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ELASTODYNAMIC RECIPROCITY RELATIONS FOR WAVE SCATTERING BY
FLAWS IN FIBER-REINFORCED COMPOSITE PLATES

WARNA KARUNASENA

Due to light weight, high performance, and increased service life, fiber-reinforced composite materials
are receiving wide attention as an advanced material in many branches of engineering. Structural in-
tegrity of composite structures is affected by the presence of flaws such as cracks and delaminations
in the composite material. In this paper, elastodynamic reciprocity relations are developed for wave
scattering by flaws, when guided waves are allowed to propagate in fiber-reinforced composite plates.
These relations are useful for checking the accuracy of the numerical solution for the scattered wave
field in ultrasonic nondestructive evaluation of flaws in composite plate-like structural elements. The
classical elastodynamic reciprocity theorem is used to derive simple reciprocity relations for reflected
and transmitted wave amplitudes and the corresponding energies associated with the wave modes in a
plate with an arbitrary stacking sequence. The derived reciprocity relations are used to check the accuracy
of the numerical solution for several example scattering problems.

1. Introduction

In the last two decades, fiber-reinforced composite materials, specially fiber-reinforced plastics (abbre-
viated as FRPs), have been receiving wide attention in aerospace, civil, and mechanical engineering
applications due to their useful properties such as light weight, high strength, corrosion resistance, and
long term durability. A state-of-the-art-review of FRP composites for construction applications can be
found in [Bakis et al. 2002]. It is well known that structural integrity of facilities made from FRPs are
severely affected by flaws such as cracks and delaminations developed within the FRP part of the structure.
Guided elastic waves in plate-like composite parts possess characteristics that make them particularly
useful for application to the nondestructive evaluation of flaws in composite structures. When excited at
a particular location in a plate, guided waves can travel long distances along the plate, and when they
meet a flaw along their path, the waves scatter. The scattered wave, which can travel long distances
along the plate, will carry information about the size and location of the flaw, thus providing an ultra-
sonic nondestructive means of inspection of an otherwise inaccessible area of the structure. Ultrasonic
nondestructive evaluation methods rely heavily on the solution to the problem of wave scattering at a
flaw.

Obtaining closed-form solutions to even simple wave scattering problems in composite plates is
impractical if not impossible. Numerical methods for obtaining a solution to the scattered wave field
are quite intricate and complicated, and as a result, the accuracy of a numerically obtained solution is
questionable. One way of to overcome this problem is to have some indicators, based on sound theories,
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to check the accuracy of the numerical solution. Two indicators used in the past are the satisfaction of
elastodynamic reciprocity relations and the principle of energy conservation.

Chimenti [1997] has published a comprehensive review of guided waves in composite plates and their
use for nondestructive material characterization. Datta [2000] provided a detailed review of the theory
of guided waves in composite plates and shells. Although a vast body of work on guided ultrasonic wave
propagation in plates and shells now exists, relatively few studies have dealt with scattering of these waves
by cracks and delaminations. Moreover, these few studies have been mostly confined to the problems
of horizontally polarized shear (SH) waves and plane strain (two-dimensional) waves. The author and
his coworkers [Karunasena et al. 1991b] have investigated the two-dimensional wave scattering by a
symmetric normal surface-breaking crack in a cross-ply laminated plate by using a hybrid method which
combines the finite element method with the wave function expansion procedure. In this work, the
authors have used the satisfaction of the reciprocity relations and the principle of energy conservation as
checks for accuracy. The two checks are complementary to one other.

Recently, Karunasena [2004] extended the hybrid method to provide a model analysis of the scatter-
ing of a guided wave obliquely incident on a long, symmetric, surface-breaking crack in a composite
plate. The solution to this problem is the first step towards analyzing the general three-dimensional
scattering in a composite plate. As mentioned in the previous paragraph for simple wave scattering
problems, satisfaction of the reciprocity relations can be used as one of the two complementary checks
for assessing the accuracy of the more complicated oblique wave scattering problem. The focus of this
paper is to present the derivation of elastodynamic reciprocity relations for the scattering problem of
a guided wave incident obliquely on a long flaw in a composite plate. The analysis is presented for
a plate with an arbitrary stacking sequence where each ply can have an arbitrary fiber direction with
respect to the global coordinate system. Numerical results for reciprocity relations are provided for
four special cases: (i) scattering by a symmetric normal edge crack in a unidirectional, fiber-reinforced,
homogeneous, graphite-epoxy composite plate, (ii) scattering by a symmetric normal edge crack in an
8-layer graphite-epoxy cross-ply laminated plate, (iii) scattering by a thin planar crack located at the
fixed end of a homogeneous isotropic plate, and (iv) scattering by a thin planar crack located at the fixed
end of a unidirectional fiber-reinforced composite plate.

2. Formulation

2.1. Scattering problem. Time harmonic wave scattering of a guided plate wave incident obliquely on
a flaw in a composite plate as shown in Figure 1 is considered. The composite material in the plate is
uniaxially fiber-reinforced within each layer (or ply or lamina) and possibly laminated, with each ply
having an arbitrary fiber direction with respect to the global x-direction. Each layer lies on a plane
parallel to the x-y plane. It is assumed that all layers of the plate have equal thickness with transversely
isotropic elastic properties. The flaw is located at x = 0 and is assumed to be very long (in comparison
to the plate thickness) in y-direction. It has a constant cross section in x-z plane. It is assumed that
two faces of the plate z = 0 and z = H are stress free. Also, the flaw surface is assumed to be open
with zero traction. Since the direction of the flaw (that is, the y-direction in this case), in general, is not
known a priori, it is not always possible to excite the incident wave in the x-direction. Therefore, it is
necessary to consider the general case where the incident wave is propagating at an arbitrary angle to
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Figure 1. Geometry of the problem.

the x-direction, and the fiber direction is also at an arbitrary angle to global x-direction. Let the incident
wave be a guided plate wave mode traveling at a direction making an angle 90◦

− φin with the y-z plane,
with fibers at an angle θ to the x-direction as shown in Figure 2.

When the incident wave mode strikes the flaw, mode conversion will happen and a scattered field
consisting of reflected and transmitted plate wave modes will be generated. The aim of this work is to
numerically quantify this scattered field and derive reciprocity relations applicable to converted modes
for the purpose of checking the accuracy of the numerical solution for the scattered wave field. In general,
the incident and the scattered wave field will have all three displacement components in the x , y, and
z directions. Let u(x, y, z, t), v(x, y, z, t), and w(x, y, z, t) denote the displacement quantities in x , y,
and z directions, respectively. Here t denotes time.

Figure 2. Plan view of a typical lamina (layer) showing fiber orientation and wave normals.
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2.2. Solution for scattering problem. We adopt the hybrid method described in [Karunasena et al. 1991b;
Karunasena 2004] for solving this scattering problem. The hybrid method combines finite element for-
mulation in a bounded interior region of the plate with a wave function expansion representation in the
exterior region. The regions are connected along vertical boundaries B+ at x = x+, and B− at x = x−

as shown in Figure 1. Let κ be the wave number of the incident wave in the direction of propagation.
Thus, κ should be one of the admissible real roots of the dispersion equation for off-axis propagation.
Since the flaw extends to infinity in the y-direction, the scattered field must have the same wave number
in the y-direction as the incident field. Thus, each of the scattered wave modes will have a constant
wave number η0 (= κ Sin φin) in the negative y direction. Therefore, for time-harmonic waves, y and t
variation can be factored out as

u(x, y, z, t)
v(x, y, z, t)
w(x, y, z, t)

 =


û(x, z)
v̂(x, z)
ŵ(x, z)

 exp[− j (η0 y + ωt)], (1)

where ω is the circular frequency and j =
√

−1.
The procedure for finite element formulation for the interior region R is very similar to that for the

plane strain case given in [Karunasena et al. 1991b]. The finite element representation of the interior
region should include singular elements at crack tips if the flaw considered is a crack or a delamination.
The standard discretization process in the finite element method leads to

δ{q̄}
T
[S]{q} − δ{q̄B}

T
{PB} = 0, (2)

where
[S] = [K ] −ω2

[M], (3)

in which [K ] and [M] are, respectively, the global stiffness and mass matrices of the interior region, {q}

is the nodal displacement vector corresponding to interior nodes, and {qB} and {PB} are, respectively,
the nodal displacement vector and the interaction force vector corresponding to the boundary nodes. δ

implies first variation and overbar denotes complex conjugate.
The wave field in the exterior regions, R+ and R−, is the superposition of the wave fields due to

the incident wave and the scattered waves. Using the wave function expansion procedure, the scattered
wave field can be expressed in terms of the wave functions (that is, wave modes) supported by the free
infinite composite plate with no flaws, and the unknown reflected and transmitted wave amplitudes. The
theoretical details of the methodology adopted to obtain wave functions can be found in our work reported
in [Karunasena et al. 1991c]. The procedure starts with dividing each layer into several sublayers. The
exact dispersion relation of the infinite plate is developed using the propagator matrices as

f (ω, k) = 0, (4)

where k denotes the x-direction wave number of a typical wave mode. It is well known that the plate wave
modes are dispersive, and at any given frequency ω there are only a finite number of propagating modes
that carry energy away from a source of excitation or upon scattering from an inhomogeneity or flaw.
However, in order to satisfy the boundary conditions at the source or at a boundary of discontinuity, it is
necessary to include also the nonpropagating modes in the modal representation of the displacement field.
The wave numbers (k) for the propagating and nonpropagating modes at a given frequency of excitation
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can be found by solving the dispersion equation, Equation (4), for the plate. For each wave number k,
the corresponding displacement wave function (which is a vector containing the x and z displacements
at each sublayer level) can be determined using the propagator matrix for each sublayer. This has been
discussed in the references cited above.

The solution to the scattering problem is obtained by imposing the continuity of total (incident plus
scattered) displacements and tractions on the boundaries. This is achieved by substituting {qB} and {PB}

from the wave function expansion into Equation (2). This leads to a system of linear equations that can
be solved for the unknown reflected wave amplitudes (A+

m) and transmitted amplitudes (A−
m). These

amplitudes are then used to obtain boundary nodal displacements and, in turn, to obtain interior nodal
displacements. The reflection coefficient Rpm of the mth reflected mode, and transmission coefficient
Tpm of the mth transmitted mode, due to the pth incident wave mode, are given by

Rpm = A+

m/Ain
p , Tpm =

{
A−

m/Ain
p , for m 6= p

(Ain
p + A−

m)/Ain
p , for m = p

(5)

in which Ain
p is the amplitude of the incident wave mode. At this stage, numerical solution of all displace-

ment and stress components for the scattered field and, hence for total field, is fully defined. Because the
solution process involves numerous intricate computational steps, to check the accuracy of the numerical
solution one can test satisfaction of the elastodynamic reciprocity relations developed in the next section.

2.3. Reciprocity relations. The reciprocity relations are derived from the elastodynamic reciprocity the-
orem [Achenbach 1973; Auld 1973], which may be written using the usual tensor notation in the absence
of body forces, as ∮

S
(u B

j σ A
jk − u A

j σ
B
jk)nkd S = 0, j, k = x, y, z, (6)

where u A
j and σ A

jk represent the displacements and stresses corresponding to elastodynamic state A,
while u B

j and σ B
jk are the displacements and stresses corresponding to elastodynamic state B in a region

V bounded by a surface S. Wave fields corresponding to both elastodynamic states vary harmonically in
time with circular frequency ω. When writing Equation (6), Einstein’s summation convention of repeated
indices has been assumed to hold, and the displacement components u, v, w, have been represented by
ux , u y , uz , respectively. In order to derive the reciprocity relations, the orthogonality relations among
the wave modes have to be established first.

For convenience in derivation of orthogonality relations, a few notations are introduced first. Let
the wave number pair (kn, ζ0) denote an admissible wave mode propagating in the first quadrant of the
x-y plane in an infinite composite plate with no flaws. Herein, kn represents the positive x direction
wave number and ζ0 (which is fixed) represents the positive y direction wave number as opposed to
the definition of η0 in Equation (1). Note that η0 = −ζ0. In a similar manner, let the wave number
pairs (−k∗

n , ζ0), (−kn, −ζ0), and (k∗
n , −ζ0) denote the wave modes corresponding to second, third, and

fourth quadrants of the x-y plane, respectively. It should be mentioned here that if the (kn, ζ0)th wave
mode is an admissible wave mode (of the dispersion relation of the plate), then the (−kn, −ζ0)th wave
mode, which is propagating in the opposite direction, is also an admissible wave mode. Similarly, if the
(k∗

n , −ζ0)th wave mode is admissible, then the (−k∗
n , ζ0)th wave mode is also admissible. This point can

be explained by visualizing the configuration of the plate with respect to a new coordinate system that is
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obtained after rotating the x , y axes by 180◦ about the z axis. However, when the (kn, ζ0)th wave mode
is an admissible wave mode, the (kn, −ζ0)th wave mode is not necessarily an admissible wave mode.
Due to this reason, a superscript star (∗) has been introduced to the x-direction wave numbers of wave
modes corresponding to second and fourth quadrants of the x-y plane. Note that the (kn, −ζ0)th wave
mode is admissible when the fibers in each layer are aligned either in the x or y directions. This can be
visualized by considering the mirror image of the plate with respect to the x-z plane.

The orthogonality relations are derived by applying the reciprocity theorem to the closed region V
bounded by planes z = 0, z = H , x = x1, x = x2, y = y1, and y = y2 where x1, x2, y1, and y2 are
coordinates chosen in such a way that x2 > x1 and y2 > y1. State A is taken to be the field due to the
(−k∗

n , ζ0)th wave mode, and state B is taken to be the field due to the (k∗
m, −ζ0)th wave mode. The wave

fields due to two states can be written as

u A
j → A∗+

−n{u
∗+

−n} exp [ j (−k∗

n x + ζ0 y)],

σ A
jk → A∗+

−n

{
{σ ∗+

−nx},

{σ ∗+

−ny}

}
exp [ j (−k∗

n x + ζ0 y)],

u B
j → A∗−

m {u∗−

m } exp [ j (k∗

m x − ζ0 y)],

σ B
jk → A∗−

m

{
{σ ∗−

mx }

{σ ∗−
my }

}
exp [ j (k∗

m x − ζ0 y)],

(7)

where A∗+

−n , {u∗+

−n}, {σ ∗+

−nx} and {σ ∗+

−ny} represent the amplitude, displacement mode shape vector, mode
shape vector of tractions on x face, and the mode shape vector of tractions on y face, respectively, for the
(−k∗

n , ζ0)th wave mode. A∗−
m , {u∗−

m }, {σ ∗−
mx }, and {σ ∗−

my } represent the same quantities for the (k∗
m, −ζ0)th

wave mode. Application of the elastodynamic reciprocity theorem expressed in mathematical form in
Equation (6) to the region V for states A and B defined in Equation (7) results in{

exp [ j (k∗

m − k∗

n)x2] − exp [ j (k∗

m − k∗

n)x1]
}

I
[
(k∗

m, −ζ0); (−k∗

n , ζ0)
]
= 0, (8)

where the notation I
[
(k∗

m, −ζ0); (−k∗
n , ζ0)

]
has been used to represent the integral∫ H

0
({u∗−

m }
T
{σ ∗+

−nx} − {u∗+

−n}
T
{σ ∗−

mx })dz.

Since x1 and x2 are arbitrary, Equation (8) leads to the orthogonality relation

I
[
(k∗

m, −ζ0); (−k∗

n , ζ0)
]
= 0 for k∗

m 6= k∗

n . (9)

It should be noted that the net contributions from the surface integrals in Equation (6) on planes y = y1

and y = y2 amount to zero.
In a similar manner, choosing states A and B as the fields due to (kn, ζ0)th and (−km, −ζ0)th wave

modes, respectively, it can be shown that

I
[
(−km, −ζ0); (kn, ζ0)

]
= 0 for km 6= kn. (10)
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Adopting a similar approach, the following orthogonality relations can be derived:

I
[
(k∗

m, −ζ0); (kn, ζ0)
]
= 0, (11)

I
[
(−km, −ζ0); (−k∗

n , ζ0)
]
= 0. (12)

In order to derive reciprocity relations, region V is chosen as the region of the plate surrounding the flaw,
and bounded by the planar surfaces z = 0, z = H , x = x3(x3 ≥ x+), x = x4(x4 ≤ x−), y = y1, and y = y2

(where y1 and y2 are arbitrary, and y2 > y1). The reciprocity relations among the reflection coefficients
can be derived from Equation (6) by choosing state A as the total field due to the (−kn, −ζ0)th incident
wave mode, and state B as the total field due to the (k∗

p, ζ0)th incident wave mode. Let Rnq and Tnq

denote the reflection and transmission coefficients, respectively, due to the (−kn, −ζ0)th incident wave
mode, and R∗

pm and T ∗
pm denote the same quantities due to the (−k∗

p, ζ0)th incident wave mode. In view
of the orthogonality relations given in Equations (9)–(12), the reciprocity relations become (after some
algebraic manipulations)

R∗

pnςn = Rnpς
∗

p, (13)

where

ςn =

∫ H

0
({u+

n }
T
{σ−

−nx} − {u−

−n}
T
{σ+

nx})dz, (14a)

ς∗

p =

∫ H

0
({u∗−

p }
T
{σ ∗−

−px} − {u∗+

−p}
T
{σ ∗−

px })dz. (14b)

In Equation (14), {u+
n }, {u−

−n}, {u∗−
p }, and {u∗+

−p} denote the displacement mode shape vectors correspond-
ing to (kn, ζ0)th, (−kn, −ζ0)th, (k∗

p, −ζ0)th, and (−k∗
p, ζ0)th wave modes, respectively, in an infinite plate

with no flaw. The corresponding traction mode shape vectors on the x face are denoted by {σ+
nx}, {σ−

−nx},
{σ ∗−

px }, and {σ ∗−

−px}. It should be noted that the net contributions to the surface integral in Equation (6)
from surfaces y = y1 and y = y2 becomes zero.

Applying the reciprocity theorem to the same region V , with state A as the total field due to the
(kn, ζ0)th incident mode, and state B as the total field due to the (−kp, −ζ0)th incident mode, the
reciprocity relation among the transmission coefficients can be derived as

Tpnςn = Tnpςp, (15)

where ςp is given by Equation (14a) with n replaced by p. When deriving Equation (15), it has been
assumed that the flaw geometry is symmetric with respect to the x = 0 plane. It can be shown that when
the fibers in each layer are either in x or y direction, the reciprocity relation in Equation (13) degenerates
into

Rpnςn = Rnpςp. (16)

It is well known that the scattered field consists of both propagating and evanescent (or nonpropagating)
wave modes. Wave numbers corresponding to propagating modes have only a real part whereas wave
numbers of evanescent modes are in general complex numbers. Reflected and transmitted energies are
carried only by the propagating modes. The time-averaged value of the energy flux associated with
the nth reflected propagating mode through the plate cross section due to the (−kp, −ζ0)th incident
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propagating wave mode is given by

I +

pn =
1
2ω|Ain

p |
2
|Rpn|

2(− jςn), 1 ≤ n ≤ Npr , (17)

where Npr is the number of propagating wave modes in the reflected wave field. For more information
on derivation details of Equation (17), the reader is referred to [Karunasena et al. 1991b]. In a similar
manner, the energy flux of the nth transmitted propagating wave mode and the incident wave mode can
be written, respectively, as

I −

pn =
1
2
ω|Ain

p |
2
|Tpn|

2(− jςn), 1 ≤ n ≤ Npr (18)

I in
p =

1
2
ω|Ain

p |
2(− jςp). (19)

Let E−
pn be the proportion of energy of the (−kp, −ζ0)th incident propagating wave mode transferred

into the nth transmitted propagating mode during the scattering process. Then

E−

pn =
I −

pn

I in
p

= |Tpn|
2 ςn

ςp
. (20)

Similarly, if the incident wave mode is the (−kn, −ζ0)th propagating mode, then the proportion of energy
transferred into the pth transmitted propagating mode can be expressed as

E−

np =
I −
np

I in
n

= |Tnp|
2 ςp

ςn
. (21)

In view of Equations (20) and (21), the reciprocity relation, Equation (15), for transmitted waves simpli-
fies to

E−

pn = E−

np, (22)

for arbitrary fiber directions in layers. Following a similar procedure, it can be shown that for the reflected
waves the reciprocity relation in Equation (16) reduces to

E+

pn = E+

np, (23)

when fibers in layers are aligned with the global x , y directions. It is clear from Equations (20) and (21)
that for the numerical computation of energy proportions we need to evaluate ςn in Equation (14a). {u+

n }

and {σ+
nx} in Equation (14a) can be expressed in components form, respectively, as

{u+

n } =


u+

xn
u+

yn
u+

zn

 , {σ+

nx} =


σ+

xxn
σ+

xyn
σ+

xzn

 . (24)

It can be shown that {u−

−n} and {σ−

−nx} are given by

{u−

−n} =


−u+

xn
−u+

yn
u+

zn

 , {σ−

−nx} =


σ+

xxn
σ+

xyn
−σ+

xzn

 . (25)



ELASTODYNAMIC RECIPROCITY RELATIONS FOR WAVE SCATTERING 1839

 
 
 
 

 

` 

  

                                                    

 

 
 

               (a) Symmetric normal edge crack                                     (b) Fixed end crack 
 

a a 
B+B- 

H z R+
R- 

x- x+ 

y 

x 

R 

B+ 

H z R+ 

x+

y 

x 

R

Crack Crack

Fixed end 

a 

Figure 3. Geometry of the flaws for example problems.

In view of Equations (24) and (25), ςn reduces to

ςn = 2
∫ H

0
{u+

n }
T
{σ−

−nx}dz. (26)

After the dispersion relation in Equation (4) is solved for a given ω, the components of the displacement
wave function {u−

−n} and stress wave function {σ−

−nx} for wave mode n at each sublayer interface can be
determined using the propagator matrices. Then the integral in Equation (26) can be approximated as

ςn = −2{Fn}
T
{qn}, (27)

where {qn} is a displacement vector constructed from the displacement components at each sublayer
interface and {Fn} is a force vector constructed using the stress components at each sublayer interface.
Now energy proportion terms in Equations (20) through (23) are fully defined and can be evaluated
numerically using the scattering solution results.

3. Results and discussion

The simplified reciprocity relations derived in the previous section have been used to check the accuracy
of four example scattering problems described below.

Example 1. Scattering by a thin symmetric normal edge crack in a unidirectional fiber-reinforced ho-
mogeneous graphite-epoxy plate. The geometry of the crack is as shown in Figure 3a.

Example 2. Scattering by a thin symmetric normal edge crack in an 8 layer graphite-epoxy plate with
the stacking sequence of 0◦/90◦/0◦/90◦/90◦/0◦/90◦/0◦. The geometry of the crack is the same as that
shown in Figure 3a.

Example 3. Scattering by a thin crack located at the fixed-end of a homogeneous isotropic plate shown
in Figure 3b.

Example 4. Scattering by a thin crack located at the fixed-end of a unidirectional fiber-reinforced homo-
geneous graphite-epoxy plate. The geometry of the crack is same as that shown in Figure 3b.
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Lamina C11 C33 C13 C55

0◦ 160.73 13.92 6.44 7.07
90◦ 13.92 13.92 6.92 3.50

Table 1. Elastic constants of graphite-epoxy lamina (in GPa).

The graphite-epoxy composite material in each layer of plates in Examples 1, 2 and 4 are considered
to be transversely isotropic. The elastic constants (Ci j ) for the transversely isotropic graphite-epoxy
composite material are given in Table 1. More information on the Ci j constants and their relation to the
stiffness matrix in Equation (3), and the procedure for their transformation from fiber direction to global
x , y directions can be found in [Karunasena et al. 1991a]. The Poisson’s ratio for the isotropic material
in Example 3 is taken to be 0.25.

Numerical results from the hybrid method for the magnitudes of the reflection and the transmission
coefficients (|Rpn| and |Tpn|), and proportions of the reflected and the transmitted energies (E+

pn and
E−

pn) for Example 1 are presented in Table 2. The results correspond to a normalized frequency � (given
by ωH/

(
2
√

(C55/ρ)0 , where ρ is the density of the graphite-epoxy composite) of 2.0 and a normalized
crack length (given by a/(0.5H)) of 0.1 or 0.5 as given in Table 2. In this table, p and n denote the incident
and the scattered wave mode numbers, respectively, and all the incident modes considered are symmetric
modes. It should be noted that due to the symmetry of the problem with respect to the mid-plane of the
plate, the scattered wave field consists of only symmetric or antisymmetric modes depending on whether
the incident mode is a symmetric or an antisymmetric one. It can be seen from this table that the final
form of the reciprocity relations among the proportions of energy as given in Equations (22) and (23)
are satisfied with negligible errors. Also, it is seen that some reflection and transmission coefficients
are quite sensitive to the orientation and depth of the crack, as well as the incident wave mode number.
Although not shown here, our computations showed that coefficients are also sensitive to the incident
mode frequency. Satisfaction of reciprocity relations can be taken as an indication of the accuracy of the
scattering results.

Table 3 shows the scattering results for the 8 layer composite plate in Example 2 at a normalized
frequency of 4 and at a normalized crack length of 0.5. The frequency normalization factor for this
example is the same as that for Example 1. It is clearly seen that the reciprocity relations in Equations (22)
and (23) are satisfied with negligible errors.

The proportion of reflected energy from scattering by the fixed end crack shown in Figure 2b are
reported in Tables 4 and 5. Table 4 discusses the isotropic plate (Example 3) and Table 5 addresses a
uniaxially fiber-reinforced plate (Example 4). Note that minor modifications to the theory presented in
the previous section are required for this problem because the exterior region has only one region which
consists of the reflected wave field. The reciprocity relation in Equation (22) does not apply for this
fixed end crack scattering problem because there is no transmitted field. The reciprocity relation for the
reflected wave modes is given by Equation (23).

For Example 3, the results in Table 4 correspond to a normalized frequency � of 3.5
√

3, where � is
given by ωH/(2

√
µ/ρ), ρ is the density and µ is the shear modulus of the plate. Five different crack
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lengths have been considered. At this frequency (� = 3.5
√

3), the dispersion relation in Equation (4)
has three symmetric propagating modes (denoted as 1S, 2S and 3S in Table 4) and four antisymmetric
modes (usually denoted as 1A, 2A, 3A and 4A). It is seen from Table 4 that the reciprocity relations
among the reflected modes as given in Equation (23) are satisfied with reasonable accuracy for the five
different crack lengths considered. In this table, a normalized crack length of 0.0 and 2.0 represent,
respectively, the full reflection by a fixed end and reflection by a free end (that is, a crack right through
the full thickness of the plate).

For Example 4, the results in Table 5 correspond to a normalized frequency � of 6.0. The frequency
normalization factor for this example is same as that for Example 1. As in Example 3, five different

p kp a/(0.5 H) n E+
pn E−

pn |Rpn| |Tpn|

1 1.440
0.1

1 0.002 0.993 0.044 0.996

2 0.001 0.001 0.051 0.048

0.5
1 0.009 0.821 0.095 0.906

2 0.127 0.042 0.718 0.409

2 0.324
0.1

1 0.001 0.001 0.012 0.012

2 0.000 0.999 0.011 0.999

0.5
1 0.128 0.041 0.178 0.101

2 0.070 0.760 0.264 0.872

(a) θ = 0◦, φin
= 45◦, η0 = 1.440

1 1.882
0.1

1 0.000 0.998 0.009 0.999

2 0.000 0.000 0.062 0.033

0.5
1 0.002 0.833 0.105 0.913

2 0.081 0.082 1.357 0.632

2 0.813
0.1

1 0.000 0.000 0.014 0.007

2 0.000 1.000 0.009 1.000

0.5
1 0.000 0.082 0.024 0.129

2 0.075 0.842 0.590 0.918

(b) θ = 22.5◦, φin
= 22.5◦, η0 = 0.780

Table 2. Scattering results for Example 1 when � = 2. p and n denote the incident and
scattered wave mode numbers, respectively. Symmetric incident wave modes have been
considered.
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p kp n E+
pn E−

pn |Rpn| |Tpn|

1 3.362
1 0.706 0.180 0.840 0.424
2 0.007 0.108 0.143 0.571

2 0.662
1 0.007 0.108 0.047 0.189
2 0.543 0.340 0.737 0.583

Table 3. Scattering results for Example 2 when � = 4, a/(0.5 H) = 0.5, θ for
0◦ lamina = 0◦, φin

= 45◦, and η0 = 3.362.

crack lengths have been considered. At � equal to 6.0, the dispersion relation for the uniaxially fiber-
reinforced plate has three symmetric propagating modes (denoted as 1S, 2S and 3S in Table 5) and four
antisymmetric modes (denoted as 1A, 2A, 3A and 4A). As in the previous example of scattering problems
considered in this paper, it is seen from Table 5 that the reciprocity relations among the proportions of
energy in reflected modes are satisfied with reasonable accuracy for all crack lengths considered.

4. Conclusion

By using the classical elastodynamic reciprocity theorem, simplified forms of elastodynamic reciprocity
relations applicable to guided wave scattering by flaws in fiber-reinforced composite plates have been
developed in this work. These relations are useful when developing ultrasonic nondestructive assessment
techniques for flaw characterization in composite structures. A hybrid method combining the finite
element method with a wave function expansion procedure has been used to solve the wave scattering
problem. The derivation has been presented for a plate with an arbitrary stacking sequence where each
ply can have an arbitrary fiber direction. As the scattered field is expressed in wave function expansion,
an arbitrary number of layers and thicknesses can be studied without appreciable increase in computa-
tional time. Numerical results verifying the derived reciprocity relations have been presented for four
example scattering problems – two of them involving scattering by a symmetric normal edge crack in a
unidirectional fiber-reinforced composite plate and in an 8-layer cross-ply plate, and other two involving
scattering by a fixed-end crack in an isotropic plate and in a unidirectional fiber-reinforced composite
plate.
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P = 4 = 1A, n = 3 = 3S E+
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p = 3 = 3S, n = 5 = 2A E+
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Table 4. Reflected energy proportions E+
pn for Example 3 for different crack lengths

when � = 3.5
√

3, θ = 0◦, φin
= 0◦, η0 = 0. S and A denote symmetric and antisymmetric

modes, respectively.
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Table 4 (cont’d)

p = 4 = 1A, n = 5 = 2A E+

45 0.063 0.136 0.244 0.407 0.069
P = 5 = 2A, n = 4 = 1A E+

54 0.063 0.136 0.245 0.407 0.070

p = 4 = 1A, n = 6 = 3A E+

46 0.051 0.020 0.074 0.165 0.348
P = 6 = 3A, n = 4 = 1A E+

64 0.051 0.020 0.074 0.163 0.348

p = 4 = 1A, n = 7 = 4A E+

47 0.132 0.010 0.169 0.181 0.093
P = 7 = 4A, n = 4 = 1A E+

74 0.133 0.010 0.169 0.178 0.093

p = 5 = 2A, n = 6 = 3A E+

56 0.159 0.039 0.011 0.002 0.017
P = 6 = 3A, n = 5 = 2A E+

65 0.158 0.039 0.011 0.002 0.017

p = 5 = 2A, n = 7 = 4A E+

57 0.766 0.568 0.084 0.425 0.900
P = 7 = 4A, n = 5 = 2A E+

75 0.766 0.568 0.083 0.421 0.897

p = 6 = 3A, n = 7 = 4A E+

67 0.077 0.116 0.026 0.012 0.005
P = 7 = 4A, n = 6 = 3A E+

76 0.078 0.116 0.026 0.013 0.005

Table 4. (Continued from previous page.)
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p, n E+
pn a/(0.5 H)

0.0 0.5 1.0 1.5 2.0

p = 1 = 1S, n = 2 = 2S E+

12 0.000 0.033 0.001 0.013 0.014
P = 2 = 2S, n = 1 = 1S E+

21 0.000 0.032 0.001 0.014 0.014

p = 1 = 1S, n = 3 = 3S E+

13 0.014 0.001 0.038 0.006 0.219
P = 3 = 3S, n = 1 = 1S E+

31 0.014 0.001 0.040 0.006 0.224

p = 1 = 1S, n = 4 = 1A E+

14 0.000 0.556 0.567 0.506 0.000
P = 4 = 1A, n = 1 = 1S E+

41 0.000 0.556 0.557 0.513 0.000

p = 1 = 1S, n = 5 = 2A E+

15 0.000 0.288 0.170 0.174 0.000
P = 5 = 2A, n = 1 = 1S E+

51 0.000 0.283 0.176 0.173 0.000

p = 1 = 1S, n = 6 = 3A E+

16 0.000 0.023 0.004 0.020 0.000
P = 6 = 3A, n = 1 = 1S E+

61 0.000 0.024 0.004 0.021 0.000

p = 1 = 1S, n = 7 = 4A E+

17 0.000 0.050 0.158 0.226 0.000
P = 7 = 4A, n = 1 = 1S E+

71 0.000 0.051 0.163 0.230 0.000

p = 2 = 2S, n = 3 = 3S E+

23 0.004 0.151 0.006 0.138 0.009
P = 3 = 3S, n = 2 = 2S E+

32 0.004 0.150 0.006 0.137 0.009

p = 2 = 2S, n = 4 = 1A E+

24 0.000 0.020 0.006 0.016 0.000
P = 4 = 1A, n = 2 = 2S E+

42 0.000 0.020 0.006 0.016 0.000

p = 2 = 2S, n = 5 = 2A E+

25 0.000 0.004 0.027 0.007 0.000
P = 5 = 2A, n = 2 = 2S E+

52 0.000 0.004 0.027 0.007 0.000

p = 2 = 2S, n = 6 = 3A E+

26 0.000 0.631 0.916 0.729 0.000
P = 6 = 3A, n = 2 = 2S E+

62 0.000 0.631 0.916 0.728 0.000

p = 2 = 2S, n = 7 = 4A E+

27 0.000 0.078 0.044 0.049 0.000
P = 7 = 4A, n = 2 = 2S E+

72 0.000 0.078 0.044 0.048 0.000

p = 3 = 3S, n = 4 = 1A E+

34 0.000 0.018 0.019 0.026 0.000
P = 4 = 1A, n = 3 = 3S E+

43 0.000 0.017 0.017 0.027 0.000

p = 3 = 3S, n = 5 = 2A E+

35 0.000 0.006 0.213 0.011 0.000
P = 5 = 2A, n = 3 = 3S E+

53 0.000 0.006 0.212 0.011 0.000

p = 3 = 3S, n = 6 = 3A E+

36 0.000 0.188 0.055 0.147 0.000
P = 6 = 3A, n = 3 = 3S E+

63 0.000 0.189 0.056 0.148 0.000

p = 3 = 3S, n = 7 = 4A E+

37 0.000 0.027 0.598 0.021 0.000
P = 7 = 4A, n = 3 = 3S E+

73 0.000 0.027 0.596 0.021 0.000

Table 5. Reflected energy proportions E+
pn for Example 4 for different crack lengths

when � = 6.0, θ = 0◦, φin
= 0◦, η0 = 0. S and A denote symmetric and antisymmetric

modes, respectively.
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Table 5 (cont’d)

p = 4 = 1A, n = 5 = 2A E+

45 0.003 0.219 0.266 0.280 0.029
P = 5 = 2A, n = 4 = 1A E+

54 0.003 0.218 0.267 0.278 0.029

p = 4 = 1A, n = 6 = 3A E+

46 0.001 0.010 0.015 0.009 0.054
P = 6 = 3A, n = 4 = 1A E+

64 0.001 0.010 0.015 0.009 0.054

p = 4 = 1A, n = 7 = 4A E+

47 0.003 0.021 0.072 0.001 0.064
P = 7 = 4A, n = 4 = 1A E+

74 0.003 0.021 0.075 0.001 0.064

p = 5 = 2A, n = 6 = 3A E+

56 0.026 0.041 0.009 0.043 0.016
P = 6 = 3A, n = 5 = 2A E+

65 0.026 0.040 0.009 0.043 0.016

p = 5 = 2A, n = 7 = 4A E+

57 0.049 0.020 0.119 0.387 0.451
P = 7 = 4A, n = 5 = 2A E+

75 0.051 0.021 0.119 0.389 0.452

p = 6 = 3A, n = 7 = 4A E+

67 0.000 0.093 0.000 0.046 0.000
P = 7 = 4A, n = 6 = 3A E+

76 0.000 0.093 0.000 0.045 0.000

Table 5. (Continued from previous page.)


