuration C̄, in which it is loaded by its own weight
−mga y , g being the gravity acceleration, and by the steady-state part b̄a(ϕ,U ) of the aerodynamic force.
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Since, by hypothesis, C̄ is planar, equilibrium requires that the resultant force b̄(ϕ,U ) := b̄a(ϕ,U )−
mga y lies in the plane of the cable. By enforcing the condition b̄(ϕ,U ) · ā3 = 0 (vanishing of the force
component along the binormal direction), we obtain, since a y · ā3 = − sinϕ,

sinϕ = −
b̄a3(ϕ,U )

mg
.

This equation implicitly defines the nonlinear, nontrivial equilibrium path ϕ = ϕ(U ).
The stability of the equilibrium of a generic point of this path is governed by the incremental equations

of motion linearized around the reference configuration, namely (16), together with the relevant boundary
conditions. Taking into account (18) and (19) for the tangential displacement and twist angle, and (25)
for the aerodynamic forces, the problem becomes

T̄ v′′
− EA

κ̄2

`

∫ `

0
vds + c2ϑϑ + ĉ2v v̇+ c2wẇ = mv̈,

T̄w′′
+ c3ϑϑ + c3v v̇+ ĉ3wẇ = mẅ,

ϑ(s, t)= −
G J + E I
√

G J E I

∫ s

0
w′′(ξ, t) sinh

(
k(s − ξ)

)
dξ + A cosh ks + B sinh ks,

v = 0, w = 0, ϑ ′
+ κ̄w′

= 0 at s = 0, `,

(26)

where the coefficients ĉ2v and ĉ3w include structural damping (see Appendix B). All the coefficients ci j

depend on the wind velocity. Equations (26) represent a linear eigenvalue problem, of non-self-adjoint
type, due to the presence of dissipative (velocity-dependent) and circulatory (position-dependent) forces.
It admits infinite solutions of type v(s, t)= v̂(s)eiλt , w(s, t)= ŵ(s)eiλt , where the eigenvalues λ depend
on the velocity U . For small U we have Re λ < 0 for any λ, so C̄ is a stable equilibrium configuration.
At a critical wind velocity Uc, however, the couple of complex conjugate eigenvalues having maximum
real part crosses the imaginary axes: max Re λ = 0. This circumstance causes loss of stability of the
equilibrium through a Hopf bifurcation, from which a limit cycle arises, of stable (supercritical, U ≥ Uc)
or unstable (undercritical, U ≤ Uc) kind.

To solve the boundary value problem (26) we follow a Galerkin approach, in which the in-plane (φv j )
and out-of-plane (φwk , φϑk ) eigenfunctions of the associated Hamiltonian problem (ci j = 0) are taken as
trial functions: ϑ(s, t)

v(s, t)
w(s, t)

 =

m∑
j=1

 0
φv j

0

 q i
j +

n∑
k=1

φθk

0
φwk

 qo
k , (27)

where q i
j , j = 1, . . . ,m, are the unknown amplitudes for the in-plane trial functions and qo

k , k = 1, . . . , n,
are the unknown amplitudes for the out-plane trial functions. By using standard methods, we obtain the
algebraic eigenvalue problem

Mq̈ + Cq̇ + (K + H)q = 0, (28)

where q = (q i
j , qo

k ) is the m + n-vector of the Lagrangian parameters, and M, C, K and H are the mass,
damping (structural plus aerodynamic), stiffness and circulatory matrices, respectively. These are found
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to be block-diagonal, due to symmetric-antisymmetric character of the eigenfunctions. Their coefficients
are reported in Appendix C for m = n = 1.

6. Numerical results

A numerical analysis has been performed on a sample cable, already analyzed in the literature [Luongo
and Piccardo 1998; Yu et al. 1993a; 1993b], having an axial stiffness EA = 29.7 × 106 N, a torsional
stiffness G J = 159 Nm2, a diameter D = 0.0281 m, a length `= 267 m, a sag d = 6.18 m and damping
ratio coefficients equal to 0.44%; moreover, a bending stiffness E I = 2100 Nm2 has been assumed,
consistently with experimental observations on several types of cables with sufficiently high axial tension
and small curvature values [Hong et al. 2005]. According to these values, the cable is initially close to
the first cross-over point [Irvine and Caughey 1984]. The squared ratio between the transversal frequency
ωv and the torsional frequency ωϑ (evaluated for the string and the shaft, respectively), is(

ωv

ωϑ

)2

=
T̄

G J
J1

m
' 1.5 · 10−2,

thus justifying the assumption of quasisteady twisting.

6.1. Model validation. A preliminary investigation has been conducted to validate the model. First,
the results furnished by the reduced equations of motion (16) and by the complete equations (7) have
been compared, in order to numerically check the accuracy of the approximation introduced. A finite-
difference analysis has been performed by the algorithm bvp4c in MATLAB to evaluate: (a) the static
response of the cable to uniformly distributed forces acting orthogonally to the planar configuration C0

(Figure 2, left) and, (b) the modal shape assumed by the cable in its first and second out-of-plane normal
modes. The results in terms of displacements w, twist ϑ and out-of-plane bending κ2 are displayed in
Figure 3 for static analysis and Figure 4 for dynamic analysis.

Very small differences are furnished by the two models almost everywhere, except for the bending
close to the constraints, where, as already noted, the boundary layer is lost using the simplified model.
The frequencies computed by both complete and reduced model are ω1 = 1.40 rad/s, ω2 = 2.80 rad/s,
with differences lower than 0.2%.

The question raised about the non-self-adjointness of the reduced elastic operator was then addressed.
It entails that, while out-of-plane displacements w trigger twist rotations ϑ , on the contrary the latter do
not force the former. The missing term, believed small, was then reintroduced into the reduced equation,
and a static torque applied at one end of the cable, in order to observe out-of-plane displacements. These,
however, turned out to be very small, namely wmax/(ϑmaxd)= 8 · 10−9, confirming the accuracy of the
reduced model. It is interesting to observe that, in this problem, the bending moment M2 equilibrating
the derivative of the torque M ′

1 (Equation (5)4) is almost completely induced by the twist angle ϑ , namely
M2 ' E I κ̄ϑ (Equations (6)3 and (3)2), that is, the cable remains planar.

Finally, the Galerkin approach (Equations (27)–(28)) has been tested in the evaluation of the critical
wind velocity and corresponding critical mode. The exact solution, carried out by the finite-difference
analysis, and the approximate solution, obtained by using just one test function for in-plane and out-of-
plane motions (m = n = 1), have been compared for the sample cable CS2 described further on (with
d = 3 m and structural damping equal to 0.44%). The first critical velocity is practically coincident in the
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Figure 3. Static response to uniformly distributed forces (dots: complete model; contin-
uous line: reduced model).

two different approaches (about 6.2 m/s). Figure 5 highlights the excellent agreement between critical
modes obtained from complete and reduced models: the small differences in the twist angle may be put
down to static condensation.

6.2. Parametric analysis. A parametric analysis has been conducted to detect the condition of the in-
cipient galloping of cables. Two different U-shaped conductors have been taken into account, already
considered in the literature: a cross-section with the symmetry axis placed on az-direction (CS1 in the
sequel), having its maximum ice eccentricity opposite to the mean wind (m = 1.80 kg/m, ice included;
see [Yu et al. 1993b]), and a cross-section with the symmetry axis rotated through −44.4◦ with respect to
az-direction (CS2 in the sequel), having greater ice thickness (m = 2.00 kg/m, ice included; see [Tunstall
1989]). In both cases the specified configuration is the most prone to galloping. It should be noted that,
in the proposed theory, this position corresponds to no-wind conditions since the angle of attack γ is also
statically varying through the angle of rotation ϕ; see Equation (23). Therefore, when galloping actually
occurs, the cable cross-section is rotated from the more dangerous initial position.

At the lower level, the displacement field v(s, t), w(s, t) and ϑ(s, t) are approximated by the first sym-
metric in-plane φv(s) and out-of-plane (φw(s), φϑ(s)) eigenfunctions of the corresponding Hamiltonian
system. Figure 6 shows the nonlinear equilibrium path ϕ = ϕ(U ) for the two different cross-sections
in the basic case, and the changes in the prestress T̄ due to the static loads. Differences are due to
aerodynamic coefficients and to cable mass. When the mean wind velocity increases, the rotation soon
achieves relevant values and the prestress is subjected to nonnegligible alterations. The conditions of
incipient instability are examined by evaluating the real part of the two couples of complex conjugate
eigenvalues for the discretized system. The objective is to point out the possible role of the dynamic
twist angle ϑ (that is, the circulatory matrix H) on the critical wind velocity Uc. For both cross-sections,
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Figure 7 shows the real part of the critical eigenvalue considering (continuous lines) or neglecting (dashed
lines) the circulatory matrix H. For CS1 (Figure 7, left), the equilibrium configuration C̄ loses stability
at the first bifurcation point B1, then it regains stability at the second bifurcation point B2. Differences
in the two models are small and slight influence occurs on point B2. Concerning CS2 (Figure 7, right),
the circulatory matrix has again quantitatively small influence, but it is decisive to the occurrence or not
of both bifurcations.

It was previously found that the dynamic twist ϑ is much higher in symmetric modes than in anti-
symmetric ones. In order to quantify these results, the nonzero coefficients h12 and h22 of the matrix
H obtained by the Galerkin procedure for m = n = 1 (Appendix C), and evaluated for symmetric and
antisymmetric modes, were compared; see Figure 8. Three values of d = di were considered to explore the
situation of almost slack (d3 = 15 m) and almost taut (d1 = 3 m) cable, beside the basic case (d2 = 6.18 m),
maintaining the original length ` = 267 m. In the range of the examined velocities, concerning the
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Figure 4. First (left) and second (right) out-of-plane normal mode (dots: complete
model; continuous line: reduced model).
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antisymmetric modes, the effective influence of the dynamic twist seems to be nonnegligible only for
high values of the sag, close to the limits of the proposed theory. By contrast, as regards symmetric
modes, the dynamic twist appears remarkable when the curvature (sag) is sufficiently small.

To investigate this aspect with its implications for the system stability, the previous examples related
to symmetric modes are reconsidered with suitable changes in mechanical and aerodynamic parameters.
Concerning CS1, a reduction of sag and an increase of damping mean that a cable, that is unstable when
ignoring the dynamic torsion, is actually stable (Figure 9, left). Moreover, starting the analysis with a
cross-section slightly rotated (for example, −1◦) as regards the position more prone to galloping, the cable
cross-section reaches the most dangerous attitude for instability in proximity of the bifurcation points.
In this way, bifurcations in both the solutions exist and appreciable differences appear (Figure 9, right).
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Figure 7. Real part of the critical eigenvalue for CS1 (left) and CS2 (right). Thick lines
are used for results obtained with the complete model; dashed lines, for those obtained
neglecting the circulatory matrix H.

Even larger alteration can be obtained with further increases in the damping ratio. In these latest examples,
the contribution of dynamic torsion improves the system stability, but this condition does not appear as
a general rule. The influence of dynamic torsion is still more pronounced on the CS2. Maintaining the
basic sag and considering an initial rotation of the cross-section equal to −47◦ (instead of the basic value
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Figure 9. Real part of the critical eigenvalue of the CS1: left, d = 3 m; right, d =

3 m and sectional symmetry axis rotated through −1◦ in no-wind conditions (damping
coefficients equal to 0.65%). Continuous lines, complete model; dashed lines, matrix H
neglected.

of −44.4◦) differences between the two bifurcation points are found immediately (Figure 10, left). If
the role of the torsion is exalted by decreasing the sag (Figure 10, right), large alterations of the critical
wind velocities appear.
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Repeating previous investigations of stability of the antisymmetric modes, qualitatively similar behav-
ior has been obtained, with critical wind velocities equal to, smaller or greater than the critical velocities
of symmetric modes. Sometimes, antisymmetric modes always turned out to be stable, since the relevant
eigenvalues approach the imaginary axis and then veer away without crossing it. Most importantly, in all
the examples considered (not reported here for brevity), the influence of dynamic twist ϑ on the system
stability resulted negligible, according to previous theoretical findings.

7. Conclusions

The aim of this paper concerns the formulation of a consistent cable-beam model able to take into account
twist angle effects, which can be very important in determining the aeroelastic behavior of these kinds
of structure. Several points are worth highlighting.

A consistent model of a linear, curved, prestressed, no-shear, elastic cable-beam has been formulated.
Reduced equations of motion have been deduced through a suitable magnitude order analysis; this has
made it possible to clarify the different role of the dynamic twist angle on symmetrical and antisym-
metrical modes. As a major result, the reduced equations of motion are identical to those of a flexible
cable, with an additional equation in the twist angle, which therefore represents a passive variable. The
aerodynamic forces have been evaluated taking into account both the angle of static rotation induced by
the mean wind and the dynamic twist angle.

Numerical results have been obtained using a Galerkin procedure with translational and twist eigen-
functions, in order to study conditions of incipient instability. It has been proved that the dynamic twist
angle is able to influence the critical conditions of the system considerably, through the circulatory matrix,
when symmetrical modes are taken into account, especially for small values of sag. The presence of twist
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angle may imply the appearance or disappearance of criticality, and may lead to remarkable differences in
aeroelastic critical velocities. These alterations are more pronounced when a cross-section is considered
in an initially nonsymmetric position.

Appendix A. Magnitude order of the twist angle

The linearized nondimensional equation (11)4 is considered, in which ca1 = 0, κ = const and β = 1 are
assumed. Moreover,

w =

{
cos(nπs) n = 1, 3, . . .

sin(nπs) n = 2, 4, . . .
s ∈

[
−

1
2 ,

1
2

]
(29)

is taken, for symmetric and antisymmetric modes, respectively. The equation admits the following ap-
proximate solution:

ϑ '

{
A − 2κ cos(nπs) n = 1, 3, . . . ,

Bκs − 2κ sin(nπs) n = 2, 4, . . . ,

since κ�1 and therefore cosh κs '1 and sinh κs 'κs in the interval of interest. By requiring ϑ ′
+κw′

=0
at s = ±1/2, the arbitrary constants are found to be A = ±2nπ/κ, B = ±nπ , from which, since κ ' δ

and for n small:
ϑ

w
=

{
O

( 1
δ

)
n = 1, 3, . . .

O(δ) n = 2, 4, . . .
(30)

Using (30), the first and second derivatives of ϑ are found as in (15), both for symmetric and antisym-
metric modes. By summarizing, since the symmetric mode is slow-varying in space, in order to satisfy
boundary conditions amplitude A must be large; on the other hand, since the antisymmetric mode is
fast-varying in space, amplitude B must, on the contrary, be small.

Appendix B. Static wind forces and aerodynamic coefficients

The static wind force components b̄ai and the coefficients ci j expressing the dynamic wind force compo-
nents bai − b̄ai , all appearing in Equations (25), are

b̄a2 =
1
2ρaU 2r (−cl cosϕ+ cd sinϕ) ,

c2ϑ =
1
2ρaU 2r

(
c′

l cosϕ− c′

d sinϕ
)
,

c2v =
1
4ρaUr

(
−3cd − c′

l + (cd − c′

l) cos 2ϕ+ (c′

d + cl) sin 2ϕ
)
,

c2w =
1
4ρaUr

(
−c′

d + 3cl + (c′

d + cl) cos 2ϕ− (cd − c′

l) sin 2ϕ
)
,

b̄a3 =
1
2ρaU 2r (cd cosϕ+ cl sinϕ) ,

c3ϑ = −
1
2ρaU 2r

(
c′

d cosϕ+ c′

l sinϕ
)
,

c3v = −
1
4ρaUr

(
−c′

d + 3cl − (c′

d + cl) cos 2ϕ+ (cd − c′

l) sin 2ϕ
)
,

c3w = −
1
4ρaUr

(
3cd + c′

l + (cd − c′

l) cos 2ϕ+ (c′

d + cl) sin 2ϕ
)
.
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To include structural damping, the coefficients c2v and c3w are then modified:

ĉ2v = c2v + cv, ĉ3w = c3w + cw.

Appendix C. Coefficients of the algebraic eigenvalue problem

When m = n = 1 in the algebraic problem (28), the Langrangian parameters vector is q = (q i
1, qo

1 ). The
mass matrix is

M =

[
m11 0

0 m22

]
,

where

m11 = −m
∫ `

0
φ2
v1

ds, m22 = −m
∫ `

0
φ2
w1

ds.

The structural stiffness matrix is

K =

[
k11 0
0 k22

]
,

where

k11 = T̄
∫ `

0
φv1φ

′′

v1
ds −

EA κ̄2

`

∫ `

0

[∫ `

0
φv1ds

]
φv1ds, k22 = T̄

∫ `

0
φw1φ

′′

w1
ds.

The circulatory matrix is

H =

[
0 h12

0 h22

]
,

where

h12 = c2ϑ

∫ `

0
φv1φθ1ds, h22 = c3ϑ

∫ `

0
φw1φθ1ds

The damping matrix C, containing both structural and aerodynamic damping, is

C =

[
c11 c12

c21 c22

]
, (31)

where

c11 = ĉ2v

∫ `

0
φ2
v1

ds, c21 = c3v

∫ `

0
φv1φw1 ds, c12 = c2w

∫ `

0
φv1φw1 ds, c22 = ĉ3w

∫ `

0
φ2
w1

ds.

In particular, structural damping is introduced directly as modal damping:

c11 = c2v

∫ `

0
φ2
v1

ds + 2ξ1
√

m11k11, c22 = c3w

∫ `

0
φ2
w1

ds + 2ξ2
√

m22k22,

where ξ1, ξ2 are the modal damping factors.
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STRESS ANALYSIS OF COMPOSITE CYLINDRICAL SHELLS WITH AN
ELLIPTICAL CUTOUT

ERKAN OTERKUS, ERDOGAN MADENCI AND MICHAEL P. NEMETH

A special-purpose, semianalytical solution method for determining the stress and deformation fields in a
thin, laminated-composite cylindrical shell with an elliptical cutout is presented. The analysis includes
the effects of cutout size, shape, and orientation; nonuniform wall thickness; oval cross-sectional eccen-
tricity; and loading conditions. The loading conditions include uniform tension, uniform torsion, and
pure bending. The analysis approach is based on the principle of stationary potential energy and uses
Lagrange multipliers to relax the kinematic admissibility requirements on the displacement represen-
tations through the use of idealized elastic edge restraints. Specifying appropriate stiffness values for
the elastic extensional and rotational edge restraints (springs) allows the imposition of the kinematic
boundary conditions in an indirect manner, which enables the use of a broader set of functions for
representing the displacement fields. Selected results of parametric studies are presented for several
geometric parameters that demonstrate that this analysis approach is a powerful means for developing
design criteria for laminated-composite shells.

1. Introduction

Cutouts in cylindrical shell-type components are unavoidable in the construction of aerospace structures.
This fact is significant because the structural failure of these components usually begins near the cutout
due to high stress concentrations that initiate the formation of cracks. Hence, a cutout can trigger a local
failure at a load level lower than the global failure load of a corresponding shell without a cutout. As a
result, preliminary design sizing of a cylindrical shell with a cutout is often based on the magnitude of the
stress concentrations near the cutout. Therefore, an accurate assessment of the stress concentrations in a
given shell subjected to various types of loading and support conditions is essential to the development of
safe and reliable designs. Moreover, validated special-purpose analysis tools that enable rapid parametric
studies would be very valuable to structural designers and for development of new design criteria and
design concepts.

Several analytical, numerical, and experimental studies have been conducted during the past sixty
years to determine stress distributions in cylindrical shells with a cutout and subjected to various types of
loadings, such as axial tension and compression, torsion, and internal and external pressure. Pioneering
analytical work was conducted by [Lurie 1946; 1947] to investigate the effects of axial tension, internal
pressure, and shell curvature on the stress concentrations around a circular cutout. Many years later,

Keywords: cylindrical, composite, cutout, stress.
The authors wish to dedicate this paper to the memory of Dr. James H. Starnes, Jr. of the NASA Langley Research Center.
Dr. Starnes was an internationally recognized expert in aerospace structures technology and a proponent of the development of
special-purpose, design-oriented analysis methods such as that presented herein.
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Figure 1. Geometry, coordinates systems, and applied edge tractions for an oval cylin-
drical shell with an elliptical cutout and nonuniform wall thickness.

analytical studies were presented by [Lekkerkerker 1966; Van Dyke 1965; Ashmarin 1966; Murthy et al.
1974; Guz et al. 2001; Van Tooren et al. 2002] that further investigated the effects of various factors on the
stress concentrations around a cutout in a cylindrical shell. Similarly, experimental investigations have
been conducted by [Tennyson 1968; Starnes 1972; Pierce and Chou 1973; Zirka and Chernopiskii 2003;
Bull 1982], and numerical studies have been conducted by [Liang et al. 1998; Shnerenko and Godzula
2003; Storozhuk and Chernyshenko 2005]. Hicks [1964] and Ebner and Jung [1972] summarized the
results obtained from several of these studies and provided extensive lists of references related to this
problem. Most of these previous studies are for isotropic cylindrical shells with a circular cutout. Only
a few of these studies, such as those presented by Pierce and Chou [1973] and by Murthy et al. [1974],
address the effects of cutout shape (elliptical cutouts) on the stress concentrations.

Mitigation of high stress concentrations by tailoring shell wall thickness, material orthotropy and
anisotropy, and cutout reinforcement is also an important consideration in the design of aerospace struc-
tures made of lightweight composite materials. Likewise, the potential for using shells of noncircular
cross section are relevant to fuselage-like structures. However, only a few studies have considered these
effects. For example, the influence of variation in wall thickness on the stresses in axially loaded com-
posite cylindrical shells without a cutout has been investigated by [Li et al. 1995]. Although numerous
analyses exist in the literature on the analysis of shells with circular cross sections, only a few include
noncircular cross sections. Sheinman and Firer [1994] provided an analytical investigation of stresses in
laminated cylindrical shells with arbitrary noncircular cross sections. More recently, Hyer and Wolford
[2002] and Hyer et al. [2003] studied the effect of noncircular cross sections on damage initiation and
progressive failure in composite cylinders by employing the finite element method.
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The objective of the present study is to present a special-purpose analysis for a laminated-composite
cylindrical shell with an elliptical cutout that can be used to investigate rapidly and parametrically the
effects of shell curvature, cutout size, shape, and orientation, and ply lay-up on stress-resultant concen-
trations near the cutout. The analysis is applicable to thin-walled cylindrical shells with nonuniform wall
thickness, noncircular (for example, oval) shell cross-section, which are subjected to tension, torsion,
and bending loads as illustrated in Figure 1.

To accomplish this objective, an overview of the analysis is presented first. Next, the boundary value
problem is defined along with the kinematics and stress-strain relations used in the analysis. Then,
the derivation of the equations governing the response and numerical procedure are described. Finally,
selected numerical results for oval and circular cylindrical shells with either circular or elliptical cutouts
and subjected to either tension, torsion, or pure-bending loads are presented.

2. Analysis overview

The analytical approach used herein permits the determination of the pointwise variation of displacement
and stress components. It is based on the principle of stationary potential energy, but utilizes local and
global functions that are not required to satisfy the kinematic boundary conditions directly. Thus, the
choice of local and global functions is not limited by a particular type of kinematic boundary condition.
The kinematic boundary conditions are imposed by employing the Lagrange multiplier method. Both
local and global functions are used, in contrast to the traditional approach, to enhance the robustness
of the analysis method. In particular, the local functions are used to capture rapidly varying stress and
strain gradients and local deformations near a cutout. Toward that goal, Laurent series are used for the
local functions and are expressed in terms of the mapping functions introduced by [Lekhnitskii 1968].
Fourier series are used for the global functions and are used to capture the overall deformation and
stress fields. The kinematic admissibility requirements on the local and global functions are relaxed by
defining the edges of the shell such that they are supported by extensional and rotational springs. Zero-
valued displacement and rotation kinematic boundary conditions are enforced in an indirect manner by
specifying values for the spring stiffnesses that are large compared to the corresponding shell stiffnesses.
This approach effectively yields a prescribed kinematic boundary condition in the limit as the relative
stiffness of the spring becomes much greater than the corresponding shell stiffness. Similarly, values
for the spring stiffnesses can be selected that correspond to a given uniform elastic restraint along an
edge, similar to that provided by an end ring. This capability is important and useful, because in some
test fixtures or actual structures the edge supports may not be stiff enough to simulate a fully clamped
boundary condition, or flexible enough to simulate a simply supported boundary condition.

As suggested by [Li et al. 1995] and [Sheinman and Firer 1994], nonuniform variations in wall thick-
ness of a shell which lead to nonuniform laminate stiffnesses are represented using trigonometric series.
Specifically, nonuniform shell wall thickness is represented in the present study by perturbing the ply
thicknesses with a function that is periodic in either the longitudinal or the circumferential direction.
The variation in wall thickness is accounted for by adjusting the lamina properties, resulting in nonho-
mogeneous in-plane and bending stiffness matrices. The nonuniform shell curvature associated with
a noncircular cross section is represented by using trigonometric series for the coordinates of an oval
cross-section shell reference surface (1958). The aspect ratio, or out-of-roundness, of the cross section is
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represented in the analysis using an eccentricity parameter introduced by [Romano and Kempner 1962]
and later used by [Culberson and Boyd 1971; Chen and Kempner 1976]. This parameter is defined in
the subsequent section, and the aspect ratio, related to the eccentricity parameter, represents the ratio of
the minor axis to the major axis.

In the derivation of the equations governing the response, the total potential energy consists of the
elastic strain energy of the shell, the elastic edge restraints, and the potential energy of the applied loads.
The conditions that may arise from the choice of displacement approximations without any kinematic
restrictions are treated as constraint equations, and the potential energy arising from constraint reac-
tions is invoked into the total potential energy through the use of Lagrange multipliers. The equations
governing the shell response are obtained by enforcing the requirement that the first variation of the
total potential energy vanish. The evaluation of the area integrals appearing in the potential energy are
achieved numerically using a basic quadrature method in conjunction with standard triangulation of the
entire domain, as described by [Shewchuk 1996]. Solutions to the equations governing the response are
obtained using a standard Gaussian elimination procedure, which yields the generalized displacement
coefficients and thus, the stress and strain fields. The accuracy of the analysis depends on the number of
terms used for the functional representation of the displacement fields. As the number of terms increases,
the results converge to the exact solution.

3. Representation of shell geometry

The geometry of a thin-walled, noncircular, cylindrical shell of length L and with an elliptical cutout
located at the shell mid-length is shown in Figure 1. The origin of the global Cartesian coordinate
system, (x, y, z), is located at an end point of the longitudinal axis of the shell. As shown in Figure
1, the x-axis coincides with the longitudinal axis of the shell. The y- and z-coordinates span the cross-
sectional plane. A curvilinear coordinate system is also attached to the mid-surface of the cylindrical
shell. The coordinates of points in the longitudinal, circumferential (tangential), and normal-to-the-
surface (transverse) directions of the shell are denoted by (s1, s2, s3), and the corresponding unit base
vectors are {e1, e2, e3}.

Following [Romano and Kempner 1958], the noncircular cross section of the cylindrical shell is de-
fined as an oval with the coordinates y and z expressed as

y = R0
∑
modd

am(ξ) sin
ms2

R0
, z = R0

∑
modd

bm(ξ) cos
ms2

R0
, (1)

where ξ represents the eccentricity of the oval cross section and R0 is the equivalent radius of a circular
cylindrical shell that has the same circumference as that of the oval cylindrical shell. The circumferential
coordinate, s2, varies between 0 and 2πR0. The derivation of Equation (1) and the explicit forms of the
coefficients am(ξ) and bm(ξ) are given by [Madenci and Barut 2003].

As derived by [Romano and Kempner 1958], the coordinates y and x in Equation (1) can be related
to the radius of curvature of an oval-cross-section cylindrical shell R(s2, ξ) by

R(s2, ξ)=
R0

1 + ξ cos(2s2/R0)
. (2)
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Therefore, ξ = 0 implies no eccentricity and corresponds to a circular cross section with radius R0.
For positive values of the eccentricity parameter ξ , the z-coordinate becomes the major axis and the
y-coordinate becomes the minor axis. For negative values of ξ , the major and minor axes switch to the y-
and z-axes, respectively. The range of values of the eccentricity parameter ξ is bounded by −1< ξ < 1.

As shown in Figure 1, the cylindrical shell contains a cutout. The shape of this cutout is defined
such that if the shell is cut along a generator and flattened into a plane, the cutout becomes an ellipse,
with major and minor axes denoted by a and b, respectively. For simplicity and convenience, the cutout
is referred to herein as an elliptical cutout. Because the domain of the analysis shown in Figure 2
corresponds to a similar flat region, a subsequent mapping of the ellipse to a unit circle is possible,
which enables the use of Laurent series expansions for the local functions. Note that the special case of
a circular cutout is given by a = b.

In the flat analysis domain, the minor and major axes of the ellipse are aligned with a local coordinate
system, (x1, x2), whose origin is located at the center of the cutout and coincides with the origin of the
parameter grid (given by constant values of s1 and s2) that forms the curvilinear coordinates (s1, s2)

on the cylindrical shell mid-surface. The orientation of the elliptical cutout is arbitrary with respect to
the longitudinal shell axis. Hence, the orientation of the local x1-axis (major axis) of the cutout and
the longitudinal s1-axis of the cylindrical shell is denoted by the angle ψ . The elliptical coordinates α
and β, representing a family of confocal ellipses and hyperbolas, respectively, are utilized to obtain the
stress-resultant distribution in the direction tangent to the cutout boundary. The coordinate α is equal to
α0 = tanh−1(b/a) on the particular ellipse that corresponds to the elliptical cutout. The other coordinate,
β, varying from 0 to 2π , is known as the eccentric angle and is related to the (x1, x2) coordinate system
by x1 = a cosβ and x2 = b sinβ. The eccentric angle β is similar to the angle used for polar coordinates.

The symmetrically laminated cylindrical shells considered herein are made of K specially orthotropic
layers, and each layer has an orientation angle, θk , that is defined with respect to the s1-axis. Each layer
also has elastic moduli EL and ET , shear modulus GLT , and Poisson’s ratio νLT , where the subscripts
L and T represent the longitudinal (fiber) and transverse principal material directions, respectively.

Figure 2. Computational domain of a cylindrical shell with an elliptical cutout.
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As for the shell thickness variation, the nonuniform wall thickness of the shell is denoted by h(s1, s2),
and its variation is included by assuming that the thickness of each ply tk varies as a function of the
curvilinear coordinates of the form

tk(s1, s2)= tk0

(
1 − ε1 cos

2πm1s1

L
− ε2 cos

m2s2

R0

)
, (3)

where tk0 denotes the nominal thickness of the kth layer in the laminate, and the parameters (m1,m2) and
(ε1, ε2) respectively denote the wave numbers and the amplitudes of the periodic thickness variation, in
the longitudinal and circumferential directions. While the wall thickness of the shell is allowed to vary
across the shell surface, the aspect ratio of the plies through the thickness is maintained. In other words,
the thickness variation of each ply remains conformable to each other throughout the shell surface. A
periodic thickness variation in the longitudinal direction is obtained by setting ε1 6= 0 and ε2 = 0, and in
the circumferential direction by ε1 = 0 and ε2 6= 0. A shell with uniform thickness tk = tk0 is obtained
by setting ε1 = 0 and ε2 = 0.

4. Boundary conditions and external loads

To facilitate a general imposition of prescribed boundary tractions, displacements, or rotations; the edge
boundary, 0, of the shell is decomposed into 0 = 0(1)+0(2)+0(3). As shown in Figure 1, 0(1) and 0(2)
denote the external edge boundary of the cylindrical shell and 0(3) represents the traction-free internal
edge boundary around the cutout. The unit vector normal to an edge is represented by n. Throughout this
paper, a variable with the superscript * is treated as a known quantity, arising from the externally applied
loads or from prescribed displacements and rotations. Also, the subscripts n, s, and t denote the directions
normal, tangent, and transverse (through-the-thickness) to the boundary, respectively. The details of how
prescribed edge loads and displacements are imposed in the analysis are presented subsequently.

4.1. Prescribed edge loads. External loads are applied to a shell by specifying values for the positive-
valued stress resultants shown in Figure 1. More precisely, the membrane loads applied to the `th bound-
ary segment 0(`) are given by

N11 = t∗

n , N12 = t∗

s , (4)

where N11 and N12 are the axial and shear stress resultants, respectively, defined in the cylindrical coor-
dinate system. Likewise, shell-wall bending loads that are applied to the `th boundary segment are given
by

M11 = −m∗

n, M11,1 + 2M12,2 = t∗

t − 2m∗

s,2, (5)

where M11 and M12 are the pure bending and twisting stress resultants, respectively, defined in the
cylindrical coordinate system. Moreover, the left hand side of the second equation in Equation (5) is the
Kirchhoff shear stress resultant of classical shell theory.

As a matter of convenience, the analysis is formulated to permit in addition the specification of con-
centrated forces and moments that are transmitted to the ends of the shell as if through a rigid end ring,
as shown in Figure 3. At present, the concentrated force P∗

n , and the concentrated axial torque P∗
s are

included in the analysis. The force P∗
n is simulated in the analysis by specifying a uniform distribution of

the axial displacement, with the unknown magnitude 1n , and the torque P∗
s is simulated by specifying
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Figure 3. Application of a concentrated force through a rigid end-ring by using elastic
springs along a shell edge.

a uniform distribution of the tangential displacement, with the unknown magnitude 1s as∫
0(`)

N11d0 = P∗

n ,

∫
0(`)

N12d0 = P∗

s .

The analytical process used to ensure that the magnitudes of 1n and 1s correspond to the specified
values of P∗

n and P∗
s , respectively, is described in the following section and in Appendix A.

4.2. Prescribed edge displacements and rotations. Edge displacements and rotations are applied to a
shell by specifying values for the displacements and rotations shown in Figure 4 that correspond to the
positive-valued stress resultants shown in Figure 1. In particular, the axial and tangential displacements
u∗

n and u∗
s that are applied to the `th boundary segment 0(`) are given by

u1(n · e1)= u∗

n, u2[(e3 × n) · e2] = u∗

s .

Similarly, the transverse displacement u∗

3, and the rotation about an axis tangent to an edge ϑ∗
n which are

applied to the `th boundary segment are defined by

u3 = u∗

t , u3,1(n · e1)= ϑ∗

n .

As mentioned previously, these prescribed displacements are enforced through the use of elastic edge
restraints (springs) to relax kinematic admissibility requirements on the functions that are used to rep-
resent the displacement fields. The uniformly distributed extensional and rotational springs that are
attached to the shell edges in the normal, tangential, and transverse directions and are used to enforce
the kinematic boundary conditions are depicted in Figure 4.

Specifying appropriate stiffness values for the springs results in full or partial restraints along the shell
edges. A zero value of the spring stiffness corresponds to a traction-free edge condition. In contrast, a
value of the spring stiffness that is large compared to the corresponding shell stiffness effectively corre-
sponds to a prescribed zero-valued boundary displacement or rotation. This approach effectively yields a
prescribed kinematic boundary condition in the limit as the relative stiffness of the spring becomes much
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Figure 4. Types of uniformly distributed elastic spring supports that can be prescribed
along the edge of a cylindrical shell.

greater than the corresponding shell stiffness. Similarly, values for the spring stiffness can be selected
that correspond to a specified uniform elastic restraint along an edge, similar to that provided by a rigid
end ring. This capability is important and useful, because in some test fixtures or actual structures the
edge supports may not be stiff enough to simulate a fully clamped boundary condition or flexible enough
to simulate a simply supported boundary condition.

As depicted in Figure 4, the membrane displacements un and us , and the transverse displacement
ut = u3 along the `th boundary segment are restrained by extensional springs with stiffness values of Sn ,
Ss , and St in the directions normal, tangent, and transverse to the boundary, respectively. In addition to
the extensional springs, the edge rotations ϑn and ϑs along the `th boundary segment are restrained by
rotational springs with stiffness values of Jn and Js that correspond to rotation about axes tangent and
normal to the edge, respectively.

Extensional springs in the directions normal and tangent to the shell edge, with stiffness values of
sn and ss , are also used to simulate load introduction through a rigid end ring, as shown in Figure 3.
Specifying values for the spring stiffnesses sn and ss that are relatively large compared to the correspond-
ing shell stiffnesses causes the shell edge to behave as if a rigid end ring is attached, producing the
uniformly distributed displacements with the corresponding magnitudes 1n and 1s . The values for 1n

and 1s that correspond to the specified concentrated loads are determined by using a penalty parameter
approach. This approach causes the difference between the edge displacements of the shell and the
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unknown uniform rigid end ring displacements (un −1n) and (us −1s) to vanish while retaining the
corresponding potential energy of the applied concentrated loads P∗

n and P∗
s .

5. Kinematics and stress-strain relations

The kinematic equations used in the present study are based to a large extent on the assumptions of the
Love–Kirchhoff classical thin-shell theory. Specifically, the axial, circumferential (tangential), and nor-
mal (normal to the mid-surface) displacements of a generic point of the shell are denoted by U1(s1, s2, s3),
U2(s1, s2, s3), and U3(s1, s2, s3), respectively. The corresponding displacements of a generic point of the
shell mid-surface that share the same unit vector normal to the mid-surface are denoted by u1(s1, s2),
u2(s1, s2), and u3(s1, s2), respectively. In classical shell theory, these displacements are related by

U1(si )= u1(s1, s2)− s3β1(s1, s2), U2(si )= u2(s1, s2)− s3β2(s1, s2), U3(si )= u3(s1, s2),

where β1(s1, s2) and β2(s1, s2) are the mid-surface rotations about the s2 and s1 axes, respectively, as

β1(s1, s2)= u3,1(s1, s2), β2(s1, s2)= u3,2(s1, s2)−
1

R(s2)
u2(s1, s2),

in which a subscript after a comma denotes partial differentiation. The corresponding linear membrane-
strain displacement relations and the bending-strain displacement relations are given by

ε =

ε11

ε22

γ12

 =

 u1,1(
u2,2 +

1
R u3

)
(u1,2 + u2,1)

 , κ =

κ11

κ22

κ12

 =

 −u3,11

−
(
u3,22 − ( u2

R ),2
)

−2
(
u3,12 −

1
R u2,1

)
 . (6)

It is important to point out that the expression given for the change in surface twist due to deforma-
tion κ12 is that originally published by [Love 1888; Love 1944] for general shells, in terms of lines
of principal-curvature coordinates, and derived in the book by [Timoshenko and Woinowsky-Krieger
1959] for circular cylindrical shells. As indicated by [Bushnell 1984], the expression for κ12 vanishes
for rigid-body motions in contrast to the corresponding expression presented in Reissner’s version of
Love’s first approximation shell theory [Reissner 1941; Kraus 1967; Naghdi 1962]. Equation (6) and the
more general forms presented by [Bushnell 1984], are sometimes referred to as the Love–Timoshenko
strain-displacement equations. Justification for this terminology is given by [Chaudhuri et al. 1986].

The stress-strain relations used in the present study are those of the classical theory of laminated
plates and shells [Jones 1999], which are based on a linear through-the-thickness distribution of the
strain fields. For a thin, symmetrically laminated cylindrical shell, with variable wall thickness, the
relationship between the membrane and bending stress resultants and the membrane and bending strains
is expressed conveniently in matrix notation by

N = A(s1, s2)ε, M = D(s1, s2)κ . (7)

The membrane and bending stress resultants in Equation (7) are defined as

NT
=

[
N11 N22 N12

]
, MT

=
[
M11 M22 M12

]
. (8)
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It is important to reiterate that when shell wall thickness variations are present, the membrane and bending
stiffness matrices A(s1, s2) and D(s1, s2) are dependent on the curvilinear surface coordinates s1 and s2.

It is convenient here to combine the relations given in Equation (7) into the matrix form

s = Ce, (9)

where s, e, and C are defined as

sT
=

[
NT MT ]

, eT
=

[
εT κT

]
, C = C(s1, s2)=

[
A(s1, s2) 0

0 D(s1, s2)

]
. (10)

6. Equations governing the response

A general analytical approach to obtain the exact solution of the equilibrium equations for a laminated-
composite cylindrical shell with variable curvature is not mathematically tractable. Therefore, a semiana-
lytic variational approach based on the principle of stationary potential energy is used in the present study
to obtain numerical results. Because elastic edge restraints are used as a means to relax the kinematic
admissibility conditions on the assumed displacement functions, and because a rigid end ring capability
is used to impose shell-end force resultants, the potential energy consists of the elastic strain energy of
the shell and the elastic edge restraints and the potential energy of the applied loads. In particular, the
potential energy is expressed symbolically by π(q,1)= U (q)+�(q,1)+ V (q,1), in which U and
� represent the strain energy of the laminate and the elastic edge supports (springs), and V represents
the potential energy due to external boundary loads. Their explicit forms are presented in Appendix
A. The symbol q is the vector of unknown, generalized displacement coefficients, which arises from
the mathematical representation of the mid-surface displacement fields used in the variational solution
process. In particular, the mid-surface displacement fields are given symbolically by u1(q), u2(q), and
u3(q). The symbol 1 represents the vector of unknown edge displacements that arise from prescribing
end loads.

Subjected to the constraint equations that arise from the use of Lagrange multipliers, the equations
governing the shell response are obtained by enforcing the requirement that the first variation of the total
potential energy vanish. As discussed by [McFarland et al. 1972], because the constraint equations are
not functionally dependent on spatial coordinates s1 and s2, the equations governing the response can be
generated by modifying the total potential energy into the form

π∗(q,1,λ)= π(q,1)+ W (q,λ),

in which W is viewed as the potential energy arising from constraint reactions. In particular,

W (q,λ)= λT Gq = 0, (11)

where λ is the unknown vector of Lagrange multipliers and G is the known constraint coefficient matrix.
Substituting the specific expressions for U (q), �(q,1), V (q,1), and W (q,λ) that arise from ap-

proximation of the surface displacement field, and enforcing the requirement that the first variation of
the modified form of the total potential energy to vanish leads to

δπ∗
= δqT [

kqq q + Sqq q − sq11− f ∗
− T∗

+ GTλ
]
+ δ1T [

s111− sT
q1q − P∗

]
+ δλT Gq = 0,
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where the matrix kqq represents the stiffness matrix of the shell and requires evaluation of the correspond-
ing integrand over a doubly connected region (see Appendix A for details). The spring stiffness matrices
Sqq and s11 are associated with the deformation of the shell edges and displacement of the rigid end
ring, respectively. The spring stiffness matrix sq1 captures the coupling between the displacement of
the shell edges and the rigid end ring. The vectors f ∗, T∗, and P∗ arise from the prescribed boundary
displacements, external tractions and moments, and the concentrated forces applied to a rigid end ring,
respectively. For the arbitrary variations (δq, δ1, and δλ), the stationary condition requires that the
following equations must be satisfied:[(

kqq + Sqq
)
q − sq11− f ∗

− T∗
+ GTλ

]
= 0,

[
s111− sT

q1q − P∗
]
= 0, Gq = 0. (12)

It is convenient to express Equation (12) by the single matrix equation

K Q = F, (13)

where K and F represent the overall system stiffness matrix and the overall load vector, respectively.
These matrices have the general expanded form

K =

 K qq −sq1 GT

−sT
q1 s11 0T

G 0 0

 , F =

F∗

P∗

0

 ,

in which K qq = kqq + Sqq , and F∗
= f ∗

+ T∗. The vector of unknowns, Q, that appears in Equation
(13) is defined as QT

=
[
q 1 λ

]
. Solving for the vector of unknowns in Equation (13) yields all the

information needed to obtain a complete variational solution to a specific problem. The accuracy of a
solution depends on the number of terms included in the expressions for the local and global functions
representing the displacement fields and converges to the corresponding exact solution as the number of
terms increases.

6.1. Displacement-field representation. Representation of the mid-surface displacement field is a crit-
ical step in the variational solution to the problem. By relaxing the requirements for kinematic ad-
missibility, the mid-surface displacement fields are represented in the present study by a combination
of rigid-body modes, u Ri , and global and local functions, denoted by ūi and ¯̄ui , respectively, through
ui = u Ri + ūi + ¯̄ui , where the values of the index are given by i = 1, 2, 3. The explicit forms of the
displacement fields can be found in Appendix B. The rigid-body modes account for the overall or global
translation and rotation of the shell, and are selected so that they produce neither membrane strain nor
changes in shell curvature and twist. These terms are included for the completeness of the kinematics
of the cylindrical shell. The presence of appropriate displacement boundary conditions inherently elim-
inates the rigid-body motion. However, for cases where an insufficient number of kinematic boundary
conditions are imposed, these rigid-body terms need to be eliminated, as discussed in detail in Appendix
C. Following the complex variable solution techniques used in the theory of elasticity, the local func-
tions are expressed in terms of robust, uniformly convergent Laurent series (used for doubly connected
regions) to enhance capturing of steep stress gradients and deformations near the cutout. Complete
sets of trigonometric expansions are used primarily to capture the overall global response of the shell.
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Here, completeness means that all the fundamental waveforms needed to construct the typical overall
deformations of a shell are included in the set.

For convenience, the displacement representations are rewritten in matrix form as

ui=1,2 = V T
RiαR + V̄ T

i ci +
¯̄V T

i α, u3 = V T
R3αR + V̄ T

3 c3 +
¯̄V T

3 β. (14)

An even more useful, compact form is given by

ui = V T
i q, (15)

where the vector of unknown displacement coefficients, q, is defined by

qT
=

[
αT

R cT
1 cT

2 cT
3 αT βT ]

. (16)

In Equation (16), the vector αR contains the unknown coefficients for the rigid-body motion of the shell,
and the vectors α and β contain the real and imaginary parts of the unknown coefficients αnm and βnm ,
respectively, that are associated with the local functions. The vectors ci , where i = 1, 2, 3, contain the
real-valued unknown coefficients ci(mm) associated with the global functions. The explicit forms used
herein for the unknown coefficient vectors αR , ci , α, and β that appear in Equation (14) along with the
vector functions V i (and the corresponding subvectors V Ri , V̄ i , and ¯̄V i ) are given in Appendix B.

In addition to the general representation of the shell surface-displacement fields, similar matrix expres-
sions are needed for the displacements and rotations of points on the shell boundary. In the present study,
the boundary displacement vector u0 is introduced that consists of the mid-surface boundary displace-
ments in the directions normal, tangent, and transverse to a shell edge, and the mid-surface rotations about
axes that are normal and tangent to a shell edge. The boundary displacements in the directions normal,
tangent, and transverse to a shell edge are denoted herein by un , us , and ut , respectively. Similarly, the
mid-surface rotations about axes that are tangent and normal to a shell edge are denoted by ϑn and ϑs ,
respectively. In terms of the vector of unknowns defined by Equation (16), the boundary displacements
u0 and rotations are expressed in matrix form by

u0 = Bq, uT
0 =

[
un us ut ϑn

]
. (17)

The matrix B with known coefficients is defined as BT
= [uT

n uT
s uT

t θ
T
n ] in which the subvectors uT

n ,
uT

s , uT
t , and θT

n are known and defined by

uT
n = (n · e1)V 1, uT

s =
[
(e3 × n) · e2

]
V 2, uT

t = V T
3 , θT

n = (n · e1)V T
3,1.

6.2. Strain- and stress-resultant field representation. After defining the shell mid-surface displacement
field in terms of the generalized coordinate q, the corresponding representation of the strains is obtained
by substituting Equation (15) into the strain-displacement relations given in vector form by Equation (6).
This substitution yields ε = Lεq and κ = Lκq, where the strain-coefficient matrices Lε and Lκ are

Lε =


V T

1,1

V T
2,2 +

1
R V T

3

V T
1,2 + V T

2,1

 , Lκ =


−V T

3,11

−V T
3,22 +

1
R V T

2,2 +
R,2
R2 V T

2

−2V T
3,12 +

2
R V T

2,1

 .
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Next, the representations for ε and κ are substituted into Equation (9) to obtain

e = Lq, LT
=

[
LT
ε LT

κ

]
, (18)

where L is the overall strain-coefficient matrix .
Finally, the corresponding matrix representation of the stress resultants in terms of the generalized

coordinates is obtained by substituting Equation (18) into constitutive Equation (9). The resulting vector
of stress resultants is given by

s = C Lq. (19)

6.3. Constraint equations. In the generalized coordinate representations for u1 and u2, the coefficients
c1(00) and c2(00) associated with the global functions ū1 and ū2 in Equation (B.2) also correspond to
rigid-body translation in the s1 direction and rigid-body rotation about the s1 axis, respectively. These
two redundant rigid-body modes are eliminated by introducing constraint conditions using Lagrange
multipliers. In particular, the unknown Lagrange multipliers λR RB(1) and λR RB(2) are associated with
the redundant rigid-body modes. Also, multivaluedness of the normal direction displacement u3(s1, s2)

that arises from the presence of logarithmic terms in the Laurent series expansion for the local function
must be eliminated. The unknown Lagrange multipliers λSV (r) and λSV (s) are used herein to eliminate
this multivaluedness. Likewise, the rigid-body modes of the cylindrical shell must be eliminated by
the Lagrange multipliers λRB( j) for j = 1, . . . , 6 if the specified kinematic boundary conditions are not
sufficient enough to prevent them. In other words, the nonvanishing rigid-body modes must be eliminated
by introducing constraint conditions prior to the stress analysis to allow the overall system stiffness matrix
K , given in Equation (13), to be nonsingular.

These requirements on the representation of the shell displacement field are enforced by using con-
straint equations that use Lagrange multipliers. These constraint equations are functionally independent,
forming a set of linearly independent equations equal in number to the total number of Lagrange mul-
tipliers. The Lagrange multipliers can be viewed as the reactions needed to enforce the corresponding
constraints. In the present study, all of these constraint conditions are included in the matrix equation
given in Equation (11). The explicit forms of the vector of unknown Lagrange multipliers λ containing
λR RB(1) and λR RB(2), λSV (r), λSV (s) and λRB( j), for j = 1, . . . , 6, and the known coefficient matrix, G,
in Equation (12) are given in Appendix C.

7. Overview of validation studies

A limited series of validation studies were conducted in the present study to determine the accuracy of
results obtained using the analysis method presented herein. Specifically, the studies included circular
and noncircular cylindrical shells with either a circular or an elliptical cutout under uniform tension.
The stress resultants around the circular and elliptical cutout for varying aspect ratios and orientations
in a circular cylinder, as well as the stress concentrations arising from a circular cutout in a noncircular
cylindrical shell were computed. Comparisons of the stress-resultant distributions and magnitudes in the
shells were made with corresponding results obtained using an in-house finite element program developed
earlier by [Madenci and Barut 1994a]. This finite element program has been validated to a large extent
against previously published experimental and numerical results for stress, buckling, and post-buckling
of thin-shell structures [Madenci and Barut 1994b; 1994c]. Therefore, this finite element program is
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expected to serve as a reliable indicator of the accuracy of the analysis methods and results presented
herein. Overall, the comparisons indicate very good agreement (less than 1% difference) between the
corresponding results produced by the two analysis methods. For shells with high aspect ratio cutouts,
differences of approximately 5% were obtained and found to be the result of insufficient mesh refinement
in the finite element models.

8. Selected numerical results

Selected numerical results are presented in this section to demonstrate the utility of the analysis method
presented herein and the potential for its use in developing design technology. These results elucidate the
effects of loading condition, noncircular cross-section geometry, variation in wall thickness, cutout shape,
cutout size, and cutout orientation on the intensity of stress-resultant concentrations near a cutout. Specif-
ically, tension, torsion, and pure-bending loads are considered for [45◦/−45◦/90◦/0◦

2/90◦/−45◦/45◦
]s

quasiisotropic shells with length L = 356 mm and made of graphite-epoxy plies. The nominal ply
thickness is tk0 = 0.14 mm, resulting in the total thickness of the shell given by h = 2.24 mm. The
ply orientation angles are measured with respect to the longitudinal shell axis. The Young’s moduli of
each ply in the longitudinal, fiber direction and in the direction transverse to the fibers are specified as
EL = 135.0 GPa and ET = 13.0 GPa, respectively. The in-plane shear modulus and Poisson’s ratio of
each ply are given by GLT = 6.4 GPa and νLT = 0.38.

The effects of varying the radius of curvature R0 on the stress-resultant concentration along the contour
of a circular cutout with radius a = 25.5 mm are shown in Figure 5 for a circular cylindrical shell subjected
to a uniform axial tension load. Four curves that correspond to values of R0/L = 0.5, 0.75, 1.0, and 1.25
are presented that show the tangential stress resultant Nφφ , normalized by the far-field applied uniform
stress resultant N0, as a function of position around the cutout (indicated by the cutout angle, φ). As
shown in Figure 5, the stress-resultant concentration is a maximum at φ = 90◦ and 270◦ (at the net section
of the shell) for each case and reduces from a maximum value of approximately 4.0 to a minimum value
of 3.4 at the net section as the radius of curvature increases. In addition, the results show that the
Nφφ(a, 90◦) stress-resultant concentration approaches the well-known value of 3.0 for an isotropic plate
as the shell radius increases. Away from the net section, changes in the radius of curvature have a
relatively small effect on the stress-resultant concentration.

The effects of varying the circular cutout radius on the stress-resultant concentration along the contour
of a circular cutout is shown in Figure 6 for a circular cylindrical shell with radius R0 = 381 mm and
subjected to a uniform axial tension load. Five curves that correspond to values of the cutout radius
a = 15, 25.5, 30, 40, and 50 mm are presented that also show the tangential stress resultant Nφφ(a, φ),
normalized by the far-field applied uniform stress resultant N0, as a function of the cutout angle φ. The
results in Figure 6 show that the stress-resultant concentration is a maximum at the net section of the
shell for each case, as expected, and changes significantly from a minimum value of approximately 3.1 to
a maximum value of 5.1 at the net section as the cutout radius increases — an increase of approximately
65%. The results also show that the Nφφ(a, 90◦) stress-resultant concentration approaches the well-
known value of 3.0 for an isotropic plate as the cutout radius decreases. Away from the net section,
changes in the cutout radius have a much smaller effect on the stress-resultant concentration.
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Figure 5. The effect of varying shell radius on the tangential stress resultants around a
circular cutout in a quasiisotropic circular cylindrical shell subjected to a uniform tension
load.

Figure 6. The effect of varying circular-cutout radius on the tangential stress resultants
around a circular cutout in a quasiisotropic circular cylindrical shell subjected to a uni-
form tension load.
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Figure 7. The effect of varying elliptical cutout aspect ratio on the tangential stress
resultants around a cutout in a quasiisotropic cylindrical shell subjected to a uniform
tension load.

The effect of varying the elliptical cutout aspect ratio a/b on the tangential stress-resultant distribution
around the edge of a cutout in a cylindrical shell with radius R0 = 178 mm and subjected to uniform
tension is presented in Figure 7. The orientation of the elliptical cutout is specified by ψ = 0◦. Two
curves that correspond to the locations φ = 0◦ and 90◦ are presented that show the tangential stress
resultant Nββ(α0, β), normalized by the far-field applied uniform stress resultant N0, as a function of the
cutout aspect ratio. As expected, the normalized stress-resultant concentration, Nββ(α0, β)/N0, remains
negative for all aspect ratios at φ = 0◦, consistent with the expected Poisson effect, and the magnitudes
are relatively insignificant at this location. In contrast, large stress-resultant concentrations are indicated
at the net section (φ = 90◦) that diminish from a maximum value of approximately 17.0 for a widthwise,
slot-like cutout with a = 5 mm and b = 30 mm, or a/b = 1/6, to a minimum value of 1.4 for a lengthwise,
slot-like cutout with a = 30 mm and b = 5 mm, or a/b = 6.

The effects of varying the orientation of a high aspect ratio, slot-like elliptical cutout on the stress-
resultant concentration along the cutout contour is shown in Figure 8 for a circular cylindrical shell with
radius R0 = 178 mm and subjected to a uniform axial tension load. The major and minor axes of the
cutout are given by a = 30 mm and b = 5 mm, respectively. The orientation of the elliptical cutout, with
respect to the longitudinal shell axis, is measured by the angle ψ . Three curves that correspond to values
of ψ = 0◦, 45◦, and 90◦ are presented that show the tangential stress resultant at the cutout edge Nββ ,
normalized by the far-field applied uniform stress resultant N0, as a function of the cutout angle φ.

The results in Figure 8 show that the stress-resultant concentration is the least pronounced for the
case of ψ = 0◦. For this case, the cutout major axis is aligned lengthwise with the shell axis and the
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Figure 8. The effect of varying elliptical cutout orientation on the tangential stresses
around the cutout in a quasiisotropic cylindrical shell subjected to a uniform tension
load.

net section of the shell is the largest. The location on the cutout edge defined by φ = 0◦ corresponds
to where the edge of the cutout intersects the major axis. At this location, the edge of the cutout is in
tangential compression (Nββ/N0 = −1.6), consistent with a Poisson effect. The location defined by
φ = 90◦ corresponds to where the edge of the cutout intersects the minor axis, that is, at the net section
of the shell. At this location, the edge of the cutout is in tangential tension (Nββ/N0 = 1.4). Between
approximately φ = 0◦ and 170◦ and between φ = 190◦ and 350◦, the cutout width (and hence net section
width) does not vary greatly. This attribute accounts for the corresponding flat regions in the ψ = 0◦

curve shown in Figure 8.
For the case of ψ = 90◦, the cutout major axis is perpendicular to the shell axis and the net section of

the shell is the smallest. As before, the locations defined by φ = 0◦ and 180◦ correspond to where the
edge of the cutout intersects the major axis, that is, at the net section of the shell. The results in Figure 9
show that the edge of this high aspect ratio cutout has extremely high stress-resultant concentrations at
these locations (Nββ/N0 = 17.0) that have very step gradients. Between approximately φ = 5◦ and 175◦

and between φ = 185◦ and 355◦, the analysis predicts relatively benign variations in the stress-resultant
concentration. The case of ψ = 45◦ exhibits stress-resultant concentrations that are, for the most part,
bounded by the corresponding results for ψ = 0◦ and 90◦. The analysis also predicts very high stress-
resultant concentrations where the cutout edge intersects the major principal cutout axis (Nββ/N0 = 8.2).

The effects of varying the cross-sectional eccentricity (2) of a tension loaded oval shell with a circular
cutout are shown in Figure 9. The results in this figure correspond to the equivalent shell radius R0 =

381 mm and a circular cutout radius given by α = 25.5 mm. Moreover, the tangential stress-resultant
concentration at the shell net section Nφφ(a, 90◦), normalized by the applied load N0, is shown as a
function of the eccentricity parameter for the range of −0.15 ≤ ξ ≤ 0.15. As indicated in the figure,
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Figure 9. The effect of shell cross-sectional eccentricity on the stress-resultant concen-
tration in an oval quasiisotropic cylindrical shell with a circular cutout and subjected to
a uniform tension load.

negative and positive values of ξ correspond to cylindrical shells with the largest cross-sectional width,
with parallel and perpendicular orientation, respectively. A value of ξ = 0 corresponds to a circular cross
section and a value of ξ = 0.15 corresponds to a cross-sectional aspect ratio of 0.9.

The results presented in Figure 9 show that the stress-resultant concentration is affected benignly by
the cross-sectional eccentricity. In particular, the stress-resultant concentration increases almost linearly
with increases in the eccentricity parameter from Nφφ(a, 90◦)/N0 = 3.5 to 3.6, which is slightly less
than a 3% variation. This trend is understood by noting that the shells that correspond to negative values
of ξ are flatter near the cutout than those that correspond to positive values of ξ and, as indicated by the
results in Figure 5, are expected to have the lower values for the stress-resultant concentrations.

The effects of longitudinal and circumferential periodic variations in wall thickness on the stress-
resultant concentration at the net section of the circular cylindrical shell with radius R0 = 178 mm,
circular cutout radius a = 25.5 mm, and subjected to uniform axial tension load are shown in Figure 10.
Two monotonically increasing curves that correspond to values of ε1 (with ε2 = 0) and ε2 (with ε1 = 0)
are presented that show the tangential stress resultant Nφφ(a, 90◦), normalized by the far-field applied
uniform stress resultant N0, as a function of thickness-variation amplitudes (3) which range from 0 to
0.2. For the longitudinal thickness variation, the wave numbers used in Equation (3) are m1 = 1 and
m2 = 0. Similarly, for the circumferential thickness variation, the wave numbers used in Equation (3)
are m1 = 0 and m2 = 1.

The results shown in Figure 10 indicate that the stress-resultant concentration at the shell net section
increases as the magnitude of the thickness variation increases, for variations in either the longitudinal or
circumferential direction. The maximum variation in the results is approximately 56%. Furthermore, the
change in the stress-resultant concentration is slightly more pronounced for the circumferential thickness
variation than for the longitudinal thickness variation. These increases are primarily due to a drastic loss
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Figure 10. The effects of longitudinal (ε1 6= 0 and ε2 = 0) and circumferential (ε1 6= 0
and ε2 = 0) wall thickness variations on the tangential stress-resultant concentration
around a circular cutout in a quasiisotropic circular cylindrical shell subjected to a uni-
form tension load.

of bending stiffness near the net section of the shell, as indicated by the wave numbers m1 = 0 and
m2 = 1, where the thickness of the shell near the center of the cutout is smaller.

The effects of varying the radius of curvature R0 on the stress-resultant concentration along the contour
of a circular cutout with radius a = 25.5 mm is shown in Figures 11 and 12 for a circular cylindrical
shell subjected to a uniform torsion load and a pure bending load, respectively. The pure-bending load
corresponds to using t∗

n = M0 cos(π/s2) in Equation (4). Four curves that correspond to values of
R0/L = 0.5, 0.75, 1.0, and 1.25 are presented that show the normalized values of the tangential stress
resultant Nφφ as a function of position around the cutout. In Figure 11, Nφφ is normalized by the far-
field applied uniform shear stress resultant, T0. In Figure 12, Nφφ is normalized by the far-field applied
uniform bending stress resultant, Mo.

The results in Figure 11 indicate that the stress-resultant concentration has identical maximum magni-
tudes at φ = 45◦, 135◦, 225◦, and 315◦ (at the net section of the shell) for each case, which corresponds to
maximum diagonal tension and compression stress resultants associated with the shear stress resultants
near the cutout. The magnitudes of the stress-resultant concentration for these four locations reduce from
a maximum value of 6.8 to a minimum value of 5.1 as the radius of curvature increases (33% variation).
Away from these four locations, changes in the radius of curvature have a smaller effect on the stress-
resultant concentration. The results in Figure 12 indicate that the stress-resultant concentration for the
shell subjected to the pure bending load is quite similar to that presented in Figure 5 for the corresponding
tension loaded shell.
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Figure 11. The effect of varying shell radius on the tangential stresses around a circular
cutout in a quasiisotropic circular cylindrical shell subjected to a uniform torsion load.

Figure 12. The effect of varying shell radius on the tangential stresses around a circular
cutout in a quasiisotropic circular cylindrical shell subjected to a pure-bending load.
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Figure 13. Stress resultant distribution near the cutout in a quasiisotropic circular cylin-
drical shell subjected to a pure-bending load.

Specifically, the stress-resultant concentration is a maximum at φ = 90◦ and 270◦ (at the net section of
the shell) for each case and reduces from a maximum value of 4.0 to a minimum value of 3.5 at the net
section as the radius of curvature increases (14% variation). In addition, Nφφ/M0 approaches the well-
known value of three for an isotropic plate as the shell radius increases, and away from the net section,
changes in the radius of curvature have a relatively small effect on the stress-resultant concentration. A
contour plot of Nφφ/M0 near the cutout is shown in Figure 13 for the case of R0/L = 0.5 shown in Figure
12. The extent of the stress concentration at the shell net section (φ = 90◦ and 270◦) is clearly captured by
the analysis method presented herein. The highest stress-resultant concentration is Nφφ(a, 90◦)/M0 = 4,
and it attenuates to the value of 1.01 at a radius of about 80 mm (approximately three times the cutout
radius), measured from the center of the cutout.

9. Concluding remarks

A special-purpose, semianalytical approach based on complex potential functions has been presented that
can be used to efficiently and parametrically investigate the behavior of thin, noncircular cross-section
cylindrical shells made of laminated-composite materials and with a cutout. In particular, the effects of
radius of curvature; elliptical cutout size, aspect ratio, and orientation; oval cross-section eccentricity;
wall-thickness variations; and loading conditions on the stress-resultant concentration near the cutout
have been presented for a quasiisotropic shell subjected to uniform tension, uniform torsion, and pure
bending. In addition, studies that were conducted to validate the analysis method have been described.

A key finding of the results obtained with this analysis method is that the maximum tangential stress-
resultant concentration near a circular cutout in a tension loaded, circular, quasiisotropic shell increases
by approximately 18% as the shell radius-to-length ratio decreases from 1.25 to 0.5. Likewise, increases
in the maximum tangential stress-resultant concentration as large as 65% have been found to occur
with a five-fold increase in cutout radius. Results have also been presented showing that extremely high
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tangential stress-resultant concentrations can occur for high aspect ratio elliptical cutouts whose principal
axes are not aligned with the longitudinal axis of a tension loaded shell.

Additionally, results have been presented showing that tension loaded oval shells with a circular
cutout on one of the flatter sides exhibit slightly lower tangential stress-resultant concentrations than
the corresponding shell with the cutout on one of the more highly curved sides. Results have also been
presented that show that variations in wall thickness in either the longitudinal or circumferential direction
significantly affect the stress concentration, with respect to that for the corresponding shell with a nominal
thickness. The analysis also predicts that a quasiisotropic shell with a circular cutout and subjected to
pure bending that yields the maximum tensile stress resultant at the longitudinal axis of the cutout behaves
similarly to the corresponding tension loaded shell. The corresponding shell subjected to torsion was
found to exhibit the maximum tangential stress-resultant concentrations at locations consistent with the
maximum diagonal tension and compression near the cutout. Overall, the results demonstrate that the
analysis approach is a powerful means for developing design criteria for laminated composite shells.

Appendix A

Strain energy of the shell. Based on classical laminated shell theory, the strain energy of the shell can
be expressed as

U =
1
2

∫
A

sT e d A,

where A is the planform area of the shell mid-surface. Substituting the expressions for the resultant stress
and strains, given in terms of the vector of unknown displacement coefficients, q, by Equations (18) and
(19), leads to

U (q)=
1
2

∫
A

qT (
LT C L

)
q d A.

The matrix L involves the derivatives of the assumed functional displacement representations, and C is
the overall constitutive matrix defined by Equation (10). The expression for the strain energy is rewritten
into the final form used herein as

U (q)=
1
2

qT kqq q, kqq =

∫
A

(
LT C L

)
d A.

The evaluation of this area integral is performed numerically by employing basic quadrature techniques.
In this analysis, the quadrature points are predetermined by employing standard triangulation of the entire
domain as described by [Shewchuk 1996].

Strain energy of elastic restraints. The strain energy of the elastic edge restraints (springs), �, is ex-
pressed as

�=

2∑
`=1

[
1
2

∑
α=n,s,t

∫
0(`)

Sα
(
uα−u∗

α

)2d0+
1
2

∑
α=n,s

∫
0(`)

Jα
(
ϑα−ϑ∗

α

)2d0+
1
2

∑
α=n,s

∫
0(`)

sα
(
uα −1α

)2d0
]
. (A.1)

As depicted in Figure 4, the boundary displacements un , us , and ut along the `th boundary segment are
restrained by extensional springs with the stiffness values Sn , Ss , and St , respectively. Likewise, the
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boundary rotations ϑn and ϑs are restrained by rotational springs with the stiffness values Jn and Js ,
respectively.

To apply concentrated forces along the edge of a shell and introduce edge displacements similar to
those introduced by a rigid end ring or by the loading platens of a testing machine, additional springs are
used to simulate the load introduction effects of a rigid end ring. In particular, rigid end ring loads are
introduced into the shell using extensional springs in the directions normal and tangent to the boundary
with corresponding stiffness values of sn and ss , as shown in Figure 3. By specifying relatively large
values for the spring stiffnesses sn and ss , the laminate edge behaves as if a rigid end ring is attached that
produces the uniform displacements 1n and 1s . In contrast, a relatively small spring stiffness between
the shell edge and the rigid end ring eliminates the presence of a rigid end ring.

The desired form of the elastic-restraint strain energy is obtained in terms of the unknown vector q
by substituting expressions for the boundary displacements and rotations, given collectively by Equation
(17), into Equation (A.1). This step yields

�=

2∑
`=1

[
1
2

∑
α=n,s,t

(
qT S(`)ααq +�

(`) ∗

u(α) − 2qT f (`) ∗

α

)
+

1
2

∑
α=n,s

(
qT J (`)ααq +�

(`) ∗

ϑ(α) − 2qT r(`) ∗

α

)
+

1
2

∑
α=n,s

(
qT s(`)ααq +

∫
0(`)

sα12
αd0− 2qT s(`)α 1α

)]
,

where the matrices S(`)αα and J (`)αα represent the stiffness contribution of the extensional and rotational
springs attached to the `th segment of the boundary. These matrices are defined as

S(`)αα =

∫
0(`)

SαuαuT
α d0, J (`)ββ =

∫
0(`)

JβθβθT
β d0, (α = n, s, t; β = n, s).

The matrix s(`)αα, representing the stiffness of the springs attached to the rigid end ring, is defined as

A − s(`)αα =

∫
0(`)

sαuαuT
α d0, (α = n, s).

The load vectors f (`)∗α and r(`)∗α are associated with the prescribed boundary displacements and rotations

f (`)∗α =

∫
0(`)

Sα u∗

αuαd0, r(`)∗β =

∫
0(`)

Jβ ϑ∗

βθαd0, (α = n, s, t; β = n, s).

The vector s(`)α is associated with the unknown end displacements that correspond to a given concentrated
load, and is defined as

s(`)α =

∫
0(`)

sαuαd0, (α = n, s).

The strain energies in the springs that arise from the known prescribed displacements (u∗
n, u∗

s , u∗
t ) and

rotations (ϑ∗
n , ϑ

∗
s ) are defined as

�
(`)∗
u(α) =

∫
0(`)

Sαu∗2
α d0, �

(`)
ϑ(β)

∗

=

∫
0(`)

Jβϑ∗2
β d0, (α = n, s, t; β = n, s).
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For convenience, the expression for the strain energy in the springs is recast in matrix form as

�(q,1)=
1
2

qT Sqq q +
1
2
1T s111− qT sq11− qT f ∗

+�∗,

in which the matrices Sqq , s11, and sq1 represent the stiffness of the springs associated with the defor-
mation of the laminate, the end displacements, and their coupling, respectively. They are

Sqq =

2∑
`=1

∑
α=n,s,t

S(`)αα +

2∑
`=1

∑
α=n,s

J (`)αα +

2∑
`=1

∑
α=n,s

s(`)αα,

s11 = Diag
[
s(1)n , s(2)n , s(1)s , s(2)s

]
× 2πR0,

sq1 =

[
s(1)n s(2)n s(1)s s(2)s

]
.

The vector of unknown end displacements 1 is defined by 1T
= [1

(1)
n 1

(2)
n 1

(1)
s 1

(2)
s ]. The load vector

arising from all prescribed boundary displacements and rotations f ∗, and the strain energy of all the
springs due to prescribed displacements and rotations are defined as

f ∗
=

1
2

2∑
`=1

∑
α=n,s,t

f ∗(`)
α +

1
2

2∑
`=1

∑
α=n,s

r∗(`)
α , �∗

=
1
2

2∑
`=1

∑
α=n,s,t

�
(`)
u(α)

∗

+
1
2

2∑
`=1

∑
α=n,s

�
(`)
ϑ(α)

∗

.

Potential of external loads. The potential energy of the external tractions (t∗
n , t∗

s , t∗
t ) and moments (m∗

n,m∗
s )

acting along the `th boundary segment, and the concentrated loads (P∗
n , P∗

s ) acting on the rigid end rings,
is given in terms of the corresponding boundary displacements and rotations by

V = −

2∑
`=1

∑
α=n,s,t

∫
0(`)

t∗

αuαd0−

2∑
`=1

∑
α=n,s

∫
0(`)

m∗

αθαd0−

2∑
`=1

∑
α=n,s

P∗

α1α.

Substituting the expressions for the boundary displacements and rotations, given in terms of the vector
q, and combining terms yields V (q,1)= −qT T∗

−1T P∗, where the vector 1, containing the uniform
end-displacements 1n and 1s of the `th boundary segment, is defined by 1T

= [1
(1)
n 1

(2)
n 1

(1)
s 1

(2)
s ].

The load vectors T∗ and P∗ are defined by

T∗T
=

2∑
`=1

∑
α=n,s,t

∫
0(`)

t∗

αuT
α d0+

2∑
`=1

∑
α=n,s

∫
0(`)

θ∗

αθ
T
α d0, P∗T

=

[
P∗(1)

n P∗(2)
n P∗(1)

s P∗(2)
s

]
,

in which P∗(`)
α , with α = n, s, represents the membrane forces applied on the `th boundary segment

through a rigid end ring.
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Appendix B

Rigid-body modes. Following [Madenci and Barut 2003], the rigid-body displacements (u R1, u R2, u R3)
of a cylindrical shell, defined with respect to the curvilinear coordinates, (s1, s2, s3), are

u R1 = α1 −α6 y +α5z,

u R2 = α2 cos θ −α3 sin θ −α4(y sin θ + z cos θ)+α5x sin θ +α6x cos θ,

u R3 = α2 sin θ +α3 cos θ +α4(y cos θ − z sin θ)−α5x cos θ +α6x sin θ, (B.1)

where θ denotes the angle between the radius of curvature at a point on the shell surface and z-axis as
shown in Figure 1.

Global functions. The global functions ūi , that are used to capture the overall deformations away from
the cutout are expressed in terms of a series expansion of orthogonal functions of the form

ūi (s1, s2)=

M∑
m=0

m∑
n=0

ci(mn)Tm(s1)Wn(s2). (B.2)

The symbols ci(mn) are the unknown real-valued coefficients, and Tm(s1) and Wn(s2) are defined as

Tm(s1)=


1, m = 0,

ζ, m = 1,

sin
[
(m−1)

2 (ζ + 1)
]
, m > 1,

Wn(s2(θ))=

{
cos nθ

2 , n even,

sin (n+1)θ
2 , n odd,

(B.3)

in which −1 ≤ ζ ≤ 1 and s1 is related to ζ as s1 = ζ L/2, with L being the length of the cylinder. Note that
Wn is periodical. These particular functions were chosen because they form a complete set of functions
when used with Equation (B.2). Hence, they are desirable for employing in energy based semianalytic
solution techniques such as the total potential energy principle that is used in this study.

Local functions. The local functions are expressed in terms of mapping functions that transform the
contour of an elliptical cutout to a unit circle. These mapping functions are used to permit the use
of Laurent series expansions as local functions, which is desirable because Laurent series are analytic
and uniformly convergent in domains with a circular hole. As a result, the use of mapping functions
significantly reduces the number of terms in the Laurent series that are needed to adequately capture
steep stress and strain gradients and local deformations near a cutout. In accordance with the principle of
minimum potential energy, the local functions are not required to satisfy the traction boundary conditions
at the cutout boundary. Thus, the local functions ¯̄ui are expressed in the form of Laurent series in terms
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of complex functions, as

¯̄ui=1,2 = 2 Re

[
2∑

m=1

u(i=1,2)
m

N∑
n=−N

n 6=0

αnm8
∗

nm(zεm)

]
H(ρ), (B.4)

¯̄u3 = 2 Re

[
2∑

m=1

N∑
n=−N

n 6=0

βnm F∗

nm(zκm)

]
H(ρ), (B.5)

with ρ = (x2
1 + x2

2)
1/2, where the parameter N defines the extent of the complex series. In these series,

αnm and βnm are the unknown complex coefficients that appear in Equations (14)–(16). The auxiliary
function H(ρ) that defines the domain of influence of the local functions is expressed as a polynomial

H(ρ)=

1 − 10
(
ρ
ρo

)3
+ 15

(
ρ
ρo

)4
− 6

(
ρ
ρo

)5
, 0 ≤ ρ ≤ ρo,

0, ρ > ρo,

such that H(ρo)= H ′(ρo)= H ′′(ρo)= 0, where prime marks denote differentiation with respect to the
variable ρ, and the parameter ρo denotes the radius of the region in which the local functions are effective.
The purpose of choosing the auxiliary function is to prevent any possible linear dependency between the
local and global functions and to restrict the influence of the local functions to a limited domain around
the cutout.

The complex functions u(1)m (zεm) and u(2)m (zεm) that appear in Equation (B.4) are defined as

u(1)m (zεm)= cosψpm(zεm)− sinψqm(zεm), u(2)m (zεm)= sinψpm(zεm)+ cosψqm(zεm), (B.6)

where the complex constants pm and qm are given by

pm = a11µ
2
εm + a12 − a16µεm, qm = a12µεm + a22/µεm − a26.

In Equation (B.6), the unknown complex constants µεm are the roots of the characteristic equation asso-
ciated with membrane deformation, that is,

a11µ
4
εm − 2a16µ

3
εm + (2a26 + a66)µ

2
εm − 2a26µεm + a22 = 0, (B.7)

in which the coefficients ai j are the coefficients of the flexibility matrix a, which is the inverse of the
stiffness matrix A defined by Equation (7). Both the flexibility and the stiffness matrices, a and A, are
measured with respect to the local coordinate system (x1, x2). The angle ψ represents the orientation of
the local coordinate system with respect to the global coordinate system, (s1, s2).

The complex potential function 8∗
nm(zεm), appearing in Equation (B.4) is defined as 8∗

nm(zεm)= ξ n
εm,

in which the mapping functions ξεm map a cutout onto a unit circle. The mapping functions for an
elliptical cutout, introduced by [Lekhnitskii 1968], are given by

ξεm =
zεm ±

√
z2
εm − a2 −µ2

εmb2

a − iµ2
εmb

, m = 1, 2, (B.8)
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where zεm = x1 +µεm x2, a and b are the major and minor axes of the elliptical cutout, and i =
√

−1.
The sign of the square root term is chosen so that |ξεm | ≥ 1 (that is, the mapped point is guaranteed to
be on or outside the unit circle).

Inverting the mapping function provides ωεm(ξεm) as

zεm = ωεm(ξεm)= rεmξεm −
sεm
ξεm

,

rεm =
1
2
(a−iµεmb),

sεm =
1
2
(a+iµεmb).

(B.9)

The unknown complex constants µε1 and µε2, and their complex conjugates, that is, µε3 = µ̄ε1 and
µε4 = µ̄ε2, are the roots obtained from the characteristic equation associated with membrane deformation.
The complex potential functions, F∗

nm(zκm) in Equation (B.5) are defined as

F∗

nm(zκm)=


rκm
n+1ξ

n
κm −

sκm
n−1ξ

n−2
κm , |n|> 1,

rκm
2 ξ

2
κm − sκm ln ξκm, n = 1,

rκm ln ξκm +
sκm
2 ξ

−2
κm , n = −1,

(B.10)

in which the expressions for the mapping function ξκm and the constants rκm and sκm have the same form
as the corresponding expressions for ξεm , rεm , and sεm given by Equations (B.8) and (B.9), except that
the subscript ε is replaced by κ . The complex variables zκm are defined by zκm = x1 +µκm x2, in which
the unknown complex constants µκ1 and µκ2 and their conjugates, that is, µκ3 = µ̄κ1 and µκ4 = µ̄κ2, are
the roots obtained from the characteristic equation associated with the bending equilibrium equation

D22µ
4
κm + 4D26µ

3
κm + (2D12 + 4D66)µ

2
κm + 4D16µκm + D11 = 0, (B.11)

where Di j are the components of the bending stiffness matrix D (Equation (7)), which is defined with
respect to the local coordinate system, (x1, x2).

It is important to note that the local functions in Equations (B.4) and (B.5) satisfy the in-plane and bend-
ing equilibrium equations of a homogeneous, flat laminate of uniform thickness, not a cylindrical shell.
Therefore, the roots of the characteristic equations, Equations (B.7) and (B.11), serve as approximations
of their exact values, which are not mathematically tractable. Because the solution procedure is based
on the principle of minimum potential, their exact values are not necessarily required. However, they
capture the stress concentration and local deformation near the cutout in cylindrical shells because these
functions possess the inherent solution characteristics. They satisfy the equilibrium equations exactly as
the radius of curvature approaches infinity and are uniformly convergent in a doubly connected region.
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In the displacement representations defined by Equation (14), the vectors, αR , ci , α, β are defined as

αR
T

=
[
αR1 αR2 αR3 αR4 αR5 αR6

]
,

cT
i =

[
ci(00) ci(10) ci(01) . . . ci(M0) ci((M−1)1) . . . ci(1(M−1)) ci(0M)

]
,

αT
=

[
αT

−N αT
−N+1 . . . αT

−1 αT
1 . . . αT

N−1 αT
N

]
,

βT
=

[
βT

−N βT
−N+1 . . . βT

−1 βT
1 . . . βT

N−1 βT
N
]
,

in which γ T
n = [γ T

n1 γ
T
n2], with γ T

nj = [Re(γnj ), Im(γnj )] for γ = α, β.
The vector functions, V i=1,2,3 associated with the unknown generalized coordinates q appearing in

Equation (15) are defined as

V T
1 =

[
V T

R1 V̄ T
1 0̄T 0̄T ¯̄V T

1
¯̄0T

]
,

V T
2 =

[
V T

R2 0̄T V̄ T
2 0̄T ¯̄V T

2
¯̄0T

]
,

V T
3 =

[
V T

R3 0̄T 0̄T V̄ T
3

¯̄0T ¯̄V T
3

]
,

where 0̄T
= [0 . . . 0] of order [(M +1)(M +2)/2] and ¯̄0T

= [0 . . . 0] of order 8N . The vectors associated
with rigid-body motion are

V T
R1 =

[
1 0 0 0 z −y

]
,

V T
R2 =

[
0 dy

ds2

dz
ds2

(
y dz

ds2
− z dy

ds2

)
−x dz

ds2
−x dy

ds2

]
,

V T
R3 =

[
0 −

dz
ds2

dy
ds2

(
y dy

ds2
+ z dz

ds2

)
−x dy

ds2
−x dz

ds2

]
.

Similarly, the vectors associated with the global functions are

V̄ T
i =

[
T0W0 T1W0 T0W1 T2W0 T1W1 T0W2 . . . TM W0 TM−1W1 . . . T1WM−1 T0WM

]
,

in which the expressions for Ti (s1) and Wi (s2) are given by Equation (B.3), and

¯̄V T
i =

[
¯̄V T

i(−N )
¯̄V T

i(−N+1) . . . ¯̄V T
i(−1)

¯̄V T
i(1) . . . ¯̄V T

i(N−1)
¯̄V T

i(N )

]
, i = 1, 2,

¯̄V T
3 =

[
¯̄V T

3(−N )
¯̄V T

3(−N+1) . . . ¯̄V T
3(−1)

¯̄V T
3(1) . . . ¯̄V T

3(N−1)
¯̄V T

3(N )

]
,

with

¯̄V T
i(n) =

[
¯̄V T

i(n1)
¯̄V T

i(n2)

]
, ¯̄V T

i(nj) =

[
2 Re[u(i)j 8

∗

nj ] −2 Im[u(i)j 8
∗

nj ]

]
, (i, j = 1, 2),

¯̄V T
3(n) =

[
¯̄V T

3(n1)
¯̄V T

3(n2)

]
, ¯̄V T

3(nj) =

[
2 Re[F∗

nj ] −2 Im[F∗

nj ]
]
, ( j = 1, 2).
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Appendix C

Constraint equations. The unknown vector of Lagrange multipliers λ, and the known coefficient matrix
G, in Equation (11) are defined by λT

= [λR RB(1) λR RB(2) λSV (r) λSV (s) λRB(1) . . . λRB(6)], and

G =



0T
R gT

R RB(1) 0̄T 0̄T ¯̄0T ¯̄0T

0T
R 0̄T gT

R RB(2) 0̄T ¯̄0T ¯̄0T

0T
R 0̄T 0̄T 0̄T ¯̄0T gT

SV (s)

0T
R 0T

L 0̄T 0̄T ¯̄0T gT
SV (r)

gT
RB(1) 0̄T 0̄T 0̄T ¯̄0T ¯̄0T

gT
RB(2) 0̄T 0̄T 0̄T ¯̄0T ¯̄0T

gT
RB(3) 0̄T 0̄T 0̄T ¯̄0T ¯̄0T

gT
RB(4) 0̄T 0̄T 0̄T ¯̄0T ¯̄0T

gT
RB(5) 0̄T 0̄T 0̄T ¯̄0T ¯̄0T

gT
RB(6) 0̄T 0̄T 0̄T ¯̄0T ¯̄0T



,

in which the constant coefficient vectors gR RB(1) and gR RB(2) are associated with redundant rigid-body
modes gSV (r) and gSV (s), with single-valuedness of the radial displacement component, and gRB( j) with
the rigid-body modes introduced by the global functions defined in Equation (B.2). The rigid-body modes
must be eliminated in the absence of a sufficient number of specified kinematic boundary conditions.
These terms, as well as the vectors with zeros, are defined in the following subsections.

Redundant rigid-body modes. The coefficients c1(00) and c2(00) in Equation (B.2) for the global displace-
ment functions produce additional rigid-body translation in the s1 direction and rigid body rotation about
the s1 axis, respectively. Because these rigid-body modes are already represented by αR1 and αR6 in
Equation (B.1), the redundant rigid-body motion arising from the presence of c1(00) and c2(00) must be
eliminated in order to obtain a unique representation of the displacements. These redundant rigid-body
modes are eliminated by using the constraint conditions λR RB(1)c1(00) = 0, λR RB(2)c2(00) = 0 in which the
unknown Lagrange multipliers are denoted by λR RB(1) and λR RB(2). In terms of the vector of unknowns
q, these constraints are rewritten in vector form as

λRB(1)

[
0T

R gT
R RB 0̄T 0̄T ¯̄0T ¯̄0T

]


αR

c1
c2

c3

α

β


= 0, λRB(2)

[
0T

R 0̄T gT
R RB 0̄T ¯̄0T ¯̄0T

]


αR

c1
c2

c3

α

β


= 0,

in which the vectors of zeros, 0T
R , 0̄T

R , and ¯̄0T
R , are defined by 0T

R = [0 0 0 0 0 0], 0̄T
= [0 0 . . . 0] of order

[(M + 1)(M + 2)/2], and ¯̄0T
= [0 0 . . . 0] of order 8N , while the constant coefficient vector, gR R B , is

defined as gT
R RB = [1 0 0 . . . 0] of order [(M + 1)(M + 2)/2].
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Single-valuedness of the radial displacement component. The multivaluedness of the normal displace-
ment component that arises from the presence of logarithmic terms in the local expression for the radial
displacement component in Equation (B.5) must be rendered single-valued in order to obtain a unique
solution. The logarithmic terms associated with complex constants β−1m and β1m , with m = 1, 2, in
Equation (B.10) result in two real constants. Representing the complex variable of the Laurent series
ξm = ρmeiθm , the single-valuedness requirement is enforced as

uz
(
ξm = ρmeiθm

)
− uz

(
ξm = ρmei(θm+2π))

= 0.

Associated with the complex constants β∓1m , with m = 1, 2, in Equation (B.10), this condition yields

2 Re
{ 2∑

m=1

{
F∗

−1m
(
ξm = ρmeiθm

)
−F∗

−1m
(
ξm = ρmei(θm+2π))}β−1m

}
= 0 or Im

2∑
m=1

[rmβ−1m] = 0,

2 Re
{ 2∑

m=1

{
F∗

1m
(
ξm = ρmeiθm

)
−F∗

1m
(
ξm = ρmei(θm+2π))}β1m

}
= 0 or Im

2∑
m=1

[
sκmβ1m

]
= 0.

In order to ensure single-valuedness, these constraints are enforced as

λSV (r) Im
2∑

m=1

[
rκmβ−1m

]
= 0, λSV (s) Im

2∑
m=1

[sκmβ1m] = 0,

in which the unknown Lagrange multipliers are denoted by λSV (r) and λSV (s).
In terms of the vector of unknowns q, these constraint conditions can be recast in matrix form as

λSV (r)

[
0T

R 0̄T 0̄T 0̄T ¯̄0T gT
SV (r)

]


αR

c1

c2

c3

α

β


= 0, λSV (s)

[
0T

R 0̄T 0̄T 0̄T ¯̄0T gT
SV (s)

]


αR

c1

c2

c3

α

β


= 0,

where the constant coefficient vectors gSV (r) and gSV (s) are given by

gT
SV ( j) =

[
gT

SV ( j)(−N ) gT
SV ( j)(−N+1) . . . gT

SV ( j)(−1) gT
SV ( j)(1) . . . gT

SV ( j)(N−1) gT
SV ( j)(N )

]
,

gT
SV (r)(1) =

[
Im[r1] Re[r1] Im[r2] Re[r2]

]
, gT

SV (r)(n 6=1) =
[
0 0 0 0

]
,

gT
SV (s)(1) =

[
Im[s1] Re[s1] Im[s2] Re[s2]

]
, gT

SV (s)(n 6=1) =
[
0 0 0 0

]
,

with −N ≤ n ≤ N .

Rigid-body modes. In the absence of kinematic boundary conditions, the rigid-body modes of the dis-
placement field are eliminated by enforcing the constraint conditions in the form λRB( j)αR( j) = 0, where
j = 1, . . . , 6 and the unknown Lagrange multipliers are denoted by λRB( j). In terms of the vector of
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unknowns q, these constraints are rewritten in vector form as

λRB( j)

[
gT

RB( j) 0̄T 0̄T 0̄T ¯̄0T ¯̄0T
]


αR

c1

c2

c3

α

β


= 0,

where the constant coefficient vectors gRB( j) are defined as gT
RB( j) = [δ1 j δ2 j δ3 j δ4 j δ5 j δ6 j ], in which

δi j is the Kronecker delta.
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HYPERSINGULAR INTEGRAL EQUATIONS FOR THE SOLUTION OF
PENNY-SHAPED INTERFACE CRACK PROBLEMS

BAHATTIN KILIC AND ERDOGAN MADENCI

Based on the theory of elasticity, previous analytical solutions concerning a penny-shaped interface crack
employ the derivative of the crack surface opening displacements as the primary unknowns, thus leading
to singular integral equations with Cauchy-type singularity. The solutions to the resulting integral equa-
tions permit only the determination of stress intensity factors and energy release rate, and do not directly
provide crack opening and sliding displacements. However, the crack opening and sliding displacements
are physically more meaningful and readily validated against the finite element analysis predictions
and experimental measurements. Therefore, the present study employs crack opening and sliding as
primary unknowns, rather than their derivatives, and the resulting integral equations include logarithmic-,
Cauchy-, and Hadamard-type singularities. The solution to these singular integral equations permits the
determination of not only the complex stress intensity factors but also the crack opening displacements.

1. Introduction

During fabrication, the presence of dissimilar material interfaces is unavoidable, and they are prone to
imperfections. If the interface is too strong to delaminate, the cracking occurs in the weakest of the
adjoining materials. On the other hand, delamination may initiate along the interface for a sufficiently
weak interface. Based on the concept of fracture mechanics, the singular character of the stresses near
the crack front and the stress intensity factors are important in failure prediction.

Within the realm of the theory of elasticity both for a plane and a penny-shaped crack, there exist
numerous analytical studies addressing the oscillating stress singularity and stress intensity factors at
an interface crack. Extensive discussion on the treatment of an oscillatory singular stress field near the
interface crack was given by Erdogan [1997] and recently by Kilic et al. [2006]. The most common
solution method of integral transformations includes the presence of singular stresses at the crack front
by treating the derivatives of the crack opening displacements as primary unknowns, leading to a system
of Cauchy-type singular integral equations. Solutions to these singular integral equations can be achieved
by techniques developed by Erdogan [1969], Erdogan and Gupta [1971a; 1971b], Miller and Keer [1985],
and Kabir et al. [1998] that yield the stress intensity factors.

Because of the nature of the primary unknowns in the singular integral equations, previous studies
concerning interface cracks concern the calculation of the stress intensity factors or the energy release
rate rather than the crack surface displacements. However, the crack surface displacements are physically
more meaningful and easier to compare against experimental measurements and finite element solutions
that fail to provide accurate stress intensity and energy release rate without resorting to a refined mesh

Keywords: interface, penny-shaped, crack, hypersingular.
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or a special crack tip element. Furthermore, this approach is more viable for consideration of three-
dimensional crack problems within the realm of mixed boundary value problems as indicated by Kaya
[1984].

The construction of the solution to the integral equations concerning a plane crack is relatively simpler
than that for a penny-shaped crack, and is discussed in detail by Kilic et al. [2006]. For a penny-shaped in-
terface crack between two dissimilar elastic materials that are semiinfinite in extent, Kassir and Bregman
[1972] constructed the exact solution to the stress intensity factors utilizing analytic functions introduced
by [Mossakovski and Rybka 1964]. This problem also attracted the attention of Erdogan [1965], Willis
[1972], and Lowengrub and Sneddon [1974]. Erdogan [1965] obtained the singular stress field near the
crack front by using the integral representation of displacement components suggested by Harding and
Sneddon [1945] while considering the derivatives of crack surface displacements as primary unknowns
in the derivation of Cauchy-type singular integral equations. However, Willis [1972] constructed the
solution through the use of the Radon transform of the relative displacement of crack surfaces. Adopting
the solution method by Erdogan [1965]. Lowengrub and Sneddon [1974], Keer et al. [1978], and Farris
and Keer [1985] also examined the singular character of stresses of a penny-shaped interface crack.
However, the numerical evaluation of the integrals in these studies is fraught with complete regularization
of the kernels by ignoring the logarithmic singularities and thus the convergence difficulty. Therefore,
logarithmic singularities have to be taken into account in the numerical analysis as suggested by Ozturk
and Erdogan [1996].

Unlike previous studies, the present study considers the crack surface displacements, rather than their
derivatives, as primary unknowns in the singular integral equations. After the regularization of the ker-
nels, the resulting integral equations include logarithmic-, Cauchy-, and Hadamard-type singularities.
Solution to these singular integral equations leads to the determination of not only stress intensity factors
but also crack opening displacements, which are more desirable for experimental comparisons. This
approach also naturally provides the complex stress intensity factors required for the energy release rate
calculation given by Malyshev and Salganik [1965]. Within the context of solution methods available in
the literature, this study for the first time presents an approach for constructing the solution of a singular
integral equation in the presence of the combination of Hadamard, Cauchy, and logarithmic singularities.
Although this approach provides accurate crack opening and sliding displacements, it does not remove
the oscillatory singular stress field near the interface crack.

The description of the geometry and the crack configurations are shown in the next section. The
solution method and the numerical analysis of the singular integral equations with the Hadamard-type
singularity are described in the subsequent sections. The numerical results concern the energy release
rate calculations and the crack surface displacements.

2. Problem statement

As shown in Figure 1, a circular crack with radius a is situated at the interface between two material
layers with thicknesses h1 and h2. The crack lies on the (r, θ) plane of the cylindrical coordinate system
(r, θ, z) whose origin is located at the center of the crack. The regions along the positive and negative z-
directions are S2 and S1, respectively. The material in each region is isotropic, elastic, and homogeneous,
with shear moduli µ1 and µ2, and Poisson’s ratios ν1 and ν2. The bounding surface of region S2 is
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Figure 1. The circular crack geometry between two bonded dissimilar material layers.

traction free and that of S1 is constrained from displacements. The crack surfaces are subjected to an
internal pressure of p0. This configuration was considered previously by Farris and Keer [1985] while
using the derivatives of the crack surface displacements as primary unknowns. It reduces to the case
considered by Goldstein and Vainshelbaum [1976] by allowing h1 to approach infinity.

By invoking the kinematic and stress-strain relations into the equilibrium equations in the absence
of the body forces and time dependence, the displacement equilibrium equations under axisymmetric
conditions for each region can be expressed as

(κi + 1)

{
∂2ui

∂r2 +
1
r
∂ui

∂r
−

1
r2 ui +

∂2wi

∂r∂z

}
+ (κi − 1)

{
∂2ui

∂z2 −
∂2wi

∂r∂z

}
= 0,

(κi + 1)

{
∂2ui

∂r∂z
+

1
r
∂ui

∂z
+
∂2wi

∂2z

}
− (κi − 1)

{
∂2ui

∂r∂z
−
∂2wi

∂r2 +
1
r
∂ui

∂z
−

1
r
∂wi

∂r

}
= 0,

(1)

where κi = 3 − 4νi and ui and wi are the radial and vertical components of the displacement vector,
respectively. The subscript i = 1 represents the substrate and i = 2 the film, as shown in Figure 1. From
the stress-strain relations along with kinematics, the relevant stress components in cylindrical coordinates
under axisymmetric conditions can be expressed as

σi zz =
2µi

1 − 2νi

{
(1 − νi )

∂wi

∂z
+ νi

(
∂ui

∂r
+

ui

r

)}
, σir z = µi

(
∂ui

∂z
+
∂wi

∂r

)
.

Traction free conditions along z = h2 and constrained displacement conditions along z = − h1 require
the imposition of conditions

σ2zz(r, h2)= 0, σ2r z(r, h2)= 0, u1(r,−h1)= 0, w1(r,−h1)= 0, 0 ≤ r <∞. (2)

Along the interface between regions S1 and S2 on the plane of z = 0, the continuity of traction and
displacement components requires the imposition of

σ1zz(r, 0)= σ2zz(r, 0), σ1r z(r, 0)= σ2r z(r, 0), 0 ≤ r <∞, (3)

u1zz(r, 0)= u2zz(r, 0), w1zz(r, 0)= w2zz(r, 0), a ≤ r <∞. (4)
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Finally, the applied tractions on the upper and lower crack surfaces of the z = 0± planes are specified as

σ1zz(r, 0−)= σ2zz(r, 0+)= p(r), σ1r z(r, 0−)= σ2r z(r, 0+)= q(r), 0 ≤ r < a. (5)

The mathematical boundary value problem then reduces to the determination of the crack opening and
sliding displacements, as well as the stress intensity factors and the energy release rate at the crack tip.

3. Solution procedure

The solution procedure involves the use of integral transformation techniques appropriate for mixed
boundary value problems. Utilizing the integral representation of the displacement field suggested by
Harding and Sneddon [1945] the displacement components in each region are represented by

ui (r, z)=

∫
∞

0
dρFi (ρ, z)ρ J1(rρ), wi (r, z)=

∫
∞

0
dρGi (ρ, z)ρ J0(rρ), (6)

where J0 and J1 are the Bessel functions of the first kind with orders 0 and 1, respectively.
Substituting these integral representations into the displacement equilibrium equations, Equation (1),

leads to a coupled system of second-order ordinary differential equations for the auxiliary functions,
Fi (ρ, z) and Gi (ρ, z). Their general solution form can be expressed as[

Fi (ρ, z)
Gi (ρ, z)

]
= Ai1e−ρz

[
1
1

]
+ Ai2e−ρz

[
z

κi
ρ

+ z

]
+ Ai3eρz

[
1

−1

]
+ Ai4eρz

[
z

κi
ρ

− z

]
, (7)

where Ai j (ρ) for i = 1, 2 and j = 1 . . . 4 are the unknown coefficients to be determined from the pre-
scribed boundary conditions given by Equations (2)–(5).

Enforcing the boundary conditions specified by Equations (2) and (3) results in

2ρe−ρh2 A21 + (κ2 + 1 + 2ρh2)e−ρh2 A22 + 2ρeρh2 A23 − (κ2 + 1 − 2ρh2)eρh2 A24 = 0,

2ρe−ρh2 A21 + (κ2 − 1 + 2ρh2)e−ρh2 A22 − 2ρeρh2 A23 + (κ2 − 1 − 2ρh2)eρh2 A24 = 0,

eρh1 A11 − h1eρh1 A12 + e−ρh1 A13 − h1e−ρh1 A14 = 0,

eρh1 A11 + (κ1/ρ− h1)eρh1 A12 − e−ρh1 A13 + (κ1/ρ+ h1)e−ρh1 A14 = 0,

2µ2ρA21 + (1 + κ2)µ2 A22 + 2µ2ρA23 − (1 + κ2)µ2 A24 − 2µ1ρA11 − (1 + κ1)µ1 A12

−2µ1ρA13 + (1 + κ1)µ1 A14 = 0,

2µ2ρA21 + (κ2 − 1)µ2 A22 − 2µ2ρA23 + (κ2 − 1)µ2 A24 − 2µ1ρA11 − (κ1 − 1)µ1 A12

+2µ1ρA13 − (κ1 − 1)µ1 A14 = 0.

(8)

Representing the opening and sliding of the crack surfaces by unknown functions U (r) and W (r) as

u2(r, 0+)− u1(r, 0−)= U (r)H(a − r), w2(r, 0+)−w1(r, 0−)= W (r)H(a − r) (9)

ensures the continuity of the displacement components, Equation (4), along the interface plane of z = 0
and H(ξ) is the Heaviside step function. In lieu of directly imposing the continuity requirement of
the displacement components along the interface to simplify the algebraic manipulations, the auxiliary
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functions g1(r) and g2(r) are introduced in the form

g1(r)=
∂W
∂r

H(a − r), g2(r)=

(∂U
∂r

+
U
r

)
H(a − r), (10)

in which the unknown functions U (r) and W (r) are defined in Equation (9). Their explicit form can be
obtained by substituting Equations (6) and (7) into Equation (10) as

g1(r)=

∫
∞

0
dρρ

[
κ1(A12 + A14)− κ2(A22 + A24)+(A11 − A21 − A13 + A23)ρ

]
J1(ρr),

g2(r)=

∫
∞

0
dρρ2[

−A11 + A21 − A13 + A23
]
J0(ρr).

Inversion of these equations by using the related Hankel transforms results in

G1(ρ)= − ρA21 − κ2 A22 + ρA23 − κ2 A24 + ρA11 + κ1 A12 − ρA13 + κ1 A14,

G2(ρ)= ρA21 + ρA23 − ρA11 − ρA13,
(11)

in which

G1(ρ)=

∫ a

0
dsg1(s)s J1(sρ), G2(ρ)=

∫ a

0
dsg2(s)s J0(sρ). (12)

In matrix form, the combination of all the boundary conditions given by Equations (8) and (11) can
be expressed as

Ca = b, (13)

in which the explicit forms of C, a, and b are given in Appendix A. The unknown coefficients Ai j with
i = 1, 2 and j = 1 . . . 4, contained in vector a can be solved for in terms of the unknown auxiliary
functions G1(ρ) and G2(ρ) contained in vector b in the form

Ai j = Ai j
(
G1(ρ),G2(ρ)

)
. (14)

Although the formulation presented herein only considers boundary conditions of the clamped type on
region S1 and traction free on region S2, it can easily be extended to include different boundary conditions
such as clamped on both regions and traction free on both regions, and their combinations. Imposition of
different types of boundary conditions only requires the modification of the matrix C to reflect changes
in Equation (2).

The remaining unknown functions G1(ρ) and G2(ρ) are determined by enforcing the applied tractions
on the crack surfaces given by Equation (5), resulting in

µ2

∫
∞

0
dρρ

[
(1 + κ2)(A24 − A22)− 2ρ(A21 + A23)

]
J0(ρr)= p(r),

µ2

∫
∞

0
dρρ

[
(1 − κ2)(A24 + A22)− 2ρ(A21 − A23)

]
J1(ρr)= q(r),

(15)

where the stress components are defined in region S2, and Ai j are already determined by Equation (14).
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In order to avoid divergent kernels and to simplify the analysis regarding the asymptotic behavior of
the kernels, both sides of Equation (15) are integrated over r while invoking Equation (12), resulting in

∫ a

0
dssg1(s)

∫
∞

0
dρH11(ρ)J1(ρr)J1(ρs)+

∫ a

0
dssg2(s)

∫
∞

0
dρH12(ρ)J1(ρr)J0(ρs)

=
1
r

(∫
r

p(λ)λdλ+ c1

)
,∫ a

0
dssg1(s)

∫
∞

0
dρH21(ρ)(1 − J0(ρr))J1(ρs)+

∫ a

0
dssg2(s)

∫
∞

0
dρH22(ρ)(1 − J0(ρr))J0(ρs)

=

∫
r

q(λ)dλ+ c2,

(16)

in which Hi j (ρ), with i, j = 1, 2, are defined in terms of the coefficients of C−1 in Appendix A, and ci

represents the integration constants. As the integration variable ρ approaches infinity, the kernels Hi j (ρ)

possess the asymptotic behavior

lim
ρ→∞

H11(ρ)= − lim
ρ→∞

H22(ρ)= γ11 =
µ1µ2

(
µ1(1 + κ2)+µ2(1 + κ1)

)
(µ2 + κ2µ1)(µ1 + κ1µ2)

,

lim
ρ→∞

H12(ρ)= − lim
ρ→∞

H21(ρ)= γ12 =
µ1µ2

(
µ1(1 − κ2)−µ2(1 − κ1)

)
(µ2 + κ2µ1)(µ1 + κ1µ2)

.

By considering the asymptotic behavior of kernels, using γ=−γ12/γ11 Equation (16) can be rewritten as

− γ

∫ a

0
dssg2(s)

∫
∞

0
dρ J1(ρr)J0(ρs)+

∫ a

0
dssg2(s)

∫
∞

0
dρ

H12(ρ)− γ12

γ11
J1(ρr)J0(ρs)

+

∫ a

0
dssg1(s)

∫
∞

0
dρ J1(ρr)J1(ρs)+

∫ a

0
dssg1(s)

∫
∞

0
dρ

H11(ρ)− γ11

γ11
J1(ρr)J1(ρs)

=
1
γ11r

(∫
r

p(λ)λdλ+ C1

)
,

γ

∫ a

0
dssg1(s)

∫
∞

0
dρ(1 − J0(ρr))J1(ρs)+

∫ a

0
dssg1(s)

∫
∞

0
dρ

H21(ρ)+ γ12

γ11
(1 − J0(ρr))J1(ρs)

−

∫ a

0
dssg2(s)

∫
∞

0
dρ(1 − J0(ρr))J0(ρs)+

∫ a

0
dssg2(s)

∫
∞

0
dρ

H22(ρ)+ γ11

γ11
(1 − J0(ρr))J0(ρs)

=
1
γ11

(∫
r
q(λ)dλ+ C2

)
,

(17)

After differentiating these equations term by term with respect to r , application of integration by parts
to replace the unknown functions g1(s) and g2(s) with the unknown functions W (s) and U (s) and the
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use of Equation (A.1) when appropriate leads to

1
π

∫ a

0
ds

W (s)
(s − r)2

+
1

2πr

∫ a

0
ds

W (s)
s − r

−
1

8πr2

∫ a

0
dsW (s) ln |s − r | +

∫ a

0
dsW (s)K11(r, s)

+

∫ a

0
dsU (s)K12(r, s)− γ

U (r)
r

− γ
∂U (r)
∂r

=
1
γ11

p(r), (18)

1
π

∫ a

0
ds

U (s)
(s − r)2

+
1

2πr

∫ a

0
ds

U (s)
s − r

+
3

8πr2

∫ a

0
dsU (s) ln |s − r | +

∫ a

0
dsW (s)K21(r, s)

+

∫ a

0
dsU (s)K22(r, s)+ γ

∂W (r)
∂r

=
1
γ11

q(r), (19)

in which the kernels are defined as

K11(r, s)= m11(r, s)−
1

π(s−r)2
−

1
2πr(s−r)

+
ln |s−r |

8πr2 −s
∫

∞

0
dρ

H11(ρ)−γ11

γ11
ρ2 J0(ρr)J0(ρs),

K12(r, s)= s
∫

∞

0
dρ

H12(ρ)−γ12

γ11
ρ2 J0(ρr)J1(ρs),

K21(r, s)= −s
∫

∞

0
dρ

H21(ρ)+γ12

γ11
ρ2 J1(ρr)J0(ρs),

K22(r, s)= m22(r, s)−
1

π(s−r)2
−

1
2πr(s−r)

−
3 ln |s−r |

8πr2 +s
∫

∞

0
dρ

H22(ρ)+γ11

γ11
ρ2 J1(ρr)J1(ρs),

(20)

where m11(r, s) and m22(r, s) are given in Appendix A. Multiplying Equation (19) by i =
√

−1 and
adding to Equation (18) leads to their combination as

1
π

∫ a

0
ds

f (s)
(s − r)2

+
1

2πr

∫ a

0
ds

f (s)
s − r

+
1

8πr2

∫ a

0
ds f (s) ln |s − r | −

1
4πr2

∫ a

0
ds f ∗(s) ln |s − r |

+

∫ a

0
dsK1(r, s) f (s)+

∫ a

0
dsK2(r, s) f ∗(s)+ i

γ

2r
f (r)− i

γ

2r
f ∗(r)+ iγ

d f (r)
dr

=
p(r)+ iq(r)

γ11
, (21)

where the unknown complex-valued function is f (r)= W (r)+ iU (r), with its complex conjugate rep-
resented by f ∗. The complex-valued kernels K1 and K2 are defined as

K1(r, s)=
1
2

(
K11(r, s)+ K22(r, s)−i

[
K12(r, s)− K21(r, s)

])
,

K2(r, s)=
1
2

(
K11(r, s)− K22(r, s)+i

[
K12(r, s)+ K21(r, s)

])
.

In addition to the presence of Hadamard-, Cauchy-, and logarithmic-type singularities, the dominant
part of the kernels K1(r, s) and K2(r, s) in Equation (21) becomes unbounded as both r and s approach
zero. Kernels of this type are analogous to the generalized Cauchy-type kernels [Erdogan 1978]. The
unknown function f (r) can be defined as

f (r)=
F(r)

(a − r)αrβ
,

in which F(r) is an unknown bounded function. By using the function-theoretic method of Muskhel-
ishvili [1992] and the properties of hypersingular integral equations described by Kaya [1984], Kaya and
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Erdogan [1987], Ioakimidis [1988b; 1988a; 1990], and later by Chan et al. [2003] and Kilic et al. [2006],
the strength of the singularities α and β can be obtained as

α = −
1
2 + iω, β = 0, with ω =

1
2π

ln
(1 − γ

1 + γ

)
.

For an interface crack, the complex stress intensity factor that is equivalent to that of Erdogan and
Gupta [1971a; 1971b] and Kassir and Bregman [1972] can be defined as

k1 + ik2 = lim
r→a

(r − a)−α
∗

2−α(σzz + iσr z),

where α∗ is the complex conjugate of α. This allows the stress intensity factor to be re-expressed as

1

γ11
√

1 − γ 2

(
k1(a)+ ik2(a)

)
= − 2α lim

r→a
(r − a)α(2a)α

∗

f (r)= − 2−2αα
√

aF(a).

In the limiting case of both h1 and h2 approaching infinity, the stress intensity factor for constant
pressure can be expressed analytically using the formula given by Kassir and Bregman [1972] as

k1 + ik2 = 2p0

√
a
π

0(2 − iω)
0(1/2 − iω)

, (22)

in which 0 represents the gamma function. Knowing the stress intensity factors permits the evaluation
of the phase angle, ψ , equivalent to that of Jensen [1998], in the form

tanψ =
Im

(
(k1 + ik2)h−iω

2

)
Re

(
(k1 + ik2)h−iω

2

) .
As introduced by Erdogan and Gupta [1971a; 1971b], the energy release rate can be related to the

stress intensity factors in the form

G =
π

2
(µ1 + κ1µ2)(µ2 + κ2µ1)

µ1µ2
[
(1 + κ1)µ2 + (1 + κ2)µ1

](k2
1 + k2

2).

4. Numerical analysis of integral equations

By introducing r = a(x + 1)/2, s = a(t + 1)/2, for −1 ≤ (x, t) ≤ 1, the integro-differential equation,
Equation (21), is normalized as

2
πa

∫ 1

−1
dt

g(t)
(t − x)2

+
1

2πr

∫ 1

−1
dt

g(t)
t − x

+
a

16πr2

∫ 1

−1
dtg(t) ln |t − x | −

a
8πr2

∫ 1

−1
dt f ∗(t) ln |t − x |

+

∫ 1

−1
dt M1(x, t)g(t)+

∫ 1

−1
dt M2(x, t)g∗(t)+ i

γ

2r
g(x)− i

γ

2r
g∗(x)+ i

2γ
a

dg(x)
dx

=
p(r)+ iq(r)

γ11
, (23)

where g(x)= f (a(x + 1)/2) and M1 and M2 are defined as
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M1(x, t)=
1
2

(
M11(x, t)+ M22(x, t)− i

a
2

[
K12(r, s)− K21(r, s)

])
,

M2(x, t)=
1
2

(
M11(x, t)− M22(x, t)+ i

a
2

[
K12(r, s)+ K21(r, s)

])
,

where

M11(x, t)=
a
2

m11(r, s)−
2

πa(t−x)2
−

1
2πr(t−x)

+
a ln |t−x |

16πr2 −
as
2

∫
∞

0
dρ

H11(ρ)−γ11

γ11
ρ2 J0(ρr)J0(ρs),

M22(x, t)=
a
2

m22(r, s)−
2

πa(t−x)2
−

1
2πr(t−x)

−
3a ln |t−x |

16πr2 +
as
2

∫
∞

0
dρ

H22(ρ)+γ11

γ11
ρ2 J1(ρr)J1(ρs).

Furthermore, the normalized unknown function g(x) can be rewritten as

g(x)=
G(x)
(1 − x)α

, (24)

where the unknown auxiliary function G(x) is bounded.
The kernels M1(x, t) and M2(x, t) appearing in Equation (23) involve the computation of infinite

integrals. These integrals are evaluated by using the modified form of Filon’s numerical scheme in
order to account for the oscillations arising from the Bessel functions of the first kind. This integration
algorithm is outlined in Appendix B. The complexity of the kernels in Equation (23) requires that the
singular integral equations be solved numerically. The solution procedure involves the reduction of the
integro-differential equations with Hadamard-, Cauchy-, and logarithmic-type singularities to a system
of linear algebraic equations using the collocation technique introduced by Miller and Keer [1985] and
later extended by Quan [1991] to include the generalized Cauchy kernel, and by Kabir et al. [1998] to
include Hadamard- and logarithmic-type singularities.

In this technique, the quadrature interval [−1, 1] is partitioned into a series of subintervals. The
integration points, tk , at the ends and midpoint of each subinterval are shown in Figure 2. The collocation
points xn are defined at the midpoint of two consecutive integration points.

The unknown function G(t) in Equation (24) is approximated over each subinterval t2k−1 ≤ t ≤ t2k+1,
for k = 1, . . . , N , by quadratic Lagrange interpolation polynomials, which are given as

G(t)≈

[
(t − t2k)

2

h2
k

−
(t − t2k)

hk

]
G2k−1

2
+

[
1 −

(t − t2k)
2

h2
k

]
G2k +

[
(t − t2k)

2

h2
k

+
(t − t2k)

hk

]
G2k+1

2
,

where Gk = G(tk) and hk = (t2k+1 − t2k−1)/2.

t
1
=-1 t

2
t

3

x
1

x
2

t
2k-1

t
2k

t
2 +1k

x
2 -1k

x
2k

x
2 -1N

x
2N

t
2N-1

t
2N

t
2 +1

=1
N

2h
k

Figure 2. Discretization of the quadrature interval.
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Approximation of the unknown function G(x) permits the discretization of Equation (23) as

2N+1∑
m=1

[
2
πa
wH

m (xn)Gm +
1

2πrn
wC

m(xn)Gm +
a

16πr2
n
wL

m(xn)Gm −
a

8πr2
n
wL∗

m (xn)G∗

m + M1(xn, tm)vmGm

+ M1(xn, tm)v∗

mG∗

m

]
+

3∑
j=1

[
i

γ

2rn(1 − xn)α

(
B j G I+ j − B j G∗

I+ j
)
+ i

2γ
a(1 − xn)1+α

B j G I+ j

]

+ i
2γ

a(1 − xn)α

M∑
j=1

D j (hn)GL+ j =
1
γ11
(p(xn)+ iq(xn)), (25)

where N is the number of subintervals for the unknown function G(x) and rn = a(xn + 1)/2. The singular
weight functions, wH

m (x), w
C
m(x), w

L
m(x), and vm , as well as I and B j , are given by Kabir et al. [1998]

and L and D j are defined by Kilic et al. [2006]. The variable with a superscript * denotes its complex
conjugate.

Because this discretization results in a number of unknowns Gm , which are one more than the number
of equations, an additional constraint equation becomes necessary in order to achieve a unique solution
to Equation (25). However, the nature of this solution method does not yield any additional constraint
equations based on the physics of the problem. Therefore, the necessary equation is introduced in an
artificial way in order to achieve a unique solution, as suggested by Kabir et al. [1998] and Kilic et al.
[2006]. It is obtained by multiplying the integro-differential equation given by (23) by r2(1 − x2)3/2

and integrating over x between −1 and 1. After changing the order of integrations, performing the
appropriate algebraic manipulations leads to the normal and discretized forms

∫ 1

−1
dt K1c(t)g(t)+ K2c(t)g∗(t)= g̃,

2N+1∑
m=1

K1c(tm)vmGm + K2c(tm)v∗

mG∗

m = g̃.

The details of the algebraic manipulations, as well as the definitions of g̃, K1c(t), and K2c(t), are given
in Appendix C.

Furthermore, the examination of the kernels reveals that they approach zero as t → −1 (s → 0) for
x 6= −1 (r 6= 0). Therefore, G1 = G(−1) disappears as t → −1, for x 6= −1, making the first column
equal to zero in the construction of the algebraic equations formed by Equation (25); thus leading to a
singular coefficient matrix. To make the system of equations nonsingular, the first row of the coefficient
matrix is replaced by imposing the conditions of zero radial displacement and zero slope of transverse
displacement at the center of the crack, that is,

Im[g(t = − 1)] = 0, Re
[
∂g(t = − 1)

∂t

]
= 0.

The discrete form of the singular integral equation and constraint equation can be cast into the form
AnmGm = gm for m, n = 1, . . . , 2N +1, where the unknown vector has form GT

=
{
G1,G2, . . . ,G2N+1

}
.
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N k1 k2

3 0.630 −0.0929
5 0.634 −0.0979
10 0.635 −0.0992
20 0.635 −0.0995
30 0.635 −0.0996

Table 1. Convergence of stress intensity factors.

5. Numerical results

To establish the number of subintervals associated with the unknown functions, the problem of a penny-
shaped crack at the interface of two semiinfinite dissimilar materials under unit pressure is considered.
Material properties are the same as those given by Kassir and Bregman [1972], and Young’s modulus
and Poisson’s ratio have numerical values of 3 × 107 psi and 0.3 for the material at the upper half and 107

psi and 0.22 for material at the lower half. The analytical solution using Equation (22) can be computed
as k1 + ik2 = 0.635 − 0.0996i . The convergence of the stress intensity factors as a function of number
of integration points is presented in Table 1. As demonstrated in this table, the numerical technique
used in this study gives 3-digit accuracy, as compared to analytical solution using only 30 integration
points. Therefore, in the solution of the integral equations, the number of subintervals associated with
the unknown function is chosen to be 100. The material properties used in this analysis are the same as
those given by Farris and Keer [1985] and Wan et al. [2003], and their values are presented in Table 2. In
this table, the aluminum layer of 7075-T6 Al represents the rigid substrate, and the polymeric materials
represent the film.

The validity of the results of the present analysis was established by comparing the crack opening and
sliding displacements with the finite element predictions. Finite element analysis was conducted using
PLANE42 elements of the commercially available package ANSYS®. The PLANE42 element can be
used as an axisymmetric element with four nodes, having two degrees of freedom at each node. In the
finite element discretization, the radius of the material layer is 20 times that of the crack radius in order
to represent infinite length in radial direction. The finite element mesh has 50 equally spaced nodes in
the radial direction along the crack surface. The elements surrounding the crack tip are of traditional
elements without special treatment of the singularity at the crack tip.

Material Modulus (MPa) Poisson’s Ratio

7075-T6 Al Alloy 7.1705 × 104 0.33
Polymeric Material 4.0 × 103 0.35

Solithane 113 3.447 0.499
PMMA 2.758 0.495

Table 2. Mechanical properties of materials.
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Figure 3. Crack opening (top) and sliding (bottom) displacement between 7075-T6 Al
substrate and polymeric film for h2/h1 = 1.

In the validation of the present analysis against the finite element predictions, the film thickness is
taken to be equal to that of the substrate, h2/h1 = 1, and the crack length is equal to that of the thin
film thickness, h2/a = 1. As shown in Figure 3, predictions of the present analysis are in remarkable
agreement with the finite element results. To capture the effects of thin film thickness on the fracture
parameters, the ratio of thin film thickness to crack radius h2/a is varied ranging from 0.4 to 4.
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Ratio of thin film thickness to crack radius, /h2 a
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Figure 4. Opening (top) and sliding (bottom) mode stress intensity factor for a crack
between 7075-T6 Al substrate and polymeric film for h2/h1 = 1.

As observed in Figures 4–5, the energy release rate and stress intensity factors for the opening and
sliding modes increase as the ratio of h2/a decreases. The complex stress intensity factor approaches the
limiting value given by Kassir and Bregman [1972] as the ratio of h2/a increases. The central deflection
as a function of the ratio h2/a is shown in Figure 6.



742 BAHATTIN KILIC AND ERDOGAN MADENCI

Ratio of thin film thickness to crack radius, /h2 a
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Figure 5. Energy release rate at a crack front between 7075-T6 Al substrate and poly-
meric film for h2/h1 = 1.
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Figure 6. Central deflection of a crack between 7075-T6 Al substrate and polymeric
film for h2/h1 = 1.
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Figure 7. Crack opening (top) and sliding (bottom) displacement between Solithane
113 and PMMA material layers.

If the adhesive between the two material layers has a comparable modulus, it should be explicitly
included in the analysis. The present analysis can be used to model such a material system. To illus-
trate this capability, the adherend material PMMA is attached to a rigid substrate using the adhesive
material Solithane 113. The results are presented for four different adherend-to-adhesive thickness ratios
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Figure 8. Opening (top) and sliding (bottom) mode stress intensity factor for a crack
between Solithane 113 and PMMA material layers.

of h2/h1 = 1 and 4 by an increment of 1. The crack opening and sliding displacements are shown in
Figure 7. The stress intensity factors and energy release rate increase as h1/a decreases for h2/h1 = 1, as
presented in Figures 8–9. However, for h2/h1 = 4, the stress intensity factor for the opening mode and
energy release rate have a minimum at h1/a ≈ 0.75, as also pointed out by Farris and Keer [1985], but the
stress intensity factor for the sliding mode increases as h1/a decreases. Similar behavior is observed for
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Figure 9. Energy release rate at a crack front between Solithane 113 and PMMA mate-
rial layers.
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Figure 10. Central deflection of a crack between Solithane 113 and PMMA material layers.
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h2/h1 = 2 and h2/h1 = 3. As the h1/a ratio increases, the complex stress intensity factor approaches that
given by Kassir and Bregman [1972]. The crack opening displacements at the center are also presented
in Figure 10.

6. Conclusions

By using the linear theory of elasticity and applying the appropriate mixed boundary conditions, the
interface penny-shaped crack problem is reduced to a boundary-value problem. The formulation of this
boundary-value problem leads to a singular integral equation of the Hadamard-, Cauchy-, and logarithmic-
type, which is solved numerically to directly obtain the crack opening and sliding displacements, as well
as the stress intensity factors and energy release rate. Numerical results are validated by comparing
against the crack opening and sliding displacements obtained from the finite element analysis. The
limiting value of the complex stress intensity factor for which both the substrate and film thicknesses
approach infinity is also in agreement with the analytical benchmark solution. The present analysis can
be used to investigate the interface toughness between not only the film and rigid substrate but also the
film and adhesive, which have comparable magnitudes of elastic moduli. Within the context of solution
methods available in the literature, this study, for the first time, presents an approach for constructing
the solution of a singular integral equation in the presence of a combination of Hadamard, Cauchy, and
logarithmic singularities.

Appendix A

The matrix C in Equation (13) is given by

−ρ −κ2 ρ −κ2 ρ κ1 −ρ κ1

ρ 0 ρ 0 −ρ 0 −ρ 0

2µ2ρ (1+κ2)µ2 2µ2ρ −(1+κ2)µ2 −2µ1ρ −(1+κ1)µ1 −2µ1ρ (1+κ1)µ1

2µ2ρ (κ2−1)µ2 −2µ2ρ (κ2−1)µ2 −2µ1ρ −(κ1−1)µ1 2µ1ρ −(κ1−1)µ1

0 0 0 0 eρh1 −h1eρh1 e−ρh1 −h1e−ρh1

0 0 0 0 eρh1
(
κ1

ρ
−h1

)
eρh1 −e−ρh1

(
κ1

ρ
+h1

)
e−ρh1

2ρe−ρh2 (κ2+1+2ρh2)e−ρh2 2ρeρh2 −(κ2+1−2ρh2)eρh2 0 0 0 0

2ρe−ρh2 (κ2−1+2ρh2)e−ρh2 −2ρeρh2 (κ2−1−2ρh2)eρh2 0 0 0 0



.

The vectors a and b, also from Equation (11), are given by aT
= [A21 A22 A23 A24 A11 A12 A13 A14], and

bT
= [G1(ρ) G2(ρ) 0 0 0 0 0 0], where superscript T represents the transpose. The kernels appearing

in infinite integrals in Equation (16) are expressed as

H11(ρ)= µ2
[
(1 + κ2)(B41 − B21)− 2ρ(B11 + B31)

]
,

H12(ρ)= µ2
[
(1 + κ2)(B42 − B22)− 2ρ(B12 + B32)

]
,

H21(ρ)= µ2
[
(1 − κ2)(B41 + B21)− 2ρ(B11 − B31)

]
,

H22(ρ)= µ2
[
(1 − κ2)(B42 + B22)− 2ρ(B12 − B32)

]
,
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where the coefficients Bi j = C−1
i j .

The closed-form evaluation of certain integrals that are used in Equations (17)–(19) are∫
∞

0
dρ J1(ρr)J1(ρs)=

2
π

{
1
s [K (s/r)− E(s/r)], s < r,
1
r [K (r/s)− E(r/s)], s > r,∫

∞

0
dρ J0(ρr)J0(ρs)=

2
π

{
1
r K (s/r), s < r,
1
s K (r/s), s > r,

s
∫

∞

0
dρρ Jm(ρr)Jm(ρs)= δ(r − s),

(A.1)

where δ(r) is the Dirac delta function. The complete elliptic integrals of the first and second kind, K
and E , respectively, are defined by

K (m)=

∫ π/2

0

dθ√
1 − m2 sin2 θ

, E(m)=

∫ π/2

0
dθ

√
1 − m2 sin2 θ, (A.2)

where −1 ≤ m ≤ 1. The functions m11(r, s) and m22(r, s) appearing in Equation (20) are defined as

m11(r, s)=


2s

(
2r2 E(s/r)+(s2

−r2)K (s/r)
)

πr(s2−r2)2
, s < r,

4s2 E(r/s)−2(s2
−r2)K (r/s)

π(s2−r2)2
, s > r,

m22(r, s)=


2
(
(s2

+r2)E(s/r)+(s2
−r2)K (s/r)

)
π(s2−r2)2

, s < r,
2s

(
(s2

+r2)E(r/s)−(s2
−r2)K (r/s)

)
πr(s2−r2)2

, s > r,

in which K and E are the complete first and second kind elliptic integrals, respectively, and their explicit
forms are given by Equation (A.2).

Appendix B

The approximate evaluation of the integrals of type I (r, s, t; a, b)=
∫ b

a dx f (x)χ1(r x)χ2(sx)χ3(t x), in
which χi , with i = 1, 2, 3, are functions that possibly have oscillatory behavior (for example, Bessel
functions) and f (x) being smooth in the interval [a, b] can be achieved by

I (r, s, t; a, b)=

N∑
j=1

I j (r, s, t; x2 j−1, x2 j+1), (B.1)

in which N is the number of subintervals in the interval [a, b]. Although it is not necessary for the
subintervals to have the same abscissa, the subinterval lengths are taken as equal for simplicity, leading
to equal integration intervals x2 j−1 − x2 j+1 = (b − a)/N . I j is defined as

I j (r, s, t; x2 j−1, x2 j+1)=

∫ x2 j+1

x2 j−1

dx f (x)χ1(r x)χ2(sx)χ3(t x). (B.2)

Over the subinterval [x2 j−1, x2 j+1], this integral can be approximated as I j (r, s, t; x2 j−1, x2 j+1) =

w2 j−1 f (x2 j−1)+w2 j f (x2 j )+w2 j+1 f (x2 j+1), where w2 j−1, w2 j , and w2 j+1 are the integration weights.
They are determined by assuming a quadratic variation of the product of the functions χi , with i = 1, 2, 3,
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in the interval [x2 j−1, x2 j+1] with n = 0, 1, 2 such that∫ x2 j+1

x2 j−1

dxxnχ1(r x)χ2(sx)χ3(t x)= xn
2 j−1w2 j−1 + xn

2 jw2 j + xn
2 j+1w2 j+1 = Rn. (B.3)

In matrix form, these equations are rewritten as 1 1 1
x2 j−1 x2 j x2 j+1

x2
2 j−1 x2

2 j x2
2 j+1

 w2 j−1

w2 j

w2 j+1

 =

R0

R1

R2

 , (B.4)

from which the weights are computed after the evaluation of the expressions for Rn(r, s, t; x2 j−1, x2 j+1).
This is achieved by defining the variable x = az + x2 j , with a = (x2 j+1 − x2 j−1)/2, and by approximating
the functions χi , with i = 1, 2, 3, in the integrals in Equation (B.2) using the Chebyshev polynomials of
the first kind as

χi (p(az + x2 j ))=

Mi∑
m=0

bm Tm(z), with p ∈ {r, s, t}, (B.5)

in which Mi , with i = 1, 2, 3, is the highest degree of Chebyshev polynomial used in the approximation
and the coefficients are given by

bm =
c

Mi

(
χi (p(az0 + x2 j ))+ (−1)mχi (p(azMi + x2 j ))+ 2

Mi −1∑
k=1

χi (p(azk + x2 j )) cos
mkπ
Mi

)
,

in which zk = cos(kπ/Mi ), c = 1 for m = 1, . . . ,Mi − 1 and c = 1/2 for m = 0,Mi . Substitution from
Equation (B.5) into Equation (B.3) with n = 0, 1, 2 results in

Rn = a
M1∑
p=0

M2∑
r=0

M3∑
s=0

b1pb2r b3s

∫ 1

−1
dz(az + x2 j )

nTp(z)Tr (z)Ts(z),

This expression permits the explicit evaluation of Rn with the identities [Balkan 1995]∫ 1

−1
dzTp(z)Tr (z)Ts(z)= F(p, r, s, 1),∫ 1

−1
dzzTp(z)Tr (z)Ts(z)=

F(p, r, s, 2)
2

,∫ 1

−1
dzz2Tp(z)Tr (z)Ts(z)=

F(p, r, s, 3)+ F(p, r, s, 1)
4

,

in which

F(p, r, s, n)=
1
2

(
s+n

(s+n)2−(p+r)2
+

n−s
(n−s)2−(p+r)2

+
s+n

(s+n)2−(p−r)2
+

n−s
(n−s)2−(p−r)2

)
for p + r + s + n = odd, and zero otherwise.

Substituting for Rn and numerically inverting the system of Equation (B.4) leads to the integration
weights. Finally, the approximate value of the integrals is calculated from Equation (B.1). The accuracy
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of the integration algorithm is demonstrated by considering the infinite integral I =
∫

∞

0 dx xe−x2
J 2

0 (x),
with the exact solution of I = e−1/2 I0(1/2)/2 = 0.3225176352245750, in which I0 is the modified Bessel
function of the second kind. Its numerical evaluation, with N = 100 and Mi = 8, with i = 1, 2, 3, for
a = 0 and b = 10, and letting f (x)= 1, χ1(x)= xe−x2

and χ2(x)= χ3(x)= J0(x), leads to a value of
0.3225176352245752.

Appendix C

The numerical scheme used to solve a hypersingular integral equation requires an additional constraint
equation to achieve a unique solution. However, the nature of the problem does not provide any con-
straint conditions, as opposed to formulations of the Cauchy type. Furthermore, Equation (23) has a
unique solution without any additional constraint equation. Thus, a constraint equation is introduced by
multiplying Equation (23), with r2(1 − x2)3/2, and integrating over x as

2
πa

∫ 1

−1
dtg(t)

∫ 1

−1
dx

r2(1 − x2)3/2

(t − x)2
+

1
2π

∫ 1

−1
dtg(t)

∫ 1

−1
dx

r(1 − x2)3/2

t − x

+
a

16π

∫ 1

−1
dtg(t)

∫ 1

−1
dx ln |t − x |(1 − x2)3/2 −

a
8π

∫ 1

−1
dt f ∗(t)

∫ 1

−1
dx ln |t − x |(1 − x2)3/2

+

∫ 1

−1
dtg(t)

∫ 1

−1
dx M1(x, t)r2(1 − x2)3/2 +

∫ 1

−1
dtg∗(t)

∫ 1

−1
dx M2(x, t)r2(1 − x2)3/2

+ i
γ

2

∫ 1

−1
dxg(x)r(1 − x2)3/2 − i

γ

2

∫ 1

−1
dxg∗(x)r(1 − x2)3/2

+ i
2γ
a

∫ 1

−1
dx

dg(x)
dx

r2(1 − x2)3/2 =

∫ 1

−1
dx

p(r)+ iq(r)
γ11

r2(1 − x2)3/2. (C.1)

This equation can be further simplified by using the results for the definite integrals of Hadamard and
Cauchy types given by Kaya [1984], and the definite integrals of logarithmic type as

∫ 1

−1
dt

tn
√

1 − t2

(t − x)2
=

n+1∑
k=1

kbk xk−1,

∫ 1

−1
dt

tn
√

1 − t2

t − x
=

n+1∑
k=0

bk xk,

1
π

∫ 1

−1
dt

√
1 − t2 ln |t − x | =

x2

2
−

1
4
(1 + 2 ln 2),

1
π

∫ 1

−1
dtt2

√
1 − t2 ln |t − x | =

x4

4
−

x2

4
+

1
32
(1 − 4 ln 2),

where

bk =

√
π

2
0((n − k)/2)

0((n − k + 3)/2)
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for n − k = odd, and zero otherwise. Finally, this equation can be put into the concise form∫ 1

−1
dt K1c(t)g(t)+K2c(t)g∗(t)= g̃,

K1c(t)=
a

512

(
−3(83+ln 16)−1728t−552t2

+2176t3
+1400t4)

+i 3
4aγ (1+t)

(
−1+2t+3t2) √

1−t2+

∫ 1

−1
dx M1(x, t)r2 (

1−x2)3/2
,

K2c(t)=
a

256

(
3(3+log 16)+8t2(−3+t2)

)
−i

aγ
4
(1+t)(1−t2)3/2+

∫ 1

−1
dx M2(x, t)r2(1−x2)3/2,

g̃ =

∫ 1

−1
dx

p(r)+iq(r)
γ11

r2(1−x2)3/2.

(C.2)

Note that the multiplying factor, r2(1 − x2)3/2 is used because it permits simplification of Equation
(C.1) by using known definite integrals, which leads to the accurate evaluation of constraint equation.
Integration by parts is used to remove the derivative of the unknown function. Integrals appearing in
Equation (C.2) can be evaluated accurately using Chebyshev polynomials of second kind [Abramowitz
and Stegun 1964].
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WAVELET SPECTRAL ELEMENT FOR WAVE PROPAGATION STUDIES IN
PRESSURE LOADED AXISYMMETRIC CYLINDERS

MIRA MITRA AND S. GOPALAKRISHNAN

We study transient wave propagation in a pressure loaded isotropic cylinder under axisymmetric con-
ditions. A 2-D wavelet based spectral finite element (WSFE) is developed to model the cylinder with
radial and axial displacements. The method involves a Daubechies compactly supported scaling function
approximation in the temporal dimension and one spatial (axial direction) dimension. This reduces the
governing partial differential wave equation into a set of variable coefficient ODEs, which are then solved
using Bessel’s function approximation. This spectral method captures the exact inertial distribution and
thus results in large computational savings compared to the conventional finite element (FE) formulation.
In addition, the use of localized basis functions in the present formulation circumvents several serious
limitations of the previous FFT based techniques. Here, the proposed method is used to study radial and
axial wave propagation in cylinders with different configurations. The analysis is performed in both time
and frequency domains. The time domain responses are validated with 2-D FE results.

1. Introduction

Wave propagation analysis in cylindrical structures is of much relevance for its applications to problems
like health monitoring of fluid carrying pipes, excavation casings, and so on [Yin and Yue 2002; El-Raheb
2005]. Recently, with the advent of carbon nanotubes, researchers have been working towards dynamic
and wave propagation analyses [Mahan 2002; Wang et al. 2005] of hollow cylindrical shells resembling
the carbon nanotube configuration.

Wave propagation problems deal with high frequency excitations and the FE modeling is not com-
putationally viable here as the element size has to be comparable to wavelengths, which are very small
at higher frequencies. This results in large system size, and thus alternative numerical schemes [Bao
et al. 1999; Godinho et al. 2003; 2004] are generally developed, which are highly accurate in numerical
differentiation and also computationally efficient. The FFT based Spectral Finite Element (FSFE) [Doyle
1999] is one such technique specially formulated for wave propagation analysis, and it follows the FE
procedure in the transformed frequency domain. In FSFE for 2-D problems, the nodal displacements
are related to the nodal forces through a frequency-wavenumber dependent dynamic stiffness matrix. It
captures the mass distribution accurately and hence makes it possible to derive the exact elemental matrix.
Thus in the absence of discontinuities, a single element is sufficient to model the 2-D structure of any
length but unbounded along one spatial dimension.

The main drawback of FSFE is that it cannot handle waveguides of short lengths. This is because
the periodicity assumption in the time approximation results in wrap-around for smaller time windows,
which totally distorts the response. In addition, for 2-D problems, FSFE are essentially semi-infinite, that

Keywords: wave propagation, wavelets, spectral finite element, axisymmetry.
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is, bounded in only one direction. Thus the effect of one spatial boundary cannot be captured and this
is attributed to the global nature of the basis functions of the Fourier series approximation of the spatial
dimension. However, in Wavelet based Spectral Finite Element (WSFE) [Mitra and Gopalakrishnan
2005], use of localized Daubechies [1992] compactly supported wavelets as basis functions removes the
wrap-around problem and can efficiently model undamped structures of finite length. For 2-D problems
WSFE [Mitra and Gopalakrishnan 2006c; 2006b] can accurately model structures of finite dimensions.
This is again due to the use of localized Daubechies scaling functions as the basis for approximation of
spatial dimension.

The governing differential equations for axisymmetric structures have variable coefficients. Thus
the 2-D WSFE formulation for these problems is different from that for WSFE for plates [Mitra and
Gopalakrishnan 2006c; 2006b]. Here, unlike plates, the reduced ODEs obtained after transformations of
the PDEs are variable coefficient equations which have Bessel’s function as their solution. Hence, the
shape functions are obtained in terms of Bessel’s functions. The formulation of the elemental dynamic
stiffness matrix from these shape functions is very similar to that in FE.

As in the case of 2-D FSFE, the frequency dependent wave characteristics corresponding to each
spatial (axial) wavenumber, can be extracted from our WSFE formulation. However, unlike FSFE, the
wavenumbers will be accurate only up to a certain fraction of the Nyquist frequency [Mitra and Gopalakr-
ishnan 2006a]. In addition, here the governing PDE involves variable coefficients as a function of the
radius and hence the spectrum relations are derived for a certain radius following a similar procedure
as for the WSFE method for plates. Thus the frequency dependent spectrum relation obtained for such
axisymmetric problems varies for both axial wavenumbers and the radius.

The paper is organized as follows. Section 2 elaborates the reduction of PDEs to ODEs, Section 3
contains the frequency domain analysis and Section 4 the spectral finite element formulation. Numerical
results for time and frequency domains for different cylinder configurations are presented in Section 5.
The simulated responses are validated with 2-D FE analysis. The paper ends with important conclusions.

2. Reductions of wave equations to ODEs

The steps followed in 2-D WSFE for an axisymmetric cylinder are as follows. Here, first the Daubechies
scaling functions are used for approximation in time and this reduces the governing PDEs with variable co-
efficients into a set of coupled PDEs in spatial dimensions. The wavelet extrapolation technique proposed
by Williams and Amaratunga [1997] is used for adapting wavelets in the finite domain and the imposition
of initial conditions. The coupled transformed PDEs are decoupled through eigenvalue analysis. Though
the eigen analysis involved is time consuming, this can be computed and stored as it is not dependent on
the particular problem. Next, each of these decoupled PDEs are further reduced to a set of coupled ODEs
by using the same Daubechies scaling functions for approximation in the spatial dimension. Unlike the
temporal approximation, here, the scaling function coefficients lying outside the finite domain are not
extrapolated but obtained through periodic extension for unrestrained (free) axial edges. In this paper,
the formulation and examples are presented only for unrestrained axial boundary conditions. However,
other boundary conditions such as fixed-fixed or free-fixed can also be imposed through a restrain matrix
[Mitra and Gopalakrishnan 2006c]. Each set of these ODEs is coupled, and here decoupling can only
be done for unrestrained boundary conditions. As said earlier, these decoupled ODEs have coefficients
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that vary with the radius. Here, the Bessel function solution is used as interpolating functions and the
elemental dynamic stiffness matrix is obtained using these functions. The above mentioned steps are
discussed in detail in the following subsections.

2.1. Governing differential equations. The governing differential equations for a hollow cylindrical
structure are generally written in cylindrical coordinate system (r, θ, z), which denotes the radial, cir-
cumferential and axial directions. The displacement components are u, v and w in the radial, circumfer-
ential and axial directions. For the axisymmetric condition, the circumferential displacement v and the
variations of the other two displacements with respect to θ are not considered in the modeling. Thus the
equations of motion for an axisymmetric isotropic hollow cylinder contain only displacements u, w with
variations along r, z (see Figure 1) and time t , and can be written as

(λ+ 2µ)∇2
01= ρ

∂21

∂t2 ,

c2
d∇

2
01=

∂21

∂t2 , c2
d = (λ+ 2µ)/ρ, (1)

µ∇
2
1fθ = ρ

∂2fθ

∂t2 ,

c2
s ∇

2
1fθ =

∂2fθ

∂t2 , c2
s = µ/ρ, (2)

where ∇
2
n , for subscripts n = 0 and 1, is defined by

∇
2
n ≡

∂2

∂r2 +
1
r
∂

∂r
−

n2

r2 +
∂2

∂z2 .

The variables 1 and fθ are dilation and rotation vectors reduced for axisymmetric motions as

1=
1
r
∂(ru)
∂r

+
∂w

∂z
, fθ =

∂u
∂z

−
∂w

∂r
, (3)

L

L

1

1
r

2

r (radial) r
i

r
i
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1
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1
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w
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r
O

r
O

2

z (axial)

Figure 1. Axisymmetric element with nodal displacements and forces.
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and λ, µ are the Lamé’s constants and ρ is the mass density. From Equations (3), the displacements can
be written in decoupled form as

∇
2
1 u =

∂1

∂r
+
∂fθ

∂z
, ∇

2
0w =

∂1

∂z
−

1
r
∂(rfθ )

∂r
. (4)

The associated boundary conditions are

σr = λ1+ 2µ
∂u
∂r
, σz = µ

∂u
∂z

+
∂w

∂r
, (5)

where σr and σz are the radial and axial forces acting on the surface of the cylinder along the z direction.

2.2. Daubechies compactly supported wavelets. A concise review of orthogonal basis of Daubechies
wavelets Daubechies 1992 is provided. The wavelets ψ j,k(t) form compactly supported orthonormal
basis for L2(R). The wavelets and the associated scaling functions ϕ j,k(t) are obtained by translation
and dilation of single functions ψ(t) and ϕ(t):

ψ j,k(t)= 2 j/2ψ(2 j t − k), ϕ j,k(t)= 2 j/2ϕ(2 j t − k), j, k ∈ Z.

The scaling functions ϕ(t) are derived from the dilation or scaling equation,

ϕ(t)=

∑
k

akϕ(2t − k),

and the wavelet function ψ(t) is obtained as

ψ(t)=

∑
k

(−1)ka1−kϕ(2t − k).

The ak are the filter coefficients and are fixed for specific wavelet or scaling function basis. For compactly
supported wavelets only a finite number of ak are nonzero. The filter coefficients ak are derived by
imposing certain constraints on the scaling functions which are as follows. (1) The area under scaling
function is normalized to one. (2) The scaling function ϕ(t) and its translates are orthonormal. (3) The
wavelet function ψ(t) has M vanishing moments. The number of vanishing moments M denotes the
order N of the Daubechies wavelet, where N = 2M .

Let Pj ( f )(t) be the approximation of a function f (t) in L2(R) using ϕ j,k(t) as a basis, at a certain
level (resolution) j . Then

Pj ( f )(t)=

∑
k

c j,kϕ j,k(t), k ∈ Z,

where the c j,k are the approximation coefficients.

2.3. Temporal approximation. The first step of formulation of WSFE is the reduction of each of the
two governing differential equations (1) and (2) with variables 4 and fθ , to a set of PDEs in spatial
dimensions by Daubechies scaling function based transformation in time. The procedure has been dis-
cussed earlier in [Mitra and Gopalakrishnan 2005; 2006c] for WSFE formulation for beams and plates,
respectively and is described here in brief for completeness. Let 1(r, z, t) be discretized at n points in
the time window [0, t f ]. Let τ = 0, 1, . . . , n − 1 be the sampling points; then

t = 4t τ,
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where 4t is the time interval between two sampling points. The function 1(r, z, t) can be approximated
by the scaling function ϕ(τ) at an arbitrary scale as

1(r, z, t)=1(r, z, τ )=

∑
k

1k(r, z)ϕ(τ − k), k ∈ Z,

where the 4k(r, z) (written 4k hereafter) are the approximation coefficients at spatial coordinates r and
z and (1) can be written as∑

k

c2
d

(
∂2

∂r2 +
1
r
∂

∂r
+
∂2

∂z2

)
1kϕ(τ − k)=

1
4t2

∑
k

1kϕ
′′(τ − k). (6)

Taking the inner product of both sides with the translates of scaling functions ϕ(τ − j), where j =

0, 1, . . . , n − 1 and using their orthogonal properties, we get n simultaneous PDEs:

c2
d

(
∂2

∂r2 +
1
r
∂

∂r
+
∂2

∂z2

)
1 j =

1
4t2

j+N−2∑
k= j−N+2

�2
j−k1k, j = 0, 1, . . . , n−1, (7)

where N is the order of the Daubechies wavelet and the �2
j−k are the connection coefficients, defined by

�2
j−k =

∫
ϕ′′(τ − k)ϕ(τ − j) dτ. (8)

Similarly, for the first-order derivative, the �1
j−k are defined by

�1
j−k =

∫
ϕ′(τ − k)ϕ(τ − j) dτ.

For compactly supported wavelets, �1
j−k, �

2
j−k are nonzero only in the interval k = j − N + 2 to k =

j + N − 2. The detail for evaluation of connection coefficients for different derivative orders is given in
[Beylkin 1992].

It can be observed from the PDEs given by (7) that certain coefficients 4 j near the vicinity of the
boundaries ( j = 0 and j = n−1) lie outside the time window [0, t f ] defined by j = 0, 1, . . . , n−1. These
coefficients must be treated properly for finite domain analysis. Here, a wavelet based extrapolation
scheme [Williams and Amaratunga 1997] is implemented for the solution of boundary value problems.
This approach allows treatment of finite length data and uses polynomials to extrapolate the coefficients
lying outside the finite domain either from interior coefficients or initial/boundary values. The method
is particularly suitable for approximation in time, because of the ease of imposing initial values. The
method converts the PDEs (7) to a set of coupled PDEs:

c2
d

(
∂2

∂r2 +
1
r
∂

∂r
+
∂2

∂z2

) {
1 j

}
= [01

]
2 {
1 j

}
, (9)

where 01 is the first order connection coefficient matrix obtained after using the wavelet extrapolation
technique. It should be mentioned here that though the connection coefficients matrix, 02, for the second
order derivative can be obtained independently, here it is written as [01

]
2 as it helps to impose the
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initial conditions [Mitra and Gopalakrishnan 2005]. These coupled PDEs are decoupled using eigenvalue
analysis, via

01
=858−1,

where 5 is the diagonal eigenvalue matrix and 8 is the eigenvectors matrix of 01. Let the eigenvalues
be iγ j , with i =

√
−1. The decoupled PDEs corresponding to Equations (9) are

c2
d

(
∂2

∂r2 +
1
r
∂

∂r
+
∂2

∂z2

)
1̂ j = −γ 2

j 1̂ j j = 0, 1, . . . , n − 1, (10)

where 1̂ j is

1̂ j =8−11 j .

Following the same steps, the final transformed form of (2) is

c2
s

(
∂2

∂r2 +
1
r
∂

∂r
−

1
r2 +

∂2

∂z2

)
f̂θ j = −γ 2

j f̂θ j j = 0, 1, . . . , n − 1. (11)

Similarly, the transformed form of the decoupled displacement equations (4) and force boundary condi-
tions (5) can be written as

∇
2
1 û j =

∂1̂ j

∂r
+
∂f̂θ j

∂z
, ∇

2
0 ŵ j =

∂1̂ j

∂z
−

1
r
∂(rf̂θ j )

∂r
, (12)

σ̂r j = λ1̂ j + 2µ
∂ û j

∂r
, σ̂z j = µ

∂ û j

∂z
+
∂ŵ j

∂r
, (13)

where σ̂r j and σ̂z j are the transformed forces σr (r, z, t) and σz(r, z, t) respectively.

2.4. Spatial approximation. As stated earlier, the next step involved is to further reduce each of the
transformed and decoupled PDEs given by Equations (10) and (11) for j = 0, 1, . . . , n−1 to a set of
coupled ODEs using the Daubechies scaling function approximation in the axial (z) direction. Similar to
time approximation, the transformed variable 1̂ j is discretized at m points in the spatial window [0, L z],
where L z is the length in z direction. Let ζ = 0, 1, . . . ,m−1 be the sampling points; then

z = 4z ζ,

where 4z is the spatial interval between two sampling points. The function 1̂ j (r, z) can be approximated
by the scaling function ϕ(ζ ) at an arbitrary scale as

1̂ j (r, z)= 1̂ j (r, ζ )=

∑
k

1̂l j (r)ϕ(ζ − l), l ∈ Z,

where the 1̂l j (r, z) (written 1̂l j hereafter) are the approximation coefficients. Thus (10) can be written
as

c2
d

(
d2

dr2 +
1
r

d
dr

)
1̂l jϕ(ζ − l)+ c2

d
1

4z2 1̂l jϕ
′′(ζ − l)= −γ 2

j 1̂l jϕ(ζ − l). (14)
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Taking the inner product on both sides of (14) with the translates of scaling functions ϕ(ζ − i), where
i = 0, 1, . . . ,m − 1 and using their orthogonal properties, we get m simultaneous ODEs:

c2
d

(
d2

dr2 +
1
r

d
dr

)
1̂i j + c2

d
1

4z2

i+N−2∑
l=i−N+2

1̂i j�
2
i−l = −γ 2

j 1̂i j , i = 0, 1, . . . ,m − 1, (15)

where N is the order of the Daubechies wavelet and �2
i−l is the connection coefficient for second order

derivative defined in Equations (8).
It can be seen from the ODEs given by (15), that, similar to time approximation, even here, certain

coefficients 1̂i j near the vicinity of the boundaries (i = 0 and i = m−1) lie outside the spatial window
[0, L z] defined by i = 0, 1, . . . ,m−1. These coefficients must be treated properly for finite domain
analysis. Here, however, unlike in the time approximation, these coefficients are obtained through pe-
riodic extension, but only for free lateral edges, while other boundary conditions can be imposed quite
differently using a restrain matrix [Patton and Marks 1996; Chen et al. 1996]. The unrestrained (free-
free) boundary conditions may also be imposed in a similar way using restrain matrix but it has been seen
from the numerical experiments that the use of a periodic extension gives accurate results. In addition, it
allows decoupling of the ODEs using eigenvalue analysis and thus reduces the computational cost. Here,
after expressing the unknown coefficients lying outside the finite domain in terms of the inner coefficients
considering periodic extension, the ODEs given by (15) can be written as a matrix equation of the form

c2
d

(
d2

dr2 +
1
r

d
dr

)
{1̂i j } + c2

d [31
]
2
{1̂i j } = −γ 2

j {1̂i j }, (16)

where [31
] is the first order connection coefficient matrix obtained after periodic extension, and it is of

the form

[31
] =

1
4Y


�1

0 �1
−1 . . . �

1
−N+2 . . . �

1
N−2 . . . �

1
1

�1
1 �1

0 . . . �1
−N+3 . . . 0 . . . �1

2
...

...
...

...
...

�1
−1 �

1
−2 . . . 0 . . . �1

N−3 . . . �
1
0

 .
The coupled ODEs given by (16) are decoupled using eigenvalue analysis similar to that done in time
approximation as

31
=9ϒ9−1,

where ϒ is the diagonal eigenvalue matrix and 9 is the eigenvectors matrix of 31. It should be mentioned
here that matrix 31 has a circulant form and its eigen parameters are known analytically [Davis 1963].
Let the eigenvalues be iβi , then the decoupled ODEs corresponding to Equations (16) are

c2
d

(
d2

dr2 +
1
r

d
dr

−β2
i

)
1̃i j = −γ 2

j 1̃i j , i = 0, 1, . . . ,m − 1, (17)

where 1̃i j =9−11̂i j . Following similar steps, the final transformed form of (11) is given by

c2
s

(
d2

dr2 +
1
r

d
dr

−
1
r2 −β2

i

)
f̃θ i j = −γ 2

j f̃θ i j . (18)
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Similarly, the decoupled displacement equations (12) and boundary conditions (13) can be written as(
d2

dr2 +
1
r

d
dr

−
1
r2 −β2

i

)
ũi j =

d1̃i j

dr
− iβf̃θ i j , (19)

(
d2

dr2 +
1
r

d
dr

−β2
i

)
w̃i j = −iβi1̃i j −

1
r

d(rf̃θ i j )

dr
, (20)

σ̃ri j = λ1̃i j + 2µ
dũi j

dr
, (21)

σ̃zi j = −iβiµũi j +
dw̃i j

dr
. (22)

The transformed and decoupled ODEs given by (17), (18) and (19)–(22) are used in the next two sections
for frequency domain analysis and spectral finite element formulation.

3. Computation of wavenumbers

For wavenumber computation, the transformed differential equations (17) and (18) in terms of variables
1̃i j and f̃θ i j are to be expressed in terms of transformed displacements ũi j and w̃i j using the relations
given by Equations (3). Here, these transformed ODEs have coefficients that are functions of radius r
unlike the governing equations for plate. That is, the wavenumber can be derived using a homogeneous
assumption at a certain radius r . At a certain radius r , the solutions of the ODEs for ũi j and w̃i j are of
the form

ũi j =

6∑
k=1

ūi j e−ikr , w̃i j =

6∑
k=1

w̄i j e−ikr , (23)

where k is the wavenumber in the radial r direction and ūi j , w̄i j are functions of r . Hereafter, the
subscripts i and j are dropped for simplified notation and all the following equations are valid for j =

0, 1, . . . , n − 1 and i = 0, 1, . . . ,m − 1. By substituting (23) in the transformed ODEs obtained from
Equations (17) and (18), the two polynomial equations in k become(
ic2

dk3
− (2c2

dk2/r)+ i(β2c2
d − c2

d/r − γ 2)k + (−3c2
d/r3

− c2
dβ

2/r + γ 2/r)
)
ū

+
(
−ic2

dβk2
+ (c2

dβ/r)k + (ic2
dβ

3
− iβγ 2)

)
w̄ = 0,(

−ic2
sβk2

+ (−c2
sβ/r)k − i(c2

s /r2
−c2

sβ
2
+γ 2)β

)
ū +

(
−ic2

s k3
+ (c2

s /r)k2
− i(c2

s /r +c2
sβ

2
−γ 2)k

)
w̄= 0.

They can be solved to obtain the wavenumbers k for the spectrum relation, that is, the wavenumber-
frequency relations at a certain radius r and axial wavenumber β. The solution can be performed easily by
posing the problem as a Polynomial Eigenvalue Problem (PEP) similar to that done for FSFE formulation
of a 2-D anisotropic plate in [Chakraborty and Gopalakrishnan 2005]. The PEP for this problem is of
the form

A3k3
+ A2k2

+ A1k + A0 = 0,

where A3, A2, A1 and A0 are 2×2 matrices. It should be restated here that the spectrum relations obtained
from WSFE formulation are accurate up to a certain fraction of the Nyquist frequency fNyq. This fraction
pN depends on the order N of the Daubechies scaling function used [Mitra and Gopalakrishnan 2006a].
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4. Spectral finite element formulation

The degrees of freedom associated with the element formulation are shown in Figure 1. The element
has two degrees of freedom per node, which are ũ and w̃. The two sets of decoupled ODEs given by
Equations (17) and (18) and the displacement relations Equations (19) and (20) are to be solved for ũ and
w̃. The actual solutions u(r, z, t) and w(r, z, t) are obtained using inverse wavelet transform twice for
temporal and spatial (axial) dimensions. For the finite length data, the wavelet transform and its inverse
can be obtained using a transformation matrix given by [Williams and Amaratunga 1994].

Here, the Bessel’s functions are used for the solution of the transformed governing equation given by
Equations (17) and (18). The solutions for 1̃ and f̃θ are obtained as

1̃(r)= C1 J0(ker)+ C2Y0(ker), f̃θ (r)= C3 J1(ksr)+ C4Y1(ksr), (24)

where k2
e = (γ 2/c2

d − β2), k2
s = (γ 2/c2

s − β2) and C1,C2, C3,C4 are constants. Jn and Yn are Bessel’s
functions of first and second kinds.

Substituting (24) in (19), (20) and solving for ũ and ũ gives (see [Heimann and Kolsky 1966])

ũ(r)= −ke
(
C1 J1(ker)+ C2Y1(ker)

)
− iβ

(
C3 J1(ksr)+ C4Y1(ksr)

)
,

w̃(r)= −iβ
(
C1 J0(ker)+ C2Y0(ker)

)
− ks

(
C3 J0(ksr)+ C4Y0(ksr)

)
.

(25)

These solutions provide the interpolating functions for forming the elemental dynamic stiffness ma-
trix. The unknown constants {a} = {C1,C2, C3,C4} can be determined from the transformed nodal
displacements ũ(r), w̃(r) at inner (r = ri ) and outer (r = ro) radii. The nodal displacement vector is
{̃ue

} = {̃u1, w̃1, ũ2, w̃2}, where ũ1 = ũ(ri ), w̃1 = w̃(ri ), ũ2 = ũ(ro) and w̃2 = w̃(ro). Thus we can relate
nodal displacements and unknown constants from Equations (25) as

{̃ue
} = [B]{a}. (26)

Substituting (25) into the transformed force boundary conditions (21) and (22), we obtain

σ̃r (r)=
(
−{(λ+ 2µ)k2

e − λβ2
}J0(ker)+ 2µk2

e J1(ker)/(ker)
)
C1

+
(
−{(λ+ 2µ)k2

e − λβ2
}Y0(ker)+ 2µk2

e Y1(ker)/(ker)
)
C2

+ 2iµksβ
(
J0(ksr)− J1(ksr)/(ksr)

)
C3 + 2iµksβ

(
Y0(ksr)− Y1(ksr)/(ksr)

)
C4

(27)

and

σ̃z(r)= −2iµβke
(
J1(ker)C1 + Y1(ker)

)
−µ(k2

s −β2)
(
J1(ksr)C3 + Y1(ksr)C4

)
. (28)

From these equations, we relate the nodal force vector {Fe
} = {̃σr1, σ̃z1, σ̃r2, σ̃z2} to the constants {a} as

{̃Fe
} = [C]{a}, (29)

where σ̃r1 = σ̃r (ri ), σ̃z1 = σ̃z(ri ), σ̃r2 = σ̃r (ro) and σ̃z2 = σ̃z(ro). Finally, from (26) and (29), a relation
between transformed nodal forces and displacements is obtained:

{̃Fe
} = [C][B]

−1
{̃ue

} = [K̃e
]{̃ue

},
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Figure 2. Aluminum (left) and aluminum-steel (right) hollow cylinders.

where [K̃e
] is the exact elemental dynamic stiffness matrix. These elemental dynamic stiffness matrices

can be assembled in a similar way as in conventional FE to obtain the global stiffness matrix for the
analysis of more complex structures.

5. Numerical experiments

In this section, the developed 2-D WSFE is used to analyze axisymmetric radial and axial wave propaga-
tions in isotropic cylinders due to broadband impulse excitation. First, the simulations are performed for
an aluminum hollow cylinder free at both ends and internal and/or external pressure acting in radial/axial
directions. The cylinder has an inner radius r = ri , outer radius r = ro and the axial length is L z , as
shown in Figure 2, left. The loading conditions are shown in Figure 3. Examples are also presented

Figure 3. Radial (left) and axial (right) internal and external pressure.
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Figure 4. Impulse load in time and frequency (inset) domain.

where instead of uniform pressure, the radial/axial load acting along the axial direction has a pulse-like
spatial (axial) distribution. Next, a more complex structure is considered for analysis, a cylinder made
of a bimaterial, aluminum-steel (Figure 2, right). The material properties adopted for the aluminum and
steel cylinders are: Young’s modulus, Ea = 70 GPa and Es = 200 GPa; mass densities, ρa = 2700 kg/m3

and ρs = 7860 kg/m3; Poisson’s ratio, ν = 0.3.
In all these results, the impulse load applied has unit amplitude and the time duration is 50µs, with a

frequency content 44 kHz. The load is shown in the time and frequency domains in Figure 4.
The 2-D WSFE model is formulated with the Daubechies scaling function of order N = 22 for the

temporal approximations and N = 4 for the spatial one. The time sampling rate 4t = 2µs, unless
otherwise mentioned, while the spatial sampling rate 4z is varied depending on L z . As mentioned
earlier, for the aluminum cylinder, only one 2-D WSFE is used to simulate the responses, independent
of its dimensions. However, for the bimaterial cylinder in Figure 2, right, two elements are required for
modeling, due to the discontinuity present in the problem.

5.1. Wavenumber computation. The spectrum relations for an aluminum hollow cylinder with ri =

0.02 m and ro = 0.03 m at different radii r obtained from the wavenumber computation discussed earlier
are plotted in Figure 5. The three panels of the figure show the real or propagating part of the wavenum-
bers for r = 0.02, 0.025 and 0.03 m. These wavenumbers have significant imaginary parts which imply
that the waves are inhomogeneous in nature, in other words, they attenuate while they propagate. As
the radius is moved from inner to outer radius, the cut-off frequency which is the frequency at which
the wavenumber is zero is also driven outward to a higher frequency. The wavenumbers are plotted
for an axial wavenumber of β = 50 and are obtained with 4t = 4µs (Nyquist frequency of 125 kHz).
However, as mentioned in [Mitra and Gopalakrishnan 2006a], WSFE predicts accurate wavenumbers
only up to a certain fraction pN of the Nyquist frequency fnyq. This fraction depends only on the order
of Daubechies scaling function N , and is approximately equal to 0.6 for N = 22. Thus, in Figure 5, the
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Figure 5. Real parts of wavenumbers at r = ri (top left), r =
1
2(ri + ro) (bottom) and

r = ro (top right).

spectrum relations are plotted only up to 60 kHz, which is less than the allowable frequency range of
fN = pN fNyq = 75 kHz.

5.2. Time domain analysis. Here, first the responses obtained using the formulated element are vali-
dated with 2-D FE analysis. Figure 6 compares the radial velocities for an aluminum cylinder with
ri = 0.05 m, ro = 0.1 m and L z = 2.0 m (see Figure 2, left) with 2-D FE results, showing the radial
velocities at the midpoint (at L z/2 from the free ends) and at inner r = ri and outer radii r = ro respectively.
The applied load is the unit impulse, as shown in Figure 4. It is applied as a uniform pressure Pi (Figure
3, left) in the radial direction along the inner surface (r = ri ). As an example, such internal pressure
can be encountered in fluid carrying pipes and other cylindrical pressure vessels. The 2-D FE results are
obtained using ANSYS 10.0, with a mesh consisting of 10220 four-noded quadrilateral axisymmetric
elements (PLANE42). Newmarks’ scheme with time step 2µs is used for time integration. A further
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Figure 6. Radial velocities at midpoint along the axial direction at r = ri (left) and
r = ro (right), due to internal radial pressure.

refinement of the FE mesh does not give significant difference in results. WSFE for this example is
formulated with N = 22, time interval 4t = 2µs and time window Tw = 512µs. Unlike FSFE, here the
accuracy of the simulation is independent of the time window Tw because the present method is free from
the wrap-around problem. Here Tw is chosen as required for observation. The number of discretization
steps in the axial direction is m = 128 and thus the spatial sampling rate is 4z = 0.0039 m. Here only
one WSFE is used for modeling as it was mentioned earlier, that is in absence of any discontinuities,
only one WSFE is capable of modeling the entire structure irrespective of its dimensions. In the case of
FSFE, the axial dimension is considered to be infinite or unbounded. It can be observed from these plots
that the WSFE results match well with the corresponding 2-D FE results. Similar axial velociy responses
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Figure 7. Axial velocities at midpoint along the axial direction at r = ri (left) and r = ro

(right), due to internal axial pressure.
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Figure 8. Radial (left) and axial (right) velocities at midpoint along the axial direction
due to external radial and axial pressures respectively.

are plotted in Figure 7 under the same loading conditions as before, except that here they are applied in
axial direction (Figure 3, right). The figure shows the axial velocities at r = ri and r = ro at distances
L z/2 from the free ends. Even here, the responses are validated with 2-D FE results and it can be seen
that the responses compare very well. The modeling parameters for WSFE and the FE mesh are kept
the same as in the previous case of radial velocities. Similar radial and axial velocities of the cylinder
described above are plotted in Figure 8. However, here an external pressure Pe is considered instead of
internal pressure as in previous example. This example is done to simulate the loading condition in a
cylindrical excavation casing. The velocities are measured at midpoint at L z/2 from the free end along
the axial (z) direction at both inner r = ri and outer r = ro surfaces. Figure 9 plot similar radial and axial
velocities, with the difference that the loading condition consists of both internal (Pi) and external (Pe)
pressures.

Next, WSFE is used to model a relatively complex structure of bimaterial, aluminum-steel cylinder.
The configuration is shown in Figure 2, right, where the inner cylinder is composed of aluminum and is
surrounded by a concentric steel cylinder. The innermost radius is ri = 0.05 m, the radius of the interface
is rm = 0.09 m and the outermost radius is ro = 0.1 m. The length of the cylinder is L z = 2.0 m and
the impulse load (see (30)) is applied uniformly at the inner surface r = ri as an internal pressure in
the radial/axial directions. As stated earlier, two WSFEs are required to model the structure because
of the presence of discontinuity. WSFE modeling involves m = 64 spatial sampling points. Figure 10
plots the radial and axial velocities measured at the midpoint (L z/2) and r = ri . The responses are also
compared with those of an aluminum cylinder of the same dimensions. The amplitude of the incident
wave for the aluminum cylinder is much more than that of the aluminum-steel cylinder as expected as the
latter has a much higher stiffness. Comparisons are also provided with 2-D FE results for the aluminum-
steel cylinder. The FE mesh and the Newmark’s time integration scheme is the same as in the previous
example. It can be seen that the response matches well with the FE results for both radial and axial wave
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Figure 9. Radial (left) and axial 9right) velocities at midpoint along the axial direction
due to external and internal pressure in the radial and axial directions respectively.
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Figure 10. Radial (left) and axial (right) velocities in bimaterial Al-steel cylinder at mid
point along axial direction at r = ri .

propagations. This numerical experiment is done with the purpose of emphasizing the efficiency of the
proposed technique for modeling rather complex structures.

Next, instead of internal pressure, we apply an impulse load at the outer surface (r = ro), with a
pulse-like distribution along the axial direction, given by

F(z)= e−(z/α)2, (30)

where α is a constant and can be varied to change the pulse width in the z direction. Figure 11 compares
the radial velocities in a hollow aluminum cylinder (with ri = 0.05 m, ro = 0.1 m and L z = 0.5 m: see
Figure 2, left) with 2-D FE results. The unit impulse load shown in Figure 4 is applied in the radial
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Figure 11. Radial velocities at midpoint (left) and quarter-point (right) along axial di-
rection at r = ro.
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Figure 12. Axial velocities at midpoint (left) and quarter-point (right) along axial direc-
tion at r = ro.

direction at r = ro and its distribution along the axial direction is given by (30) with α = 0.05. The
responses are simulated using a single WSFE with m = 64 sampling points in axial direction and thus
spatial sampling rate is 4z = 0.0078 m. The 2-D FE analysis is done with ANSYS 10.0, with 2540,
4-noded quadrilateral axisymmetric elements (PLANE42) mesh. Time integration is performed with
Newmarks scheme with time step 2µs. Figure 11 shows the radial velocities at r = ro, half-way (L z/2)
and a quarter of the way (L z/4) from the free ends. It can be seen that the responses obtained using
the present method compares well with FE simulations. However, the difference between the results
obtained from FE and WSFE simulations is more for the responses measured at the quarter-point and
presented in Figure 11, right. A more refined mesh for FE analysis may give better correlation, but we
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(a) T = 150µs (b) T = 200µs (c) T = 250µs (d) T = 300µs

Figure 13. Snapshots of radial wave velocities. Vertical coordinate: axial direction,
from 0 to 0.5 m; horizontal coordinate: radial direction, from 0.05 to 0.1 m.

have not used it in order to avoid the computational cost and because the comparisons are very good in
all the other cases (Figure 11, left, and Figure 12). The latter figure plots the axial velocities when the
load is applied in the axial direction. Even here, the results matches very well with those obtained from
the FE analysis.

Figure 13 presents the snapshots of the radial velocities presented in Figure 11. Here, the thickness of
the cylinder being more, the radial (and axial) variations of the radial wave velocities can be studied. The
snapshots in Figure 13 are taken at T = 150, 200, 250 and 300µs, the impulse load having been applied
at 100µs with the peak unit amplitude at 125µs (Figure 4). The figure shows the pattern of propagation
of radial waves in both axial and radial directions due to the loading as described before for Figure 11.
Such snapshots help to obtain the wave velocities at any spatial location at a given instance of time. For
example. the snapshot at T = 150µs shows that at this time the incident radial wave has propagated
along the axial direction and also the position of occurrence of maximum velocity can be obtained. At
later times, say, T = 300µs, the profile of wave propagation includes waves resulting from reflections
at the boundaries. Similar interpretations can be given for the other snapshots. Note that the velocities
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(a) T = 150µs (b) T = 200µs (c) T = 250µs (d) T = 300µs

Figure 14. Snapshots of axial wave velocities. Vertical coordinate: axial direction, from
0 to 0.5 m; horizontal coordinate: radial direction, from 0.05 to 0.1 m.

at all the sampling points along the axial direction and at any points on the radial direction R required
for the snapshots are obtained from a single simulation.

Snapshots for axial velocities due to loads applied in the axial direction are plotted in Figure 14. The
loading conditions, structural properties and modeling parameters are as before. Again, snapshots at
T = 150, 200, 250 and 300µs are shown.

6. Conclusions

Here, a 2-D wavelet spectral element is developed for wave propagation analysis in isotropic axisym-
metric cylinders. The conventional FE technique for such transient high frequency dynamics is not
computationally viable and the spectral finite element method provides an efficient alternative. The use
of localized Daubechies compactly supported wavelets as basis functions helps to overcome several im-
portant drawbacks of the prevalent FFT based spectral finite element method while retains the advantages
of computational efficiency, simultaneous time and frequency domains analysis. Firstly, WSFE method
can accurately model finite dimension structures unlike FSFE, which can only model 2-D structures
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unbounded in one direction. Next, WSFE is free from wrap around problems associated with FSFE
due to its periodicity assumption in temporal approximation. Consequently, FSFE, unlike WSFE cannot
handle undamped finite length structures and even in presence of damping, larger time window is needed
to remove distortions arising from wrap-around.

In this paper, radial and axial wave propagations in hollow isotropic cylinders of finite dimensions are
studied in time and frequency domains. The time domain responses are validated with 2-D axisymmetric
FE analysis and good comparison is observed. Next, the the radial and axial distributions of the wave
velocities are studied in cylinder of different configurations. Finally, the wave propagation analysis in a
bimaterial cylinder is performed to show the ease of the proposed modeling technique in modeling more
complicated structures.
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STATISTICAL STRENGTH OF TWISTED FIBER BUNDLES WITH LOAD
SHARING CONTROLLED BY FRICTIONAL LENGTH SCALES

PANKAJ K. PORWAL, IRENE J. BEYERLEIN AND STUART LEIGH PHOENIX

We develop Monte Carlo simulation and theory to study the statistical strength characteristics of twisted
fiber bundles. These consist of fibers that follow a Weibull distribution for strength with shape parameter
ρ, and are arranged in an ideal helical structure with surface helix angle αs. Fiber interactions are
considered in terms of frictional forces that control stress recovery along broken fibers away from the
breaks. A twist-modified global load sharing (TM-GLS) rule is developed for stress redistribution from
fibers that are slipping and thus only partially loaded near the breaks. Expressions for the radial pressure
distribution in the yarn and corresponding lengths of frictional zones in broken fibers in the various layers
are derived considering the discrete nature of the fibers in the bundle. Three different characteristic length
scales of strength development for a twisted bundle are proposed, which depend on friction coefficient, f ,
and surface twist angle, αs. These are δmin

c , δavg
c , or δmax

c , arising from the consideration of the minimum,
average, or maximum stress recovery length among the fibers in the bundle along its axis. We show
that the normalized strengths of a twisted bundle with length equal to any one of these characteristic
lengths approximately follow a Gaussian distribution. Compared to a TM-ELS (twist-modified equal
load sharing) bundle, the TM-GLS bundle has improved strength because through friction a broken fiber
can recover its stress within the bundle length. We also show that the relationship between the normalized
bundle strength and αs depends on the characteristic length scale used: for δmin

c the normalized strength
drops quickly with αs; for δavg

c it decreases as well, but at a slower rate; and for δmax
c the normalized

strength first attains a maximum at an optimal value of αs before ultimately decreasing with αs. Finally,
we compare the simulation results for optimal twist angle with experimental data in the literature and get
excellent agreement.

1. Introduction

Twisted fibrous structures, such as ropes and cables made from ultrastrong fibers like Kevlar®, Spectra®,
Dyneema®, and Vectran®, are now used in a wide range of applications requiring not only very high
tensile strength and stiffness but also flexibility in bending. Novel applications are emerging from com-
mercialization of fibers like M5® (DuPont) and synthetic spider silk [Lazaris et al. 2002; Huemmerich
et al. 2004]. Still others in development are based on aligned and twisted carbon nanotube bundles

Keywords: twisted fiber bundle or yarn, Monte Carlo simulation, statistical strength, global load sharing, characteristic length
scales, friction effects, pressure development.
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[Andrews et al. 1999; Vigolo et al. 2000; Jiang et al. 2002; Ko et al. 2003; Ericson et al. 2004; Zhang
et al. 2004]. These novel applications include, but are not limited to, linear structures (for example,
suspension ropes in bridges, parachute lines, tire cords, and the futuristic concept of the space elevator),
and two-dimensional fabric-based structures (for example, body armor in the form of ballistic vests,
blankets, and panels in automobiles and aircrafts). In many of these critical applications, survival of the
user depends upon the optimal functioning of the twisted structure, and in such cases reliable strength
predictions are crucial.

The most common model geometry for a twisted fiber bundle or yarn is the ideal helical structure
[Hearle et al. 1969], in which the fibers are arranged in concentric layers following helical paths with the
same angular orientation. The outermost layer has the highest helix angle (that is, the surface helix angle
αs) and layers deeper into the bundle have progressively lower helix angles down to the center fiber
which is straight. Furthermore, fibers in this ideal structure have no initial strains or buckling, which
requires that fibers in different concentric layers have lengths equal to the helical path lengths of their
particular layer. In practise, achieving this uniformity in a long yarn that has been twisted in an automated
manufacturing process, requires the phenomenon of migration. During migration fibers, traveling along
the yarn length, radially move from one layer to another over length scales that are long compared to
both the yarn diameter and the characteristic length of stress transfer near fiber breaks. When such an
ideal helical structure is under an external tensile load, the fiber strains are largest along the yarn axis
and smallest in the outermost layer.

1.1. Optimal strength of yarn. Earlier works predicting the strength of ideal yarns have focused mostly
on staple yarn structures where fibers are of a given finite length and deterministic strength. For a
given coefficient of interfiber friction and surface twist angle the strength of the yarn, also deterministic,
is governed by the first fiber to fail, this being the center fiber. Additional strain increments cause a
cascade of fiber failures propagating outwards until the complete collapse.

Figure 1. Staple yarn strength versus surface helix angle. Optimal helix angle exists due
to the strengthening effects of yarn pressure and intefiber friction, and to the weakening
effects of fiber obliquity as the surface helix angle is increased.
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Twisting of a yarn produces both strengthening and weakening influences. This is illustrated in
Figure 1, which is a plot of yarn strength versus surface helix angle. At low helix angles, as the surface
helix angle increases the radial pressure in the yarn also increases causing more rapid stress recovery
along fibers near breaks leading to overall strengthening of the yarn. At higher twist angles, obliquity
effects in the fibers become dominant, since the fiber stress component contributing to the strength is
proportional to the square of the cosine of the helix angle of the fiber path. Overall the sum of all stress
components decreases as the surface helix angle is increased. Because of these two competing effects
there exists a twist level, called optimal twist, where the maximum yarn strength is achieved. The optimal
twist level and the maximum strength also depend on various constituent properties. For an excellent
summary of the earlier theoretical and experimental works, we refer the readers to [Hearle et al. 1969].

1.2. Weibull fiber strength. High-performance fibers like Kevlar, Spectra, and even CNTs [Barber et al.
2005] exhibit statistical variation in their strength or strain to failure, which is typically described by
a statistical distribution also involving length effects. Due to this variation, failure of the parent yarn
is a stochastic process dictated by the stress field and sampling of fiber strengths along the yarn. This
complex failure process imparts statistical variation and size effects to yarn strength.

The Weibull distribution is commonly used to describe the statistical variation in fiber strength giving
the probability of failure of a fiber at stress level σ as

F(σ )= 1 − exp
{

−

( σ
σδ0

)ρ}
,

where σδ0 and ρ are Weibull scale and shape parameters. Note that the scale parameter σδ0 corresponds
to length δ0 of the fiber (corresponding to a standard gauge length used in tension tests). For an arbitrary
fiber length δ the scale parameter can be modified as [Phoenix and Beyerlein 2000]

σδ =

(δ0

δ

)1/ρ
σδ0, (1)

and the probability of failure at stress level σ corresponding to fiber length δ is given by

F(σ )= 1 − exp
{

−
δ

δ0

( σ
σδ0

)ρ}
. (2)

1.3. Load sharing among broken fibers. When a fiber breaks, the load that it previously carried is
redistributed among the intact fibers. Historically, several idealized load sharing rules, for example,
equal load sharing (ELS), global load sharing (GLS), and local load sharing (LLS), have been developed
for parallel (untwisted) bundles.

In ELS the load from a broken fiber is lost along the full fiber length between the clamps and is
redistributed equally among the intact fibers. In GLS the load from a broken fiber is locally lost at the
break but is gradually recovered over length lf away from the break through interfiber frictional shear
forces. The full length of the recovery region is 2lf and is called the recovery zone. At any cross-section
intersecting the recovery zone of a break, the difference between the fiber stress before the break occurred
and that actually supported by the fiber in presence of the break is distributed equally among the intact,
nonslipping fibers in that cross-section. In LLS the lost load from a broken fiber is locally redistributed
among its nearest neighbors according to various possible rules.
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In a twisted yarn the primary factors in the construction of the load sharing rule are sliding interfiber
friction near fiber breaks and the length scales they introduce as well as fiber obliquity due to twist. These
are affected by surface helix angle, radial position in the yarn, and yarn tension. Attempts to account for
some of the above features have appeared in the literature. Pan [1993] developed an orientation efficiency
factor that he applied to Daniels’ ELS bundle strength. Otherwise the ELS rule applied to all the fibers
in the bundle. Pan et al. [1998] and Rao and Farris [2000] performed some experiments to show the
existence of optimal strength and size effects in the yarns. On the other hand, Phoenix [1979] modeled
twisted fiber bundle with Weibull fibers incorporating slack effects resulting from incomplete migration
but ignored friction.

Recently Porwal et al. [2006] developed a Monte Carlo simulation model for the failure of a twisted
bundle to assess the accuracy of two simplified analytical models, one based on geometrical averaging
and the other on statistical averaging. The simulation model made use of a new load sharing rule, called
twist-modified equal load sharing (TM-ELS), which is an extension of the ELS rule and accounts for the
effects of twist but ignores friction. Under TM-ELS equilibrium is satisfied only in the yarn axis direction.
The Monte Carlo simulation model as well as the two analytical theories resulted in the yarn strength
being normally distributed. Very good agreement was found between the two theories and the simulation
results for a wide range of yarn surface helix angles and variability in fiber strength as measured by the
Weibull shape parameter. Favorable comparison was also achieved between the results of Porwal et al.
[2006] and Phoenix [1979]. Finally Porwal et al. [2006] considered the issue of interfiber friction; its
effect on fiber stress transfer and ultimately on the strength of a long yarn was treated in a simplified way
in a chain-of-bundles model. Other more recent attempts in this category, including work on impregnated
yarns, are by Naik et al. [2001] where they estimated strength of impregnated yarn using effective shear
traction and fiber obliquity factor.

In the current work a probability model for the strength of a twisted bundle with an ideal helical
structure is developed, which accounts for statistical Weibull fiber strength and frictional effects. To do
so, we first develop a new load sharing rule, called the twist modified global load sharing (TM-GLS)
rule. Specifically, TM-GLS is an extension of GLS similar to the extension of ELS to obtain TM-ELS
as in [Porwal et al. 2006], applied over small yarn division.

1.4. Characteristic length for the bundle. The aim of the current work is to compare TM-ELS and TM-
GLS simulations and observe the effects of friction on the bundle strength distribution and also the size
effects. Such extension from TM-ELS to TM-GLS is nontrivial because it involves not only accounting
for a radial pressure distribution in the context of a changing fiber stress distribution as fibers fail, but
also an extension from two dimensions (a cross-sectional plane) to three dimensions, where the third
dimension is a characteristic frictional length. For an individual fiber, the characteristic length is usually
defined as the fiber length over which slipping occurs around a break [Phoenix and Beyerlein 2000].
This length will vary from fiber to fiber depending on its helix angle and frictional forces on its surface.
To simulate the strength of a bundle it is necessary to choose a bundle length that effectively captures
the characteristic stress transfer lengths of the constituent fibers. To this end we examine three specific
choices of the bundle simulation lengths in this work and find that it has a strong influence on the capacity
of the individual fibers in the yarn to develop the maximum stress determined by yarn extension as well
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as to have multiple breaks along its length. For only one of these choices the bundle stress achieves a
maximum.

2. Modeling approach

We consider the same yarn geometry as used in the previous work by Porwal et al. [2006] and thus only
review the main points. In this work we do not consider effects such as twisting caused by the yarn tensile
load or torque caused by the yarn tensile strain. The twisted bundle has n fibers, which are concentrically
packed in l layers as shown in Figure 2. Fibers form concentric layers with the assumption that if there
is a large enough void in the concentric layer for a fiber, then it is occupied by the fiber. The layers are
numbered 1, . . . , k, . . . , l. The midpoint of layer k is located at a radius rk from the yarn axis and is
given by rk ≈ (k − 1)df, where df is fiber diameter. Also the helix angle αk of the fibers in layer k is
given as

αk = tan−1 rk tanαs

R
,

where R = rl is the yarn radius and αs is the helix angle of the outermost layer l. The number of
concentrically accommodated fibers in layer k is given by

nk ≈

⌊2π(k − 1)df

df

⌋
≈ b2π(k − 1)c ≈ 2π(k − 1), for k > 1 and n1 = 1,

where b.c is the floor function. Note that nk does not depend on df and n = n1 + ...+ nl is the total
number of fibers in the yarn.

2.1. Development of tension from free ends. The distinct feature of a GLS bundle is the gradual re-
covery of stress in a fiber away from breaks. Consider a fiber section of length L between two breaks
in layer k. If f Pk is the frictional force per unit area on the lateral surface of a sliding fiber element
in this section (Figure 3), where f is the coefficient of friction and Pk is the interfiber contact pressure
on layer k acting normal to the fiber surface, then from the equilibrium along the fiber length we have
dT′

k(πdf
2/4)= f Pkπdfdx . The tensile stress in the fiber in terms of distance x along the fiber axis from

δc

n Fibers

αs
Fiber

ends

2 π r

h h

αkk α s

k 2 π R

Figure 2. Yarn geometry: (left) yarn segment, (middle) concentric packing, (right) layer
helix angles, where h is the height of one turn of twist.
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T'k T'k + dT'k

dx

 f Pk

Figure 3. Development of tension in the fiber near a break in layer k.

a break is given by
dT′

k

dx
=

4 f Pk

df
, for 0 ≤ x ≤ lfk , (3)

where lfk ≤ L/2 is the length of the friction zone on either end of the fiber. Using the boundary condition
T′

k = 0 at x = 0, Equation (3) integrates to

T′

k(x)=
4 f Pk

df
x, for 0 ≤ x ≤ lfk . (4)

From Equation (4) the maximum tensile stress Tk in a fiber, first attained at x = lfk , is given by

Tk =
4 f Pk

df
lfk . (5)

The fiber is called a nonslipping fiber if the stress given by Equation (5) is equal to the stress determined
by yarn extension, neglecting Poisson’s effect [Hearle et al. 1969], that is,

Tk = Efεy cos2(αk), (6)

where εy and Ef are the yarn strain and fiber Young’s modulus, respectively. In this case there are two
distinct friction zones in a fiber at the ends with the tensile stresses linearly increasing from 0 to Tk .
Over the middle portion of length L − 2lfk the tensile stress remains equal to Tk , which is considered
effectively gripped as depicted in Figure 4 with a solid line. For such a fiber the average tensile stress
can be written as

T̄k =
1
L

(
2lfk

Tk

2
+ Tk(L − 2lfk )

)
= Tk

(
1 −

lfk

L

)
. (7)

Otherwise, for the slipping fiber, the maximum developed tensile stress from Equation (4) will be just
2 f Pk L/df for lfk = L/2. In this case two friction zones of length L/2, as depicted by the dashed line
in Figure 4, are symmetrically placed about the center with zero stress at the ends and maximum stress,
2 f Pk L/df, in the middle. The average stress in this case thus will be

T̄k =
f Pk

df
L . (8)
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Figure 4. Tensile stress profiles in the fibers.

2.2. Pressure calculations. In this section we develop an expression for interfiber contact pressure as a
function of radial distance in a yarn cross-section considering the discrete nature of the fibers in the yarn.
We begin by considering the pressure developed by a single fiber helically wrapped around a cylinder
under tension.

2.2.1. Pressure developed by an individual fiber. When a fiber under constant tension T is wound around
a cylinder in a circular loop a nominal contact pressure P is experienced by both the fiber and cylinder
given by

P =
dT
r

=
dfT
r
, (9)

where r is the radius of cylinder and d is the nominal contact width along the fiber. To simplify the
pressure calculation we assume that the fiber has a square cross-section with side df so that d = df.

In the case of a twisted bundle, the above expression needs to be modified to account for the helical
path of the fiber (Figure 5). This can be easily done by replacing r in the denominator of Equation (9)

αk




Side view

Helical Element
Tk d

2
f

df

Tk d
2

f

Figure 5. Pressure developed by a helically wound fiber in the k-th layer (left). The
fiber cross-section is assumed to be square for the purpose of calculating pressure (right).
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by the local radius of curvature, which is rk/ sin2 αk . Thus the pressure developed becomes

Pk,k =
dfTk sin2(αk)

rk
. (10)

This pressure acts normal to the lateral surface of the fiber and is assumed to be constant across the entire
cross-section of the fiber. It is clear from Equation (10) that as the helix angle increases, the pressure
developed by the fiber increases.

The above expression for pressure assumes that the stress in the fiber is constant along the length of
the fiber. However, this is not the case in an actual yarn. To account for the effect of varying stress in the
fiber we use an average stress T̄k over the length of the fiber to calculate the average pressure, that is,

P̄k,k =
dfT̄k sin2(αk)

rk
, (11)

where T̄k is given by either Equation (7) or (8). Henceforth the average pressure is simply called the
pressure.

2.2.2. Pressure variation in the yarn. For layer k within the yarn the total pressure P̄k is sum of its own
pressure, Equation (11), and the pressure from layers outside it. To ease the calculation of the pressure
in layer k we assume that the fibers inside and outside of this layer are homogeneous isotropic cylinders.
Thus, the pressure is given by

P̄k = P̄k,k + P̄k,o =

l∑
j=k

P̄ j, j , (12)

where P̄k,o =
∑l

j=k+1 P̄ j, j is the contribution to the pressure from layers outside the k-th layer.
Note that calculation of the pressure using discrete fibers allows us to account for individual fiber

failures. This, however, is beyond the scope of this work and left for a future study.

2.3. Lengths of friction zones in fiber. We consider the two cases corresponding to the two fiber stress
profiles in Figure 4.

Case 1: nonslipping fiber. This case considers the nonslipping fiber in Figure 4. If the pressure in layer
k is P̄k , then Equation (5) would become

Tk =
4 f P̄k

df
lfk . (13)

From Equations (12) and (13) we obtain

Tk =
4 f
df
(P̄k,k + P̄k,o)lfk , (14)

and using Equations (6), (7), (11) and (14) we get

df cos2(αk)

4 f
=

[
df cos2(αk) sin2(αk)

rk

(
1 −

lfk

L

)
+

P̄k,o

Efεy

]
lfk . (15)
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Defining Ck and Bk as

Ck =
df cos2(αk) sin2(αk)

rk
, Bk =

df cos2(αk)

4 f
,

we can solve Equation (15) to obtain lfk as

lfk =

(Ck + P̄k,o/Efεy)−

√
(Ck + P̄k,o/Efεy)2 − 4Ck Bk/L

2Ck/L

=
L
2

{(
1 +

P̄k,o

CkEfεy

)
−

√(
1 +

P̄k,o

CkEfεy

)2
−

rk

f L sin2(αk)

}
. (16)

Here we consider only the negative solution because the positive solution gives lfk > L/2.

Case 2: slipping fiber. For the case of the slipping fiber in Figure 4, Equations (8), (11), and (12) yield

P̄k,k =
f P̄k L sin2(αk)

rk
=

f (P̄k,k + P̄k,o)L sin2(αk)

rk
,

giving

P̄k,k =
P̄k,o

rk
f L sin2(αk)

− 1
. (17)

Since the layers cannot make a negative pressure contribution, the denominator of the Equation (17) must
be positive, that is,

rk

f L sin2(αk)
> 1.

This requirement is opposite the condition required for the validity of Equation (16), which is

rk

f L sin2(αk)
<

(
1 +

P̄k,o

CkEfεy

)2
or

rk

f L sin2(αk)
< 1+,

where 1+ is any quantity > 1. The friction zone length for this case will be lfk = L/2.
Note that for the l-th layer, which is the outermost layer, P̄l,o = 0 by definition. Furthermore, if case 2

is true, then it is a degenerate case 2 because no pressure development means zero tension in the fibers.
This leads to P̄l = 0 and so on for all other layers and by our assumptions thus far the fibers will simply
unravel. To overcome this difficulty we can assume some nonzero external pressure Po > 0 as Sullivan
[1942] did. Also note that in an actual yarn, fibers do not stay in one particular layer over the whole
yarn length, but they rather move from layer to layer through the process called migration. Consequently,
despite having several breaks, a surface fiber can be well anchored over much of its length thus allowing
tension and hence pressure to develop.

2.4. Characteristic lengths of bundle for strength calculation. Here we define three different charac-
teristic length scales based on constituent material and yarn geometrical properties, which are crucial to
strength development in the yarn with each one involving a different failure mechanism. The axial length
of the yarn that will develop the maximum tension (as determined by yarn extension) from a single break
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in the cross-section passing through the middle of the yarn length in layer k is 2lfk cosαk . Three length
scales δmax

c , δmin
c , and δavg

c can be computed from this length

δmax
c = max

k
{2lfk cosαk}, δmin

c = min
k

{2lfk cosαk}, δavg
c =

l∑
k=1

wk2lfk cosαk .

The last definition uses a weight function wk , a suitable choice of which is the fraction of fibers in
each layer, that is, wk = nk/n. Taking δc = δmax

c all fiber layers can reach maximum tension if a break
develops in the cross-section passing through the middle of the yarn length. In other words, through the
frictional stresses, the axial tension is recovered far from the break point to the level that the fiber can
sustain redistributed stress. In the case of δc = δmin

c , only the layer with the minimum length of friction
zone projected along the yarn axis can develop maximum tension along their broken fibers. So in this
case frictional stresses are largely unutilized. For δc = δ

avg
c , only some of the broken fibers can develop

maximum tension, utilizing frictional stresses moderately.

2.5. TM-GLS and Monte Carlo simulation algorithm. In the Monte Carlo simulation model we con-
sider a characteristic length δc of the yarn. Since it is not feasible to redistribute the load at each cross-
sectional plane, we divide this characteristic length into a predetermined number ndiv of divisions of
much shorter length δ = δc/ndiv. Because of the helical paths of the fibers, the fiber elements in layer
k actually have longer lengths δk = δ/cosαk , which also differs from layer to layer. We then assign a
random strength Xdiv

f,i to each fiber element in the yarn characteristic length, where i is fiber number and
div is the division number that ranges from 1 to ndiv. These strengths are assigned according to a Weibull
distribution whose shape parameter is ρ and the scale parameter is referenced to length δk for layer k
according to Equation (2) with δ = δk .

The TM-GLS redistribution scheme evolves iteratively using the following discrete steps as we in-
crease the external load, keeping in mind that after any particular step a given fiber may have one or
more breaks:

(i) In a particular step t the axial stresses of the fiber elements are first calculated and then compared
to the assigned fiber element strengths Xdiv

f,i .

(ii) From this comparison any fiber element whose axial stress exceeds its assigned strength is consid-
ered failing in this step in which case its load becomes zero. The stresses in all other elements
along this fiber that are in the stress recovery zone of this newly broken element are then calculated
according to

Ts
f,i =

4 f
df

P̄k c δk, if
4 f
df

P̄k c δk ≤ Tf,i ,

where Tf,i is the stress in the individual fiber i as determined by yarn extension and integer c is the
distance of a particular element from the broken element in terms of number of elements, that is, for
the broken fiber element c = 0 and for subsequent neighboring elements c = 1, 2, . . . on either side
of the newly broken element. When there are breaks on both sides of an unbroken element, then
c must be modified to be the smaller of two values obtained by counting from each of the broken
elements. The elements just described are slipping elements in the recovery zone of some broken
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element and thus have stresses less than Tf,i . Thus, they are actually shedding stresses that are then
resolved along the yarn axis.

(iii) These resolved components are then redistributed equally to the stress components (resolved along
the yarn axis) of the fiber elements not shedding their stresses, and then the stresses of these elements
acting along their own respective axes are recalculated.

(iv) The stresses in the recovery zones of newly broken elements are then set equal to the stresses
determined in Section 2.5 (ii).

Our general scheme is to model the failure process in discrete steps t = 0, 1, . . . in the following way.
(To simplify the notation we suppress the superscript div in Ts(div)

f,i ). At step t we denote the stress in fiber

element i acting along its own axis (not the yarn axis) as T(t)f,i as in (i) above. T(t)f,i is considered to be

composed of two components: the first is the stress carried by the fiber element Tε(t)f,i due to the applied
load as if all the fibers are intact, while the second is the sum of the additional stress portions inherited
from the fiber elements shedding their stresses Tr(t)

f,i in that division. Summing these for fiber element i
within a particular yarn division we have

T(t)f,i =

Ts(t)
f,i , if fiber is shedding its stress,

Tε(t)f,i + Tr(t)
f,i , otherwise.

From Equation (6) for fiber element i we have Tε(t)f,i = Efε
(t)
y cos2 αf,i . At each step we recalculate Tf,i

according to

T(t+1)
f,i =

Ts(t+1)
f,i , if fiber is shedding its stress,

Tε(t+1)
f,i + Tr(t)

f,i +

∑nb
j=1

(
T(t)f,b( j)−Ts(t+1)

f,b( j)

)
cosαf,b( j)

(n−Nb) cosαf,i
, otherwise,

where b( j) is the index number of j-th fiber element shedding its load, nb is the number of additional
fiber elements shedding their loads when going from step t to t + 1, and Nb is the total number of
fiber elements shedding their loads at t + 1. In this equation we see a stress enhancement effect in the
benefactor fiber (along its axis) that results when it has a larger helix angle as compared to the fiber that
failed.

We note that t does not necessarily correspond to an increment in the applied loading; the index t is
increased either (a) when we increase the external load level, or (b) when at a given external load level
the redistribution of stresses leads to failure of more fibers.

At any step t the applied stress is in equilibrium with internal stresses developed by the fiber elements
in each division, so the stress carried by the yarn is given by

σ (t) =

∑n
i=1 T(t)f,i cos(αf,i )∑n

i=1 1/ cosαf,i

and the strength of the yarn would be maxt {σ
(t)

}. We note one fundamental difference between TM-GLS
and GLS. In the latter once a fiber element falls in the friction zone, its stress remains constant during
further external load increments; so it can not fail. In the former, however, stresses in slipping fiber
elements may increase due to the ever increasing yarn pressures and frictional forces.



784 PANKAJ K. PORWAL, IRENE J. BEYERLEIN AND STUART LEIGH PHOENIX

3. Results and discussion

We normalize the bundle strength and failure behavior quantities with σδc , the Weibull scale parameter
corresponding to the yarn characteristic length δc. Since there are no stiffness variations in the fibers and
no interfiber slack effects inherited from the migration, the actual fiber Young’s modulus and Weibull
scale parameter for fiber strength are normalized out of the calculation. Note that σδc depends on δc and ρ
through Equation (1). In the simulations the key parameter ρ is varied from 2 to 10. This range is typical
of commercially available high-performance fibers such as Toray carbon T1000G, Kevlar, Spectra, Zylon,
with diameters on the order of 4 to 25 µm. Another key parameter is the interfiber friction coefficient
f which affects δc (see Figure 9). We consider the values f = 0.1 and 0.3, which are representative of
the above mentioned fibers. All of the following simulations are for δc = δmin

c unless stated otherwise.
We also vary the surface twist angle over 0◦ < αs < 25◦. The normalized value of external pressure is
assumed to be P̄l,0/Efεy = 0.001 or 0.1% of the fiber stress in an untwisted yarn, which is a small fraction
of the pressure typically generated even for small twist angles as seen later. The fiber diameter is taken
as df = 10 µm and the length of fiber in the simulation is L = 20 cm. Typically this length is longer than
the fiber characteristic length at very small twist because of the initial external constraining pressure.

3.1. Convergence study. We first study the convergence of µ/σδc for important simulation parameters
such as the number of replications ns, number of divisions ndiv, and magnitude of stress increment 1T .
To achieve sufficient accuracy in the simulations we determine acceptable values of these parameters in
an iterative manner. First we fix ndiv = 50 and 1T = Ef1ε, where 1ε = 0.001 is much smaller than the
Weibull scale parameter for fiber failure strain, and find the value of ns for which we get convergence.
Figure 6 (left) shows a plot of the normalized mean µ/σδc versus number of replications. We find very
good convergence for ns beyond 200. Next we fix ns = 500 and ndiv = 50 and study µ/σδc versus strain
increment, 1ε, that is, 1T = Ef1ε. Figure 6 (right) shows the resulting convergence for decreasing
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Figure 6. Convergence of normalized mean, µ/σδc , versus (left) number of runs, ns,
and (right) number of divisions, ndiv, and strain increment, 1ε.
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Figure 7. Normalized pressure, P̄k/Efεy, versus normalized radial distance, rk/R. Here
l = 10 and n = 279.

1ε. We also fix ns = 500 and 1ε = 0.001 and consider the convergence of µ/σδc in ndiv, also shown in
Figure 6 (right). Thus we choose ns = 500, ndiv = 50 and 1ε = 0.001 for our simulations.

3.2. Pressure development, fiber friction zone and yarn characteristic lengths. Figure 7 shows the
change in normalized pressure with normalized radial distance from the center of the yarn. The pressure
increases as radius decreases to the center of the yarn, whereby the pressure contributions of the outer
layers accumulate. The calculation in Figure 7 considers all the fibers to be intact. For this reason there
is little difference in pressure distribution for the different friction coefficients f = 0.1 and 0.3 (for both
αs = 5o and 15o). Fibers that fail carry reduced stresses over the characteristic fiber and yarn lengths
leading to an overall decrease in pressure magnitude from that shown in Figure 7. Friction will also
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Figure 8. Normalized friction length, lfk/L , versus normalized yarn radius, rk/R. Here
l = 10 and n = 279.
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come into play after a significant number of fiber breaks have accumulated in the yarn. In Figure 7 we
note a huge gain in pressure with increase in αs. This happens because of the effect of sine-squared of
the helix angle in the numerator of Equation (10).

Figure 8 shows plots of the friction zone length versus radial distance from the center of the yarn. As
anticipated, the friction length increases from the center to the outer surface irrespective of f and αs. For
a fixed αs the length of the fiber friction zone decreases with increasing f and for a fixed f it decreases
with increasing αs. As is the case for the pressure distribution in the yarn, the αs has a stronger effect
than f on the fiber friction zone length.

The marker points in Figures 7 and 8 correspond to the values at the centers of the concentric layers
and dashed lines are there to show the trend.

Figure 9 shows the decrease in the three characteristic length scales, which we consider in this work,
with αs for f = 0.1. The reduction occurs because the friction lengths decrease with an increase in αs.
As expected, δmax

c > δ
avg
c > δmin

c for all αs. Also, we see the same trend for other values of coefficient
of friction.

3.3. Stress strain curves. Figure 10 shows sample stress strain curves corresponding to different values
of the Weibull shape parameter, ρ, and surface helix angle, αs. The simulation assumes a stress-controlled
tensile experiment. The lower, isolated marker points indicate sudden collapse of the yarn. We define
the strain εy in Figure 10 as the strain in the intact virtual central fiber of the yarn. Therefore the slope
of these curves is a reasonable approximation of yarn elastic stiffness. The linearity of all the curves
until sudden failure suggests a macroscopic brittle-like behavior. For a fixed αs the slope increases with
an increase in ρ, whereas in the case when ρ is fixed the slope decreases with an increase in αs. Also
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Figure 9. Normalized characteristic length scale for strength development δc/103 df

versus surface helix angle αs. l = 10, n = 279.
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shown in Figure 10 are the theoretical curves given by

σ

σδc

=
Ef εy cos2 ᾱ

σδc

=
Ef εy cos2 ᾱ

σδ

( δ
δc

)1/ρ
,

where it is assumed that all the fibers have the same helix angle ᾱ given by

ᾱ = cos−1
(∑l

k=1 nk cosαk

n

)
.

We achieve very good agreement between the theoretical and simulation curves, except for large values
of αs, where localized failure mechanisms might come into play. These plots correspond to a single
realizations of a yarn test and thus conclusions cannot be drawn regarding the relative strengths and
strains to failure for different values of ρ and αs because the yarn realizations exhibit variability from
one to another.

3.4. Cumulative probability distribution, mean and standard deviation. Figure 11 shows the cumula-
tive probability distribution functions, G, resulting from the Monte Carlo simulations for αs = 10o and
ρ = 2, 5, and 10 on normal probability paper. The nearly straight lines indicate that the strength is
approximately normally distributed.

Figure 12 and 13 plot the normalized mean strength, µ/σδmin
c

, and standard deviation,
√

n γ /σδmin
c

,
versus surface helix angle, αs, for n = 62 and 279, and ρ = 2, 5, and 10 (for f = 0.1 and 0.3). In
these calculations we use δmin

c as the yarn characteristic length. Significantly, the curves for the two
values of friction coefficients, that is, f = 0.1 and 0.3 coincide with each other when normalized with
respect to σδmin

c
. For comparison, we also show the results from the earlier work [Porwal et al. 2006] on

TM-ELS. The TM-GLS and TM-ELS curves generally exhibit the same behavior for δmin
c . The TM-GLS

curves, however, show some improvement in the strength due the presence of frictional forces. As in
the TM-ELS bundle, the TM-GLS bundles also exhibit a size effect. The strength is slightly lower for a
larger bundle with n = 279 fibers than for smaller one with n = 62. No particular pattern in the standard
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deviation is seen apart from the fact that it decreases with an increase in ρ corresponding to a decrease in
fiber strength variability. Further study is required to exactly understand the size effects and the standard
deviation in the strength of these twisted yarns.

3.5. Effect of length scale on strength development and existence of optimal twist angle. Figure 14
clearly indicates the importance of the choice of δc, by comparing the mean strength of the yarns with
surface twist αs for different choices of simulation lengths, δmax

c , δmin
c , or δavg

c . When mean bundle
strength is simply normalized by µ1, the mean bundle strength at αs = 1o, it increases with surface twist
angle αs, up to αs = 25o. However, normalizing by µ1 is not completely correct because it does not
account for the size effect in the strength of the individual fibers. The scale parameter of the individual
fibers increases, as δc decreases, according to

σδc =

(δ0

δc

)1/ρ
σδ0 .
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This more appropriate normalization will account for the changing length of the bundle in simulation.
Significantly, the yarn strength achieves a maximum for δmax

c but not the other two length scales. This
same result occurs with other parameter sets as well. The other two length scales limit the role played
by the frictional stresses and therefore are not wise choices for modeling and simulation of yarn failure.

The inset figure in Figure 14 plots normalized bundle strength (S/S0, where S0 is the bundle strength
when αs = 0o) versus surface twist angle using data extracted from experimental results of Rao and
Farris [2000]. The optimal helix angle predicted by our model (αs ≈ 7o) is in excellent agreement with
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αs) is plotted using data from [Rao and Farris 2000], where S0 is the yarn strength when
αs = 0o.
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experimental results of Rao and Farris [2000] despite the fact that the idealized yarn geometry of our
model is different from the yarn produced by their twisting process. The magnitudes of the strengths
are apparently different because the normalizations used are different. Further, the experimental strength
decreases at relatively higher rate than theoretical value because of the inefficiencies due to incomplete
migration at higher twist angle, which is assumed to be complete in our model.

4. Conclusions

We have made a fundamental improvement in the twisted bundle strength model by incorporating effects
of friction and pressure development. We have defined and shown that the choice of the characteristic
length scale and normalization parameter are crucial in simulating the strength behavior, particularly as a
function of the surface helix angle (Figure 14). Monte Carlo simulation is employed to show that the bun-
dle strength approximately follows a normal distribution. Further, the TM-GLS bundle strength exhibits
a peak when δmax

c and σδmax
c

are selected as the characteristic length scale and normalization parameter,
respectively. In this case, broken fibers in any layer are allowed to develop stress via frictional forces to
the maximum level determined by yarn extension and therefore potentially break again elsewhere along
their length.

References

[Andrews et al. 1999] R. Andrews, D. Jacques, A. M. Rao, T. Rantell, F. Derbyshire, Y. Chen, J. Chen, and R. C. Haddon,
“Nanotube composite carbon fibers”, Appl. Phys. Lett. 75:9 (1999), 1329–1331.

[Barber et al. 2005] A. H. Barber, I. Kaplan-Ashiri, S. R. Cohen, R. Tenne, and H. D. Wagner, “Stochastic strength of nanotubes:
an appraisal of available data”, Compos. Sci. Technol. 65:15-16 (2005), 2380–2384.

[Ericson et al. 2004] L. M. Ericson, H. Fan, H. Peng, V. A. Davis, W. Zhou, J. Sulpizio, Y. Wang, R. Booker, J. Vavro, C. Guthy,
A. N. G. Parra-Vasquez, M. J. Kim, S. Ramesh, R. K. Saini, C. Kittrell, G. Lavin, H. Schmidt, W. W. Adams, W. E. Billups,
M. Pasquali, W.-F. Hwang, R. H. Hauge, J. E. Fischer, and R. E. Smalley, “Macroscopic, neat, single-walled carbon nanotube
fibers”, Science 305:5689 (2004), 1447–1450.

[Hearle et al. 1969] J. W. S. Hearle, P. Grosberg, and S. Vacker, Structural mechanics of fibers, yarns, and fabrics, vol. 1,
Wiley-Interscience, 1969.

[Huemmerich et al. 2004] D. Huemmerich, T. Scheibel, F. Vollrath, S. Cohen, U. Gat, and S. Ittah, “Novel assembly properties
of recombinant spider dragline silk proteins”, Curr. Biol. 14:22 (2004), 2070–2074.

[Jiang et al. 2002] K. Jiang, Q. Li, and S. Fan, “Nanotechnology: spinning continuous carbon nanotube yarns”, Nature
419:6909 (2002), 801–801.

[Ko et al. 2003] F. Ko, Y. Gogotsi, A. Ali, N. Naguib, H. Ye, G. L. Yang, C. Li, and P. Willis, “Electrospinning of continuous
carbon nanotube-filled nanofiber yarns”, Adv. Mater. 15:14 (2003), 1161–1165.

[Lazaris et al. 2002] A. Lazaris, S. Arcidiacono, Y. Huang, J.-F. Zhou, F. Duguay, N. Chretien, E. A. Welsh, J. W. Soares,
and C. N. Karatzas, “Spider silk fibers spun from soluble recombinant silk produced in mammalian cells”, Science 295:5554
(2002), 472–476.

[Naik et al. 2001] N. K. Naik, I. Mudzingwa, and M. N. Singh, “Effect of twisting on tensile failure of impregnated yarns with
broken filaments”, J. Compos. Technol. Res. 23:3 (2001), 225–234.

[Pan 1993] N. Pan, “Prediction of statistical strengths of twisted fibre structure”, J. Mater. Sci. 28:22 (1993), 6107–61114.

[Pan et al. 1998] N. Pan, H. C. Chen, J. Thompson, M. K. Inglesby, and S. H. Zeronian, “Investigation on the strength-size
relationship in fibrous structures including composites”, J. Mater. Sci. 33:10 (1998), 2667–2672.

[Phoenix 1979] S. L. Phoenix, “Statistical theory for the strength of twisted fiber bundles with applications to yarns and cables”,
Text. Res. J. 49:7 (1979), 407–423.



STATISTICAL STRENGTH OF TWISTED FIBER BUNDLES 791

[Phoenix and Beyerlein 2000] S. L. Phoenix and I. J. Beyerlein, “Statistical strength theory for fibrous composite materials”,
Chapter 1.19, pp. 559–640 in Comprehensive composite materials, vol. 1, edited by A. Kelly et al., Pergamon/Elsevier, 2000.

[Porwal et al. 2006] P. K. Porwal, I. J. Beyerlein, and S. L. Phoenix, “Statistical strength of a twisted fiber bundle: an extension
of Daniels equal-load-sharing parallel bundle theory”, J. Mech. Mater. Struct. 1:8 (2006), 1425–1447.

[Rao and Farris 2000] Y. Rao and R. J. Farris, “A modeling and experimental study of the influence of twist on the mechanical
properties of high-performance fiber yarns”, J. Appl. Polym. Sci. 77:9 (2000), 1938–1949.

[Sullivan 1942] R. R. Sullivan, “A theoretical approach to the problem of yarn strength”, J. Appl. Phys. 13:3 (1942), 157–167.

[Vigolo et al. 2000] B. Vigolo, A. Pénicaud, C. Coulon, C. Sauder, R. Pailler, C. Journet, P. Bernier, and P. Poulin, “Macroscopic
fibers and ribbons of oriented carbon nanotubes”, Science 290:5495 (2000), 1331–1334.

[Zhang et al. 2004] M. Zhang, K. R. Atkinson, and R. H. Baughman, “Multifunctional carbon nanotube yarns by downsizing
an ancient technology”, Science 306:5700 (2004), 1358–1361.

Received 6 Jul 2006. Revised 6 Jun 2006. Accepted 20 Feb 2007.

PANKAJ K. PORWAL: pkp2@cornell.edu
Department of Theoretical and Applied Mechanics, Cornell University, Ithaca, NY 14853
http://www.tam.cornell.edu/~pkp2/

IRENE J. BEYERLEIN: irene@lanl.gov
Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM 87545

STUART LEIGH PHOENIX: slp6@cornell.edu
Department of Theoretical and Applied Mechanics, Cornell University, Ithaca, NY 14853
http://www.tam.cornell.edu/Phoenix1.html



SUBMISSION GUIDELINES

ORIGINALITY
Authors may submit manuscripts in PDF format on-line. Submission of a manuscript acknowledges that the manuscript
is original and has neither previously, nor simultaneously, in whole or in part, been submitted elsewhere. Information regard-
ing the preparation of manuscripts is provided below. Correspondence by email is requested for convenience and speed.
For further information, write to:

Marie-Louise Steele
Division of Mechanics and Computation

Durand Building, Room 262
Stanford University
Stanford CA 94305

LANGUAGE

Manuscripts must be in English. A brief abstract of about 150 words or less must be included. The abstract should be
self-contained and not make any reference to the bibliography. Also required are keywords and subject classification for
the article, and, for each author, postal address, affiliation (if appropriate), and email address if available. A home-page
URL is optional.

FORMAT

Authors are encouraged to use LATEX and the standard article class, but submissions in other varieties of TEX, and,
exceptionally in other formats, are acceptable. Electronic submissions are strongly encouraged in PDF format only; after
the refereeing process we will ask you to submit all source material.

REFERENCES

Bibliographical references should be listed alphabetically at the end of the paper and include the title of the article. All
references in the bibliography should be cited in the text. The use of BIBTEX is preferred but not required. Tags will be
converted to the house format (see a current issue for examples), however, in the manuscript, the citation should be by
first author’s last name and year of publication, e.g. “as shown by Kramer, et al. (1994)”. Links will be provided to all
literature with known web locations and authors are encoraged to provide their own links on top of the ones provided by
the editorial process.

FIGURES

Figures prepared electronically should be submitted in Encapsulated PostScript (EPS) or in a form that can be converted
to EPS, such as GnuPlot, Maple, or Mathematica. Many drawing tools such as Adobe Illustrator and Aldus FreeHand
can produce EPS output. Figures containing bitmaps should be generated at the highest possible resolution. If there is
doubt whether a particular figure is in an acceptable format, the authors should check with production by sending an
email to:

production@mathscipub.org

Each figure should be captioned and numbered so that it can float. Small figures occupying no more than three lines of
vertical space can be kept in the text (“the curve looks like this:”). It is acceptable to submit a manuscript with all figures
at the end, if their placement is specified in the text by means of comments such as “Place Figure 1 here”. The same
considerations apply to tables.

WHITE SPACE

Forced line breaks or page breaks should not be inserted in the document. There is no point in your trying to optimize
line and page breaks in the original manuscript. The manuscript will be reformatted to use the journal’s preferred fonts
and layout.

PROOFS

Page proofs will be made available to authors (or to the designated corresponding author) at a web site in PDF format.
Failure to acknowledge the receipt of proofs or to return corrections within the requested deadline may cause publication
to be postponed.



Journal of Mechanics of Materials and Structures

Volume 2, Nº 4 April 2007

Asymptotic analysis and reflection photoelasticity for the study of transient crack
propagation in graded materials N. JAIN AND A. SHUKLA 595

Asymptotic homogenization model for three-dimensional network reinforced composite
structures K. S. CHALLAGULLA, A. GEORGIADES AND A. L. KALAMKAROV 613

Thermal stress analysis of functionally graded composites with temperature-dependent
material properties H. K. CHING AND J. K. CHEN 633

Finite element modeling of a layered, multiphase magnetoelectroelastic cylinder subjected to
an axisymmetric temperature distribution

N. GANESAN, A. KUMARAVEL AND R. SETHURAMAN 655
A linear curved-beam model for the analysis of galloping in suspended cables

A. LUONGO, D. ZULLI AND G. PICCARDO 675
Stress analysis of composite cylindrical shells with an elliptical cutout

E. OTERKUS, E. MADENCI AND M. P. NEMETH 695
Hypersingular integral equations for the solution of penny-shaped interface crack problems

B. KILIC AND E. MADENCI 729
Wavelet spectral element for wave propagation studies in pressure loaded axisymmetric

cylinders M. MITRA AND S. GOPALAKRISHNAN 753
Statistical strength of twisted fiber bundles with load sharing controlled by frictional length

scales P. K. PORWAL, I. J. BEYERLEIN AND S. LEIGH PHOENIX 773

1559-3959(200704)2:4;1-9

JournalofM
echanics

ofM
aterials

and
S

tructures
2007

Vol.2,N
º

4

Journal of

Mechanics of
Materials and Structures

Volume 2, Nº 4 April 2007

mathematical sciences publishers


	Journal of Mechanics of Materials and Structures Vol 2 Issue 4, April 2007
	Copyright and Masthead
	Asymptotic analysis and reflection photoelasticity for the study of transient crack propagation in graded materials
	page 2
	page 3
	page 4
	page 5
	page 6
	page 7
	page 8
	page 9
	page 10
	page 11
	page 12
	page 13
	page 14
	page 15
	page 16
	page 17
	page 18

	Asymptotic homogenization model for three-dimensional network reinforced composite structures
	page 2
	page 3
	page 4
	page 5
	page 6
	page 7
	page 8
	page 9
	page 10
	page 11
	page 12
	page 13
	page 14
	page 15
	page 16
	page 17
	page 18
	page 19
	page 20

	Thermal stress analysis of functionally graded composites with temperature-dependent material properties
	page 2
	page 3
	page 4
	page 5
	page 6
	page 7
	page 8
	page 9
	page 10
	page 11
	page 12
	page 13
	page 14
	page 15
	page 16
	page 17
	page 18
	page 19
	page 20
	page 21

	Finite element modeling of a layered, multiphase magnetoelectroelastic cylinder subjected to an axisymmetric temperature distribution
	page 2
	page 3
	page 4
	page 5
	page 6
	page 7
	page 8
	page 9
	page 10
	page 11
	page 12
	page 13
	page 14
	page 15
	page 16
	page 17
	page 18
	page 19
	page 20

	A linear curved-beam model for the analysis of galloping in suspended cables
	page 2
	page 3
	page 4
	page 5
	page 6
	page 7
	page 8
	page 9
	page 10
	page 11
	page 12
	page 13
	page 14
	page 15
	page 16
	page 17
	page 18
	page 19
	page 20

	Stress analysis of composite cylindrical shells with an elliptical cutout
	page 2
	page 3
	page 4
	page 5
	page 6
	page 7
	page 8
	page 9
	page 10
	page 11
	page 12
	page 13
	page 14
	page 15
	page 16
	page 17
	page 18
	page 19
	page 20
	page 21
	page 22
	page 23
	page 24
	page 25
	page 26
	page 27
	page 28
	page 29
	page 30
	page 31
	page 32
	page 33

	Hypersingular integral equations for the solution of penny-shaped interface crack problems
	page 2
	page 3
	page 4
	page 5
	page 6
	page 7
	page 8
	page 9
	page 10
	page 11
	page 12
	page 13
	page 14
	page 15
	page 16
	page 17
	page 18
	page 19
	page 20
	page 21
	page 22
	page 23

	Wavelet spectral element for wave propagation studies in pressure loaded axisymmetric cylinders
	page 2
	page 3
	page 4
	page 5
	page 6
	page 7
	page 8
	page 9
	page 10
	page 11
	page 12
	page 13
	page 14
	page 15
	page 16
	page 17
	page 18
	page 19
	page 20

	Statistical strength of twisted fiber bundles with load sharing controlled by frictional length scales
	page 2
	page 3
	page 4
	page 5
	page 6
	page 7
	page 8
	page 9
	page 10
	page 11
	page 12
	page 13
	page 14
	page 15
	page 16
	page 17
	page 18
	page 19

	Guidelines for Authors
	Table of Contents

