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SYMMETRY ANALYSIS OF EXTREME AREAL POISSON’S RATIO IN
ANISOTROPIC CRYSTALS

LEWIS WHEELER AND CLIFF YI GUO

Poisson’s ratio is defined as the negative of the ratio of the transverse strain to the longitudinal strain in
response to a longitudinal uniaxial stress. In the presence of anisotropy, this means that the ratio depends
on two directions. With a view to assessing crystals that exhibit directions for which the ratio is negative,
we resort to a transverse average to eliminate one directional variable and at the same time to arrive
at a measure that poses a challenge to achieving significant negative values. The areal Poisson ratio
coincides with the Poisson ratio for an isotropic material. We determine the stationary directions of the
areal Poisson ratio for all crystal symmetry classes. The directions represented by invariant stationary
points—those that hold independently of the material—we identify and explain class-by-class in terms
of the axes of symmetry for the class. It is shown that for cubic crystals, positive definiteness of the strain
energy requires that the areal Poisson ratio lie between −1 and 1/2, as it does for isotropy. We conclude
that the areal Poisson ratio for the classes of lower symmetry are not restricted.

1. Introduction

Over the last two decades there has been increasing interest in finding, creating, and understanding
material structures that exhibit a negative Poisson’s ratio describing materials that are referred to as
auxetic, a term attributed to Evans et al. [1991]. While much of the work has focused on microstructures,
there is an abundance of crystal structures that possess a negative ratio values for specific directions due
to their anisotropic nature. The knowledge that a crystal may possess a negative Poisson’s ratio is by
no means recent. Love [1927] mentions a pyrite that yields a value near −1/7. Moreover, auxeticity in
crystals is not uncommon, since nearly 69 of cubic elemental metals have a negative Poisson’s ratio when
the stressed axis lies along the [110] direction [Baughman et al. 1998]. Ting and Barnett [2005] derived
simple necessary and sufficient conditions on elastic compliances to identify if any given material of
cubic or hexagonal symmetry is completely auxetic or nonauxetic. Further examples of auxetic behavior
in crystals of cubic, hexagonal, and monoclinic symmetry are discussed in [Tokmakova 2005] with the
aid of stereographic projections.

The meaning of the Poisson’s ratio in the presence of anisotropy raises questions that are not apparent
in the isotropic case. Not only does the ratio depend upon the choice of a direction for the longitudinal
strain, but all directions at right angles to it for the transverse strain component. This transverse variation
is apt to yield offsetting ratios [Baughman et al. 1998], a negative value for one transverse direction
and a positive value for another, that diminish or negate the auxetic effect. Guo and Wheeler [2006]
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introduced an areal Poisson’s ratio that is relatively simple in form and serves to measure the offsetting
effects. The search for auxetic directions leads naturally to the search for the direction of the minimum
areal Poisson’s ratio, and more broadly to an examination of directions that yield stationary values. Of
special interest, as we demonstrate, are stationary directions that are related only to the symmetry of the
material and bear a simple relation to the crystallographic directions. For each crystal class, we find the
stationary directions of the areal Poisson’s ratio, examine their extremal nature, and graphically illustrate
them for a particular crystal within the class.

The effect of crystal symmetry on the elastic constants of crystals is covered thoroughly in [Nye 1957;
Ting 1996]. Cazzani and Rovati [2003; 2005] examine the directionality and extrema of Young’s modulus
in crystals of cubic, transversely isotropic and tetragonal symmetry. Ting and Chen [2005] proved that
for all of the seven crystal classes, the Poisson’s ratio can have an arbitrarily large positive or negative
value under the constraint of positive definiteness of the strain energy density. In contrast, for the cubic
crystal class we conclude here that the areal Poisson’s ratio must lie within bounds. For the remaining
crystal classes, there are no bounds on the areal Poisson’s ratio.

In this paper, we investigate the directional variation of the areal Poisson’s ratio for all nine crystal
classes. Stationary directions that are independent of the material are called invariant stationary points.
The directions represented by invariant stationary points are related to the axes of symmetry belonging
to the particular crystal class. Where sensible, both the invariant and material dependent stationary direc-
tions are found, and their extremal nature is discussed. Based on the values of the areal Poisson’s ratio
at stationary directions and positive definiteness of the compliance tensor, we analyze the boundedness
of the areal Poisson’s ratio for each crystal class.

2. Preliminaries

We denote by C the linear operator on the linear space of all symmetric 2-tensors that accounts for the
elastic properties in the linear theory of anisotropic elastic solids. The elasticity operator C and its adjoint
C∗, are related by

〈A, C [B]〉 =
〈
C∗ [A] , B

〉
,

under the inner product
〈A, B〉 = tr ABT .

Here, the elasticity operator C is required to be self adjoint, C = C∗, in other words to possess the major
symmetry, so that

〈A, C [B]〉 = 〈B, C [A]〉 .

Let {e1, e2, e3} denote a right-handed orthonormal frame, for short a cartesian frame. Define Ei j as

Ei j = sym
(
ei ⊗ e j

)
.

The set
{

Ei j
}

is an orthogonal basis for the linear space of 2-tensors. These basis elements Ei j though
orthogonal are not normalized, but rather obey〈

Ei j , Ekl
〉
=

1
2

(
δikδ jl + δilδ jk

)
, (1)
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which implies ∣∣Ei j
∣∣2 =

{
1, i = j,
1
2 , i 6= j.

The components of C in the frame {e1, e2, e3} are given by Gurtin [1972]:

Ci jkl =
〈
Ei j , C [Ekl]

〉
. (2)

These components are simultaneously the components of the operator C and the fourth-order tensor
associated with C.

The components Ii jkl of the identity I are given by the right side of Equation (1),

Ii jkl =
1
2

(
δikδ jl + δilδ jk

)
. (3)

We assume for the remainder of this presentation that C is positive definite. Thus, C has an inverse, the
compliance operator, denoted by S, that, like C, is self-adjoint and positive definite.

The reduced forms of the matrix of elastic constants that appear in [Nye 1957] and [Gurtin 1972]
represent these constants in a preferred frame, which we denote by {a1, a2, a3} to distinguish it from the
generic frame {e1, e2, e3} . Remarkably, this frame may be taken as orthonormal. Here, we frequently
refer to the frame {a1, a2, a3} as a crystallographic frame. The crystallographic counterparts of the basis
elements Ei j are denoted by Ai j .

The Voigt compliances si j and the corresponding crystallographic tensor components Si jkl are related
through [Nye 1957],

(
si j
)
=



s11 s12 s13 s14 s15 s16

s22 s23 s24 s25 s26

s33 s34 s35 s36

s44 s45 s46

s55 s56

s66


=



S1111 S1122 S1133 2S1123 2S1131 2S1112

S2222 S2233 2S2223 2S2231 2S2212

S3333 2S3323 2S3331 2S3312

4S2323 4S2331 4S2312

4S3131 4S3112

4S1212


. (4)

3. Definition of the Poisson’s ratio and areal Poisson’s ratio for an anisotropic crystal

Consider a unit uniaxial stress

τ = l ⊗ l, |l| = 1

in the direction l . The longitudinal strain ε (l) is given by

ε (l) = l • εl = l • S [l ⊗ l] l = 〈l ⊗ l,S[l ⊗ l]〉 . (5)

Let t be a given direction perpendicular to l , that is, l • t = 0, |t| = 1. The strain ε (t) in the transverse
direction t is given by

ε (t) = t • εt = t • S [l ⊗ l] t = 〈t ⊗ t,S[l ⊗ l]〉 . (6)
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The Poisson’s ratio corresponding to the longitudinal direction l and the transverse direction t is defined
as

ν (l,t) = −
ε (t)
ε (l)

,

and in view of Equations (5) and (6) is expressed in terms of the compliance in the form

ν (l,t) = −
〈t ⊗ t,S[l ⊗ l]〉
〈l ⊗ l,S[l ⊗ l]〉

. (7)

For given orthogonal unit vectors l and t , the ratio is determined by the elastic properties of the crystal.
We note that for S positive definite, the denominator is positive, so the sign of ν is determined by the
numerator. The areal Poisson’s ratio is defined by

ν̂ (l) =
1

2π

2π∫
0

ν (l,t (α)) dα.

It is readily seen that this averaging reduces to finding the average of t ⊗ t , with the result

ν̂ (l) = −
〈〈t ⊗ t〉 , S[l ⊗ l]〉
〈l ⊗ l, S[l ⊗ l]〉

where

〈t ⊗ t〉 =
1
2

(I − l ⊗ l) . (8)

Therefore,

ν̂ (l) =
1
2

(
1 −

tr S[l ⊗ l]
〈l ⊗ l, S[l ⊗ l]〉

)
. (9)

Of course, ν̂ reduces to the Poisson’s ratio if S is isotropic.
The direction l of the stressed axis can be expressed in spherical coordinates,

l = cos θ sin φa1 + sin θ sin φa2 + cos φa3,

where 0 ≤ φ ≤ π, 0 ≤ θ < 2π. Thus, the areal Poisson’s ratio can be expressed in terms of the polar
angles φ and θ through

ν̂ (l) = ν̂ (φ, θ) =
1
2
(1 −

tr S[l (φ, θ) ⊗ l (φ, θ)]

〈l (φ, θ) ⊗ l (φ, θ) , S[l (φ, θ) ⊗ l (φ, θ)]〉
).

To identify the directions l for which the areal Poisson’s ratio attains extreme values, we begin by exam-
ining stationary directions, those for which

ν̂φ =
∂ν̂ (φ, θ)

∂φ
= 0,

ν̂θ =
∂ν̂ (φ, θ)

∂θ
= 0,

(10)
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which we also at times refer to as stationary “points”. With the aid of the matrix

J =

(
ν̂φφ ν̂φθ

ν̂φθ ν̂θθ

)
, (11)

we are able to further analyze the stationary points. If J is nonsingular, we can determine the extremal
nature of a stationary point. If the matrix is sign definite, there is an extreme point—a minimum if
positive definite, a maximum if negative definite. For J nonsingular but indefinite, there is a saddle
point. If J is singular, additional analysis is required.

4. Poisson’s ratio for the isotropic case

For an isotropic medium, the elasticity tensor may be expressed in spectral form as

C = 3k
1
3

I ⊗ I + 2µ(I −
1
3

I ⊗ I), (12)

where k denotes the bulk modulus and µ stands for the shear modulus. The principal values of C are
3k and 2µ. They are coefficients of orthogonal projections of rank 1 and rank 5, respectively. Hence,
S = C−1 is given by

S =
1

3k
1
3

I ⊗ I +
1

2µ
(I −

1
3

I⊗I).

Therefore, and by Equation (7), one finds

ν =
1
2

(
3k − 2µ

3k + µ

)
. (13)

Similarly, Equation (9) furnishes

ν̂ =
1
2

(
3k − 2µ

3k + µ

)
,

and we see that the Poisson’s ratio and its areal counterpart reduce to the same elastic constant if the
material is isotropic. In passing, we mention that in view of Equation (12), positive definiteness is
equivalent to

k > 0, µ > 0, (14)

and by Equation (13), furnish the well-known restriction on the Poisson’s ratio for isotropic materials,

−1 < ν <
1
2
.

Such bounds do not hold for the Poisson’s ratio for the crystal classes, as demonstrated in [Ting and
Chen 2005]. We examine the corresponding question for the areal Poisson’s ratio in what follows.
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4.1. Cubic materials. For a crystal of cubic symmetry, the Voigt compliance matrix takes the form

(
si j
)
=



s11 s12 s12 0 0 0
s11 s12 0 0 0

s11 0 0 0
s44 0 0

s44 0
s44


. (15)

In terms of the Voigt compliances, positive definiteness is equivalent to (see [Nye 1957])

s11 > 0, s44 > 0, −
1
2

s11 < s12 < s11. (16)

The areal Poisson’s ratio can be expressed in spherical coordinates as:

2̂ν (φ, θ) = 1 −

(
S1111 + 2S1122

)
S1122 + 2S1212 + (S1111 − S1122 − 2S1212)

[(
sin4 θ + cos4 θ

)
sin4 φ + cos4 φ

] . (17)

From this expression, we find

ν̂(φ, θ) = ν̂ (π − φ, θ) = ν̂
(
φ,

π

2
+ θ

)
= ν̂

(
φ,

π

2
− θ

)
,

a manifestation of the symmetry associated with the class of crystals of cubic symmetry.
So we can limit the scope to 0 ≤ φ ≤ π/2, 0 ≤ θ ≤ π/4 without loss of generality. A contour plot of the

areal Poisson’s ratio for the cubic material pyrite is shown in Figure 1. At room temperature, the indepen-
dent elastic compliance components are s11 = 2.652 (TPa)−1, s12 = −0.199 (TPa)−1, s44 = 9.141 (TPa)−1

[Simmons and Wang 1971]. By Equation (17), the angles (θ, φ) for the stationary directions of cubic

φ
νmin=0.0751

νmax=0.203

π/4
     

π/4 

π/8 

0 

θ 

π/2

Figure 1. Contours for the areal Poisson’s ratio for a pyrite of cubic symmetry.
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materials obey 
0 =

2 sin 2φ
[
sin2 φ(sin4 θ+cos4 θ)−cos2 φ

]
(S1111+2S1122)β{

S1122+2S1212+β
[
(sin4 θ+cos4 θ) sin4 φ+cos4 φ

]}2 ,

0 =
− sin4 φ sin 4θ(S1111+2S1122)β{

S1122+2S1212+β
[
(sin4 θ+cos4 θ) sin4 φ+cos4 φ

]}2 .

(18)

The factor

β
def
= S1111 − S1122 − 2S1212 (19)

does not vanish unless the material is isotropic and the factor S1111 + 2S1122 is positive owing to positive
definiteness. Hence, the stationary points of the areal Poisson’s ratio are given by

φ = 0, and φ =
π
2 , θ = 0,

φ =
π
2 , θ =

π
4 , and φ =

π
4 , θ = 0,

θ =
π
4 , (cos φ)2

=
1
3 .

(20)

The stationary points in the first line of Equation (20) lie along the [100] direction, those in the second
line lie along the [110] direction, and the last line describes stationary points along the [111] direction.
The directions represented by these stationary points thus lie respectively on a four-fold axis, a two-fold
axis and a three-fold axis of symmetry for cubic crystals. One important fact is that these directions do
not depend upon the compliances. For a crystal of cubic symmetry, the directions of the extreme areal
Poisson’s ratio must coincide with the direction of a lattice vector, face diagonal, or body diagonal.

To determine the nature of a stationary point, whether it is a local extremum or a saddle point, we
examine the value of the areal Poisson’s ratio and its second derivatives at these points. For a stationary
point lying along the [100] direction,

ν̂ = − S1122/S1111,

ν̂φφ = ν̂θθ = − 2
(
S1111 + 2S1122

)
β/S2

1111
,

ν̂φθ = 0.

Assuming that the material is not isotropic, so that β 6= 0, the matrix J defined by Equation (11) assumes
diagonal form. The eigenvalues, ν̂φφ and ν̂θθ , are positive or negative accordingly as β is negative or
positive. In conclusion for the [100] direction, a stationary point is a minimum or maximum accordingly
as β ≶ 0. For a stationary point on the [110] direction,

ν̂ =
1
2

[
1 −

2(S1111+2S1122)
(S1111+S1122+2S1212)

]
,

ν̂φφ = −
4(S1111+2S1122)β

(S1111+S1122+2S1212)
2 ,

ν̂θθ =
8(S1111+2S1122)β

(S1111+S1122+2S1212)
2 ,

ν̂φθ = 0.
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The matrix Equation (11) is again diagonal, but the eigenvalues are of opposite sign for β 6= 0, indicative
of a saddle point. The stationary values of the areal Poisson’s ratio associated with a face diagonal
direction are neither a local minimum nor a local maximum. If a stationary point lies along the [111]
direction, 

ν̂ =
1
2

[
1 −

3(S1111+2S1122)
(S1111+2S1122+4S1212)

]
,

ν̂φφ =
12(S1111+2S1122)β

(S1111+2S1122+4S1212)
2 ,

ν̂θθ =
8(S1111+2S1122)β

(S1111+2S1122+4S1212)
2 ,

ν̂φθ = 0.

Hence, the matrix Equation (11) is once again in diagonal form. Its eigenvalues are positive if β > 0,
yielding a relative minimum, whereas a relative maximum is present if β < 0.

The global minimum and maximum are obtained by comparing the values of the areal Poisson’s ratio
at the stationary points. For the pyrite described earlier, β = − 4.372. Thus the [111] direction locates
the maximum value, ν̂max = 0.203, whereas the [100] direction is associated with the minimum value,
ν̂min = 0.075. In Figure 1, the extreme points are easily identified by the closed contours.

In summary, for a cubic crystal that is not isotropic, we find

β > 0,


ν̂max = −

S1122
S1111

< 1
2 , along a1,

ν̂min =
1
2 [1 −

3(S1111+2S1122)
S1111+2S1122+4S1212

] > −1, along q,

β < 0,


ν̂max =

1
2 [1 −

3(S1111+2S1122)
S1111+2S1122+4S1212

] < 1
2 , along q,

ν̂min = −
S1122
S1111

> −1, along a1,

where

q =
1

√
3
(a1 + a2 + a3).

With the aid of these results, and by means of definiteness conditions (16), we conclude that for the case
of cubic symmetry,

−1 < ν̂ <
1
2
,

the same as for an isotropic medium. If s11 + 2s12 → 0+, both ν̂min and ν̂max approach the upper bound
1/2 and the material behaves like an isotropic medium. There are many cubic materials for which s12/s11

is near −1/2, for example, gold (−0.462), γ − Fe (−0.440), lead (−0.459), Cu2.7AlMn0.3 (−0.475).
When the shear compliance s44 is much larger than s11 and s12, β is negative, and the areal Poisson’s
ratio assumes its maximum value (1/2) along the q direction. But if s44 is much smaller than s11 and
|s12| , then the areal Poisson’s ratio can assume either the maximum or the minimum value along q,
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depending on the relative values of s12 and s11, and approach the limits −1 for s11 � −2s12 or 1/2
for s11 ' −2s12. Moreover, we see that positive s12 yields a negative areal ratio. Measured values of
this constant are recorded for many cubic materials, including the ones just mentioned, in [Landolt and
Bornstein 1992], and the scarcity of cubic materials possessing a positive s12 is readily apparent.

4.2. Hexagonal crystal. The Voigt compliance matrix for the hexagonal class assumes the form [Nye
1957]

(
si j
)
=



s11 s12 s13 0 0 0
s11 s13 0 0 0

s33 0 0 0
s44 0 0

s44 0
2 (s11 − s12)


in an orientation frame {a1, a2, a3} There are thus five independent elastic compliance constants for
material possessing hexagonal symmetry. Positive definiteness is equivalent to [Nye 1957]{

s11 > 0, s33 > 0, s44 > 0, s11 + |s12| > 0,

s33s11 > s2
13, s33 (s11 + s12) > 2s2

13.
(21)

In terms of spherical angles, the areal ratio takes the form

ν̂ (φ, θ) = [(cos 4φ − 1) (S1111 − 4S1313 + S3333) − 8 (sin φ)2 S1122

− 2 (5 + 2 cos 2φ + cos 4φ) S1133]/{16[(sin φ)4 S1111

+ (cos φ)4 S3333 + 2 (sin φ)2 (cos φ)2 (S1133 + 2S1313)]},

from which we conclude that the areal Poisson’s ratio is independent of θ . We further conclude that

ν̂ (φ, θ) = ν̂ (φ) = ν̂ (π − φ) ,

so we can limit the range of φ to 0 ≤ φ ≤ π/2. A plot of the areal Poisson’s ratio for hexagonal crystalline
graphite is shown in Figure 2. The room temperature compliances are [Landolt and Bornstein 1992]:

s11 = 0.98 (TPa)−1 , s12 = − 0.16 (TPa)−1 ,

s13 = − 0.33 (TPa)−1 , s33 = 27.5 (TPa)−1 ,

s44 = 250 (TPa)−1

The stationary condition for a hexagonal crystal is

0 = sin 2φ{16 (sin φ)4 S2
1111

− 16 (cos φ)4 S2
3333

− 2[16 (sin φ)4 S1122

− (6 + 24 cos 2φ + 2 cos 4φ) S1133]
(
S1133 + 2S1313

)
+ 4 (cos φ)2

[(2 cos 2φ − 6)
(
S1122 + S1133

)
+ 16 (cos φ)2 S1313]S3333 + 4S1111[4 (sin φ)4 S1122 + (10 + 6 cos 2φ) (sin φ)2 S1133 − 16 (sin φ)4 S1313

− 4 cos 2φS3333]}/{32[(sin φ)4 S1111 + (cos φ)4 S3333 + 2 (sin φ)2 (cos φ)2 (S1133 + 2S1313

)
]
2
}, (22)
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from which we conclude that the stationary points of ν̂ are given by
φ = 0, and φ =

π
2 ,

φS = arcsin
(√

−b±
√

b2−4ac
2a

)
,

(23)

where the subscript S indicates that φ depends upon the compliance constants, and a, b, c are given by

a =
[
S2

1111
+ S1111 S1122 − 3S1111 S1133 − 2S1122 S1133 + 2S2

1133
+ S1122 S3333 + S1133 S3333 − S2

3333

+4S1313

(
−S1111 − S1122 + S1133 + S3333

)]
,

b = 2(2S1111 S1133 − 4S2
1133

− 8S1133 S1313 + S1111 S3333 − 4S1313 S3333 + S2
3333

),

c = (4S2
1133

+ 8S1133 S1313 − S1111 S3333 − S1122 S3333 − S1133 S3333 + 4S1313 S3333 − S2
3333

).

The stationary points φ = 0 and φ = π/2 are invariant stationary points. The direction represented by
the stationary point φ = 0 coincides with the unique six-fold rotation symmetry axis, and the direction
represented by stationary point φ = π/2 lies in the reflection symmetry plane along an axis of two-fold
symmetry. The stationary point φ = φS , which depends on the elastic compliance constants, lies between
φ = 0 and φ = π/2. The three stationary points for the hexagonal material graphite, indicated in Figure
2, have the values ν̂max = 0.433 at φ = φS , ν̂min = 0.012 at φ = 0 and ν̂ = 0.254 at φ = π/2.

Consider ν̂ at the stationary points

ν̂ (0) = − S1133/S3333, (24)

ν̂
(π

2

)
= −

(
S1122 + S1133

)
/
(
2S1111

)
, (25)

0
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Figure 2. Areal Poisson’s ratio for graphite (hexagonal).
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ν̂ (φS) =

−[sin4 φS (S1111−2S1133−4S1313+S3333)+2S1133−sin2 φS (S1111−S1122−S1133−4S1313+S3333)]

2[sin4 φS (S1111+S3333−2S1133−4S1313)+2 sin2 φS (S1133+2S1313−S3333)+S3333]
.

Whether the areal Poisson’s ratio is a local minimum or maximum at φ = 0, π/2, φS depends on the
elastic compliance constants. The global extreme values of the areal Poisson’s ratio can be found by
comparing the values at the stationary points. Without violating the positive definite conditions (21),
S1122, S1133 can be expressed in terms of S1111, S3333 .

S1122 = pS1111, − 1 < p < 1,

S1133 = q
√

S1111 S3333, − 1 < q < 1.

The formulae (24) and (25) can be rewritten as
ν̂ (0) = − q

√
S1111
S3333

,

ν̂
(

π
2

)
= −

1
2

(
p + q

√
S3333
S1111

)
.

The parameters p, q are bounded by ±1,. The ratio χ = S3333/ S1111 can take on any positive value
without violating the positive definite conditions (21). For q < 0, the limits as χ −→ ±∞ are{

χ → ∞, ν̂ (0) → 0+, ν̂
(

π
2

)
→ ∞,

χ → 0, ν̂ (0) → ∞, ν̂
(

π
2

)
→ −

1
2 p.

and for q > 0, {
χ → ∞, ν̂ (0) → 0−, ν̂

(
π
2

)
→ −∞,

χ → 0, ν̂ (0) → −∞, ν̂
(

π
2

)
→ −

1
2 p.

This means that there is neither an upper bound nor a lower bound for the areal Poisson’s ratio of a
hexagonal crystal. As the case of s12 for cubic material, s13 is negative for all hexagonal materials in
[Landolt and Bornstein 1992]. This interesting fact can be investigated in future research.

4.3. Tetragonal (six constants). For tetragonal crystal material with symmetry 4mm, 42, 422, 4/mmm,

the Voigt compliance matrix si j takes the form

(
si j
)
=



s11 s12 s13 0 0 0
s11 s13 0 0 0

s33 0 0 0
s44 0 0

s44 0
s66


.

indicating six independent elastic compliance constants. Positive definiteness is equivalent to [Nye 1957]{
s11 > 0, s33 > 0, s44 > 0, s66 > 0,

s11 > ±s12, s33s11 > s2
13, s33 (s11 + s12) > 2s2

13.
(26)
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In terms of spherical angles, the areal Poisson’s ratio takes the form

ν̂ (φ, θ) =

1
2

−
2 sin2 φ

(
S1111 + S1122

)
+ (3 + cos 2φ) S1133 + 2 cos2 φS3333

sin4 φ
[
(3 + cos 4θ) S1111 + 2 sin2 2θ

(
S1122 + 2S1212

)]
+ 2 sin2 2φ

(
S1133 + 2S1313

)
+ 4 cos4 φS3333

.

From this expression, we find that the restrictions imposed by the symmetry are

ν̂ (φ, θ) = ν̂ (π − φ, θ) = ν̂
(
φ,

π

2
+ θ

)
= ν̂

(
φ,

π

2
− θ

)
,

so we can limit the scope to 0 ≤ φ ≤
π
2 , 0 ≤ θ ≤

π
4 without loss of generality. A contour plot for

α-cristobalite is shown in Figure 3. The room temperature compliances are [Yeganeh-Heari et al. 1992]:

s11 = 17.0 (TPa)−1 , s12 = − 0.965 (TPa)−1 ,

s13 = 1.67 (TPa)−1 , s33 = 23.9 (TPa)−1 ,

s44 = 14.9 (TPa)−1 , s66 = 38.9 (TPa)−1 .

From the stationary conditions (10), the invariant stationary points of the areal Poisson’s ratio are

ν
min
=0.261


ν
max
=0.0096


π
/2


π
/4

     


π
/4

     


0 


π
/8 


φ


θ
 


Figure 3. Areal Poisson’s ratio for tetragonal material: α-cristobalite.
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φ = 0, and φ =
π
2 , θ = 0,

φ =
π
2 , θ =

π
4 ,

φS1 = arcsin(

√
−b1±

√
b2

1−4a1c1
2a1

), θ = 0,

φS2 = arcsin(

√
−b2±

√
b2

2−4a2c2
2a2

), θ =
π
4 ,

where

a1 =
[
S2

1111
+ S1111 S1122 − 3S1111 S1133 − 2S1122 S1133 + 2S2

1133
+ S1122 S3333 + S1133 S3333 − S2

3333

+4S1313

(
−S1111 − S1122 + S1133 + S3333

)]
,

b1 = 2(2S1111 S1133 − 4S2
1133

− 8S1133 S1313 + S1111 S3333 − 4S1313 S3333 + S2
3333

),

c1 = (4S2
1133

+ 8S1133 S1313 − S1111 S3333 − S1122 S3333 − S1133 S3333 + 4S1313 S3333 − S2
3333

),

and

a2 = 2
[
S2

1111
+ 2S1111 S1122 + S2

1122
− 5S1111 S1133 − 5S1122 S1133 + 4S2

1133
+ 2S1212

(
S1111 + S1122 − S1133 − S3333

)
.

+8S1313

(
−S1111 − S1122 + S1133 + S3333

)
+ S3333

(
S1111 + S1122 + 2S1133 − 2S3333

)]
,

b2 = 4
[
2S1133

(
S1111 + S1122 − 4S1133 + 2S1212 − 8S1313

)
+ S3333

(
S1111 + S1122 + 2S1212 − 8S1313 + 2S3333

)]
,

c2 = 4(4S2
1133

+ 8S1133 S1313 − S1111 S3333 − S1122 S3333 − S1133 S3333 + 4S1313 S3333 − S2
3333

).

The stationary points (φ, θ) = (0, θ) , (π/2, 0) , (π/2, π/4) are invariant stationary points. The direc-
tions represented by invariant stationary points are thus respectively on a unique four-fold axis, a two-
fold axis and another two-fold axis of rotation symmetry for tetragonal crystals. The stationary points
(φS1, 0) , (φS2, π/4) depend on the elastic compliances. The global extreme values of the areal Poisson’s
ratio can be obtained by comparing the values at above stationary points. Consider the values of the areal
Poisson’s ratio at the stationary points:

ν̂ (0, θ) = − S1133/S3333,

ν̂
(

π
2 , 0

)
= −

(
S1122 + S1133

)
/2S1111,

ν̂
(

π
2 , π

4

)
=
(
−β − 2S1122 − 2S1133

)
/2(S1111 + S1122 + 2S1212);

ν̂ (φS1, 0) =
1
2 − [sin2 φS1

(
S1111 + S1122 − S1133 − S3333

)
+2S1133 + S3333]/{2[sin4 φS1

(
S1111 + S3333 − 2S1133 − 4S1313

)
+2 sin2 φS1

(
S1133 + 2S1313 − S3333

)
+ S3333]},

ν̂
(
φS2,

π
4

)
=

1
2 − [2 sin2 φS2

(
S1111 + S1122 − S1133 − S3333

)
+4S1133 + 2S3333]/{sin4 φS2[2S1111 + 2

(
S1122 + 2S1212

)
− 8

(
S1133 + 2S1313

)
+ 4S3333]

+8 sin2 φS2
(
S1133 + 2S1313 − S3333

)
+ 4S3333}.
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For the tetragonal material α-cristobalite, the (π/2, π/4) direction locates the maximum value, ν̂max =

9.6×10−4 and the (φS1, 0) direction is associated with the minimum value, ν̂min = −0.261. In Figure 3,
the extreme points are easily identified by the closed contours. While many crystal materials can have a
negative Poisson’s ratio in a particular direction, α-cristobalite is one of the few materials that also yield
a negative areal Poisson’s ratio.

Proceeding as we did in the hexagonal case, from positive definiteness (26), we obtain
ν̂ (0) = − q

√
S1111
S3333

,

ν̂
(

π
2

)
= −

1
2

(
p + q

√
S3333
S1111

)
.

The ratio χ = S3333/S1111 can be any positive value. If we set q 6= 0, the areal Poisson’s ratio is not
bounded for tetragonal crystal material with symmetry 4mm, 42m, 422, 4/mmm either.

4.4. Tetragonal (seven constants). For crystal material with tetragonal symmetry 4, 4, 4/m, the Voigt
compliance matrix si j takes the form

(
si j
)
=



s11 s12 s13 0 0 s16

s11 s13 0 0 −s16

s33 0 0 0
s44 0 0

s44 0
s66


,

which shows six independent elastic compliance constants. In addition to the inequalities in Equation
(26) the positive definite of strain energy requires

2s2
16 − (s11 − s12) s66 > 0.

In terms of spherical angles, the areal Poisson’s ratio takes the form

ν̂ (φ, θ) =

1
2
−

2 sin2 φ
(
S1111+S1122

)
+(3+cos 2φ) S1133+2 cos2 φS3333

sin4φ
[
(3+cos4θ) S1111+4sin 4θ S1112+2sin2 2θ

(
S1122+2S1212

)]
sin2 2φ

(
S1133+2S1313

)
+4cos4 φS3333

.

From this expression, we can find that the relationships imposed by tetragonal 4, 4, 4/m symmetry are

ν̂ (φ, θ) = ν̂ (π − φ, θ) = ν̂
(
φ,

π

2
+ θ

)
,

so we can limit the scope to 0 ≤ φ ≤
π
2 , 0 ≤ θ ≤

π
2 without loss of generality. Contours of the areal

Poisson’s ratio are plotted for the tetragonal material calcium molybdate (+Z = −Z) in Figure 4. At
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ν
min
=0.225


ν
max
=0.344


0.253


π
/2


π
/2


π
/4

     


π
/4
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θ
 


φ


Figure 4. Areal Poisson ratio for calcium molybdate (+Z = − Z).

room temperature, the compliances are [Landolt and Bornstein 1992]:

s11 = 9.90 (TPa)−1 , s12 = − 4.2 (TPa)−1 ,

s13 = − 2.1 (TPa)−1 , s16 = 4.2 (TPa)−1 ,

s33 = 9.48 (TPa)−1 , s44 = 27.1 (TPa)−1 ,

s66 = 24.4 (TPa)−1 .

From the stationary conditions (10), the stationary points of the areal Poisson’s ratio are


φ = 0,

φ =
π
2 , θS1 =

1
4 arctan

(
4S1112/β

)
,

φ =
π
2 , θS2 = θS1 +

π
4 .

The stationary point φ = 0 is the only invariant stationary point. The direction represented by this station-
ary point is the unique four-fold (C4) rotation symmetry axis. The stationary points

(
π
2 , θS1

)
,
(

π
2 , θS2

)
depend on the elastic compliance constants. The global extreme values of the areal Poisson’s ratio can
be obtained by comparing values at the stationary points. We find

ν̂ (0, θ) = − S1133/S3333,
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ν̂
(π

2
, θS1

)
=

1
2

−
2
(
S1111 + S1122

)
+ 2S1133

3S1111 + S1122 + 2S1212 + 4 sin 4θS1S1112 + cos 4θS1
(
S1111 − S1122 − 2S1212

) ,
ν̂
(π

2
, θS2

)
=

1
2

−
2
(
S1111 + S1122

)
+ 2S1133

3S1111 + S1122 + 2S1212 − 4 sin 4θS2S1112 − cos 4θS2
(
S1111 − S1122 − 2S1212

) .
For tetragonal material Calcium Molybdate (+Z = − Z), the

(
π
2 , θS1

)
direction locates the maximum

value, ν̂max = 0.344 and the (0, θ) direction is associated with the minimum value, ν̂min = 0.225 as
illustrated in Figure 4. The stationary point

(
π
2 , θS2

)
is also a local extreme point since it is circumscribed

by contours.
Similar to the hexagonal case, from the positive-definiteness conditions (26), we obtain

ν̂ (0) = − q

√
S1111

S3333

.

The ratio χ = S3333/ S1111 may assume any positive value. For q 6= 0, the areal Poisson’s ratio for tetragonal
crystal material with symmetry 4, 4, 4/m, like those before and those to follow, is unbounded.

4.5. Trigonal crystal (six constants). For crystal material with trigonal symmetry 32, 3m, 3m, the Voigt
compliance matrix si j appears as

(
si j
)
=



s11 s12 s13 s14 0 0
s11 s13 −s14 0 0

s33 0 0 0
s44 0 0

s44 s14

2 (s11 − s12)


,

indicating six independent elastic compliance constants. In addition to (21), positive definiteness requires

s44s11 > s2
14, (s11 − s12) s44 > 2s2

14, (s11 − s12) >
s14

2
. (27)

In terms of spherical angles, the areal ratio takes the form

ν̂(φ, θ) =

1
2 − [2 sin2 φ

(
S1111 + S1122

)
+ 2 cos2 φS3333 + (3 + cos 2φ) S1133]

{2[2 sin4 φS1111 + 8 sin3 φ cos φ sin 3θ S1123 + sin2 2φ
(
S1133 + 2S1313

)
+ 2 cos4 φS3333]}

.

Hence, the relationships imposed by trigonal symmetry are

ν̂ (φ, θ) = ν̂

(
φ, θ +

2π

3

)
= ν̂

(
π − φ, θ +

π

3

)
.

Thus, we may limit the ranges to 0 ≤ φ ≤ π , 0 ≤ θ ≤
π
3 without loss of generality. Contours of the areal

Poisson’s ratio for the trigonal material aluminum oxide are plotted in Figure 5. The room temperature
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ν
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Figure 5. Areal Poisson’s ratio for trigonal material: aluminum oxide.

elastic compliance constants are [Landolt and Bornstein 1992]:

s11 = 2.35 (TPa)−1 , s12 = − 0.69 (TPa)−1 ,

s13 = − 0.38 (TPa)−1 , s14 = 0.47 (TPa)−1 ,

s33 = 2.18 (TPa)−1 , s44 = 7.0 (TPa)−1 .

By Equation (10), the stationary points of the areal Poisson’s ratio are:
φ = 0,

φ =
π
2 , θ = 0, π

3 ,

θ =
π
6 , φ = φS1, φS2,

where φS1, φS2 satisfy the condition:

0 =
{(

S1111 + S1122 − S1133 − S3333

) [
2 sin4 φS1111 + 8 cos φ sin3 φS1123

+ sin2 2φ
(
S1133 + 2S1313

)
+ 2 cos4 φS3333

]
− 2

[
2 sin2 φ

(
S1111 + S1122

)
+ (3 + cos 2φ) S1133 + 2 cos2 φS3333

]
×
[
sin 4φ

(
S1133 + 2S1313

)
+2 sin 2φ sin2 φS1111 + sin 3φS1123 − cos3 φS3333

]}
.

The stationary points (φ, θ) = (0, θ) , (π/2, 0) , (π/2, π/3) are invariant stationary points. The direction
for the stationary point φ = 0 is the unique three-fold (C3) rotation symmetry axes, and the directions
corresponding to the stationary points

(
π
2 , 0

)
, (π/2, π/3) are two-fold (C2) rotation symmetry axes,

while the stationary points (φS1, π/6) , (φS2, π/6) depend on the elastic compliance constants. The
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global extrema may be analyzed by comparing the values at the stationary points. For φ = 0,


ν̂ (0, θ) = −

S1133
S3333

,

ν̂φφ (0, θ) =
4S1133(S1133+2S1313)−S3333 (S1111+S3333+S1122+S1133−4S1313 )

S2
3333

,

ν̂θθ (0, θ) = ν̂φθ (0, θ) = 0.

The values represent, at φ = 0, a local minimum for ν̂φφ > 0, and a local maximum for ν̂φφ < 0. For
(φ, θ) = (π/2, 0) , (π/2, π/3) , we have



ν̂
(

π
2 , 0

)
= ν̂

(
π
2 , π

3

)
= −

S1122+S1133
2S1111

,

ν̂φφ

(
π
2 , 0

)
=

2(S1122+S1133)(S1133+2S1313)−S1111 (S1111+S3333+S1122+S1133−4S1313 )

S2
1111

,

ν̂φφ

(
π
2 , π

3

)
= ν̂φφ

(
π
2 , 0

)
,

ν̂θθ

(
π
2 , 0

)
= ν̂θθ

(
π
2 , π

3

)
= 0,

ν̂φθ

(
π
2 , 0

)
= − 6S1123

(
S1111 + S1122 + S1133

)
/S2

1111
,

ν̂φθ

(
π
2 , π

3

)
= − ν̂φθ

(
π
2 , 0

)
.

Hence, at (π/2, 0) , (π/2, π/3),

det (J ) = −
36S2

1123

(
S1111 + S1122 + S1133

)2

S4
1111

< 0.

Thus the values of the areal Poisson’s ratio at (π/2, 0) , (π/2, π/3) furnish neither a local minimum nor
a local maximum. The global extreme values are achieved at φ = 0 and the material dependent stationary
points (φS1, π/6) , (φS2, π/6). This is illustrated in Figure 5 for the trigonal material aluminum oxide,
where the (φS1, π/6) direction locates the maximum value, ν̂max = 0.277 and the (0, θ) direction is
associated with the minimum value, ν̂min = 0.174. The stationary point (φS2, π/6) is also a local extreme
point.

Without violating the definiteness conditions (27), we may write

ν̂ (0) = − q

√
S1111

S3333

.

The ratio χ = S3333/ S1111 is free to assume any positive value. If we take q 6= 0, we see that the areal
Poisson’s ratio is not bounded for trigonal crystal material with symmetry 32, 3m, 3m.
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4.6. Trigonal crystal (seven constants). For a crystal with trigonal 3, 3 symmetry, the Voigt compliance
matrix takes the form

(
si j
)
=



s11 s12 s13 s14 s15 0
s11 s13 −s14 −s15 0

s33 0 0 0
s44 0 −s15

s44 s14

2 (s11 − s12)


,

which indicates the presence of seven independent elastic compliance constants.
In addition to the constraints in Equation (21), positive definiteness requires

{
s44s11 > s2

14, s44s11 > s2
15, (s11 − s12) s44 > 2s2

14,

(s11 − s12) s44 >
s2

14
2 , (s11 − s12) s44 >

s2
15
2 .

(28)

In terms of spherical angles, the areal Poisson’s ratio reads as

ν̂ (φ, θ) =

1
2

−
2 sin2 φ

[(
S1111 + S1122

)
+ (3 + cos 2φ) S1133 + 2 cos2 φS3333

]
2[2 sin4 φS1111 + 8 sin3 φ cos φ

(
cos 3θ S1113 + sin 3θ S1123

)
+ sin2 2φ

(
S1133 + 2S1313

)
+ 2 cos4 φS3333]

.

From this expression, we see that the relationships imposed by trigonal symmetry are:

ν̂ (φ, θ) = ν̂

(
φ, θ +

2π

3

)
= ν̂

(
π − φ, θ +

π

3

)
.

Thus, we may limit the ranges to 0 ≤ φ ≤ π, 0 ≤ θ ≤ π/3 without loss of generality.
Contours for the trigonal material MgSiO3 ilmenite are shown in Figure 6. At room temperature, the

independent elastic compliance constants are reported to be [Weidner and Ito 1985]:

s11 = 2.604 (TPa)−1 , s12 = − 0.976 (TPa)−1 ,

s13 = − 0.298 (TPa)−1 , s14 = 0.911 (TPa)−1 ,

s15 = − 0.810 (TPa)−1 , s33 = 2.727 (TPa)−1 ,

s44 = 10.265 (TPa)−1 .

The first derivatives of the areal Poisson’s ratio are:
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Figure 6. Areal Poisson’s ratio for MgSiO3 ilmenite.

ν̂φ = −{2 sin φ[2 sin2 φ
(
S1111 + S1122

)
+ (3 + cos 2φ) S1133 + 2 cos2 φS3333]

× [cos φ sin2 φS1111 − cos3 φS3333 + sin 3φ
(
cos 3θ S1113 + sin 3θ S1123

)
+ cos φ cos 2φ

(
S1133 + 2S1313

)
] − sin 2φ

(
S1111 + S1122 − S1133 − S3333

)
× [sin4 φS1111 + cos4 φS3333 + 4 sin3 φ cos φ

(
cos 3θ S1113 + sin 3θ S1123

)
+ 2 sin2 φ cos2 φ

(
S1133 + 2S1313

)
]}/{2[sin4 φS1111 + cos4 φS3333

+ 4 sin3 φ cos φ
(
cos 3θ S1113 + sin 3θ S1123

)
+ 2 sin2 φ cos2 φ

(
S1133 + 2S1313

)
]
2
},

ν̂θ = −{3 sin3 φ cos φ
(
sin 3θ S1113 − cos 3θ S1123

)
[2 sin2 φ

(
S1111 + S1122

)
+ (3 + cos 2φ) S1133 + 2 cos2 φS3333]}/[sin4 φS1111

+ 4 sin3 φ cos φ
(
cos 3θ S1113 + sin 3θ S1123

)
+ 2 sin2 φ cos2 φ

(
S1133 + 2S1313

)
+ cos4 φS3333]

2.

Thus, the stationary points are: 
φ = 0,

φ =
π
2 , θ = θS1,

θ = θS2, φ = φS1, φS2,
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where θS1 obeys cos 3θ S1113 + sin 3θ S1123 = 0, θS2 satisfies sin 3θ S1113 − cos 3θ S1123 = 0, φS1 is governed
by

0 = [2 sin2 φ
(
S1111 + S1122

)
+ (3 + cos 2φ) S1133 + 2 cos2 φS3333]

× [cos φ sin2 φS1111 + sin 3φ

√(
S2

1113
+ S2

1123

)
+ cos φ cos 2φ

(
S1133 + 2S1313

)
− cos3 φS3333]

− cos φ
(
S1111 + S1122 − S1133 − S3333

)
× [sin4 φS1111 + 4 sin3 φ cos φ

√(
S2

1113
+ S2

1123

)
+ 2 sin2 φ cos2 φ

(
S1133 + 2S1313

)
+ cos4 φS3333],

and φS2 satisfies

0 =
[
2 sin2 φ

(
S1111 + S1122

)
+ (3 + cos 2φ) S1133 + 2 cos2 φS3333

]
× [cos φ sin2 φS1111 − sin 3φ

√(
S2

1113
+ S2

1123

)
+ cos φ cos 2φ

(
S1133 + 2S1313

)
− cos3 φS3333]

− cos φ(S1111 + S1122 − S1133 − S3333) × [sin4 φS1111 − 4 sin3 φ cos φ

√(
S2

1113
+ S2

1123

)
+ 2 sin2 φ cos2 φ

(
S1133 + 2S1313

)
+ cos4 φS3333].

The values (φ, θ) = (0, θ) furnish the only invariant stationary points. The direction represented by
stationary point φ = 0 is the unique three-fold (C3) rotation symmetry axes, while (π/2, θS1), (φS1, θS2),
(φS2, θS2) depend on the elastic compliance constants. The global extreme values of the areal Poisson’s
ratio are obtained by comparing the values at above stationary points. Thus

ν̂ (0, θ) = −
S1133
S3333

,

ν̂φφ (0, θ) =
4S1133(S1133+2S1313)−S3333 (S1111+S3333+S1122+S1133−4S1313 )

S2
3333

,

ν̂θθ (0, θ) = ν̂φθ (0, θ) = 0.

The areal Poisson’s ratio has a local minimum if ν̂φφ > 0, a local maximum if ν̂φφ < 0. Further,

ν̂
(

π
2 , θS1

)
= −

S1122+S1133
2S1111

,

ν̂φφ

(
π
2 , θS1

)
=

2(S1122+S1133)(S1133+2S1313)−S1111 (S1111+S3333+S1122+S1133−4S1313 )

S2
1111

,

ν̂θθ

(
π
2 , θS1

)
= 0,

ν̂φθ

(
π
2 , θS1

)
= −

6
√

S2
1123

+S2
1113 (S1111+S1122+S1133)

S2
1111

.

This yields

det (J ) = −
36
(
S2

1123
+ S2

1113

) (
S1111 + S1122 + S1133

)2

S4
1111

< 0.

Thus the value of the areal Poisson’s ratio at the invariant stationary point (π/2, θS1) is neither a local
minimum nor a local maximum. The global extreme values are achieved at φ = 0 and the material de-
pendent stationary points. These conclusions are demonstrated in Figure 6 for trigonal material MgSiO3



1492 LEWIS WHEELER AND CLIFF YI GUO

ilmenite, where the (φS1, θS1) direction locates the maximum value ν̂max = 0.320 and the (0, θ) direction
is associated with the minimum value, ν̂min = 0.109.

Without violating (28), we may write

ν̂ (0) = − q

√
S1111

S3333

.

The ratio χ = S3333/ S1111 is free to assume arbitrary positive values. For q 6= 0, positive definiteness fails
to impose bounds on ν̂ for trigonal crystals with symmetry 3, 3.

4.7. Orthorhombic. For an orthorhombic crystal, the Voigt compliance matrix si j takes the form

(
si j
)
=



s11 s12 s13 0 0 0
s22 s23 0 0 0

s33 0 0 0
s44 0 0

s55 0
s66


.

There are nine independent elastic compliance constants. Positive definiteness imposes the requirements


s11 > 0, s22 > 0, s33 > 0, s44 > 0, s55 > 0, s66 > 0,

s11s22 > s2
12, s33s11 > s2

13, s33s22 > s2
23,

s11
(
s33s22 − s2

23

)
− s2

12s33 + 2s12s13s23 − s2
13s22 > 0.

(29)

The areal Poisson’s ratio can be expressed in spherical coordinates as

ν̂ (φ, θ) =
1
2

−
1
2

{
sin2 φ

[
S1122 + cos2 θ

(
S1111 + S1133

)
+ sin2 θ

(
S2222 + S2233

)]
+ cos2 φ

(
S1133 + S2233 + S3333

)}
/
{
sin4 φ(cos4 θ S1111 + sin4 θ S2222 + 2 sin2 θ cos2 θ S1122)

+ cos4 φS3333 + sin2 φ
[
2 cos2 φ cos2 θ S1133 + 4 sin2 θ cos2 θ sin2 φS1212

+2 cos2 φ
(
2 cos2 θ S1313 + sin2 θ(S2233 + 2S2323)

)]}
.

From this expression, we find that orthorhombic symmetry requires

ν̂ (φ, θ) = ν̂ (π − φ, θ) = ν̂ (φ, π + θ) = ν̂ (φ, π − θ) .

Therefore, we may limit the ranges to 0 ≤ φ ≤ π/2, 0 ≤ θ ≤ π/2 without loss of generality. Contours for
the orthorhombic material acenaphthene are shown in Figure 7. The elastic compliance matrix (at room
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ν
min
= 0.195


ν
max
= 0.355


0.237


θ
 

π
/2


π
/2
π
/4

     


π
/4

     


0 

φ


Figure 7. Areal Poisson’s ratio for acenaphthene.

temperature), expressed in term of (TPa)−1 is [Simmons and Wang 1971]

(
si j
)
=



81.438 −3.125 −28.605 0 0 0
93.354 −37.298 0 0 0

115.385 0 0 0
377.358 0 0

344.828 0
540.540


.

By (10), the stationary points of the areal Poisson’s ratio are
φ = 0,

φ =
π
2 , θ = 0, π

2 ,

φ =
π
2 , θ = θS,

where θS satisfes the condition

0 = sin 2θ
[
cos4 θ S1111 + 2 sin2 θ cos2 θ

(
S1122 + 2S1212

)
+ sin4 θ S2222

]
×
(
S1111 + S1133 − S2222 − S2233

)
− sin 2θ

[
2 cos2 θ S1111 − 2 cos 2θ

(
S1122 + 2S1212

)
− 2 sin2 θ S2222

]
×
[
S1122 + cos2 θ

(
S1111 + S1133

)
+ sin2 θ

(
S2222 + S2233

)]
.

The stationary points (φ, θ) = (0, θ) , (π/2, 0) , (π/2, π/2) are invariant with respect to the elastic con-
stants. The directions represented by these stationary points are the two-fold (C2) rotation symmetry
axes. The stationary point (π/2, θS) depends on the elastic compliance constants. The global extreme
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values of areal Poisson’s ratio can be obtained by comparing the values at above stationary points,
ν̂ (0, θ) = −

S1133+S2233
2S3333

,

ν̂
(

π
2 , 0

)
= −

S1122+S1133
2S1111

,

ν̂
(

π
2 , π

2

)
= −

S1122+S2233
2S2222

,

(30)

ν̂(
π

2
, θS) =

1
2

−
1
2

S1122 + cos2 θS
(
S1111 + S1133

)
+ sin2 θS

(
S2222 + S2233

)[
cos4 θS S1111 + 2 sin2 θS cos2 θS

(
S1122 + 2S1212

)
+ sin4 θS S2222

] .
For the orthorhombic material acenaphthene, the (π/2, θS) direction locates the maximum value ν̂max =

0.355 and the (π/2, 0) direction is associated with the minimum value, ν̂min = 0.195 as indicated in
Figure 7. From the definiteness conditions Equation (29), S1122, S1133, S2233 can be expressed in terms of
S1111, S2222, S3333 :

S1122 = r
√

S1111 S2222, − 1 < r < 1,

S1133 = q
√

S1111 S3333, − 1 < q < 1,

S2233 = w
√

S2222 S3333, − 1 < w < 1.

The expressions in Equation (30) give way to

ν̂ (0, θ) = −
1
2

(
q
√

S1111
S3333

+ w

√
S2222
S3333

)
,

ν̂
(

π
2 , 0

)
= −

1
2

(
r
√

S2222
S1111

+ q
√

S3333
S1111

)
,

ν̂
(

π
2 , π

2

)
= −

1
2

(
r
√

S1111
S2222

+ w

√
S3333
S2222

)
.

Consider ν̂ (0, θ) . Since the ratios S3333/S1111 and S3333/S2222 may take on any positive value without vio-
lating the definiteness conditions (29), it is not bounded. A similar argument can be made for ν̂ (π/2, 0)

and ν̂ (π/2, π/2). Thus the areal Poisson’s ratio is not bounded for an orthorhombic crystal.

4.8. Monoclinic. The Voigt compliance matrix si j for monoclinic materials takes the form

(
si j
)
=



s11 s12 s13 0 0 s16

s22 s23 0 0 s26

s33 0 0 s36

s44 s45 0
s55 0

s66


,
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involving thirteen independent elastic constants. In addition to the conditions in Equation (29), definite-
ness of the strain energy requires {

s44s55 > s2
45, s33s66 > s2

36,

s22s66 > s2
26, s11s66 > s2

16.
(31)

The areal Poisson’s ratio can be expressed in spherical coordinates as

ν̂ (φ, θ) =
1
2

−
1
2

{
sin2 φ[S1122 + cos2 θ

(
S1111 + S1133

)
+ sin2 θ

(
S2222 + S2233

)
]

+ cos2 φ
(
S1133 + S2233 + S3333

)}
/
{
sin4 φ(cos4 θ S1111 + sin4 θ S2222 + 2 sin2 θ cos2 θ S1122)

+ cos4 φS3333 + sin2 φ
[
2 cos2 φ cos2 θ S1133 + 4 sin2 θ cos2 θ sin2 φS1212

+2 cos2 φ(2 cos2 θ S1313 + sin2 θ S2233 + 2 sin2 θ S2323)
]}

.

From this expression, we see that the relationships imposed by monoclinic symmetry are

ν̂ (φ, θ) = ν̂ (π − φ, θ) = ν̂ (φ, π + θ) .

Accordingly, we may limit the ranges of the spherical angles to 0 ≤ φ ≤
π
2 , 0 ≤ θ ≤ π . A contour plot of

the areal Poisson’s ratio for the monoclinic material feldspar (plagioclase — 29 AN) is shown in Figure
8. The room temperature elastic compliance matrix (TPa)−1 is [Simmons and Wang 1971]:

(
si j
)
=



15.460 −3.403 −3.739 0 0 1.333
7.786 −0.852 0 0 0.266

9.526 0 0 4.390
54.157 1.737 0

29.210 0
34.861


By Equation (10), the stationary points are

φ = 0,

φ =
π
2 , θ = θS1,

φ = φS, θ = θS2,

where θS1 satisfy

0 = −
{
cos4 θ S1111 + sin θ [4 cos3 θ S1112 + sin3 θ S2222 + sin 2θ(cos θ

(
S1122 + 2S1212

)
+ 2 sin 2θ S2212)]

}
×
[
sin 2θ

(
−S1111 − S1133 + S2222 + S2233

)
+ 2 cos 2θ(S1112 + S2212 + S3312)

]
+

1
2

[
4 (cos 2θ + cos 4θ) S1112

+2 sin 4θ
(
S1122 + 2S1212

)
+ 8 sin θ

(
− cos3 θ S1111 + sin 3θ S2212 + cos θ sin2 θ S2222

)]
×
{
cos2 θ S1111 + sin 2θ S1112 + S1122 + cos2 θ S1133 + sin θ

[
sin θ

(
S2222 + S2233

)
+ 2 cos 2θ

(
S2212 + S3312

)]}
.

The point φ = 0 is the only invariant stationary point. The direction represented by this stationary point
is the two-fold (C2) rotation symmetry axis. The stationary points (π/2, θS1) , (φS, θS2) depend on the
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elastic compliance constants. The global extreme values of the areal Poisson’s ratio may be obtained by
comparing the values at the above stationary points.

Let us consider the values of the areal Poisson’s ratio at stationary points
ν̂ (0, θ) = −

S1133+S2233
2S3333

,

ν̂
(

π
2 , θ

)
=

1
2 −

1
2

cos2 θ(S1111+S1133)+sin2 θ(S2222+S2233)+S1122+2 sin θ cos θ(S1112+S2212+S3312)
cos4 θ S1111+sin4 θ S2222+2 sin2 θ cos2 θ(S1122+2S1212)+4 sin θ cos3 θ S1112+4 sin3 θ cos θ S2212

.

For the monoclinic material feldspar (plagioclase — 29 AN), the (π/2, θS1) direction locates the maxi-
mum value, ν̂max = 0.399 and the (φS, θS2) direction is associated with the minimum value, ν̂min = 0.168
in Figure 8.

Similar to the orthorhombic case, we obtain

ν̂ (0, θ) = −
1
2

(
q

√
S1111

S3333

+ w

√
S2222

S3333

)
.

Since the ratios S3333/ S1111 and S3333/ S2222 may be arbitrarily small or large while remaining positive, the
areal Poisson’s ratio is thus not bounded for monoclinic crystal materials.

4.9. Triclinic. The Voigt compliance matrix si j is shown in Equation (4). There are twenty one inde-
pendent elastic constants. The elastic compliance matrix must obey the positive definiteness conditions
(29) and (31).

The areal Poisson’s ratio are restricted only by inversion center symmetry

ν̂ (φ, θ) = ν̂ (π − φ, π + θ) ,

←ν
min
= 0.168


←ν
max
= 0.399


π
/2


π
/2
π
/4

     


π
/4
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θ
 


φ


3
π
/4

      


3
π
/4

      


π
  

     


π
  

     


Figure 8. Areal Poisson’s ratio for monoclinic material: feldspar.
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so we can limit the scope to 0 ≤ φ ≤ π, 0 ≤ θ ≤ π without loss of generality. Contours are shown for the
triclinic material copper sulfate pentahydrate in Figure 9. At room temperature, the elastic compliance
matrix in term of (TPa)−1 is [Krishnan et al. 1971]

(
si j
)
=



28.61 −9.67 −9.77 2.39 0.45 9.83
49.26 −25.21 −6.24 2.26 −8.01

39.16 6.92 1.94 3.26
60.0 −4.32 −0.76

88.04 23.46
110.64


.

By investigating the stationary conditions (10), we find no invariant stationary point for triclinic materials.
All stationary points depend on the elastic compliance constants. For the triclinic material copper sulfate
pentahydrate, the maximum value, ν̂max = 0.456 and minimum value ν̂min = 0.250 are shown in Figure
9.

Let’s look at the values of the areal Poisson’s ratio at φ = 0.

ν̂ (0, θ) = −
(
S1133 + S2233

)
/2S3333

Similar to the orthorhombic case, we obtain

ν̂ (0, θ) = −
1
2

(
q

√
S1111

S3333

+ w

√
S2222

S3333

)
.

Since the ratios S3333/ S1111 and S3333/ S2222 can be arbitrary small or large positive value, the areal Poisson’s
ratio is not bounded for triclinic crystal material.
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Figure 9. Areal Poisson’s ratio for copper sulphate pentahydrate.
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Symmetry Class 1 2 3

Cubic (0, θ) , (π/2, 0) (π/2, π/4), (π/4, 0)
(
arctan

√
3/3, π/4

)
Hexagonal (0, θ) (π/2, θ) none

Tetragonal
(4mm, 42m, 422, 4/mmm) (0, θ) (π/2, 0) (π/2, π/4)

Tetragonal
(
4,4, 4/m

)
(0, θ) none none

Trigonal
(
32,3m, 3m

)
(0, θ) (π/2, 0) (π/2, π/3)

Trigonal
(
3,3
)

(0, θ) none none

Orthorhombic (0, θ) (π/2, 0) (π/2, π/2)

Monoclinic (0, θ) none none

Triclinic none none none

Table 1. Invariant stationary points (φ, θ) of all crystal symmetry classes.

5. Summary

We determine the stationary points of the areal Poisson’s ratio for all crystal classes, and illustrate them
graphically. The directions of invariant stationary points are related directly to the symmetry of the
crystal class, but do not depend upon the elastic constants of the particular material at hand. The invariant
stationary directions are summarized in Table 1, apart from points that are trivially related to these by
symmetry.

For crystals of low symmetry, at least one of the global extreme values occurs on the direction of
an invariant stationary point. To find the remaining global extreme, we have to consider both invariant
and material dependent stationary points. It is also shown that the areal Poisson’s ratio for cubic crystal
is bounded between −1 and 1/2, just as the case for isotropic material. But the areal Poisson’s ratio
the remaining eight lower symmetry crystal classes can have arbitrarily large positive or negative values
without violating the positive definiteness of strain energy density.
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