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GRADIENT REPRODUCING KERNEL PARTICLE METHOD

ALIREZA HASHEMIAN AND HOSSEIN M. SHODJA

This paper presents an innovative formulation of the RKPM (reproducing kernel particle method) pio-
neered by Liu. A major weakness of the conventional RKPM is in dealing with the derivative boundary
conditions. The EFGM (element free Galerkin method) pioneered by Belytschko shares the same diffi-
culty. The proposed RKPM referred to as GRKPM (gradient RKPM), incorporates the first gradients of
the function in the reproducing equation. Therefore in three-dimensional space GRKPM consists of four
independent types of shape functions. It is due to this feature that the corrected collocation method can
be readily generalized and combined with GRKPM to enforce the EBCs (essential boundary conditions),
involving both the field quantity and its first derivatives simultaneously. By considering several plate
problems it is observed that GRKPM yields solutions of higher accuracy than those obtained using the
conventional approach, while for a desired accuracy the number of particles needed in GRKPM is much
less than in the traditional methodology.

1. Introduction

Boundary value problems (BVPs) often have essential boundary conditions (EBCs) that involve deriva-
tives, for example, in beams and plates, where slopes are commonly enforced at the boundaries. Such
problems are solved numerically using meshless techniques like the reproducing kernel particle method
(RKPM) and the element free Galerkin method (EFGM), pioneered by Liu et al. [1995] and Belytschko
et al. [1994b], respectively. However, both methods require an often awkward auxiliary method for
enforcing the EBCs. Li and Liu [2002] gives a useful review of the previous methodologies.

We summarize the major contributions specifically aimed at remedying the issue of EBCs. The method
of Lagrange multipliers is a classic approach [Belytschko et al. 1994b]. However, it is unattractive
because it increases the number of unknowns, causes a loss of positive definiteness, and leads to an
awkward system of linear equations. Another method is a modified variational principle [Lu et al. 1994]
that interprets the Lagrange multipliers and replaces them by physical quantities. Although it leads
to a banded set of equations, the coefficient matrix is not necessarily positive definite and the results
are less accurate than those obtained by using Lagrange multipliers. The penalty method [Belytschko
et al. 1994a; Zhu and Atluri 1998] is a very simple and effective approach which does not increase the
number of unknowns. However, it does not satisfy the EBCs exactly, and its accuracy depends on the
penalty factor. Yet another approach couples EFGM and finite element method (FEM) [Krongauz and
Belytschko 1996; Liu et al. 1997] by using FEM for the boundaries and their neighboring domains and
using EFGM elsewhere. This technique dramatically simplifies enforcing the EBCs. However, it loses
the advantage of the meshfree technology near the boundaries. Another idea uses the singular kernel
function to enforce the Kronecker delta property [Lancaster and Salkauskas 1981]. It enforces the EBCs
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efficiently, but it works only when the dilation parameter falls within a limited range. When it is too
large, the convergence rate deteriorates rapidly. Finally, the transformation technique, first proposed by
Chen et al. [1996], can efficiently impose the EBCs for meshless methods. However, it cannot be applied
when the EBCs involve derivatives.

Liu et al. [1996a] took advantage of the Hermite polynomials and proposed the Hermite reproducing
kernel method (HRKM), which incorporates the derivative terms into the reproducing equation. In the
one-dimensional formulation, four admissible forms were presented for selecting the modified kernels
associated with the derivative terms. However, they claimed that the only form that can be generalized to
higher dimensions violates the second order reproducing condition. As a result, it reconstructs the func-
tion less accurately than the standard RKPM. Moreover, the EBCs were enforced by an auxiliary method
which was not stated explicitly. Atluri et al. [1999] extended the conventional moving least squares (MLS)
interpolant, first presented by Lancaster and Salkauskas [1981], to Hermite-type interpolation and called
it generalized MLS (GMLS). For illustration, Atluri et al. [1999] considered a one-dimensional thin
beam and imposed the EBC using the penalty method. Later, Tiago and Leitão [2004] used GMLS to
solve the isotropic Kirchhoff plate. They enforced the EBCs using Lagrange multipliers. Li et al. [2003]
and Lam et al. [2006] employed the Hermite theorem to construct the Hermite–Cloud method based on
the classical RKPM but used a fixed kernel instead of a moving one. They chose the strong form of
governing partial differential equations; that is, they used the point collocation technique to discretize
the governing partial differential equations. Liu et al. [2004] combined a meshfree and a finite element
interpolant by introducing a hybrid fundamental equation that incorporates the concepts of both RKPM
and FEM. In this manner, they generated a class of hybrid interpolation functions that may achieve a
higher order of smoothness in multiple dimensions. They called this technology the reproducing kernel
element method (RKEM) and pointed out that it has a great advantage over the traditional FEM. Li
et al. [2004] proposed that, by extending the RKEM interpolant to a Hermite-type interpolant, one can
obtain higher order Kronecker delta properties suitable for solving BVPs involving higher order partial
differential equations. It should be emphasized that RKEM is a mesh-based technique which requires
element defining and mapping.

In 1999, we were working on a Master’s thesis that studied solving beam-column problems by mesh-
less methods, particularly RKPM. During our work, we found it difficult to enforce the EBCs associated
with the deflection and rotation of beam-columns. As the work progressed, we realized that the usual
transformation method, however efficient, cannot apply to the derivative type of EBCs. We generalized
the transformation technique so that it could accommodate not only the function but also the derivative
type of EBCs. In so doing, we modified the RKPM formulation extensively and successfully linked it
to the generalized transformation technique. We added a gradient term to the reproducing equation, and,
for this reason, we called the new approach the gradient RKPM (GRKPM). The advantage of GRKPM
over RKPM is that, in addition to exactly enforcing the EBCs without resorting to the penalty method
or Lagrange multipliers, it gives more accurate results and converges faster. Moreover, it gives a banded
set of equations with a positive definite matrix [Hashemian 2000].

The one-dimensional formulation of GRKPM of [Hashemian 2000] is not extended straightforwardly
to multiple dimensions. In three dimensions, a major difficulty is in choosing the correction functions to
produce a well-conditioned system. However, once that has been done, the formulation can be reduced
easily back to one or two dimensions. In this work, we present GRKPM in three dimensions, and
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hence one and two as well. Besides affirming its accuracy and good convergence, we establish that
the approach enforces mixed EBCs by reexamining several thin plate problems solved previously by
other methods. Next, we further demonstrate the method’s efficacy by considering more complex and
physically important problems that are poorly solved by the existing meshless techniques (RKPM and
EFGM).

2. Formulating the GRKPM

2.1. Reproducing equation. The starting point for the conventional RKPM is that a given function u(x)
in the three-dimensional space (with coordinates xk) can be expressed by the reproducing formula

u R(x)=

∫
�

φ̄0
a(x; x − y)u( y)d�,

where u R(x) is the reproduced function, a is a dilation parameter, and φ̄0
a(x; x − y) is the modified kernel

function associated with the function. We propose expressing u R(x) as

u R(x)=

∫
�

φ̄0
a(x; x − y)u( y)d�+

3∑
k=1

∫
�

φ̄k
a(x; x − y)u,k( y)d�. (1)

In Equation (1), u,k( y)= ∂u( y)/∂yk and φ̄k
a(x; x − y) for k 6= 0 is the modified kernel function associated

with u,k( y). For k = 0, 1, 2, 3, we define

φ̄k
a(x; x − y)= Ck(x; x − y)φa(x − y),

where φa(x − y) is the kernel function and Ck(x; x − y) are correction functions, which are derived from
a reference function

C(x; x − y)= b0(x)+
3∑

i=1

bi (x)(xi − yi )+
1
2

3∑
i=1

3∑
j=1

bi j (x)(xi − yi )(x j − y j ),

by the relations

C0(x; x − y)= b0(x)+
3∑

i=1

bi (x)(xi − yi ),

Ck(x; x − y)= −
∂C(x; x − y)

∂yk
, k = 1, 2, 3.

(2)

In the reference function, bi and bi j (bi j = b j i ) are unknown coefficients to be determined by the com-
pleteness conditions. It should be noted that C0(x; x − y) is just the part of C(x; x − y) affine in y.
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Using the previous three equations, one obtains

φ̄0
a(x; x − y)=

[
b0(x)+

3∑
i=1

bi (x)(xi − yi )

]
φa(x − y),

φ̄k
a(x; x − y)=

[
bk(x)+

3∑
i=1

bki (x)(xi − yi )

]
φa(x − y), k = 1, 2, 3.

In this result, note that the forms chosen in Equation (2) for the correction functions assure the linear
independence of the modified kernels.

2.2. Completeness. Consider the Taylor’s series of u( y) around point x up to second order:

u( y)∼= u(x)−
3∑

i=1

(xi − yi )u,i (x)+
1
2

3∑
i=1

3∑
j=1

(xi − yi )(x j − y j )u,i j (x),

Upon substituting this into Equation (1), it follows that

u R(x)= u(x)R0(x)−
3∑

m=1

u,m(x)Rm(x)+
1
2

3∑
m=1

3∑
n=1

u,mn(x)Rmn(x)+ Err, (4)

where Err denotes the cumulative truncation error and

R0(x)=

∫
�

φ̄0
a(x − y)d�,

Rm(x)=

∫
�

(xm − ym)φ̄
0
a(x − y)d�−

∫
�

φ̄m
a (x − y)d�, m = 1, 2, 3,

Rmn(x)= Rnm(x)=

∫
�

(xm − ym)(xn − yn)φ̄
0
a(x − y)d�

−

∫
�

(xm − ym)φ̄
n
a (x − y)d�−

∫
�

(xn − yn)φ̄
m
a (x − y)d�, m, n = 1, 2, 3.

In view of Equation (4), the completeness condition on u R(x) leads to 10 independent conditions [Liu
et al. 1996b; Liu et al. 1996a]. Introducing the ijkth moment at the point x with respect to the kernel
function φa(x − y) as

mi jk(x)=

∫
�

(x1 − y1)
i (x2 − y2)

j (x3 − y3)
kφa(x − y)d�, (5)

it follows that

M(x)β(x)= H, (6)
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in which M(x) is

m000 m100 m010 m001 0 0 0 0 0 0
m100 m200 − m000 m110 m101 −m100 −m010 −m001 0 0 0
m010 m110 m020 − m000 m011 0 −m100 0 −m010 −m001 0
m001 m101 m011 m002 − m000 0 0 −m100 0 −m010 −m001
m200 m300 − 2m100 m210 m201 −2m200 −2m110 −2m101 0 0 0
m110 m210 − m010 m120 − m100 m111 −m110 −m020 − m200 −m011 −m110 −m101 0
m101 m201 − m001 m111 m102 − m100 −m101 −m011 −m200 − m002 0 −m110 −m101
m020 m120 m030 − 2m010 m021 0 −2m110 0 −2m020 −2m011 0
m011 m111 − m001 m021 m012 − m010 0 −m101 −m110 −m011 −m020 − m002 −m011
m002 m102 m012 m003 − 2m001 0 0 −2m101 0 −2m011 −2m002


,

the vector containing the unknown coefficients

βT (x)=
[
b0(x) b1(x) b2(x) b3(x) b11(x) b12(x) b13(x) b22(x) b23(x) b33(x)

]
,

and
HT

=
[
1 0 0 0 0 0 0 0 0 0

]
.

The unknown bi and bi j are readily determined by solving Equation (6). We compute the first derivatives
of β(x) by differentiating Equation (6)

M(x)β,m(x)= −M ,m(x)β(x), m = 1, 2, 3,

and compute the second derivatives by differentiating the above, as

M(x)β,mn(x)= −M ,mn(x)β(x)
− M ,m(x)β,n(x)
− M ,n(x)β,m(x), m, n = 1, 2, 3,

in the order shown above.

2.3. Shape functions. To extract the shape functions and their associated derivatives, one must discretize
the integral in Equation (1). In this paper, we use the trapezoidal rule, and the equation becomes

u R(x)=

NP∑
i=1

ψ0
i (x)u

i
+

3∑
k=1

NP∑
i=1

ψk
i (x)u

i
,k, (7)

where NP is the number of particles,1 ui
= u( yi ), ui

,k = ∂u( y)/∂yk | y= yi , and

ψ0
i (x)=

[
b0(x)+

3∑
j=1

b j (x)(x j − yi
j )

]
φa(x − yi )1 yi ,

ψk
i (x)=

[
bk(x)+

3∑
j=1

bk j (x)(x j − yi
j )

]
φa(x − yi )1 yi ,

(8)

1 Smooth particle hydrodynamics (SPH) is a meshfree method which was first proposed by Lucy [1977]. Utilizing this
method, he modeled the collective behavior of a discrete set of physical particles in astrophysics. For this reason, in RKPM
[Liu et al. 1995] and in the present work, the yi are called particles rather than nodes.
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in which ψk
i (x) is the kth shape function for the i th particle evaluated at x, and 1 yi is the area belonging

to the i th particle.
Many authors, for example Donning and Liu [1998] and Liu [2003], have extensively studied various

window functions and their effects. In the present work, we use the cubic spline

φ(z)=



2
3

− 4z2
+ 4z3, 0 ≤ |z| ≤

1
2
,

4
3

− 4z + 4z2
−

4
3

z3,
1
2
< |z| ≤ 1,

0, otherwise,

and construct the three-dimensional window function by multiplying the one-dimensional window func-
tions:

φa(x − y)=

3∏
i=1

1
ai
φ

(
xi − yi

ai

)
,

in which ai is the dilation parameter associated with the xi -direction.
Numerically evaluating the unknowns bi , bi j , and their derivatives requires discretizing the integral

in Equation (5) and subsequently calculating the moment mi jk(x). To satisfy the consistency condition,
the technique used for discretizing the reproducing equation must be used also for the moment equation
[Chen et al. 1996].

The first derivatives of the shape functions are obtained by differentiating Equation (8):

[
ψ0

i (x)
]
,m =

{
[b0(x)],m +

3∑
j=1

[b j (x)],m(x j − yi
j )+ bm(x)

}
φa(x − yi )1 yi

+

{
b0(x)+

3∑
j=1

b j (x)(x j − yi
j )

}[
φa(x − yi )

]
,m1 yi ,

[
ψk

i (x)
]
,m =

{[
bk(x)

]
,m +

3∑
j=1

[bk j (x)],m(x j − yi
j )+ bkm(x)

}
φa(x − yi )1 yi

+

{
bk(x)+

3∑
j=1

bk j (x)(x j − yi
j )

}[
φa(x − yi )

]
,m1 yi , k = 1, 2, 3,
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with i = 1, 2, . . . ,NP and m = 1, 2, 3. Differentiating again leads to the shape functions’ second deriva-
tives:

[
ψ0

i (x)
]
,mn =

{
[b0(x)],mn +

3∑
j=1

[b j (x)],mn(x j − yi
j )+ [bn(x)],m + [bm(x)],n

}
φa(x − yi )1 yi

+

{
[b0(x)],n +

3∑
J=1

[b j (x)],n(x j − yi
j )+ bn(x)

}
[φa(x − yi )],m1 yi

+

{
[b0(x)],m +

3∑
j=1

[b j (x)],m(x j − yi
j )+ bm(x)

}
[φa(x − yi )],n1 yi

+

{
b0(x)+

3∑
j=1

b j (x)(x j − yi
j )

}
[φa(x − yi )],mn1 yi ,

[
ψk

i (x)
]
,mn =

{
[bk(x)],mn +

3∑
j=1

[bk j (x)],mn(x j − yi
j )+ [bkn(x)],m + [bkm(x)],n

}
φa(x − yi )1 yi

+

{
[bk(x)],n +

3∑
j=1

[bk j (x)],n(x j − yi
j )+ bkn(x)

}
[φa(x − yi )],m1 yi

+

{
[bk(x)],m +

3∑
j=1

[bk j (x)],m(x j − yi
j )+ bkm(x)

}
[φa(x − yi )],n1 yi

+

{
bk(x)+

3∑
j=1

bk j (x)(x j − yi
j )

}
[φa(x − yi )],mn1 yi , k = 1, 2, 3,

with i = 1, 2, . . . ,NP and m, n = 1, 2, 3.

3. Presenting the shape functions: departure from the conventional type

The aim of this section is to present the shape functions that follow from the proposed reproducing
equation, and for this purpose we consider two-dimensional shape functions.

In two dimensions, Equation (8) yields three different types of shape functions ψ0
i (x), ψ

1
i (x) and

ψ2
i (x):

ψ0
i (x)=

[
b0(x)+

2∑
j=1

b j (x)(x j − yi
j )

]
φa(x − yi )1 yi ,

ψk
i (x)=

[
bk(x)+

2∑
j=1

bk j (x)(x j − yi
j )

]
φa(x − yi )1 yi , k = 1, 2,



134 ALIREZA HASHEMIAN AND HOSSEIN M. SHODJA

with i = 1, 2, . . . ,NP. We emphasize that the conventional RKPM has only one shape function ψi (x),
regardless of the dimension of the problem, whereas the present method gives rise to k additional shape
functions, ψk

i (x), for k-dimensional Euclidean space.
Figure 1 shows the shape functions for the conventional RKPM, and Figures 2 and 3 depict the shape

functions corresponding to GRKPM. In these figures, the region [0, 5]
2 contains 11 × 11 uniformly

distributed particles. The dilation parameter is chosen to be twice the particle spacing in each direction.
For illustration, Figures 1–3 display the shape functions associated with certain particles. Specifically
selected are the corners located at (0, 0), (5, 0), (5, 5), and (0, 5); the mid-edge points (2.5, 0), (5, 2.5),
(2.5, 5), and (0, 2.5); and the center (2.5, 2.5). From Figures 1 and 2, the ψ0

i (x) from GRKPM are,
modulo amplitude, the same as the ψi (x) from RKPM. Comparing within Figure 3 reveals that the
ψ2

i (x) are simply the ψ1
i (x) rotated 90◦ counterclockwise about the region’s center. We point out that

ψ1
i (x) and ψ2

i (x) are the shape functions associated with the first derivative of the function in the x1 and
x2-direction.

4. Applying essential boundary conditions

In the meshfree methods (RKPM/EFGM), enforcing EBCs has been a controversial issue among inves-
tigators. The basic shortcoming of the methods is that the shape functions do not possess the Kronecker
delta property. For this reason, enforcing the EBCs is not as convenient as in FEM.

4.1. Statement of the problem. Consider a three-dimensional domain � with the boundary 0 and the
associated BVP

Lu(x)= f (x), x ∈�, (9)

in which L is a linear differential operator. Natural boundary conditions may have arbitrary form, whereas
EBCs may prescribe the field quantity and/or its first derivatives

u,k(x)= gk(x), x ∈ 0k
eb, k = 0, 1, 2, 3, (10)

where 00
eb and 0k

eb are the set of all points x at which u(x) and u,k(x) are prescribed. Thus the essential
boundary is

0eb =

3⋃
k=0

0k
eb.

It is interesting to note that 0i
eb ∩0

j
eb may not be empty for i 6= j . Suppose S is the space of all H (2)

2 (�)

functions that satisfy the boundary conditions (10), and define V to be the space of all H (2)
2 (�) functions

that satisfy the homogeneous EBCs. The spaces S and V may be expressed as

S ≡
{
u | u ∈ H (2)

2 (�), u,k(x)= gk(x) on 0k
eb, k = 0, 1, 2, 3

}
, (11a)

V ≡
{
w | w ∈ H (2)

2 (�),w,k(x)= 0 on 0k
eb, k = 0, 1, 2, 3

}
, (11b)

where H (2)
2 (�) is a Sobolev space. The governing Equation (9) is cast into the weak form∫

�

w(x)[Lu(x)− f (x)]2d�= 0. (12)
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Figure 1. Conventional RKPM shape functions plotted at the corners, mid-edges, and
center of the 11 × 11 uniformly distributed particles with dilation parameter a = 21 y.
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Figure 2. The first type of GRKPM shape functions plotted at the corners, mid-edges,
and center of the 11×11 uniformly distributed particles with dilation parameter a = 21 y.
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Figure 3. The second and third types of GRKPM shape functions plotted at the cor-
ners, mid-edges, and center of the 11 × 11 uniformly distributed particles with dilation
parameter a = 21 y.
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Employing the shape functions developed in Section 2.3, u R(x) and wR(x) may be written as

u R(x)= ψ(x)d, (13a)

wR(x)= ψ(x)c, (13b)

with

ψ(x)=
[
ψ1(x) ψ2(x) · · · ψNP(x)

]
, (14a)

ψ i (x)=
[
ψ0

i (x) ψ1
i (x) ψ

2
i (x) ψ

3
i (x)

]
, (14b)

where ψk
i (x), k = 0, 1, 2, 3 is given by Equation (8). The vector d contains the unknowns associated

with the degrees of freedom (DOF) u and u,k , k = 1, 2, 3. We prefer to represent d as

d =
[
d1

T d2
T

· · · dNP
T ]
, (15a)

di
T

=
[
d0

i d1
i d2

i d3
i

]
. (15b)

The unknown vector c pertains to the test function wR(x), which we arrange to have the same structure
as d. In view of Equations (13)–(15), Equation (12) may be written as

cT r = 0, (16)

where

r = K d − f , K =

∫
�

ψT (x)Lψ(x)d�, f =

∫
�

ψT (x) f (x)d�.

The matrix K depends on the operator L . In the next section, we show that the set problem (16) can be
rigorously solved for d by extending the corrected collocation method.

4.2. Extending the corrected collocation method to GRKPM. In collocation methods, the EBCs are
enforced exactly at the boundary particles. A number of collocation methods have been developed. The
traditional collocation methods, including direct [Lu et al. 1994] and modified [Zhu and Atluri 1998],
lead to some inconsistencies when applied to the conventional RKPM [Wagner and Liu 2000]. These in-
consistencies exist because the conventional RKPM’s shape functions do not possess the Kronecker delta
property. Wagner and Liu [2000] give a remedy. Their work is based on the transformation technique
[Chen et al. 1996] and is limited to enforcing the EBCs for the function itself. Moreover, the conventional
RKPM deals with only one type of shape function. Therefore, in the present situation, where the EBCs
involve the function and/or its first derivatives and there are four types of shape functions, the collocation
given in [Wagner and Liu 2000] is not applicable and must be modified appropriately.

The starting point is to partition each of the vectors d, c, and r into two subvectors

r =

[
reb

r∼eb

]
, c =

[
ceb

c∼eb

]
, d =

[
deb

d∼eb

]
. (17)

The subscript eb labels the neb parameters that pertain to the EBCs of Equation (10), whereas ∼ eb labels
the remaining n∼eb parameters. (Hence neb + n∼eb counts the total DOF of the system.) Note that each
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particle is allowed to have four DOF in u and u,k, k = 1, 2, 3. Once the shape function ψ(x) in Equation
(14a) and its first derivatives are evaluated for the i th particle xi , we may define the matrix

ψ̂
T
(xi )=

[
ψT (xi ) ψT

,1(xi ) ψT
,2(xi ) ψT

,3(xi )
]
.

The square matrix containing the shape functions and their derivatives for a system with NP particles
may written as

9̂
T

=

[
ψ̂

T
(x1) ψ̂

T
(x2) · · · ψ̂

T
(xNP)

]
. (18)

Defining
ûT
(xi )=

[
u(xi ) u,1(xi ) u,2(xi ) u,3(xi )

]
,

we replace Equation (13a) by
û(xi )= ψ̂(xi )d,

and, with the aid of Equation (18), we have

Û = 9̂d, (19)

where
Û

T
=

[
ûT
(x1) ûT

(x2) · · · ûT
(xNP)

]
.

Next, we define the vector

Ŵ
T

=

[
ŵ

T
(x1) ŵ

T
(x2) · · · ŵ

T
(xNP)

]
,

where
ŵ

T
(xi )=

[
w(xi ) w,1(xi ) w,2(xi ) w,3(xi )

]
,

so that, from Equation (18), we have
Ŵ = 9̂c. (20)

Repeating for the vectors Ŵ and c the partition scheme in Equation (17), Equation (20) takes the form[
Ŵ eb

Ŵ∼eb

]
=

[
Ê F̂
Ĝ Ĥ

] [
ceb

c∼eb

]
. (21)

This, in conjunction with Equation (11b), implies that Ŵ eb = 0 and Ŵ∼eb is arbitrary, hence[
Ê F̂

] [
ceb

c∼eb

]
= 0,

and c∼eb is arbitrary.
Let

T =

[
Ê F̂
0 I

]
, and c̄ = T c,

then

c̄eb = 0, (22a)

c̄∼eb = c∼eb = Arbitrary. (22b)
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Likewise, letting d̄ = T d, then, in view of Equation (19),

d̄eb = Ûeb, d̄∼eb = d∼eb, (23)

which relates the elements of d̄eb to the prescribed function gk(x), as defined in Equation (10). Following
the procedure given by Wagner and Liu [2000],

[
c̄T

eb c̄T
∼eb

] ([
K̄ eb,eb K̄ eb,∼eb

K̄∼eb,eb K̄∼eb,∼eb

] [
d̄eb

d̄∼eb

]
−

[
f̄ eb

f̄ ∼eb

])
= 0,

where

K̄ = (T−1)T K T−1, f̄ = (T−1)T f ,

and, using Equation (22) and Equation (23), we have

K̄∼eb,∼eb d∼eb = f̄ ∼eb − K̄∼eb,ebÛeb.

This equation can be readily solved for d∼eb.

5. Kirchhoff plate

Consider a symmetric laminated composite plate on an elastic foundation of varying stiffness k f (x1, x2),
as shown in Figure 4. The boundary conditions and the transverse applied loading q(x1, x2) are arbitrary.
The plate is also subjected to edge forces Ni j , i, j = 1, 2. According to the classical plate theory known
as Kirchhoff theory, the governing partial differential equation associated with the deflection u3 becomes
[Reddy 1984]

(−N11u3,1 + N12u3,2),1 + (−N22u3,2 + N12u3,1),2 + M11,11 + M22,22 + 2M12,12 + k f u3 = q, (24)

Figure 4. Schematic of a rectangular laminated composite plate with arbitrary loading
and boundary conditions.
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and the admissible boundary conditions for the present experiments consist of

on x1 = 0, l1 :

{
either − N11u3,1 + N12u3,2 + M11,1 + 2M12,2 = 0 or u3 specified,

either M11 = 0 or u3,1 specified,

on x2 = 0, l2 :

{
either − N22u3,2 + N12u3,1 + M22,2 + 2M12,1 = 0 or u3 specified,

either M22 = 0 or u3,2 specified,

at the corners: either M12 = 0 or u3 specified.

(25)

In relations (24) and (25), M11

M22

M12

 =

D11 D12 0
D12 D22 0
0 0 D66

  u3,11

u3,22

2u3,12

 , (26)

where the Di j are called the bending stiffnesses; see [Reddy 1997] for details. For a single isotropic
layer with Young’s modulus E and Poisson ratio ν, the Di j become

D11 = D22 = D, D12 = νD, D66 =
1 − ν

2
D, (27)

in which D = Eh3/(12 − 12ν2) is called the flexural rigidity of the plate.
The discretized weak form of Equation (24), employing the shape functions for two-dimensional space,

ψ(x1, x2), yields

cT r = 0,

r = K d − f ,

K =

∫ l2

0

∫ l1

0
dx1 dx2

[
N11ψ

T
,1ψ ,1 + N22ψ

T
,2ψ ,2 + N12(ψ

T
,1ψ ,2 +ψT

,2ψ ,1)

+ D11ψ
T
,11ψ ,11 + D22ψ

T
,22ψ ,22 + 4D66ψ

T
,12ψ ,12

+D12
(
ψT
,22ψ ,11 +ψT

,11ψ ,22
)
+ k fψ

Tψ
]
,

f =

∫ l2

0

∫ l1

0
qψT dx1dx2.

(28)

For studying the stability of the plate, we put f = 0. This and Equation (28) give

cT (K L
− λK G)d = 0, (29)
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(a) (b)

(c)

Figure 5. Midplane of an isotropic plate subjected to (a) uniaxial compression, (b) bi-
axial compression, and (c) uniform shear.

where

K L
=

∫ l2

0

∫ l1

0
dx1 dx2

[
D11ψ

T
,11ψ ,11 + D22ψ

T
,22ψ ,22 + 4D66ψ

T
,12ψ ,12

+ D12
(
ψT
,22ψ ,11 +ψT

,11ψ ,22
)
+ k fψ

Tψ
]
,

K G
=

∫ l2

0

∫ l1

0
dx1 dx2

[
N̂11ψ

T
,1ψ ,1 + N̂22ψ

T
,2ψ ,2 + N̂12(ψ

T
,1ψ ,2 +ψT

,2ψ ,1)
]
,

λ= −
N11

N̂11
= −

N22

N̂22
= −

N12

N̂12
.

(30)

Equation (29) is an eigenvalue problem, in which λ is the eigenvalue corresponding to the critical load
and d is the eigenvector associated with the DOF. The eigenvector is normalized to have Euclidean length
one. Therefore, the displacement obtained from Equation (13a) is dimensionless.

Standard Gaussian quadratures carry out the numerical integrations in Equations (28) and (30). For
this, a background mesh is needed, and we set the nodes of the background mesh to coincide with the
meshless particles and compute a 4 × 4 quadrature in each cell.

6. Numerical experiments

In this section, we demonstrate the applicability and efficacy of the proposed method in treating various
boundary conditions encountered in plate problems. We compare the accuracy of the results with analyt-
ical solutions, whenever they are available. We investigate the method’s advantages over conventional
meshfree methods by considering several examples.
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6.1. GRKPM versus RKPM. Consider a clamped square plate with elastic modulus and Poisson ratio
of E = 2×109 N/m2 and ν = 0.3. For each of the loading conditions in Figure 5, we solve for the critical
load and the corresponding mode shape.

The expression for the critical load is

Ni j = λ
π2 D

l2 , i, j = 1, 2,

in which the analytical values for λ [Timoshenko and Gere 1961] are

λAnal. =


10.07, Uniform uniaxial compression,

5.30, Uniform biaxial compression,

14.71, Uniform shear.

(31)

For numerical calculations, we set the plate dimensions to l = 5 m and h = 0.05 m, distribute the
particles distributed uniformly in the x1 and x2-directions, and employ the linear correction function. We
set the dilation parameter in the x1 and x2-directions to 1.8 times the corresponding interparticle distance
1yi .

Each loading condition in Figure 5 leads to an eigenvalue problem, with analytical solutions given
in Equation (31). Numerically, we solve each by RKPM combined with the penalty method, and also
by our GRKPM. For RKPM, Table 1 displays the required CPU time and the percent error for selected
numbers of particles; Table 2 does the same for GRKPM.

The GRKPM gives fair accuracy in all cases, even for relatively small numbers of particles. In the
very worst case — in shear loading with a 5 × 5 distribution of particles — the error is only 5.8%. In
comparison, the best result (in biaxial loading) for conventional RKPM has 22.5% error, and that was
for a considerably larger 16 × 16 number of particles. In that case, the GRKPM already gives an error of
0.0% (to two-digit accuracy) with the smallest 5 × 5 number of particles. The GRKPM does cost more in
CPU time for a fixed number of particles, but, because it achieves better accuracy using smaller number
of particles, the GRKPM significantly outperforms RKPM at fixed CPU time.

We have computed the critical mode shapes using our method with an 8 × 8 distribution of particles;
these are shown in Figure 6. Note that the symmetric loading conditions shown in Figure 5a and b allow
us to consider only one-quarter of the plate. For the unsymmetric loading conditions of Figure 5c, the
entire plate must be modeled.

Particles 11 × 11 13 × 13 14 × 14 16 × 16

Loading λAnal. Time Error Time Error Time Error Time Error
(s) (%) (s) (%) (s) (%) (s) (%)

Figure 5a 10.07 2.3 34.5 3.5 28.8 4.5 26.7 7.6 23.4
Figure 5b 5.30 2.3 33.0 3.6 27.5 4.5 25.7 7.8 22.5
Figure 5c 14.71 2.6 39.0 3.8 31.3 4.8 28.7 7.8 24.7

Table 1. CPU time and percent error of the buckling parameters using RKPM, with a = 1.81 y.
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Particles 5 × 5 6 × 6 7 × 7 8 × 8

Loading λAnal. Time Error Time Error Time Error Time Error
(s) (%) (s) (%) (s) (%) (s) (%)

Figure 5a 10.07 2.4 0.2 3.4 0.1 4.8 0.1 7.2 0.0
Figure 5b 5.30 2.4 0.0 3.4 0.0 4.9 0.0 7.3 0.0
Figure 5c 14.71 2.4 5.8 3.3 1.6 4.8 1.3 7.1 1.1

Table 2. CPU time and percent error of the buckling parameters using GRKPM, with
a = 1.81 y.

6.2. GRKPM and effects of the dilation parameter. Zhao et al.[2003; 2004] and Liew et al. 2005 have
investigated how the dilation parameter and particle distribution influence the convergence of meshless
approaches such as RKPM; these studies have proved useful. This section performs such studies for
GRKPM. To this end, we consider the clamped square plate defined in the previous section. The problem
is solved with uniform distributions of particles and various values for the ratio of the dilation parameter
to the interparticle distance, ai/1yi = 1.75, 2.00, 2.25, 2.5. For uniaxial and biaxial compression, only
one quarter of the plate is modeled, due to symmetry, and the region of the plate is [0, 2.5]

2. The number
of particles along each edge varies from 5 × 5 to 9 × 9. Figure 7 shows how the buckling factor λ varies
with the number of particles along each edge for uniaxial and biaxial cases. This figure show monotonic
convergence and remarkably accurate results for all the dilation parameters. The most accurate outcomes
obtain when ai/1yi = 1.75. For larger dilation parameters, the results are less accurate, but the accuracy
quickly approaches that of smaller parameters as the number of particles increases.
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Figure 6. Critical buckling mode shapes of the isotropic square plate of Figure 5a, b,
and, at right, from the uniform shear of the clamped square isotropic plate. At left, the
plate is under uniaxial/biaxial compression; at right it is under uniform shear. See
Figure 5.
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Figure 7. Convergence of the buckling parameter λ with increasing number of particles
along each edge and for various dilation parameters. At left, the clamped square plate is
under uniaxial compression; at right, it is under biaxial compression. See Section 6.1.

For the uniform shear test, we model the entire plate, and the region of analysis is [0, 5]
2. We consider

various uniform distributions of paricles ranging from 6 × 6 to 10 × 10. (The number of particles varies
from 36 to 100.) Figure 8 displays how the buckling factor λ varies with the number of particles along
each edge. The results converge monotonically and, for any distribution of particles, are always closest
when ai/1yi = 1.75. Because we reached the same conclusion before in uniform uniaxial and biaxial
compression tests, we adopt the value ai/1yi = 1.75 for further experiments.
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Figure 8. Convergence of the buckling parameter λ with increasing number of particles
along each edge and for various dilation parameters. The clamped square plate is under
uniform shear. See Section 6.1.
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6.3. GRKPM versus EFGM. Consider a thin rectangular plate of thickness h and dimensions l1 and l2

in x1 and x2. To compare the performance of EFGM and GRKPM, we compute the critical buckling
load for various aspect ratios l1/ l2 and different types of boundary conditions by both methods. The
edge load is applied in the x1-direction, as shown in Figure 5a. In the numerical calculations, we use
l2 = 10 m and h = 0.06 m and assume the plate to be isotropic with E = 2.45 × 106 N/m2 and ν = 0.23.
The buckling load N and the buckling factor λ are related as

N = λ
π2 D

l2
2
.

Table 3 tabulates the analytical [Timoshenko and Gere 1961] and computed values of λ for simply
supported boundary conditions along all the edges and for different aspect ratios l1/ l2. The numerical
calculations used a 13 × 13 uniform distribution of particles. The results of EFGM in conjunction with
the penalty method are cited from [Liu 2003]. There, Liu [2003] notes that the optimal dilation parameter
is somewhere between 3.5 to 3.9 times the interparticle distance. Accordingly, for each l1/ l2, the dilation
parameter is tuned within this rather tight range [Liu 2003]. Moreover, this particular EFGM uses the
second-order base function instead of the first. In contrast, the GRKPM here employs the first-order base
function. Moreover, for each l1/ l2, we examine two rather different dilation parameters, ai = 1.721yi

and ai = 3.51yi . Even though these dilation parameters differ by more than a factor of two, the results
in either case are much better than those given by the EFGM with restricted dilation parameters. We
conclude that the GRKPM is somewhat indifferent to the dilation parameter.

Method Analytical EFGM GRKPM

ai/1yi − 3.5–3.9 1.72 3.5

I1/I2 λ Percent error

0.20 27.00 0.33 0.15 0.15
0.30 13.20 0.15 0.00 0.00
0.40 8.41 0.12 0.00 0.00
0.50 6.25 0.00 0.00 −0.16
0.60 5.14 −0.19 0.00 0.00
0.70 4.53 0.00 0.00 0.00
0.80 4.20 0.00 0.00 0.00
0.90 4.04 0.00 0.00 0.00
1.00 4.00 1.00 0.00 0.00
1.10 4.04 0.25 0.00 0.00
1.20 4.13 0.00 0.00 0.00
1.30 4.28 0.00 0.00 0.00
1.40 4.47 0.22 0.00 −0.45

Table 3. Buckling factor for the simply supported rectangular plate.
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Method Analytical EFGM GRKPM

ai/1yi − 3.5–3.9 1.72 3.5

I1/I2 λ Percent error

0.4 9.44 0.42 0.00 0.00
0.5 7.69 0.39 0.00 0.00
0.6 7.05 0.85 0.00 0.00
0.7 7.00 0.71 −0.14 0.00
0.8 7.29 1.23 0.14 0.14
0.9 7.83 1.66 0.26 0.26
1.0 7.69 1.04 0.00 0.00

Table 4. Buckling factor for the rectangular plate with simply supported, and clamped edges.

Table 4 displays the analytical [Timoshenko and Gere 1961] and computed values of λ when the
edges x1 = 0, l1 are simply supported and the edges x2 = 0, l2 are fixed. All the other conditions and
parameters are kept from the previous case. Again, for a given particle distribution, GRKPM allows
more flexibility in choosing the dilation parameter and yields more accurate results. As before, EFGM
uses the second-order base function, while the GRKPM uses first-order base function.

6.4. GRKPM and various types of boundary conditions. Figure 9 shows a schematic of a cross-ply
laminate (90/0/90). The mark × locates the origin of the Cartesian coordinate system. The edges x2 = 0, l
are assumed to be simply supported and under a uniform compressive load along the x2-direction. For
the other two edges, x1 = 0, l, we consider various combinations of free, simply supported, and clamped
boundary conditions, denoted respectively by F, S, and C. We put l = 5 m and the thickness of each
lamina to 0.05 m. We assume that each lamina is made of carbon-epoxy with the material properties
E1 = 40E2, G12 = 0.6E2 and ν12 = 0.25.

Figure 9. Square cross-ply laminate (90/0/90) subjected to uniform compressive load
along the x2 axis.
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Levy GRKPM

BC λ Particles λ % Err. Particles λ % Err.

FF 31.76 5 × 5 31.41 −1.10 9 × 9 31.66 −0.33
FS 32.34 9 × 5 31.85 −1.49 17 × 9 32.22 −0.37
FC 32.81 9 × 5 32.18 −1.92 17 × 9 32.65 −0.48
SS 36.16 5 × 5 35.97 −0.52 9 × 9 36.12 −0.11
SC 39.43 9 × 5 39.36 −0.17 17 × 9 39.41 −0.05
CC 45.06 5 × 5 44.78 −0.63 9 × 9 45.02 −0.10

Table 5. Buckling factor for the cross-ply (90/0/90) square plate with mixed boundary conditions.

For this problem, the buckling load N and the buckling factor λ are related as

N = λ
l2

E2h3 . (32)

The Levy method [Reddy 1997] is used to calculate the analytical values of λ. In our GRKPM, we find λ
using a uniform distribution of particles and a dilation parameter of 1.75 times the interparticle distance.
For SS, CC, and FF boundary conditions, we model only one quarter of the plate, whereas, for FS, FC,
and SC conditions, we model half the plate. Table 5 compares the results with the analytical solutions.
The BVPs associated with FF, SS and CC boundary conditions are solved for 5 × 5 and 9 × 9 particles,
whereas, for the cases FS, FC and SC, we use 9 × 5 and 17 × 9 particles. Table 5 shows that the GRKPM
yields satisfactory results even with the smallest number of particles. The maximum error obtains with
the FC boundary conditions; the error is −1.92% for 9 × 5 particles and −0.48% for 17 × 9 particles.
The SC boundary conditions, on the other hand, minimize the error; it is −0.17% for 9 × 5 and −0.05%
for 17 × 9 particles. Table 5 shows clearly that the results improve as the number of particles increases.

6.5. Symmetric laminated composite plate under the most general conditions via GRKPM. To imple-
ment the proposed approach, we have developed a powerful program we call ALCP-GRKPM (analysis
of laminated composite plates via GRKPM) for analyzing symmetric laminated composite plates with
arbitrary loading and boundary conditions. For example, consider the laminated composite (70/− 20)S

shown in Figure 10, in which the thicknesses of the layers are (0.02 m/0.03 m)S . Each lamina is made of
carbon-epoxy (AS4/3501-6) with E1 = 148 GPa, E2 = 10.5 GPa, G12 = G13 = 5.61 GPa, G23 = 3.17 GPa,
ν12 = ν13 = 0.3 and ν23 = 0.59. The edge x2 = 0 is free and the remaining edges are clamped. A roller
type support is placed in the middle of the plate, and part of the plate is placed on elastic foundation. We
solve this set problem for two different cases: (1) uniform spring constant and distributed load; and (2)
variable spring constant and distributed load. For both cases, a concentrated load of P = 50 kN is applied
at the location marked � in Figure 10. In this computation, we intend to find the location and value of
the maximum deflection. We use 9 × 5, 17 × 9, 33 × 17, and 65 × 33 uniformly distributed particles. We
set the dilation parameter equal to 1.75 times the interparticle distance.

Case 1: Uniform spring constant and uniformly distributed load. In this case the spring constant and
distributed load are k f = 105 kN/m3 and q = 80 kN/m2. For reference, we analyze the problem by
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Figure 10. An example of a rectangular symmetric laminate (70/− 20)s under a set of
complex loadings and boundary conditions.

Method Particles (u3)max (cm) x1 (m) x2 (m)

GRKPM

9 × 5 −2.002 5.6250 0.000
17 × 9 −2.003 5.6250 0.000
33 × 17 −2.005 5.6250 0.000
65 × 33 −2.006 5.6250 0.000

ANSYS 65 × 33 −2.072 5.6250 0.000

Table 6. Location and value of the maximum deflection for the plate shown in Figure 10
with a uniform elastic constant and a uniformly distributed load.
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Figure 11. ALCP-GRKPM result for the deflection corresponding to the example
shown in Figure 10 with uniform elastic constant and a uniformly distributed load.

ANSYS using 65 × 33 uniformly spaced nodes. In employing ANSYS, we use the 8-node ‘Shell 99’
element. Appendix A gives its interpolation functions, assumptions, and restrictions. At each node, the
element has three displacement and three rotational DOF. Because of this, the DOF per node in ANSYS
is twice the DOF per particle GRKPM. Table 6 shows the maximum deflection of the plate and where
it occurs. GRKPM with 45 particles already gives a satisfactory result, and making more particles only
affects the third decimal digit in the maximum deflection. The small discrepancy between the results of
ANSYS and GRKPM for the maximum deflection arises because ANSYS applies the first-order shear
deformation laminated plate theory (FSDT) [Reddy 1997] which considers shear deflections, whereas
we use the classical plate theory which disregards these deflections. To suppress the shear deflections
in FSDT, the lateral shear moduli G13 and G23 should be assigned significantly larger than G12. Ansys
[1997] recommends taking G13 = G23 = 1000G12. By doing so, the computed maximum deflection
equals 2.006, which agrees with the GRKPM result to within three decimal places. The deflection,
u3(x1, x2), is computed by GRKPM with 65 × 33 particles, and its variation is shown in Figure 11.

Case 2: Variable spring constant and variably distributed load. The program ALCP-GRKPM can accept
q(x1) and k f (x1, x2) as functions. For example, consider the plate shown in Figure 10 with the spring
constant and distributed load assigned to vary as

k f =
106

x1 + x2
kN/m3, q = 55(x1 − 4)(x1 − 7) kN/m2.

Table 7 gives the corresponding results for 9 × 5, 17 × 9, 33 × 17 and 65 × 33 uniformly distributed
particles. As in the previous example, increasing the number of particles only affects the third decimal
digit in the maximum displacement.

7. Conclusions

We have demonstrated that our method is robust by considering plate boundary value problems. The
results demonstrate that the method succeeds in treating different kinds of EBCs including those with
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Method Particles (u3)max (cm) x1 (m) x2 (m)

GRKPM

9 × 5 −2.363 5.5625 0.000
17 × 9 −2.366 5.6250 0.000
33 × 17 −2.368 5.6250 0.000
65 × 33 −2.370 5.6250 0.000

Table 7. Location and value of the maximum deflection for the plate shown in Figure
10 for variable elastic constant and a variably distributed load.

derivatives of the field function. The examples compute buckling load and analyze deflection under
various types of loading and support, including elastic foundation with variable stiffness as explored in
Section 6.5.

In the example of Section 6.1, comparing the performance of GRKPM and conventional RKPM reveals
that using GRKPM with much smaller numbers of particles leads to results of excellent accuracy. In
Section 6.2, from studying how the number of particles and the dilation parameter affect the performance
of GRKPM, we conclude the GRKPM converges well as the number of particles increases. In Section
6.3, we conclude that for GRKPM the base function of order one suffices for obtaining better accuracy
than from EFGM with the second-order base function. Moreover, for the cross-ply laminate with various
types of EBCs considered in Section 6.4, the GRKPM solution converges rapidly with growing number
of particles.

The presently formulated GRKPM achieves high performance because it expands the degrees of free-
doms to include slopes and because it enforces EBCs by generalizing the corrected collocation method.
Hence, the advantages become more pronounced for plates clamped at the boundaries. Given its so-far
excellent features, GRKPM may hold promise for other problems of engineering science.

Appendix A

‘Shell 99’ is an 8-node quadrilateral element in 3-dimensions with rotational DOF and shear deflection
[Ansys 1997]. It is suitable for laminate composites and can accept up to 100 different layers. This
element is discussed by Yunus et al. [1989]. A planner view of this element is given in Figure 12.

Let define the shape functions for each node as

ψ1 =
(1 − s)(1 − t)(−s − t − 1)

4
, ψ2 =

(1 + s)(1 − t)(s − t − 1)
4

,

ψ3 =
(1 + s)(1 + t)(s + t − 1)

4
, ψ4 =

(1 − s)(1 + t)(−s + t − 1)
4

,

ψ5 =
(1 − s2)(1 − t)

2
, ψ6 =

(1 + s)(1 − t2)

2
,

ψ7 =
(1 − s2)(1 + t)

2
, ψ8 =

(1 − s)(1 − t2)

2
.
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Figure 12. A planner view of the ‘Shell 99’ element used by ANSYS.

Subsequently, the interpolation functions areu1

u2

u3

 =

8∑
i=1

ψi

ui
1

ui
2

ui
3

 +

8∑
i=1

ψi
r ti
2

âi
1 b̂i

1
âi

2 b̂i
2

âi
3 b̂i

3

 [
θ i

1
θ i

2

]
, (A.1)

where ui
1, ui

2, and ui
3 are motions of node i , r is the coordinate along the thickness, and ti is the thickness

at node i . â is the unit vector in the s direction and b̂ is the unit vector in the plane of element and normal
to â. θ i

1 and θ i
2 are the rotations of node i about vector â and b̂, respectively. An interesting observation

is made by comparing the interpolation functions (A.1) with those of GRKPM given by Equation (7).
The latter gives four different types of shape functions for the displacements and rotations of each node,
whereas Equation (A.1) gives only one.

There are some assumptions and restrictions for this element:

• Normals to the center plane are assumed to remain straight after deformation, but not necessarily
normal to the center plane.

• Each pair of integration points in the r direction is assumed to have the same material orientation.

• There is no significant stiffness associated with rotation about the element r axis. However, a
nominal value of stiffness is present to prevent free rotation at the node.
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