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MICROMECHANICAL APPROACH TO TRANSFORMATION TOUGHENING IN
ZIRCONIA-ENRICHED MULTIPHASE COMPOSITES

HIDEAKI TSUKAMOTO AND ANDREI KOTOUSOV

A micromechanical model based on the mean-field approach was developed to investigate the effect
of the mismatch in material properties of the constituents on the transformation toughening in zirconia
enriched multiphase composites. Important results have been obtained for SiC/Al composites, which
have a large potential for application in lightweight automotive structures.

1. Introduction

The phenomenon of stress transformation in zirconia-enriched composites was first reported by Garvie
et al. [1975]. Some of the early experimental investigations on zirconia composites were performed
by Gupta et al. [1978], Evans and Heuer [1980], Lange [1982], and others. In accordance with these
investigations, the unconstrained phase transformation of zirconia particles results in approximately 4%
dilatation and 16% shear strain. However, the particles embedded in a composite transform with twin
bands of an alternative character so that the overall change in shear strain is very small [Simha and Truski-
novsky 1994]. Therefore, the strain changes due to stress-induced phase transformation in composites
are usually assumed to be dilatant.

When the particles surround a stable or a growing crack, the high stress concentration near the crack
tip will trigger the transformation of zirconia particles near the crack tip. The typical transformation
zone sizes found experimentally are on the order of 20 µm or less [Casellas et al. 2001]. The dilatant
transformation will induce closure tractions on/along the crack faces. The overall stress concentration
near the crack tip is, therefore, reduced; hence, the fracture toughness of the composite is enhanced,
since a higher remote stress must be applied to reach the critical conditions at the crack tip.

The stress-induced transformation toughening mechanism has been successfully used to increase the
fracture toughness of brittle ceramics [Kelly and Rose 2002; Basu et al. 2004]. In recent years, the
demand for the development of super high temperature resistant and lightweight materials applied to
aerospace structures has stimulated intensive research on the transformation toughening of brittle inter-
metallics composites, particularly with molybdenum or nickel aluminide matrices [Sbaizero et al. 2003].
The transformation toughening mechanism is now regarded as the most effective way to enhance the
fracture toughness of ceramics and ceramic matrix composites [Kelly and Rose 2002; Basu et al. 2004;
Cesari et al. 2006].

The continuum models of the phenomenon were developed by Lange [1982], McMeeking and Evans
[1982], Budiansky et al. [1983], and Stump and Budiansky [1989]. All of these models are based on
the assumption of effectively homogeneous composite material, where only macroscopic aspects of the

Keywords: transformation toughening, micromechanics, multiphase composites, crack, zirconia particles, continuum model,
dilatant strain.

937



938 HIDEAKI TSUKAMOTO AND ANDREI KOTOUSOV

material deformation are considered. Strictly speaking, these theories are only applicable to a compos-
ite with the same material properties in all constituent phases, which have to be equal to the material
properties of zirconia. However, in a real composite, the effect of the mismatch in material properties
of the constituent phases on the transformation toughening mechanism can be significant. Consider,
for example, a limiting case—a two-phase composite with rigid matrix and soft transformable particles.
In such a composite the stress induced transformation in the particles will not affect the dilatation of
the representative volume element (RVE) of the composite [Hill 1963] and, in its turn, the high stress
concentration in the RVE in the vicinity of the crack tip will generate much less stress in the particles,
reducing the size of the transformation zone. Both mechanisms will lead to a greatly reduced toughening
effect in comparison with that predicted assuming homogeneous material with effective properties of the
composite (continuum models). It can be shown that the opposite situation to that described above takes
place for a composite with a soft matrix and rigid particles. When a multiphase composite is enriched
with zirconia particles, the final effect of the mismatch in the material properties of the constituent phases
is difficult to envisage.

A number of numerical studies have reported a significant influence of local stress concentration, par-
ticle size, shape and microstructure on the transformation toughening mechanism. Some of these factors
were recently analyzed using a hybrid finite element method [Zeng et al. 2004; Alfano et al. 2006] and a
micromechanical approach [Tsukamoto and Kotousov 2006]. The previous studies focused primarily on
two-phase composite systems. For multiphase composites, in addition to the factors discussed above, a
strong influence of the nontransforming dispersed phases on the transformation toughening mechanism
is also expected. This was confirmed by results of some experimental investigations [Chen et al. 2000;
Chen and Tuan 2001]. However, it seems that so far there have been no attempts to study theoretically
the toughening effect in multiphase composites [Zeng et al. 2004].

In this paper, a micromechanical model is developed and incorporated into the continuum model of
transformation toughening of Stump and Budiansky [1989], to investigate the effect of the mismatch
of the constituent phases on the transformation toughening mechanism in multiphase composites. This
model is based on the mean-field theory of Wakashima and Tsukamoto [1991]. It was reported in the
literature that among the averaging methods [Hill 1963; Bui et al. 1972], the Wakashima–Tsukamoto
estimate provides the closest prediction to numerical calculations in terms of the effective material prop-
erties of the composite [Miyamoto et al. 1999]. Similar methods were discussed in some other works,
for example, [Ponte-Castaneda and Willis 1995; Cho and Ha 2001].

2. Continuum theory of transformation toughening

For the sake of completeness of this paper a brief introduction of the continuum model of transformation
toughening [Stump and Budiansky 1989] will be presented next. Assume that a transformation zone
surrounding the crack tip has undergone an irreversible transformation dilatation of strength f (1)θ where
f (1) is the zirconia particle volume fraction and θ is the unconstrained particle dilatation (Figure 1).
Since typical transformation zone sizes are on the order of 20 µm or less, the small scale zone size
approximation can be invoked. Then, the stress field in the vicinity of the crack tip can be described as

σik =
K

√
2πr

Fik(φ), (1)
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Figure 1. Symmetrically placed dilatant spots at a crack tip.

where K is the stress intensity factor at the crack tip, r is the distance from the crack tip, and Fik(φ) is
the well known trigonometric function.

The mean stress due to dilatation can be calculated using Hutchinson’s solution for two small circular
spots of dilatation of area d A located at z0 = x0 + iy0 and z̄0 = x0 − iy0 (Figure 1) [Hutchinson 1974] as

σm =
E f (1)θ

18π

1 + ν

1 − ν
Re

{
1

√
zz0(

√
z +

√
z0)

+
1

√
zz̄0(

√
z +

√
z̄0)

}
d A, (2)

where E is Young’s modulus and ν is Poisson’s ratio.
The equation for the zone boundary, z = R(φ)eiφ , is then obtained by adding the near field mean

stress of Equation (1) to the zone contribution calculated by integrating Equation (2) over the upper half
of the transformed zone, and equating the sum to σ c

m as

σ c
m =

K (1 + ν)

3

√
π R
2

cos(φ/2) +

∫
A

F(z, z0)d A, (3)

where σ c
m is the critical value for mean stress corresponding to the phase transformation, and F(z, z0) is

given by Equation (2).
The stress intensity factor at the crack tip, K , is equal to the sum of the applied stress intensity factor

Kap and that induced by the presence of the transformed zone. Once the transformed zone is found, K
as a function of Kap can be obtained by integrating the change of the stress intensity factor 1K due to
the two small circular spots of dilatation, as

1K =
E f (1)θ

6
√

2π(1 − ν)
Re

{
z−3/2

0 + z̄−3/2
0

}
d A (4)

over the upper half of the transformed zone

K = Kap +

∫
A

1K (z, z0)d A. (5)
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A similar procedure can be adapted to the growing crack case as well. Details can be found in Stump
and Budiansky [1989]. The final result of the calculation of the fracture toughening of the composite for
a stable and a growing crack is shown in Figure 2.
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Figure 2. Fracture toughening versus the strength of transformation, ω.

In Figure 2 the nondimensional measure of the strength of the transformation, ω, is defined by

ω =
E f (1)θ

σ c
m

1 + ν

1 − ν
. (6)

The toughening effect increases with the increase of the strength of the transformation. The most notable
feature of Figure 2 is the existence of the lock-up effect, that is, infinite toughening of the composite,
which was discovered by Rose [1986]. It occurs at ω ≈ 30 for the steady state case, and at ω ≈ 20.2 for
the growing crack.

3. Mean-field micromechanical model

In this section, a composite consisting of N types of inclusions uniformly and randomly distributed in
an isotropic continuum matrix is considered. Let us introduce a representative volume element (RVE) of
the general heterogeneous media. When the RVE is subjected to macrostress σ̄ik (corresponding to the
traction vector ti = σ̄iknk), the volume average of the induced microstress, σ

ap
ik , over RVE is equal to the

macrostress σ̄ik such that
1

V R

∫
V R

σ
ap
ik dV = σ̄ik, (7)

where V R is the volume of RVE. The volume average of the internal stress, σ in
ik , due to the presence of

eigenstrain, ε∗

i j , which was introduced by Mura [1982], is equal to zero, that is,

1
V R

∫
V R

σ in
ik dV = 0. (8)
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For the system under consideration, the potential energy, 8, is defined as

8 =
1
2

∫
V R

(σ
ap
ik + σ in

ik ) · (ε
ap
ik + εin

ik − ε∗

ik)dv −

∫
SR

(σ
ap
ik nk) · (uap

i + uin
i ) ds, (9)

where SR is the surface of the RVE, and the repeated indexes assume the usual summation convention.
Equation (9) can be rewritten in terms of summations of piecewise uniform quantities as

8 = −
1
2
σ̄ik

N∑
r=0

f (r)M (r)
iklm σ̄

ap(r)

lm −
1
2

N∑
r=0

f (r)ε
∗(r)
ik · σ̄

in(r)
ik −

N∑
r=0

f (r)ε
∗(r)
ik · σ̄

ap(r)

ik , (10)

where the superscript (r) is the number identifying the constitutive phases and r runs from 0–N , 0 denotes
the matrix, and 1–N denotes the corresponding dispersed particle phase. M (r)

iklm is the elastic compliance
tensor of r -th phase, and ε

∗(r)
ik is the eigenstrain in r -th phase. σ̄

ap(r)

ik and σ̄
in(r)
ik are the volumetric average

of the microstresses in phase (r) due to external loading and internal factors such as thermal expansion,
plastic deformations and the like, respectively. Hill [1963] reported that σ̄

ap(r)

ik is proportional to the
applied macrostress, σ̄ik . This can be written mathematically as

σ̄ ap(r)
ik = B(r)

iklm σ̄lm, (11)

where B(r)
iklm is the stress concentration factor tensor. Equations (7) and (11) lead to the following relation:

N∑
r=0

f (r)B(r)
iklm = Iiklm, (12)

where Iiklm is the fourth order identity tensor.
According to the mean-field micromechanical theory [Wakashima and Tsukamoto 1991], which is

based on Eshelby’s equivalent inclusion method [Eshelby 1957; 1959; 1961] and Mori–Tanaka’s mean-
field approximation [Mori and Tanaka 1973], the following algebraic relations for B(r)

iklm can be derived:

B(r)
iklm = C (r)

ikop

{
N∑

s=0

f (s)C (s)
oplm

}−1

, (13)

C (r)
iklm =

{
Iiklm + P (r)

ikop(M (r)
oplm − M (0)

oplm)
}−1

, (14)

P (r)
iklm = L(0)

ikop(Ioplm − S(r)
oplm), (15)

where L(0)
ikop is the elastic stiffness tensor of the matrix, and S(r)

oplm are the Eshelby’s tensors for the (r)

phase. Details of the derivation of these expressions are given in Appendix A. Further, the internal stress
for each phase σ̄

in(r)
ik is also related to the eigenstrain, ε

∗(r)
ik , and the stress concentration tensor, B(r)

iklm , as

σ̄ in(r)
ik = D(r)

iklm1ε
∗(r)
lm − B(r)

ikop

N∑
s=0

f (s)D(s)
oplm1ε

∗(s)
lm , (16)
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with

D(r)
oplm = −C (r)

opik P (r)
iklm, (17)

1ε
∗(r)
lm = ε

∗(r)
lm − ε

∗(0)
lm . (18)

The macro strain ε̄ik can be related to macro stress σ̄ik using the potential energy 8 as

ε̄ik = −
∂8

∂σ̄ik
. (19)

Thus, from Equations (10), (11), (16), and (19) the constitutive relation of the composites can be written
as

ε̄ik =

r∑
r=0

f (r)M (r)
ikop B(r)

oplm σ̄lm +

r∑
r=0

f (r)B(r)
iklm

T
ε
∗(r)
lm . (20)

The effective elastic properties (bulk modulus and shear modulus) of multiphase composites with ran-
domly distributed spherical particles can be derived by substituting the Eshelby’s tensor for the spherical
inclusions [Eshelby 1957]:

Siklm =
1 + ν(0)

3(1 − ν(0))
δikδlm +

8 − 10ν(0)

15(1 − ν(0))
(δilδkm + δimδkl −

2
3
δikδlm) (21)

into Equations (15), and from Equations (13), (14), (15), and (20). In Equation (21) ν(0) is Poisson’s
ratio of the matrix. Finally, the effective bulk and shear modulus can be written as

kc
=

N∑
r=0

f (r)ξ
(r)
B0

/
N∑

r=0

f (r)ξ
(r)
B0

k(r)
, (22)

µc
=

N∑
r=0

f (r)η
(r)
B0

/
N∑

r=0

f (r)η
(r)
B0

µ(r)
, (23)

respectively, with

ξ
(r)
B0 =

k(r)

3k(0)

3k(0)
+ 4µ(0)

3k(r) + 4µ(0)
, (24)

η
(r)
B0 =

µ(r)

µ(0)

µ(0)
+ χ (0)

µ(r) + χ (0)
, (25)

and

χ (0)
=

µ(0)

6
9k(0)

+ 8µ(0)

k(0) + 2µ(0)
.

In the above equations δi j is the Kronecker delta. f (r) is the volume fraction, k(r) the bulk modulus, and
µ(r) the shear modulus of phase r . kc and µc are overall effective bulk modulus and shear modulus of
the multiphase composites, respectively.
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Now, consider the unconstrained dilatational strain of the composite, 2, corresponding to the uncon-
strained dilatational strain of the particles, θ (r). The relation between 2 and θ (r) is given as

2δik =

n∑
r=1

f (r)B(r)
iklm

T
δlmθ (r). (26)

In the same way as the effective elastic constants were derived above, the relation between the dilata-
tional strain component 2 of the composite and the dilatational strain of the unconstrained transformable
particle θ (r) can be also written as

2 =

n∑
r=1

f (r)ξ
(r)
B θ (r), (27)

where

ξ
(r)
B = ξ

(r)
B0

/
N∑

r=0

f (r)ξ
(r)
B0 . (28)

Further, in order to take into account the stress concentration effect on the stress transformation criterion,
let us consider the mean stress in the particles. The mean stress in each phase, σ

(r)
m , is given as

σ (r)
m =

σ̄
(r)
i i

3
=

B(r)
i ikl σ̄kl

3
. (29)

Similarly, the following relations are derived:

σ (r)
m = ξ

(r)
B σ̄m . (30)

Here, ξ
(r)
B is the stress concentration factor, which is shown in Equation (28). Consequently, using these

equations, one can calculate the effective elastic constants, microstress in each phase, and unconstrained
dilatation 2 of the composite due to dilatation of each phase θ (r).

4. Micromechanical model of transformation toughening

Consider the toughening effect in a multiphase composite enriched with partially stabilized spherical
zirconia particles. The micromechanical model developed above can be directly incorporated into the
continuum model [Stump and Budiansky 1989] by replacing the corresponding material constants, dilata-
tion, and critical stress with those derived from the micromechanical model, Equations (22), (23), (28)
and (30). Such substitution will not affect the fracture-toughening curve as shown in Figure 2; however
the strength of the transformation will be modified as

ωm = ξ 2 Ec f (t)θ

σ c
m

1 + νc

1 − νc , (31)

where ξ is the stress concentration factor, which corresponds to the transforming particles and can be
calculated using Equations (28) and (24), and f (t) is the volume fraction of the transforming particles.
Young’s modulus Ec and Poisson’s ratio νc are related to the bulk modulus kc and shear modulus µc

(Equations (22) and (23)), of the composite by well-known relationships.
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The strength of the transformation ωm calculated based on the micromechanical model differs from that
obtained from the continuum model by factor ξ 2. This parameter reflects the effect of the mismatch in the
constituent material properties on the toughening mechanism. The mismatch in the material properties
of the constituent phases results in two effects: the first influences the unconstrained dilatation of the
composite, and the second influences the average stress in the particles. Both effects produce the same
factor ξ in the strength of the transformation parameter Equation (31) and both act in the same direction,
increasing or decreasing the stress transformation parameter depending on the combination of material
properties of the constituents.

5. Case study

As an application of the developed theory, a SiC/Al composite will be considered next. Such composites
have a significant potential for application in lightweight automotive structures, forgings for suspension,
chassis, drive train, and vehicle structures, as well as automotive rolled products and semiproducts for
the manufacture of advanced automotive components [Fang et al. 1997; Tung and McMillan 2004].
The greatest interest in aluminum metal-matrix composites is in their ability to provide high specific
strength and stiffness. This translates into weight savings by producing lighter components capable of
withstanding the required loads, for example, space frames and sheet panels, which is of particular interest
in the modern transportation industry. One of the major concerns regarding widespread application in
the automotive industry is the relatively high brittleness of this composite in comparison with traditional
materials [Ma et al. 2003; Agrawal and Sun 2004].

An estimation of a potential benefit from the enrichment of the SiC/Al composite with zirconia par-
ticles, as calculated using the developed model and previously reported results (Figure 2), is shown in
Figure 3.

Figure 3 demonstrates a very significant influence of the microstructure on toughening of the composite
as the theory under consideration differentiates the matrix phase from the dispersed particle phases. In
the case when a crack is located in an SiC matrix, the toughening effect of the stress transformation
of partially stabilized zirconia particles is significant and reaches a maximum in the vicinity of 15% of
volume fraction of SiC (or 55% of Al). In the case when crack is located in an Al matrix, the toughening
effect is not so significant for small volume fractions of SiC. However at large volume fractions of SiC
the toughening effect becomes stronger than in the case when SiC is the matrix. It is interesting that the
toughening effect can decrease or increase when increasing the volume fraction of SiC, depending on the
microstructure of the composite. Consequently, in engineering and toughening such composites special
attention should be paid to the microstructure of the composite.

The results obtained for SiC/Al indicate that the stress-induced mechanism of toughening of multi-
phase composites is pretty effective and visible for these composites. For a multiphase composite the
toughening effect can be tailored in accordance with the desired profile based on the developed theory. A
greater toughening effect may be expected by increasing the volume fraction of ZrO2, and theoretically
the strength of transformation, ωm , could reach the lock-up values (Figure 2). It should be mentioned that
the present theory is based on a small scale approximation and neglects the actual sizes of the component.
At high values of ωm , the transformation zone could be very large to justify the application of the small
scale approximation.
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Figure 3. Toughening effect of adding ZrO2 particles to SiC/Al composite. Material
properties: Al E(0)

= 70 GPa, ν(0)
= 0.3 [Simmons and Wang 1971], ZrO2: E(1)

=

200 GPa, ν(1)
= 0.3, σ c

m = 500 MPa [Pace et al. 1969; Zeng et al. 2004], SiC: E(2)
=

430 GPa, ν(2)
= 0.17 [Jackson 2005]. The volume fraction of ZrO2 particles is set at

30% for each composite.

6. Conclusion

A micromechanical model was developed to investigate the possibility of fracture toughening of mul-
tiphase composites using the stress transformation mechanism of partially stabilized zirconia particles.
Results obtained within this model demonstrate a very strong influence of the material properties of con-
stituent phases and microstructure on the toughening mechanism. The toughening of SiC/Al composites,
which have a significant potential for application in lightweight automotive structures, were studied in
detail. A high level of the toughening effect can be reached by adding ZrO2 particles to the composite.
Based on the developed theory the toughening effect for multiphase composites can also be tailored by
varying the phase composition in a pre-determined profile. It is recognized that extensive experimental
work is needed to validate the developed theory and include other important effects.

Notation

K Stress intensity factor

r Distance from the crack tip

E Young’s modulus

ν Poisson’s ratio

σ c
m Critical value of mean stress for the stress-induced phase transformation in

transformable particles

Kap Stress intensity factor due to remote applied loading
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1K Change of the stress intensity factor due to presence of the transformed zone

ω Non-dimensional measure of the strength of the transformation, defined by

continuum model

V R Volume of RVE

SR Surface of RVE

ni Outward unit vector normal to the surface S of RVE

σ̄ik, ε̄ik Macrostress and macrostrain

σ
ap
ik , σ

ap
ik , uap

i Microstress, microstrain and microdisplacement due to applied loading,

respectively

σ in
ik , εin

ik , uin
i Microstress, microstrain and displacement due to the presence of inclusions

8 Potential energy

f (r) Volume fraction of the r th phase

ε
∗(r)
ik Eigenstrain in the r th phase

P (r)
iklm Fourth-rank tensor defined by Equation (15)

C̄iklm, C̄ (r)
iklm Fourth-rank tensor defined by Equations (A.11), (A.12)

Iiklm Fourth rank identity tensor

L(r)
iklm, M (r)

iklm Elastic stiffness and compliance, respectively

σ̄
ap(r)

ik , σ̄
in(r)
ik Average microstress in the r th phase due to applied loading and internal stress,

respectively

k(r) Bulk modulus of the r th phase

µ(r) Shear modulus of the r th phase

S(r)
iklm Eshelby’s tensor

B(r)
iklm Stress concentration factor tensor of the r th phase

ξ
(r)
B Stress concentration factor of the r th phase

ξ
(r)
B0 , η

(r)
B0 Parameters for the r th phase defined by Equation (24) and (25)

2 Unconstrained dilatation strain of the composite

θ (r) Unconstrained dilatation strain of the r th phase

ωm Modified strength of the stress-induced phase transformation derived from the

micromechanical model

Appendix A

The mean-field micromechanical approach reformulated by Wakashima and Tsukamoto [1991], which
stems from Eshelby’s equivalent inclusion method [Eshelby 1957; 1959; 1961] and Mori–Tanaka’s
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mean-field approximation [Mori and Tanaka 1973] will be mentioned briefly here. Based on Eshelby’s
equivalent inclusion concept, we can replace the microinhomogeneous material by the homogeneous
comparison material (HCM), with the equivalent inclusions and the fictitious eigenstrain distribution to
represent the disturbance of stress field in the microinhomogeneous material. The HCM has exactly the
same microgeometry as the multiphase composite. For the microinhomogeneous material Hooke’s law
can be written as

ε̄
ap(r)

ik = M (r)
iklm σ̄

ap(r)

lm , (A.1)

while for the homogeneous comparison material (HCM) it can be written as,

ε̄
ap(r)

ik = M (r)
iklm σ̄

ap(r)

lm + ε
∗∗(r)
ik , (A.2)

where ε
∗∗(r)
ik is a uniform fictitious eigenstrain, defined in the equivalent inclusions corresponding to the

r -th phase. From Equations (A.1) and (A.2) it follows that

ε
∗∗(r)
ik = (M (r)

iklm − M (0)
iklm)σ̄

ap(r)

lm , (A.3)

where
ε
∗∗(0)
ik = 0. (A.4)

According to the Eshelby’s solution [Eshelby 1957], the following relation is derived:

σ̄
ap(r)

ik − σ̄ik = −P (r)
iklmε

∗∗(r)
lm , (A.5)

where
P (r)

iklm = L(0)
ikop(Ioplm − S(r)

oplm). (A.6)

S(r)
oplm denotes Eshelby’s tensor, whose components are dimensionless and dependent on the axial ratios

of the elliptical inclusions and Poisson’s ratio of the matrix, which is assumed to be isotropic. This
scheme is only applicable to the case when the discrete phases are dilute. To overcome this limitation,
the Mori–Tanaka concept will be used. Equation (A.5) is replaced by the following equation:

σ̄
ap(r)

ik − σ̄
ap(0)

ik = −P (r)
iklmε

∗∗(r)
lm . (A.7)

From Equations (A.3) and (A.7), the following relation can be derived:

σ̄
ap(r)

ik = C (r)
iklm σ̄

ap(0)

lm , (A.8)

where
C (r)

iklm =
{

Iiklm + P (r)
ikop(M (r)

oplm − M (0)
oplm)

}−1
. (A.9)

By considering Equation (7), the sum of the microstress can be written as

σ̄ik =

N∑
r=0

f (r)σ̄
ap(r)

ik . (A.10)

Therefore, the stress concentration factor B(r)
i jkl is calculated as

B(r)
iklm = C (r)

ikopC̄−1
oplm, (A.11)
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where

C̄iklm =

N∑
r=0

f (r)C (r)
iklm . (A.12)

Next, the internal stress in the microinhomogeneous material will be considered. For the internal strain
in the microinhomogeneous material,

ε̄
in(r)
ik = M (r)

iklm σ̄
in(r)
lm + ε

∗(r)
ik . (A.13)

In accordance with the last Equation (A.13), in the equivalent homogeneous material

ε̄
in(r)
ik = M (0)

iklm σ̄
in(r)
lm + ε

∗(r)
ik + ε

∗∗(r)
ik , (A.14)

where ε
∗∗(r)
ik is the fictitious eigenstrain, which is found from (A.13) and (A.14) as

ε∗∗(r)
ik = (M (r)

iklm − M (0)
iklm)σ̄

in(r)
lm . (A.15)

Using the Mori–Tanaka concept, the following equation can be written:

σ̄
in(r)
ik − σ̄

in(0)
ik = −P (r)

iklm(1ε
∗(r)
lm + ε

∗∗(r)
lm ), (A.16)

where 1ε
∗(r)
kl is defined by Equation (18). From Equations (A.15) and (A.16), it follows that

σ̄ in(r)
ik = B0(r)

iklm

(
σ̄ in(0)

lm − P (r)
lmop1ε∗(r)

op
)
. (A.17)

The sum of the internal stress must be equal to zero,

N∑
r=0

f (r)σ̄
in(r)
ik = 0, (A.18)

and therefore,

σ̄
in(0)
ik = C̄−1

iklm

N∑
r=0

f (r)C (r)
lmop P (r)

opvw1ε∗(r)
vw . (A.19)

By comparing Equation (A.19) with Equation (16), D(r)
i jkl is obtained as given in Equation (17) as

D(r)
i jkl = −C (r)

ikop P (r)
oplm . (A.20)
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