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A novel analytical formulation has been developed for the aeroelastic design of a class of solid nonuni-
form composite wings with improved aeroelastic torsional stability. Rectangular, unswept slender con-
figurations made of unidirectional fibrous composites are considered, where the mechanical and physical
properties can vary in the spanwise direction. Such a structural configuration yields to grading of the
material properties along the wing span. The enhancement of the wing torsional stability can be attained,
among others, by increasing the critical flight speed at which flutter or divergence instabilities occur.
In this study, the latter problem is addressed, where the wing divergence speed is maximized while
maintaining the total structural mass at a value equal to that of a known baseline design. Both continu-
ous and discrete structural models have been examined, using classical elasticity and aerodynamic strip
theories. The functional behavior of the divergence speed is comprehensively investigated by varying the
volume fraction of the constituent materials in preassigned distributions. Exact solutions were obtained
for different categories of unidirectionally reinforced composite wing structures: the linear volume frac-
tion (L-VF), the parabolic volume fraction (PR-VF) and the piecewise volume fraction (PW-VF) wing
models.

Our results reveal that in general, the torsional stability of the wing can be substantially improved by
using nonuniform, functionally graded composites instead of the traditional ones having uniform volume
fractions of the constituent materials. Several solutions are given for determining the optimal in-plane
fiber distributions, which maximize the divergence speed of a wing made of carbon/epoxy composites
without violating the performance requirements imposed on the total structural weight of the aircraft.

1. Introduction

Aeroelastic instabilities are a crucial factor in the design of modern flight vehicle structure. Friedmann
[1999] demonstrated that several important aeroelastic problems are still far from being understood.
Furthermore, the emergence of new technologies, such as the use of advanced composites and smart
materials have invigorated aeroelasticity, and generated a host of new and challenging research topics
that can have a major impact on the design of new generation of aerospace vehicles. The creative use of
composite materials is becoming important for controlling aeroelastic instabilities beside the benefits of
saving structural weight and increasing the fatigue life as well. For example, in the design of a laminated
composite wing, Weisshaar [1987] and Karpouzian and Librescu [1994] showed that aeroelastic tailoring
can be achieved commonly by varying the ply thickness, ply material and the stacking sequence. Another
new class of composite materials can be produced by varying the volume fractions of their constituents in
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a predetermined profile. Such nonuniform composites are called functionally graded materials (FGMs),
in which the properties are functions of the spatial coordinates. Although the concept of aeroelastic
tailoring of flight structures has been considered extensively in the literature [Librescu and Song 1992],
functional grading has not yet, been implemented, to the authors’ knowledge, in the available works. The
main aim of the present paper is to open the door for the subject of aeroelastic tailoring of FGMs flight
structures. The application to the optimization aspects in composite rotor blades [Ozbay et al. 2005]
would also be a future extension of the current material grading concept.

Basic knowledge on the use of FGMs and their wide applications are given in [Suresh and Mortensen
1998]. FGMs were primarily used in situations where large temperature gradients are encountered and
have also found several applications in the semiconductor industry. It was also shown that better per-
formance for both static and dynamic behavior of structures fabricated from such advanced composite
materials can be substantially achieved. There are different scenarios in modeling the spatial variation of
material properties of a functionally graded structure. For example, Chen and Gibson [1998] performed
experimental and theoretical analyses to determine the in-plane fiber distribution in unidirectional re-
inforced composites. They considered distributions represented by polynomial functions, and applied
Galerkin’s method to calculate the required polynomial coefficients from the resulting algebraic equa-
tions. Finally, they found that the linear variation of the volume fraction is a best fit with that predicted
experimentally for selected composite beam specimens. Chi and Chung [2006] studied the mechanical
behavior of FGM plates under transverse loading, where a constant Poisson’s ratio and variable moduli of
elasticity throughout the plate thickness was assumed. The volume fraction of the constituent materials
were defined by simple power- laws, and closed form solutions using Fourier series were given for the
case of simply- supported plates.

Considering structural stability of functionally graded beams, Elishakoff and Rollot [1999] presented
closed-form solutions of the buckling load of a variable stiffness column. The modulus of elasticity was
taken as a polynomial of the axial coordinate along the column’s length. Cases in which a fourth-order
polynomial serves as an exact buckling mode were provided. Another work dealing with the buckling
behavior of two dimensional FGM rectangular plates subjected to in-plane edge loads was addressed by
Chen and Liew [2004]. They applied a mesh-free approach, which approximates displacements based
on a set of scattered nodes instead of the commonly implemented finite elements. Elishakoff and Guede
[2004] then derived other closed-form solutions for the natural frequencies of an axially graded beam
with variable mass and stiffness properties along its length.

In the field of the optimum design of FGM-structures, Qian and Batra [2005] considered frequency
optimization of a cantilevered plate with variable volume fraction according to simple power-laws. They
implemented genetic algorithms to find the optimum values of the power exponents, which maximize
the natural frequencies, and concluded that the volume fraction needs to be varied in the longitudinal
direction of the plate rather than in the thickness direction. More recently, Goupee and Vel [2006]
proposed a methodology to optimize the natural frequencies of functionally graded beam with variable
volume fraction of the constituent materials in the beam’s length and height directions. They used a
piecewise bicubic interpolation of volume fraction values specified at a finite number of grid points, and
applied a genetic algorithm code to find the needed optimum designs.

As it clearly appears, in spite of its enormous potential benefits in aerospace industry, the use of
the in-plane grading was exploited in problems involving only fundamental mechanical problems. The
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same conclusions were given in the extensive review paper by Birman and Byrd [2007]. In the present
study, analytical solutions are developed and presented for improving the torsional stability of a slender
subsonic wing through optimal grading of the material volume fraction in the spanwise direction. Three
models have been thoroughly analyzed: continuous linear (L-VF), continuous parabolic (PR-VF) and
piecewise (PW-VF) mathematical models. The enhancement of the wing torsional stability is measured
by maximization of the divergence speed while maintaining the total structural mass at a value equals
to that of a known baseline design. The functional behavior of the divergence speed is comprehensively
investigated by varying the volume fraction of the constituent materials in preassigned distributions. En-
hanced wing designs made-up from carbon/epoxy composite material have been obtained and discussed.
Side constraints are set on the fiber volume fractions to not exceed prescribed lower and upper limiting
values.

2. Statement of the problem and basic formulation

When the flight speed of an aircraft exceeds a certain value called the divergence speed, Vdiv, the
aerodynamic twist moment applied to the wing exceeds the restoring elastic moment of its structure
[Bisplinghoff and Ashley 1962]. This causes static torsional instability of the lifting surface, which may
twist to failure. Therefore, high divergence speed can be regarded as a major aspect in designing an
efficient lifting surface with enhanced torsional stability. Maximization of the divergence speed can also
have other desirable effects on the overall structural design. It helps in avoiding the occurrence of large
displacements, distortions and excessive vibrations, and may also reduce fretting among structural parts,
which is a major cause of fatigue failure. Consider an unswept, slender wing with rectangular planform
and solid cross section, as depicted in Figure 1. The coordinates x1 and x2 are associated with the
wing middle surface, whereas the x3-axis points in the airfoil thickness direction. In the present model
formulation, the wing is considered to be made of unidirectional fiber-reinforced composites with variable
fiber volume fraction in the spanwise direction, x1. The flow is taken to be steady, and incompressible.
The aspect ratio is assumed to be sufficiently large with no major cutouts through the structure so that
the classical engineering theory of torsion can be applicable and the state of deformation described in
terms of one space coordinate. The elastic axis is assumed to be well defined and, hence, the bending and
torsion degrees of freedom can be decoupled. For wings with low aspect ratio, the cross section warping
ought to be included to account for three dimensional deformation effects [Librescu and Thangjitham
1991]. This will be considered by the authors in an extension of the present study.

It was shown by in [Lekhnitski 1981, Chapter 6, Sections 55–56] and [Tsai et al. 1990] that the
equivalent shear modulus G of a unidirectionally reinforced composite lamina with thin cross section
can be determined from the relation

G = f1G12,

where f1 is a function that depends on the geometry and thickness ratio h/C of the cross section (C
being the chord length and h the maximum thickness of the cross section) and on the ratio G12/G13

between the in-plane and out-of-plane shear moduli G12 and G13.
For many types of fibrous composites commonly utilized in aircraft structures, such as carbon/epoxy

and graphite epoxy, the two moduli are approximately equal. Some experimental results were given in
[Tsai and Daniel 1990] for the determination of the in- and out-of-plane shear moduli. We apply here
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                       Figure: 1 Unidirectional fiber-reinforced composite wing model. 
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Figure 1. Unidirectional fiber-reinforced composite wing model.

semiempirical formula from [Halpin and Tsai 1967] to determine G12:

G12 = Gm
1 + ξηV f

1 − ηV f
, where η =

(G f/Gm) − 1
(G f/Gm) + ξ

, (1)

where Gm and G f ( ≡ G f 12, in the x1-x2 plane) are the shear moduli of the matrix and fiber materials,
V f is the fiber volume fraction and the parameter ξ is called the reinforcing efficiency and may be taken
as 100% for theoretical analysis [Daniel and Ishai 2006]. The variation of the fiber volume fraction in
FGM structures is usually described by power-law or exponential function models:

V f (x) = V f r (1 − βx p), β = (1 − 1),

V f (x) = V f r eβx , β = ln 1,
(2)

where 1 = V f t/V f r is the ratio between the fiber volume fractions V f t and V f r at the wing tip and at the
root, the symbol x = x1/L denotes the dimensionless spanwise coordinate and p is an integer exponent.
Wings with uniform, linear or parabolic distributions of V f (x) correspond to p = 0, 1 and 2. Similar
distributions were utilized in [Chi and Chung 2006] to analyze FGM plates under transverse loading.
The exponential distribution is not considered in the present investigation.

3. Stability analysis

Using classical elasticity and aerodynamic strip theories, we can write the differential equation governing
wing torsional stability (see [Bisplinghoff and Ashley 1962]) as

d
dx1

(
G J

dα

dx1

)
+

1
2ρV 2C2eaα(x1) = 0, (3)
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subject to the boundary conditions

α(0) = 0 for x1 = 0,

indicating that the elastic angle of attack α vanishes at the wing root, and[
G J

dα

dx1

]
x1=L

= 0 for x1 = L ,

which says that the torsional moment T vanishes at the wing tip. Here J is the torsion constant, which for
thin wings with solid cross section, is directly proportional to the cube of the maximum airfoil thickness
h, and the chord length C :

J = f2Ch3,

where f2 is a shape factor that depends upon the geometry of the airfoil section. The other parameters
in (3) are defined as follows: ρ is the air density, depending on the flight altitude, V is the flight speed,
e is the fractional location of the shear center, positive aft with respect to the aerodynamic center, and a
is the airfoil lift-curve slope.

It is convenient to normalize all variables and parameters with respect to a baseline design having
uniform mass and stiffness distributions. The baseline is made of a uniform unidirectional fibrous com-
posite with equal volume fraction of the matrix and fiber materials: V f 0 = 50%. The optimum wing
designs presented herein shall have the same material type of construction, wing planform geometry,
airfoil section, and same total structural mass as those of the baseline design. Therefore, the preassigned
parameters ought to be selected as the type and dimensions of the airfoil section (that is, C , J , e and a
are fixed), wing span L, and type of material of construction (that is, Gm , G f , ρm , ρ f are fixed). The
flight altitude is also fixed (that is, ρ is fixed). Therefore, the only remaining variable to be taken into
consideration is the distribution of the modulus of rigidity in the spanwise direction. Normalizing with
respect to the uniform baseline design defined above, (3) takes the dimensionless form

(Ĝα′)′ + V̂ 2α(x) = 0, α(0) = 0, α′(1) = 0, (4)

where Ĝ = G12/G12,0 is the dimensionless shear modulus and the prime denotes differentiation with
respect to the dimensionless coordinate x = x1/L . The dimensionless flight speed is defined by

V̂ = V C L
√

ρea
2G J0

,

where G J0 is the torsional stiffness of the baseline design. The shear modulus G12,0 of the baseline
design can be calculated from (1) by setting V f 0 = 0.5 and ξ = 1. Substituting Equations (1) and (2) into
(4), we get

(1 − f 2)α′′
+ 2 f ′α′

+ µ(1 − f )2α = 0, (5)

where

f = ηV f (x) and µ = V̂ 2 2 + η

2 − η
.
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3.1. Continuous model: An exact power series solution. Since f is a polynomial, an exact power series
solution to (5) can be obtained by the method of Frobenius [Edwards and Penney 2004], in which the
general solution is expressed as

α(x) =

2∑
m=1

Cmλm(x),

where the Cm are constants of integration and the λm are two linearly independent solutions having the
form

λm(x) =

∞∑
n=m

am,nxn−1, m = 1, 2.

The unknown coefficients am,n can be determined by substitution into the differential equation (5) and
equating coefficients of like powers of x . The required recurrence formulas have been evaluated and are
given for the linear distribution model by

am,n =

2βγ (n−2)
(
1−γ (n−3)

)
am,n−1 +

(
(n−3)(n−4)(βγ )2

−µ(1−γ )2
)
am,n−2

− 2βγµ(1−γ )am,n−3−µ(βγ )2am,n−4

(n−1)(n−2)(1−γ 2)

and for the parabolic distribution model by

am,n =

(
2βγ (n−3)(2−γ (n−4))−µ(1−γ )2

)
am,n−2

+
(
(βγ )2(n−5)(n−6)−2βγµ(1−γ )

)
am,n−4 − µ(βγ )2am,n−6

(n−1)(n−2)(1−γ 2)
,

where γ = ηV f r . A coefficient am,n is set equal to zero whenever n is less than m, and the leading
coefficients am,m in each series are arbitrary and can be set to one. This method was successfully applied
by Maalawi and Negm [2002] to determine the exact rotating frequencies of a wind turbine blade in
flapping motion.

Application of the associated boundary conditions and consideration of the nontrivial solution lead to
the required characteristic equation:

λ′

2(1) = 0,

which is to be solved for the lowest root corresponding to the critical flight speed V̂div at which divergence
of the wing occurs.

3.2. Piecewise wing model. A piecewise model concept was used by [Maalawi 2002] to find optimized
designs of elastic columns against buckling. The optimization variables included the cross section di-
mensions as well as the length of each segment composing the column, and several solutions were given
for both solid and tubular configurations. It was concluded that the use of piecewise models in structural
optimization gives excellent results and can be promising for similar applications. Figure 2 shows a
rectangular lifting surface, which is constructed from N uniform piecewise panels, each of which has
different fiber volume fractions and length. For the k-th panel (see Figure 3), Equation (4) reduces to

α′′(x̂) + λ2
kα(x̂) = 0, λk = V̂ /

√
Ĝk, (6)
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Figure 3. Definition of the state variables for the k-th panel.

where x̂ = x − xk is a local coordinate, ranging from 0 to L̂k = Lk/L , the dimensionless length of the
k-th panel, and Ĝk is the dimensionless shear modulus of the kth wing panel.

The exact solution of (6) is of course

α(x̂) = A sin(λk x̂) + B cos(λk x̂),

where A and B are the constants of integration. The dimensionless internal torsional moment, T (x̂), can
be obtained by differentiating this equation and multiplying by the dimensionless torsional rigidity:

T (x̂) = Ĝkα
′
= λk Ĝk

(
−A sin(λk x̂) + B cos(λk x̂)

)
.

Applying the boundary conditions at stations k and k + 1 (see Figure 3), we obtain at x̂ = 0 the equations

αk = A, Tk = Bλk Ĝk, (7)

and at x̂ = L̂k the equations

αk+1 = A cos(λk L̂k) + B sin(λk L̂k),

Tk+1 = λk Ĝk
(
−A sin(λk L̂k) + B cos(λk L̂k)

)
.

(8)
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Substituting from (7) into (8), the relation between the state variables (α, T ) at both ends of the k-th
panel can be expressed by the matrix equation{

αk+1

Tk+1

}
= E (k)

{
αk

Tk

}
, where E (k)

=

[
cos λk L̂k sin λk L̂k/(λk Ĝk)

−λk Ĝk sin λk L̂k cos λk L̂k

]
.

It is now possible to compute the state variables progressively along the wing span by applying con-
tinuity requirements of the variables (α, T ) among the interconnecting boundaries of the various wing
panels. Therefore, the state variables at the extreme boundaries are related by the matrix equation{

αN+1

TN+1

}
= E

{
α1

T1

}
, (9)

where
E = E (N )E (N−1) . . . E (3)E (2)E (1).

The nontrivial solution of equation (9) can be determined by applying the appropriate boundary
conditions at the wing root and tip sections. The resulting transcendental equation, also named the
characteristic equation, is given by

E22 = 0,

which can be solved for determining the critical flight speed at which torsional divergence instability
occurs.

4. Results and discussion

The mathematical models developed in the previous sections have been applied to obtain wing designs
with improved torsional stability, measured in the context of static aeroelasticity, by raising the divergence
speed without weight penalties. The selected wing material is carbon-AS4 / epoxy-3501-6 composite,
which has favorable characteristics and is highly desirable in both civilian and military aircraft structures.
Its properties are given in Table 1. Lower and upper bounds of 25% and 75%, respectively are imposed
on the fiber volume fraction. The total structural mass M is kept equal to the mass M0 of the baseline
design, so the dimensionless mass M̂ = M/M0 equals 1. Since the fiber volume fraction of the baseline
design, V f 0, equals 50%, a feasible design must satisfy the constraint equations∫ 1

0
V f (x) dx = 0.5

for the continuous model or
N∑

k=1

V f k L̂k = 0.5 (10)

for the piecewise model, where V f k and L̂k are the fiber volume fraction and dimensionless length of
the k-th panel (Figure 2).

The mass density distribution ρc(x) of the composite material is determined by the rule of mixture,
assuming no voids are present:

ρc(x) = ρm + (ρ f − ρm)V f (x).
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Property fiber matrix

Mass density (g/cm3) ρ f = 1.81 ρm = 1.27

Young’s moduli (GPa) E1 f = 235 Em = 4.3
E2 f = 15

Shear moduli (GPa) G12 f = 27.0 Gm = 1.60
G23 f = 7.0

Poisson’s ratio ν12 f = 0.2 νm = 0.35

Table 1. Material properties of carbon-AS4 / epoxy-3501-6 composite. The data are
from [Daniel and Ishai 2006]. For a final structural design, however, experimental veri-
fications are necessary.

The developed level curves of the dimensionless critical velocity V̂div in V f r -V f t design space for the
linear grading model (L-VF) are depicted in Figure 4, left. We see that V̂div is a well behaved function
and continuous in the design variables, namely, the fiber volume fractions at the wing root, V f r , and tip,
V f t . It increases monotonically with the penalty of increasing the total structural weight, which has a
harmful effect on the overall performance characteristics of the aircraft design. Therefore, maintaining
the mass constant, one must follow the line M̂ = 1, as shown in the figure, to attain a feasible design.
Results for the parabolic model (PR-VF) are depicted in Figure 4, right.

The variation of V̂div and the fiber volume fraction at the wing root V f r with the ratio 1 = V f t/V f r

is given in Figure 5. Results for both linear and parabolic grading models are depicted, are based on the
preservation of the total structural mass (M̂ = 1.0). As 1 increases, Vdiv decreases until it reaches its
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Figure 4. Isomerits of V̂div in the V f r -V f t design space. Left: L-VF model. Right:
PR-VF model.
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Figure 5. Variation of V̂div and V f r with volume fraction ratio (M̂ = 1.0).

principal value π/2, which corresponds to the uniform baseline design having volume fraction of 50%.
When 1 exceeds unity, a noticeable drop in the divergence speed occurs resulting in an undesirable
degradation in the overall torsional stability level of the wing. Table 2 gives the final results for both
cases with and without the side constraints imposed on V f (x).

It is observed that the linear grading excels the parabolic one in attaining higher torsional stability
levels. However, this may not guarantee satisfactions of other strength requirements. The parabolic
distribution seems to be more feasible since the main characteristic length of the fibers’ cross section
(say, the diameter of a circular fiber) can change linearly along the span.

We next consider the piecewise model (PW-VF). Figure 6, left, shows the developed isomerits for a
wing composed from two panels. The design variables are (V f 1, L̂1) and (V f 2, L̂2). However, one of
the panel lengths can be eliminated, because of the equality constraint L̂1 + L̂2 = 1.0. Another variable
can also be discarded by applying the mass equality constraint (10), which further reduces the number of
variables to only any two of the whole set of variables. The level curves shown in the figure represent the
dimensionless critical speed V̂div, augmented with the equality mass constraint, M̂ = 1.0. It is seen that

L-VF PR-VF
Case A Case B Case A Case B

V f r 1.0 0.75 0.75 0.625
1 0.0 0.33 0.0 0.4
V̂div 1.91 1.75 1.85 1.71
Gain 21% 11% 18% 9%

Table 2. Carbon/epoxy wing designs with improved torsional stability (M̂ = 1.0).
Case A: No side constraints are imposed on V f (x). Case B: The side constraint
0.25 ≤ V f (x) ≤ 0.75 is imposed. Gain is relative to the baseline value (π/2) of V̂div.
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Figure 6. Isomerits of V̂div in V f 1-V f 2 design space (left) and V f 1-L̂1 design space
(right) for a two-panel wing.

the function is well behaved and continuous everywhere in the selected design space V f 1-V f 2, except in
the empty regions of the first and third quadrants, where the equality mass constraint is violated. The
cross lines V f 1 = 0.5 and V f 2 = 0.5 represent the level curves of the principal value π/2.

The functional behavior of the divergence speed in the V f 1-L̂1 design space is shown in Figure 6,
right. The shape of the contour lines resemble the streamlines of a flow originated from a jet at the
vertex (V f 1, L̂1) = (0.5, 1.0) and collides with a flat plat located at the horizontal line L̂1 = 0, with the
stagnation point (V f 1, L̂1) = (0.5, 0.0). The middle vertical line V f 1 = 0.5 represents the contour of the
principal value π/2 of the uniform baseline wing design. Two empty zones, where the equality mass
constraint is violated, are indicated in the figure.

The feasible domain is bounded from above by the two curved lines representing the upper and lower
limiting constraints imposed on the volume fraction of the outboard wing panel. The contours inside
the feasible domain are not allowed to penetrate these borderlines and obliged to turn sharply to be
asymptotes to them, in order not to violate the mass constraint. This is why they appear in the figure as
zigzag lines.

The constrained optima were found to be (V f 1, L̂1) = (0.75, 0.5) and (V f 2, L̂2) = (0.25, 0.5), which
means that the side constraints are always active [Venkataraman 2002].

The corresponding maximum value of the divergence speed is V̂div = 1.81, representing an optimiza-
tion gain of 15%. This means that a piecewise grading of the material is slightly better than the parabolic
model described by Equation (2). Isomerits of a three-panel wing is depicted in Figure 7, which has a
pyramidal shape with its vertex at the design point (V f 2, L̂2) = (0.5, 1.0) having V̂div = π/2 and M̂ = 1.0.
The feasible domain is bounded from above by the two lines representing cases of a two-panel wing, with
V f 1 = 0.75 for the line to the left and V f 3 = 0.25 for the right line. Both have a zigzag pattern because
of the crowded pattern of the interior contours, which are forced to turn and becoming asymptotical to
them, in order not to violate the mass equality constraint.
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                       Figure: 8 Global optimality solution for a three-panel wing model. 
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Figure 7. Global optimality solution for a three-panel wing model.

The final global optimal solution, lying in the bottom of the pyramid, can be calculated using the
MATLAB optimization toolbox routines [Venkataraman 2002]. We obtain

(V f 1, L̂1)= (0.75, 0.43125), (V f 2, L̂2)= (0.50, 0.1375), (V f 3, L̂3)= (0.25, 0.43125), V̂div =1.82.

This represents an optimization gain of about 16%.

5. Conclusions

We have presented a novel design approach, based on the proper use of functional graded materials for
improving the overall torsional stability of a class of unidirectionally reinforced composite wings. The
torsional stability is measured by increasing the critical flight speed at which wing divergence occurs
while not violating performance requirements imposed on the total structural weight of the aircraft. The
mechanical and physical properties of the material are optimized in the spanwise direction, where the
spatial distribution of the fiber volume fraction is assumed to be prescribed by either continuous or
piecewise mathematical models. Lower and upper bounds are imposed on the design variables in order
to avoid having odd-shaped optimized configurations with unrealistic values of the volume fractions.
The functional behavior of the divergence speed V̂div with the selected optimization variables has been
thoroughly investigated, and useful design charts are given showing conspicuous design trends for wings
with improved aeroelastic performance. The given exact mathematical approaches ensured the attainment
of global optimality of the proposed wing model.

To our knowledge, aeroelastic tailoring of a wing with material grading in the spanwise direction had
not yet been considered in the available research work. It has been the major aim of this paper to open the
door for such a promising direction in the field of aeroelasticity of flight structures. Future work includes
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aeroelastic optimization of functionally graded trapezoidal and swept wings. The behavior when grading
is performed in both the spanwise and the airfoil thickness directions is now under study.
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