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Abstract 

 

 

    It is of paramount importance to know the post-critical flutter behaviour of 

both orthotropic and isotropic plates in high supersonic flow to individuate the 

stability conditions of aircraft panels at very high speeds. The amplitude of 

the limit cycle fluttering plate can characterize the resistence of the panel to 

air flow at supersonic speeds, because the smaller this amplitude is, the higher  

this resistence is to the flutter phenomenon. 

   In the present work three different methods have been utilized for the 

integration on the panel surface to obtain a system of differential equations in 

time, which integrated by appropriate algorithms give the vibrating plate 

behaviour vs the time. Thus it is possible to determine with each method the 

permanent solution in post-critical conditions. 

   The knowledge of the flutter behaviour of a vibrating plate is useful also 

for multi-layered composite laminates, because it is well known that the dynamic 

analysis of a nearly symmetric and balanced composite vibrating structure can be 

simulated by an equivalent orthotropic plate, with appropriate values of its 

thickness and elastic parameters.   

 

 

1. Introduction  

 

    Post-critical flutter behaviour of plates and shells under high supersonic 

flow has been a research subject for several authors, because of its particular 

importance for aerospace applications.     

    Von Karman’s large deflection theory [1], which takes into account the 

presence of non-linear structural forces, has been employed by every author, 

together with the quasi-steady first order high supersonic theory [2]. The 

Galerkin method [3,4] has been utilized from Dowell [5,6] and Shiau et al. [7], 

and also the Rayleigh-Ritz method [3,4,8]  by Ketter [9] and Eastep et al. [10], 

for the integration on the panel surface, and thus to reduce the mathematical 

problem to a system of non-linear ordinary differential equations in time, which 

are solved by numerical integration. Then other authors utilized the finite 

element method (FEM) [11,12] to integrate on the plate or shell surface and to 

derive a system of ordinary equations in-time [13-15]. Also the presence of 

piezoelectric actuators has been considered in  the analysis of the fluttering 

panel dynamic behaviour, utilizing FEM, to suppress the non-linear panel flutter 

presence [16,17]. Further the effects due to the presence of thermal loads have 

also been taken into account [13,15,17].   

 

    The main purpose of the work focuses on setting-up particular procedures, 

based on the classical and well known Galerkin, Ritz and FEM methods, to 

integrate on the panel surface and derive ordinary differential equations in 

time. 
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   First the classical Galerkin method has been utilized as in the Dowell’s 

model [5,6]. Then by applying FEM and the Ritz procedures [18-20] the Lagrangian 

functional expression has been formed, and from the variational principle [21], 

a system of ordinary differential equations in time is obtained. From the in-

plane constitutive equations the dependence of the membrane dispacements on the 

out-of-plane one is evaluated. By substituting these dependence relations into 

the flutter constitutive equations, further vibration equations, where the alone 

in-time variable is the out-of-plane displacement, are derived in all the three 

methods. Thus the subsequent in-time integration operations are simplified. 

   

     In this paper also cases with in-plane boundary conditions, different from 

the out-of-plane ones, have been considered. For this reason in the Galerkin 

method two different models have been utilized; the first one employs the Airy 

function [22] to arrive at the classical von Karman’s equations [1,22], while 

the second one considers the in-plane displacements behaviours as unknown 

variables. 

   If FEM or Ritz procedures are utilized the same model can be employed, with 

the presence of a parameter, which takes into account the different in-plane 

geometric boundary conditions.  

 

   It is well known that the dynamic behaviour of a nearly symmetric and 

balanced multi-layered laminate can be simulated by an equivalent orthotropic 

plate, with appropriate values of the thickness and of the elastic parameters 

[23,24]. It is then important to determine the influence of these 

parameters on the post-critical limit cycle amplitude, because this can be 

indicative of the resistence of the composite structure panel to air flowing at 

supersonic speeds.                           

 

    A detailed description of the utilized Ritz and FEM procedures are shown in 

Appendices B and C, whereas the utilized elements of the series expansion of the 

Airy function in the free in-plane boundary conditions are introduced in 

Appendix A for the Galerkin method.   

 

 

 

2. Mathematical model  

 

  A generic orthotropic plate exposed to a supersonic flow is shown in Fig. 1.  

  

First the Galerkin method will be utilized to simulate the dynamic behaviour 

throughout the panel surface 

        

2.1 The Galerkin Method  

   

    For the in-plane boundary conditions two different cases first will be 

considered. 

 

1) A simply supported plate for the out-of-plane behaviour is supposed,  
but with the in-plane free borders, that is the membrane stresses vanish on   

the limit edges: 

                       0 xN           0 yN           0 xyN                  (1) 

 

    Since the in-plane inertial forces are neglected, in this particular case it 

is better to utilize the Airy function [22], to descrive the in-plane dynamic 

behaviour and satisfy easily the boundary conditions (1). The in-plane 

compatibility relations [22], taking into account the in-plane elasticity 

relations of an orthotropic plate  [23], together with the relations of the 

membrane stresses dependence on the Airy function [22], lead to the following 

classical von Karman’s first constitutive equation [1,6,22], properly modified 

for an orthotropic plate: 
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where � �tyx ,,I  is the Airy function divided by the plate thickness h. Equation 

(2) can be rewritten in dimension-less form as: 
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where, if rE  is the Young’s modulus of the reference isotropic plate, the Airy 

function, together with the in-plane coordinates and the flexural displacement, 

have been reformulated in non-dimensional form: 

 

                     
2LEr

I
\       

a

x
 [     

b

y
 K       

wL

w
W                 (3b) 

        

and also the following non-dimensional parameters have been introduced: 
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        The repeated indices rule will be utilized for the formulae in the 

paper. A series expansion is chosen for � �WK[\ ,, : 

 

                              � � � � ),(,, K[MWWK[\
\\ iia                          (4) 

 

where W  is the non-dimensional time, which will be defined in equation (11c), 
and each element � �K[M

\
,i

 can be written as:  

 

                               � � � �KM[MK[M
\\\ yx iii )(,                            (5) 

    xx Ni \\ ....,21    yy Ni \\ ....,21   � � yyx iNii \\\\ �� 1    \\ Ni ....,21   
yx NNN \\\          

 

and � �KM[M
\\ yx ii ),(  are orthonormal describing functions, which vanish with their 

first derivatives at the plate borders, so that, taking into account the 

membrane stresses dependence on the Airy function [22], the boundary conditions 

in equation (1) are satisfied. These are treated in Appendix A. 

   Also for the flexural displacement a series expansion is chosen, which 

satisfy the boundary conditions of a simply supported plate:  

 

                               � � � � � �K[FWWK[ ,,,
WW iiWW                           (6)       

 

where each function element � �K[F ,
Wi

 can be written as:  

 

                              � � � � � �SKS[K[F WyWxi ii
W

sinsin,                      (7a) 
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where 

 

  WxWx Ni ....,21   
WyWy Ni ....,21   � � WyWyWxW iNii �� 1   WW Ni ....,21    

WyWxW NNN    (7b) 

 

     If the series expansions of equations (4) and (6) are substituted into 

equation (3a), which is pre-multiplied by the generic element 
mM of the Airy 

function series expansion and integrated, the following relation is derived:: 
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and: 
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taking into account that the integrals extend over the whole nondimensional 

surface 6  of the fluttering plate � �10;10|| dddd 6 K[K[ddd .   

 

    The matrices with elements � �MM
\mi

I  and 
� �FFM

WW jmi
I   are introduced and denoted by 

� �> @MM
I  and � �> @FFM

I  (in this second matrix the two indices WW ji ,  have been 

contracted in an alone 2Wci ), whose dimensions are \\ NN u  and 2
WNN u\ , 

respectively, together with the column vectors > @A  and � �> @2
W , whose elements are 

\i
a  and the product � �

WWWc
jii

WWp  2

2
, with dimensions \N  and 2

WN , respectively. 

Thus equation (8a) can be rewritten in matrix form:   

 

 

                                  > @ > @ � �> @2
WZA                                (9a) 

 

 

where the matrix > @Z  expression reads:       

                                                                                      

                           > @ � �> @ � �> @
r

yx

E
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IIZ
�

                        (9b) 

 

 

whose elements are denoted by 
2Wcmi] .     

    The out-of-plane translational equilibrium relations [22], together with the  

elasticity relations between flexural-torsional moments and bending-twisting 

curvatures for orthotropic plates [23], according to the Kirchoff theory [22], 

and taking into account the membrane stress dependence on the Airy function 

[22], give the second von Karman’s constitutive equation of the flutter 

vibration [1,6,22], properly modified for an orthotropic plate:   
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where the dependence of the membrane stresses on I  is the same of equation (2), 
and zp  is the aerodynamic force per unity length, which according to the 

first order “Piston Theory’ [2][5] is equal to: 
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with  122 � achME  and aU  is the high supersonic flow speed, 22 /aUq U  is the 

air flowing dynamic pressure, and: 
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are the orthotropic plate flexural-torsional rigidity parameters. 

 Eq.(10a) can be rewritten in non-dimensional form, as:   
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and 
rD  is the flexural rigidity modulus of the isotropic fluttering reference 

plate. 

   Equation (11a) is pre-multiplied by the generic element � � � �SKS[F yxm mm sinsin  

of the out-of-plane displacement W  series expansion in Eq. (7.a), and taking 

into account the properties of the trigonometric functions, for which it is true 

that: 
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the following relation is obtained:  
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    The coefficients 
\i

a  are connected with the products of the coefficients of 

out-of-plane displacement series expansion in equation (6), by the relation 

(9a), and if 
2Wcii\

]  is the generic element of the matrix > @Z , it follows that: 

 

 

                               
22 WcWc iiii pa
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and thus the last term in equation (13a) becomes:    
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    Then equation (13a) can be also written in matrix form: 
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where > @W  is the column vector of the series expansions coefficients of the 

out-of-plane displacement, � �> @3
W  is the column vector with elements the triple 

products of the same coefficients � �
WWWWc
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WWWp  3

3
 =

2WcW ji pW  ( 3Wci  is the 
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     Thus a system of non-linear differential equations in time is obtained, 

with  W  as alone unknown variable, which can be integrated by appropriate 

algorithms.  

 

   2) A second case of plate likewise simply supported at the borders for the 

out-of-plane behaviour, but clamped at the four edges for the in-plane 

displacements, so that in place of Eq. (1) there are the boundary conditions for 

in-plane displacements:  

 

                         0 u           0 v                       (17)           

 

    In this case it is not convenient to utilize the Airy function, but set-up 

the in-plane constitutive equations utilizing the functions of the displacements 

along the axes x  and y . The equilibrium equation along the axis x [22], taking     

into account the elastic dependence of the membrane stresses of an orthotropic 

plate on the in-plane strain [23] and the kinematic relations [22], give the 

following constitutive equation:  
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where, like in the case of the in-plane free plate, the in-plane inertial forces 

are neglected. Equation (18) can be rewritten as:   
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where together with 
wLwW / , as in Eq. (3b), also the in-plane displacements 

vu,  have been reformulated in non-dimensional form:  
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considering that the order of magnitude of the in-plane displacements vu,  is the 

same of 
2w , so that the same order corresponds to WVU ,, . 

    We choose also for the in-plane displacements an appropriate  series 

expansion to be employed with Galerkin method:  

 

                � � � � � �K[FWWK[ ,,,
UU iiUU        � � � � � �K[FWWK[ ,,,

VV iiVV             (20a) 

     

where: 

           � � � � � �SKS[K[F UyUxi ii
U

sinsin,          � � � � � �SKS[K[F VyVxi ii
V

sinsin,         (20b)  

        

   VxUxVxUx NNii ,....,, 21   
VyUyVyUy NNii ,....,, 21   � � VyUyVyUyVxUxVU iiNNiiii ,,,, �� 1      

       VUVU NNii ,....,, 21    VUVU NNii ,....,, 21    VyUyVxUxVU NNNNNN ,,, u      (20c) 
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    For practical reasons it is convenient to choose VxUx NN  , 
VyUy NN   and 

consequently VU NN  . Equation (19a) is pre-multiplied by 

� � � � � �SKS[K[F yxm mm sinsin,   and integrated, and the following relation is derived:  
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    The matrices � �> @2Ux
I , � �> @Vxy

I  and � �> @2Uy
I , with dimensions UU NN u , whose elements 

are � �2Ux
miU

I , � �Vxy
miV

I  and � �2Uy
miU

I  respectively, are then introduced, together with the 

matrices � �> @2WxWx
I , � �> @WyWxy

I  and � �> @2WxWy
I , with dimensions 

2
WU NN u , whose element 

are � �2

2

WxWx
miWc

I , � �WxWxy
miWc2

I  and � �2

2

WxWy
miWc

I , where 2Wci  is the contraction of the indices 

WW ji , . If also the column vectors > @U  and > @V , whose elements are the series 

expansions coefficients 
Ui

U and 
Vi

V , respectively, are introduced, and we recall 

the previously utilized column vector � �> @2
W , Eq. (21a) can be rewritten in 

matrix form:           

 

       
� �> @> @UI

22 Ux
aJ + � �> @> @VI

Vxy
byx
2JQ +

� �> @ � �> @222
WI

WxWx
aJ + � �> @ � �> @22

WI
WyWxy

byxJQ                               

                                   

                  
� �> @> @ � �> @> @ � �> @ � �> @ � �> @ � �> @^ ` 022222  ���� WIWIUIVI

WxWyWyWxyUyVxy
bAxG J      (22)           

 

    The constitutive equilibrium equation along the axis y  can be written in 

dual form:  
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� �> @ � �> @222
WI

WyWy
bJ + � �> @ � �> @22

WI
WxWxy

axyJQ  

 

                    � �> @> @ � �> @> @ � �> @ � �> @ � �> @ � �> @^ ` 022222  ���� WIWIVIUI
WyWxWxWxyVxUxy

aAyG J     (23) 

 

where:  yxyAy AGG /  and � �yxxyyy hEA QQ� 1/ . 

    Then the following matrices are introduced: 

                            

         

                    � �> @ � �> @ � �> @2222 Uy
bAx

Ux
a

UU G IIP JJ �    

                                                                                          

                    � �> @ � �> @� �Axyx
Vxy

b
UV G� QJ IP

2                                   (24) 

 

                    � �> @ � �> @ � �> @ � �> @ � �> @^ `22222 WxWyWyWxy
bAx

WyWxy
byx

WxWx
a

UW G IIIIP ��� JJQJ   
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and: 

 

 

                    � �> @ � �> @ � �> @2222 Vx
aAy

Vy
b

VV G IIP JJ �  

                                                                              

                    � �> @ � �> @� �Ayxy
Uxy

a
VU G� QJ IP

2                                   (25)   

 

                    � �> @ � �> @ � �> @ � �> @ � �> @^ `22222 WyWxWxWxy
aAy

WxWxy
axy

WyWy
b

VW G IIIIP ���, JJQJ   

 

 

so that Eqs. (22) and (23) can be newly rewritten as:  

 

 

                        
� �> @> @ � �> @> @ � �> @ � �> @ 0 �� 2

WPVPUP
UWUVUU   

                                                                            (26) 

                        � �> @> @ � �> @> @ � �> @ � �> @ 0 �� 2
WPVPUP

VWVVVU   

 

 

     Then the following matrices are introduced: 

 

 

             

                         � �> @ � �> @ � �> @ � �> @ � �> @VUVVUVUUUU
PPPPQ

1�
�  

                                                                            (27) 

                         
� �> @ � �> @ � �> @ � �> @ � �> @UWVWVVUVUW

PPPPQ � 
�1

 

 

 

and their dual ones: 

 

 

                         � �> @ � �> @ � �> @ � �> @ � �> @UVUUVUVVVV
PPPPQ

1�
�    

                                                                            (28) 

                         
� �> @ � �> @ � �> @ � �> @ � �> @VWUWUUVUVW

PPPPQ � 
�1

 

 

 

    so that equations (26) can be also written as: 

 

 

                                 > @ � �> @ � �> @2
WRU

UW  

                                                                           (29a) 

                                 > @ � �> @ � �> @2
WRV

VW  

 

 

where: 

                
� �> @ � �> @ � �> @UWUUUW

QQR
1�

     and     � �> @ � �> @ � �> @VWVVVW
QQR

1�
         (29b)          

 

 

 

    The out-of-plane translational von Karman’s equilibrium equation (10a), if 

the Airy function is not utilized and the elastic dependence of the membrane 

stresses on the in-plane strain [23] of an orthotropic plate  and the kinematic 

relations [22] are considered, becomes [7]:  
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where the expression of zp  has been given in Eq. (10b). The same foregoing 

equation can be rewritten in dimension-less form: 
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where both the displacements and the in-plane coordinates have been reformulated 

in non-dimensional form, as in Eqs. (3b) and (19b), and further the same 

dimension-less parameters of Eqs. (11b-c) and (19b) have been utilized, with 

also:  

                    
2

4

aD

LA

r

x
a  D         

2

4

bD

LA

r

y
a  E         

abD

LG

r

xy
as

4

 J             (31b) 

 

    The same series expansions for W  and VU ,  of equations (6) and (20a) are 

choosen,and, according the Galerkin method, Eq. (31a) is pre-multiplied by 

� � � � � �SKS[K[F yxm mm sinsin,   and integrated, so that, taking into account Eq. (12), 

the following relation is obtained:  
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     WNm ....,21           (32a)            

 

where the in-time derivatives, the parameter 
4
3Wi  and the integral � �FF

Wmi
I have been 

previously defined in Eq. (13b), and further:   
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    There are within square brackets terms as 
Ui

U  and 
Vi

V , which are connected 

with the product 
WWWc kjj WWp  

2
 (as above mentioned 

2Wcj  is the contraction of 

the two indices Wj  and Wk ), by the relations: 

 

 

                  � �
WWWcUU kj

UW
jii WWrU

2
              � �

WWWcVV kj
VW

jii WWrV
2

             (33) 

 

 

where � �UW
ji WcU

r
2
 and � �VW

ji WcV
r

2
 are elements of the matrices � �> @UW

R  and � �> @VW
R , as in 

equations (29a). Thus all the elements within square brackets in equation (32a) 

contain products as 
WWWWc kjii WWWp  

3
 ( 3Wci , as above mentioned, is the 

contraction of WW ji ,  and Wk , or Wi  and 2Wcj ), and consequently their sum is 

equal to one term: 

 

 

                                   
WWWWc kjimi WWWt

3
                           (34) 

 

 

    Thus if the matrix with elements 
3Wcmit  is introduced and denoted by > @T , 

equation (32a) can be rewritten in matrix form: 

 

 

                   > @ > @ > @ > @> @ > @ � �> @034
3  ���� WTWHWWW Wi��� V-                      (35)  

 

 

as in equation (16a), for which there exist appropriate algorithms for 

integration in time.  
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2.2 Ritz and FEM procedures  

 

 

    Also a procedure which arises from the Rayleigh-Ritz method, together with 

the FEM [18-20], can be utilized to find a solution of the problem, as for a 

beam fluttering case [20]. 

    Both procedures arise from differential operations on an energetic 

functional, whose stationary conditions lead to the dynamic constitutive 

equations. Since with FEM or Ritz method one is not obliged to satisfy the 

natural boundary conditions in the free in-plane plate case, as in Eq. (1), the 

same model can be utilized in both fluttering plate cases, but a parameter, 

which takes into account the different in-plane geometric boundary conditions, 

has to be introduced, as it will be shown in the Appendices B and C. 

    The strain energy expression of the in-plane and out-of-plane linear 

structural forces can be written in the classical form:  

 

                  � � � � � � � �in
j

in
i

in
ij

in
l qqk

2

1
 U           � � � � � �op

j
op
i

op
ij

op
l qqk

2

1
 U               (36) 

 

where � �in
ijk  and � �op

ijk  are the in-plane and out-of-plane stiffness matrix elements 

of the orthotropic plate, which have been determined for the Ritz procedure and 

FEM, in Appendices B and C, respectively, while � �in
iq , � �in

jq  and � �op
iq , � �op

jq  are in-

plane and out-of-plane d.o.f. of both methods, whose meaning is illustrated in 

the same above mentioned Appendices.    

 Also the contribution of the mixed and non-linear structural forces to the 

in-plane strain energy  can be evaluated and expressed as:   

 

              � � � � � � � � � �op
k

op
j

in
iijk qqq3

2

1
d in

mU            � � � � � � � � � � � �op
l

op
k

op
j

op
iijkl qqqq4d

2

1
U in
nl          (37) 

 

    

where � �3
ijkd  and � �4

ijkld  are tensor elements, determined in Appendices A and B, for 

Ritz procedure and FEM, respectively. 

    The in-plane and out-of-plane kinetic energy expressions can be written in 

the classical form: 

 

 

                  � � � � � � � �in
j

in
i

in
ij qqm ��

2

1
 inT           � � � � � � � �op

j
op

i
op

ij qqm ��

2

1
 op

T              (38) 

 

 

where � �in
ijm  and � �op

ijm  are in-plane and out-of-plane mass matrix elements, 

evaluated for both methods in the above mentioned Appendices. 

    The Lagrangian L  functional is introduced: 
 

 

                      
� � � � � � � � � � � �in

nl
in
m

op
l

in
l

opin UUU-U-TTL ���                    (39) 

 

 

    Thus the generic th-i  in-plane constitutive equation, corresponding to the 

d.o.f. � �in
iq , can be determined [21]:  

 

 

                              
� �� �

� � 0 
w

w
�

ww
in

i

in
i

qd

qd L

W
�L/

                            (40) 
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which, if equations (36), (37) and (38) are taken into account, gives:  

 

 

                             � � � � � � � � � �
0

2

1 3  � op
k

op
jijk

in
j

in
ij qqqk d                         (41) 

 

considering that, as in Galerkin model, the in-plane inertial forces have been 

neglected.  

 

    The in-plane stiffness matrix 
� �> @in

K   with elements 
� �in
ijk  and the matrix 

� �> @3
D  

with elements � �3
c2

d
ij

, where 2cj  is the contraction of j  and k , are introduced, 

And the column vectors 
� �> @in

Q  and 
� �> @op,2

Q , of the in-plane degrees of freedom and 

the products between out-of-plane degrees of freedom � � � � � �op
k

op
j

op
j

qqp
c

 
2

, 

respectively, are introduced too. Then equation (41) can be written in matrix 

form: 

 

 

                             � �> @ � �> @ � �> @ � �> @ 0
2

1 23  � ,opinin
QDQK                       (42) 

 

which can be written also as: 

 

                            

                                  
� �> @ > @ � �> @2,opin

QHQ                            (43a) 

where:                           

                                 > @ � �> @ � �> @3DKH
1

2

1 �
� in                          (43b)   

 

 

which is similar to Eqs (29a).  

    Thus the generic in-plane degree of freedom is connected with the out-of-

plane degrees of freedom by the relation:                            

  

 

                             
� � � � � � � �op

k
op
jijk

op
jij

in
i qqqq

cc
hh   

22
                       (44)        

 

 

where  
c2ij

h  are elements of the matrix > @H  if the multiple indices symbolism is 

returned.     

    Also the generic th-i  out-of-plane dynamic constitutive equation can be 

determined by the same differential operation as in Eq. (40), but with 
� �op
iq�  and 

� �op
iq  in place of 

� �in
iq�  and 

� �in
iq , and similar relations are  obtained, but with the 

presence of external generalized forces in the numerical model: 

 

            

            
� � � � � � � � � � � � � � � � � � � � � � � �

02
43  ���� a

i
op

l
op

k
op
jijkl

op
k

in
jjik

op
j

op
ij

op
j

op
ij Fqqqqqqkqm dd��             (45) 

 

 

where � �a
iF  are the generalized aerodynamic forces acting on the d.o.f. � �op

iq , 

depending on the aerodynamic force zp  per unity surface, introduced in 

Eq.(10b), which has been obtained by the “Piston Theory” [2][5]. This is formed 
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by the component � �xa
iF
,  with derivative with respect to x , responsable for 

coupling between different natural vibrating modes, and the damping component 

� �ta
iF
,  with time derivative, as follows: 

 

                                
� � � � � �ta

i
xa

i
a

i FFF ,, �                             (46)  

 

like zp  in equation (10b). These components can be written as:  

 

                         � � � � � �op
j

x
ij

xa
i qF f ,         

� � � � � �op
j

t
ij

ta
i qF �f ,                 (47) 

 

where the coefficients � �x
ijf  and 

� �t
ijf  have been evaluated for both methods in the 

above mentioned Appendices. 

     In the third term of equation (45) the in-plane generic degree of freedom 

� �in
jq   is connected with the out-of-plane degrees of freedom by the relation (44) 

which can be written also as: 

 

 

                                  
� � � � � �op

m
op

ljlm
in
j qqq h                           (48)     

 

 

      Then this term then becomes: 

 

 

                                 
� � � � � � � �op

k
op

m
op

ljlmjik qqqhd 3                           (49) 

 

 

which can be also written as: 

 

 

                                  
� � � � � �op

k
op

m
op

liklm qqqe                             (50) 

 

 

because, taking into account the repeated indices rule for tensor elements, it 

is true that: 

 

 

                                  
� �

iklmjlmjik ehd o3
                            (51) 

 

 

     Then Eq. (45) becomes: 

 

 

          
� � � � � � � � � �� � � � � � � � � � � � � � � � � �

02
4  ���� op

l
op

k
op
jijkl

op
m

op
l

op
kiklm

op
j

op
ij

op
j

t
ij

op
j

op
ij qqqqqqqkqqm def

*
���     (52a) 

 

 

where the elements:  

                               � �� � � � � �x
ij

op
ij

op
ij kk f� 

*
                           (52b) 

 

 

take into account both the linear out-of-plane structural and aerodynamic 

coupling forces [18]. The out-of-plane mass matrix 
� �> @op

M  and the aerodynamic-
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structural forces matrix 
� �> @*op

K  are introduced, together with the non-linear 

forces matrices > @E and 
� �> @4D , with elements 

3cije  and � �4

3cij
d  ( 3cj  is the contraction 

of the three indices mlk ,,  or lkj ,, ). The column vectors 
� �> @op

Q  of the out-of-

plane degrees of freedom 
� �op
iq , and 

� �> @3,op
Q  containing the products 

� � � � � � � �op
m

op
l

op
k

op
j

qqqp
c

 
3

 or � � � � � � � �op
l

op
k

op
j

op
j

qqqp
c

 
3

, are introduced too. The elements 
� �t

ijf  of 

the damping aerodynamic forces are proportional to the out-of-plane mass matrix 

elements � �op
ijm  [20]:   

                                    � � � �op
ijd

t
ij mJ f                              (53) 

 

and the matrix with elements 
� �t

ijf  is coincident with the out-of-plane mass 

matrix 
� �> @op

M , but a scale factor dJ , as shown in Appendices B and C, for Ritz 

and FEM methods, respectively. Thus equation (52a) can be rewritten in matrix 

form: 

 

 

               � �> @ � �> @ � �> @^ ` � �> @ � �> @ > @ � �> @^ ` � �> @ 0
34

2  ��� � ,* op
d

opopop
QDEQKQQM

opop ��� J          (54)           

             

 

    A non-linear equations system is obtained, similar to the one in equation 

(35), which likewise can be integrated by good appropriate algorithms. 
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Fig. 1. Plate exposed to an air      

flowing at supersonic speed.        .  

 

 

 

 

 

 

 

    

 

   
   

Fig. 2.  A particular grid mesh of the FEM model. 
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Table 1 

Values of 
yx ii pp

\\
, and dN , pN  vs yx ii \\ ,  

     yx ii \\ ,     
yx ii pp

\\
,       dN       pN  

      1   4.712389   3.829886  

      2   7.853982    17.923313 

      3  10.995574   86.324865    

      4  14.137167    415.2424  

      5  17.278760  1997.5148  

      6  20.420352    9608.99 

      7  23.561945  46223.87  

      8  26.703538    222358.8966

 

 

 

 

 

 

 

Table 2  

Values of xi , yi  vs ci  and di  

 ci         1       2      3             4 

 di   1  2  3  4  1  2  3  4  1  2  3  4  1  2  3  4

 xi   1  2   1  2  3  4   3  4  3  4   3  4  1  2   1  2 

 yi   1  1   2  2   1  1   2  2  3  3   4  4  3  3   4  4 
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Appendix A 

 

 

     The constitutive elements of the non-dimensional Airy function � �K[\ ,  in 

Eq. (4), are formed by two separate components, depending on [  and K , 
respectively: 

 

                           � � � �KM[MK[M
\\\ yx iii )(,                            (A.1)           

  

 

  where both components � �[M
\xi

 and � �KM
\yi

 vanish at the rectangular edges, along  

with their first derivatives:  

 

                 � � � � � � � � � � � �1100 ''
xxxx iiii \\\\
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    because, taking into account the membrane stresses dependence on the Airy 

function [22], the in-plane boundary conditions in Eq. (1) are satisfied. For 

convenience functions are utilized which satisfy further conditions: 
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    Consequently the expressions of 
xi\

M can be written as: 
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    where:  
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    and similar for 
yi\

M , with 
yi

p
\
 in place of 

xi
p
\
and K  in place of [ . The 

conditions in Eq. (A.2) referring to the first derivatives, are satisfied if it 

is taken into account that:  
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    for the values utilized of 
yx ii pp

M\
, .  

 

    The values of 
yx ii pp

\\
,  connected with yx ii \\ , , together with dN , pN , are 

summarized in Table 1, for 821 ...,,  yx ii \\ . 

 

 

Appendix B 

 
    The numerical approach, based on the Rayleigh-Ritz method, has to be 

explained. Series expansions for non-dimensional in-plane displacements 

functions ),,( WK[U  and ),,( WK[V  can be chosen: 
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11210 �� VxUxVxUx NNii ,....,,,   11210 �� VyUyVyUy NNii ,....,,,   1�� VyUyVyVxUyUxVU iiNiNiii ,,,    

   

                 VUVU NNii ,....,, 21       VyUyVxUxVU NNNNNN ,,, u            (B.1c)           

 

 

and for the out-of-plane non-dimensional displacement ),,( WK[W : 

 

                            � � � �K[FWWK[ ,),,(
WW iiWW                         (B.2a) 

 

where: 
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as in Eq.(7b). 

    It is evident that the series expansions elements of U  and V  in Eq. (B.1a) 
satisfy only the geometric boundary conditions, as in the Ritz method [3][4][8]. 

In fact if 0 pi  there are not particular geometric in-plane boundary conditions 

to be satisfied for U  and V , and this corresponds to the first case with in-

plane free edges of the rectangular orthotropic plate, whilst for 1 pi  both 

displacements vanish at the plate borders, as requested by the geometric 

boundary conditions of the in-plane clamped panel. Concerning W  the series 

describing elements in Eq. (B.2a) satisfy the geometric boundary conditions, for 

which it vanishes at the rectangular delimiting edges; this series expansion is 

coincident with the ones of U  and V  with 1 pi .  

   As in Galerkin method it is convenient to choose VxUx NN   and VyUy NN  , so 

that it is true that VU NN  . Therefore the generic degree of freedom iq  can be 

defined as: 
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    The in-plane elasticity costitutive equations of an orthotropic plate are 

well known [22], and also the corresponding kinematic relations, from which it 

is possible to determine  the in-plane strain energy expression:                         
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which, divided by the flexural rigidity parameter � � 23 0901 hAhED rrr  � ./  of the 

reference isotropic plate, can be re-written in non-dimensional form: 
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      where the in-plane coordinates and all the displacements have been 

reformulated in non-dimensional form: 
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as in Eqs. (3b) and (19b), together with  the in-plane rigidity parameters: 
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taking into account that the surface element dS  is connected with the 

corresponding non-dimensional one 6d  by the following relation:  

 

                           6   abddabddxdydS K[                           (B.5d)  

 

and further the following non-dimensional parameters have been introduced: 
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  Thus the contribution to the in-plane strain energy only of the linear 

structural forces, is derived by retaining only the terms with U  and V , which 
in dimension-less form reads: 
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           Thence, if series expansions in Eq. (B1) are taken into account, it        

is possible to evaluate the integrals:  
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    The first term between the first brackets disappears if 0 pi , and 0 Uxi  or 

0 Uxj , and the following one if both indices vanish.  Its dual integral can be 

easily determined:      
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where the first term between the second brackets disappears if 0 pi , and 0 Vyi  

or 0 Vyj , and the following one disappears if both indices vanish.   

    The mixed product of the coupling term of the in-plane energy expression 

(B.6a) has to be considered, for which it is necessary to evaluate the following 

integral:                  
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where the first term between the first brackets disappears if 0 pi  and 0 Uxi , 

and the same between the second brackets disappears if  0 pi  and 0 Vyj .   

     The mixed product of the shear term of the in-plane strain energy 

expression (B.6a) leads to the the following integral: 
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where the first term between the first brackets disappears if 0 pi  a 0 Vxj , and 

the same between the second brackets disappears if  0 pi  and 0 Uyi .   

 

    In the same way by the series expansions in Eq.(1) two other integrals in 

the shear term of the strain energy expression (B.6a), can be determined: 
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where the first term between the second brackets disappears if 0 pi , and 0 Uyi  

or 0 Uyj , and the following one disappears if both indices vanish, and also: 
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with:                                     
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    where the first term between the first brackets disappears if 0 pi , and 

0 Vxi  or 0 Vxj , and the following one if both indices vanish.   

 

    If the in-plane strain energy expression in the classical form in Eq. (36) 

is considered, and taking into account the integrals previously evaluated, the 

in-plane stiffness matrix elements can be determined: 
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    Finally the symmetry of this in-plane stiffness matrix has to be imposed: 

 

 

                                    
2112 jiij kk                              (B.14) 

 

which corresponds to the second element in the double mixed product of the 

coupling and shear terms of the in-plane strain energy expression (B.6a). 

      

    Then the contribution to the in-plane strain energy due only to the mixed 

structural forces (linear together with non-linear) has to be considered. In the 

complete in-plane strain energy expression (B.5a), if only the terms containing 

the out-of-plane displacement W , together with  U  and V , are taken into 
account, the following non-dimensional energy expression is derived:   
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    First it is necessary to evaluate the square of derivatives:   
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where: 
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    Then the following integrals can be evaluated: 
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     The first terms between the first brackets in Eqs. (B.18b) and (B.19b)    

disappear if 0 pi  and 0 Uxi , while the first terms between the second beackets 

in Eqs. (B.20b) and (B.21b) disappear if 0 pi  and 0 Vyi . 

 

     Also the mixed product must be considered: 
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where: 
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                       122 �� Wxix it ,               122 �� Wyiy it ,           (B.22b)           

                       13 � Wxix it ,                 13 � Wyiy it ,  

  

 

which allow to determine the integrals in the shear contribution to the in-plane 

strain energy expression of mixed forces, in Eq. (B.17), as: 
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    Thus the tensor elements corresponding to the in-plane strain energy 

contribution of the mixed forces, introduced in Eq. (37), can be evaluated: 
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    At last the contribution of only non-linear structural forces has to be 

taken into account. Retaining only the terms containing the displacement W  in 

the in-plane strain energy expression (B.5a), gives this contribution in non-

dimensional form, as follows:   
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    The fourth power of the derivatives has to be evaluated:  
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where the meaning of the coefficients ojkxc , , pjkxc , , 
qs  and rs , has been 

illustrated in Eq. (B.16b). Also the square power of the other derivative can be 

determined: 
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with the same meaning of the above mentioned coefficients, as in Eqs. (B.16b) 

and (B.17b), together with the mixed products: 
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      Thus the following integrals can be evaluated: 
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    Thus the tensor elements � �4

3333 lkji
d can be determined: 
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    The out-of-plane strain energy expression [18] can be written as: 
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which, divided by rD , can be also written in dimension-less form: 
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where the in-plane coordinate, together the flexural displacement, have been 

reformulated in non-dimensional form, as in Eqs. (3b), and also the flexural-

torsional rigidity parameters: 
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and taking into account that for a simply supported plate it is true that [18]:  
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     The square power of the second derivative 
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w W
 has to be considered: 
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where: 
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             � � � �1112 �� WyWyWyWyijy jjiic ,                               
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             � � � � WyWyWyWyijy jjiic 1132 �� ,                               
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      It is necessary to know also the same power of the mixed derivative: 
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where the coefficients 
mijxc ,
 and 

nijyc ,
 are the same of Eqs. (B.16b) and (B.17b). 

    Thus the following integrals in Eq. (B.36a) can be evaluated: 
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       Hence the out-of-plane stiffness matrix elements can be evaluated: 
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      Then the kinetic energy for the out-of-plane vibration can be considered: 
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where P  is the mass density per unity surface, which, divided by rD , can be 

also written in non-dimensional form: 
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where: 
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as in Eqs. (3c) and (11c).  

     The following integrals have to be evaluated: 
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     Taking into account Eq. (38), which gives the classical expressions of the 

in-plane and out-of-plane kinetic energy, and Eqs. (B.3), which explains the 

meaning the Lagrangian degrees of freedom 
� �op
iq , enables us to form the out-of-

plane mass matrix, whose elements are: 
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while the in-plane mass matrix is not considered, because the in-plane inertial 

forces are neglected. 

 

    Finally the expressions of the generalized aerodynamic forces in Eq. (47) 

have to be determined for the Ritz procedure. The aerodymic pressure zp  

expression in Eq. (10b), has to be newly considered:   
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whose work, for the out-of-plane displacement w  presence, can be evaluated: 
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which, divided by the reference plate flexural rigidity 
rD , can be re-written 

in non-dimensional form:  
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    The series expansion for ),,( WK[W , as formulated in Eq. (B.2a), whose 

component elements are reported in Eq. (B.2b), can be substituted into Eq. (50a) 

and thence the work performed by the i th element of the series, which is equal 

to the i th generalized aerodynamic force � �a
i
F

3
, can be evaluated: 
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It is possible to point-out that it is formed by two components, as in Eq. (46), 

the first of which � �xa
iW
F

,  is the coupling term with spatial derivative, while the 

second one � �ta
iW
F

,  with temporal derivative is the damping component. Thus the 

coefficients � �x
ijf  and � �t

ijf of the component aerodynamic forces can be evaluated, 

as in Eq. (47), from Eq. (B.51): 
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     where � �WW
ji WW

I   is the same of Eq. (B.46b), and: 
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    The coefficients � �t
ji

f
33
 are proportional the out-of-plane mass matrix elements 

by the relation [20]:    

 

                         

                                   � � � �op
ji 33

md
t
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f J 
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                           (B.54)     

 

with  
� �/MA t dJ , as in Eq. (53).                        
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Appendix C 

 

 

    Now the FEM model utilized, as in Fig. 2, has to be illustrated.  

    The plate is divided into exN  elements along the axis [  and eyN  elements 

along the axis K , consequently the whole number of components elements of the 
fluttering panel is eyexNN . A generic ei th element with vertices ABCD is shown 

in Fig. 2, which lies in the coordinates range:     

 

       
exex ii [[[ dd�1      

eyey ii KKK dd�1      exex Ni ....,21    eyey Ni ....,21     (C.1) 

              � � eyeyexe iNii �� 1        eyexe NNN           ee Ni ....,21    

where 1�exi
[  is the ascissa of the vertices A and D, 

exi
[  is the abscissa of the 

vertices B and C, 
1�eyi

K  is the ordinate of the vertices A and B, 
eyi

K  is the 

ordinate of the vertices C and D.   

    Normalized coordinates of the element are introduced: 

  

            � � exiin N
exe 1�� [[[ ,     � � eyiin N

eye 1�� [[K ,    10 dd
ee inin ,, ,K[          (C.2) 

 

 

    Series expansion for non-dimensional in-plane and out-of-plane displacements 

functions can be introduced in the generic ei th element:  
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where � �tQ
vi

,,K[
¸
¹
·¨

©
§

  corresponds to WVU ,,  for 321 ,, vi , respectively, the 

coefficients � �� �tq ve

dc

ii

ii

,  (which are the Lagrangian degrees of freedom in every grid 

point), are equal to: 

 

                           
K[K[ ww

w

w

w

w

w
¸
¹
·¨

©
§¸

¹
·¨

©
§¸

¹
·¨

©
§

¸
¹
·¨

©
§ vvv
v

iii
i QQQ

Q
2

,,,                      (C.3b) 

      

for 4321 ,,, di , respectively, evaluated on the vertices A,B,C,D, if 

4321 ,,, ci ,respectively, and with bicubic Hermitian polynomials used to 

interpolate each of the displacement components: 
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    In Eq. (C.3d) the operations between round parentheses  have to be performed 

with integer numers, and also the resulting number is integer, whereas ijG  is 

the kronecker’s delta. The values of yx ii , , connected with dc ii ,  as in Eqs. 

(C.3d), are summarized in Table 2.  

 

    The geometric boundary conditions have to be imposed at the rectangular 

edges, where in the case of in-plane clamped plate, all the three displacements 

vanish at the limit boundaries together with their first tangential derivative, 

for which in the 
Gi th grid point, with:   

 

 

            � � � �� � � � � �2111 434 �������� eyieyiieyeyexceG NNiNiiii
ccc

GGG,           (C.4a) 

 

di  can be only 3 and 4 if: 

 

                        � � � � 11112111 ������ eyexeyeyG NNNNi ,....,,            (C.4b)       

 

corresponding to 0 K , and also if: 

 

                        � � � �� �11121 ���� eyexeyeyG NNNNi ....,                 (C.4c)          

                   

corresponding to 1 K , whereas 
di  can be only equal to 2 and 4 if:   

                                                                              

                                 121 � eye Ni ....,                            (C.4d) 

corresponding to 0 [ , and also if: 

 

                   � � � � � �� �112111 ������ eyexeyexeyexG NNNNNNi ....,            (C.4e) 

 

corresponding to 1 [ . 

    There exist ever such limits for W , because the plate is simply-supported 

for the out-of-plane flutter vibration dynamics, apart from the in-plane 

boundary conditions. Consequently in the case of in-plane free edges  there are 

such restrictions only for W , while for U  and V  both suffixes ci  and di  can 

vary from 1 to 4 for every value of .ei  

    Thus there are UN  degrees of freedom for both U  and V , equal to: 

 

 

                 � �� � � � � �> @121414114 ������� eyexpeyexU NNiNNN                (C.5) 

 

                            

where, as for the Ritz procedure, 0 pi  corresponds to the case with free in-

plane edges of the plate, and 1 pi  corresponds to the other with clamped 

boundaries. The number of the degrees of freedom WN  corresponding to W  is 

obtained by Eq. (C.5) with 1 pi , considering that in both cases with different 

in-plane boundary conditions, such number is limited by the same geometric 

boundary conditions. It means that in the case with free in-plane plate 

behaviour WN  is smaller than UN . 

     The degrees of freedom in a generic 
Gi th  internal grid of the FEM model 

can be defined as follows:     
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          � � � �1,e
dc

i

ii
in
i qq         with     

1ii              for        4dGli                  

          � � � �2,e
dc

i

ii
in
i qq         with     412 �  iii       for     84 d� Gli      (C.6a) 

          � � � �3,e
dc

i

ii
op
i qq         with     423 �  iii       for    128 d� Gli  

 

where: 

                             � � � � dvdvGl iiiii �� 14,                           (C.6b) 

 

    In the external grids the number of degrees of freedom for U  and V  is 

reduced to 2 , and for the same reason to 1 on the rectangular corners, if 
1 pi , and in both cases for W .     

    The index 1i  referring to the in-plane displacement U  can be defined as: 
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                     � �� � � � � �> @ *
deyiGxpi iNii

GyGx
���������� 1221244121 11 GG              (C.7a)           

     

  where: 

 

  *
di  = � �� �� �� �> @111110 1111 �� �����

eyGyGyexGxGxpp NiiNiiiidi ,, GGGGGG   

          � �� �� �� �> @114211111 211 ��� �������
eyGyGyddeyGyGyexGxGxp NiiiiNiiNiii ,,, GGGGGGGGG    (C.7b) 

                 � �� �� �� �> @4311111 211
ddexGxGxeyGyGyp iiNiiNiii GGGGGGG ����� �� ,,                         

            

and the index 2i , corresponding to the in-plane displacement V , can be defined 

as: 

 

 

  � � � � 412 � dGdG iiiiii ,, � �� �� �� �> @111110 1111 �� �����
eyGyGyexGxGxpp NiiNiiii ,, GGGGGG  

               � � � �� �> @1111111 112 ��� ������
eyGyGyeyGyGyexGxGxp NiiNiiNiii ,,, GGGGGGG        (C.7c) 

                   � �� �� �11111 112 �� ����
exGxGxeyGyGyp NiiNiii ,, GGGGG                  

  

                    

and at last the index 3i , corresponding to W , as: 

 

     � � � � 423 � dGdG iiiiii ,, � �� �� �� �> @111110 1111 �� �����
eyGyGyexGxGxpp NiiNiiiidi ,, GGGGGG  

      � �� �� �� �> @112011111 211 ��� �������
eyGyGydpeyGyGyexGxGxp NiiiiNiiNiii ,,, GGGGGGGGG         (C.7d) 

                      � �� �� �11111 112 �� ����
exGxGxeyGyGyp NiiNiii ,, GGGGG                  

 

where: 
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G
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N

i
i      � �� �11 ��� eyGxGGy Niii      � �� �1121 �� eyexG NNi ....,      (C.7e) 

 

    The operations in Eqs. (7e) are considered between integers numbers (g.e. 

1�Gi  divided by 1�eyN  is equal to 0 if 11 ��� eyG Ni , etc.). 

    From the expression (B.6a) of the linear structural forces contribution to 

the in-plane strain energy it is possible to form the in-plane stiffness matrix 

of the 
ei th element, whose elements obtained in the Ritz procedure  have been 

shown in Eq. (B.13), and in this FEM model can be written as:           
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where the same integrals in Eqs. (B.7a),(B.8a),(B.9a),(B.10a),(B.11a),(B.12a) 

are utilized: 
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because: 
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    The integrals extend over the area 
� �� �10 dd6

ee
e

inin
i

,, ,K[  of the ei th element. 

The suffixes 2j and 1j  are connected with yx jj ,  through dceG iiii ,,, , like 1i  and 2i  

with yx ii , , by the same Eqs. (C.7a), (C.7c), (C.4a) and (C.3d). The dual element 

� �in
ji

k
12

 is equal to � �in
ji

k
21

, for the symmetry of the stiffness matrix in each 

element, as in Eq. (B.14).  

 

   Likewise it is possible to form the mixed structural forces tensor of the  

ei th element, whose contribution to the in-plane strain energy is shown in Eq. 

(15), which has been reported in Eq. (B.25) for the Ritz procedure, and in FEM 

model can be written as:  
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where the integrals utilized are the same of Eqs. (B.18a),(B.19a),(B.20a), 

(B.21a),(B.23a) and (B.24a):  
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    The indices 
33 kj ,  are connected with 

yxyx kkjj ,,,  through 
dceG iiii ,,, , like 

3i  with 

yx ii , , by the same relation in Eq. (C.7d), (C.4a) and (C.3d). It is possible 

also to determine the non-linear structural forces tensor of the ei th element, 

like the corresponding ones in the Ritz procedure in Eq. (B.33), which can be 

written as:  
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where the reported integrals are the same of Eqs. (B.30a),(B.31a) and (B.32a): 
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    where 3l , like 333 kji ,, ,  is connected with ,, yx ll  through dceG iiii ,,, ,  by the 

same relations in Eq. (C.7d), (C.4a) and (C.3d). 

      Also the out-of-plane stiffness matrix can be formed, whose elements are:  
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where the integrals are the same in Eqs. (B.40a),(B.41a) and (B.42a): 
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    Then it is necessary to form the mass matrix of the ei th element, whose 

components are: 
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where the parameter M  is the same of Eq. (B.45b), and the integral � �WW

ji 33
I  is the  

same of Eq. (B.46a): 
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    All the stiffness and mass matrices, together with the tensor elements, of 

the single component elements of the plate structure elements have to be 

assembled to obtain the overall stiffness, mass and resulting tensor elements, 

whose knowledge allows to solve the dynamic problem. 

 

    At last the presence of the generalized aerodynamic forces, obtained by the 

quasi-steady linearized aerodynamic “Piston Theory”, as in Eq. (10b), has to be 

considered also in the FEM model. If the series expansion in Eq. (C.3a) is 

considered and substituted into Eq. (B.52a), it is possible to derive the 

generalized force corresponding to the 
3i th degree of freedom, as in Eq. (B.52):  
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and the coefficients � �x
ijf  and � �t

ijf  as in Eqs. (47), (B.53) and (B.54) can be 

obtained:  
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and the non-dimensional parameter � �/MA t dJ  of Eq. (53) is the same as in the 

Ritz method. 

 

                      

 

Appendix D. Nomenclature 

 

 

yx AA ,             in-plane rigidity parameters of the orthotropic plate 

 

rA                in-plane rigidità parameter of the reference isotropic plate  

 

** , yx AA             non-dimensional in-plane rigidity parameters of the 

                 orthotropic plate 

 

ba,               rectangulare plate dimensions 

 

111 cba ,,            non-dimensional parameters  

 

ija                 coefficients of the non-dimensional Airy function series                

                  expansion 

 

rD                flexural rigidity modulus of the reference isotropic plate  

 

tD                torsional rigidity modulus of the orthotropic plate 

 

*
tD                non-dimensional torsional rigidity modulus  

                 of the orthotropic plate 

 

yx DD ,            flexural rigidity moduli of the orthotropic plate 
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*** ,, BDD yx          non-dimensional flexural and torsional rigidity 

                  parameters of the orthotropic plate               

 

�  EE ,             Young’s moduli of the orthotropic plate along the fibers 

                 direction and the perpendicular one, respectively 

 

yx EE ,             Young’s moduli of the orthotropic plate along the axes 

                 x  and y , respectively 

 

rE                Young’s modulus of the isotropic reference plate 

 

�  Ggxy          in-plane shear rigidity modulus of the orthotropic plate 

 

hgG xyxy           resultant in-plane shear rigidity modulus 

 

*,, xyAyAx GGG        nondimensional resultant in-plane shear rigidity parameters 

 

h                 plate thickness 
 

ijk                stiffness matrix elements 

*
ijk                elements of the linear structural and aerodynamic forces 

                  resultant matrix 

 

aL                nondimensional parameter  aL/  

 

wLL,              in-plane and out-of-plane reference lengths  

 

achM              Mach number 

 

ijm                mass matrix elements        

 

xyyx NNN ,,         in-plane membrane stresses  

 

abr                non-dimensional ratio ba/  between the plate dimensions  

 

t                 time symbol 
 

aU                supersonic flow speed 

 

WVU ,,            non-dimensional displacements along  the axes zyx ,,  

 

WVU iii WVU ,,        coefficients of the non-dimensional displacements series 

                 expansions 

 

wvu ,,             displacements along  the axes zyx ,,  

 

zyx ,,             plate reference system axes  

 

 

 

 

 



 40

Greek symbols  

 

111 JED ,,           flexural and torsional rigidity non-dimensional parameters  

 

asaa JED ,,          in-plane extensional rigidity non-dimensional parameters 

 

E                non-dimensional parameter equal to 12 �achM  

 

ba JJJ ,,           non-dimensional parameters 

 

ijG                Kronecker’s delta 

 

ij]                utilized matrix elements 

 

-                non-dimensional parameter in the flutter vibration equation  

 

 ��  QQQQ ,,, yxxy    Poisson’s moduli 

 

K[,              non-dimensional coordinates of the in-plane reference system  

 

V               non-dimensional dynamic pressare 

 

W                non-dimensional time 
 

\
M i              generic element in the non-dimensional Airy function series 

                expansion 

 

WVU iii FFF        generic elements of the displacements series expansion 

 

\               non-dimensional Airy function 

 

 

Special symbols 

 

w                 partial differentiation 

 

� � � �
ijkijklijklijk h,e,d,d 43      tensor elements 

� �
...I                generic integral 

> @ � �> @ � �> @> @ � �> @IHEDA    utilized matrices 

� �> @ � �> @ � �> @> @TRQP > @> @/Z  

 

� �> @ � �> @inin
MK        in-plane and out-of-plane stiffness and mass matrices 

� �> @ � �> @opop
MK  

� �> @*op
K            out-of-plane structural and aerodynamic forces matrix 

 

� �> @in
Q  

� �> @op
Q       in-plane and out-of-plane Lagrangian degrees of freedom 

  

> @> @> @WVU           utilized column vectors of the displacements WVU ,,         

              series expansions coefficients 
 

� �> @ � �> @32
WW          utilized column vectors containing double and triple  products 
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                 between coefficients of W series expansions 

� � � �cossin � �tan   trigonometric functions 

 
� �T             non-dimensional kinetic energy expression  

 
� � � � � �

nlml UUU         non-dimensional strani energy expressions due to linear, mixed         

                 and non-linear structural forces 

 

Subscripts   

 

ji,                subscripts with generic meaning  

 

VVVUUU kjikji ,       subscripts referring to WVU ,, , respectively, in the series 

WWW kji            expansions 

 

222111 kjikji ,,        subscripts referring to the Lagrangian degrees of  freedom               

333 kji              corresponding to WVU ,, , respectively 

 

ci                 subscript referring to a grid point of an element of FEM model 

 

di                 subscript referring to one of four degrees of freedom of an  

                  unknown variable 

eexex iji ,             subscripts referring to the generic ei th element in  

                  FEM model 

 

 

nlml ,,             subscripts referring to the linear,mixed and non-linear 

                 structural forces 

 

� ,               subscripts referring to the fibers direction  and        

                 its perpendicular one 

 

Superscripts   

 

� �ei                superscript referring to the generic ei th element 

 
           superscript referring of one of the three unknown variables  

                 WVU ,,   

  

� �� �opin            supescripts referring to the in-plane and out-of-plane 

                 situation 

 

� �...... WVU         superscipts referring to operations on WVU ,,    
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LIST OF FIGURE LEGENDS 
 

 

 

Fig. 1. Plate exposed to an air flowing at supersonic speed.   

 

 

 

Fig. 2.  A particular grid mesh of the FEM model.  
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