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In this paper effective material properties of randomly distributed short fiber composites are calculated
with a developed comprehensive tool for numerical homogenization. We focus on the influence of
change in volume fraction and length/diameter aspect ratio of fibers. Two types of fiber alignments are
considered: fiber orientations with arbitrary angles and parallel oriented fibers. The algorithm is based
on a numerical homogenization technique using a unit cell model in connection with the finite element
method. To generate the three-dimensional unit cell models with randomly distributed short cylindrical
fibers, a modified random sequential adsorption algorithm is used, which we describe in detail. For
verification of the algorithm and checking the influence of different parameters, unit cells with various
fiber embeddings are created. Numerical results are also compared with those from analytical methods.

1. Introduction

Short fiber composites can be easily produced and have good mechanical properties. Since the mixture
of short fibers and liquid resin can be manufactured by injection or compression molding, the production
of parts with nearly arbitrary and very complicated shapes is possible. Composites consisting of spatially
distributed short fibers have become popular in a wide variety of applications. Moreover, using spatial
short fibers as reinforcing elements in a controlled manner can provide more balanced properties, which
lead to an improved through-the-thickness stiffness/strength.

A classical problem in solid mechanics is the determination of effective elastic properties of a com-
posite material made up of a statistically isotropic random distribution of isotropic and elastic short
cylindrical fibers embedded in a continuous, isotropic and elastic matrix. Even though analytical and
semianalytical models have been developed to homogenize fiber composites, they are often applicable
only to specific cases. Numerical models seem to be a well-suited approach to describe the behavior of
these materials, because there are no restrictions on the geometry, on material properties, on the number
of phases (constituents) and on size. In order to obtain realistic predictions of a new material, micro-
macro considerations are the appropriate approach. In this context the finite element method has been
used to determine effective properties of the short fiber composites based on unit cell models.

Keywords: finite element method, unit cell, representative volume element, homogenization, short fibers, random sequential
adsorption algorithm, effective material properties.
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A number of classical micromechanics theories have been developed. Using variational principles,
Hashin [1962] and Hashin and Shtrikman [1963] established bounds on materials that could be consid-
ered as mechanical mixtures of a number of different isotropic and homogeneous elastic phases which
are then treated as statistically isotropic and homogeneous. These two-point bounds were improved by
three-point bounds [Milton 1982; Milton and Phan-Thien 1982], which incorporate information about the
phase arrangement through the statistical correlation parameters. The dilute approximation can be used
to model a dilute suspension of spherical elastic particles in continuous elastic phases. The interaction
between particles is neglected. So the algorithm reduces to that of solving the problem of a spherical in-
clusion in an infinite matrix subjected to hydrostatic loading at infinity. Eshelby [1957; 1959] considered
the problem of an ellipsoidal inclusion in an infinite isotropic matrix, assuming a well-defined matrix.
That, however, is not always true in polycrystalline materials. A variety of properties can be exhibited,
but there is no clearly defined matrix phase. In these cases the interactions between particles are more
significant. The Mori–Tanaka method [Mori and Tanaka 1973] was designed to calculate the average
internal stress in the matrix containing precipitates with eigenstrains. Benveniste [1987] reformulated
it so that it could be applied to composite materials. He considered isotropic phases and ellipsoidal
phases. Recently, Segurado and Llorca [2002] and Böhm et al. [2002] have assessed the effective co-
efficients of randomly distributed spherical particles using random sequential adsorption method and
compared them with Hashin–Shtrikman bounds and other results from literature. Gusev et al. [2000] and
Lusti et al. [2002] performed experiments of randomly distributed short cylindrical fiber composites and
found good agreement with numerical results. However, due to the lack of literature which deals with
randomly distributed short cylindrical fibers and the restriction to low volume fractions of fibers, we have
been motivated to develop a numerical homogenization tool which extends the limits and provides the
basis for investigation of composites with arbitrary inclusions. In our opinion micro-macro mechanical
approaches offer new insights in the material behavior of such fiber composites, and may result in new
procedures to develop realistic material models for design and optimization purposes.

2. Numerical homogenization

2.1. Basic procedure. The mechanical and physical properties of the constituent materials are always
regarded as a small-scale/micro structure. To predict the overall behavior of the structure on a macro
level, the knowledge of effective material properties is necessary. One of the most powerful tools to
estimate such effective properties is the homogenization method. The main idea is to find a globally
homogeneous medium equivalent to the original composite, such that the strain energy stored in both
systems is approximately the same. The common approach to model the macroscopic properties of fiber
composites is to create a unit cell or a representative volume element (RVE) that captures the major
features of the underlying microstructure.

The RVE can generally be considered as a periodic part of the heterogeneous structure that is suffi-
ciently large to be a statistically representative of the composite, that is, to effectively include a sampling
of all microstructural heterogeneities that occur in the composite [Kanit et al. 2003]. To obtain the
homogenized effective material properties, periodicity must be ensured for the mechanical behavior of
the RVE by introducing periodic boundary conditions between opposite surfaces. By constructing several
load cases with selected traction loads and selected shear loads in one direction and preventing strains in
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the other directions, all effective elasticity coefficients can be calculated from the constitutive relations
by an averaging technique. This procedure is described in detail in [Berger et al. 2005a; 2005b] and shall
not be explained here.

2.2. Fiber generation by random sequential adsorption algorithm. Creation of an RVE with randomly
distributed cylindrical short fibers which fulfill certain restrictions, such as nonoverlapping, ensuring
periodicity and the like, is a difficult task. Due to the statistical distribution of inclusions, the RVE
can be modeled as a cube with unit size. For automatic generation of such RVEs, a modified random
sequential adsorption algorithm [Hinrichsen et al. 1986] is used. Several input parameters can be given,
including the size of RVE, diameter and length range of fibers, minimum distance between neighboring
fibers, and desired volume fraction. The algorithm starts by creating the cylinder axis of the first fiber
at a random position, with random length and with random angle. Subsequently new fibers are created
with random distribution values. If the new fiber matches the restriction of nonoverlapping and sufficient
distance to the earlier one, it is accepted; otherwise it is deleted. Furthermore, to ensure periodicity, if
any surface of the cylinder cuts any of the cubic RVE surfaces it is copied to the opposite surface with
the RVE size length. In this case one also checks all the restrictions; if it fails, the original and copied
fibers are deleted. Concerning the later finite element generation, we would also like to ensure that some
practical limitations are fulfilled. For instance, the cylinder surfaces should not be very close to the
RVE surface as well as to corners of the RVE in order to avoid highly distorted finite elements during
meshing. The generation of new fibers is repeated until the desired volume fraction is reached or no
more fibers can be placed due to the aforementioned restrictions. Figure 1 shows a sample of generated
fibers before cutting on the RVE surface, after cutting, and an ensemble of four RVEs which demonstrate
that periodicity is maintained.

By modifying the input parameters it is possible to create RVEs with different fiber arrangements,
such as, for example, fibers of same diameter, fibers of same length, or only parallel alignment of fibers.
Combining these arrangements opens the possibility of generating RVEs which represent different types
of fiber reinforced composites such as those presented in this paper. The possible maximum fiber volume
fraction plays an important role. In general, for fibers of identical size the algorithm can generate up to

�

�

�

(a) (b) (c)

Figure 1. Generation of randomly distributed short fibers: (a) uncut fibers, (b) cut fibers,
(c) periodicity demonstrated with four RVEs.
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Figure 2. Types of composites: (a) ROF and (b) POF.

25% fiber volume fraction. For higher volume fractions, one must use fibers of different sizes, which
can be generated by creating fibers with subsequently descending diameters. Using this approach, fiber
volume fraction up to 40% can be achieved with minimum distortion of the finite elements.

For calculating effective material properties of randomly distributed short fiber composites, we investi-
gate two types of fiber arrangements: randomly oriented fibers (ROF) and parallel-oriented fibers (POF);
see Figure 2. For POF composites, the fibers in the models are aligned along the x3-axis. This is denoted
as the longitudinal direction, while the perpendicular x1x2 plane are the transverse directions.

2.3. Finite element modeling. All finite element calculations were performed with the commercial FE
package ANSYS. The matrix and the fibers were meshed with 10 node tetrahedron elements with full
integration. For the calculation of geometry of the fibers by random sequential adsorption algorithm,
a special preprocessor was developed in FORTRAN programming language, which produces a partial
input file for ANSYS. Cutting of the fibers on the RVE surfaces is carried out by geometrical modeling
features of ANSYS. Figures 3 and 4 show samples of meshed RVEs for ROF and POF models.

To apply the periodic boundary conditions on the RVE, identical meshes are necessary on opposite
surfaces. For this purpose a surface of the RVE is first meshed with blind plane elements; then this

� �

(a) (b)

Figure 3. Sample for meshed RVE for ROF: (a) only fibers, (b) fibers and matrix.
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Figure 4. Sample for meshed RVE for POF: (a) only fibers, (b) fibers and matrix.

element configuration is copied to the opposite surface. Based on all meshed surfaces, three-dimensional
meshing is carried out. In order to apply periodic boundary conditions, we must generate constraint
equations between opposite nodal pairs. Here the ANSYS Parametric Design Language (APDL) is
used to automate this process. This script language allows the common nodal pairs to be identified
automatically by their coordinates. Furthermore, APDL is used to collect averaged stresses and strains
from element solution as well as to calculate the effective elastic constants.

The combination of the FORTRAN preprocessor, APDL and ANSYS batch processing lets us auto-
mate the whole process. It also provides a powerful tool for the fast calculation of homogenized material
properties for composites with a great variety of inclusion geometries.

3. Test models

We have investigated two types of short fiber composites: ROF and POF. In order to test the influence
of various parameters, different RVEs were generated. Furthermore so that we can obtain statistically-
averaged results for every configuration, five RVEs with different starting values for the random algorithm
were generated. The material properties of the constituents used for the analysis to evaluate the effective
material properties were taken from literature [Böhm et al. 2002] to verify the developed method with
other solutions. Table 1 contains Young’s moduli and Poisson’s ratios for matrix and fibers.

The calculated results were compared with different analytical methods such as Hashin–Shtrikman
two-point bounds (HS) [Hashin and Shtrikman 1963], Mori–Tanaka estimates (MTM) [Mori and Tanaka
1973], the self-consistent method (SCM) [Li and Wang 2005], and the generalized self-consistent method
(GSCM) [Christensen and Lo 1979]. We also performed studies to determine the influence of aspect ratio
length/diameter of fibers on the effective material properties of these composites.

Constituent Young’s modulus Poisson’s ratio

Matrix Al2618-T4 70 GPa 0.3
Fiber SiC 450 GPa 0.17

Table 1. Material constants for constituents of the composite.



1566 BERGER, KARI, GABBERT, RODRÍGUEZ, BRAVO AND GUINOVART

4. Results and discussion

4.1. Variation of volume fraction. Effective values of Young’s modulus E , shear modulus G and Pois-
son’s ratio ν were evaluated for different volume fractions from 10% to 40% in steps of 10%; see Figure 5.
Five samples of RVE models with randomly distributed short fibers (random angle of orientation, random
diameter and length in a certain range) were generated for each volume fraction. In six particular load
cases the RVEs were subjected to uniaxial tension as well as shear deformation along the three coordinate
axes [Berger et al. 2005a; 2005b]. From these load cases nine material constants were calculated: E11,
E22, E33, G12, G13, G31, ν12, ν23, ν31. Because of the statistically isotropy mean values E , G and ν from
all directions were used for comparison with other methods. Furthermore, due to the random distribution
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Figure 5. Variation of effective material properties for ROF composites with change in
volume fraction and comparison with different analytical results: (a) Young’s modulus,
(b) shear modulus, (c) Poisson’s ratio.
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of fibers in each five samples, a certain variance can be observed for the effective values. The bounds of
this variance are marked in the figures with vertical bars in the sense of a standard deviation.

The effective material properties, which were obtained for ROF composites using the presented nu-
merical homogenization technique, lie within the lower (HS-L) and upper (HS-U) Hashin–Shtrikman
bounds. The results of the analytical methods MTM and GSCM are always the same and are nearly
identical with HS-L. The results of our solution (ROF) are nearer to the self-consistent method (SCM)
for all volume fractions. The maximum difference between ROF and SCM is about 3%.

To show the nearly isotropic behavior of the ROF composite, in Figure 6 we plot effective Young’s
moduli in all coordinate directions as mean values from the five random samples for different volume
fractions. Effective Young’s moduli, which were obtained for the three coordinate directions, are nearly
the same over the full investigated range of volume fraction; the maximum difference is less than 1.5%.
This indicates a nearly isotropic macro behavior of the short fiber composite with randomly distributed
fiber orientation.

Effective material properties obtained for POF composites were compared with ROF composites. Fig-
ure 7 shows the variation of effective Young’s moduli for POF composites with change in volume fraction
in three coordinate directions, and compares it with the results for ROF composites. The transverse
Young’s moduli of POF composites have slightly lower values compared to ROF composites. Never-
theless, along the longitudinal direction the POF effective material properties have higher values when
compared with ROF composites. This is obvious because in case of POF composites, fibers are aligned
along the longitudinal direction, which results in higher stiffness relative to the transverse directions.
From Figure 7 it can also be seen that the effective Young’s moduli E11 and E22 are nearly the same;
this fact expresses transverse isotropy.

4.2. Variation of fiber aspect ratio. We have investigated the influence of aspect ratio length/diameter
L/D of fibers on their effective material properties for ROF and POF composites. As L/D increases,
the composite tends to a long fiber composite. The effective material properties were calculated at 10%
volume fraction of fibers. Table 2 represents the variation of effective material constants E11, E22 and
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Figure 6. Isotropy of effective material properties expressed by Young’s moduli in three
directions for ROF composites.
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Figure 7. Variation of effective Young’s moduli for all three directions with change in
volume fraction for ROF and POF composites.

E33 with change in aspect ratio L/D of the fibers for ROF and POF composites. From Table 2 it can
be observed that with respect to change in aspect ratio of fibers, there are no significant variations in
effective Young’s moduli along the three coordinate directions for ROF composites. This is not true for
POF composites, which show a significant variation in E33 with the increase in aspect ratio of fibers.
Along the transverse direction, E11 and E22 of POF composites are slightly less than these parameters
for ROF composites, but variations in the transverse Young’s moduli with respect to the aspect ratio of
fibers are not significant.

5. Conclusions

Numerical homogenization tools have been developed and presented for the evaluation of the effective
material properties of short fiber reinforced composites. The effective material properties of randomly
oriented fiber (ROF) and parallel-oriented fiber (POF) composites were obtained using these tools and
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Aspect ratio L/D E11 (ROF) E11 (POF) E22 (ROF) E22 (POF) E33 (ROF) E33 (POF)

1 83.73 83.53 83.79 83.21 83.85 83.95
3 83.81 82.68 83.77 82.34 84.80 92.96
6 84.57 82.54 84.27 81.98 82.94 98.85
9 85.17 82.16 83.53 82.19 84.44 103.98

12 83.74 81.96 83.85 82.01 83.92 104.36

Table 2. Variation of effective Young’s moduli (in GPa) with change in aspect ratio of
fibers length/diameter (L/D) for ROF and POF composites at 10% volume fraction.

compared with the results of different analytical methods. Our numerical predictions fit between the
Hashin–Shtrikman bounds and are close to the results of the self-consistent approximation. We have
also studied the influence of the aspect ratio of fibers on the effective material properties. These studies
showed that there is no significant influence on effective material properties with increase of aspect ratio
for ROF composites. However, POF composites show that along the longitudinal direction of the fibers
the material behavior becomes stiffer as the aspect ratio increases.

Our investigation provides an insight into the more complex investigation of influencing factors for
the macro behavior of fiber reinforced composites. We have shown that our method is reliable and offers
the possibility for treatment of composites with arbitrary inclusions, for example, spheres and ellipsoids,
with random distribution. Moreover, it allows the investigation of composites with more than two phases.
The use of a modified random sequential adsorption algorithm allows the inclusions with different sizes
to be generated so as to attain high volume fractions typical for many real composites.

The developed procedure, which combines a special geometrical preprocessor, ANSYS Parametric De-
sign Language and ANSYS batch processing, provides a comprehensive tool for calculation of effective
material properties of composites in a highly automated manner.
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