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TIME-DOMAIN THIN LAYER METHOD FOR COMPUTING TRANSIENT
RESPONSE DUE TO SUDDEN/MOVING LOADS

HIROKAZU TAKEMIYA

In this study, the author applied the thin-layer method (TLM) for developing explicit time domain solu-
tions for the ground response due to impulse and moving loads. The Fourier and Laplace transforms for
space and time, respectively, are applied to derive the transformed domain solution that satisfies given
boundary conditions. The eigenvalue decomposition in the Laplace parameter domain and the discrete
wave number superposition for the horizontal wave field description lead to an accurate and efficient
strategy for a stable time-space domain solution. Some demonstrations are given: The first example is a
fundamental problem relating to interpretation of the causal transient responses of the P, S, and Rayleigh
waves due to an impact loading. The second example is also fundamental, and treats the description of
a compound wave field produced by a single moving load, detailing the kinematic as well as the inertial
effects, with the speed being an important parameter. The third example is an engineering application
that demonstrates the track response due to train passage in order to interpret the wave generation in
ground by the high-speed passage. A comparison to measurement data is presented for validation.

1. Introduction

In the 1950s, the importance of studies on the transient and stationary responses of an elastic medium
under impact/moving loads was recognized, and analytical solutions to these problems were derived
under special conditions. These solutions have provided information to learn about the relevant wave
field. Further, they can lead to fundamental solutions to solve the more complicated engineering problem
by the modern numerical methods.

Regarding fixed position loading on an elastic halfspace medium, there exists a classical work by
Lamb [1904] for a time harmonic problem which includes an attempt for a transient response by using
the Fourier series expansion. An impulse problem of a vertical point load was solved by Pekeris [1955]
for the surface response by applying the Laplace transform and the inverse of the transform solution in
the complex plane. Mitra [1964] applied the same method for a disc-type impulse load. Eason [1966]
applied the inverse Laplace transform by a suitable complex number contour integration, leaving some
infinite integrals that contain the Bessel function for all points of the solid. In the wave fields, the
causality of respective wave propagation is of primary interest. By using those obtained Green functions,
the initial-boundary value problems have been solved in the time domain boundary method step-by-step
[Takemiya and Steinfeld 1993; Takemiya and Fujiwara 1994; Takemiya et al. 1994].

Regarding moving loads on an elastic halfspace medium, classical work has been done by applying
the integral transform method. Eason [1965] considered a three-dimensional problem for a moving force

Keywords: transient response, causality, impulse load, moving load, thin layer method, Laplace–Fourier transform, time
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with a constant speed on a homogeneous semi-infinite space (halfspace), deriving the stationary solution
in the range less than the Rayleigh wave speed. Using the Betti–Rayleigh reciprocal theorem, Payton
[1964] dealt with a transient problem of the sudden application of a load and subsequent movement at
constant velocity on an elastic halfspace. Gakenheimer and Miklowitz [1969] employed the Laplace
transform for time and then applied the Cagniard method for the inversion of the transformed solution.
They discussed the transient response for three different states in terms of the speed ratio of the moving
load velocity against the seismic P and S wave velocities. A constant moving velocity constitutes a
stationary problem with the relative coordinates of x − ct where x is distance, t is time and c is the
velocity of the moving load. Recently, such a moving load problem has been advanced in the study
of ground motions induced by a high-speed train [Dieterman and Metrikine 1997; Sheng et al. 1999;
Lombaert et al. 2001; Takemiya 2003; Takemiya and Bian 2005].

As an idealization of the ground, a halfspace has been employed for the sake of closed form solution
that allows for the interpretation of surface wave propagation. However, in view of actual situations in
which soft surface soil is deposited on hard soil, a layer or a layered halfspace may be a more useful model
for interpreting the observed dispersive wave field. In the studies of seismic wave synthesis, a vertically
heterogeneous model has been proposed. The finite element discretization is taken in the direction of
depth by Lysmer and Drake [1972] for the Rayleigh wave analysis.

For the three-dimensional problem, Olson et al. [1984] attempted to apply the wave number decom-
position for the horizontal dependence of the wave motion to the layered system. This formulation,
specially termed a thin layer method (TLM) by Kausel et al. [1975], is used to evaluate the extending
soil effects in the soil-foundation dynamic analysis. The frequency domain formulation results in a set of
algebraic governing equations of wave numbers. If a rigid base underlies the layers, general eigenvalue
determination programs are straightforwardly available for the solution. The eigenvalue decomposition
enables the wave number integral operation in a closed form by residue theory. This corresponds to
solving the locked modes in the layered halfspace, as stated in Harvey [1981], discarding the leaking
modes that Haddon [1987] discussed.

For the former situation, an alternative approach is shown by Kausel [1994] and Touhei [1995] by
taking the closed form inverse Fourier transform for time with a set of discrete wave number superim-
positions for space. To fulfill the required causality of wave propagation, Takemiya and Goda [2000]
applied the Laplace transform instead in the seismic fault rapture problem.

In this paper, by applying the Fourier and Laplace transforms to time and space, respectively, to
the layered ground model, the direct time domain solution is obtained with special attention paid to the
initial condition for the wave propagation. The Laplace transform scheme surpasses the Fourier transform
regarding the causality arguments [Takemiya and Guan 1993].

Firstly, the response of a halfspace medium under a sudden loading on the surface is investigated
with respect to the wave front propagation in time. The accuracy of the thin layer solution is checked
by comparison to the closed form solution. Secondly, the moving load problem on an elastic stratum
with the initial condition and the stationary without it are compared. We focus on the effect of the
moving speed on the predominant wave velocity of the medium as a crucial parameter. The causal wave
generation, given a starting position, is discussed in reference to the frequency domain solution. Thirdly,
for validating the present procedure, wave synthesis is attempted for train loading to compare to the
measurement data under the low- and high-speed passages.
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2. Solution method by Fourier–Laplace transform

The equation of motion governing elastodynamics is given by

µui, j j + (λ + µ)u j, j i + ρüi = fi , (1)

where λ and µ define the Lame constants, ρ is the density, u is the displacement, f is the body force
action, and ü denotes the double differentiation of u with respect to time t . The subscripts i and j
correspond to the Cartesian coordinates x , y, and z. Equation (1) can be reformulated in the Fourier
transform technique as

˜̄u(ξx , ξy, z, s) =

∫
∞

−∞

∫
∞

−∞

∫
∞

0
u(x, y, z, t) exp(−st) exp(iξx x) exp(iξy y) dt dx dy, (2)

u(x, y, z, t) =
1

8π3i

∫
∞

−∞

∫
∞

−∞

∫ σ+i∞

σ−i∞

˜̄u(ξx , ξy, z, s) exp(pt) exp(−iξx x) exp(−iξy y) ds dξx dξy, (3)

where the symbols ∼ and − define the Fourier transform with respect to space coordinates and the Laplace
transform with respect to time, respectively; the notations ξx and ξy are the wave numbers along the x
and y directions respectively; and i is an imaginary unit.

The associated equation is then coordinate transformed by
˜̄ux
˜̄u y
˜̄uz

 =

iξx/ξ 0 −iξy/ξ

iξy/ξ 0 iξx/ξ

0 1 0

 
˜̄u1
˜̄u2
˜̄u3

 , or ˜̄ux,y,z = D ˜̄u1,2,3, (4)

where ξ =

√
(ξ 2

x + ξ 2
y ). The subscripts 1, 2, and 3 correspond to the new orientations after the coordinate

transformation. The associated vector transformation holds for the forces also.

˜̄f x,y,z = D ˜̄f 1,2,3. (5)

The coordinate transformation of (4) polarizes the three-dimensional governing (1) into an expression
for the in-place wave field comprising the P and SV waves and one for the out-of-plane wave field
comprising the SH wave. Then, the respective governing equations are

[
µ 0
0 λ+2µ

] 
d2 ˜̄u1n
dz2

d2 ˜̄u2n
dz2

+

[
0 −(λ+µ)ξ

(λ+µ)ξ 0

] 
d ˜̄u1n
dz

d ˜̄u1n
dz

 +

[
(λ+2µ)k2

α 0
0 −µk2

β

] {
˜̄u1n
˜̄u2n

}
+

{
˜̄f1n
˜̄f2n

}
=

{
0
0

}
,

(6)

µ
d2 ˜̄u3n

dz2 − µk2
β · ˜̄u3n +

˜̄f3n = 0, (7)

where the notations kα =
√

ξ 2 + (p/Vp)2 for the P wave number and kβ =
√

ξ 2 + (p/Vs)2 for the S
wave number are used.

The discretization of the displacement is employed by the thin layer elements. The use of a linear
interpolation function 8 for the displacements of neighboring nodes leads to the matrix equations
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(
AP-SVξ 2

+ BP-SVξ + CP-SV
+ s2 MP-SV

) ˜̄U
P-SV

123 =
˜̄F

P-SV

123 , (8)(
ASHξ 2

+ CSH
+ s2 MSH

) ˜̄U
SH

123 =
˜̄F

SH

123, (9)

where ˜̄U denotes the nodal displacements and ˜̄F the nodal forces. The superscripts P-SV and SH indicate
the wave field concerned; namely, the former refers to the in-plane motion of the P and SV waves and the
latter to the out-of-plane motion of the SH wave. Note here that the above decoupled equations coincide
with those formulated in cylindrical coordinates in such a way that the subscripts 1, 2, and 3 correspond
to r , z, and θ , respectively. Therefore, the coefficient matrices A, B, C, M are described in detail in
the original paper [Kausel et al. 1975]. Equations (8) and (9) can be taken as eigenvalue problems with
respect to the Laplace parameter s, whose general expression is cast as{

ÂP-SV
+ s2 MP-SV

}
8P-SV

m = 0, (10){
ÂSH

+ s2 MSH
}
8m

SH
= 0, (11)

where ÂP-SV
= AP-SVξ 2

+ BP-SVξ + CP-SV and ÂSH
= ASHξ 2

+ CSH.
Equation (10) defines the generalized Rayleigh function for the in-plane wave and (11) the generalized

Love waves for the out-of-plane wave by referring to the superscripts. The decomposed eigenvectors 8

satisfy the orthogonal condition:

8P-SV
i MP-SV8P-SV

j = δi j , (12)

8SH
i MSH8SH

j = δi j , (13)

(8P-SV)T AP-SV8P-SV
= 3P-SV, (14)

(8SH)T ASH8SH
= 3SH, (15)

8P-SV
= [φP-SV

1 φP-SV
2 · · · φP-SV

2n ], (16)

8SH
=

[
φSH

1 φSH
2 · · · φSH

n
]
, (17)

3P-SV
= diag[−(sP-SV

i )2
], (i = 1, 2, . . . , 2n), (18)

3SH
= diag[−(sSH

i )2
], (i = 1, 2, . . . , n). (19)

Therefore, using the eigenvectors above, the displacement and force vectors are represented as follows
(where we’ve replaced superscript P-SV on 8 by subscript 1 and 2, and superscript SH by subscript 3):{

˜̄U1

˜̄U2

}
=

81 ĒP-SV
8T

1 81 ĒP-SV
8T

1 81 ĒP-SV
8T

2

82 ĒP-SV
8T

1 82 ĒP-SV
8T

1 82 ĒP-SV
8T

2

 {
F̃1

F̃2

}
, (20)

U3 =

[
83 ĒSH

8T
3 83 ĒSH

8T
3

] {
˜̄F3

}
, (21)

where

˜̄E
P-SV

= diag
{

1

(−sP-SV
j

2
+ s2)

·
˜̄T (ξy, s)

}
, j = 1 ∼ 2n, (22)
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˜̄E
SH

= diag
{

1

(−sSH
j

2
+ s2)

· T̄ (ξy, s)
}
, j = 1 ∼ n. (23)

The term ˜̄T (ξy, s) defines the load effect, whose detailed description is given later. the wave number
domain expressions for the load vectors are

F̃1 =

[
−i

ξx

ξ
I − i

ξy

ξ
I
] {

F̃x(ξx , ξy)

F̃y(ξx , ξy)

}
, (24)

F̃2 = F̃z(ξx , ξy), (25)

F̃3 =

[
−i

ξy

ξ
I − i

ξx

ξ
I
] {

F̃x(ξx , ξy)

F̃y(ξx , ξy)

}
, (26)

where I denotes a unit matrix. The expressions in (20) and (21) are now back transformed into the
original Cartesian coordinates by using the transpose of the coefficient matrix of (4).


Ũx
Ũ y
Ũz

 =


ξ 2

x
ξ 2 81 Ẽ

P-SV
8T

1 +
ξ 2

y
ξ 2 83 Ẽ

SH
8T

3
ξxξ y
ξ 2 81 Ẽ

P-SV
8T

1 −
ξxξ y
ξ 2 83 Ẽ

SH
8T

3 i ξx
ξ 2 81 Ẽ

P-SV
8T

2

ξxξ y
ξ 2 81 Ẽ

P-SV
8T

1 −
ξxξ y
ξ 2 83 Ẽ

SH
8T

3
ξ 2

y
ξ 2 81 Ẽ

P-SV
v8T

1 +
ξ 2

x
ξ 2 83 Ẽ

SH
8T

3 i
ξ y
ξ 2 81 Ẽ

P-SV
8T

2

−i ξx
ξ 2 82 Ẽ

P-SV
8T

1 −i
ξ y
ξ 2 82 Ẽ

P-SV
8T

1 82 Ẽ
P-SV

8T
2


×


F̃x(ξx , ξy)

F̃y(ξx , ξy)

F̃z(ξx , ξy)

 . (27)

The horizontal loading generates the P-SV and SH waves while the vertical loading generates the P-
SV but not the SH wave. The explicit expression for the analytical inverse Laplace transforms of the
concerned elements ĒP-SV

and ĒSH
are given in the next section for given loading time functions T (t).

The inverse Fourier transform of (3) can be replaced by the following stepwise numerical integration:

u(x, y, z, N1t) =
1

(2π)2

∫
∞

−∞

∫
∞

−∞

ũ(ξx , ξy, z, N1t)e−iξx x e−iξy ydξx dξy, (28)

where N is the number of the time increments 1t used for response duration. The odd and even nature
of ũ(ξx , ξy, z, N1t), when multiplied by e−iξx x e−iξy y , is used to our advantage to carry out the integral
computation over −∞ to +∞ efficiently. The cylindrical coordinate transformation is employed further
to make the integral operation more convenient since the wave number range over the distance ξr is
truncated by certain discrete wave numbers, while that over the angle ξθ is limited to 0 ∼ π/2. Therefore,

u(x, y, z, n1t) =
1

(2π)2

∫
∞

0

∫ 2π

0
ũ(ξr , ξθ , z, n1t)e−ξr cos ξθ eξr sin ξθ ξr dξr dξθ

∼=
1

(2π)2

π/2∑
m=0

L∑
n=0

Ũ (ξrn, ξθm, z, N1t)e−ξrn cos ξθn eξrn sin ξθn1ξr1ξθ , (29)
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where L is the fundamental wavelength, 1ξr = 2π/L and 1ξθ = π/2N are the wave number increments
for the radius and angle, respectively, for which the total numbers N and M are used for superposition.

3. Modal transient responses due to certain surface loads

3.1. Space distribution. Consider a uniformly distributed surface load of unit intensity over 2bx by 2by

in the x-y plane which is either suddenly applied or impulsively applied at a fixed position. We can say
that the the distribution along the x direction is given by Fx(x), along the y direction by Fy(x), and
along the z direction by δ(z), and the intensity time variation is given by T (t). Then,

Fi (x, y, z; t) = Fx(x)Fy(y)δ(z) · T (t). (30)

The Fourier–Laplace transform of (30) is given by

F̃i (ξx , ξy, s) = F̃x(ξx)F̃y(ξy) · T̄ (s). (31)

(a) Uniform load. A uniform load on the rectangular area is defined as

Fx(x) = [H(x + bx) − H(x − bx)] ⇐⇒ F̃x(ξx) =
sin(ξx bx)

ξx bx
, (32)

Fy(y) = [H(y + by) − H(y − by)] ⇐⇒ F̃y(ξy) =
sin(ξyby)

ξyby
, (33)

where the notation H( ) defines a Heaviside function and the symbol ⇐⇒ indicates Fourier transform
pairs.

(b) Load proportional to the deflection of an elastically supported beam. Consider an elastically sup-
ported beam of the bending rigidity E I on Winkler springs whose stiffness is k per unit length along the
y-axis but constant in width 2bx in the x-direction. The base reaction of the Winkler springs is

Fz(x, y) = Fx(x) · Fy(y) =
1

√
2Lc

exp
(
−

∣∣∣ y
Lc

∣∣∣) sin
(∣∣∣ y

Lc

∣∣∣ + π

4

)
× {H(x + bx) − H(x − bx)}, (34)

where Lc =
4
√

4E I/k.
The Fourier transform of (34) is given by

Fz(ξx , ξy) = Fz(ξx) · Fz(ξy) =
4

4 + (ξy Lc)4 ·
2 sin ξx bx

ξx bx
. (35)

3.2. Time function.

(a) Dirac type loading. An impulse loading is defined by a Delta function δ( ). The Laplace transform
pair is

T (t) = δ(t) ⇐⇒ T̄ (s) = 1. (36)

(b) Heaviside type loading. A suddenly applied loading is expressed by a Heaviside function H(t). The
corresponding Laplace transform pair is

T (t) = H(t) ⇐⇒ T̄ (s) =
1
s
. (37)
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(c) Moving load. A moving load with a space distribution Fy(y) moving at constant speed c along the
y-direction is considered. The mathematical expression is then

Fz(y − ct) ⇐⇒ F̃(ξy)
˜̄T (ξy, s), (38)

where
˜̄T (ξy, s) =

1
s − iξyc

. (39)

The Laplace domain representation of the moving load has a similar nature as the modified Heaviside
type loading but with a phase shift such that

T̃ (ξy,t) = eiξyct . (40)

This expression indicates a specific periodicity in time by the train speed under a given site condition.
A loading consisting of N consecutive loads of intensities Fn (n = 1, 2, . . . , N ) is expressed as

Fz(y − ct) =

N∑
n=0

Fnδ(y − c · n1t), (41)

so that the frequency domain counterpart becomes T̃ (ξy,n1t) = eiξyc·n1t . Further, in the case of a moving
load accompanied by a harmonic oscillation of frequency ω0, the following expression holds:

F(y − ct) exp(iω0t) ⇐⇒ F̃z(ξy)
˜̄T (ξy, s), (42)

where
˜̄T (ξy, s) =

1
s − i(ξyc − ω0)

. (43)

The inverse Laplace transform is
T̃ (ξy,t) = ei(ξyc−ω0)t . (44)

3.3. Eigenmode response. The transient responses of the decomposed modes are obtained from the
inverse Laplace transforms of Equations (22) and (23) as

EP-SV/ SH
=

1
2π i

∫ γ i+∞

γ i−∞

diag

{
1(

−(sP-SV/ SH
j )2 + s2

) · T̄ (s)

}
est ds, (45)

which is evaluated from the residue theory for the respective loading types in the previous section. (Here
EP-SV/ SH means that either subscript may be taken consistently across the equation.)

(a) Dirac type loading. Introducing Equation (45) for T̄ (s) from Equation (36) results in the time domain
solution. The damping effect is now taken into account by introducing the damping ratio β j into each
decomposed mode, taken as a system with a single degree of freedom. Then

EP-SV/ SH
= diag

[
exp

(
−β j sP-SV/ SH

j t
) sin

(
sP-SV/ SH

j t
)

sP-SV/ SH
j

]
. (46)
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(b) Heaviside type loading. The response due to a suddenly applied (Heaviside type) loading is straight-
forwardly obtained by introducing T̄ (s) from (36) into (45). However, we can alternatively evaluate it
by integrating the Dirac’s impulse response of (46). The result for the initial condition at rest is then:

EP-SV/ SH
H (t) = diag

[
1 − exp(−βsP-SV/ SH

j t)
{
β sin(sP-SV/ SH

j t) + cos(sP-SV/ SH
j t)

}
(βsP-SV

j )2 + (sP-SV
j )2

]
. (47)

(c) Moving load. For a moving oscillating load of a constant speed c in the y-direction with the frequency
ω0, the inverse Laplace transform gives, after substituting (45) for ˜̄T (ξy, s) from (43):

EP-SV/ SH
= diag

1(
sP-SV/ SH

j

)2
+

(
βsP-SV/ SH

j + i(ξyc − ω0)
)2

×

(
− exp

(
−βsP-SV/ SH

j t
)
β sin

(
sP-SV/ SH

j t
)
+ cos

(
sP-SV/ SH

j t
)
+ cos((ξyc − ω0)t)

− i
(
ξyc−ω0

sP-SV/ SH
j

exp
(
−βsP-SV/ SH

j t
)

sin
(
sP-SV/ SH

j t
)
− sin((ξyc − ω0)t)

))
, (48)

which has a dominant contribution along the line ξyc = ω0. Comparing (48) with (47) suggests that the
latter response is reduced to the former response on this line. Therefore, at this resonant situation, the
response due to a moving load turns out to be like that caused by a sudden Heaviside-type loading at the
temporal position by the moving speed.

4. Laplace transform versus Fourier transform

We now discuss the correspondence between the Laplace transform and the Fourier transform. This
will assist the interpretation of the results obtained using the first method described above. The formal
conversion follows by substituting the Laplace parameter “s” with another parameter “iω” of frequency
ω multiplied by an imaginary unit i . Then, (30) becomes

Fi (x, y, z; ω) = Fx(x)Fy(y)δ(z) · T̄ (ω), (49)

where the time function for the moving load (43) is expressed, after some manipulation, by

˜̄T (ξy, ω) =
1
c

i(
ξy −

ω−ω0
c

) =
2π

c
δ

(
ξy −

ω − ω0

c

)
. (50)

The δ() function involved indicates that the wave number along the moving direction of the load can be
selected from the wave number-frequency domain solution as follows:

ξy = (ω − ω0)/c. (51)

The homogeneous equations (10) and (11) are replaced by{
Â

P-SV
− ω2 MP-SV

}
8P-SV

m = 0, (52){
Â

SH
− ω2 MSH

}
8SH

m = 0. (53)
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The solutions corresponding to in-plane and out-of-plane motions provide information on the wave num-
ber versus frequency characteristics of the respective eigenmodes. The inverse Fourier transforms with
respect to wave numbers and frequency yield, in view of (51), the solution

u(x, y, z, t) =
1

(2π)2c

∫
∞

−∞

∫
∞

−∞

u
(

ξx ,
ω − ω0

c
, z, ω

)
e−iξx x

· ei
(

ω0 y
c

)
· eiω

(
t− y

c
)
dξx dω. (54)

Hence, the solution is characterized by the crossings of the wave number versus frequency diagrams of
dispersive wave modes and the speed line of (51).

5. Computational results

5.1. Fundamental problem I: Transient response of a halfspace under a sudden loading. Investigated
first is the transient response of an elastic isotropic homogeneous halfspace when a uniform disk load
of a unit radius is impulsively applied (a Dirac-type loading) on the free surface. The schematic model
is shown on the right. The properties are defined by the density ρ, the P wave and S wave velocities
c1 and c2, respectively, and the Poisson ratio ν. For the sake of the present TLM computation the
halfspace is approximated by a stratum of the rigid base at 228 m deep, which is discretized by sub-
layers as 10@0.4 m + 5@0.8 m + 10@1.0 m ×10 + 10@2.0 m + 10@4.0 m ×10 + 15@10 m. The
fundamental wavelength is set to 700 m for the
analysis. The discrete wave numbers for superpo-
sition are then set to 700. The time increment for
response computation is 1t = 10−3 [s]. The wave
modes employed are 40 for in-plane motion and
20 for out-of-plane motion. These values yield
a reliable solution with less computational time.
The response observation points are as indicated

 2

 

 

r =10(m)

r =5(m)

r =20(m) r =40(m) r =100(m)

a =1(m)
a

CP= 387.6 m/s
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Fig.1 Model for a halfspace under surface loading 

Figure 1. A halfspace under an impulse load.

in the figure to the right.
The transient responses that reach the static dis-

placements computed by the present method are
depicted by symbols in Figure 2 in the dimension-
less form. The response Ui j can be identified by the subscript i j with i indicating the response direction
and j the loading direction. They are compared with analytical halfspace solutions by lines (denoted
by HS) that are obtained by the author by following Eason’s formulation [1966] for the vertical loading.
Since the Eason solution is limited to times after the S wave arrival, the author improved it as valid for all
times. Further, the author extended it to the horizontal loading case to give an excellent match, when the
loaded area is assumed small enough, with Pekeris’ solution [1955] for a point loading. The letters P , S
and R are designated to indicate the wave front arrivals of the P , S and Rayleigh waves, respectively. A
unit of dimensionless time corresponds to the arrival of the S wave at a focused point. The wave causality
is noted to be clearly fulfilled in view of the respective wave front arrival times. An excellent agreement
is attained between the present and the closed form solutions, as the focused point is at a far distance
from the loading center. In Figure 2, the Rayleigh wave dominates the vertical and horizontal responses,
whereas the P wave contribution appears small.
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Figure 2 Transient response of a halfspace under a vertical disk load 
 

 
 

 
 

R

R

P

P S

S

P S R

PrU /SP

rtc /2

PrU /SP

rtc /2

rtc /2

PrU /SP

 3

 

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
-0.4

-0.2

0.0

0.2

0.4

0.6

 Urz, HS
 Urz, TLM
 Uzz, HS
 Uzz, TLM

pi
*u

RU
/P

Ct/R
 

(a) Horizontal (radial) and vertical at 10m distance 
 

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

 Urz, HS
 Urz, TLM
 Uzz, HS
 Uzz, TLM

pi
*u

RU
/P

Ct/R
 

(b) Horizontal (radial) and vertical at 20m distance 
�

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

-1.5

-1.2

-0.9

-0.6

-0.3

0.0

0.3

0.6

0.9

1.2

1.5

 Urz, HS
 Urz, TLM
 Uzz, HS
 Uzz, TLM

pi
*u

RU
/P

Ct/R
 

(c) Horizontal (radial) and vertical at 100m distance 
 

Figure 2 Transient response of a halfspace under a vertical disk load 
 

 
 

 
 

R

R

P

P S

S

P S R

PrU /SP

rtc /2

PrU /SP

rtc /2

rtc /2

PrU /SP

 3

 

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
-0.4

-0.2

0.0

0.2

0.4

0.6

 Urz, HS
 Urz, TLM
 Uzz, HS
 Uzz, TLM

pi
*u

RU
/P

Ct/R
 

(a) Horizontal (radial) and vertical at 10m distance 
 

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

 Urz, HS
 Urz, TLM
 Uzz, HS
 Uzz, TLM

pi
*u

RU
/P

Ct/R
 

(b) Horizontal (radial) and vertical at 20m distance 
�

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

-1.5

-1.2

-0.9

-0.6

-0.3

0.0

0.3

0.6

0.9

1.2

1.5

 Urz, HS
 Urz, TLM
 Uzz, HS
 Uzz, TLM

pi
*u

RU
/P

Ct/R
 

(c) Horizontal (radial) and vertical at 100m distance 
 

Figure 2 Transient response of a halfspace under a vertical disk load 
 

 
 

 
 

R

R

P

P S

S

P S R

PrU /SP

rtc /2

PrU /SP

rtc /2

rtc /2

PrU /SP

Figure 2. Transient response of a halfspace under a vertical disk load: horizontal (radial)
and vertical at distances of 10 m (top left), 20 m (top right), and 100 m (bottom).

5.2. Fundamental problem II: Causality in a transient response for a moving load on a stratum. Com-
parison of the ground surface response is made between the moving Green functions from the Fourier
Transform method [Takemiya 2001; Takemiya et al. 2001] that uses the wave propagation matrix across
layers and the present direct Time Domain TLM. In order to investigate the wave field for a suddenly
applied and then moving load, a simple stratum, as described in Figure 3, is employed for the model. The
load and stratum properties are provided there. The sublayer division is made such that 20 m=50@0.4 m,
which guarantees roughly the shortest wavelength of 2 m at the frequency 100 Hz since there exist 5
nodal points within it. A key consideration in the design of this investigation is the placement of the
observation point at a location which allows the initial effect to be distinguished from the moving effect
of the load.

First, the site characteristics are investigated by computing the wave dispersion curves in the form
of the wave number versus frequency, and the group velocity versus frequency. They are depicted in
Figure 4 (left and right, respectively). In layered soils, the wave generation is significantly affected by
the so-called Airy phase frequency. These frequencies are noted at 4 Hz, 13 Hz, and 12 Hz, respectively,
for the first, second, and third modes of the in-plane motions. The speed of the moving load is also
important for the wave generation. Here, three representative situations, as defined by the speed ratio α

of the moving load against the S wave velocity of the medium, are demonstrated: α < 1 is the subseismic
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Figure 3 Stratum model for analysis under a moving load 
 

Figure 3. Stratum model for analysis under a moving load.

condition, α = 1 the seismic condition, and α > 1 the superseismic condition. These are indicated in
Figure 4 by the dashed lines as a parameter to locate which frequency is most associated with the wave
generation. For the speed ratio α < 1, there is no crossing with the dispersion curves; for α = 1, the
crossing of the speed line with the 1st mode occurs at 6 Hz; and for α = 2, it occurs at 4 Hz.

The TLM computed responses at the ground surface are depicted in Figures 5–7. The distance between
the starting position of the load and the observation point is taken as 40 m along the direction of motion,
with and offset of either 5 m or 10 m perpendicular to the direction of motion. The numbers of wave
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Figure 5. Transient response under a moving load for the α = 0.5 subseismic situation.
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Figure 6. Transient response under a moving load for the α = 1.0 seismic situation.
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Figure 7. Transient response under a moving load for the α = 2.0 superseismic situation.
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modes used are indicated in the figure: the first number refers to the number of in-plane modes and the
second number to the number of out-of-plane mode. By referring to (40), we note that the moving load
has a velocity-dependent periodic nature in addition to that of the Laplace transform for the Heaviside
type loading. The consequences are drastically different response features for different speeds of the
moving load. For the subseismic situation with speed ratio α = 1/2, the initial impact effect appears
at an observation point ahead of the moving load at the time of seismic wave arrivals. The fronts of
the P , SV , and Rayleigh waves are clearly detectable. Therefore, the former can be separated from the
latter by taking a long approach, for instance 200 m, from the starting point to the observation point.
The total response time histories, after the initial effect is excluded by an appropriate time window, are
also depicted. They are denoted by TD with a specific time indicated. The frequency domain solutions,
indicated as FD [Takemiya 2001; 2003], are also depicted in the figure for comparison. These include
a nominal small damping ratio β = 0.01 for the sake of a stable computation. All the resulting FD
responses, regardless of the distance off the moving line, look like kinematic ground deformations; the
responses attain a maximum at the moment the load passes the observation point, with almost symmetric
variation before and after it.

Next, for the seismic resonance situation of the speed ratio α = 1, the response features are described as
an impulsive response, as for a δ-type loading at the temporal position of the load, with small successive
fluctuations with a specific period. This periodicity is distorted in comparison with the frequency domain
solution if the observation point lies in a short distance. However, if the observation point is set as far
as 200 m, then the periodicity agrees well with the 6 Hz periodicity from the frequency domain solution.
This frequency was predicted from the crossing of the speed line with the first wave mode curve.

Lastly, for the superseismic situation of the speed ratio α = 2, the direct effect of the moving load
precedes the wave fronts due to the initial loading. Because of the small contribution, they are embedded
in the dynamic response within the chosen time window in the figure. The respective peak values are
quite similar to those in the seismic resonance case, but smaller. In contrast, the harmonic fluctuations
are more conspicuous in the superseismic situation. This phenomenon may be reasoned as follows: the
periodicity of the tailing response is estimated as 4 Hz, which coincides with the crossing frequency of
the speed line with the first mode wave curve and furthermore corresponds to the Airy phase frequency
of this wave mode.

The Fourier amplitudes of the transient responses in Figure 5–7 are depicted in Figure 8. For the speed
ratio α = 0.5, the amplitudes are almost constant in the frequency range up to several Hz. For α = 1 or
2, it is interesting to note that a peak response due to the moving speed of the load occurs at different
frequencies. For the former case it is at 5.5 Hz and for the latter case it is at 4.5 Hz. In the above low
frequency range or below the peak, a significant response reduction results as the distance increases off
the moving axis. This fact has been already pointed out in [Takemiya and Goda 2000] as a consequence
of the cut-off frequency to be determined by the stratum depth.

5.3. Application: Track response under train passage. Another application of the TLM is applied to an
actual problem to predict the response of a ballast type train track under the passage of trains. The train
geometry is illustrated in Table 1 and Figure 9. The wave fields of layered soils due to the Swedish X-2000
trains of different speeds have already been analyzed in the frequency domain solution method [Takemiya
2001; Takemiya and Bian 2005]. The site condition is prescribed for the equivalent soil properties in
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Figure 8. Fourier amplitudes of transient responses.

Train Car No
(Southbound) 5 4 3 2 1

Pn2, Pn1 (kN) 181.5, 180.0 122.5, 122.5 122.5, 122.5 122.5, 122.5 117.5, 160
an (m) 2.9 2.9 2.9 2.9 2.9
bn (m) 6.6 14.8 14.8 14.8 11.6
Ln (m) 17.17 24.4 24.4 24.4 22.17

Table 1. Swedish X-2000 train geometry (see also Figure 9).
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Figure 7  A train geometry, Swedish X-2000 

 
 
 
 
 

Table 1 Swedish X-200 train geometry   
 

Train Car No 
(Southbound) 5 4 3 2 1 

Pn2, Pn1 (kN) 181.5, 180.0 122.5, 122.5 122.5, 122.5 122.5, 122.5 117.5, 160 
 an (m) 2.9 2.9 2.9 2.9 2.9 
 bn(m) 6.6 14.8 14.8 14.8 11.6 
 Ln (m) 17.17 24.4 24.4 24.4 22.17 

Table 2� Soil properties at Ledsgard 

Shear Velocity (m/s) 
No Properties 19.4m/s 55.6m/s 

Density (t/m3) Poisson ratio 
Layer 

thickness 
(m) 

1 Crust 72.0 65.0 1.5 0.49 1.1 
2 Original Clay 41.0 33.0 1.26 0.49 3.0 
3 Clay 65.0 60.0 1.475 0.49 4.5 
4 Clay 87.0 85.0 1.475 0.49 6.0 

 

Figure 9. A train geometry, Swedish X-2000.

Table 2. Herein a stacked layered soil model is considered for the sake of the TLM computation. An
additional layer of 1.4 m thickness is put at the top to approximate the track portion, and the fictitious
rigid bottom base is set at 45 m depth. The employed subdivision is 4 + 10 + 9 + 12 + 45 = 80 layers in
total. An equal sublayer thickness is employed within the respective original geological layers.

The axle loading due to train passage onto the ground beneath is presumed in the form of (34) with
q = (3π/4)Lc = 6.2 m [Takemiya 2001], which means that 9 sleepers of 2 m long are involved together
for a track deflection under the given rigidities of rails and ballast. This set of adjusted loads gives
rise to a train load when the phase distances associated with the train geometry are properly taken into
account. Since these are taken as in a stationary moving state, the causal response due to the initial
condition should be excluded. For this requirement, first, the starting position of the axle load is set at
80 m in front of the focused position for the moving speed of 70 km/h, and 400 m for the moving speed
of 200 km/h. The response time windows are then picked up to exclude the transient response due to
the initial condition by inspection of the duration of these response time histories. Figure 10 shows the
results after superposition of individual responses by following (41) for the given axle loads in Table 1.
The kinematic response at low train speed is reproduced in the computation and shows a good fitting
with the measurement data, although smaller peak values are predicted at the passage of the first and
final axles. A dynamic response at high speed is attained which approximates the measured data quite
acceptably, except for the final response to the passage of the last bogie and thereafter. This discrepancy
may be caused by the track modeling in view of [Takemiya and Bian 2005] and the associated nonlinear
behavior. The mechanism of the wave generation and propagation in the ground is interpreted from the
wave dispersion characteristics that show the frequency versus wave number [Takemiya 2001]. In the

Shear Velocity (m/s) Layer
No Properties 19.4 m/s 55.6 m/s Density (t/m3) Poisson ratio thickness (m)

1 Crust 72.0 65.0 1.5 0.49 1.1
2 Original Clay 41.0 33.0 1.26 0.49 3.0
3 Clay 65.0 60.0 1.475 0.49 4.5
4 Clay 87.0 85.0 1.475 0.49 6.0

Table 2. Soil properties at Ledsgard.
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low speed situation, the train speed line is off-set lower than the fundamental wave mode line, whereas
in the latter situation it indicates the crossing of the speed line with the fundamental wave mode line at
2.5 Hz, the corresponding wavelength is 16.7 m. These facts are confirmed in Figure 10.
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(a) Train speed 70 km/h 
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(b) Train speed  200 km/h 
Figure 8 rack response due to the X-2000 passage 
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(b) Train speed  200 km/h 
Figure 8 rack response due to the X-2000 passage 

 
 

 

 

Figure 10. Track response due to the X2000 train passage at (left) 70 km/h (19.4 m/s)
and (right) 200 km/h (55.6 m/s).

6. Conclusions

The transient responses due to moving loads, initially at rest, have been dealt with by the Laplace–Fourier
transform scheme with respect to time and space, respectively. The TLM is applied for discretization
along the depth of the ground. The wave field can be decomposed into the eigenmodes of wave numbers
in the horizontal dependence once it is decoupled into in-plane and out-of-plane motions. A variety of
space distributions and time variations are considered for loading profiles.

Firstly, an illustrative study is demonstrated for the transient response of a uniform halfspace due to
sudden vertical loading on the surface. The causal responses of the TLM are validated in comparison
with the closed form solution.

Secondly, the transient response due to a constant moving (quasistatic) load is investigated for a stratum
model. The causality features are discussed depending on the speed ratio of the moving load against the
shear velocity of the layer. From the computed results, it is noted that in the case of a short distance
from a starting position to an observation position, the wave field includes the initial touch down effect
as well as the moving load effect. However, as the distance is increased, the former response becomes
substantially separated from the latter response. Regarding the speed ratio of the moving load against the
seismic S wave velocity, distinct response features result. Those are interpreted in the time as well as in
the frequency domains. The wave dispersion characteristics are helpful to give a fundamental knowledge
for predicting the ground borne vibration.

Thirdly, a practical application is attempted to predict train-induced vibration. Since the stationary
response is focused on a constant speed passage, the superposition is taken for a set of responses due to
axle loads, with special care to exclude the causal effects from the initial condition. The validation is
made from the measured data at the site.
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Notation

A, B, C coefficient matrices
c train speed
˜̄E

P-SV
,

˜̄E
SH

diagonal matrices defined in (19) and (20)
F̃1, F̃2, F̃3 force vectors in the Fourier transformed domain
H(t) Heaviside step function
L fundamental wavelength
M mass matrix
s Laplace parameter
s j wave number eigenvalue
T (t) time function
T̃ (s) Laplace transform of time function
U nodal displacement vector
˜̄U1,

˜̄U2,
˜̄U3 Fourier–Laplace transformed displacements

β damping ratio
3P-SV, 3SH diagonal matrices eigenwave numbers for waves field as P-SV and SH
ξ wave number
8 mode shape matrix
δ( ) Dirac delta function
ρ density
ω circular frequency
− Laplace transform with respect to time
∼ Fourier transform with respect to space coordinate
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