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SILVANO TIZZI

A computational work to determine the post-critical flutter behavior of orthotropic and isotropic panels,
according to the Von Karman’s large deflection plate theory and quasisteady linearized aerodynamic
theory, has been performed. Three different numerical schemes, based on Galerkin, Ritz and finite ele-
ment method, have been employed for the integration over the panel surface, to reduce the mathematical
problem to a system of differential equations in time. These can be integrated by appropriate algorithms
to derive the vibrating plate behavior over time. Thus, it has been possible to determine a permanent
solution in post-critical conditions. The paper focuses on the influence of the elastic parameters on the
limit cycle solution of the vibrating plate under a high supersonic flow. Comparisons between the results
obtained by panels with different elastic properties have been mandatory to characterize their effects on
the post-critical flutter stationary solution. Particular attention has been given to the limit cycle amplitude,
which is a fundamental parameter indicative of the fluttering panel resistance to a high supersonic airflow.
Thus it has been possible to state an evaluation criterion of the hierarchic importance of the plate elastic
parameters, based on their influence on the panel resistance to the post-critical flutter phenomenon. The
reliability of our analysis can be guaranteed through the good agreement between the results of the three
methods.

Notation

Roman letters

Ax , Ay extensional rigidity parameters of the orthotropic plate
Ar = Ax,is = Ay,is extensional rigidity parameter of the isotropic reference plate
a, b rectangular plate dimensions
a1, b1 nondimensional parameters
aiψ coefficients of the nondimensional Airy function series expansion
Dr = Dx,is = Dy,is flexural rigidity modulus of the reference isotropic plate
Dx , Dy, Dt flexural and torsional rigidity moduli of the orthotropic plate
Eó, Eê Young’s moduli of the orthotropic plate along the fibers direction

and the perpendicular one, respectively
Ex , Ey Young’s moduli of the orthotropic plate along the axes x and y, resp.
Er Young’s modulus of the isotropic reference plate

Keywords: influence, elastic, parameters, plate, fluttering, post-critical, behavior.

911

http://www.jomms.org
http://dx.doi.org/10.2140/pjm.2007.2-5


912 SILVANO TIZZI

Gxy = Góê in-plane shear rigidity modulus of the orthotropic plate
Gr = Gxy,is in-plane shear rigidity modulus of the isotropic reference plate
h plate thickness
ki j stiffness matrix elements
k�i j elements of the linear structural-aerodynamic resultant forces matrix

La nondimensional parameter L{a
L , Lw in-plane and plate thickness reference lengths
Mach Mach number
mi j mass matrix elements
N whole number of the Lagrangian d.o.f.
Nx , Ny, Nxy in-plane membrane forces
t time symbol
Ua supersonic flow speed
U, V,W nondimensional displacements along the axes x, y, z respectively
UiU , ViV ,WiW coefficients of the nondimensional displacements U, V,W series

expansions
u, v, w displacements along the axes x, y, z, respectively
x, y, z plate reference system axes

Greek symbols

α1, β1, γ1 flexural and torsional rigidity nondimensional parameters
β nondimensional parameter equal to

b
M2

ach � 1
γ geometric nondimensional parameter
δi j Kronecker’s delta
ζi j utilized matrix elements
ϑ nondimensional parameter in the flutter vibration equation
λ nondimensional dynamic pressure
νxy, νyx , νóê, νêó Poisson’s moduli of the orthotropic plate
νr Poisson’s modulus of the reference isotropic plate
ξ, η nondimensional in-plane coordinates
τ nondimensional time
8 Stress Airy function
ϕiψ generic element in the nondimensional Airy function series expansion
χiUχiVχiW generic elements of the displacements series expansions
ψ nondimensional Airy function
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Special symbols

B partial differentiation

d
(3)
i jk, d

(4)
i jkl, ei jkl, hi jk tensor elements

I ( )��� generic integral

[D(4)
][E][H][T ][O] utilized matrices

[K (op)
][M(op)

] out-of-plane stiffness and mass matrices

[K (op)
]
� out-of-plane linear structural-aerodynamic forces matrix

[ Q(op)
] out-of-plane Lagrangian degrees of freedom column vector

[ Q(op,3)
] column vector containing the triple products of the out-of-plane Lagrangian

degrees of freedom

[W ] utilized column vector of the displacement W series expansions coefficients

[W (3)
] utilized column vector containing the triple products between coefficients of W

series expansion

sin( ) cos( ) tan( ) trigonometric functions

T( ) nondimensional kinetic energy expression

U( )
l U( )

m U( )
nl nondimensional strain energy expressions due to linear, mixed and

nonlinear structural forces

Subscripts

i, j subscripts with generic meaning

. . . , is; r subscripts referring to the isotropic plate

iU jU kU , iV jV kV subscripts referring to U, V,W , respectively, in

iW jW kW the series expansions

jW c2, jW c3 contraction indices

l,m, nl subscripts referring to the linear,mixed and nonlinear structural forces

ó,ê subscripts referring to the fibers direction and its perpendicular one

Superscripts

(in) in-plane situation

(op) out-of-plane situation

Abbreviations and acronyms

d.o.f. degree(s) of freedom

FEM finite element method
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1. Introduction

Post-critical flutter behavior of plates and shells exposed to a high supersonic flow has been a subject of
major interest and wide research because of its outstanding importance in the aerospace field. In fact the
life expectancy and survivability of fluttering panels on high supersonic aircraft depend substantially on
their resistance to this phenomenon.

Von Karman’s large deflection theory [Bolotin 1963], which takes into account the presence of non-
linear structural forces, together with the assumption of quasisteady first-order high supersonic theory
[Bisplinghoff 1962], has been employed by most researchers in the field. The Galerkin method [Kan-
torowich and Krylov 1964; Mikhlin 1964] was utilized by Dowell [1966; 1967], and by Shiau and
Lu [1992], and the Rayleigh-Ritz method [Reddy 1986] was used by Ketter [1967] and Eastep and
McIntosh [1971] for the integration over the panel surface. By these methods it was possible to reduce
the mathematical problem to a system of nonlinear ordinary differential equations in time, which was
solved by numerical integration. Other researchers utilized the finite element method (FEM) [Kikuchi
1986; Reddy et al. 1988] to integrate over the plate or shell surface and to derive a system of ordinary
differential equations in-time [Xue and Mei 1993; Dixon and Mei 1993; Zhou et al. 1994; Zhou et al.
1995; Zhou et al. 1996]. The Galerkin method was also used by [Abbas et al. 1993] to examine the
problem of nonlinear aerothermoelasticity of panels in supersonic airflow.

A large amount of research was also conducted in the field of piezoelectric actuators to suppress
large amplitude limit-cycle flutter [Zhou et al. 1995; Zhou et al. 1996]. Accurate dynamic analysis with
actuators present was performed by the use of FEM. Furthermore, the effects of thermal loads were taken
into account by some of the above mentioned authors [Xue and Mei 1993; Zhou et al. 1994; Zhou et al.
1995; Zhou et al. 1996; Abbas et al. 1993].

However, none of these authors has developed a particularized study on the influence of the elastic
parameters of orthotropic and isotropic plates on the post-critical flutter behavior. One would expect that
it would be of fundamental importance to know the role of each one of these parameters related to this
phenomenon. For this reason, the main purpose of the present work focuses on their influence on the
limit cycle stationary solution of the fluttering panel, whose amplitude determines its resistance to a high
supersonic airflow.

First, the classical Galerkin method has been utilized, as in the Dowell’s model. Then a Lagrangian
functional expression has been formed to apply FEM and Ritz procedures [Tizzi 1994;1997; 2003a],
and a system of ordinary differential equations in time has been obtained by the virtual work variational
principle [Pars 1968], which has been integrated by appropriate algorithms.

Cases with different in-plane boundary conditions have been considered. For this reason two different
models have been utilized with the Galerkin method. The first employs the Airy stress function to
arrive at the classical von Karman’s equations [Bolotin 1963]; the second one considers the in-plane
displacements as unknown variables [Santini 1973].

A single model with the presence of a particular parameter can be employed instead, when FEM or Ritz
procedures are utilized; this parameter takes into account the in-plane geometric boundary conditions in
the in-plane clamped plate borders case [Tizzi 2003b].

The use of three different numerical schemes, giving very close results, can be helpful in guaranteeing
the validity of the developed analysis.
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The knowledge of the flutter behavior of a vibrating plate is useful also for multilayer composite
laminates. In fact it is well known that the dynamic analysis of a nearly symmetric and balanced vibrating
composite structure, angle-ply laminate �θ type, can be simulated by an equivalent orthotropic plate,
with appropriate values for thickness and elastic parameters [Crivelli Visconti 1975; Tizzi 1999].

Consequently the present numerical analysis is useful also to characterize the resistance of a panel
formed by a generic angle-ply composite laminate �θ with many component layers to air flowing at
supersonic speed.

2. Mathematical formulations

Mathematical formulations have been developed for all three procedures treated in the paper.
A generic orthotropic plate, aligned with an x, y, z system of rectangular coordinates and exposed to

a high supersonic airflow along the x axis, is considered and shown in Figure 1.
The Galerkin method has been utilized, then FEM and Ritz procedures have been used for the plate

dynamic analysis.
The Einstein’s summation convention for repeated indices has been adopted in all the forthcoming

relations.

2.1. The Galerkin method. The out-of-plane vibration governing equation of a plate undergoing both
extension and bending throughout its surface, combined with the transverse constitutive relations of
orthotropic plates [Crivelli Visconti 1975], according to the Kirchhoff’s hypothesis [Santini 1973], yields
the second von Karman’s governing equation of the flutter vibration, properly modified for an orthotropic

Figure 1. Plate exposed to an airflow at high supersonic speed.
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plate:

Dx
B4w

Bx4 +2(νxy Dy + 2Dt)
B4w

Bx2By2 + Dy
B4w

By4 + pz +µ
B2w

Bt2 �Nx
B2w

Bx2 �2Nxy
B2w

BxBy
�Ny

B2w

By2 = 0, (1)

where w(x, y, t) is the transverse displacement, Nx , Ny, Nxy are the membrane forces per unit length,
and pz is the aerodynamic loading pressure, which, within the framework of the quasisteady linearized
“Piston Theory” of the high supersonic aerodynamics [Bisplinghoff 1962], is given by:

pz =
2q
β

(Bw
Bx

+
1

Ua

β2� 1
β2

Bw
Bt

)
. (2)

In Equation (2), β2
= M2

ach�1, Ua is the high supersonic flow speed, and q = ρU 2
a {2 is the air flowing

dynamic pressure. Finally, the orthotropic plate flexural and torsional rigidity parameters are defined in
the customary manner as:

Dx =
Ex h3

1� νxyνyx
, Dy =

Eyh3

1� νxyνyx
, Dt = Gxy

h3

12
. (3)

Since two different cases of the in-plane boundary conditions are considered, separate Galerkin pro-
cedures are utilized for the plate dynamic analysis.

Case 1. First, a simply supported plate for the out-of-plane behavior is considered, having the in-plane
borders free—that is the membrane forces vanish on the limit edges:

Nx = 0 and Nxy = 0 at x = 0, a

Ny = 0 and Nxy = 0 at y = 0, a.
(4)

The in-plane coordinates and the transverse displacement have been reformulated in nondimensional
form:

ξ =
x
a
, η =

y
b
, W =

w

Lw
, (5)

where Lw is the plate thickness reference length, and a, b are the rectangular plate dimensions.
The nondimensional transverse displacement is written in terms of a series expansion:

W (ξ, η, τ )= WiW (τ )χiW (ξ, η), iW = 1, 2, . . . , NW , (6)

where each element χiW (ξ, η) satisfies the boundary conditions of a simply supported plate, and can be
defined as:

χiW (ξ, η)= sin(iW xπξ) sin(iW yπη), (7)

iW x = 1, 2, . . . , NW x , iW y = 1, 2, . . . , NW y, iW = (iW x � 1)NW y + iW y, (8)

iW = 1, 2, . . . , NW , NW = NW x NW y . (9)

Since the in-plane inertia is being neglected, in this particular case it is better to utilize the Airy
stress function to describe the in-plane static behavior and hence to satisfy easily the natural boundary
conditions in Equations (4).
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This Airy function 8(x, y, t) can be reformulated in nondimensional form:

ψ =
8

Er hL2 , (10)

where L is the in-plane reference length, Er is the Young’s modulus of the reference isotropic plate, and
h is the plate thickness.

A series expansion for ψ(ξ, η, τ ) in terms of function elements can be chosen:

ψ(ξ, η, τ )= aiψ (τ )ϕiψ (ξ, η), iψ = 1, 2, . . . , Nψ , (11)

where the generic function element ϕiψ (ξ, η) is equal to:

ϕiψ (ξ, η)= ϕiψx (ξ)ϕiψy (η),

iψx = 1, 2, . . . , Nψx ,

iψy = 1, 2, . . . , Nψy,

iψ = (iψx � 1)Nψy + iψy,

iψ = 1, 2, . . . , Nψ ,

Nψ = Nψx Nψy,

(12)

and further, ϕiψx (ξ), ϕiψy (η) are nearly orthonormal describing functions, which vanish with their first
normal derivatives at the plate borders. Thus, for the membrane forces with dependence on the stress
function, the natural boundary conditions in Equations (4) are satisfied. These are treated in the Appendix.

The in-plane compatibility relation [Santini 1973], by virtue of the in-plane kinematic and constitutive
equations of an orthotropic plate [Crivelli Visconti 1975], together with the dependence of the membrane
forces on the stress function, lead to the classical von Karman’s first equation, properly modified for an
orthotropic plate [Tizzi 2003b].

In view of the same membrane forces’ dependence on the stress function, the flutter governing Equa-
tion (1), combined with the in-plane von Karman’s first equation, through Galerkin operations becomes
in nondimensional form:

Ẅm +
?
λϑẆm + i4

3W Wm + 4λLa I (χχ)mjW W jW

� 4
π4 hL2a2

1b2
1

a
Ex Ey

Er
I (χϕχ)miψ iW

ζiψ jW c2 WiW W jW WkW = 0 m = 1, 2, . . . , NW , (13)

where

i4
3W = α4

1i4
W x + γ 4

1 i2
W x i2

W y +β4
1 i4

W y,

ẆiW =
BWiW

Bτ ,

ẄiW =
B2WiW

Bτ 2 ,

I (χχ)mjW =

»
6

χm
Bχ jW

Bξ d6,

(14)
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I (χϕχ)miψ iW
=

»
6

χm

�
B2ϕiψ

Bη2

B2χiW

Bξ 2 � 2
B2ϕiψ

BξBη
B2χiW

BξBη +
B2ϕiψ

Bξ 2

B2χiW

Bη2

�
d6. (15)

Further, we have introduced in Equations (13) and (14) the following nondimensional parameters:

a1 = 4

d
Er

Ey

L
a
, b1 =

4

d
Er

Ex

L
b
, γ =

Lw
L
, (16)

α4
1 =

Dx L4

Dr a4 , β4
1 =

Dy L4

Dr b4 , γ 4
1 =

2(νxy Dy + 2Dt)

Dr

L4

a2b2 , La =
L
a
, (17)

λ=
2q L3

βπ4 Dr
, ϑ =

(
β2� 1
β2

)2 2q L
βµU 2

a
, τ =

d
Drπ4

µL4 t, (18)

where Er is the Young’s modulus of the isotropic reference plate, and Dr = Er h3{12(1� ν2
r ) is the

flexural rigidity modulus of the same fluttering reference plate.
Finally, the coefficients ζiψ jW c2 in Equation (13) are matrix elements, connecting the coefficients aiψ

of the series in Equation (11), with the double product of the out-of-plane bending displacement series
expansion coefficients in Equation (6):

aiψ = ζiψ jW c2 W jW WkW . (19)

In Equation (19) jW c2 is the contraction of the two indices jW and kW .
Detailed explanations of the analytical developments which, starting from the flutter Equation (1) and

the in-plane static equilibrium von Karman’s relation, allow us to derive, through Galerkin operations,
the governing Equation (13) and the relation (19), are shown in [Tizzi 2003b]. These developments are
very similar to those in the analytical studies carried out by other authors [Dowell 1966; Dowell 1967;
Shiau and Lu 1992; Abbas et al. 1993].

Equation (13) can be transformed into its equivalent matrix form:

[Ẅ ] +
?
λϑ[Ẇ ] + i4

3 [W ] + [H][W ]� [O][W (3)
] = 0, (20)

where [W ] is the column vector having dimensions NW , whose elements are the series expansions coef-
ficients of the transverse displacement in Equation (6); [W (3)

] is the column vector with dimensions N 3
W ,

whose elements are the triple products of the same coefficients p(3)jW c3
= WiW p(2)jW c2

= WiW W jW WkW ( jW c3 is
the contraction of the three indices iW , jW , kW or iW , jW c2); [H] and [O] are matrices, having dimensions
NW � NW and NW � N 3

W , respectively, whose elements are:

hmjW = 4λLa I (χχ)mjW , omjW c3 = 4hL2a2
1b2

1

a
Ex Ey

Er
I (χϕχ)miψ iW

ζiψ jW c2 . (21)

In the second of Equations (21) the summation convention for the repeated index iψ has been utilized.
Thus, a reduced system of nonlinear differential equations is derived, with a single independent vari-

able W . For the integration in time, an algorithm based on the Kutta-Merson procedure is utilized, with
variable control of the step integration [Merson 1957; Lambert 1991].
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Case 2. We then analyze a second case of a plate, likewise simply supported at the borders for the
transverse behavior but clamped at the four edges for the in-plane displacements. In place of Equations (4)
there are the following boundary conditions for in-plane displacements:

u = 0 and v = 0 at x = 0, a and y = 0, b. (22)

In this case it is not convenient to use the Airy function, but to set-up the in-plane governing equations
by means of the membrane displacements functions over the mid-plane panel surface.

Like the transverse displacement W = w{Lw, as in the third of Equations (5), the in-plane displace-
ments u, v have also been reformulated in nondimensional form:

U =
u
a

1
γ 2

a
, V =

v

b
1
γ 2

b
. (23)

Notice that the order of magnitude of the in-plane displacements u, v is the same as that of w2; thus
the same order of magnitude corresponds to U, V,W .

Appropriate series expansions have been chosen for the nondimensional in-plane displacements:

U = UiU (τ )χiU (ξ, η), V = ViV (τ )χiV (ξ, η), iU , iV = 1, 2, . . . , NU , NV , (24)

where each function element of the series is defined as

χiU (ξ, η)= sin(iU xπξ) sin(iU yπη)

χiV (ξ, η)= sin(iV xπξ) sin(iV yπη)
(25)

iU x , iV x = 1, 2, . . . , NU x , NV x ,

iU y, iV y = 1, 2, . . . , NU y, NV y,

iU , iV = (iU x , iV x � 1)NU y, NV y + iU y, iV y,

iU , iV = 1, 2, . . . , NU , NV ,

NU , NV = NU x , NV x � NU y, NV y

(26)

which satisfy the boundary conditions in Equations (22).
Also, in this case, the in-plane inertia effects are being neglected. The static equilibrium equations

along the x and y axes, for the in-plane kinematic and constitutive relationships of an orthotropic plate,
expressed in terms of the membrane displacements [Santini 1973; Crivelli Visconti 1975], can be deter-
mined [Tizzi 2003b].

The von Karman’s flutter vibration Equation (1), in view of the same in-plane kinematic and con-
stitutive relations of an orthotropic plate, combined with the two in-plane static equilibrium equations,
through Galerkin operations becomes

Ẅm +
?
λϑẆm + i4

3W Wm + 4λLa I (χχ)mjW W jW + tmjW c3 WiW W jW WkW = 0, m = 1, 2, . . . , NW , (27)

where the time derivatives, along with the parameter i4
3W and the integral I (χχ)mjW , have been previously

defined in Equations (14), and the meaning of the nondimensional parameters λ and ϑ is explained in
Equations (18).
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Furthermore tmjW c3 are matrix elements, where jW c3 is the contraction of the three indices iW , jW , kW ,
as stated after Equation (20).

Detailed explanations of the analytical developments, which, starting from the flutter Equation (1), and
combined with the two in-plane static equilibrium relations, allow us to find the governing Equation (27)
through Galerkin operations, are given in [Tizzi 2003b].

Introducing the matrix [T ], having elements tmjW c3 and dimensions NW � N 3
W , allows Equation (27)

to take its equivalent matrix form:

[Ẅ ] +
?
λϑ[Ẇ ] + i4

3W [W ] + [H][W ]� [T ][W (3)
] = 0, (28)

where the same column vector [W (3)
], previously defined after Equation (20), and the same matrix

[H], whose elements have been defined in the first of Equations (21), are utilized. The same algorithm,
applying the Kutta-Merson procedure with variable step control for the integration in time, is utilized, as
it is for the differential relations system in Equation (20).

2.2. Ritz and FEM procedures. Procedures built both on the Rayleigh-Ritz method and on FEM [Tizzi
1994; 1997; 2003a] have been employed to extract the requested results. These arise from differential
operations on an energetic functional, whose stationary conditions lead to the dynamic governing equa-
tions. Since with FEM or Ritz method one is not obliged to satisfy the natural boundary conditions in
the free in-plane edges case, as in Equation (4), the same model can be utilized for the two cases with
different in-plane conditions at the panel borders. It is only sufficient to introduce a parameter which
takes into account the geometric in-plane boundary conditions in the in-plane clamped plate edges case.

The strain energy expression, due to the in-plane and transverse linear structural forces only, can be
stated as:

U (in)
l =

1
2 k(in)i j q(in)

i q(in)
j , U (op)

l =
1
2 k(op)

i j q(op)
i q(op)

j , (29)

where

(1) k(in)i j and k(op)
i j are the in-plane and out-of-plane stiffness matrix elements of the orthotropic plate,

respectively, which have been previously evaluated both for Ritz and for FEM procedure,

(2) q(in)i , q(in)j and q(op)
i , q(op)

j are the in-plane and out-of-plane transverse degrees of freedom (d.o.f.),
respectively, of both methods.

In the Ritz procedure, these stand for the coefficients of the polynomial series expansions of the in-plane
and transverse displacements, respectively, as in Equations (24) and (6), whereas in the FEM, these
correspond to the same displacements and their first order derivatives in the in-plane coordinates on the
grid points of the chosen mesh [Tizzi 2003b].

Also the contribution of the mixed and nonlinear structural forces to the in-plane strain energy can be
evaluated and expressed as:

U(in)
m =

1
2d
(3)
i jkq(in)i q(op)

j q(op)
k , U(in)

nl =
1
2d
(4)
i jklq

(op)
i q(op)

j q(op)
k q(op)

l , (30)

where d
(3)
i jk and d

(4)
i jkl are tensor elements, previously determined in the Ritz and FEM procedures [Tizzi

2003b].
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The in-plane and transverse kinetic energy expressions can be stated in the classical form:

T(in)
=

1
2 m(in)

i j q̇(in)
i q̇(in)

j , T(op)
=

1
2 m(op)

i j q̇(op)
i q̇(op)

j , (31)

where q̇i , q̇ j = B[qi , q j ]{Bτ , and m(in)
i j , m(op)

i j are the in-plane and out-of-plane mass matrix elements,
respectively. Also these have been previously evaluated for a fluttering orthotropic plate using both
procedures [Tizzi 2003b]. Since the in-plane inertia effects have been neglected, the component T(in) of
the kinetic energy is not considered, and consequently only the elements m(op)

i j of the mass matrix are
taken into account.

The Lagrangian La functional can be introduced:

La = T(op)�U(in)
l �U

(op)
l �U(in)

m �U(in)
nl . (32)

The differential principle of virtual work, applied to the i � th in-plane (in) or out-of-plane (op) d.o.f,
leads to the classical Lagrange equation [Pars 1968]:

d(BLa{Bq̇(in,op)
i )

dτ
� BLa

Bq(in,op)
i

= 0. (33)

This gives the in-plane or out-of-plane governing equations, depending on whether the generic degree
of freedom refers to in-plane q(in)i or the out-of-plane q(op)

i behavior.
Combining the two equations, and taking into account the aerodynamic generalized force presence in

the out-of-plane governing equation, leads to:

m(op)
i j q̈(op)

j + f (t)i j q̇(op)
j + (k(op)

i j )�q(op)
j + eiklmq(op)

k q(op)
l q(op)

m + 2d
(4)
i jklq

(op)
j q(op)

k q(op)
l = 0, (34)

where the elements:
(k(op)

i j )� = k(op)
i j + f (x)i j (35)

collect both the linear out-of-plane structural and aerodynamic coupling forces [Tizzi 1994]. Further-
more, the coefficients f (x)i j and f (t)i j appear in the expressions of the two components of the generalized
aerodynamic force:

F (a)i = F (a,x)i + F (a,t)i F (a,x)i = f (x)i j q(op)
j , F (a,t)i = f (t)i j q̇(op)

j . (36)

The component F (a,x)i , containing the transverse displacement derivative in the x coordinate, is respon-
sible for the coupling between different natural vibrating modes, while the damping component F (a,t)i ,
contains the transverse displacement time derivative, according to the linearized Piston Theory.

Detailed explanations of the way in which Equation (34) is derived, starting from the two in-plane
and out-of-plane governing equations, are given in [Tizzi 2003b], where the meaning of the tensor el-
ements eiklm is sufficiently illustrated. The other tensor elements d

(4)
i jk are the same as in the second of

Equations (30).
The out-of-plane mass matrix [M(op)

], having elements m(op)
i j , and the linear structural-aerodynamic

forces matrix [K (op)
]
�, having elements (k(op)

i j )�, are introduced, together with the nonlinear structural
forces matrices [E] and [D(4)

], having tensor elements ei jc3 and d
(4)
i jc3

, respectively ( jc3 is the contraction
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index of the three indices k, l,m or j, k, l). The column vectors [ Q(op)
], having elements the out-of-plane

d.o.f. q(op)
i , and [ Q(op,3)

], containing the triple products

p(3)jc3
= q(op)

k q(op)
l q(op)

m or p(3)jc3
= q(op)

j q(op)
k q(op)

l

are also introduced. The elements f (t)i j of the aerodynamic damping forces are proportional to the out-

of-plane mass matrix elements m(op)
i j [Tizzi 2003a; 2003b]:

f (t)i j = γdm(op)
i j . (37)

Hence, the matrix having elements f (t)i j would be coincident with the out-of-plane mass matrix [M(op)
],

but for a coefficient γd , both for Ritz and for FEM methods.
This allows Equation (34) to take its equivalent matrix form:

[ Q̈(op)
] + γd [ Q̇(op)

] + [M(op)
]
�1

[K (op)
]
�
[ Q(op)

] + [M(op)
]
�1t[E] + 2[D(4)

]u[ Q(op,3)
] = 0. (38)

A nonlinear equations system is obtained, similar to the one in Equation (28), which likewise can be
integrated by an algorithm utilizing the Kutta-Merson procedure with variable integration step.

3. Applications and results

The introduced numerical approaches have been applied to different cases of orthotropic and isotropic
plates. In all the considered cases the following geometric characteristics of the rectangular plates are
supposed:

L = a = b = 100Lw = 100h, (39)

and concerning the nondimensional parameter ϑ in the second of Equations (18), it has been assumed
that

ϑ = 0.1. (40)

The in-plane and out-of-plane boundary conditions of the reference vibrating isotropic plate are the
same as those for the fluttering orthotropic plate in every considered case.

The amplitude WA of the flutter vibration displacement is evaluated in the point with maximum value
of the transverse deflection w(x, y, t), which verifies at about 3/4 of the central side parallel to the airflow
direction, starting from the leading edge. This is a parameter of great importance; in fact the smaller
this amplitude is, the higher is the resistance of the fluttering plate under the effects of air flowing at
supersonic speed.

In the first two cases an orthotropic plate of composite u.d. materials, made of glass fibers and epossidic
resin, is used, having the following elastic properties [Crivelli Visconti 1975]:

Eó = 45 GPa, Eê = 14 GPa, Góê = 6 GPa, νóê = 0.24, νêó = 0.0746, (41)

where Eó is the Young’s modulus along the fibers direction, Eê is the Young’s modulus along the
perpendicular direction, Góê is the shear rigidity modulus between the two directions, and νóê, νêó
denote the two Poisson’s moduli. These are equal to νxy, νyx if the fibers are oriented in the airflow
direction, and νyx , νxy if the fibers are oriented in the perpendicular direction.
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λ 1.47 2.0 3.78 4.0 5.21 6.0 8.0 10.0 12.0 14.0 16.0
Ex   Ey = Er 0 2.53 8.56 11.57 13.24 14.42 15.16 15.47 15.57
Ex = Er ¡ Ey 0 0.43 3.15 4.63 5.66 6.53 7.26 7.79
isotropic 0 0.70 2.01 2.84 3.47 4.0 4.42

Table 1. Values of the post-critical limit cycle amplitude WA versus the nondimensional
dynamic pressure λ in the first case.

In the first case considered, for a significant comparison of the results obtained, a reference isotropic
plate is utilized having Young’s modulus Er equal to the higher of the two of the orthotropic plate and
a Poisson’s modulus νr = 0.3. The plate is simply supported for the out-of-plane flutter dynamics, but
with free in-plane boundary conditions, as in Equation (4).

The behavior of the limit cycle highest amplitude WA versus the nondimensional dynamic pressure λ in
Figure 2, corresponds to the post-critical dynamics of the orthotropic plate with the fibers oriented in the
perpendicular direction to the airflow. In this subcase the Young’s modulus along the x axis (direction of
the airflow) is lower than the corresponding one along the perpendicular axis y (Ex   Ey = Er ), because
Ex = Eê and Ey = Eó. The lowest amplitude graph corresponds to the flutter of the reference isotropic
vibrating plate. The middle amplitude curve of the flutter oscillations corresponds to the limit cycle
of the orthotropic plate, with the fibers oriented in the airflow direction. In this second subcase, the
Young’s modulus along the x axis is higher than the corresponding one along the perpendicular direction
(Ex = Er ¡ Ey), because Ex = Eó and Ey = Eê.

The data points, which in Figure 2 appear as dots, are summarized in Table 1.
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Figure 2. Behavior of the post-critical limit cycle amplitude WA versus the nondimen-
sional dynamic pressure λ in the first considered case.
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λ 4.26 4.89 6.0 12.0 12.31 18.0 24.0 30.0 36.0 42.0 48.0
Ex = Er   Ey 0 2.28 7.79 11.05 12.98 14.00 14.63 15.15 15.47
isotropic 0 0.8 3.68 5.26 6.42 7.16 7.79 8.30 8.84
Ex ¡ Ey = Er 0 2.95 4.57 5.47 6.31 7.05 7.68

Table 2. Values of the post-critical limit cycle amplitude WA versus the nondimensional
dynamic pressure λ in the second case.

In the second case, the same vibrating orthotropic plate of the previous case is considered, with
the same in-plane and out-of-plane boundary conditions, but the Young’s modulus Er of the reference
isotropic plate is equal to the smaller of the two ones of the orthotropic plate. Since the dynamic pressure
has been reformulated in nondimensional form by dividing by the flexural rigidity modulus Dr of the
isotropic plate (see the first of Equations (18)), which is lower than the corresponding one in the previous
case, higher values of λ, compared to those in Figure 2, are noticed (see Figure 3).

In the same Figure 3, the curve of the highest amplitude behavior versus λ corresponds to the or-
thotropic plate with the fiber direction perpendicular to that of the airflow (Ex = Er   Ey), whereas the
lowest flutter amplitude chart corresponds to the fiber orientation in the airflow direction (Ex ¡ Ey = Er ).
The graphic curve of the limit cycle amplitude behavior versus λ of the isotropic plate, with lower Young’s
and equal Poisson’s modulus with respect to the same parameter values of the previous case, is located
between the two ones of the orthotropic plate.

The data points, which in Figure 3 appear as dots, are written in Table 2.
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Figure 3. Behavior of the post-critical limit cycle amplitude WA versus the nondimen-
sional dynamic pressure λ in the second considered case.
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λ 0.94 2.0 3.43 4.0 5.37 6.0 8.0 10.0 12.0 14.0 16.0
Ex   Ey = Er 0 3.59 10.0 15.0 18.91 21.87 24.06 25.31 26.25
Ex = Er ¡ Ey 0 2.19 6.65 9.06 11.25 12.97 14.69 16.25
isotropic 0 0.94 2.45 2.90 3.20 3.62 3.91

Table 3. Values of the post-critical limit cycle amplitude WA versus the nondimensional
dynamic pressure λ, in the third case.

The third case refers to an orthotropic plate of composite u.d. materials, made of carbon fibers and
epoxy resin type C3, and having the following elastic parameters [Crivelli Visconti 1975]:

Eó = 107 GPa, Eê = 7 GPa, Góê = 6 GPa, νóê = 0.24, νêó = 0.0157. (42)

The in-plane and out-of-plane boundary conditions are the same as in the previous cases. In Figure 4
the curve of the highest amplitude behavior versus λ corresponds to the orthotropic plate with the fibers
lined up in the perpendicular direction to the airflow, i.e. Ex = Eê and Ey = Eó (Ex   Ey = Er ). The
lowest amplitude graph corresponds to the flutter limit cycle of the isotropic plate, with the Young’s
modulus equal to the higher of the two Young’s moduli of the orthotropic plate, and likewise νr = 0.3.
The graphic curve located between the two previous ones corresponds to the orthotropic plate with the
fibers aligned along the airflow direction, i.e. Ex = Eó and Ey = Eê (Ex = Er ¡ Ey).

The data points, which in Figure 4 appear as dots, are shown in Table 3.
The fourth case refers to the same orthotropic plate of the previous case, but with the Young’s modulus

Er of the isotropic reference plate equal to the lower of Ex and Ey .
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Figure 4. Behavior of the post-critical limit cycle amplitude WA versus the nondimen-
sional dynamic pressure λ in the third case considered.
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λ 14.06 20.62 30.0 52.45 60.0 90.0 120.0 150.0 180.0 210.0 240.0
Ex = Er   Ey 0 3.58 9.98 14.96 18.85 21.78 23.92 25.15 26.06
isotropic 0 2.19 6.43 9.52 11.76 13.34 14.78 15.95 17.03
Ex ¡ Ey = Er 0 2.18 6.63 9.02 11.17 12.82 14.45 16.00

Table 4. Values of the post-critical limit cycle amplitude WA versus the nondimensional
dynamic pressure λ, in the fourth case.

Figure 5 shows:

(1) the highest amplitude graphic line, corresponding to the orthotropic plate with the fibers aligned
along the perpendicular direction to the airflow (Ex = Er   Ey);

(2) the middle amplitude graph, corresponding to the isotropic reference plate;

(3) the lowest amplitude chart line, corresponding to the orthotropic plate with the fibers aligned in the
airflow direction (Ex ¡ Ey = Er ), as in the second case.

The reason for which the values of λ in Figure 5 differ from those in Figure 4, though they refer to the
same orthotropic plate, is the same as that explained above for the second case.

The data points, which in Figure 5 appear as dots, are summarized in Table 4.
The orthotropic fluttering plate described in the two last cases is the same as that of the first two

cases, but there are different in-plane boundary conditions, with rectangular edges clamped for the in-
plane displacements, whereas the same simply supported plate boundary conditions are supposed for the
out-of-plane flutter behavior.
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Figure 5. Behavior of the post-critical limit cycle amplitude WA versus the nondimen-
sional dynamic pressure λ in the fourth case considered.
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λ 1.69 2.0 4.0 5.56 6.0 8.0 10.0 12.0 14.0 16.0
Ex   Ey = Er 0 0.37 2.16 3.53 4.49 5.12 5.53 5.75 5.875
Ex = Er ¡ Ey 0 0.56 0.79 0.92 1.00 1.07 1.13
isotropic 0 0.18 0.62 0.75 0.81 0.875 0.91

Table 5. Values of the post-critical limit cycle amplitude WA versus the nondimensional
dynamic pressure λ, in the fifth case.

The fifth case refers to the isotropic plate with the Young’s modulus Er equal to the higher of Ex and
Ey , as in the first and third cases. Figure 6 exhibits the behavior versus λ of the limit cycle amplitude of
the orthotropic plate both for Ex   Ey = Er and for Ex = Er ¡ Ey , respectively, and also of the isotropic
plate with the smallest limit cycle amplitude values, as in Figures 2 and 4.

The data points, which in Figure 6 appear as dots, are written in Table 5.
Figure 7 shows the behavior versus λ of the flutter modal amplitude of the same orthotropic plate

described in the fifth case, but with the Young’s modulus of the reference isotropic plate equal to the
lower of Ex and Ey , as in the second and fourth cases. In this last sixth case, the graph of the lowest
amplitude behavior versus λ corresponds to the orthotropic plate with fibers aligned along the airflow
direction (Ex ¡ Ey = Er ). The highest amplitude curve corresponds to the orthotropic plate with the
fibers aligned along the perpendicular direction (Ex = Er   Ey). The chart line of the isotropic plate
is located between the two previous ones, as in Figure 3 and Figure 5. Also in this last case, as in the
second and fourth cases, higher values of λ can be pointed out with respect to the previous case for the
same above illustrated reason.
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Figure 6. Behavior of the post-critical limit cycle amplitude WA versus the nondimen-
sional dynamic pressure λ in the fifth considered case.
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λ 4.89 5.68 6.0 7.0 9.0 12.0 12.63 18.0 24.0 30.0 36.0 42.0 48.0
Ex = Er   Ey 0. 0.33 2.05 3.37 4.32 5.0 5.45 5.71 5.87
isotropic 0. 0.16 0.42 0.65 0.79 0.97 1.08 1.18 1.26 1.30 1.33
Ex ¡ Ey = Er 0. 0.53 0.78 0.86 0.94 1.00 1.03

Table 6. Values of the post-critical limit cycle amplitude WA versus the nondimensional
dynamic pressure λ, in the sixth case.

The data points, which in Figure 7 appear as dots, are shown in Table 6.
To compare the amplitude values for limit cycles thus obtained with those found by other authors

who use similar numerical schemes to find post-critical flutter solutions, one must take into account that
our expression for the nondimensional dynamic pressure (first equation in (18)) differs from its nearest
equivalent in those authors’ works by the presence of π4 in the denominator. Thus their values should
be divided by approximately 100 (� π4) for comparison with ours. With this precaution, we see that
our limit cycles amplitudes are indeed comparable to those in the literature [Eastep and McIntosh 1971;
Shiau and Lu 1992; Xue and Mei 1993].

Table 7 shows the frequencies values versus the nondimensional dynamic pressure, in the last consid-
ered case. Similar dependence verifies in the previous considered cases.

Also, the obtained frequency values are comparable with those obtained by the other authors. If we
look at the expression of the nondimensional time τ in the third of Equations (18), we notice that it would
be the same as that utilized by the other above-mentioned authors, but for the presence of a coefficient π2.
This means that the time τ values should be divided by about 10, and the corresponding nondimensional
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Figure 7. Behavior of the post-critical limit cycle amplitude WA versus the nondimen-
sional dynamic pressure λ in the sixth considered case.
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λ 4.89 5.68 6.0 7.0 9.0 12.0 12.63 18.0 24.0 30.0 36.0 42.0 48.0
Ex = Er   Ey 0.46 0.48 0.69 0.88 1.05 1.22 1.39 1.53 1.70
isotropic 0.70 0.72 0.9 1.3 1.85 2.95 4.0 4.76 5.85 6.75 7.48
Ex ¡ Ey = Er 3.3 4.9 6.35 7.70 9.01 10.31 11.40

Table 7. Values of the frequencies of the post-critical limit cycle versus the nondimen-
sional dynamic pressure λ, in the sixth case.

Numerical parameters Ritz Ritz Galerkin Galerkin FEM FEM FEM

N 30 42 36 64 80 120 168
WA 5.838 5.872 5.856 5.872 5.941 5.903 5.881
ω 1.688 1.703 1.69 1.702 1.735 1.712 1.708

N 30 42 36 64 80 120 168
WA 0.998 1.031 1.020 1.030 1.062 1.042 1.034
ω 11.383 11.402 11.398 11.401 11.443 11.421 11.410

Table 8. Values of amplitude and frequency in the sixth case for λ = 48, with Ex =

Er   Ey (top) and Ex ¡ Ey = Er (bottom), obtained by the three different methods with
various values of the number N of the Lagrangian d.o.f.

frequency multiplied by the same coefficient for a significant comparison with the same parameter values
obtained by the other authors. Thus it is reasonable to conclude that these derived frequency values are
comparable with those shown in the graphs in [Ketter 1967; Eastep and McIntosh 1971].

Table 8 gives the values of the frequency and amplitude in the last case considered, corresponding to
λ= 48 and for (Ex ¡ Ey = Er ) and (Ex = Er   Ey), and obtained by the three methods with different
numbers of Lagrangian degrees of freedom. It is possible to evince the higher convergence rate of Ritz
and Galerkin method with respect to the FEM, and the convergence of FEM results towards those of
the two other methods, as the number of degrees of freedom grows indefinitely. It is evident enough
that the amplitude values obtained by the three different methods are very close, and that the same chart
lines would be derived by each method. The same is true for the previous cases considered, and the
comparisons performed in this last case are sufficiently illustrative of the good agreement between the
results obtained by the three different numerical schemes.

The meaning of the Table 9 is explained in the Appendix.

4. Discussion and conclusion

Concerning the post-critical flutter behavior of the vibrating panel, a significant effect of the plate elastic
parameters on the amplitude of the limit cycle stationary solution has been detected. The importance of
this amplitude value is fundamental, because, as mentioned earlier, it is a significant parameter of the
vibrating panel resistance under the effects of a supersonic airflow.
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iψx , iψy piψx , piψy Nd Np

1 4.712389 3.829886
2 7.853982 17.923313
3 10.995574 86.324865
4 14.137167 415.2424
5 17.278760 1997.5148
6 20.420352 9608.99
7 23.561945 46223.87
8 26.703538 222358.8966

Table 9. Values of piψx , piψy and Nd , Np versus iψx , iψy .

Furthermore, even a cursory examination of the obtained results is sufficient to conclude that the
importance of the elastic Young’s modulus in the flow direction is predominant with respect to the one
in the perpendicular direction, as far as the flutter phenomenon is concerned.

In every case of the orthotropic fluttering plate if Ex ¡ Ey , the amplitude of the post-critical limit cycle,
is lower than the corresponding one with Ex   Ey . This fact is consistent with the results of [Shiau and
Lu 1992], who found that the alignment of the fibers of a multilayer angle-ply laminate with the airflow
direction diminishes the limit cycle amplitude, and consequently that the panel resistance to the flutter
phenomenon grows. It is obvious that the smaller the angle between fibers and a reference axis in each
lamina, the higher the Young’s modulus of the equivalent orthotropic plate of the multilayer laminate
along the same axis. Thus, with the increasing value of this modulus Ex along the flow direction, the
vibration amplitude diminishes, and consequently it can be considered an elastic parameter of paramount
importance as far as the limit cycle post-critical solution is concerned.

However the Poisson’s moduli are also elastic parameters, which, after the above-mentioned one, play
an important role in the considered phenomenon, because a remarkable effect of their values on the
flutter amplitude can be evinced. (See Figures 3, 5 and 7.) In the corresponding cases considered, the
Young’s modulus of the isotropic reference plate is equal to the lower of the two Young’s moduli of
the orthotropic plate. The graphic curve of its flutter amplitude behavior versus λ lies between the two
curves of the orthotropic plate. It means that the limit cycle amplitude of the isotropic plate is lower than
the corresponding one of the orthotropic plate with Ex = Er   Ey , although its Young’s modulus Er is
equal to the smaller of Ex and Ey .

This fact bears further analysis. To this end it is necessary to recall the flexural rigidity moduli,
introduced in Equation (3):

Dx =
Ex h3

1� νxyνyx
, Dy =

Eyh3

1� νxyνyx
. (43)

It is evident that the Poisson’s moduli νxy, νyx influence these out-of-plane rigidity parameters, because
the higher their product is, the larger these parameters are. In these subcases with Ex = Er   Ey the
Young’s modulus Er of the isotropic reference plate is equal to the lower one Ex of the orthotropic plate,
but the Poisson’s modulus νr = 0.3 of the isotropic plate is larger than the two corresponding ones of the
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orthotropic plate, as shown in Equations (41) and (42). Thus, although Er = Ex , a value of this stiffness
bending parameter Dx,is = Dr along the x axis is obtained for the isotropic plate bigger than the one Dx

of the orthotropic plate:

Dx,is = Dr =
Ex h3

1� ν2
r
¡ Dx =

Ex h3

1� νxyνyx
, 1� ν2

r   1� νxyνyx . (44)

This means that there is a higher flexural rigidity along the airflow direction (coincident with the x
axis direction) in the isotropic panel.

On the contrary, along the perpendicular y axis direction the Young’s modulus Ey of the orthotropic
plate is higher enough than Er , so the flexural rigidity parameter Dy of the orthotropic plate is much
larger than the corresponding one Dy,is = Dr of the isotropic plate, in spite of the higher value of the
Poisson’s modulus νr with respect to both νxy and νyx :

Dy,is = Dx,is = Dr =
Er h3

1� ν2
r
  Dy =

Eyh3

1� νxyνyx
, Er = Ex ! Ey . (45)

Also, the modulus of mixed flexural rigidity between the two directions is important because, as in
Equation (1), it influences the fluttering dynamics. This increases more than Dx when we pass from the
orthotropic to the isotropic plate:

Dxy,is = νr Dr = νr
Er h3

1� ν2
r
¡ Dxy = νxy Dy = νxy

Eyh3

1� νxyνyx
, (46)

although, as above mentioned, Ey is much higher than Ex = Er , but the product νr Er is bigger than
νxy Ey for both considered orthotropic panels, as seen from Equations (41) and (42). Furthermore this
inequality is true also for the same other reason illustrated in Equation (44): 1� ν2

r   1� νxyνyx .
Precisely the same holds for the extensional rigidity parameter Ax = Ex h{(1� νxyνyx) along the flow

direction, which is smaller than the corresponding one Ax,is = Ar = Er h{(1� ν2
r ) of the isotropic plate,

although the Young’s modulus Er of the reference plate is equal to the lower of the two ones of the
orthotropic plate, for the same reason stated earlier concerning the Poisson’s moduli. A much higher
value of Ay = Eyh{(1� νxyνyx) along the perpendicular direction corresponds to the orthotropic plate.
The same thing is also true for the mixed extensional rigidity parameter, which is much higher for the
isotropic plate.

The resulting effect is that the limit cycle amplitude is lower if the isotropic plate is employed with
respect to the one of the orthotropic plate with fibers oriented in the perpendicular direction to the airflow,
even if Er = Ex   Ey , although the bending and extensional stiffness along the y axis direction of the
orthotropic plate is much larger. In particular, increasing the flexural and extensional rigidity parameters
in the airflow direction, along with the corresponding ones of the mixed rigidity, has an enhancing
effect on the panel resistance to the flutter phenomenon much higher than increasing the same rigidity
parameters in the perpendicular direction. This means that a much higher value of the Young’s modulus of
the orthotropic plate along the direction perpendicular to the airflow has lower influence on the considered
phenomenon than a larger value of the Poisson’s moduli—that is, the importance of these moduli νxy, νyx

is predominant with respect to Ey .
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If one looks carefully at Figures 3, 5 and 7, a further remark can be highlighted. For small values
of the limit cycle amplitude, the WA � λ graphic curve of the isotropic plate is very near to the one of
the orthotropic plate with Ex = Er   Ey , but with the increasing dynamic pressure this curve tends to
the one of the orthotropic plate with Ex ¡ Ey = Er , characterized by a higher resistance to the flutter
phenomenon. This means that increasing the values of the Poisson’s moduli correspondingly improves
the resistance to the flutter phenomenon as the dynamic pressure grows.

Concerning the shear rigidity modulus Gxy = Góê, no particular remarkable influence on the flut-
tering plate dynamics has been detected. In fact, in all the cases considered with Ex = Er   Ey this
modulus is smaller for the isotropic plate. In the first considered orthotropic panel, whose elastic co-
efficients are defined in Equations (41), the value of this parameter of the reference isotropic plate is
Gxy,is = Gr = Er{2(1 + νr ) = 5.38 GPa, because Er = Ex = Eê = 14 GPa, which is smaller than the
corresponding one of the orthotropic plate Góê= 6. But we have a much lower value of this parameter for
the isotropic reference plate if the Young’s modulus of the second considered orthotropic panel is assumed
(see Equations (42)). In fact, Gxy,is = Gr = Er{2(1 + νr )= 2.69 GPa because Er = Ex = Eê = 7 GPa,
and we have the same value of Góê = 6. The resistance of the reference isotropic plate to the flutter
phenomenon is higher than the one of both considered orthotropic panels, with the fibers aligned along the
direction perpendicular to the airflow, even if Er = Ex   Ey , for the above illustrated reason concerning
the Poisson’s moduli. Therefore decreasing the in-plane shear rigidity modulus has a quite negligible
effect.

The use of three different numerical schemes to achieve the requested results, can offer a sufficient
guarantee of the validity of the present numerical analysis, considering the good concordance between
the results derived by the three methods. However, in some more complicated cases it could be difficult
to apply the Galerkin method; in these more difficult circumstances, it would be useful to observe the
slower convergence of the FEM results toward those of the Ritz procedure with the increasing number
of d.o.f.; see [Tizzi 1994; 1999; 2003a].

Our analysis of flutter has been limited within the framework of the linearized piston theory. Yet it
would seem relevant to know the influence of the nonlinear contribution to the aerodynamic forces on the
permanent post-critical solution of the fluttering panel, confining attention to the limit cycle amplitude,
which is particularly important for the reasons explained above. At a recent Italian congress (2005),
we have presented evidence that also in post-critical conditions, if the dynamic pressure doesn’t exceed
overly much its critical value, limited effects of the nonlinear contributions to the aerodynamic forces
can be seen. This would always be true but for the presence of particular initial conditions (such as
those induced by a gust), which can instigate instability and chaos even before the critical value of the
dynamic pressure is reached [Dessi et al. 2002]. Also, the presence of shock waves in transonic flight
could instigate instability in the flutter phenomenon. It is indispensable to take into account the nonlinear
contributions to aerodynamic forces in such cases, and this will undoubtedly be the focus of continued
research.

Appendix

Functions utilized with Galerkin method in the free in-plane boundary conditions case. The functional
elements of the nondimensional Airy function ψ(ξ, η) series expansion in Equations (11) and (12), are
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formed by two separate components, depending on ξ and η, respectively:

ϕiψ (ξ, η)= ϕiψx (ξ)ϕiψy (η),

where both components ϕiψx (ξ) and ϕiψy (η) vanish at the rectangular edges, along with their first normal
derivatives:

ϕiψx (0)= (ϕiψx )
1(0)= ϕiψx (1)= (ϕiψx )

1(1)= 0, ( )1 =
B( )
Bξ ,

ϕiψy (0)= (ϕiψy )
1(0)= ϕiψy (1)= (ϕiψy )

1(1)= 0, ( )1 =
B( )
Bη ,

(A.1)

because, taking into account the membrane stresses dependence on the Airy function [Santini 1973], the
in-plane boundary conditions in Equation (4) are satisfied. For convenience, functions are utilized which
satisfy further conditions:

d4ϕiψx

dξ 4 = p4
iψx
ϕiψx ,

d4ϕiψy

dη4 = p4
iψy
ϕiψy ,

1»
0

ϕiψxϕ jψx dξ � δiψx jψx ,

1»
0

ϕiψyϕ jψy dη � δiψy jψy .

Consequently the expressions of ϕiψx can be written as

ϕiψx (ξ)=
1

Nd

"
cos

( piψx

2

)
cosh

�
piψx

(
ξ � 1

2

)�� cosh
( piψx

2

)
cos
�

piψx

(
ξ � 1

2

)�*
, iψx = 1, 3, 5, . . . ,

ϕiψx (ξ)=
1

Np

"
sin

( piψx

2

)
sinh

�
piψx

(
ξ � 1

2

)�� sinh
( piψx

2

)
sin
�

piψx

(
ξ � 1

2

)�*
, iψx = 2, 4, 6, . . . ,

where
piψx = (2iψx + 1)

π

2
and

N 2
d =

�
cosh

( piψx

2

)�2
�

1
2
� cos

( piψx
2

)
sin

( piψx
2

)
piψx

�
+

�
cos

( piψx

2

)�2
�

1
2
� cosh

( piψx
2

)
sinh

( piψx
2

)
piψx

�
,

N 2
p =

�
sinh

( piψx

2

)�2
�

1
2
� cos

( piψx
2

)
sin

( piψx
2

)
piψx

�
+

�
sin

( piψx

2

)�2
�

1
2
� cosh

( piψx
2

)
sinh

( piψx
2

)
piψx

�
,

and similarly for ϕiψy , with piψy in place of piψx and η in place of ξ . The conditions in Equation (A.1)
referring to the first derivatives are satisfied if it is taken into account that

tan
( piψx , piψy

2

)
� 1

for the values of piψx and piψy used.
The values of piψx , piψy connected with iψx , iψy , together with Nd , Np, are summarized in Table 9,

for iψx , iψy = 1, 2, . . . , 8.
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