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The design of complex flexible multibody systems for industrial applications requires not only the use of
powerful methodologies for the system analysis, but also the ability to analyze potential designs and to
decide on the merits of each one of them. This paper presents a methodology using optimization proce-
dures to find the optimal layouts of fiber composite structure components in multibody systems. The goal
of the optimization process is to minimize structural deformation and to fulfill a set of multidisciplinary
constraints. These methodologies rely on the efficient and accurate calculation of the system sensitivities
to support the optimization algorithms. In this work a general formulation for the computation of the
first order analytic sensitivities based on the direct differentiation method is used. The direct method for
sensitivity calculation is obtained by direct differentiation of the equations defining the response of the
structure with respect to the design variables. The equations of motion and the sensitivities of the flexible
multibody system are solved simultaneously and, therefore, the accelerations and velocities of the system,
and the sensitivities of the accelerations and velocities, are integrated in time using a multistep multiorder
integration algorithm. Different models for the flexible components of the system, using beam and plate
elements, are also considered. Finally, the methodology proposed here is applied to the optimization
of the unfolding of a complex satellite made of composite plates and beams. The ply orientations of
lamination are the continuous design variables. The potential difficulties in the optimization of composite
flexible multibody systems are highlighted in the discussion of the results obtained.

1. Introduction

Modeling refers to the tools used in the construction of models of individual and coupled components
of technical systems. The simplest models for multibody systems assume rigid body components while
more complex models require the description of the components’ flexibility. The finite element-based
strategies used to represent the components’ flexibility in multibody systems is a well accepted and
widely used method. For systems in which the bodies are made of standard materials, there is a wide
variety of finite elements that may be used, but when bodies are made of composite materials, the model
flexibility often necessitates expensive finite element models with an inherent growth in complexity.
Models of systems involving multibody dynamics methodologies also require a complete knowledge of
the arrangement of the system components, which is achieved by the definition of kinematic joints, the
introduction of models for external forces and the incorporation of the equilibrium equations of other
disciplines [Heckmann et al. 2005; Møller et al. 2005; Bottasso et al. 2006]. Regardless of each particular
type of joint used, the mathematical description of the restrictions involving only rigid bodies are the
simplest to obtain. The presence of flexible bodies tends to increase the complexity of the description,
and methods for simplifying the description are required [Lehner and Eberhard 2006; Hardeman et al.
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2006]. However, the concept of virtual bodies provides a general framework for developing general
kinematic joints for flexible multibody systems with minimal effort [Ambrósio 2003].

Analyses of rigid mechanical systems are the simplest and the least expensive, regardless of model.
Flexible systems, in which the bodies only experience small elastic deformations, have higher compu-
tational costs. For these systems it is common to use mode component synthesis to reduce the number
of generalized elastic coordinates and, consequently, the equations of motion are written in terms of
modal coordinates [Nikravesh and Lin 2005; Gonçalves and Ambrósio 2005; Lehner and Eberhard 2006].
However, when the system components experience nonlinear deformations, the use of reduction methods
is not possible, in general, and the finite element nodal coordinates are the generalized coordinates used
[Ambrósio 1996; Dmitrochenko et al. 2006; Gerstmayr and Schöberl 2006; Vetyukov et al. 2006]. Fur-
thermore, the analysis of these systems is more complex and, usually, computationally more expensive
than the analysis of flexible systems with bodies that experience linear deformations.

In terms of the optimization complexity, the most complex and expensive problems are global or
integer optimization problems with a large number of design variables. The simplest and cheapest prob-
lems to solve are continuous local problems with a small number of design variables [Venkataraman
and Haftka 1999; Venkataraman and Haftka 2002]. Stochastic optimization algorithms, like simulated
annealing methods or genetic algorithms, offer a way to perform global optimization, but they usually
require several hundreds or even thousands of expensive simulation runs [He and Mcphee 2005; Kübler
et al. 2005]. Eberhard and co-workers used a stochastic evolution strategy in combination with parallel
computing in order to reduce the computation times while maintaining the inherent robustness [Eberhard
et al. 2003]. Deterministic optimization algorithms, on the other hand, have a tendency to reach local
minima, not necessarily the global optimum [Eberhard et al. 1999]. When supported by efficient cal-
culation of the system sensitivities, these deterministic optimization algorithms often converge rapidly
towards a local minimum with smaller computation times than other optimization approaches.

In this work, a general approach for sensitivity analysis of rigid-flexible multibody systems with
composite materials based on the automatic differentiation method is used. The direct differentiation of
the system equations of motion is obtained by the ADIFOR program [Bischof et al. 1992]. The dynamic
equations and the time derivatives of the sensitivities are all integrated at the same time, thus the control
of the time integration errors becomes more effective. The simultaneous integration of the equations
is even more important when a variable step size or variable order integration algorithm is used, as is
generally the case in multibody dynamic systems.

The optimization of the multibody composite components is performed by taking the ply orientations
of lamination as continuous design variables. The multibody dynamic and sensitivities analysis code is
linked with general optimization algorithms included in the package DOT/DOC [Vanderplaats 1992].

2. The multibody analysis methodology

2.1. Multibody equations of motion. The location of a rigid body is defined by the position of a body-
fixed reference frame, ξηζ , and its orientation with respect to an inertial frame, XY Z , as shown in
Figure 1. The position and the orientation of the rigid body i is defined by the translation coordinates
r i and the rotational coordinates pi . These coordinates are grouped in the vector qri = [rT

i pT
i ]

T . The
coordinate vector of the complete flexible system is designated by q = [qT

r u′T
]
T , which is composed
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Figure 1. Flexible body with its body fixed coordinate system.

of the coordinate vector of the individual bodies and the elastic coordinates of the flexible bodies u′

i ,
generally the nodal coordinates of the finite element mesh measured with respect to the body-fixed coor-
dinate system or the modal coordinates when a mode component synthesis method is used to represent
the deformation of the flexible body.

For a multibody system, a set of constraint equations associated to the kinematic joints that restrict
the relative motion between the bodies is defined as [Ambrósio and Gonçalves 2001]:

8(q, t) ≡ 0, (1)

where t refers to the kinematic constraints that depend on time. The constraints equations are added to
the equilibrium equations using Lagrange multipliers

Mq̈ + 8T
q λ = g + s − K q, (2)

where M is the system mass matrix, K is the extended stiffness matrix of the system, g is a vector of
external applied forces and s is the vector of the forces that depend on the square of the system velocities.
Equation (2) includes n unknown accelerations and m unknown Lagrange multipliers associated with the
algebraic constraint equations, but it only has n equations. The second time derivatives of the constraint
equations provide the extra set of m equations necessary to support the solution of Equation (2). These
acceleration constraint equations are

8̈(q̈, q̇, q, t) ≡ 8q q̈ − γ = 0. (3)

Therefore, the complete system of equations that needs to be solved for a flexible multibody system is
given by [Ambrósio and Gonçalves 2001] Mr Mr f 8T

qr

M f r M f f 8T
q f

8qr 8q f 0




q̈r

ü′

λ

 =


gr

g f

γ

 −


sr

s f

0

 −


0

K f f u′

0

 , (4)
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where K f f is the standard finite element stiffness matrix. The Jacobian matrix 8T
q and the right-hand-side

vector γ of Equations (3) and (4) depend on the type of kinematic constraints used. The system equation
matrix shows a large number of null elements and submatrix blocks of fixed size. The Markowitz sparse
matrix solver is employed here to solve the system of equations defined by Equation (4) [Duff et al. 1986;
Ambrósio 2003; Liu et al. 2007].

The equations of motion for the flexible multibody systems represented by (4) require a large number
of coordinates to describe complex models. However, using component mode synthesis, the flexible
body is described by a sum of selected modes of vibration as

u′
= Xw, (5)

where vector w represents the contributions of the vibration modes towards the nodal displacements and
X is the modal matrix. Due to the reference conditions, the modes of vibration used here are constrained
modes and due to the assumption of linear elastic deformations the modal matrix is invariant. The reduced
equations of motion for the flexible body are [Ambrósio and Gonçalves 2001] Mr Mr f X 8T

qr

XT M f r I XT 8T
q f

8qr 8q f X 0




q̈r

ẅ

λ

 =


gr

XT g f

γ

 −


sr

XT s f

0

 −


0

3w

0

 , (6)

where 3 is a diagonal matrix with the squares of the natural frequencies associated with the modes of
vibration selected. The number of elastic coordinates in Equation (6) is equal to the number of vibration
modes selected. For a more detailed discussion on the selection of the modes used, the interested reader
is referred to [Cavin and Dusto 1977; Yoo and Haug 1986; Pereira and Proença 1991].

2.2. Flexible bodies made of composite materials. In this work the composite finite element used for
the study of laminated plates is based on the Mindlin–Reissner plate theory, where only C◦ continuity is
required for the approximation of the kinematic variables. At the element level and in local coordinates,
the element stiffness matrix is given by [Neto et al. 2004]

K (e)
f f =

1∫
0

1−η∫
0

 BT
m Dm Bm BT

m Dmb Bb 0

BT
b Dbm Bm BT

b Db Bb 0

0 0 BT
s Ds Bs


(e)

|J |dξdη (7)

which in a more compact form is written as

K (e)
f f =

1∫
0

1−η∫
0

(BT DB)(e)|J |dξdη. (8)

The strain-displacement matrix is denoted by B while D is the elasticity matrix and |J | is the determi-
nant of the Jacobian matrix. The subscripts m, b and s stand for membrane, bending and shear. Because
each layer may have different properties, the elasticity matrix D is evaluated as a summation carried
out over the thickness of all the layers. Therefore, equivalent single layer theories produce equivalent
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stiffness matrices as weighted averages of the individual layer stiffness through the thickness. These
matrices are dependent on each layer orientation, and are given by

(Dm, Db, Dmb, Ds) =

n∑
k=1

(Dm, Db, Dmb, Ds)k

=

n∑
k=1

(
C1

3×3 H1, C1
3×3 H2, C1

3×3 H3, C2
2×2 H

)
k

(9)

with

Hn =

hl∫
hl−1

(
xn−1

3

)
dz =

1
n
(hn

l+1 − hn
l ), (10)

where hi is defined in Figure 2. The axis x3 is positive upward from the mid-plane of the plate. The Lth
layer is located between the points x3 = hl and x3 = hl+1 in the direction of the thickness.

At the element level and in local coordinates, the consistent mass matrix is given by

M(e)
f f =

1∫
0

1−η∫
0

ρ(e)(ST mS)(e)|J |dξdη, (11)

where m is a matrix that contains the inertial terms, and ρ represents the specific mass of the element.
Before the mass matrix given by Equation (11), is used in what follows, a procedure to obtain a diagonal
mass matrix is applied [Cook 1987].

The description of some of the flexible bodies of the multibody systems requires the use of composite
plates, discretized by triangular finite elements. The finite element is based in the theory described and
has six degrees of freedom per node: u◦

1, u◦

2, u◦

3, φ1, φ2 and φ3. In the finite element mesh of some of the
flexible bodies of the system composite beam elements are also used. For the sake of conciseness, none
of these elements is described here, but for details on the formulations of the different composite finite
elements, the interested reader is referred to [Neto et al. 2004].
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Figure 2. Coordinate system and layer numbering used for a typical laminated plate.
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3. Sensitivity analysis of the multibody system

The optimization algorithms used in this work require not only the evaluation of the functional values
of the behavior functions but also their sensitivities with respect to the design variables. The calculation
of these sensitivities can be carried out analytically or numerically. In this work only the analytical
sensitivities are obtained by using automatic differentiation.

3.1. Sensitivity of the equation of motion. For a rigid-flexible multibody system, the equations of mo-
tion in terms of modal coordinates are given by Equation (6). The sensitivities of the system accelerations
and Lagrange multipliers with respect to the design variables are obtained by differentiating Equation
(6) with respect to the design variables b: Mr Mr f X 8T

qr

XT M f r I XT 8T
q f

8qr 8q f X 0




q̈rb

ẅb

λb

 =


Qb

Rb

γ b

 , (12)

where (·)b denotes the sensitivity of quantity (·) with respect to b. The sensitivities of the right-hand-side
of the equation Qb, Rb and γb are

Qb =
∂

∂qr

(
gr − Sr − Mr q̈r − Mr f Xẅ − 8T

qr
λ
)
qrb

+
∂

∂ q̇r
(gr − Sr )q̇rb

+
∂

∂ẇ
(gr − Sr )ẇb

+
∂

∂w

(
gr − Sr − Mr q̈r − Mr f Xẅ − 8T

qr
λ
)
wb +

∂

∂b
(
gr − Sr − Mr q̈r − Mr f Xẅ − 8T

qr
λ
)
; (13)

Rb =
∂

∂qr

(
XT g f − XT S f − XT K f f Xw − XT M f r q̈r − XT M f f Xẅ − XT 8T

q f
λ
)

qrb

+
∂

∂w

(
XT g f − XT S f − XT K f f Xw − XT M f r q̈r − XT M f f Xẅ − XT 8T

q f
λ
)

wb

+
∂

∂b

(
XT g f − XT S f − XT K f f Xw − XT M f r q̈r − XT M f f Xẅ − XT 8T

q f
λ
)

+
∂

∂ q̇r

(
XT g f − XT S f

)
q̇rb

+
∂

∂ẇ

(
XT g f − XT S f

)
ẇb; (14)

γ b =
∂

∂qr

(
γ − 8qr q̈r − 8q f Xẅ

)
qrb

+
∂

∂w

(
γ − 8qr q̈r − 8q f Xẅ

)
wb

+
∂

∂b
(
γ − 8qr q̈r − 8q f Xẅ

)
+

∂γ

∂ q̇r
q̇rb

+
∂γ

∂ẇ
ẇb. (15)

After solving the linear system of Equations (12) to obtain the sensitivities q̈rb
, ẅb and λb the state

variables’ sensitivities are obtained by direct integration of q̇rb
, ẇb, q̈rb

and ẅb. The process is started
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with the initial conditions given by: 

qrb
(t0) = q0

rb
,

wb(t0) = w0
b,

q̇rb
(t0) = q̇0

rb
,

ẇb(t0) = ẇ0
b.

(16)

Generally, the initial conditions for the sensitivities expressed in Equation (16) are assumed to be null.
Note also that the leading matrix of (6) is equal to the leading matrix of Equation (12). Generally, the
factorized matrix used to obtain the solution of the equation of motion does not have to be calculated
again when the sensitivities system of equations need to be solved. However, because an automatic
differentiation tool is used [Bischof et al. 1996], the subroutine that computes the solution of the system
equations of motion is differentiated in order to obtain the sensitivity of the solution vector. The differ-
entiated version of the subroutine is not only used to compute the sensitivities solution vector, but also
to evaluate the derivative of the algorithm by which the solution is computed. The system accelerations
(q̈r , ẅ) and the sensitivity solution vector of Equation (6), (q̈rb

, ẅb), are obtained simultaneously.
Due to the coordinate reduction, which uses component mode synthesis, the nodal displacements of

the flexible body are described by Equation (5). The sensitivity of the nodal displacement is obtained by
computing the derivative of this equation with respect the design variables written as

du′

db
=

∂ X
∂b

w + X
∂w

∂b
= X bw + Xwb, (17)

where Xb are the sensitivities of the eigenmodes. The relation expressed in Equation (17) transforms
the modal sensitivities to nodal sensitivities. Haftka and Gürdal [1992] suggests evaluating this trans-
formation by the fixed-mode approach, in which the derivatives of vibration modes are neglected, or
by the updated-mode approach, where the derivatives of vibration modes are accounted for. The fixed-
mode approach is computationally less expensive but the updated-mode approach can occasionally be
more accurate. The right-hand side of Equation (12) also depends on the sensitivities of the eigenmodes.
Therefore, the same approach is used in the computation of the derivatives of the modal forces and in
the derivatives of the modal stiffness matrix. The modal stiffness matrix derivative is computed in the
updated-mode approach by

∂

∂b
(XT K f f X) =

∂ XT

∂b
K f f X + XT ∂ K f f

∂b
X + XT K f f

∂ X
∂b

, (18)

while in the fixed-mode approach, it is obtained as

∂

∂b
(XT K f f X) = XT ∂ K f f

∂b
X . (19)

The computation of the sensitivities of the eigenmodes is done using the Nelson scheme in the case
of distinct eigenvalues. However, when repeated eigenvalues are a possibility, Ojavo’s method is used
[Dailey 1989].
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3.2. Derivative of the element stiffness matrix. In this work, the design variables used for the laminate
optimization problem are the fiber angles of each lamina that make up the laminate, denoted by vector θ .
Therefore, the derivative of the stiffness matrix of the composite flexible body with respect to the layers’
orientations has to be accounted for. At the element level, in local coordinates, the stiffness matrix is
given by Equation (8). In this equation, only the matrix D depends on the design variables. Thus, the
sensitivity of this equation is given by

∂ K (e)
f f

∂b
=

1∫
0

1−η∫
0

(
BT ∂ D

∂b
B

)(e)
|J |dξdη. (20)

The elasticity matrix D depends on the submatrices Dm , Db, Dmb and Ds , which are defined by
Equation (9). The partial derivative of Equation (9) with respect to the design variables vector is

(Dm, Db, Dmb, Ds)b=
( n∑

k=1

(Dm, Db, Dmb, Ds)k

)
b

=

n∑
k=1

(
C1

3×3b H1, C1
3×3b H2, C1

3×3b H3, C1
2×2b H

)
k (21)

with (
Cb

)
k =

(
∂T T

∂b
C̄T + T T ∂ C̄

∂b
T + T T C̄

∂T
∂b

)
k
. (22)

In Equation (22) (C̄b)k is the sensitivity of the material matrix of elastic coefficients for the layer k
expressed in the local body frame, and (∂T/∂b)k is the sensitivity of the transformation matrix relative
to the design variables. Matrix T represents the transformation between the local body frame and the
material coordinate systems for layer k. The element mass matrix does not depend on the design variables
therefore the partial derivative of this matrix with respect the design variables is null.

4. Optimization criteria

The different optimization problems in multibody systems lead, in general, to different criteria functions
and design constraints. The objective functions most widely used in multibody problems are of one of
two types: maximum or minimum values and the integral type. Consider a general multibody response
defined by function f0(b, z, λ, t), which is dependent on time and on the state and design variables.
In multibody systems, all the terms present in the equations of motion may be functions of the design
parameters. In a compact form the problem objective functions are given by Chang and Nikravesh [1985]:

9i = 9i (b, z, λ, t), i = 0, . . . , n, (23)

where the state vector z includes the coordinates, velocities and accelerations. The variables of the state
vector may depend on time and on the design variables. Therefore, the dependency of the state variables
on the design variables and time is explicitly written as

z(b, t) =
(
q(b, t), q̇(b, t), q̈(b, t)

)
. (24)
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The dependencies of the state variables on the design variables are explicitly taken into account by the
automatic differentiation tool that uses the chain rule to calculate the sensitivities.

4.1. Mini-max optimization problem. The min-max optimization problem, for the time interval between
ti and te is stated as

minimize 9max
0 = max f0(b, z, λ, t), ti ≤ t ≤ te, (25)

where the problem consists in the minimization of the maximum value of a specific function during a
given time interval. The use of the maximum value of a time dependent function response as the objective
function makes it a more difficult problem to solve. This type of objective function may appear, for
instance, when the minimization of the maximum value of acceleration or force in a given point of a
body is required during dynamic analysis. In this optimization problem two situations can occur:

(1) The instant in which the function is at the maximum value is unique and perfectly defined. In this
case, during the optimization process the instant tm is not dependent on the design variables, and
therefore the objective function (25) can be replaced by a simpler objective function as

minimize 9max
0 = max f0

(
b, z(tm), λ(tm)

)
. (26)

(2) The instant in which the function is at the maximum value, varies during the optimization process.
One form of dealing with this problem is to introduce an extra design variable and make the objective
function equal to the value of that variable [Haftka and Gürdal 1992; Kim and Choi 1996]:

minimize 90 = bn+1 (27)

with the additional time-dependent constraint

9n+1 = f0(b, z, λ, t) − bn+1 ≤ 0, ti ≤ t ≤ te. (28)

The constraint given by Equation (28), when added to the total number of constraints ensures, that the
dynamic response is below the maximum value defined by the auxiliary variable bn+1. This approach
poses some difficulties for the search direction in the optimization algorithm and can lead to small steps
in the line search method, or even to a stall of the process. To overcome these difficulties, Kim and Choi
[1996] proposed to handle directly the maximum value point only in the optimization process.

4.2. Minimization of an integral type criteria. The integral type objective function may be used to
represent mean values of the response over time, accumulated values, or other special criteria. For a
response f0(b, z, λ, t) of the dynamic system, the objective function is [Eberhard et al. 2003]

90 = G0(b, zte , λte , te) +

te∫
ti

f0(b, z, λ, t)dt, (29)

where f0(b, z, λ, t) depends on the dynamic behavior during the complete time interval [ti , te], while G0

considers only the final state. This type of objective function is most common in vehicle design. Comfort
or injury criteria are defined by integral type functions and often are used in the optimization process.
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4.3. Time-dependent constraints. Mathematical programming algorithms generally cannot deal with
parametric constraints such as

9i = fi
(
b, z(t), λ(t), t

)
≤ c, ti ≤ t ≤ te, (30)

or even with constraints such as the one described by Equation (28). Such constraints have to be refor-
mulated to remove their time dependency. During the simulation the function value can only be obtained
for discrete time points. The most straightforward way to remove the time dependency of the original
constraint is to discretize the time interval into time points. Then, the original constraint represented by
Equation (30) is replaced by ntp constraints written as [Haug and Arora 1979]:

9i = fi
(
b, z(tk), λ(tk), tk

)
≤ c, k = 1, . . . , ntp. (31)

The distribution of the time points has to be sufficiently dense to avoid large constraint violations
between two adjacent time points [Hsieh and Arora 1984]. Thus, discretizing time-dependent constraints
can significantly increase the number of constraints, and thereby the cost of optimization [Haftka and
Gürdal 1992]. In order to reduce the number of constraints, a first alternative consists of replacing the
original constraints by an equivalent integrated constraint, which averages the severity of the constraint
over the time interval. Hsieh and Arora [1984] showed that from an optimization theory point of view,
the constraints described by Equation (30) and equivalent integral constraints are different. In fact, an
equivalent integral constraint represents the behavior of the time dependent constraint fi (b, z(t), λ(t), t)
on the complete time domain by a single value 9e

i , leading to a loss of information. As a consequence,
equivalent constraints tend to blur the design trends [Haftka and Gürdal 1992]. Hsieh and Arora [1984]
and Grandhi et al. [1986] propose an alternative procedure that consists of exchanging the initial con-
straint given by (30) for a set of constraints of the type of Equation (31), in which ntp is replaced by nctp,
with nctp < ntp being nctp the number of critical time points. These critical points are related with the
existence of local maxima or minima of the function.

5. Optimization algorithms

In dynamic problems the evaluation of the system dynamic behavior requires the numerical integration
of the equation of motion. The time dependency of this system makes these optimization problems more
complex and requires that special techniques be used in the solution process. Both deterministic and
stochastic optimization methods can be applied. Eberhard et al. [2003] has successfully used a stochastic
evolution strategy in combination with a parallel computing environment to reduce computation time.
However, in this work the Modified Method of Feasible Directions is used, which is a deterministic
optimization method implemented in the DOT optimization routines library [Vanderplaats 1992]. In
order to calculate the gradients, the direct differentiation method is used, the sensitivities being obtained
by the automatic differentiation program ADIFOR [Bischof et al. 1996].

6. Optimization of a satellite unfolding process

The proposed methodology is demonstrated through the optimization of a complex multibody system
made of composite material. The technical system modeled within this application consists in the un-
folding process of a satellite antenna, the Synthetic Aperture Radar (SAR) antenna, which is a part of
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Figure 3. The SAR antenna in the (a) folded and (b) unfolded configurations.

the European research satellite ERS-1. The model of this antenna has been the object of different studies
in several studies in multibody dynamics being first proposed by Hiller [1983] and Anantharaman and
Hiller [1991].

6.1. Description of the SAR antenna. The folding antenna shown in Figure 3 is achieved through a
relatively complex spatial mechanism. Both the solar array and the SAR antenna of the ERS-1 satellite
have the same configuration and share the same kinematic features. During transportation the antenna
and the solar array are folded, as shown in Figure 3a, in order to occupy as small a space as possible.
After unfolding, the mechanical components take the configuration represented in Figure 3b.

The SAR antenna consists of two identical subsystems, each with three coupled planar four-bar links
that unfold two panels on each side. The central panel is attached to the main body of the satellite. Each
unfolding system has two degrees of freedom, driven individually by actuators located in the joints A
and B, shown in Figure 4.

The unfolding process consists of two phases, schematically represented in Figure 5. In the first phase
the panel 3 is rolled out, about an axis normal to the main body, by a rotational spring-damper-actuator
in joint A, while the panel 2 is held down by locking joints D and E, as shown in Figure 5a. The second
phase begins with joint A locked, the panels 2 and 3 being swung out to the final position by a rotational

1 

1.994 m

1.3 m

a) b)

Actuator (1)

Actuator (2)

A

B
C

D, E

Panel 3 (B3)

Panel 2 (B2)

Panel 1 (B1)

 
(a) (b)

Figure 4. The SAR antenna: (a) one half unfolded state; (b) folded antenna.
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1 

a)
b)

 

Figure 5. Unfolding process of the SAR antenna: (a) first phase; (b) second phase.

spring-damped-actuator in joint B, as observed in Figure 5b. The second half of the antenna, which has
been omitted in Figures 4 and 5, is unfolded in the same way as the first half shown here. When the
complete antenna is deployed all five panels are aligned in the final configuration.

The model used for one half of the folding antenna, schematically depicted Figure 6, is composed
of 12 bodies (B1 a B12), 16 spherical joints (S1 a S16) and 3 revolute joints (R1, R2, R3). The central
panel is attached to the satellite, defined as body B1, which has mass and inertias much higher than the
remaining bodies.

In the first phase of the unfolding antenna a rotational spring-damper-actuator is applied to the revolute
joint R3. For the second phase, the revolute joint R3 is locked and the system is moved to the next
equilibrium position by a spring-damper-actuator positioned in joint R1. Each panel is 1.994 m long
by 1.3 m wide and has a thickness of 2 mm. The linkage between the panels and the four-bar linkage
mechanism is assured by a set of supports, six in body 2 and four in body 3. All truss members have a
uniform circular cross-section [Neto 2005].
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Figure 6. Multibody model of the SAR antenna.
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1st Layer 2nd Layer 3rd Layer 4th Layer

Lay-up 1 0o 0o 0o 0o

Lay-up 2 0o 90o 90o 0o

Thickness (m) 0.0005 0.0005 0.0005 0.0005

Table 1. Characteristics of the two lay-ups considered for the composite panels.

6.2. First phase of the antenna unfolding process. The material used in the different components of the
antenna is a carbon reinforced plastic IM6/SC1081 where the matrix is made of Epoxy SC1081 and the
fibers are made of Carbon IM6. Note that the material model used here is not necessarily that of the real
satellite antenna, as the characteristics of the material are not publicly available. The properties of the
composite material, for a single layer with an orientation of 0◦ relative to the X axis are: E1 = 177 GPa;
E2 = 10.8 GPa; G12 = G13 = 7.6 GPa; G23 = 8.504 GPa; ν12 = 0.27; with a specific mass of 1600 Kg/m3.
Two different laminates with four layers in each, described in Table 1, are considered as potential design
solutions.

In flexible multibody models the use of all the nodal degrees of freedom, resulting from the model of
the complex system, as generalized coordinates is not viable. The application of the modal superposition
technique in this kind of problem, characterized by linear elastic deformations, can be done without
compromising accuracy. By using of a small set of the modes of vibration associated to the lower
frequencies it is possible to reproduce the structural deformations of the panels with a small number of
generalized elastic coordinates.

The modes of vibration for all flexible bodies in the antenna are obtained by performing a modal
analysis of each one of the flexible bodies independently. The structural attachment conditions used in
the eigenproblem are the same as those used to fix the body coordinate system, that is, the node in the
center of mass is fixed to the body fixed frame. In this manner the free rigid body modes are removed.

In Tables 2 and 3 the 14 lowest frequencies are presented for panels 2 and 3 with composite material lay-
ups 1 and 2, respectively. The modes corresponding to the two lower frequencies are almost rigid modes,
resulting from the flexibility around a fixed node. However, these modes also represent deformation of
the panels and cannot be neglected.

The actuator that is applied in revolute joint R3, to initiate the satellite unfolding process, is modeled
as a nonlinear spring and damper actuator. The spring-damper-actuator is described by piecewise-linear
characteristics given by:

M(θ, θ̇) = cθ̇ +



0.10 + 9.00(3.12 − θ) 3.08 < θ ≤ 3.12

0.45 + 60.41(3.08 − θ) 3.02 < θ ≤ 3.08

4.03 − 5.19(3.02 − θ) 2.63 < θ ≤ 3.02

2.00 0.20 < θ ≤ 2.63

10.00θ −0.20 ≤ θ ≤ 0.20

−2.00 −0.20 > θ,

(32)
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Mode Panel 2 Frequency [Hz] Panel 3 Frequency [Hz]

1 0.990 0.992
2 1.457 1.460
3 1.677 1.681
4 1.746 1.749
5 4.000 4.001
6 4.609 4.620
7 6.099 6.118
8 6.814 6.850
9 8.538 8.564
10 8.578 8.583
11 12.434 12.451
12 12.828 12.833
13 14.354 14.404
14 14.415 14.485

Table 2. First 14 natural modes of vibration for panels 2 and 3 with the composite
material lay-up 1.

Mode Panel 2 Frequency [Hz] Panel 3 Frequency [Hz]

1 1.311 1.313
2 1.563 1.566
3 1.694 1.699
4 2.334 2.336
5 4.719 4.719
6 5.755 5.770
7 6.220 6.242
8 7.388 7.427
9 12.832 12.844

10 12.953 12.971
11 13.626 13.685
12 13.829 13.873
13 15.282 15.303
14 15.969 15.986

Table 3. First 14 natural modes of vibration for panels 2 and 3 with the composite
material lay-up 2.
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1 

 

Figure 7. Configuration of the composite panels with the original damped spring-actuator.

where the damping coefficient used is c = 0.5 Nms.
The actuation law presented here is different from that reported by Anantharaman and Hiller [1991],

which was used to model the SAR antenna with panels made of isotropic material. In fact, when the actu-
ation law used by Antharaman and Hiller is used for the composite flexible models the satellite antenna
is driven to a different equilibrium state than that obtained in the rigid model. The trusses connected
to the actuator quickly reach their equilibrium, but panel 3 hardly moves because the unfolding trusses
break through the panel, as represented in Figure 7. This behavior is clearly unfeasible because contact
between trusses and panels would take place, preventing such penetration from happening. Therefore,
the reported results show that due to the deformations of the trusses the undesirable contacts between
trusses and panels are possible if the high torques associated to the original actuator have been maintained.
Consequently, the solution is to apply a ‘softer’ actuation law, in the sense of preventing such contact.

The problems associated with the unfolding of an isotropic flexible model due to the actuator deploy-
ment law have been identified by Anantharaman and Hiller [1991], and the solution found was to modify
that actuation in order to prevent the wrong deployment mechanism, which is in essence similar to the
solution adopted here. When using composite material models, the problem of the first phase of the
unfolding process increases in importance not only because the bending of the panels is significant but
also because torsional modes come in play. In Figure 8 the variation of the actuator angle during the
simulation period for the composite models is presented.

Figure 8 shows that the two models lead to similar simulation results. However, it is observed that
after the equilibrium positions are reached for both models, in the period from 7 to 8 s, the direction of
rotation of the truss members of the panels made with the lay-up 1 is opposite to that of the same truss
members of the model made with lay-up 2. This discrepancy can result from the difference between the
vibration modes of the both models. In fact, the lay-up 1 has no layers with the 90◦ orientation, thus the
stiffness of this model in the Y direction is smaller than that observed with lay-up 2. A similar difference
in stiffness is also visible in the X direction of the lay-up 1.

When observing the fourth frame of the unfolding in Figure 9a, it can be noticed that the flexible
model of the satellite antenna predicts interference between panel 2 and panel 1, which is attached to the
base satellite, when bodies B7 and B8 get aligned. This can be perceived as a flaw in the design of the
unfolding process of the satellite that requires being fixed. If not detected, the interference would cause
impact between the panels eventually leading to their failure.

6.3. Optimization of the SAR antenna. In this section the multibody model of the SAR antenna is used
within the framework of an optimization problem. The flexibility of the panels of the SAR antenna is
fundamental for the functional requirements of the antenna. The use of stiffer panels can improve the
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Figure 8. Actuator angle during the first phase of deployment for different composite
material lay-ups.
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Figure 9. Configuration of the antenna unfolded process: a) first phase b) second phase.
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Panels Design Variable Lower Bound Initial Value Upper Bound

2 = 3 θ1/θ2/θ2/θ1 −90◦/ − 90◦/ − 90◦/ − 90◦ 55◦/ − 55◦/ − 55◦/55◦
+90◦/ + 90◦/ + 90◦/ + 90◦

Table 4. Design variables for panels’ layers’ orientations in the satellite optimization.

time needed to unfold the antenna, during the first phase of the unfolding process, allowing for the use
of a stiffer actuator on revolute joint R3. Furthermore, the stiffness increase of the panels, in particular
of panel 2, prevents the interference detected between panels in the first part of the unfolding process.

The multibody model of the flexible antenna for the first part of the unfolding process is composed of
two flexible panels. Therefore, the antenna deformation energy of the panels for instant tn is defined as

2Um(wi , tn) =

3∑
i=2

wT
i XT

i K i
f f X iwi

=

3∑
i=2

wi
T 3wi = 2

(
U2(w2, tn) + U3(w2, tn)

)
,

(33)

where the index m refers to the model used and index i refers to the body number of panels of the
multibody model SAR antenna. Equation (33) indicates that the deformation energy of the multibody
model of the SAR antenna is obtained as a summation of the deformation energy of the two panels of
the model. Then the function f0 = 2Um is used to optimize the SAR antenna.

The goal defined by Equation (29) represents an area defined by the curve of function f0 = 2Um during
the simulation period ti = 0 s ≤ t ≤ te = 3 s. The minimum value of the area may be achieved with a
peak value of the maximum deformation energy of each panel that exceeds acceptable limits. In order to
avoid this situation, the maximum value of the deformation energy, in each panel, is constrained to be

9i (θ) ≤ ci ; i = 2, 3. (34)

The values ci are defined as being the maximum values of deformation energy, in each panel, observed in
the initial design. Therefore, in the initial design the optimization algorithm has two active constraints.

All material models considered herein are symmetric laminates with the number of layers being fixed.
The simulation scenario considered is restricted to the first three seconds of the unfolding process, iden-
tified as the critical period. Two design variables are used in the optimization process, corresponding to
the orientation of the layers that make up the laminate used to model panels 2 and 3. The initial design of
laminate used in the panels is defined in Table 4. The optimization method used is the Modified Method
of Feasible Directions (MMFD), as available in DOT [Vanderplaats 1992]. The analytic sensitivities
computed by the direct differentiation method are used to compute the gradients required by the optimizer.

In Table 5 the optimization results are presented for the flexible multibody of the antenna. In Figure 10
the evolution of the objective function for the antenna flexible multibody model is showed, the progress
of the design variables being shown in Figure 11. Figure 12 shows the actuator angle history during the
first phase of the unfolding antenna for the original and optimum designs.
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Panel 2 (MFD) Panel 3 (MFD)

Optimum Layer orientations 1.06◦/−47◦/−47◦/1.06◦

Initial objective function 0.0219814
Optimum objective function 0.00097180
Reduction of objective function 95.6%

Number of Constraints 2
Number of Design Variables 2
Active Constraints 0
Active Side Constraints 0
Function Calls 14
Gradient Calls 4
Number of Iterations 4

Table 5. Summary of the optimization results of the satellite on the second optimization scenario.

In Figure 10 it is possible verify that the optimization procedure converges very fast to the optimum
solution, reducing the deformation energy on the order of 95%. The largest variation in the design
variables observed is associated with the outside layers of the laminate, as depicted in Figure 11. The
deformation energies of panels 2 and 3 are compared for the initial and the optimized models of the
panels 2 and 3 in Figures 13 and 14, respectively. By observing the initial and optimized deformation
energy of panels 2 and 3 it is possible to conclude that the major contribution to the reduction of the
deformation energy is verified in panel 2.
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Figure 10. Evolution of the objective function during the optimization process.
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Figure 11. Evolution of the design variables during the optimization process.

7. Conclusions

A general method for the design optimization of flexible multibody systems made of composite materials
has been presented in this work and demonstrated by an application to the design of the unfolding process
of a satellite antenna. First, the correct choice of the optimization methods and the optimal problem
definition is more complex when the nonlinear dynamic response of the systems is involved. Furthermore,
the need to use analytic sensitivities instead of numerical sensitivities requires that expeditious methods
of obtaining these are implemented in order to allow for the definition of more general objective functions,
constraints and design variables. This has been achieved in this work by using an automatic differentiation
tool to obtain the gradients required by the optimizer. Finally, the optimization of the nonlinear dynamic
systems in general, and of the flexible multibody systems in particular, often present time-dependent
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Figure 12. Actuator angle for the initial and optimum laminate of the antenna panels.
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Figure 13. Deformation energy for the initial and optimum model of panel 2.

constraints that are difficult to tackle with common procedures. The use of min-max optimization is a
form of handling most optimization problems of this type.

The application of the methodology developed for a complex system was demonstrated by consider-
ing the multibody model of the SAR antenna. The optimization method was applied to minimize the
deformation energy of the SAR antenna panels. To get a stiffer antenna, the optimization problem was
formulated as minimization problems of the deformation energy of each panel. The design variables
of the optimization problem were the fiber orientations of the layers that form the lamination used to
model the material properties of the panels. The design problem considers the case of finding optimum
symmetric lamination with four layers only. In the optimization scenario two design variables were used
to define the optimum lamination on both panels. The results of this application demonstrate that not
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 Figure 14. Deformation energy for the initial and optimum model of panel 3.
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only are there feasible designs for the antenna in which interference between panels is avoided but also
that the control over of the deformation energy of the antenna was possible. In the process it was shown
that feasible designs for the actuation law during the deployment are obtained.
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