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Abstract

It is of paramount importance to know the post-critical flutter behaviour of
both orthotropic and isotropic plates in high supersonic flow to individuate the
stability conditions of aircraft panels at very high speeds. The amplitude of
the limit cycle fluttering plate can characterize the resistence of the panel to
air flow at supersonic speeds, because the smaller this amplitude is, the higher
this resistence is to the flutter phenomenon.

In the present work three different methods have been utilized for the
integration on the panel surface to obtain a system of differential equations in
time, which integrated by appropriate algorithms give the vibrating plate
behaviour vs the time. Thus it is possible to determine with each method the
permanent solution in post-critical conditions.

The knowledge of the flutter behaviour of a vibrating plate is useful also
for multi-layered composite laminates, because it is well known that the dynamic
analysis of a nearly symmetric and balanced composite vibrating structure can be
simulated by an equivalent orthotropic plate, with appropriate values of its
thickness and elastic parameters.

1. Introduction

Post-critical flutter behaviour of plates and shells under high supersonic
flow has been a research subject for several authors, because of its particular
importance for aerospace applications.

Von Karman’s large deflection theory [1], which takes into account the
presence of non-linear structural forces, has been employed by every author,
together with the quasi-steady first order high supersonic theory [2]. The
Galerkin method [3,4] has been utilized from Dowell [5,6] and Shiau et al. [7],
and also the Rayleigh-Ritz method [3,4,8] by Ketter [9] and Eastep et al. [10],
for the integration on the panel surface, and thus to reduce the mathematical
problem to a system of non-linear ordinary differential equations in time, which
are solved by numerical integration. Then other authors utilized the finite
element method (FEM) [11,12] to integrate on the plate or shell surface and to
derive a system of ordinary equations in-time [13-15]. Also the presence of
piezoelectric actuators has been considered in the analysis of the fluttering
panel dynamic behaviour, utilizing FEM, to suppress the non-linear panel flutter
presence [16,17]. Further the effects due to the presence of thermal loads have
also been taken into account [13,15,17].

The main purpose of the work focuses on setting-up particular procedures,
based on the classical and well known Galerkin, Ritz and FEM methods, to
integrate on the panel surface and derive ordinary differential equations in
time.
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First the classical Galerkin method has been utilized as in the Dowell’s
model [5,6]. Then by applying FEM and the Ritz procedures [18-20] the Lagrangian
functional expression has been formed, and from the variational principle [21],
a system of ordinary differential equations in time is obtained. From the in-
plane constitutive equations the dependence of the membrane dispacements on the
out-of-plane one is evaluated. By substituting these dependence relations into
the flutter constitutive equations, further vibration equations, where the alone
in-time variable is the out-of-plane displacement, are derived in all the three
methods. Thus the subsequent in-time integration operations are simplified.

In this paper also cases with in-plane boundary conditions, different from
the out-of-plane ones, have been considered. For this reason in the Galerkin
method two different models have been utilized; the first one employs the Airy
function [22] to arrive at the classical von Karman’s equations [1,22], while
the second one considers the in-plane displacements behaviours as unknown
variables.

If FEM or Ritz procedures are utilized the same model can be employed, with
the presence of a parameter, which takes into account the different in-plane
geometric boundary conditions.

It is well known that the dynamic behaviour of a nearly symmetric and
balanced multi-layered laminate can be simulated by an equivalent orthotropic
plate, with appropriate values of the thickness and of the elastic parameters
[23,24]. It is then important to determine the influence of these
parameters on the post-critical limit cycle amplitude, because this can be
indicative of the resistence of the composite structure panel to air flowing at
supersonic speeds.

A detailed description of the utilized Ritz and FEM procedures are shown in
Appendices B and C, whereas the utilized elements of the series expansion of the
Airy function in the free in-plane boundary conditions are introduced in
Appendix A for the Galerkin method.

2. Mathematical model
A generic orthotropic plate exposed to a supersonic flow is shown in Fig. 1.

First the Galerkin method will be utilized to simulate the dynamic behaviour
throughout the panel surface

2.1 The Galerkin Method

For the in-plane boundary conditions two different cases first will be
considered.

1) A simply supported plate for the out-of-plane behaviour is supposed,
but with the in-plane free borders, that is the membrane stresses vanish on
the limit edges:

N, =0 N, =0 N, =0 (1)

y xy

Since the in-plane inertial forces are neglected, in this particular case it
is better to utilize the Airy function [22], to descrive the in-plane dynamic
behaviour and satisfy easily the boundary conditions (1) . The in-plane
compatibility relations [22], taking into account the in-plane elasticity
relations of an orthotropic plate [23], together with the relations of the
membrane stresses dependence on the Airy function [22], lead to the following
classical von Karman’s first constitutive equation [1,6,22], properly modified
for an orthotropic plate:
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where ¢(x,y,¢) is the Airy function divided by the plate thickness k. Equation
(2) can be rewritten in dimension-less form as:
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where, 1if E, is the Young’s modulus of the reference isotropic plate, the Airy

function, together with the in-plane coordinates and the flexural displacement,
have been reformulated in non-dimensional form:

¢ X Y w
_ _x _2 W= (3b)
v E I* d a 7 b L,

and also the following non-dimensional parameters have been introduced:
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The repeated indices rule will be utilized for the formulae in the
paper. A series expansion is chosen for W@;U,ﬁ:
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where 7 1is the non-dimensional time, which will be defined in equation (1llc),
and each element ¢i(§,n) can be written as:
"4

0, (& n) =0, (e, () (5)
iy = 120Ny iy =1L200Nyy iy =l — Ny, +i, i, =1L2..N, N, = NN,

and @ ) are orthonormal describing functions, which vanish with their
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first derivatives at the plate borders, so that, taking into account the
membrane stresses dependence on the Airy function [22], the boundary conditions
in equation (1) are satisfied. These are treated in Appendix A.

Also for the flexural displacement a series expansion is chosen, which
satisfy the boundary conditions of a simply supported plate:

W o) =W, (), &n) (6)

where each function element mefﬂﬂ can be written as:

Ky (&n)= Si”(in”SC)Si”(iWy”U) (7a)



where
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If the series expansions of equations (4) and (6) are substituted into
equation (3a), which is pre-multiplied by the generic element ¢ of the Airy

function series expansion and integrated, the following relation is derived::
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taking into account that the integrals extend over the whole nondimensional
surface ¥ of the fluttering plate (dE::dfdnH()S§f£k0S77Sl).

The matrices with elements Iﬁgﬂ and I&%ﬁi are introduced and denoted by
h@M] and [ﬂ“”q (in this second matrix the two indices iy, jjr have been
contracted in an alone iW%Z)' whose dimensions are A@,xh@ and A%><Né,
respectively, together with the column vectors [A] and hN“q, whose elements are
a; and the product p%) :IKWWGW, with dimensions NV and Nﬁ , respectively.

i )
4 We2
Thus equation (8a) can be rewritten in matrix form:

[A]=[z]w®] (92)

where the matrix [Z] expression reads:

[z]- [I(w)}‘ [I(Zw)]ﬁafbf 7\/EEEy (9b)

Iz

whose elements are denoted by é}ﬂwz'
C.

The out-of-plane translational equilibrium relations [22], together with the
elasticity relations between flexural-torsional moments and bending-twisting
curvatures for orthotropic plates [23], according to the Kirchoff theory [22],
and taking into account the membrane stress dependence on the Airy function
[22], give the second von Karman’s constitutive equation of the flutter
vibration [1,6,22], properly modified for an orthotropic plate:
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where the dependence of the membrane stresses on ¢ is the same of equation (2),

and p, is the aerodynamic force per unity length, which according to the
first order “Piston Theory’ [2][5] is equal to:
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with ﬂzzzﬁlih—l and U, is the high supersonic flow speed, q::pr,/Z is the
air flowing dynamic pressure, and:

3 EW 3
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are the orthotropic plate flexural-torsional rigidity parameters.
Eg. (10a) can be rewritten in non-dimensional form, as:
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and D, is the flexural rigidity modulus of the isotropic fluttering reference
plate.

Equation (lla) is pre-multiplied by the generic element Zmzzsﬂﬂﬁ%ﬂf)sﬂﬂmyﬂn)

of the out-of-plane displacement W series expansion in Eg. (7.a), and taking

into account the properties of the trigonometric functions, for which it is true
that:

5mi
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the following relation is obtained:
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The coefficients g; are connected with the products of the coefficients of
72

out-of-plane displacement series expansion in equation (6), by the relation
(9a), and if é}iwz is the generic element of the matrix [Z], it follows that:
y'We

%, = §i,/,iW02 Piyer (14)
and thus the last term in equation (13a) becomes:
E E
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Then equation (13a) can be also written in matrix form:
[W]+ Vg [W]+ i [w]+ [H]W] - [ ][W(3)J=0 (16a)

where bN] is the column vector of the series expansions coefficients of the
out-of-plane displacement, hVB” is the column vector with elements the triple

products of the same coefficients pgl =W. W. W}W =W. (iye3 1s the

iw " iw i P jwea
contraction of the three indices iy, j,ky or UVIjW%Z)'[H] and [A] are the

matrices, with dimensions Ny x Ny and NW>«N%, respectively, whose elements

are:

(16b)
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Thus a system of non-linear differential equations in time is obtained,
with W as alone unknown variable, which can be integrated by appropriate
algorithms.

2) A second case of plate likewise simply supported at the borders for the
out-of-plane behaviour, but clamped at the four edges for the in-plane
displacements, so that in place of Eg. (1) there are the boundary conditions for
in-plane displacements:

u=0 v=0 (17)

In this case it is not convenient to utilize the Airy function, but set-up
the in-plane constitutive equations utilizing the functions of the displacements
along the axes x and y. The equilibrium equation along the axis x [22], taking
into account the elastic dependence of the membrane stresses of an orthotropic
plate on the in-plane strain [23] and the kinematic relations [22], give the
following constitutive equation:

0%u o’ ow d*w ow o’w | | v u Pwow owdw| _ , (1g
Al — + Ve Ve o +—+ —t | (18a)
ox? Ox0y  Ox Ox Oy OxOy 0x0y  dy ox0y 9y  0x 9y
E.h
A, = x Gy = gyh (18b)
L=vy Vi

where, like in the case of the in-plane free plate, the in-plane inertial forces
are neglected. Equation (18) can be rewritten as:

20U 2 OV oW oW 2 OW W,
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2 2 2 2
+G 47t 6V+8U+6W6l+8l6l -0 (19a)
oson  on®  0%on on 9% on?

where together with w/:MMLw, as in Eg. (3b), also the in-plane displacements

u,v have been reformulated in non-dimensional form:

1 L L
UZET V:XLZ Y, =2 yp =2 Gu =Gy / A, (19b)
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considering that the order of magnitude of the in-plane displacements u,v is the

same of w?, so that the same order corresponds to U,V,W .

We choose also for the in-plane displacements an appropriate series
expansion to be employed with Galerkin method:

U(&n, ) =0, (), En) v n )=V, (), &n) (20a)

where:
Ly (&) = sinliy,z&) sinliy,n) 2y (&,m) = siniy, &) sinliy,zn) (20b)

ileiVx = 1’2""NUX’ NVX inliVy = 1’2""NUy’NVy IUIZV = (iUX’iVx - I)NUyl NVy +inliVy
iUliV = 112""NUINV Iy iy = 1,2....Ny, Ny Ny, Ny = Ny, Npye X NUyl NVy (20c)



For practical reasons it is convenient to choose Nyy = Npy s NUy :NVy and
consequently Ny = Njp. Equation (19a) is pre-multiplied by
ﬂ(m( ,n)zsin(mxﬂf)sin(mym]) and integrated, and the following relation is derived:

Ux2 2 (1 WxWx2 2 =(Wyw>
}/aIrr(u; )UiU yxy I( xy)V + yaIrSu xj;;' )W W + Vyx7/ Irst;j;/y)VViW WjW
V; Uy2 Wy W WxWy2
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The matrices lI(sz)J, [I(ny)J and lI(UyZ)J, with dimensions N, xN_, whose elements

are I(sz) IISII:XY) and In(zli]ﬂ) respectively, are then introduced, together with the
v U

matrices [I(WXWXZ)J, [I(WYWXV)J and lI(WnyZ)J, with dimensions NU XNVZV, whose element

are I(WXW)‘Z) I(waxy) and I(WXWyz), where iWcZ is the contraction of the indices
miyeo miyeo miyyen

iy, Jw - If also the column vectors [U] and [V], whose elements are the series

expansions coefficients UiU and ViV , respectively, are introduced, and we recall

the previously utilized column vector lW(z)J, Eg. (2la) can be rewritten in

matrix form:

y2 lI(sz)IU] N Vyx7/§ [I(ny)IV] +y2 lI(Wxsz)lw(z)J - y2 [I(Wnyy)lW(Z)J

+ GAx7b2 {l](ny)IV] + [I(UYZ)IU] + [I(Wnyy)lw(2)J + [I(WnyZ)lW(z)J}: 0 (22)

The constitutive equilibrium equation along the axis y can be written in
dual form:

Vi lI(VyZ)IV]+vxy;/§ II(UX’V)IU]+7§[ (wymwy2) lw J+V J’al WxWay lW J
+ Gij/g {lI(ny)IU] + [I(VXZ)IV] + lI(Wxny)lw(Z)J+ lI(WnyZ)lW(z)J}: 0 (23)

where: Gy, =G, /4, and 4, =Eh /(l - nyVyx)‘

Then the following matrices are introduced:

[P(UU)J: yﬁ lI(sz)JJF GAxylg lI(UyZ)J
ACLe) el (0] e, (24)
PO)= 220 o, + G

lP(UW)J =2 [I(WxWx2)J+ Vyx?’g [I(Wnyy)J+ G 72 {lI(Wnyy)J+ lI(WnyZ)J}
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and:

oL )
[Pt = 2iw) v, +a,) (25)

lP(V )J _ 2 [H(WyWy2)J+ nyyg lI(Wxny)J+ Gij/g ﬂI(Wxny)JJr lI(Wnyz)J}
so that Egs. (22) and (23) can be newly rewritten as:

R R

(26)
R O R
Then the following matrices are introduced:
[Q(UU)] = [P(UU)]_ [P(UV)IP(VV)TI [P(VU)]
(27)
[Q(UW)] — [P(UV)IP(VV)TI [P(VW)] _ [P(UW)]
and their dual ones:
[Q(VV)] = [P(VV)]_ [P(VU)IP(UU)Tl [P(UV)]
(28)
[Q(VW)] — [lzv(VU)IP(UU)]‘1 [P(UW)] _ [P(VW)]
so that equations (26) can be also written as:
[v]- [ [
(29a)
[v]=[R¢" )W)
where:
(I P N R R R D RS
The out-of-plane translational von Karman’s equilibrium equation (10a), if

the Airy function is not utilized and the elastic dependence of the membrane
stresses on the in-plane strain [23] of an orthotropic plate and the kinematic
relations [22] are considered, becomes [7]:
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where the expression of p, has been given in Eg. (10b). The same foregoing
equation can be rewritten in dimension-less form:
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where both the displacements and the in-plane coordinates have been reformulated

in non-dimensional form, as in Egs. (3b) and (19b), and further the same
dimension-less parameters of Egs. (llb-c) and (19b) have been utilized, with
also:
4 4
AxL4 A,L Gy L (31b)
aa = 2 ﬁa = 2 7/as =
D,a D.b D.ab

The same series expansions for W and U,V of equations (6) and (20a) are
choosen,and, according the Galerkin method, Eg. (3la) is pre-multiplied by
zm(gl U):sin(mxﬂf)sin(my;m) and integrated, so that, taking into account Eg. (12),

the following relation is obtained:

. 4
W + NGO, + iy W, = — ol T2, +aaya(1‘$;ff;‘2)U W, +2In($zv%fz)W W Wij
+ e a,gd TRy g I(WyWyW”)W W, W,
7[4 a’yxi'b lelW 2 miyy jw ky kw

8 (Vx ny) (Uy ny) (Wx wy ny) ]
+ ? Vas¥alb IlelW V W + IlelW UiU VViW + ImiijkW iy /W WkW

VyWy2 L w2
ﬂa [ rSuitp;/ )Vl'VWiW +5I7$ll‘p?//jp};/k)p;/ )VV’WW]WWI‘WJ

4 of ~(Uxwy2 WxWxWy2 _
+4ﬁavxy}/a(I(.x.y T S T m=12...Ny (32a)

migriy o w 2 miyy iy kyy

where the in-time derivatives, the parameter i;W and the integral I;,)g/)have been

previously defined in Eq. (13b), and further:

10



2 2 2
I(Uxsz) :J' - a/?,/iU 0 /ﬁ{iW 4 I(VnyZ) :J‘ " a’?’/iV 0 Z"W = I(Vxny) :J‘ . a/l/iy 0 Kiy

miUiW 6\2-‘: 6é:2 ijiW 877 652 mjViW 55 65677
2 2 2
I(Unyy) :J‘ aZiU 0 iy & VyWyZ J‘ aZiV 0 iy a4z I(Uny2) :.[1 al"U 4 Liy
miyri m ml I m 2 miyri m 2
2 2
I(WxWxsz) _I a;(iw 6;(]14/ 0 Ky &5 I(WyWnyZ) _J‘ 6Ziw aljw 0 Ky &5
migy jyky ) Am o O 552 miy jwky ) Am on on 552
2
(Wnyva) :J‘l al"w aZ.I'w a lkw dz (32b)
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There are within square brackets terms as UiU and ViV , which are connected

with the product Py =W. Wkw (as above mentioned jy., 1s the contraction of
C

the two indices Jjw and kW), by the relations:

_ ow) W,

_ )
iy nujWCZ Jw WkW Vl - W WkW (33)

’V]WZ

U

where r(UW) and r,(VW) are elements of the matrices lR(UW)J and [R(VW)J, as in
iy Jwe2 iy jwe2

equations (29a). Thus all the elements within square brackets in equation (32a)

contain products as Piges = WIWW/WWkW (iWc3' as above mentioned, is the
C

contraction of iW:jW and kW, or iy and Jwea ) r and consequently their sum is

equal to one term:

mlWL3W WJW WkW (34)

Thus if the matrix with elements [ml.W3 is introduced and denoted by [T],
c

equation (32a) can be rewritten in matrix form:
[W]+ Voa[W]+ iy [W]+ [HIW] - [T]w® = o] (35)

as in equation (l6a), for which there exist appropriate algorithms for
integration in time.
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2.2 Ritz and FEM procedures

Also a procedure which arises from the Rayleigh-Ritz method, together with
the FEM [18-20], can be utilized to find a solution of the problem, as for a
beam fluttering case [20].

Both procedures arise from differential operations on an energetic
functional, whose stationary conditions lead to the dynamic constitutive
equations. Since with FEM or Ritz method one is not obliged to satisfy the
natural boundary conditions in the free in-plane plate case, as in Eqg. (1), the
same model can be utilized in both fluttering plate cases, but a parameter,
which takes into account the different in-plane geometric boundary conditions,
has to be introduced, as it will be shown in the Appendices B and C.

The strain energy expression of the in-plane and out-of-plane linear
structural forces can be written in the classical form:

= Ay ) j

Uz(m) - %klsi") l(in)qs,in) U,(”p) - %kis_o )q[opq(op) (36)

where kgﬂ and kgW) are the in-plane and out-of-plane stiffness matrix elements

of the orthotropic plate, which have been determined for the Ritz procedure and

FEM, in Appendices B and C, respectively, while qyﬂ,qyo and %Wﬂ,qyﬂ are in-
plane and out-of-plane d.o.f. of both methods, whose meaning is illustrated in
the same above mentioned Appendices.

Also the contribution of the mixed and non-linear structural forces to the

in-plane strain energy can be evaluated and expressed as:

ru(in) — l d(?)q(i") (op)

0 =2 e R -

didi ;" 9 9

where dé? and 452 are tensor elements, determined in Appendices A and B, for

Ritz procedure and FEM, respectively.
The in-plane and out-of-plane kinetic energy expressions can be written in
the classical form:

qlin) _ % mis,in)qi(in)q'gin) qlor) _ %ml(iop)ql(op)qg_op) (38)

where mg@ and ném) are in-plane and out-of-plane mass matrix elements,

evaluated for both methods in the above mentioned Appendices.
The Lagrangian £ functional is introduced:

L= 4 gl _glin) _gler) _q)lin) _ q)(i) (39)

Thus the generic i-th in-plane constitutive equation, corresponding to the

d.o.f. qp@, can be determined [21]:

docoi™) or _, o)
dr aq(m)

i
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which, if equations (36), (37) and (38) are taken into account, gives:

kl(m)qgm) + % d-l(/:;{)qsop)qlgop) =0 (41)

considering that, as in Galerkin model, the in-plane inertial forces have been
neglected.

The in-plane stiffness matrix b{GﬂJ with elements kgn) and the matrix bDG”

with elements Jy), where Je2 is the contraction of j and k, are introduced,
c2

And the column vectors PQG”J and k)bﬂﬂj, of the in-plane degrees of freedom and

5:1;) - qu)p)ql(:p) ,

respectively, are introduced too. Then equation (41) can be written in matrix
form:

the products between out-of-plane degrees of freedom p

[K<m>IQ<z-n)] N % [D(s>]Q(op,z)] ~0 (42)
which can be written also as:
[Q(l")J - [H][Q(OPIZ)J (43a)
where:
)= £ [} o0 (430

which is similar to Egs (29a).
Thus the generic in-plane degree of freedom is connected with the out-of-
plane degrees of freedom by the relation:

g = i, q%) - ﬁgkq§”p)q£””) (44)

where ﬁyz are elements of the matrix hﬂ if the multiple indices symbolism is
C.

returned.
Also the generic i-th out-of-plane dynamic constitutive equation can be

determined by the same differential operation as in Eqg. (40), but with q&ﬁ and
q?ﬁ in place of q?ﬂ and q&ﬂ, and similar relations are obtained, but with the
presence of external generalized forces in the numerical model:

mi(/'op)ij.(/op) + ky('op)qgop) + ff’?/zqgn)qz({olj) + ZJiS‘qu_g'op)ql(cop)ql(op) + Fi(a) =0 (45)

where ]4” are the generalized aerodynamic forces acting on the d.o.f. q?ﬁ,

depending on the aerodynamic force p, per unity surface, introduced in
Eg. (10b), which has been obtained by the “Piston Theory” [2][5]. This is formed

13



by the component Pﬁ%ﬁ with derivative with respect to x, responsable for

coupling between different natural vibrating modes, and the damping component

Pf%” with time derivative, as follows:

E(a) — F;_(alx) _l’_F}(alt) (46)
like p, in equation (10b). These components can be written as:
Fl_(a,x) = fl.(x)qs.op) Fi(“r’) = ﬁ.}(’)qﬁ.op) (47)

where the coefficients jgﬂ and jéﬂ have been evaluated for both methods in the
above mentioned Appendices.

In the third term of equation (45) the in-plane generic degree of freedom

is connected with the out-of-plane degrees of freedom by the relation (44)
which can be written also as:

qS?”)

¢ = 1) (48)

Then this term then becomes:

3Pl

Jik (49)
which can be also written as:
euind\ g g (50)
because, taking into account the repeated indices rule for tensor elements, it
is true that:
dﬁ,zﬁﬂm N (51)
Then Eqg. (45) becomes:
mépp)(jgfw) + fg(t)f?SOP) + (kgop)quop) + eiklmq£op)q§0p)q£:p) n 21513415"”)%(5’”)%("”) -0 (52a)
where the elements:
) i 459

take into account both the linear out-of-plane structural and aerodynamic

coupling forces [18]. The out-of-plane mass matrix bd@ﬂj and the aerodynamic-

14



structural forces matrix [K(Op)]' are introduced, together with the non-linear

forces matrices [E]and lD(4)J, with elements € and ‘[15'42 (j.3 1s the contraction
Jc Ye

of the three indices k,l,m or j,k,/). The column vectors IQ(OP)J of the out-of-
plane degrees of freedom ql.(ol’), and lQ(0p’3)J containing the products

pg.oi) :ql({op)ql(op)qggp) or pg_ap) :qSOp)qIEOp)ql(Op), are introduced too. The elements fl(’) of
c c3
the damping aerodynamic forces are proportional to the out-of-plane mass matrix

elements mlg.”p) [20]:

£ = yamiy?) (53)

and the matrix with elements fy(’) is coincident with the out-of-plane mass

matrix [M(OP)J, but a scale factor y,;, as shown in Appendices B and C, for Ritz

and FEM methods, respectively. Thus equation (52a) can be rewritten in matrix
form:

[M(OP)]{Q(OP)]+;/d [Q(OP)]}+ [K(OP)T[Q(OP)] + {E]+2[])(4)]}IQ(OP’3)J= 0 (54)

A non-linear equations system is obtained, similar to the one in equation
(35), which likewise can be integrated by good appropriate algorithms.

15



Fig. 1. Plate exposed to an air
flowing at supersonic speed.
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Fig. 2. A particular grid mesh of the FEM model.
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Table 1

Values of p;, ,p
ad

lyy

and Ny, N, vs il//x’il//)/

by s By Piy, s Pi,, Ny N,
1 4.712389 3.829886
2 7.853982 17.923313
3 10.995574 86.324865
4 14.137167 415.2424
5 17.278760 1997.5148
6 20.420352 9608.99
7 23.561945 46223.87
8 26.703538 222358.8966
Table 2
Values of ix,iy vs i, and Iy
% 1 3 4
i, L 2 3 4 1 2 i 1 2 i 1 2
ix 1 2 1 2 3 4 4 3 4 4 1 2 1
6’ 1 1 2 2 1 1 2 3 3 4 3 3 4

17



Appendix A

The constitutive elements of the non-dimensional Airy function ¢4§,q) in

Eg. (4), are formed by two separate components, depending on & and 77,
respectively:

2, &n) = 0,,.()o,, (1) (B.1)

where both components g, (5) and ¢; (n) vanish at the rectangular edges, along
13 wy
with their first derivatives:

%W(O) = ((ﬂiw)(o)z (piw(l): ! iw)(l) (Y- a()
(A.2)

2,0 =g, ]0) =g, )=, } () (y- a()

because, taking into account the membrane stresses dependence on the Airy

function [22], the in-plane boundary conditions in Eg. (1) are satisfied. For
convenience functions are utilized which satisfy further conditions:

ﬂ:pf o, (p’Z’y =p' o (A.3)
d§4 28 dn w Ty
1 1
. . =0 . . =0 A.4
J.(D’u/x(pfwxdg 5’w1wx ,([%w%wd’] 5’u/y/l//y ( )
0

Consequently the expressions of ¢, can be written as:
”

Pin (€)= ]\1[, {cos(p ’2wx Jcosh{ Piyy (é - ;ﬂ - cash{p;’”‘] cos{ Piy, (5 - ;ﬂ} By = 1,3,5....
(A.5a)
0, (6) =~ {si [p;w Jsin/{ Py [5 - ;H - sinh[p;”‘J sin[ P, [5 _ ;ﬂ} iy = 24,6
P
where:
p,, =i, +1)7 (2.5b)
and:

18



(A.5c)

N2 =|sinh

Di b Pi Di
2 cos[’””‘] sin[ e 2 cosh['””‘] sin/{ i ]
i |1 2 2 Pi,, 2 2
2 2

and similar for ¢; , with p; in place of p;, and 5 in place of £ . The
w w yx

conditions in Eqg. (A.2) referring to the first derivatives, are satisfied if it
is taken into account that:

tanh Py Pigy. (A.6)

1
—_

for the values utilized of p@“'p@y.

The values of pwa’phy connected with @“’@W’ together with AQ,‘N?, are

summarized in Table 1, for jy,,i, =12...8.

Appendix B

The numerical approach, based on the Rayleigh-Ritz method, has to be
explained. Series expansions for non-dimensional in-plane displacements

functions U(&,nm,7) and V(&,m,7) can be chosen:

U(g,mt)=Uy, @, &n)  VEn) =V, (@), (&n)
(B.1la)

where:

o (f: ’7) _ (éji{]xﬂp 3 ipéinx+ip+l)(77in+ip B ip’7in+ip+l)

7 (5177) _ (giyxﬂ'p 3 ipé:iVerierl J(']iyyﬂ'p B l,pniyyﬂ'pﬂ) (B.1b)

igesive = 0, 200cNye =1, Ny =1 gy iy = 0,120 Ny =1, Npy =1 iy iy = i Nuy iy Ny + iy iy + 1

iy, ly :112""NUINV NUINV :NleNVx XNUleVy (B.1c)

and for the out-of-plane non-dimensional displacement W(&,n,7):
W n,7) =W, (2)r, (&n) (B.2a)

where:

19



Xigy (&n)= (iin - fiW"+1I77iwy - niwyﬂj (B.2b)

yy = 1’2’""NWX iWy = 1’2""NW)1 lW = (lWX - I)NWy +ZWy
iy = 1,2....Nyy Ny = Ny Ny, (B.2c)

as in Eqg. (7b).

It is evident that the series expansions elements of U and V in Eqg. (B.la)
satisfy only the geometric boundary conditions, as in the Ritz method [3][4]([8].
In fact if %::0 there are not particular geometric in-plane boundary conditions

to be satisfied for U and V, and this corresponds to the first case with in-
plane free edges of the rectangular orthotropic plate, whilst for 57:1 both

displacements vanish at the plate borders, as requested by the geometric
boundary conditions of the in-plane clamped panel. Concerning W the series
describing elements in Eg. (B.2a) satisfy the geometric boundary conditions, for
which it vanishes at the rectangular delimiting edges; this series expansion is

coincident with the ones of U and V with Q,:l.
As in Galerkin method it is convenient to choose th = A@k and Pﬁb,: A@y, so
that it is true that Ny = Nj . Therefore the generic degree of freedom g; can be

defined as:

ql(l”) — UiU with il =] = lU for lSNU
¢ =V, with i =i=i +N, for Ny <i<2Ny (B.3)
g =, with i =i=iy +2N, for 2Ny <i< Ny +2Ny

The in-plane elasticity costitutive equations of an orthotropic plate are
well known [22], and also the corresponding kinematic relations, from which it
is possible to determine the in-plane strain energy expression:

2P 2P 2 2
ey A}({)aul(aw] +Ay8v+1(8vvj +2Axvyx6u+l(3vvj 5V+1(3WJ
2¢ ox 2\ ox oy 2\ oy ox 2\ ox oy 2\ oy

2
+%J. ny|:au+6v+avvaw:| S (B.4)
S

which, divided by the flexural rigidity parameter D, =lﬁh3/ﬁ-—0i@)=liﬁ2 of the
reference isotropic plate, can be re-written in non-dimensional form:

2 2

2 2 2 2
fU(i”) :lJ. A;yj aiU +1 al + A;f/;)‘ 61 +l aiW +2A; yx?/g]/}% a£ aiW al +l aiW
2] s 2l o on 2\ on oL oc ) lon 2l on
+1I R LLAMLL ow aw T 5. 5a)
on o0& o& on
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where the in-plane coordinates and all the displacements have been
reformulated in non-dimensional form:

fzf ﬂ:X, U:ﬂjg V:XJ? pV:li (B.5Db)
a b a}/a byb LW

as in Egs. (3b) and (19b), together with the in-plane rigidity parameters:

A.ab A,ab G ,ab
A =5 A;z 4 G:y:L (B.5c)
D, D, D,
taking into account that the surface element dS is connected with the
corresponding non-dimensional one dX by the following relation:
dS = dxdy = abd&dn = abdx (B.5d)
and further the following non-dimensional parameters have been introduced:
L L
Ya=—" 7p =% (B.5e)
a b

Thus the contribution to the in-plane strain energy only of the linear
structural forces, is derived by retaining only the terms with U and V, which
in dimension-less form reads:

2 2 2
| Alyé‘(aUJ +A*7§(ZVJ v2d, 2 VY 4(6U an s (B.6)
n

1% _— +
22 ag y x Y yx alb 8§ 677 xy7ab 877 ag

Thence, if series expansions in Eqg. (Bl) are taken into account, it
is possible to evaluate the integrals:

2
J‘ WU\ s v 102 (B.7a)
: aé gy~ Ju Ty ju

where:

(iUx +ipXjUx +i, + 1)+ (iUx +i, + IXjUX +ip)+i (lUx +i, + IXjUx +j,+ 1‘)

. . . p . . .
lUx+]Ux+21p lUx+]Ux+2lp+1

I(sz) _ (iUx + ipXjUx + ip) _

. . . . . p
lyJu lUx + JUx +21p -1

x ! —i 2 +i ! (B.7b)

iyy + Juy + 20, 41 Py 4y + 20, +2 0 Py, + jyy, +2i, +3

The first term between the first brackets disappears if ip =0, and §; =0 or

Jux =0, and the following one if both indices vanish. Its dual integral can be

easily determined:

2
J‘(W] ds =V, V, Ii(VyZ) (B.8a)

where:
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r2) _ ! _i 2 +i ! (B.8Db)

iy Ji . . . P, . . P R .
€4 le+ij+21p+1 sz+ij+21p+2 le+JVx+2lp+3

(iVy+ipXij+ip)_i (iVy+ipXij+ip+1)+(iVy+ip+1Xij+ip)+i (sz+zp+1Xij+jp+1‘)
by + Jyy + 20, =17 iy + Jyy + 2 Ty i 20 41

where the first term between the second brackets disappears if ip::O, and h@::O

or j%/z 0, and the following one disappears if both indices wvanish.

The mixed product of the coupling term of the in-plane energy expression
(B.6a) has to be considered, for which it is necessary to evaluate the following
integral:

[[Z P s ~ v, v, 20 (8.92)
: 65 677 U IV iy Jy
with:
o) _ e i, iy, +2i, +1 ; Iy +i, +1
i v Qe + e ¥ 20, P+ i 20, 41 Vi + iy 420, +2
o It 2hy 2L iyt (B.9b)

. . . p . . . D . . .
Iy + Jyy + 20, Iy + Jyy + 20, +1 iyy + Jyy + 20, +2

where the first term between the first brackets disappears if %::0 and §;, =0,
and the same between the second brackets disappears if % =0 and ﬂy:O.
The mixed product of the shear term of the in-plane strain energy
expression (B.6a) leads to the the following integral:
J‘(aU aVsz - U,-UV,VF(UYV)‘) (B.10a)
gy
on oc
with:
() _ Jrx Tip i 2y +2i, +1 i Jyx +ip +1
wiv Qe+ e ¥ 20, P+ i 20, 41 P+ iy +2i, +2
iy, +1 i, +2i, +1 i, +i, +1
< Uy "°p _i Uy P i Uy " 'p (B.10Db)

. . . D . . . P . . .
iyy + Jyy +2i, Iyy + Jyy + 20, +1 Iyy + Jyy + 20, +2

where the first term between the first brackets disappears if ip::O ajm.z(), and

the same between the second brackets disappears if % =0 and QWZO.

In the same way by the series expansions in Eqg. (1) two other integrals in
the shear term of the strain energy expression (B.6a), can be determined:

2
j Ul s -v v, 10 (B.11a)
5 877 T JuTiyju

with:
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T2) _ ! _ 2 4 1 (11b)

ivju iy + Jux + 20, + 1 Vi e +2i, 2 Vi + g +2i, +3

(in +ipXjUy +ip) . (in +ipXjUy +ip, + 1)+ (in +iy, + IXjUy +ip)+i (in +iy, + IXjUy +Jj,+ l‘)
iy + Jjuy + 20, -1 7 Py 4 gy + 20, +1

lUy + jUy + le

where the first term between the second brackets disappears if ip =0, and in =0

or jUy =0, and the following one disappears if both indices vanish, and also:

2
j V) gz ey y, 1 (B.12a)
aé: oy iy jy

with:

I(m) B (iVx +ipXij +ip) ) (iVx +ipXj,,x +ip + 1)+ (i,,x + ip + 1Xj,,x + ip) ] (iVx + ip + IXij + jp + 1)
N S TR T

iy + Jyy + 2ip Iy + Jyy + zip +1

y 1 _ 2 i ! (B.12b)

. . P R R P . .
Iyy + Jyy + 20, +1 Iyy + Jyy + 20, +2 Iyy + Jyy + 20, +3

where the first term between the first brackets disappears if ip =0, and

iy, =0 or j, =0, and the following one if both indices vanish.

If the in-plane strain energy expression in the classical form in Eg. (36)
is considered, and taking into account the integrals previously evaluated, the
in-plane stiffness matrix elements can be determined:

k’(ll;ll) _ 4I(Ux2) +G" 7272I(Uy2)
iy ju iy Ju
kl(ljz) A le}/a)/bl-lfj:,vy + ny]/ayb‘z-lLlj):VY (B ° 13)
4 (2 4 7 (rx2
ki = AT+ O )

Finally the symmetry of this in-plane stiffness matrix has to be imposed:

ki = kiyj, (B.14)
which corresponds to the second element in the double mixed product of the
coupling and shear terms of the in-plane strain energy expression (B.6a).

Then the contribution to the in-plane strain energy due only to the mixed
structural forces (linear together with non-linear) has to be considered. In the
complete in-plane strain energy expression (B.5a), if only the terms containing
the out-of-plane displacement W, together with U and V, are taken into
account, the following non-dimensional energy expression is derived:
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aw
¢

|

wher

and:

2 2 2 2
o~ L A (LA I ;ygalal’ R ekl L LA LA N | ¥
2] o8 \ o¢ on oy > o\ o | on\ ag
+lJ‘ 265,22 oU OV oW oW | (B.15)
22 on o0& ) o0& on

First it is necessary to evaluate the square of derivatives:

2
Ry ; e —1 - iy e T ke k1] _
] =W Wiy []WxsZ I~ (g, + 1)EI Ika§ Tl (ke + 1)E [ﬂjW) - }[77 g }*

jwy+kwy+n—l

ety +m=3
= Wy Wiy € ™" (mn=123) (B.16a)
e:
c{/x,l = inij Sl =1
Sy = =i U + 1) = (i + D 5, =-2 (B.16D)
i3 = e + D +1) s3=1

TN TS P JS Y NP

ij +kWy +m-3

where:

j k -1
= ij WkW SnéeijJr W +n C jhy,mll (mn =1,2,3) (B.17a)
Cijy,1 = by Jwy
Cijy,2 = _iWy(jWy +1)- (iWy + 1)jWy (B.17b)
iy = limy + iy +1)
Then the following integrals can be evaluated:
U (ow ]
1|5 2| o =, 2 CREN
z_aé o0& | UJwkw
ou (ow Y]
j PN Nz =v, w, w, T02) (B.19a)
ag n e w w iy jwky
Z_ .
ov (o]
(e ez -
3| n 6§ | UJwkw
ov (ow )|
(15| | = =v,m,m, Ilum2) (B.21a)
877 n y " w W iy jwky
Z_ .
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where:

(UxWx2):CAkx P Ix t1p ~ gy +i, +1
oawk IR G i, s g =3 m D i, g+ — 24 m
% 1 —i, 1 (B.18b)
Iy + iy + Jwy + kyy, + 10 iy + iy + Jwy + kyy, + 141
I(U"Wﬂ):c- S iy +1, . iy iy +1
i jwhy kv men i + Je + kg + i+ =1 piUx+ij+ka+ip+n
% 1 -, 1 (B.19b)
Iy + Jwy + bk +i, +m—2 Iy + Jwy + kyy + i, +m—1
I(VyWXZ): ot mS 1 -1 1
ygwkw MR e + Jwe + e + iy +m =2 Pip ek i, +m—1
Iy, + 1 Iy, +i, +1
% v T p —i, W T'p (B.20Db)
Iyy + Jwy + Ky 0, +n—1 Iyy + Jwy + Ky +10, + 0
(@Wﬂ = Cy,mS ! —i !
iy jwkw G N Y N T B R Y R IS |
iy, +1 iy, +1, +1
% w T -, A (B.21b)
sz+jWy+kWy+zp+m—3 sz+]Wy+kWy+zp+m—2
The first terms between the first brackets in Egs. (B.18b) and (B.19Db)

=0,
in Egs. (B.20b) and (B.21b) disappear if Q,:() and hy::O.

while the first terms between the second beackets

disappear if % =0 and iy,

Also the mixed product must be considered:

ow oW i =1 ; i Jwy Jwy +1 [ ke Ky +1 kyy—1 Jwy
%M:WjWWkW[JWxé:JW _(.]Wx-"_l)éjWX]:ﬂ v/ }gW — & kWyéc v _(kWy"'l)'f )}
iy + Je +m—1 iy + jwry +n—1
Wi Wiy gm0 g ™ (m,n=1,2,3)  (B.22a)

where:

Ztix,l = in tiy,l = iWy

tix,Z = _Zin -1 tiy,Z = _ZiWy -1 (B.22b)

tix,3 = in +1 ti 3= iWy +1

which allow to determine the integrals in the shear contribution to the in-plane

strain energy expression of mixed forces, in Eg. (B.17), as:
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J QU W W\ s v w . 0w (B.23a)
: 877 aé: an v Jw " kw iy ke
J. ov ow ow ds=U, W, W, Txwamy) (B.24a)
: a§ ag an U Iw kW Ty jwky
where:
o) =t : —i !
w jwkw R P +i,+n P+ iy Ak + i, ]
. by +ip L Iy, tip +1 (5. 23p)
iy + Jwy ki i, =1 Py 4 gk i, 40
(VxWny) B Iy + iy . Iy +1p +1
I k _tjxmtkyn . . lp. .
vIwkw T gy e + kg +ip 1 iys + Jws + Ky +ip + 0+ 1
x 1 _i ! (B.24Db)

lUy+]Wy+kWy+lp+n

p . . .
Iy + Jwy + kyy + i, 041

Thus the tensor elements corresponding to the in-plane strain energy

contribution of the mixed forces, introduced in Eq.

*

&) =4y

4 I(UxWxZ)
i1j3k3

(UnyZ)
@iy jwkw I

+ A, iy}
X yxyayb iy jwkw

[[(3)

I(VyWy2)
iy J3k3

Ayt + A, yiy?
=47 iy jw kw xVyxValb

iy Jwkw

At last the contribution of only non-linear structural forces has to
Retaining only the terms containing the displacement
gives this contribution in

taken into account.
the in-plane strain energy expression
dimensional form, as follows:

(B.5a),

2oL
¢

4

; 1 * 4 1(0OW
olim) = 2[4y 210 v -
nl Zi x7a4 65 X yx7a7b 2

I(VnyZ) + 2ny72b

IE

(37), can be evaluated:

* 4 (Uxawy)
+2GJ‘Y "inUJ'WkW
(B.25)

*

I(VxWny)
iy jw kw

be
W in

non-—

oW ow

ow ow ow
og on

2
* 2 4
j +ny7a7/b

;

(B.26)

The fourth power of the derivatives has to be evaluated:

ow
o<

fij +ka +1Wx +ka+ +0+P_6S

w,

4
] =W Wy Way Wongy € jice,oCim., p,

|

q-r

(0,p,q,r=123)
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any ey +ly +myyy, +q+r=2
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where the meaning of the coefficients Cikeo ' Cike,pr S and s,, has been

q
illustrated in Eg. (B.16b). Also the square power of the other derivative can be
determined:

4
ow P _

_ Jw Hhw Hle +q+r=2
( 5 . — VViW VVjW VVkW VVIW Sq s, § Wx T JWx TRWx TiWx c

iwy + Jwy e, +1 +o0+p—6
ijy,0Ckly, p Ty e e (B.28)
s 1Py

(0,p,q,7 =12.3)

with the same meaning of the above mentioned coefficients, as in Egs. (B.16b)
and (B.17b), together with the mixed products:

2 2
ow ow iy +J - iy + Jwy ke g, + p+r—4
— | —| = . Ny W+ Jwx +Hhw +lpx s To+q—4 twy + Jwy Hiwx Ty P+
( o0& on =W Wi Wi Wy C!JJC,OSqsz Chkly, pSill

(o,p,q,r:1,2,3) (B.29)

Thus the following integrals can be evaluated:

4
ow (Wwx )
- =W. . B.
] ag] B = Wi Wi Wi Wi Ly sty (8-302)
by
ow ! ( )
“r - WyWyWy W, B.31
..- anj dZ_WiWWJW%WWIW‘Z;WjWkWIW (B.31a)
s
ow ow'Y
j WWN s ew w. w, w, TWm) (B.32a)
o0& 0 i jw " kw T lw Ty ik Ty
5 n
where:
WaWaWx Wy 1 1
if/VlefW:lWX) = cﬁxrocklx,psqsr X . k Ji 5 X . k )i 1
iy  Jwx T Ky Tl TO+ P — lWy+JWy+Wy+Wy+q+r_
(B.30Db)
.Z'.(WYWyWyWy) = Ciiv, oChtly. pSaSy X ! X !
i Jww st P T e+ e + ke A by + g+ =1 gy + s, + ey, + Ly, 0+ p =5
(B.31b)
WaWx Wy 1 1
l;l(/V;W/)CCWg/IWy) = cl'jxrockl)’rpsqs” X - k )i 3 X . k )i 3
Iy * Jwx T K + e + 0+ q — lWy+]Wy+ Wy+Wy+p+r_
(B.32b)
Thus the tensor elements 1[.(4) can be determined:
i3j3k3l3
(4) _ b 4 (mna) 1« 4 (mva) 1« 2 2 (m2y2) * 22 7(Wx2y2)
l{i3j3k3l3 T4 Axya'z.iijkwlw * 4 4y inijkwlw * 2 Ay alh i iwkwly © Gnyayinijkwlw
(B.33)

The out-of-plane strain energy expression [18] can be written as:
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*w ? *w ? o*w | o*w *w ’
j D=5 | +D,| =5 | +2Dwv,| = | = |+4D| — | idS (B.34)
5 oy ox“ \ oy Ox0y

can be also written in dimension-less form:

ow Y oY ow
DY\ == | +Dj|—| +28 dz (B.35a)
5 o¢ on 0%on

which, divided by D,,

() - 1
olor _2j

where the in-plane coordinate, together the flexural displacement, have been
as in Egs. (3b), and also the flexural-

reformulated in non-dimensional form,
torsional rigidity parameters:

2 2 2 2
o _ Db ot~ Dylwa g = Pvulw o DL, (B.35b)
x e YT Dab  Dab

and taking into account that for a simply supported plate it is true that [18]:

@R

2
oW has to be considered:

o&?

The square power of the second derivative

2
o*w i+ e +m=5 . giwy + iy +n=1
[%2 J =W, W G € TS I (B.37a)
where:
Cipna,l = i e = Do Gise = 1) s =1
Ciij,Z = _in(in - 1X.]Wx + 1)ij - (in + 1)inij(ij - 1) S =-2 (B.37b)
cias = (ime + Vi Ui + Do s, =1
2
and also of the second derivative 0 W’:
6n2
ow Y
iy + i +n—1 ipry + jwry +m=5
[anz] =W Wiy su ™ ™ (B.38a)
iy = iy limy = Ui Uiy, = 1)
(B.38b)

Cijy2,2 = _iWy(iWy - 1XjWy + l)jwy - (iWy + 1>.Wijy(jWy - 1)
ciya,3 = limy + Uiy Uiy + Ly
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It is necessary to know also the same power of the mixed derivative:

2
o*w i s
| = e Emtwetm=3 iy Wy B.39
o&on - I/ViW WjW Cljx,mcyy,nd_at n ( )
where the coefficients Cirm and Cypn BTE the same of Egs. (B.16b) and (B.17b).

Thus the following integrals in Eqg. (B.36a) can be evaluated:

2
| W g —w, w, W) (B.40a)
652 wIw Ty jw
z
) 2
[ W\ g —w_w, pmom) (B.41a)
o 2 w " Iw iy Jw
s\ 077
ow Y
J w ds =W, W] I(WXJ’WXJ’) (B.42a)
w Wiy J
5 6(;:677 wIw
where:
WA2Wx2 1 1
IiEVjW ) = ciij,msn X - . X - R (B.40b)
e + Jge +m—4 Iy + Jpy + 11
rmam) _ ! x ! (B.41b)
iw Jw ijy2,m°n . . . . 4
e + Jwx 0 gy, * gy, T M=
Wown) _ oLy ! x ! (B.42b)
iwjw ijx,m%ijy,n . . _9 . . _9
lWx+_]Wx+m lWy+jWy+n
Hence the out-of-plane stiffness matrix elements can be evaluated:
(op) _ n* Fmx2mx2) * ~(my2my2) * Wy Way)
ki3J'3 B DXIinW * DyIinW + 258 II'WJ'W (B.43)

Then the kinetic energy for the out-of-plane vibration can be considered:
2
T(op):lﬂj‘ MY s (B.44)
2 5 ot

where g 1s the mass density per unity surface, which, divided by D, , can be
also written in non-dimensional form:

2
T("P):lmj(aWj g5 (B.45a)

where:
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r= |t M=r y=—" (B.45b)
it 7 L L,
as in Egs. (3c) and (1llc).
The following integrals have to be evaluated:
2
IaLV a5 = W, W, 70w) (B.46a)
or Iw iy jw
where:
Wy () _ L2,
v or waw in + ij +1 in + ij +2 in + ij +3
X ! — 2 + 1 (B.46Db)
Taking into account Eg. (38), which gives the classical expressions of the
in-plane and out-of-plane kinetic energy, and Egs. (B.3), which explains the

meaning the Lagrangian degrees of freedom qﬁw), enables us to form the out-of-

plane mass matrix, whose elements are:

( W)

’3]3 M'Z:n Jw (B -47 )
while the in-plane mass matrix is not considered, because the in-plane inertial
forces are neglected.

Finally the expressions of the generalized aerodynamic forces in Eqgq. (47)
have to be determined for the Ritz procedure. The aerodymic pressure p,
expression in Eqg. (10b), has to be newly considered:

_2q 8w lﬁ—law

p: = (B.48)
ﬂ@xUﬂ@t

whose work, for the out-of-plane displacement w presence, can be evaluated:

dmy _ ZqI 6w RS ﬂ —-1ow odS (B.49)
ax U, ﬁ o

which, divided by the reference plate flexural rigidity D, , can be re-written

r

in non-dimensional form:

ow o[ oW
A >:ﬂ(x>£(a§Wjdz+ﬁ(>£(arW]dz (B.50a)

where:
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2 2 2 4
) 20 Lb 40 _2ap° -1 1 Lab |Dx __ bt (B.500)
B aD, g p* U, D\ ! pl?

The series expansion for W(é‘,iy,r), as formulated in Eqg. (B.Z2a), whose
component elements are reported in Eqg. (B.2b), can be substituted into Eg. (50a)
and thence the work performed by the ith element of the series, which is equal

to the ith generalized aerodynamic force F;,(“), can be evaluated:
3

Fig I( X jw ZindZﬁLWjWﬂ(t)J.(Ziwljw}lz (B.51)
N

It is possible to point-out that it is formed by two components, as in Eg. (46),

the first of which Fl_(a'x) is the coupling term with spatial derivative, while the
W
second one F;(a't) with temporal derivative is the damping component. Thus the
w

coefficients fzj(X) and f()of the component aerodynamic forces can be evaluated,

as in Eqg. (47), from Eg. (B.51):

Z jw _ g pmaw)
1313 B I( i sz_ AT I/W]W {B.52a)

flgtj)3 - ﬂ(t)." (Ziw Zjw )ﬁ: = ﬂ(t)I/i(/zp/V;:V) (B.53)

where _Z;(WJW) is the same of Eg. (B.46b), and:
wJIw

Tmw) _ { Jwe __ Zjwetl e +1 }
wiw wx T ij in + ij +1 in + ij +2

P e (B-525)

The coefficients fzgtj)3 are proportional the out-of-plane mass matrix elements

by the relation [20]:

_ ., (op) 4
= rgm”) (B.54)

)

1373

with 7d:jl(t)/7l/l, as in Eqg. (53).

31



Appendix C

Now the FEM model utilized, as in Fig. 2, has to be illustrated.
The plate is divided into N, elements along the axis ¢ and ﬁﬂw elements

along the axis 77, consequently the whole number of components elements of the
fluttering panel is AQWAQy. A generic j,th element with vertices ABCD is shown

in Fig. 2, which lies in the coordinates range:

giex_l < é < é:[ex 7]1'6}771 < n < ﬂigy iex = 1,2....Nex iey = 1’2""Ney (C.1)
ie = (iex - I)Ney + iey Ng = NexNey ie = 1,2....N

where é -1 is the ascissa of the vertices A and D, é. is the abscissa of the
ex ex

e

vertices B and C, p; _; is the ordinate of the vertices A and B, p, is the
iey—1 ley

ordinate of the vertices C and D.
Normalized coordinates of the element are introduced:

é:n,[e = (é - é:iex—l ex ﬂn,ie = (é: - §iey—1)Ney 0< Szn,iel ﬂn,[e <1 (C.2)

Series expansion for non-dimensional in-plane and out-of-plane displacements
functions can be introduced in the generic i,th element:

Q(iv)(f, n, t) — q(ie'iV)(t)W(iE) (ie) (C.3a)

B iclq X,y ¢yliy

i
where Q(V)(g,n,t) corresponds to U,V,W for 1, =1,2,3, respectively, the
coefficients qy?%)@) (which are the Lagrangian degrees of freedom in every grid
cld

point), are equal to:

Q("V) aQ(ivJ 6Q[ivJ 62Q(ivJ (C.3b)
Tes T an 7 ocon

for i; =1,2,3,4, respectively, evaluated on the vertices A,B,C,D, if

i. =1,2,3,4, respectively, and with bicubic Hermitian polynomials used to
interpolate each of the displacement components:

ol 12322, 428 o) =13, 20,
%%2) =i, ~ 2 2 T ¢’gez) =i, ~ Ui, + 1T, (¢.3¢)
cog,%) =360, — 2%, ¢’§f3) =3, = 2,

and also:

. . i

Iy =ig =203 =204 +2(£j —40;.4

iy:2[16—1)+[1d—1j+1 (C.3d)
2 2
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In Eg. (C.3d) the operations between round parentheses have to be performed
with integer numers, and also the resulting number is integer, whereas 517 is

the kronecker’s delta. The values of connected with i,i; as in Egs.

ix,iy,
(C.3d), are summarized in Table 2.
The geometric boundary conditions have to be imposed at the rectangular

edges, where in the case of in-plane clamped plate, all the three displacements
vanish at the limit boundaries together with their first tangential derivative,

for which in the j,th grid point, with:

iG(ie,ic) = (iex - 1)(Ney + 1)+ loy + 0.4 + 6,-63(Ngy + 1)+ 5,-64(Ney + 2) (C.4a)
ij can be only 3 and 4 if:
i =1, Ny + 1+ L2ANyy + 1)+ Lueeu N (N, +1) 41 (C.4b)

corresponding to 7=0, and also if:

iG =Ny + L2ANy, + 1}cc(Ne + 1N, +1) (C.4ac)

corresponding to ; =1, whereas i, can be only equal to 2 and 4 if:

iy =1,2...N,, +1 (C.4d)

corresponding to £=0, and also if:

e

iG = Nog(WNoy + 1)+ 1, Nog (N, + 1)+ 210Ny + 1IN, +1) (C.4e)

corresponding to &=1.

There exist ever such limits for W, because the plate is simply-supported
for the out-of-plane flutter vibration dynamics, apart from the in-plane
boundary conditions. Consequently in the case of in-plane free edges there are

such restrictions only for W, while for U and V both suffixes j, and i; can
vary from 1 to 4 for every value of I,.

Thus there are NU degrees of freedom for both U and V, equal to:
Ny = 4Ny + 1NNy +1)= i, |4V, 1)+ 4[N, —1)+12] (C.5)

where, as for the Ritz procedure, ip =(0 corresponds to the case with free in-
plane edges of the plate, and ip =1 corresponds to the other with clamped
boundaries. The number of the degrees of freedom Ny corresponding to W is

obtained by Eg. (C.5) with ip =1, considering that in both cases with different

in-plane boundary conditions, such number is limited by the same geometric
boundary conditions. It means that in the case with free in-plane plate

behaviour Nj is smaller than N .
The degrees of freedom in a generic j,th internal grid of the FEM model

can be defined as follows:
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(in) _ ,lies!)

i =4y with i=i for i <4
ql(m) - qi(i?(;z) with i=i,=i+4 for 4 < iGl <8 (C.6a)
ql(o )—ql(cf;) with i=i=i,+4 for 8<i, <12
where:
igiliysiq) = 4, = 1)+ iy (C.6b)

In the external grids the number of degrees of freedom for U and V is
reduced to 2,

and for the same reason to |l on the rectangular corners, if
i, =1, and in both cases for W.

The index i1 referring to the in-plane displacement U can be defined as

inligyig) =12lig = 1) = (G + S, nori k2, + liGy 1)+ 1= )

(1 —a;leijp +1)[4ti—4+2(1—5i6y1)+2+2(Ney |+ (C.7a)
where:

iq = idl5i 0t =, M1 - sz,N@erlxl iGy - FigysNey )
+0; 1(510 l+5G,C,Ngx+1M iy 111 lG},Ngy-%-lXé‘ldQ +251d4)+5G I +5G},N}+1J (C.7b)
+ 51'1,1(51'@ 5sz,N@y+IJ_( Siga N = 81 v i1 Wiy3 + 26,4 )]

and the index I,,

corresponding to the in-plane displacement V
as:

can be defined

1

iligrig)=iilig,ig) + 4 5,0 + 5 1(1 t(;lel :Gx,Ne,(+1X1 iGy 111 sz,Ny+l)J
+ 51' 1(5ti 5’Gx'Nex +1 12( lG 111 lG} :N +1)+ 5’G} 5iGleey +1J (C.7¢)
+26; 1(510 1+ 5Gy,Ney+lll iGy 1x1 sz,NXH)

and at last the index

I;, corresponding to W, as:

i3(iG/id):i2(iGlid)+4idl5'0+ 1( zGlxl sz,Nex+lxl :Gylh sz,Ny+1)J

+06; 1(51(;1+51GX,NEX+1 ( zG 1*1 IGV,N(_},+1*2+ 0%, )+5G 1 T 9g,,N, +1J (C.74d)
+ 251’,,1(51'@ + igy Ney+1 Xl Sig, 111 sz,Nex+l)
where:
i = N7_+11 +1 igy =ig — (igy = Ny +1) iG =1,20(Ny + 1N, +1) (C.7e)

The operations in Egs. (7e) are considered between integers numbers (g.e.

—1 divided by A%)+l is equal to 0 if j;-1< N, +1, etc.)

From the expression (B.6a) of the linear structural forces contribution to

the in-plane strain energy it is possible to form the in-plane stiffness matrix
of the i

i,th element, whose elements obtained in the Ritz procedure

have been
and in this FEM model can be written as:

shown in Eg. (B.13),
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ki(li;l'l) = Ax}/(jI(UXZ) + ny}/cfb‘z-‘(UyZ)

1 iy J1
(iﬂ) _g* 2.2 (UXVy) * 9 9 (Uny)
Sy Avptarp Ly, + Gorari Ly, (C.8a)
(in) 4t 4 (VyZ) * 4 (sz)
kiz./z B Ay}/bl.iZJZ + GxJ’)/ab‘Z-izjz

where the same integrals in Egs. (B.7a), (B.8a), (B.9%a), (B.10a), (B.1lla), (B.12a)
are utilized:

lie) gle)
702 _ Nee 1 [ i 900y (i) ) dé, ;,dM,,; (C.8b)
i Ney i) fn,ie afn,ie Voly T Yl " e
0 (ie.) 0 (ie?
w02 Ne o] 60 i) o ey ye (c.8c)
nJ2 Nex Eie) Xyl " Xy ] x a']n,ig nn,ie sle sle
(ie) 0 (ie)
rom) _ [ i ) ) o e g (.8a)
J2 Zie) acfn,ie Xsjx " Vsly ann,ie nyip ™ n,i,

aplie) aple)
_Z'i(ll{ny) _ ¢)(clei) h @ (p)()lej) dfn,igdﬂn,ig (C.8e)
v > le) o agnlie ann,ie Y

P (ie_) P (ie)
Tw2) _ Ney () o) “Priv “Pviy dE  d (C.8f)
i1j2 - N ([) (pxlix(pxljx 677 ) 677 . gniie ’7’!1[6
M) ie Nylp Nyle

6¢(i") 5(p(i‘3)

N iy 95 ) ()
I(Vx ): ex X Jx le e) \d d . (C.89)
272 Ney i) 0Sn,i, O%n,i (py'ly{py']y gn’le e
b le ste 1te
because:
dé. . dn. . d&é. . dn. :
dé = é"rle dn = Ty dZ=d§d77=M (C.8h)
Nex Ney NEXN@)’

The integrals extend over the area Z(i‘?)(Oani 170, S1) of the j th element.
ste ste
The suffixes j,and j are connected with Jxr Jy Ehrough ig,igi.,ig, like 7 and i,

with ix,iy, by the same Egs. (C.7a), (C.7c), (C.4a) and (C.3d). The dual element

k(i”) is equal to k(i"), for the symmetry of the stiffness matrix in each
i j) i1jp
element, as in Eg. (B.14).

Likewise it is possible to form the mixed structural forces tensor of the
i,th element, whose contribution to the in-plane strain energy is shown in Eq.

(15), which has been reported in Eg. (B.25) for the Ritz procedure, and in FEM
model can be written as:
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() _ g 4 r(oowawx) | 4* 2,2 r(oxmymwy) * 2 2 r(Uxmwy)
‘{i11'3k3 - Axyal;lj3k3 * Axvyx}/”}/inmka * ZG"J’}/“%IHBM
(C.9a)
() _ g ar(mymwy ) * 2.2+ (rywxix ) * 2 2 (vxamy )
t[i;j3k3 = e Lgu s Averari Dy 20 vari Dy g

where the integrals utilized are the same of Egs. (B.18a), (B.19a), (B.20a),

(B.21a), (B.23a) and (B.24a):

(ie ) aq)(ie ) a¢(ie )

(Uxwxwx) N?x aq)xlix XrJx ke (i) i) i) (C.9b)
Iilj3k3 N Py i Py i Pok Snyiy @i, :
Ney s ie) afn,ie aé:n,ie agn,l’e Y Y 4
6(0(16) ( ) ( ) ( ) a¢(ie) a¢(ie13
(Uxwywy) _ iy (i,) (o) (i vidy vy _ A (C.9c)
1;lj2k3 . NeyZJ ) a‘):‘r:n,ie (ox,jx s (py,iy ann,ig a77n,ie §n116d77’1,le
aw(ie) a¢(ie) aw(le)
I(Vﬂ;{VxWx) =N, w(ie') Yojx _xke Yy (i) (p(iek) £ dn, . (C.9d)
123 zi ) e agn,ie aén,ie a77n,l'e Yoly Ity e e

) ag)(le) 6¢)(ie ) a¢(ie)
I(V)’WyWY) — & q)(ie') q)(ie) q)(ie) Vily Yily yiky, d§ ) d77 ) (C.9%e)
i jaks 3 Xyl Xy Jie T Xyky ann,ie 577n,ie ann,ie nyle ™ in,i,

eyz')

op'%) oplie) o)

. . . : X k
2O _ ] i ) v ) vk L clon)
i1j3k3 eyzi ¢xllx aégn,ie X,k an}’l,ie Yily 677”,[6 5l’l,le 77}1,18

a(/)(ie) a(p(’e) aw(ie)
(VXWXWJ’) _ Xyiy X, Jx (ie) (ie) (ie) y’ky ) ) (C.99)
1;21'31‘3 = Nex J ) aé:n,ie aén,ie P ey (Dy,iy (Dy,jy 2 Mo, gnﬂe d’]n,ze

The indices j,,k, are connected with Jes Jyskosk, through ig,i,i,i,, like iy with

ix,iy, by the same relation in Eg. (C.7d), (C.4a) and (C.3d). It is possible
also to determine the non-linear structural forces tensor of the ieth element,

like the corresponding ones in the Ritz procedure in Eqg. (B.33), which can be

written as:

(4) 1 A p ) Lo acmmmmy) | 1 # o osmawamymy) | ~* 4 FWawxivymy)
A =— A +— Ay, LY +—A.v A +G A
i3j3ksls g TX/ A3 ksl 4 Vb7 aksls 27X vV albi3 jksty Wl absis j3kyls

(C.10a)

where the reported integrals are the same of Egs. (B.30a), (B.3la) and (B.32a):
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lie) pplie) aplie) pplie)

3 op'c) op'cl 0p'c) Op
'(WxI:V;chWx) _ & Xylx X5 /x Xokx Xylx (ie') ¢("e') (D(iek) (ﬂ(iel) g . dn, . (C.10Db)
13735353 Ney 5 ie) gn,ie agn,l’g aén,ie agn,ie Pty R e ly Ty Ty e e
N3 a(/)(ie) aw(ie) a(/)(ie) 8g0(ie)
(rmymyiny) _ ol )¢,( ) ( ) Gie ) Yy Wiy Yy My e gn (C.10c)
13731353 Ny sl Yok T Fadx T Xok T Oy, Jie ann ie a77}1,ie ann,ie e e
(e o 9 ) ) i) 0 20y
T WxWnyWy =N.N Xyly X, Jx 4 i d ) (C.10d)
i3 /3k3l3 ex eyz ) aén,ie agn,ie (ﬂx,k ¢x I, (ﬂ sy U Vady 877,1 N 677,1 N é:n i, Ay ip
where [3, like i&_h,k3, is connected with lx:@/ through ig,i,,i.,i;, by the

same relations in Eq. (C.7d), (C.4a) and (C.3d).
Also the out-of-plane stiffness matrix can be formed, whose elements are:

k,( ) =D, I(WxZWxZ) +D* (WyZWyZ) + 2B I(nyny)
3J3 y i3j3 (C.11a)

where the integrals are the same in Egs. (B.40a), (B.4la) and (B.42a):

azw(ie) azq)(ie_)

3 .
I(WxZWxZ) _ Nex ([ lelx ;C,]x (ie') ¢(ie) & dy (C.11Db)
i iy T Y, nyip In,i,
373 oy o) afn,ie aé:n,ie Yily " Valy
3 62 (ie_) 82 (ie)
rlmama) _ Nev J plie) plie) gozy y ‘/’;,,y £ dn (C.11c)
xl X x’ X n' e n' e
13J3 Nex S ) i J ann,ie ann,ie i i
5 o) 5 o) a plie) o lic)
I(nyny) - NN Pujiy © Pujy (py’y (py'/y de, - dn, . (C.11d)
i3J3 extley ) o8 oe 5 B n,ip@n,i,
s ie) n,i, n,i, 77}1,1“2 ﬂn,ie

Then it is necessary to form the mass matrix of the j,th element, whose

components are:

(op) _ g, 7(7W)
m = ml;3j3 (C.12a)

where the parameter M 1is the same of Eq. (B.45b), and the integral _Z:%W) is the

same of Eg. (B.46a):
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e
33 P P %9,

y

I(WW) — ([ (ie) (’) (ie) (ie)dz(ie) (C.12b)
zlie

All the stiffness and mass matrices, together with the tensor elements, of
the single component elements of the plate structure elements have to be
assembled to obtain the overall stiffness, mass and resulting tensor elements,
whose knowledge allows to solve the dynamic problem.

At last the presence of the generalized aerodynamic forces, obtained by the
quasi-steady linearized aerodynamic “Piston Theory”, as in Eg. (10b), has to be
considered also in the FEM model. If the series expansion in Eg. (C.3a) is
considered and substituted into Eqg. (B.52a), it is possible to derive the

generalized force corresponding to the i;th degree of freedom, as in Eg. (B.52):

. op, ; )
613 s Jx . 613
Fl) = glied) ) ([ P, i A, + e 40 ([ > (C.13)
Z[ ) énlie zi
and the coefficients jgﬂ and jéﬁ as in Egs. (47), (B.53) and (B.54) can be
obtained:
£l = ) Py, E . dn, . £ = 40 (¢ 0. . )jz (C.14)
i3]3 ag ] ¢x,1x n,i, 77"’:12 i3/3 ‘ Xpix Pxy )y
5ie) nyig sie)

and the non-dimensional parameter y, :,ﬂobﬂl of Eg. (53) is the same as in the
Ritz method.

Appendix D. Nomenclature

Ax,Ay in-plane rigidity parameters of the orthotropic plate

A, in-plane rigidita parameter of the reference isotropic plate

A;,A; non-dimensional in-plane rigidity parameters of the
orthotropic plate

a,b rectangulare plate dimensions

ay, by, non-dimensional parameters

aj; coefficients of the non-dimensional Airy function series
expansion

D, flexural rigidity modulus of the reference isotropic plate

D, torsional rigidity modulus of the orthotropic plate

D; non-dimensional torsional rigidity modulus
of the orthotropic plate

D,D, flexural rigidity moduli of the orthotropic plate

38



* * *
x1 Py

EU/ EJ

xr =y

ny = gxyh

*

GAxl GAyl ny

N, Ny, Ny,

Tab

non-dimensional flexural and torsional rigidity

parameters of the orthotropic plate

Young’s moduli of the orthotropic plate along the fibers

direction and the perpendicular one, respectively

Young’s moduli of the orthotropic plate along the axes

x and y, respectively
Young’s modulus of the isotropic reference plate

in-plane shear rigidity modulus of the orthotropic plate

resultant in-plane shear rigidity modulus

nondimensional resultant in-plane shear rigidity parameters

plate thickness

stiffness matrix elements

elements of the linear structural and aerodynamic forces

resultant matrix

nondimensional parameter L/a

in-plane and out-of-plane reference lengths
Mach number

mass matrix elements

in-plane membrane stresses

non-dimensional ratio a/b between the plate dimensions
time symbol

supersonic flow speed

non-dimensional displacements along the axes x,y,z

coefficients of the non-dimensional displacements series

expansions

displacements along the axes x,),z

plate reference system axes
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Greek symbols
Ay, ﬂll 7N
all’ ﬁll’ }/as

B

YVsVas7b

ny, Vyxl VU.J' V.JU

&n

o

?;

Xiy Xiy Xiy

7

Special symbols

0

3) 4
d zg'k)) d sz; eijkt» Mgk

flexural and torsional rigidity non-dimensional parameters

in-plane extensional rigidity non-dimensional parameters

non-dimensional parameter equal to Alim -1

non-dimensional parameters
Kronecker’s delta
utilized matrix elements

non-dimensional parameter in the flutter vibration equation

Poisson’s moduli

non-dimensional coordinates of the in-plane reference system

non-dimensional dynamic pressare
non-dimensional time

generic element in the non-dimensional Airy function series

expansion

generic elements of the displacements series expansion

non-dimensional Airy function

partial differentiation

tensor elements

generic integral

utilized matrices

in-plane and out-of-plane stiffness and mass matrices

out-of-plane structural and aerodynamic forces matrix
in-plane and out-of-plane Lagrangian degrees of freedom

utilized column vectors of the displacements U ,V , W
series expansions coefficients

utilized column vectors containing double and triple products
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sin( )cos( )tan( )

Subscripts
i J

iy juky s iy Jyky
iy Jw

ik, s iy Jaky

i3 j3k3

Iy

lex]exl le

l,m,nl

U,u

Superscripts

between coefficients of W series expansions
trigonometric functions

non-dimensional kinetic energy expression

non-dimensional strani energy expressions due to linear, mixed

and non-linear structural forces

subscripts with generic meaning

subscripts referring to U,V,W , respectively, in the series

expansions

subscripts referring to the Lagrangian degrees of freedom

corresponding to U,V,W , respectively
subscript referring to a grid point of an element of FEM model

subscript referring to one of four degrees of freedom of an
unknown variable

subscripts referring to the generic ieth element in

FEM model

subscripts referring to the linear,mixed and non-linear
structural forces

subscripts referring to the fibers direction and
its perpendicular one

superscript referring to the generic ieth element

superscript referring of one of the three unknown variables

u,v,w

supescripts referring to the in-plane and out-of-plane
situation

superscipts referring to operations on U,V,W
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