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PREFACE

This issue of the Journal of Mechanics of Materials and Structures is dedicated to Pisidhi Karasudhi,
Professor Emeritus at the Asian Institute of Technology, Thailand (see next page). It contains invited
papers, mainly from authors who spoke at the Tenth East Asia-Pacific Conference on Structural Engi-
neering and Construction, in a symposium entitled Recent Advances in Structural Engineering, Mechan-
ics and Materials (August 4 and 5, 2006). The symposium consisted of six technical sessions and a
special session on Modern Engineering Education Strategies and Practices. Thirty-two invited papers
were included in the technical program. The authors came from Australia, Canada, Hong Kong, Japan,
Singapore, Thailand and the United States of America.

The papers are ordered alphabetically according to first author. The first paper by Borujeni, Maijer
and Rajapakse is a numerical investigation of the effects of strain rate and boundary conditions on the
overall mechanical response and nucleation/evolution of transformation bands in shape memory alloys.
In the next paper, elastodynamic reciprocity relations are developed by Karunasena for wave scattering
by flaws, when guided waves are allowed to propagate in fiber-reinforced composite plates. The next
two papers are in the area of numerical simulations. Liu, Swaddiwudhipong and Pei discuss numerical
simulations of micro and nano indentation tests, while Madurapperuma and Puswewala report on their
work on finite element modeling of soil creep. In the next paper Selvadurai, Scarpas and Kringos examine
the problem of contact between an isotropic elastic halfspace and a rigid circular indentor, where contact
is achieved through a set of Winkler ligaments. The next two papers are in the area of dynamics. The
dynamic response of multiple flexible strip foundations resting on a multilayered poroelastic half-plane
is considered by Senjuntichai and Kaewjuea while Takemiya uses the thin-layer method to determine
the transient ground response due to impulse and moving loads. In the next paper Valliappan and Chee
combine degradation evaluation methods, damage mechanics, and the finite element method to examine
the safety of mechanical structures with age-related degradation. A study of tsunami propagation using
the characteristic-based split method is reported by Wijaya, Bui and Kanok-Nukulchai. The dispersive
behavior of waves propagating in a prestressed compressible elastic layer with constrained boundaries is
studied by Wijeyewickrema, Ushida and Kayestha. In the last paper of the volume, Yang, Kitipornchai
and Liew examine the nonlinear local bending of FGM sandwich plates.

We wish to thank all contributors to this issue and the symposium and the reviewers for their valuable
comments. We especially thank Professor Charles R. Steele, the Chief Editor of the Journal of Mechanics
of Materials and Structures, for agreeing to publish this volume as a special issue and Dr. Silvio Levy,
Scientific Editor, for his assistance.

Nimal Rajapakse
The University of British Columbia, Canada

Worsak Kanok-Nukulchai
Asian Institute of Technology, Thailand

Anil C. Wijeyewickrema
Tokyo Institute of Technology, Japan

Teerapong Senjuntichai
Chulalongkorn University, Thailand
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BIOGRAPHICAL NOTE
Pisidhi Karasudhi was born on February 2, 1939 in Bangkok,

Thailand. He received a Bachelor’s Degree in Civil Engineering in
1961 from Chulalongkorn University in Bangkok, and was among
the select few admitted that year to the Master’s program in Struc-
tural Engineering offered by the SEATO (Southeast Asia Treaty
Organization) Graduate School of Engineering in Bangkok. He
graduated from there in 1963. He did his postgraduate studies at
Northwestern University in Evanston, Illinois (USA), under the
supervision of the world-renowned academics Seng-Lip Lee and
Leon M. Keer. His Ph.D. dissertation in Theoretical and Applied
Mechanics, completed in 1968, was one of the first rigorous treat-
ments of a vibrating rigid structure on an elastic half-space.

Dr. Karasudhi joined the Division of Structural Engineering at
the Asian Institute of Technology in 1969, and reached the rank of
full professor in 1978. A skilled administrator, he also served as
Chairman of the Division from 1975 to 1983. He held visiting professorships at the University of Tokyo in 1979
and the National University of Singapore in 1985. In 1993 became the Founding Dean of the School of Civil
Engineering at AIT. As the Institute’s Vice-President of Development from 1994 till his retirement from AIT
to 1999; in that position he was entrusted with raising funds and developing strong relationships with a large
group of donors. He was promoted to the rank of Chair Professor, the highest academic rank at AIT, in 1995.
He served as Acting President of AIT on multiple occasions and was a member of the Board of Trustees.

Professor Karasudhi was known for very high academic standards and excellent research. He taught a wide
range of graduate courses at AIT including courses in elasticity, nonlinear solid mechanics, viscoelasticity,
plates, shells and elastic wave propagation. He supervised eleven doctoral students and over a hundred mas-
ter’s students from all over Asia. He has been a continuous source of inspiration to his students and junior
colleagues and mentored them with great dedication. Many of his former students now serve in senior positions
in academia, government and industry in Asia, Australia and North America.

His early research was in elastostatic and elastodynamic problems of semi-infinite media and the structural
dynamics of tall buildings. Later he supervised doctoral and master’s theses dealing with load transfer problems,
made seminal contributions to the topic, and applied his solutions to practical problems such as negative skin
friction analysis of piles and consolidation settlement of piles. In computational mechanics, he made signifi-
cant contributions to the finite element analysis of plates and shells. He did pioneering research on low-cost
construction materials such as ferrocement and rice-husk-ash cement and concrete. In the 1980s and 1990s,
he contributed greatly to the development of infinite elements for poroelastic and layered elastic media: his
rigorous examination of elastic wave fields in a bimaterial system led to the creation of the first elastodynamic
infinite element for layered media.

Over a hundred research papers and monographs bear Karasudhi’s name; his graduate textbook Foundations
of Solid Mechanics (Kluwer, 1991) quickly became a classic. A member of several learned societies, he was
honored with the title of Fellow of the Engineering Institute of Thailand, and chaired its civil engineering chapter
from 1986 to 1988. He was a sought-after reviewer for specialized journals and an editorial board member of
the International Journal for Computational Mechanics, the International Journal of Structures and the Journal
of Ferrocement. He was also active as a consultant to industry.
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FINITE ELEMENT SIMULATION OF STRAIN RATE EFFECTS ON LOCALIZED
UNSTABLE PSEUDOELASTIC RESPONSE OF SHAPE MEMORY ALLOYS

B. AZADI BORUJENI, DAAN M. MAIJER AND R. K. NIMAL D. RAJAPAKSE

A macromechanical total-deformation constitutive model of pseudoelasticity previously developed by
the authors is employed within a two-dimensional finite element framework to numerically investi-
gate the effect of strain rate and boundary conditions on the overall mechanical response and nucle-
ation/evolution of transformation bands in NiTi strips during both forward and reverse transformations.
The simulation results are compared with the experimental observations previously reported by other
researchers, and it is shown that the present method successfully captures the nucleation and propagation
of localized deformation bands during both loading and unloading. It is confirmed that the number of
propagating fronts plays a key role in the pseudoelastic response of material in nonisothermal conditions.
Special attention is paid to the morphology of the transformation fronts and its evolution. The numerical
analysis indicates that the predicted morphology of the fronts is highly sensitive to imperfections and
misalignments in the boundary conditions, especially during the reverse transformation.

1. Introduction

Owing to their unique mechanical properties, shape memory alloys (SMA) are increasingly being used in
many engineering applications such as medical devices, orthodontic wires, microactuators, and vibration
control [Otsuka and Wayman 1998; Saadat et al. 2002; Kohl 2004]. The two important characteristics
of SMAs are known as pseudoelasticity (or superelasticity) and shape memory effect, which take place
over different temperature ranges.

Despite extensive experimental and theoretical research in the past two decades, some aspects of
SMA behavior are still subject to intense research. Among these are the instability of the mechanical
behavior in some SMAs which leads to macroscale deformation localization (Lüders-like deformation)
and sensitivity of their response to loading rate. It has been observed that at low strain rates, the uniaxial
pseudoelastic response of NiTi is characterized by a distinct stress plateau and propagation of only one
or two transformation fronts. At high strain rates, on the other hand, the stress-strain response maintains
a positive slope, and multiple propagating fronts may coexist. Lüders-like deformation in NiTi was first
observed by Miyazaki et al. [1981] in wire samples. The subject has been systematically studied through
in-situ monitoring of the local variations of temperature and strain by Leo et al. [1993] and Shaw and
Kyriakides [1995] in NiTi wires, by Shaw and Kyriakides [1997a] and Pieczyska et al. [2006a] in NiTi
strips, and also recently by Feng and Sun [2006] in NiTi microtubes.

Keywords: shape memory alloys, strain rate, localization, phase transformation, pseudoelasticity, martensite reorientation,
finite element method.
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Various hypotheses have been proposed for the origin of deformation localization in NiTi. Some
believe that the severe geometric distortion due to large transformation strain is the only cause for localiza-
tion. In their view, the stress-strain curve maintains a positive (but small) slope during the transformation
[Favier et al. 2002; Sittner et al. 2005]. Other researchers have attributed the deformation localization in
NiTi to the intrinsic instability of the material behavior (strain softening) during the phase transformation
[Shaw and Kyriakides 1997b; Idesman et al. 2005; Feng and Sun 2006]. This argument is supported by
the fact that the large stress drop at the onset of the stress-plateau can not be modeled by geometric
instability alone [Shaw and Kyriakides 1997b]. As shown by Iadicola and Shaw [2002], the “real” load
drop can be as high as 17% if the stress concentrations at the gripped ends are eliminated.

Regardless of its origin, the localization of deformation in SMAs and its strong rate-dependency can
place serious limitations on engineers who wish to design parts made of SMAs and exploit pseudoelas-
tic properties. Therefore, a reliable and easy-to-use thermomechanical constitutive model is desired to
enable engineers to predict the local and bulk material response.

Most of the constitutive models developed in the past have focused on the overall response of SMAs
which exhibit stable mechanical behavior. Some examples of these models can be found in [Tanaka et al.
1986; Brinson 1993; Boyd and Lagoudas 1994; Lagoudas et al. 1996; Auricchio et al. 1997; Raniecki and
Lexcellent 1998; Brocca et al. 2002]. Although these models are often based on detailed thermodynamic
considerations, their ability to model the unstable mechanical behavior is not guaranteed. It has been
shown through numerical simulations that the ability of a constitutive model to successfully capture the
stable pseudoelastic behavior does not automatically ensure the full recovery of inelastic deformation
throughout the entire domain during the unstable localized reverse transformation [Azadi et al. 2007;
Azadi 2008].

Abeyaratne and Knowles [1993] developed a one-dimensional thermodynamic framework based on
the Helmholtz free energy to simulate the isothermal transformation in an SMA bar. The propagating
phase boundaries were treated as traveling field discontinuities. Shaw and Kyriakides [1997b] proposed
a model based on incremental plasticity to capture the material instability observed in NiTi strips. The
material was assumed to behave as an isothermal, rate-independent J2-type elasto-plastic solid with
isotropic softening. A similar approach has also been recently used by Hu et al. [2007] to simulate
the nucleation and propagation of localized helical bands in NiTi tubes. This analysis was extended in
[Shaw 2000; Iadicola and Shaw 2004] by considering the thermomechanical coupling of the material
with its environment, and investigated the effect of loading rate on the evolution of instabilities. Due to
the irreversibility of plastic deformation, the use of incremental plasticity in these models is limited to
the forward transformation case, and the reverse transformation upon unloading has been ignored.

Recently, Azadi et al. [2006] developed a one-dimensional phenomenological model to simulate the
phase transformation and transformation front propagation in SMA wires. They assumed that the un-
transformed particles located close to the transformed regions are less stable than those away from the
transformed regions. Azadi et al. [2007] extended the one-dimensional model to a multidimensional
macromechanical model of localized unstable pseudoelasticity based on the deformation theory of plas-
ticity. In this model, the finite form of transformation strain is expressed in terms of the gradient of a
potential function, which allows for the reorientation of the transformation strain tensor with variation
of the stress tensor, regardless of the occurrence of a phase transformation. The model is in fact similar
to that proposed by Auricchio and Stefanelli [2004], although they did not consider the localization
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phenomena and instability of mechanical behavior. Moreover, in the model of Azadi et al. [2007] the
effect of temperature and variation of elastic properties upon phase transformation have also been con-
sidered. The constitutive model was successfully implemented within a finite element (FE) framework
to simulate the isothermal nucleation and propagation of a single transformation front during the reverse
transformations, as well as the forward transformation in a short NiTi strip. However, the simulation
results were compared with the experimental data only for the forward transformation case. In the present
work, the multidimensional analysis of Azadi et al. [2007] is extended to simulate the nucleation and
propagation of multiple transformation fronts in longer strips of NiTi by considering the effect of heat
generation/consumption occurring during the transformation, and thus the strain rate effects. Moreover,
the simulation results are compared with experimental observations for both the forward and reverse
transformations, which allows for a better assessment of the performance of the constitutive model. The
effect of boundary conditions on the evolution of transformation bands morphology in NiTi strips is also
investigated.

2. Constitutive model

A simple macromechanical constitutive model previously developed by Azadi et al. [2007] is used to
model the pseudoelastic behavior of polycrystalline NiTi. The constitutive model is inspired by the defor-
mation theory of plasticity, with two sets of yielding criteria for forward and reverse transformations. The
model is intended to describe conditions at a local material point subjected to general thermomechanical
loading. The equations governing the stress-strain relations and kinetics of transformations from Azadi
et al. [2007] are summarized in Table 1. In these equations, εi j is the total strain tensor, σi j is the stress
tensor, Si j is the deviatoric stress tensor, σ̄ is the von Mises effective stress, and γ is the volume fraction

Constitutive Relations Kinetic Relations

Finite form: Forward transformation (dγ > 0, γ < 1):

εi j = Di jkl(γ) σkl +
3
21εt (Si j/σ̄ ) γ, FA→M(σi j , γ, T )= 0, d FA→M = 0,

where where
Di jkl(γ)= γ D(M)

i jkl + (1− γ) D(A)
i jkl . FA→M = σ̄−(1−γ) σMN(T )−γ σMC(T ).

Incremental form: Reverse transformation (dγ < 0, γ > 0):

dεi j = D̄i jkl(γ) dσkl
FM→A(σi j , γ, T )= 0, d FM→A = 0

+

((
D(M)

i jkl − D(A)
i jkl

)
σkl +

3
21εt

Si j

σ̄

)
dγ,

where where

D̄i jkl(γ)= Di jkl(γ)
FM→A = σ̄ − γ σAN(T )− (1− γ) σAC(T ).

+
3
2
1εt
σ̄

(
δikδ jl −

1
3δi jδkl −

3
2

Si j Skl

σ̄ 2

)
γ.

Table 1. Summary of the constitutive model.
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of martensite; D(A)
i jkl and D(M)

i jkl are the elastic compliances of the pure austenite and martensite phases,
respectively, and 1εt is a material parameter, representing the maximum transformation strain that can
be achieved during a uniaxial test.

The kinetics of phase transformation in the forward or reverse directions are controlled by a set of
yield functions called martensite nucleation stress (σMN), martensite completion stress (σMC), austenite
nucleation stress (σAN), and austenite completion stress (σAC). For materials such as NiTi, which exhibit
localization of deformation and unstable mechanical behavior, the nucleation stress is higher (lower) than
the completion stress during the forward (reverse) transformation. These critical values are temperature-
dependent material properties and must be determined through a carefully designed and executed testing
setup; see [Iadicola and Shaw 2002], for example.

The heat generation/consumption during the transformation is considered to be a result of inelastic
work and enthalpy change due to phase transformation [Shaw 2000]. Therefore, the heat generation may
be calculated as

q̇G = (σi j ε̇i j − u̇(e))− ḣ. (1)

In this equation, qG is the generated heat, u(e) is the elastic energy density, and ḣ is the enthalpy change.
The elastic energy density is given by

u(e) = 1
2σi jε

(e)
i j , (2)

where ε(e)i j is the elastic part of the strain given by ([Azadi et al. 2007])

ε
(e)
i j =

(
γ D(M)

i jkl + (1− γ) D(A)
i jkl

)
σkl . (3)

It is assumed that the rate of change in enthalpy, ḣ, can be approximated by

ḣ =

{
ρ1hA→Mγ̇ if γ̇ > 0,

−ρ1hM→A γ̇ if γ̇ < 0.
(4)

where ρ is the density and 1hA→M, 1hM→A are the total changes in enthalpy per unit mass during
the forward and reverse transformations at zero-stress. These quantities can be measured by differential
scanning calorimetry (DSC). From Table 1 and equations (1) through (4), the heat generation term is
obtained as

q̇G =


(
σ̄1εt+

1
2σi j (D

(M)
i jkl − D(A)

i jkl)σkl − ρ1hA→M
)
γ̇ if γ̇ > 0,(

σ̄1εt+
1
2σi j (D

(M)
i jkl − D(A)

i jkl)σkl + ρ1hM→A
)
γ̇ if γ̇ < 0.

(5)

A few comments regarding the limitations and validity of the assumptions in this constitutive model
are necessary. The current constitutive model is an extension of a mechanical theory (deformation theory
of plasticity). Although the model is not derived from explicit thermodynamic considerations, it accounts
for the hysteresis behavior and the proper direction of phase transformations and corresponding heat gen-
eration terms during loading and unloading, as validated by comparison with experiments. Nevertheless,
the reformulation of the proposed constitutive theory in a consistent thermodynamic framework seems
to be difficult.

The use of the von Mises effective stress in the yield criteria limits the application of the constitutive
model to materials that behave symmetrically under tension and compression. As shown experimentally
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(see [Liu et al. 1998], for example), NiTi alloys exhibit tension-compression asymmetry. The tension-
compression asymmetry, however, does not impact the current work, which focuses on tension.

It has been shown through experiment that the phase transformation in NiTi may start homogeneously
prior to the nucleation of localized deformation bands [Feng and Sun 2006; Daly et al. 2007]. Tan et al.
[2004] also reported that the end of the stress plateau in the pseudoelastic response is not the end of
the phase transformation, and that the stress-induced transformation continues beyond the stress plateau.
The mechanically stable stress-induced phase transformation is not considered in this current analysis.
However, it would be straightforward to incorporate into the constitutive model by revising the yield
functions FA→M and FM→A in Table 1.

3. Numerical simulations

The constitutive model has been implemented within a FEM framework to predict the nucleation and
propagation of transformation-induced instabilities during the pseudoelastic response of NiTi dog-bone
samples at various strain rates. The simulations were run with the aid of an in-house FEM code developed
by the authors. The geometry of the sample and FE mesh are shown in Figure 1, left. The sample
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Figure 1. Left: Geometry and finite element discretization of the sample. Right: Geom-
etry and mesh used for calibration of the model in reverse transformation.
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dimensions are based on the dog-bone sample used in the experiments of Shaw and Kyriakides [1997a],
which has a uniform thickness of 0.4 mm. The two-dimensional spatial domain was discretized with
8-node Serendipity plane-stress elements. The gauge section was discretized with 150 elements along
the length and 10 elements across the width. A small dent with a depth of 0.04 mm was introduced at the
top right corner of the gauge section as shown in the figure. The purpose of this geometric imperfection
was to control the location of the first nucleation.

The nodal displacements along the bottom end of the specimen (x = 0) are fixed while those across
the top end (x = L0) are pulled at a constant rate. The temperatures of both ends are fixed at the ambient
temperature (25 ◦C). Shaw [2000] rationalized this assumption based on the large size of the metallic
grips used in the experiments. The heat loss due to natural convection has been considered by assuming
a constant convective film coefficient, hconv= 4 W/m2 K, for all the exposed surfaces and free edges of
the sample [Shaw 2000]. The imposed mechanical and thermal boundary conditions are expressed as

u|x=0 = 0, v|x=0,y=0 = 0, T |x=0 = 25◦C, q̇|surface = hconv(T − 25◦C),

u|x=L0 = δ, v|x=L0,y=0 = 0, T |x=L0 = 25◦C, q̇|edge = hconv(T − 25◦C),
(6)

where u and v are the displacement components in the x- and y-directions, respectively, δ is the applied
end displacement, T (◦C) is the temperature, and q̇ (W/m2) is the rate of heat loss per unit area.

In the experiments of Shaw and Kyriakides [1997a], the variation in temperature at the moderate strain
rate was in the range of +12◦C and −5◦C. Therefore, heat transfer through radiation was assumed to be
negligible. Thermal expansion/contraction was also ignored in the following analysis due to its minor
effect on the results.

The sensitivity of the present numerical analysis to mesh size, and the uniqueness of the solution were
examined by the authors. Despite the instability of mechanical behavior, only minor mesh sensitivity
was observed in the numerical simulations conducted with finer meshes. As pointed out by Shaw [2000],
the generation or absorption of heat during the transformation stabilizes the mechanical response. Ad-
ditionally, the recovery of material stability at the end of phase transformation has an overall stabilizing
effect on the solution. As a result, the overall force-displacement response, temperature variation, the
number of nucleation events, and the basic features of the front morphology are not affected by mesh size.
However, the exact location and timing of nucleation events, and also the orientation of transformation
bands (+θ or −θ ) are sensitive to numerical noise.

In the following subsections, the model is first calibrated using data from “isothermal” experiments
performed at various temperatures, and then implemented to simulate the “nonisothermal” responses of
the specimen at various strain rates.

3A. Material parameters and calibration of the constitutive model. We assume in our analysis that
individual solid phases behave as isotropic materials. A set of stress-strain curves derived from the
isothermal uniaxial tensile tests on NiTi dog-bone samples reported by Shaw [2000] have been used to
find the mechanical parameters of the constitutive model. The mechanical responses of the material at
three different temperatures (15, 25, and 35 ◦C) have been considered for this purpose. The elastic mod-
ulus of individual phases (EA, EM), and the transformation strain (1εt) are the average values measured
directly from the experimental results.



FINITE ELEMENT SIMULATION OF STRAIN RATE EFFECTS 1817

In order to find the nucleation and completion stresses during the forward transformation, a set of
isothermal simulations at various temperatures were run on the dog-bone sample shown in Figure 1, left.
By best fitting the nominal nucleation stress and propagation stress (Maxwell stress) obtained from the
numerical analysis to those from the experiments at the above mentioned temperatures, the following
linear relationships were established:

σMN(T )= 9.4258 T + 189.13 (MPa),

σMC(T )= 4.8158 T + 232.73 (MPa).
(7)

The tapered sections of the sample in Figure 1 experience a lower level of stress. Therefore, some
residual austenite remains in those areas at the end of the stress plateau. This effect masks a visible stress
valley at the onset of the reverse transformation in the stress-strain response, both in the simulations and
experiments. In order to eliminate the end effects, Shaw and Kyriakides [1997a] used straight specimens
to measure the nucleation stress during the reverse transformation. During these tests, austenite nucle-
ation upon unloading occurs in the middle of the test section and is accompanied by a distinct stress
valley. To calibrate the model for the reverse transformation, a straight specimen was also used in the
isothermal simulations, as depicted in Figure 1, right. The dimensions and FE mesh of the specimen are
similar to those of the gauge section of the dog-bone sample. A slight side imperfection in the form of a
bump was introduced at x=L/5 to control the location of the first nucleation (Figure 1, right). The height
of the bump was 0.04 mm. The specimen was first loaded until the entire domain was fully transformed
into martensite, and then was unloaded.

The following linear relationships were found to best fit the nucleation and propagation stresses of the
reverse transformation obtained from the isothermal experiments at different temperatures,

σAN(T )= 7.5128 T − 44.22 (MPa),

σAC(T )= 10.276 T − 35.31 (MPa).
(8)

In equations (7) and (8), the temperature is in ◦C, and stresses are the second Piola–Kirchhoff stresses
(Green strains and second Piola–Kirchhoff stresses were employed in the FE formulation in anticipation
of future research). The variation of the nucleation and completion stresses with temperature is shown in
Figure 2. In this figure, the nominal (engineering) nucleation and propagation stresses as determined by
the isothermal simulations are also shown. There is a large difference between the engineering nucleation
stress and the second Piola–Kirchhoff nucleation stress during the reverse transformation, which is due
to the large amount of strain induced during the forward transformation. In order to show the close fit of
the chosen mechanical properties, the overall pseudoelastic responses of the dog-bone sample based on
the isothermal simulations are compared to the experimental results in Figure 3.

Thermal parameters of the NiTi strip, including zero-stress enthalpy change, 1hA→M, the thermal
conductivity, k, specific heat capacity, Cp, and density, ρ, were taken from [Shaw 2000]. It was also
assumed that the stress-free enthalpy change for the martensite to austenite transformation, 1hM→A, is
the negative of that for the austenite to martensite transformation. As an approximation, all thermal
parameters were assumed to be independent of phase, temperature, or other state variables. Table 2
summarizes the chosen mechanical and thermal properties.
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Figure 2. Chosen second Piola–Kirchhoff nucleation and completion stresses, and cor-
responding engineering values calculated from the isothermal simulations.
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Figure 3. Pseudoelastic response of NiTi strip under isothermal conditions at different
temperatures. Experimental curves are adapted from [Shaw 2000].

3B. Simulation of loading-unloading at low strain rate. The pseudoelastic response of the dog-bone
sample shown in Figure 1 was simulated for low strain rate displacement-controlled loading-unloading.
The ambient air temperature surrounding the sample and the temperature of the grips was 25 ◦C. The
specimen was loaded at a constant rate of δ̇/LG= 10−4 s−1. The deformation was paused at δ

/
LG= 6.4 %

for 5 minutes to allow the sample to reach thermal equilibrium, followed by unloading at a constant rate
of δ̇

/
LG =−10−4 s−1. The predicted force-displacement response is compared with the experimental

measurements of Shaw and Kyriakides [1997a] in Figure 4. A sequence of 14 contour graphs showing
the distribution of phase and temperature corresponding to the deformed configurations of the specimen
during the forward transformation are provided in Figure 5. The contours are separated by intervals of
δ
/

LG= 0.4 % with the first and last contour corresponding to δ
/

LG= 0.8 % and δ
/

LG= 6 %, respectively.
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Parameter Value

Elastic modulus of Austenite EA (GPa) 57.55
Elastic modulus of Martensite EM (GPa) 28.00
Poisson’s ratio νA,νM 0.3
Transformation strain 1εt 0.0429
Martensite nucleation stress σMN (MPa) 9.4258 T (◦C)+ 189.13
Martensite completion stress σMC (MPa) 4.8158 T (◦C)+ 232.73
Austenite nucleation stress σAN (MPa) 7.5128 T (◦C)− 44.22
Austenite completion stress σAC (MPa) 10.276 T (◦C)− 35.31
Enthalpy change at zero-stress 1hA→M, −1hM→A (J kg−1) −12.3× 103

Thermal conduction coefficient k (W m−1 K−1) 18
Specific heat capacity Cp (J kg−1 K−1) 837
Density ρ (kg m−3) 6.5× 103

Table 2. Mechanical and thermal properties of the NiTi strip.

The first region to transform to martensite nucleates at the geometric imperfection described earlier, and
a sharp inclined deformation band forms with the well-known angle of 55 ◦ to the specimen axis. Upon
additional loading, the single, well-defined transformation front evolves into an alternating criss-cross
pattern, which is similar to the pattern Shaw and Kyriakides [1997a] observed in their experiments. As
loading continues, the temperature at the transformation front increases (Figure 5), which in turn results
in an increase in the nominal stress as shown in Figure 4. At δ

/
LG≈ 2.7 %, a second transformation front

nucleates at the lower end of the gauge section due to the stress concentration near the round fillet. The
second nucleation event causes the drop in the load observed in both the experiment and the simulation
results (refer to Figure 4). As the fronts approach each other, they become straight and inclined across the
width with the same orientation to minimize the mismatch between them. At the instant of coalescence,

 

0 0.02 0.04 0.06 0.08
0

100

200

300

400

500

600

700

800

 

 

 
(MPa) 

0A
F

GLδ

Experiment 
Simulation 

Figure 4. Pseudoelastic response of NiTi strip at δ̇/LG = 10−4 s−1. The experimental
response is adapted from Shaw and Kyriakides [1997a].
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Figure 5. Sequence of events during A→M transformation at δ̇/LG = 10−4 s−1. Left:
Martensitic fraction; right: Temperature.

the fronts make an angle of 57.5 ◦ with the loading axis. Overall, the mechanical response, distribution of
temperature, evolution of transformation, and details of the transformation front are in good agreement
with the experimental observations of Shaw and Kyriakides [1997a].

The sequence of events leading to the initial shape change of the transformation front is particularly
interesting. Figure 6 shows a close up view of the transformation front (phase distribution contour) and
distorted mesh. The lateral displacement (v) has been multiplied by a factor of 20 to accentuate the
lateral deflection in Figure 6, bottom. When the inclined transformation band nucleates at time 1 and
begins to spread, the lateral deflection increases continuously at the front. The lateral deflection reaches
its maximum between times 5 and 6, where the first finger emanates from the upper front in order to
balance the lateral deflection and straighten the specimen. As a result, the lateral deflection decreases
from times 6 to 8. The subsequent evolution of the transformation front can be described as successive
nucleation and growth of finger patterns in alternative directions in order to keep the lateral deflection
minimum.

During the pause between loading and unloading, the temperature of the sample equilibrates prior
to returning to the ambient temperature. The evolution of the transformed phase and the temperature
distribution during the reverse transformation are shown in Figure 7. As expected, the reverse transfor-
mation initiates at the tapered ends of the sample due to the reduced stress at these regions. The two
transformation fronts propagate toward each other at the same speed. During most of the unloading part,
the converging fronts are predicted to propagate through inverse shrinkage of the finger-type patterns
observed during the forward transformation. However, experimental results of Shaw and Kyriakides
[1997a] suggested that the fronts during the reverse transformation are quite sharp and straight with an
inclination angle of approximately 56 ◦. This discrepancy between the predicted and observed results
is probably due to the lack of information on the exact boundary conditions at the gripped ends in the



FINITE ELEMENT SIMULATION OF STRAIN RATE EFFECTS 1821

A (γ =0) M (γ =1) 
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1 2 3 4 5 6 7 8 9 10 11 

Figure 6. Details of front morphology evolution during A→M transformation. Top:
distribution of phases; bottom: distorted mesh with lateral displacement multiplied by a
factor of 20.

experiment. As will be discussed later, small misalignments in the boundary conditions may result in
sharp inclined fronts during the reverse transformation.

In addition to difference in the shape of the transformation front, the magnitude of the predicted
temperature drop during the reverse transformation is also different from the measurements of Shaw and
Kyriakides [1997a]. The maximum temperature drop observed during the experiment was −2◦C, whereas
in the simulation it was predicted to reach −3.6◦C. This discrepancy may be partly due to uncertainties
in the thermophysical properties of the specimen and thermal boundary conditions, and/or partly due to
the assumption that the zero-stress latent heats associated with the forward and reverse transformations
have the same value.

3C. Simulation of loading-unloading at moderate strain rate. The pseudoelastic response of the dog-
bone SMA specimen was simulated for a moderate strain rate condition. A constant loading rate of
δ̇
/

LG = 10−3 s−1 was applied until δ
/

LG = 7.65 %, followed by a 5 minute hold, then unloading at the
same constant rate. The ambient air temperature was 25 ◦C. The nominal stress-strain response is shown
in Figure 8. The evolution of phase transformation and the distribution of temperature during the forward
and reverse transformations are depicted in Figures 9 and 10. The transformation behavior is very similar
to the experimental observations of Shaw and Kyriakides [1997a]. The localized transformation is first
nucleated at the top corner, followed by a second nucleation event at the lower end, then two nucleation
events in the mid span. The shape of transformation fronts match those observed in the experiment. For
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Figure 7. Sequence of events during M→A transformation at δ̇/LG =−10−4 s−1. Left:
martensitic fraction; right: temperature.

the duration of the loading phase, they are sharp and straight, with an inclination angle ranging from 55 ◦

to 65 ◦ to the vertical axis. Only occasionally will one or two fingers develop at the front. This can be
explained by noticing that the lateral deflection developed in each front compensate the lateral deflection
in another front, and therefore the sharply inclined fronts can survive without branching and developing
crossing fingers.

An interesting feature of the stress-strain response in Figure 8 is the stress-relaxation during the pause
between loading and unloading, which can be seen in both the simulation and experimental results. This
stress-relaxation is caused by the phase transformation due to the temperature decrease during the pause
period [Pieczyska et al. 2006b]. 
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Figure 8. Pseudoelastic response of NiTi strip at δ̇/LG = 10−3 s−1. Experimental data
are from Shaw and Kyriakides [1997a].
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Figure 9. Sequence of events during forward transformation at δ̇/LG = 10−3 s−1. Left:
martensitic fraction; right: temperature.
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Figure 10. Sequence of events during reverse transformation at δ̇/LG = −10−3 s−1.
Left: martensitic fraction; right: temperature.

Unlike the low strain rate case, the transformation fronts during unloading at this moderate strain rate
are mostly straight, with an inclination between 54 ◦ and 62 ◦. The fronts emanating from the sample
ends, however, are initially fingered and gradually become straight as they approach the middle fronts.

The temperature distributions during the forward transformation agree with the measurements of Shaw
and Kyriakides [1997a]. However, as in the previous simulation, the predicted temperatures exhibit a
much larger temperature drop (−13◦C) during the reverse transformation as compared to the experiments
(−5◦C). This large deviation from the experimental measurements suggests that the stress-free enthalpy
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Figure 11. Simulated pseudoelastic response of NiTi strip at various elongation rates.

change during the reverse transformation (1hM→A) must be substantially smaller than its counterpart
during the forward transformation. The DSC measurements reported in Shaw [2000], however, do not
show such a large difference. Further investigation is needed to clarify this issue.

3D. Simulation of loading-unloading at high strain rate. The simulation was performed for a high
strain rate beyond the loading rates applied in the experiments of Shaw and Kyriakides [1997a]. The
elongation rate in this case was δ̇/LG = 5× 10−3 s−1, which is five times faster than the moderate strain
rate case. The loading was stopped at δ/LG = 7.65%, followed by a 5 minute hold and subsequent
unloading. The predicted nominal stress-strain response at this rate is compared to those at the low and
moderate strain rates in Figure 11. The evolution of the phase transformations and temperature during
loading and unloading are shown in Figures 12 and 13, respectively.

Similar to previous cases, the first nucleation event occurs at the top end of the gauge section where the
geometric imperfection is located. Shortly after that, 7 narrow bands, some parallel and some opposing
each other, are nucleated almost simultaneously in the gauge section. The number of nucleation events
in this case is substantially larger than those observed in the previous two cases.

Figure 11 indicates that the change in the nominal stress-strain response with strain rate does not
exhibit a linear trend. The difference between the stress-strain curves at the low and moderate strain
rates is more pronounced than the difference between those at the moderate and high strain rates. As
explained earlier, the increase or decrease in stress is caused by the increase or decrease in the temperature
of transformation fronts. The magnitude of temperature variation at a front depends on the rate of
transformation, which is proportional to the speed at which the transformation front propagates. On
the other hand, the propagation speed decreases with the number of coexisting transformation fronts.
Consequently, the increase of the transformation front temperature in the high strain rate case is hampered
by the increase in the number of transformation fronts, which in turn results in a relatively small increase
in the nominal stress.

By increasing the elongation rate, it is seen that the transformation fronts become even sharper, and
emanating fingers disappear during the reverse transformation. This is due to the fact that the number
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%0.1Lδ G = %6.6Lδ G =
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Figure 12. Sequence of events during forward transformation at δ̇/LG = 5× 10−3 s−1.
Left: martensitic fraction; right: temperature.
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Figure 13. Sequence of events during reverse transformation at δ̇/LG =−5× 10−3 s−1.
Left: martensitic fraction; right: temperature.

of nucleation events increases by an increase in the strain rate. Concurrent transformation fronts help
to maintain the overall straightness of the sample by cancelling each other. Hence, the sharp inclined
transformation fronts survive for long periods before finally merging.

3E. Effect of boundary conditions. When performing uniaxial tension tests, it is important to minimize
grip misalignment in order to reduce the out-of-axis loading. However, in practice, a pure uniaxial test
may be difficult to achieve. For most materials which exhibit stable mechanical behavior, the small
variation in loading conditions does not usually affect the observed behavior. But it is suspected that the
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transformation behavior of NiTi samples undergoing uniaxial tensile tests may be sensitive due to the
instability of the mechanical response. The dog-bone simulation has been used to evaluate the possible
effects of misalignment on the transformation behavior. A lateral misalignment of 0.35 mm was applied
to the lower end of the sample shown in Figure 1. The new displacement boundary conditions are now

u|x=0 = 0, v|x=0,y=0 = 0.35 mm

u|x=L0= δ, v|x=L0,y=0 = 0.
(9)

All other boundary conditions were applied as previously described. The simulations for the low
and moderate strain rate conditions were repeated with new boundary conditions. The overall force-
displacement response, the number of transformation fronts, and distribution of temperature were not
affected by the new boundary conditions in any of the simulations. The only major change was observed
in the morphology of the transformation fronts during the reverse transformation, especially at the low
strain rate. Figure 14 shows the evolution of the reverse transformation in this case.

The two transformation fronts in Figure 14 become sharp and straight shortly after they exit the
tapered ends of the specimen. As explained earlier, a straight inclined front tends to increase the amount
of lateral deflection, which in turn helps to compensate for the misalignment of specimen ends. During
the forward transformation, the large axial load acts as a restorative force opposing the growth of lateral
deflection; thus the straight inclined fronts eventually convert to criss-cross fronts. During the reverse
transformation, the transformation proceeds at a much smaller axial load, and therefore a larger amount
of lateral deflection can exist. The kinking of the specimen due to lateral deflection is visible in Figure
14, which can also be observed in the experiments of Shaw and Kyriakides [1997a].

A (γ =0) M (γ =1) 

%2.5Lδ G = %4.0Lδ G =

Figure 14. Transformation behavior of the specimen with misaligned grips during re-
verse transformation at δ̇/LG =−10−4 s−1.
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4. Summary and conclusions

A numerical study of the nucleation and propagation of transformation bands during unstable pseudoelas-
tic behavior of NiTi dog-bone samples has been presented. A multidimensional macroscopic constitutive
model of SMA derived based on the deformation theory of plasticity was implemented within a two-
dimensional finite element model to simulate the material response. Unlike similar numerical analyses
in the past, the present model is able to capture the localization of transformation during unloading,
as well as loading. The constitutive model was calibrated based on isothermal quasi-static uniaxial
pseudoelastic experiments available in the literature. The thermomechanical coupling that occurs during
the transformation, and the effect of loading rate on the overall mechanical response and evolution of a
localized deformation were successfully simulated both during the forward and reverse transformations.
The basic features of transformation front morphology and its evolution during forward and reverse
transformations were also captured by the numerical analysis.

The following conclusions can be drawn based on the analysis presented in this paper:

(1) The current macromechanical constitutive model’s ability to correctly describe the forward and
reverse transformations verifies that the continuum-level phenomena are the major players in the
nucleation and propagation of martensitic transformation and its reverse transformation in NiTi
shape memory alloys, regardless of the detailed microstructural root of the material instability.

(2) The comparison between the calculated temperature drop during reverse transformation and experi-
mental measurements clearly indicate that the zero-stress enthalpy change (stress-free latent heat) of
the forward transformation must be greater than that of the reverse transformation. This conclusion,
however, does not agree with the DSC measurements. Further experimental and theoretical analysis
is required to clarify this difference.

(3) The number of propagating transformation fronts is an important factor in determining the overall
mechanical response of the material in nonisothermal conditions. The number of coexisting trans-
formation fronts influences the local variations of temperature at individual fronts, which in turn
affects the overall pseudoelastic response.

(4) A small misalignment in the loading axis during uniaxial loading-unloading of a NiTi sample can
dramatically affect the shape of transformation fronts during the reverse transformation. This is due
to the lower stress level during the reverse transformation as compared to the forward transformation,
which allows the specimen to develop kinks along its span.

The present methodology forms the basis of an analytical tool for use in analyzing SMA components
subjected to various thermomechanical loading conditions within the unstable pseudoelastic regime.
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ELASTODYNAMIC RECIPROCITY RELATIONS FOR WAVE SCATTERING BY
FLAWS IN FIBER-REINFORCED COMPOSITE PLATES

WARNA KARUNASENA

Due to light weight, high performance, and increased service life, fiber-reinforced composite materials
are receiving wide attention as an advanced material in many branches of engineering. Structural in-
tegrity of composite structures is affected by the presence of flaws such as cracks and delaminations
in the composite material. In this paper, elastodynamic reciprocity relations are developed for wave
scattering by flaws, when guided waves are allowed to propagate in fiber-reinforced composite plates.
These relations are useful for checking the accuracy of the numerical solution for the scattered wave
field in ultrasonic nondestructive evaluation of flaws in composite plate-like structural elements. The
classical elastodynamic reciprocity theorem is used to derive simple reciprocity relations for reflected
and transmitted wave amplitudes and the corresponding energies associated with the wave modes in a
plate with an arbitrary stacking sequence. The derived reciprocity relations are used to check the accuracy
of the numerical solution for several example scattering problems.

1. Introduction

In the last two decades, fiber-reinforced composite materials, specially fiber-reinforced plastics (abbre-
viated as FRPs), have been receiving wide attention in aerospace, civil, and mechanical engineering
applications due to their useful properties such as light weight, high strength, corrosion resistance, and
long term durability. A state-of-the-art-review of FRP composites for construction applications can be
found in [Bakis et al. 2002]. It is well known that structural integrity of facilities made from FRPs are
severely affected by flaws such as cracks and delaminations developed within the FRP part of the structure.
Guided elastic waves in plate-like composite parts possess characteristics that make them particularly
useful for application to the nondestructive evaluation of flaws in composite structures. When excited at
a particular location in a plate, guided waves can travel long distances along the plate, and when they
meet a flaw along their path, the waves scatter. The scattered wave, which can travel long distances
along the plate, will carry information about the size and location of the flaw, thus providing an ultra-
sonic nondestructive means of inspection of an otherwise inaccessible area of the structure. Ultrasonic
nondestructive evaluation methods rely heavily on the solution to the problem of wave scattering at a
flaw.

Obtaining closed-form solutions to even simple wave scattering problems in composite plates is
impractical if not impossible. Numerical methods for obtaining a solution to the scattered wave field
are quite intricate and complicated, and as a result, the accuracy of a numerically obtained solution is
questionable. One way of to overcome this problem is to have some indicators, based on sound theories,

Keywords: reciprocity relations, wave scattering, composite plates, cracks, delaminations, finite elements, reflection and
transmission coefficients.
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to check the accuracy of the numerical solution. Two indicators used in the past are the satisfaction of
elastodynamic reciprocity relations and the principle of energy conservation.

Chimenti [1997] has published a comprehensive review of guided waves in composite plates and their
use for nondestructive material characterization. Datta [2000] provided a detailed review of the theory
of guided waves in composite plates and shells. Although a vast body of work on guided ultrasonic wave
propagation in plates and shells now exists, relatively few studies have dealt with scattering of these waves
by cracks and delaminations. Moreover, these few studies have been mostly confined to the problems
of horizontally polarized shear (SH) waves and plane strain (two-dimensional) waves. The author and
his coworkers [Karunasena et al. 1991b] have investigated the two-dimensional wave scattering by a
symmetric normal surface-breaking crack in a cross-ply laminated plate by using a hybrid method which
combines the finite element method with the wave function expansion procedure. In this work, the
authors have used the satisfaction of the reciprocity relations and the principle of energy conservation as
checks for accuracy. The two checks are complementary to one other.

Recently, Karunasena [2004] extended the hybrid method to provide a model analysis of the scatter-
ing of a guided wave obliquely incident on a long, symmetric, surface-breaking crack in a composite
plate. The solution to this problem is the first step towards analyzing the general three-dimensional
scattering in a composite plate. As mentioned in the previous paragraph for simple wave scattering
problems, satisfaction of the reciprocity relations can be used as one of the two complementary checks
for assessing the accuracy of the more complicated oblique wave scattering problem. The focus of this
paper is to present the derivation of elastodynamic reciprocity relations for the scattering problem of
a guided wave incident obliquely on a long flaw in a composite plate. The analysis is presented for
a plate with an arbitrary stacking sequence where each ply can have an arbitrary fiber direction with
respect to the global coordinate system. Numerical results for reciprocity relations are provided for
four special cases: (i) scattering by a symmetric normal edge crack in a unidirectional, fiber-reinforced,
homogeneous, graphite-epoxy composite plate, (ii) scattering by a symmetric normal edge crack in an
8-layer graphite-epoxy cross-ply laminated plate, (iii) scattering by a thin planar crack located at the
fixed end of a homogeneous isotropic plate, and (iv) scattering by a thin planar crack located at the fixed
end of a unidirectional fiber-reinforced composite plate.

2. Formulation

2.1. Scattering problem. Time harmonic wave scattering of a guided plate wave incident obliquely on
a flaw in a composite plate as shown in Figure 1 is considered. The composite material in the plate is
uniaxially fiber-reinforced within each layer (or ply or lamina) and possibly laminated, with each ply
having an arbitrary fiber direction with respect to the global x-direction. Each layer lies on a plane
parallel to the x-y plane. It is assumed that all layers of the plate have equal thickness with transversely
isotropic elastic properties. The flaw is located at x = 0 and is assumed to be very long (in comparison
to the plate thickness) in y-direction. It has a constant cross section in x-z plane. It is assumed that
two faces of the plate z = 0 and z = H are stress free. Also, the flaw surface is assumed to be open
with zero traction. Since the direction of the flaw (that is, the y-direction in this case), in general, is not
known a priori, it is not always possible to excite the incident wave in the x-direction. Therefore, it is
necessary to consider the general case where the incident wave is propagating at an arbitrary angle to
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Figure 1. Geometry of the problem.

the x-direction, and the fiber direction is also at an arbitrary angle to global x-direction. Let the incident
wave be a guided plate wave mode traveling at a direction making an angle 90◦−φin with the y-z plane,
with fibers at an angle θ to the x-direction as shown in Figure 2.

When the incident wave mode strikes the flaw, mode conversion will happen and a scattered field
consisting of reflected and transmitted plate wave modes will be generated. The aim of this work is to
numerically quantify this scattered field and derive reciprocity relations applicable to converted modes
for the purpose of checking the accuracy of the numerical solution for the scattered wave field. In general,
the incident and the scattered wave field will have all three displacement components in the x , y, and
z directions. Let u(x, y, z, t), v(x, y, z, t), and w(x, y, z, t) denote the displacement quantities in x , y,
and z directions, respectively. Here t denotes time.

Figure 2. Plan view of a typical lamina (layer) showing fiber orientation and wave normals.
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2.2. Solution for scattering problem. We adopt the hybrid method described in [Karunasena et al. 1991b;
Karunasena 2004] for solving this scattering problem. The hybrid method combines finite element for-
mulation in a bounded interior region of the plate with a wave function expansion representation in the
exterior region. The regions are connected along vertical boundaries B+ at x = x+, and B− at x = x−

as shown in Figure 1. Let κ be the wave number of the incident wave in the direction of propagation.
Thus, κ should be one of the admissible real roots of the dispersion equation for off-axis propagation.
Since the flaw extends to infinity in the y-direction, the scattered field must have the same wave number
in the y-direction as the incident field. Thus, each of the scattered wave modes will have a constant
wave number η0 (= κ Sinφin) in the negative y direction. Therefore, for time-harmonic waves, y and t
variation can be factored out as

u(x, y, z, t)
v(x, y, z, t)
w(x, y, z, t)

=


û(x, z)
v̂(x, z)
ŵ(x, z)

 exp[− j (η0 y+ωt)], (1)

where ω is the circular frequency and j =
√
−1.

The procedure for finite element formulation for the interior region R is very similar to that for the
plane strain case given in [Karunasena et al. 1991b]. The finite element representation of the interior
region should include singular elements at crack tips if the flaw considered is a crack or a delamination.
The standard discretization process in the finite element method leads to

δ{q̄}T [S]{q}− δ{q̄B}
T
{PB} = 0, (2)

where
[S] = [K ] −ω2

[M], (3)

in which [K ] and [M] are, respectively, the global stiffness and mass matrices of the interior region, {q}
is the nodal displacement vector corresponding to interior nodes, and {qB} and {PB} are, respectively,
the nodal displacement vector and the interaction force vector corresponding to the boundary nodes. δ
implies first variation and overbar denotes complex conjugate.

The wave field in the exterior regions, R+ and R−, is the superposition of the wave fields due to
the incident wave and the scattered waves. Using the wave function expansion procedure, the scattered
wave field can be expressed in terms of the wave functions (that is, wave modes) supported by the free
infinite composite plate with no flaws, and the unknown reflected and transmitted wave amplitudes. The
theoretical details of the methodology adopted to obtain wave functions can be found in our work reported
in [Karunasena et al. 1991c]. The procedure starts with dividing each layer into several sublayers. The
exact dispersion relation of the infinite plate is developed using the propagator matrices as

f (ω, k)= 0, (4)

where k denotes the x-direction wave number of a typical wave mode. It is well known that the plate wave
modes are dispersive, and at any given frequency ω there are only a finite number of propagating modes
that carry energy away from a source of excitation or upon scattering from an inhomogeneity or flaw.
However, in order to satisfy the boundary conditions at the source or at a boundary of discontinuity, it is
necessary to include also the nonpropagating modes in the modal representation of the displacement field.
The wave numbers (k) for the propagating and nonpropagating modes at a given frequency of excitation
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can be found by solving the dispersion equation, Equation (4), for the plate. For each wave number k,
the corresponding displacement wave function (which is a vector containing the x and z displacements
at each sublayer level) can be determined using the propagator matrix for each sublayer. This has been
discussed in the references cited above.

The solution to the scattering problem is obtained by imposing the continuity of total (incident plus
scattered) displacements and tractions on the boundaries. This is achieved by substituting {qB} and {PB}

from the wave function expansion into Equation (2). This leads to a system of linear equations that can
be solved for the unknown reflected wave amplitudes (A+m) and transmitted amplitudes (A−m). These
amplitudes are then used to obtain boundary nodal displacements and, in turn, to obtain interior nodal
displacements. The reflection coefficient Rpm of the mth reflected mode, and transmission coefficient
Tpm of the mth transmitted mode, due to the pth incident wave mode, are given by

Rpm = A+m/Ain
p , Tpm =

{
A−m/Ain

p , for m 6= p

(Ain
p + A−m)/Ain

p , for m = p
(5)

in which Ain
p is the amplitude of the incident wave mode. At this stage, numerical solution of all displace-

ment and stress components for the scattered field and, hence for total field, is fully defined. Because the
solution process involves numerous intricate computational steps, to check the accuracy of the numerical
solution one can test satisfaction of the elastodynamic reciprocity relations developed in the next section.

2.3. Reciprocity relations. The reciprocity relations are derived from the elastodynamic reciprocity the-
orem [Achenbach 1973; Auld 1973], which may be written using the usual tensor notation in the absence
of body forces, as ∮

S
(u B

j σ
A
jk − u A

j σ
B
jk)nkd S = 0, j, k = x, y, z, (6)

where u A
j and σ A

jk represent the displacements and stresses corresponding to elastodynamic state A,
while u B

j and σ B
jk are the displacements and stresses corresponding to elastodynamic state B in a region

V bounded by a surface S. Wave fields corresponding to both elastodynamic states vary harmonically in
time with circular frequency ω. When writing Equation (6), Einstein’s summation convention of repeated
indices has been assumed to hold, and the displacement components u, v, w, have been represented by
ux , u y , uz , respectively. In order to derive the reciprocity relations, the orthogonality relations among
the wave modes have to be established first.

For convenience in derivation of orthogonality relations, a few notations are introduced first. Let
the wave number pair (kn, ζ0) denote an admissible wave mode propagating in the first quadrant of the
x-y plane in an infinite composite plate with no flaws. Herein, kn represents the positive x direction
wave number and ζ0 (which is fixed) represents the positive y direction wave number as opposed to
the definition of η0 in Equation (1). Note that η0 = −ζ0. In a similar manner, let the wave number
pairs (−k∗n , ζ0), (−kn,−ζ0), and (k∗n ,−ζ0) denote the wave modes corresponding to second, third, and
fourth quadrants of the x-y plane, respectively. It should be mentioned here that if the (kn, ζ0)th wave
mode is an admissible wave mode (of the dispersion relation of the plate), then the (−kn,−ζ0)th wave
mode, which is propagating in the opposite direction, is also an admissible wave mode. Similarly, if the
(k∗n ,−ζ0)th wave mode is admissible, then the (−k∗n , ζ0)th wave mode is also admissible. This point can
be explained by visualizing the configuration of the plate with respect to a new coordinate system that is
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obtained after rotating the x , y axes by 180◦ about the z axis. However, when the (kn, ζ0)th wave mode
is an admissible wave mode, the (kn,−ζ0)th wave mode is not necessarily an admissible wave mode.
Due to this reason, a superscript star (∗) has been introduced to the x-direction wave numbers of wave
modes corresponding to second and fourth quadrants of the x-y plane. Note that the (kn,−ζ0)th wave
mode is admissible when the fibers in each layer are aligned either in the x or y directions. This can be
visualized by considering the mirror image of the plate with respect to the x-z plane.

The orthogonality relations are derived by applying the reciprocity theorem to the closed region V
bounded by planes z = 0, z = H , x = x1, x = x2, y = y1, and y = y2 where x1, x2, y1, and y2 are
coordinates chosen in such a way that x2 > x1 and y2 > y1. State A is taken to be the field due to the
(−k∗n , ζ0)th wave mode, and state B is taken to be the field due to the (k∗m,−ζ0)th wave mode. The wave
fields due to two states can be written as

u A
j → A∗+

−n{u
∗+

−n} exp [ j (−k∗n x + ζ0 y)],

σ A
jk→ A∗+

−n

{
{σ ∗+−nx},

{σ ∗+−ny}

}
exp [ j (−k∗n x + ζ0 y)],

u B
j → A∗−m {u

∗−

m } exp [ j (k∗m x − ζ0 y)],

σ B
jk→ A∗−m

{
{σ ∗−mx }

{σ ∗−my }

}
exp [ j (k∗m x − ζ0 y)],

(7)

where A∗+−n , {u∗+−n}, {σ
∗+

−nx} and {σ ∗+−ny} represent the amplitude, displacement mode shape vector, mode
shape vector of tractions on x face, and the mode shape vector of tractions on y face, respectively, for the
(−k∗n , ζ0)th wave mode. A∗−m , {u∗−m }, {σ

∗−
mx }, and {σ ∗−my } represent the same quantities for the (k∗m,−ζ0)th

wave mode. Application of the elastodynamic reciprocity theorem expressed in mathematical form in
Equation (6) to the region V for states A and B defined in Equation (7) results in{

exp [ j (k∗m − k∗n)x2]− exp [ j (k∗m − k∗n)x1]
}

I
[
(k∗m,−ζ0); (−k∗n , ζ0)

]
= 0, (8)

where the notation I
[
(k∗m,−ζ0); (−k∗n , ζ0)

]
has been used to represent the integral∫ H

0
({u∗−m }

T
{σ ∗+
−nx}− {u

∗+

−n}
T
{σ ∗−mx })dz.

Since x1 and x2 are arbitrary, Equation (8) leads to the orthogonality relation

I
[
(k∗m,−ζ0); (−k∗n , ζ0)

]
= 0 for k∗m 6= k∗n . (9)

It should be noted that the net contributions from the surface integrals in Equation (6) on planes y = y1

and y = y2 amount to zero.
In a similar manner, choosing states A and B as the fields due to (kn, ζ0)th and (−km,−ζ0)th wave

modes, respectively, it can be shown that

I
[
(−km,−ζ0); (kn, ζ0)

]
= 0 for km 6= kn. (10)
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Adopting a similar approach, the following orthogonality relations can be derived:

I
[
(k∗m,−ζ0); (kn, ζ0)

]
= 0, (11)

I
[
(−km,−ζ0); (−k∗n , ζ0)

]
= 0. (12)

In order to derive reciprocity relations, region V is chosen as the region of the plate surrounding the flaw,
and bounded by the planar surfaces z = 0, z = H , x = x3(x3 ≥ x+), x = x4(x4 ≤ x−), y = y1, and y = y2

(where y1 and y2 are arbitrary, and y2 > y1). The reciprocity relations among the reflection coefficients
can be derived from Equation (6) by choosing state A as the total field due to the (−kn,−ζ0)th incident
wave mode, and state B as the total field due to the (k∗p, ζ0)th incident wave mode. Let Rnq and Tnq

denote the reflection and transmission coefficients, respectively, due to the (−kn,−ζ0)th incident wave
mode, and R∗pm and T ∗pm denote the same quantities due to the (−k∗p, ζ0)th incident wave mode. In view
of the orthogonality relations given in Equations (9)–(12), the reciprocity relations become (after some
algebraic manipulations)

R∗pnςn = Rnpς
∗

p, (13)

where

ςn =

∫ H

0
({u+n }

T
{σ−
−nx}− {u

−

−n}
T
{σ+nx})dz, (14a)

ς∗p =

∫ H

0
({u∗−p }

T
{σ ∗−
−px}− {u

∗+

−p}
T
{σ ∗−px })dz. (14b)

In Equation (14), {u+n }, {u
−

−n}, {u
∗−
p }, and {u∗+−p} denote the displacement mode shape vectors correspond-

ing to (kn, ζ0)th, (−kn,−ζ0)th, (k∗p,−ζ0)th, and (−k∗p, ζ0)th wave modes, respectively, in an infinite plate
with no flaw. The corresponding traction mode shape vectors on the x face are denoted by {σ+nx}, {σ

−

−nx},
{σ ∗−px }, and {σ ∗−−px}. It should be noted that the net contributions to the surface integral in Equation (6)
from surfaces y = y1 and y = y2 becomes zero.

Applying the reciprocity theorem to the same region V , with state A as the total field due to the
(kn, ζ0)th incident mode, and state B as the total field due to the (−kp,−ζ0)th incident mode, the
reciprocity relation among the transmission coefficients can be derived as

Tpnςn = Tnpςp, (15)

where ςp is given by Equation (14a) with n replaced by p. When deriving Equation (15), it has been
assumed that the flaw geometry is symmetric with respect to the x = 0 plane. It can be shown that when
the fibers in each layer are either in x or y direction, the reciprocity relation in Equation (13) degenerates
into

Rpnςn = Rnpςp. (16)

It is well known that the scattered field consists of both propagating and evanescent (or nonpropagating)
wave modes. Wave numbers corresponding to propagating modes have only a real part whereas wave
numbers of evanescent modes are in general complex numbers. Reflected and transmitted energies are
carried only by the propagating modes. The time-averaged value of the energy flux associated with
the nth reflected propagating mode through the plate cross section due to the (−kp,−ζ0)th incident
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propagating wave mode is given by

I+pn =
1
2ω|A

in
p |

2
|Rpn|

2(− jςn), 1≤ n ≤ Npr , (17)

where Npr is the number of propagating wave modes in the reflected wave field. For more information
on derivation details of Equation (17), the reader is referred to [Karunasena et al. 1991b]. In a similar
manner, the energy flux of the nth transmitted propagating wave mode and the incident wave mode can
be written, respectively, as

I−pn =
1
2
ω|Ain

p |
2
|Tpn|

2(− jςn), 1≤ n ≤ Npr (18)

I in
p =

1
2
ω|Ain

p |
2(− jςp). (19)

Let E−pn be the proportion of energy of the (−kp,−ζ0)th incident propagating wave mode transferred
into the nth transmitted propagating mode during the scattering process. Then

E−pn =
I−pn

I in
p
= |Tpn|

2 ςn

ςp
. (20)

Similarly, if the incident wave mode is the (−kn,−ζ0)th propagating mode, then the proportion of energy
transferred into the pth transmitted propagating mode can be expressed as

E−np =
I−np

I in
n
= |Tnp|

2ςp

ςn
. (21)

In view of Equations (20) and (21), the reciprocity relation, Equation (15), for transmitted waves simpli-
fies to

E−pn = E−np, (22)

for arbitrary fiber directions in layers. Following a similar procedure, it can be shown that for the reflected
waves the reciprocity relation in Equation (16) reduces to

E+pn = E+np, (23)

when fibers in layers are aligned with the global x , y directions. It is clear from Equations (20) and (21)
that for the numerical computation of energy proportions we need to evaluate ςn in Equation (14a). {u+n }
and {σ+nx} in Equation (14a) can be expressed in components form, respectively, as

{u+n } =


u+xn
u+yn
u+zn

 , {σ+nx} =


σ+xxn
σ+xyn
σ+xzn

 . (24)

It can be shown that {u−−n} and {σ−−nx} are given by

{u−
−n} =


−u+xn
−u+yn
u+zn

 , {σ−
−nx} =


σ+xxn
σ+xyn
−σ+xzn

 . (25)
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Figure 3. Geometry of the flaws for example problems.

In view of Equations (24) and (25), ςn reduces to

ςn = 2
∫ H

0
{u+n }

T
{σ−
−nx}dz. (26)

After the dispersion relation in Equation (4) is solved for a given ω, the components of the displacement
wave function {u−−n} and stress wave function {σ−−nx} for wave mode n at each sublayer interface can be
determined using the propagator matrices. Then the integral in Equation (26) can be approximated as

ςn =−2{Fn}
T
{qn}, (27)

where {qn} is a displacement vector constructed from the displacement components at each sublayer
interface and {Fn} is a force vector constructed using the stress components at each sublayer interface.
Now energy proportion terms in Equations (20) through (23) are fully defined and can be evaluated
numerically using the scattering solution results.

3. Results and discussion

The simplified reciprocity relations derived in the previous section have been used to check the accuracy
of four example scattering problems described below.

Example 1. Scattering by a thin symmetric normal edge crack in a unidirectional fiber-reinforced ho-
mogeneous graphite-epoxy plate. The geometry of the crack is as shown in Figure 3a.

Example 2. Scattering by a thin symmetric normal edge crack in an 8 layer graphite-epoxy plate with
the stacking sequence of 0◦/90◦/0◦/90◦/90◦/0◦/90◦/0◦. The geometry of the crack is the same as that
shown in Figure 3a.

Example 3. Scattering by a thin crack located at the fixed-end of a homogeneous isotropic plate shown
in Figure 3b.

Example 4. Scattering by a thin crack located at the fixed-end of a unidirectional fiber-reinforced homo-
geneous graphite-epoxy plate. The geometry of the crack is same as that shown in Figure 3b.
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Lamina C11 C33 C13 C55

0◦ 160.73 13.92 6.44 7.07
90◦ 13.92 13.92 6.92 3.50

Table 1. Elastic constants of graphite-epoxy lamina (in GPa).

The graphite-epoxy composite material in each layer of plates in Examples 1, 2 and 4 are considered
to be transversely isotropic. The elastic constants (Ci j ) for the transversely isotropic graphite-epoxy
composite material are given in Table 1. More information on the Ci j constants and their relation to the
stiffness matrix in Equation (3), and the procedure for their transformation from fiber direction to global
x , y directions can be found in [Karunasena et al. 1991a]. The Poisson’s ratio for the isotropic material
in Example 3 is taken to be 0.25.

Numerical results from the hybrid method for the magnitudes of the reflection and the transmission
coefficients (|Rpn| and |Tpn|), and proportions of the reflected and the transmitted energies (E+pn and
E−pn) for Example 1 are presented in Table 2. The results correspond to a normalized frequency � (given
by ωH/

(
2
√
(C55/ρ)0 , where ρ is the density of the graphite-epoxy composite) of 2.0 and a normalized

crack length (given by a/(0.5H)) of 0.1 or 0.5 as given in Table 2. In this table, p and n denote the incident
and the scattered wave mode numbers, respectively, and all the incident modes considered are symmetric
modes. It should be noted that due to the symmetry of the problem with respect to the mid-plane of the
plate, the scattered wave field consists of only symmetric or antisymmetric modes depending on whether
the incident mode is a symmetric or an antisymmetric one. It can be seen from this table that the final
form of the reciprocity relations among the proportions of energy as given in Equations (22) and (23)
are satisfied with negligible errors. Also, it is seen that some reflection and transmission coefficients
are quite sensitive to the orientation and depth of the crack, as well as the incident wave mode number.
Although not shown here, our computations showed that coefficients are also sensitive to the incident
mode frequency. Satisfaction of reciprocity relations can be taken as an indication of the accuracy of the
scattering results.

Table 3 shows the scattering results for the 8 layer composite plate in Example 2 at a normalized
frequency of 4 and at a normalized crack length of 0.5. The frequency normalization factor for this
example is the same as that for Example 1. It is clearly seen that the reciprocity relations in Equations (22)
and (23) are satisfied with negligible errors.

The proportion of reflected energy from scattering by the fixed end crack shown in Figure 2b are
reported in Tables 4 and 5. Table 4 discusses the isotropic plate (Example 3) and Table 5 addresses a
uniaxially fiber-reinforced plate (Example 4). Note that minor modifications to the theory presented in
the previous section are required for this problem because the exterior region has only one region which
consists of the reflected wave field. The reciprocity relation in Equation (22) does not apply for this
fixed end crack scattering problem because there is no transmitted field. The reciprocity relation for the
reflected wave modes is given by Equation (23).

For Example 3, the results in Table 4 correspond to a normalized frequency � of 3.5
√

3, where � is
given by ωH/(2

√
µ/ρ), ρ is the density and µ is the shear modulus of the plate. Five different crack
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lengths have been considered. At this frequency (� = 3.5
√

3), the dispersion relation in Equation (4)
has three symmetric propagating modes (denoted as 1S, 2S and 3S in Table 4) and four antisymmetric
modes (usually denoted as 1A, 2A, 3A and 4A). It is seen from Table 4 that the reciprocity relations
among the reflected modes as given in Equation (23) are satisfied with reasonable accuracy for the five
different crack lengths considered. In this table, a normalized crack length of 0.0 and 2.0 represent,
respectively, the full reflection by a fixed end and reflection by a free end (that is, a crack right through
the full thickness of the plate).

For Example 4, the results in Table 5 correspond to a normalized frequency � of 6.0. The frequency
normalization factor for this example is same as that for Example 1. As in Example 3, five different

p kp a/(0.5 H) n E+pn E−pn |Rpn| |Tpn|

1 1.440
0.1

1 0.002 0.993 0.044 0.996

2 0.001 0.001 0.051 0.048

0.5
1 0.009 0.821 0.095 0.906

2 0.127 0.042 0.718 0.409

2 0.324
0.1

1 0.001 0.001 0.012 0.012

2 0.000 0.999 0.011 0.999

0.5
1 0.128 0.041 0.178 0.101

2 0.070 0.760 0.264 0.872

(a) θ = 0◦, φin
= 45◦, η0 = 1.440

1 1.882
0.1

1 0.000 0.998 0.009 0.999

2 0.000 0.000 0.062 0.033

0.5
1 0.002 0.833 0.105 0.913

2 0.081 0.082 1.357 0.632

2 0.813
0.1

1 0.000 0.000 0.014 0.007

2 0.000 1.000 0.009 1.000

0.5
1 0.000 0.082 0.024 0.129

2 0.075 0.842 0.590 0.918

(b) θ = 22.5◦, φin
= 22.5◦, η0 = 0.780

Table 2. Scattering results for Example 1 when �= 2. p and n denote the incident and
scattered wave mode numbers, respectively. Symmetric incident wave modes have been
considered.
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p kp n E+pn E−pn |Rpn| |Tpn|

1 3.362
1 0.706 0.180 0.840 0.424
2 0.007 0.108 0.143 0.571

2 0.662
1 0.007 0.108 0.047 0.189
2 0.543 0.340 0.737 0.583

Table 3. Scattering results for Example 2 when � = 4, a/(0.5 H) = 0.5, θ for
0◦ lamina = 0◦, φin

= 45◦, and η0 = 3.362.

crack lengths have been considered. At � equal to 6.0, the dispersion relation for the uniaxially fiber-
reinforced plate has three symmetric propagating modes (denoted as 1S, 2S and 3S in Table 5) and four
antisymmetric modes (denoted as 1A, 2A, 3A and 4A). As in the previous example of scattering problems
considered in this paper, it is seen from Table 5 that the reciprocity relations among the proportions of
energy in reflected modes are satisfied with reasonable accuracy for all crack lengths considered.

4. Conclusion

By using the classical elastodynamic reciprocity theorem, simplified forms of elastodynamic reciprocity
relations applicable to guided wave scattering by flaws in fiber-reinforced composite plates have been
developed in this work. These relations are useful when developing ultrasonic nondestructive assessment
techniques for flaw characterization in composite structures. A hybrid method combining the finite
element method with a wave function expansion procedure has been used to solve the wave scattering
problem. The derivation has been presented for a plate with an arbitrary stacking sequence where each
ply can have an arbitrary fiber direction. As the scattered field is expressed in wave function expansion,
an arbitrary number of layers and thicknesses can be studied without appreciable increase in computa-
tional time. Numerical results verifying the derived reciprocity relations have been presented for four
example scattering problems – two of them involving scattering by a symmetric normal edge crack in a
unidirectional fiber-reinforced composite plate and in an 8-layer cross-ply plate, and other two involving
scattering by a fixed-end crack in an isotropic plate and in a unidirectional fiber-reinforced composite
plate.
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p, n E+pn a/(0.5 H)
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p = 1= 1S, n = 5= 2A E+15 0.000 0.030 0.090 0.074 0.000
P = 5= 2A, n = 1= 1S E+51 0.000 0.030 0.090 0.075 0.000

p = 1= 1S, n = 6= 3A E+16 0.000 0.129 0.167 0.213 0.000
P = 6= 3A, n = 1= 1S E+61 0.000 0.129 0.168 0.213 0.000

p = 1= 1S, n = 7= 4A E+17 0.000 0.202 0.368 0.275 0.000
P = 7= 4A, n = 1= 1S E+71 0.000 0.203 0.369 0.277 0.000
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P = 7= 4A, n = 2= 2S E+72 0.000 0.018 0.080 0.075 0.000

p = 3= 3S, n = 4= 1A E+34 0.000 0.027 0.006 0.032 0.000
P = 4= 1A, n = 3= 3S E+43 0.000 0.027 0.006 0.032 0.000

p = 3= 3S, n = 5= 2A E+35 0.000 0.015 0.366 0.019 0.000
P = 5= 2A, n = 3= 3S E+53 0.000 0.015 0.364 0.019 0.000

p = 3= 3S, n = 6= 3A E+36 0.000 0.068 0.020 0.094 0.000
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p = 3= 3S, n = 7= 4A E+37 0.000 0.007 0.187 0.008 0.000
P = 7= 4A, n = 3= 3S E+73 0.000 0.007 0.187 0.008 0.000

Table 4. Reflected energy proportions E+pn for Example 3 for different crack lengths
when�= 3.5

√
3, θ = 0◦, φin

= 0◦, η0= 0. S and A denote symmetric and antisymmetric
modes, respectively.
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Table 4 (cont’d)

p = 4= 1A, n = 5= 2A E+45 0.063 0.136 0.244 0.407 0.069
P = 5= 2A, n = 4= 1A E+54 0.063 0.136 0.245 0.407 0.070

p = 4= 1A, n = 6= 3A E+46 0.051 0.020 0.074 0.165 0.348
P = 6= 3A, n = 4= 1A E+64 0.051 0.020 0.074 0.163 0.348

p = 4= 1A, n = 7= 4A E+47 0.132 0.010 0.169 0.181 0.093
P = 7= 4A, n = 4= 1A E+74 0.133 0.010 0.169 0.178 0.093

p = 5= 2A, n = 6= 3A E+56 0.159 0.039 0.011 0.002 0.017
P = 6= 3A, n = 5= 2A E+65 0.158 0.039 0.011 0.002 0.017

p = 5= 2A, n = 7= 4A E+57 0.766 0.568 0.084 0.425 0.900
P = 7= 4A, n = 5= 2A E+75 0.766 0.568 0.083 0.421 0.897

p = 6= 3A, n = 7= 4A E+67 0.077 0.116 0.026 0.012 0.005
P = 7= 4A, n = 6= 3A E+76 0.078 0.116 0.026 0.013 0.005

Table 4. (Continued from previous page.)
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p, n E+pn a/(0.5 H)
0.0 0.5 1.0 1.5 2.0

p = 1= 1S, n = 2= 2S E+12 0.000 0.033 0.001 0.013 0.014
P = 2= 2S, n = 1= 1S E+21 0.000 0.032 0.001 0.014 0.014

p = 1= 1S, n = 3= 3S E+13 0.014 0.001 0.038 0.006 0.219
P = 3= 3S, n = 1= 1S E+31 0.014 0.001 0.040 0.006 0.224

p = 1= 1S, n = 4= 1A E+14 0.000 0.556 0.567 0.506 0.000
P = 4= 1A, n = 1= 1S E+41 0.000 0.556 0.557 0.513 0.000

p = 1= 1S, n = 5= 2A E+15 0.000 0.288 0.170 0.174 0.000
P = 5= 2A, n = 1= 1S E+51 0.000 0.283 0.176 0.173 0.000

p = 1= 1S, n = 6= 3A E+16 0.000 0.023 0.004 0.020 0.000
P = 6= 3A, n = 1= 1S E+61 0.000 0.024 0.004 0.021 0.000

p = 1= 1S, n = 7= 4A E+17 0.000 0.050 0.158 0.226 0.000
P = 7= 4A, n = 1= 1S E+71 0.000 0.051 0.163 0.230 0.000

p = 2= 2S, n = 3= 3S E+23 0.004 0.151 0.006 0.138 0.009
P = 3= 3S, n = 2= 2S E+32 0.004 0.150 0.006 0.137 0.009

p = 2= 2S, n = 4= 1A E+24 0.000 0.020 0.006 0.016 0.000
P = 4= 1A, n = 2= 2S E+42 0.000 0.020 0.006 0.016 0.000

p = 2= 2S, n = 5= 2A E+25 0.000 0.004 0.027 0.007 0.000
P = 5= 2A, n = 2= 2S E+52 0.000 0.004 0.027 0.007 0.000

p = 2= 2S, n = 6= 3A E+26 0.000 0.631 0.916 0.729 0.000
P = 6= 3A, n = 2= 2S E+62 0.000 0.631 0.916 0.728 0.000

p = 2= 2S, n = 7= 4A E+27 0.000 0.078 0.044 0.049 0.000
P = 7= 4A, n = 2= 2S E+72 0.000 0.078 0.044 0.048 0.000

p = 3= 3S, n = 4= 1A E+34 0.000 0.018 0.019 0.026 0.000
P = 4= 1A, n = 3= 3S E+43 0.000 0.017 0.017 0.027 0.000

p = 3= 3S, n = 5= 2A E+35 0.000 0.006 0.213 0.011 0.000
P = 5= 2A, n = 3= 3S E+53 0.000 0.006 0.212 0.011 0.000

p = 3= 3S, n = 6= 3A E+36 0.000 0.188 0.055 0.147 0.000
P = 6= 3A, n = 3= 3S E+63 0.000 0.189 0.056 0.148 0.000

p = 3= 3S, n = 7= 4A E+37 0.000 0.027 0.598 0.021 0.000
P = 7= 4A, n = 3= 3S E+73 0.000 0.027 0.596 0.021 0.000

Table 5. Reflected energy proportions E+pn for Example 4 for different crack lengths
when �= 6.0, θ = 0◦, φin

= 0◦, η0 = 0. S and A denote symmetric and antisymmetric
modes, respectively.
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Table 5 (cont’d)

p = 4= 1A, n = 5= 2A E+45 0.003 0.219 0.266 0.280 0.029
P = 5= 2A, n = 4= 1A E+54 0.003 0.218 0.267 0.278 0.029

p = 4= 1A, n = 6= 3A E+46 0.001 0.010 0.015 0.009 0.054
P = 6= 3A, n = 4= 1A E+64 0.001 0.010 0.015 0.009 0.054

p = 4= 1A, n = 7= 4A E+47 0.003 0.021 0.072 0.001 0.064
P = 7= 4A, n = 4= 1A E+74 0.003 0.021 0.075 0.001 0.064

p = 5= 2A, n = 6= 3A E+56 0.026 0.041 0.009 0.043 0.016
P = 6= 3A, n = 5= 2A E+65 0.026 0.040 0.009 0.043 0.016

p = 5= 2A, n = 7= 4A E+57 0.049 0.020 0.119 0.387 0.451
P = 7= 4A, n = 5= 2A E+75 0.051 0.021 0.119 0.389 0.452

p = 6= 3A, n = 7= 4A E+67 0.000 0.093 0.000 0.046 0.000
P = 7= 4A, n = 6= 3A E+76 0.000 0.093 0.000 0.045 0.000

Table 5. (Continued from previous page.)
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SIMULATIONS OF MICRO AND NANOINDENTATIONS

ZISHUN LIU, SOMSAK SWADDIWUDHIPONG AND QINGXIANG PEI

The paper reviews recent research and developments on simulated indentation tests at micron and nano-
meter levels. For indentation at the maximum depth of several microns or hundreds of nanometer, classi-
cal continuum plasticity framework incorporating Taylor dislocation model via strain gradient plasticity
embedded in the constitutive equation may be adopted to take care of the size effect. As higher-order
stress components and higher-order continuity requirements can be made redundant, only C0 finite ele-
ments incorporating strain gradient plasticity have to be formulated. This results in the significant ease
and convenience in finite element implementation requiring minimal additional computational effort and
resources. Alternatively, when the indentation depth is lower at nanometer level, either a large scale
molecular dynamics model or a hybrid finite element and molecular dynamics simulation has to be
adopted. The article includes certain results from the former approach on nanoindentation based on
combination of both Morse potential and embedded-atom model potential.

1. Introduction

Numerous experiments including indentation tests [Stelmashenko et al. 1993], twisting of copper wires
of micron diameters [Fleck and Hutchinson 1993], fracture toughness tests [Elssner et al. 1994] and
microbend tests [Haque and Saif 2003] have demonstrated a strong size effect when the material and
deformation length scales are of the same order at micron and submicron levels. Classical continuum
mechanics ceases to be valid at this range of deformation. Based on the Taylor [1934] dislocation model
(see also [Toupin 1962]), Fleck et al. [1994] proposed the phenomenological theory of strain gradient
plasticity. Gao et al. [1999] and Huang et al. [2000] presented a multiscale framework for constructing the
mesoscale constitutive laws taking into account the microscale plasticity based on Taylor’s work harden-
ing relation. Higher-order stress components, additional governing equations and boundary conditions
are required in the formulation, requiring significantly greater formulation and computational efforts.
Huang et al. [2004] proposed the conventional mechanism-based strain gradient (CMSG) plasticity theory
without involving the higher-order stress components. The approach is appealing as only C0 continuity is
required in the finite element formulation. The concept was adopted by Swaddiwudhipong et al. [2005;
2006a; 2006b] to establish solid, axisymmetric and plane finite elements to simulate Berkovich and
conical indentation tests at micron and submicron levels and fracture behavior of elastoplastic materials
with strain hardening. In this study, both C0 solid and axisymmetric finite elements are adopted to
demonstrate the necessity of incorporating strain gradient plasticity in the simulation of Berkovich and
conical indentation tests at submicron level respectively. The effect of friction at contact surfaces is

Keywords: C0 finite element, indentation test, molecular dynamics simulation, size effect, strain gradient plasticity.
The supports from the Singapore Ministry of Education’s AcRF Tier 1 Funds through grants R-214-000-165-112 and R-214-
000-186-112 are greatly appreciated.
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also considered in the present numerical model. The results obtained from finite element analyses with
and without the strain gradient plasticity including both friction and smooth surfaces are presented and
compared.

Molecular dynamics (MD) model is effective in the simulation of behavior of nanostrucures, offering
the insights into the microscopic properties of materials. MD simulation has recently been used to
investigate various aspects of nanomechanics of materials including wear, fracture and characterization
of materials at nanometer level. It has been shown that MD simulations can provide a qualitative analysis
of discrete plasticity events that are consistent with experimental observations of nanoindentation in
single crystals. The approach has become a favorite tool for investigating the physical properties of nano
materials at an atomic level [Fang et al. 2001; 2006]. In this study, nanoindentation experiments are
simulated using MD simulation adopting embedded-atom model (EAM) potential for target materials
and Morse potential for both diamond indenter and interaction between target and indenter materials.
The paper covers the mechanisms of nanoindentation on single crystalline substrate using MD simulation.
The large scale model is developed for substrate materials in the present MD simulation. Compared with
results reported earlier in the literature, the values presented in this article should be less affected by
boundary influence.

2. Strain gradient plasticity

The flow stress with Taylor hardening model and the material length scale l for typical values of M = 3.06
and r̄ = 1.90 can be expressed as

σt = σy

√
f 2(ε p)+ lηp, l = r̄b

(Mαµ
σy

)2
= 18b

(αµ
σy

)2
,

where σy is the yield stress, f (ε p) represents the stress and plastic strain relation in uniaxial tension, ηp

implies the effective plastic strain gradient, r̄ is the Nye [1953] factor, M is the Taylor factor, b indicates
the magnitude of Burgers vector, µ represents the shear modulus and α is an empirical constant, the value
of which varies from 0.2–0.5 depending on the material structures. Based on models of geometrically
necessary dislocations associated with the in-plane bending, the torsion of a rod and the spherical or
axisymmetric void growth, Gao et al. [1999] expressed the effective plastic strain gradient as

ηp
=

1
2

√
η

p
i jkη

p
i jk ,

where ηp
i jk = ε

p
ik, j + ε

p
jk,i − ε

p
i j,k , with the comma (,) in subscripts indicating the differentiation with

respect to the index which follows. ε p
i j is the plastic strain tensor ε p

i j =
∫
ε̇

p
i j dt , where the dot in super-

scripts implies time derivative. Huang et al. [2004] showed that the constitutive relation for materials
with strain gradient plasticity can be expressed as

σ̇i j = K ε̇kkδi j + 2µ
(
ε̇′i j −

3ε̇
2σe

( σe

σ f

)m
σ ′i j

)
, (2-1)

where σe is the von Mises effective stress and m is the rate-sensitive exponent. Equation (2-1) degenerates
to the constitutive relation for materials with power law hardening when m is large, say m ≥ 20 as
shown earlier in [Huang et al. 2004]. It is interesting to note that higher-order stress components are not
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explicitly present in the constitutive relation (2-1) though strain gradient plasticity has been incorporated.
This approach facilitates the adoption of conventional continuum mechanic algorithms which are readily
available to be employed with minor alterations. Hence, the order of continuity requirement for the finite
element model can be reduced from C1 to C0 level. This provides a substantial simplification in the
formulation and implementation of this powerful numerical tool, resulting in minimal additional compu-
tational resources and effort. Though higher-order stress theory is normally required in mechanism-based
strain gradient (MSG) plasticity, it was shown in [Shi et al. 2001; Huang et al. 2004] that the results based
on CMSG plasticity are practically identical to those on MSG in most part of the domain except in the thin
layers near the boundary. As the CMSG framework is much less demanding than the higher-order stress
theory, the former serves as an efficient alternative approach producing results without any significant
loss of accuracy.

3. Effective strain gradient

The strain gradient tensor of third-order η and the displacement vector u are expressed as

η =∇∇u , u =
∑

i

ui ẽi ,

where ẽi is the unit vector in the i-th direction. The expressions for effective strain gradient plasticity in
Cartesian coordinate system are standard and hence not given herein. The components for axisymmetric
case were derived in [Swaddiwudhipong et al. 2006b]:

η′rrr =
1
2ηrrr −

1
2(ηr tt + ηr zz)=

1
2 urcrr −

1
2

((urcr
r
−

urr
r2

)
+ uzczr

)
,

η′rr z = ηrr z = uzcrr , η′zzr = ηzzr = urczz ,

η′r tt = η
′

tr t =
3
4ηr tt −

1
4(ηrrr + ηr zz)=

3
4

(urcr
r
−

urr
r2

)
−

1
4(urcrr + uzczr ) ,

η′r zr = η
′

zrr =
3
4ηr zr −

1
4ηztt + ηzzz)=

3
4 urczr −

1
4

(urcz
r
+ uzczz

)
,

η′r zz = η
′

zr z =
3
4ηr zz −

1
4(ηrrr + ηr tt)=

3
4 uzczr −

1
4

(
urcrr +

(urcr
r
−

urr
r2

))
,

η′t tr = ηt tr =
urcr

r
−

urr
r2 , η′t t z = ηt t z =

uzcr
r
,

η′t zt = η
′

ztt =
3
4ηt zt −

1
4(ηzrr + ηzzz)=

3
4

urcz
r
−

1
4(urcr z + uzczz) ,

η′zzz =
1
2ηzzz −

1
2(ηzrr + ηztt)=

1
2 uzczz −

1
2

(
urcr z +

urcz
r

)
,

where subscript r , θ and z denote orthogonal cylindrical coordinates.

4. C0 elements with strain gradient plasticity

The coordinates of C0 solid elements are usually expressed as

x =
n∑

i=1

Ni (g, h, r) xi , y =
n∑

i=1

Ni (g, h, r) yi , z =
n∑

i=1

Ni (g, h, r) zi ,
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and the displacements of C0 solid elements are usually expressed as

u =
n∑

i=1

Ni (g, h, r) ui , v =

n∑
i=1

Ni (g, h, r) vi , w =

n∑
i=1

Ni (g, h, r) wi ,

and the Jacobian matrix which is essential for the transformation of coordinates is obtained from

J =
∂(x, y, z)
∂(g, h, r)

=

 x,g x,h x,r
y,g y,h y,r
z,g z,h z,r

 .
In each element, n is the number of nodes; xi , yi , zi and ui , vi , wi are the nodal coordinates and nodal
displacement components in the x , y and z directions respectively while g, h and r are the corresponding
natural coordinates.

The derivative of the strain vector with respect to x is given by

{ε},x =

(
∂2u
∂x2 ,

∂2v

∂y∂x
,
∂2w

∂y∂x
,
∂2u
∂y∂x

+
∂2v

∂x2 ,
∂2v

∂z∂x
+
∂2w

∂y∂x
,
∂2w

∂x2 +
∂2u
∂z∂x

)T

= [B],x{δ} ,

while the coordinate transformation of the derivatives of finite element displacement functions of the
actual and master elements is stipulated by

∂(Ni,x , Ni,y, Ni,z)

∂(x, y, z)
= (J−1)T

∂(Ni,g, Ni,h, Ni,r )

∂(g, h, r)
J−1 .

Details of the derivation were presented earlier in [Swaddiwudhipong et al. 2005]. Similar derivations
of strain gradient measures and coordinate transformation for axisymmetric and plane elements are pre-
sented in [Swaddiwudhipong et al. 2006b; 2006a], respectively. The concept is implemented as a user
subroutine in a commercial finite element package, ABAQUS [ABAQUS 2002].

5. Molecular dynamics simulation

In this study, the standard MD technology as described in details in [Rapaport 2004] is used to simulate
the motion of the atoms of the materials. Equations of motions are integrated using Verlet method. In
MD simulations, the force acting on an individual atom is obtained by summing up the forces contributed
by the surrounding atoms. The interatomic forces are calculated from the potential energy function U :

f i = −∇U (r1, r2, . . . , rN ) .

The main problem for modeling the material in MD simulations is to find a suitable potential function
U (r1, r2, . . . , rN ). The pair potential is relatively simple and computational inexpensive, but it is less
accurate compared to the embedded-atom model (EAM) potential. The EAM potential is based upon
the recognition that the cohesive energy of a metal is governed not only by the pairwise potential of
the nearest neighbor atoms, but also by the embedding energy related to the electron sea in which the
atoms are embedded. The total energy Etot which can be written as a unique function of the electron
density ri j is mainly the energy to embed the atoms into the electron sea of the neighboring atoms,
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and supplemented by a short-range doubly screened pair interaction, which accounts for the core-core
repulsions. Consequently, the total atomic potential energy of a system [Pei et al. 2006] is given by

Etot =
1
2

∑
i, j

8i j (ri j )+
∑

i

Fi (ρ̄i ),

where 8i j is the pair-interaction energy between the i-th and the j -th atoms, Fi represents the embedding
energy of atom i , and ρ̄i indicates the host electron density at site i induced by all other atoms in the
system. In this paper, the EAM potential is used for the atomic interaction among the nickel (Ni) atoms
of the target substrate materials. The Morse potential is, however, adopted for the interaction between
the atoms of nickel substrate and those of diamond indenter. The Morse type pair potential is given by

φ(ri j )= D
(
e−2β(ri j−r0)− 2e−β(ri j−r0)

)
,

where φ(ri j ) is the pair potential energy function, D is the cohesion energy, β represents the elastic mod-
ulus, and ri j and r0 are the instantaneous and equilibrium distances between atoms i and j , respectively.
The Morse potential is also employed for the interaction among the atoms of the diamond indenter. The
latter is usually assumed as a rigid body since the diamond is substantially harder than the nickel substrate.
This implies that the interactive forces among the indenter atoms have no bearing on the accuracy of the
simulated force results.

6. Numerical examples

6A. Simulation of indentation at micron level via finite elements with strain gradient plasticity. Both
conventional finite elements and those incorporating mechanism-based strain gradient plasticity are em-
ployed by Pethica et al. [1983] to simulate the Berkovich indentation on electropolished nickel. The
following material properties adopted earlier in [Bhattacharya and Nix 1988] to simulate this test are
employed in the study. The Young’s modulus of elasticity E = 207 GPa, the yield strength Y = 350 MPa,
n= 0.03 in the power law, and the Poisson’s ratio v= 0.33. The friction coefficient of 0.15 which is typical
for contact surfaces of metallic materials and diamond indenter is adopted in the analyses. The intrinsic
material length scale of 5 micron for nickel as stipulated in [Wang et al. 2003] is used in the analyses.
These finite element analyses include both friction and smooth contact surfaces. The typical computing
time required for each simulation carried out in this study using Sun Blade 2000 Workstation 2@900 MHz
with 1 GB RAM are about 6 and 30 hours for conical and Berkovich indentation tests respectively.

Figure 1 compares the solutions obtained from finite element analyses with and without the strain gra-
dient effects are compared with the experimental data reported in [Pethica et al. 1983]. The comparison
demonstrates clearly the hardening effects of materials subject to indentation at micron and submicron
levels. Numerical results obtained from the finite element model incorporating CMSG plasticity theory
agree rather well with indentation test results. In contrast, conventional finite element solutions deviate
significantly from the test results conducted at submicron level. The numerical results obtained from the
proposed axisymmetric and solid finite elements are by and large identical.

6B. Molecular dynamics simulation for nanoindentation. In this study, the simulations of the nanoin-
dentation on a fcc crystalline nickel substrate by a covalently bonded hemisphere diamond tip has been
carried out. The positions and velocities of both the tip and the substrate atoms were obtained as functions
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Figure 1. Comparison of indentation test results at micron level.

of time using the MD method. It is assumed that the heat generated in the system during the indentation
process was dissipated by the thermal baths of the tip and of the substrate at a high rate that is much
faster than the indentation speed. Therefore, in the simulations the nano scale tip and substrate were
controlled at the same temperatures during the indentations, that is, the indentations are considered as
isothermal processes.

The configuration of the simulated tip and substrate is shown in Figure 2. The substrate material is
nickel having fcc lattice with a lattice constant of 3.52 Å. The substrate sizes are 35.2 nm× 35.2 nm×
35.2 nm containing 4,000,000 atoms. A hemisphere (radius= 10.5 nm) diamond indenter is used. The

Figure 2. Large scale MD simulation model containing more than 4 million atoms.
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latter contains 289,235 carbon atoms. The typical CPU time required for each MD simulation carried
out in the present study is about 200 hours based on IBM p575 supercomputer. The boundary conditions
of the substrate include:

(1) The two layers of atoms at the bottom of the substrate are fixed in space while the top surface of
the substrate is free.

(2) Periodic boundary conditions are applied at the four side surfaces of the substrate. The indentation
is on the (001)-surface of the fcc lattice.

The load-displacement curve obtained from the MD simulated indentation test on nickel as depicted
in Figure 3 shows as expected that the indentation depth increases with loading. The load-displacement
response, which depicts the force required to push the indenter tip a certain distance into the substrate,
demonstrates characteristic discontinuities. Examining the load-displacement curve in detail, we find the
first significant drop occurs at the indentation depth of about 1 nm. This drop, representing a transition
from elastic to plastic deformation, is attributed to the nucleation of a dislocation. It can be further
observed that the initial loading region of the load-displacement curve can be assumed to be linear and
the reduced Young’s modulus of elasticity can be determined through the relationship F = 2Errah, where
F is the loading force, Er is the reduced Young’s modulus, ra is the radius of contact area, and h is the
penetration depth. The atomic configuration at about 1.3 nm indentation depth, the associated Von Mises
stress contours in the nanoindentation process are illustrated in Figure 4, left, while the dislocations in
the substrate materials are shown in Figure 4, right. The results demonstrate that plastic deformation
takes place near the contact area and the dislocations of substrate materials occur beneath the contact

Figure 3. Variation of indentation force against indentation distance.
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Figure 4. Left: Stress (von Mises) distribution in the substrate during nanoindentation
simulation. Right: Dislocations in nickel substrate during indentation.

surface. These phenomena are consistent with the MD simulated results of copper as reported in [Saraev
and Miller 2005].

7. Conclusions

A C0 finite element approach for materials with strain gradient plasticity is proposed in the simulation of
indentation tests at the micron and hundreds of nanometers levels. As only the constitutive condition is
affected, higher-order stress and hence higher-order continuity requirements are no longer necessary. The
elements were adopted to simulate the Berkovich indentation on electropolished nickel. Comparison of
finite element results with other existing analytical solutions demonstrates that when the material length
scale and the nonuniform plastic deformation are of the same order at micron or submicron level, the
effects of strain gradient plasticity have to be considered. A large scale study using molecular dynamics
method to simulate nanoindentation of nickel substrate was also carried out. The load-displacement
response, stress variation and the plastic dislocations in the nickel substrate are presented. The paper
provides appropriate numerical tools for the simulations of indentation tests at both micron and a few
nanometer levels.
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NUMERICAL IMPLEMENTATION OF A CONSTITUTIVE MODEL FOR SOIL
CREEP

M. A. K. M. MADURAPPERUMA AND U. G. A. PUSWEWALA

We discuss the numerical implementation of a creep constitutive model to facilitate the modeling of long-
term soil creep. Multidimensional soil creep models are generalized from the one-dimensional soil creep
model proposed by Bjerrum in 1967, which was based on field test data and was later modified for tran-
sient loading conditions by Vermeer et al. in 1998. Here this differential form of one-dimensional creep
model is extended to two- and three-dimensional states of stress and strain by incorporating concepts
from viscoplasticity. The devised multidimensional creep model takes into account both volumetric and
deviatoric creep strain, with creep deformation of the soil defined by several material parameters. The
model is incorporated as a plane strain element subroutine in a nonlinear, time-incrementing finite ele-
ment program, along with iterative corrections within each time step. Numerical analyses are conducted
to demonstrate soil creep by using published experimental data. The verified computer code will be a
useful research tool for estimating settlements in structures founded on soils exhibiting creep.

1. Introduction

Many theories have been proposed to explain the time-dependent deformation of soils under load. Bjer-
rum [1967], in his study of settlement of 3000 years old deposits of Norwegian clay, proposed the
concept that deformation of such soils can be decomposed into two parts: “instant compression” and
“delayed compression”, or soil creep. This was a departure from the view where soil is understood to
undergo “primary consolidation” followed by “secondary consolidation or compression” [Terzaghi 1931].
Bjerrum’s argument was that under constant load, creeping soils continue to experience strain with time,
thus causing an increase of its critical pressure. The term critical pressure is used to define a specific
effective pressure (preconsolidation pressure) in the classical void ratio versus log pressure graph for a
soil medium [Balasubramaniam and Brenner 1981]. Thus if the soil is allowed to creep under a particular
load over a long period and if the load is suddenly increased thereafter, the soil behaves as if it had been
subjected to a much greater pressure than the previous maximum pressure it physically sustained.

Bjerrum gave examples of buildings founded on Norwegian clay undergoing creep settlements. Similar
creep settlements can take place under other structures like roads, river embankments and dams, built
on creeping media. Apart from the foundation-related problems usually considered, creep plays an
important role in slope stability; gradual geometric changes due to creep and the associated reduction of
strength due to the smoothening of soil particles may then lead to slope slides. The different problems
that relate to soil creep have made it necessary to develop a stress-strain relation that takes two- and
three-dimensional situations into account.

Keywords: constitutive model, finite element analysis, soil creep, numerical simulation, soil-structure interaction.
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As mentioned, Bjerrum’s original creep model was a comprehensive one-dimensional model based
on the behavior of Norwegian clays with a sedimentation history of 3000 years. It was based on an
expression for creep rate for constant effective stress; it was modified for transient loading conditions
by Vermeer et al. [1998] and later generalized to three dimensions [Vermeer and Neher 1999]. However,
the generalized constitutive model is not in a form that can be implemented in finite element formulation
for numerical simulation of soil creep. Adachi and Okano [1974] proposed a rate-formulated elastovis-
coplastic constitutive model, later generalized in [Adachi and Oka 1982] based on the overstress type
viscoplastic theory. However, this model has not been verified for predicting the time-dependent long-
term behavior of soft soils. [Borja and Kavazvjian 1985] proposed a constitutive model to describe time
dependent elasto-plastic strains based on Bjerrum’s concept. The validity of this model was not properly
verified through realistic experimental approaches and its long-term predictive capability has not been
comprehensively reported in the literature.

On the other hand, numerical implementation by using the finite element method has taken into ac-
count creep of soil using nonlinear constitutive equations; see, for example, [Iizuka and Ohta 1987;
Stolle et al. 1997; Brinkgreve 2002]. A detailed description of numerical implementation of advanced
constitutive models is presented in [Stolle et al. 1997; Wheeler et al. 2003]. The long term prediction
of soft soil settlement is dependent on the constitutive model that describes the soil creep behavior and
the finite element formulation which involves solution algorithms, iteration schemes, time increments
and numerical stability. Therefore, a simple creep model that could describe all aspects of actual field
behavior to sufficient accuracy would be highly useful and suitable for practical applications. Based on
an extensive literature review, we found the constitutive model proposed by Vermeer et al. [1998] based
on Bjerrum’s one-dimensional model to be one of the most appropriate for generalization and numerical
implementation. Its ability to predicting long-term time-dependent soil behavior and the evaluation of
model parameters through conventional tests in the laboratory are the main reasons to select this model.

Here we extend the model of [Vermeer et al. 1998] to multidimensional state of stress and strain by
incorporating concepts of viscoplasticity. A nonlinear, time incrementing finite element program, with
iterative corrections within each time step, developed earlier to model creep in geomaterials [Puswewala
et al. 1992], is modified to incorporate the present model as an element subroutine under conditions of
plane strain. Numerical analyses are conducted for two soil-structure interaction problems by using this
program and published experimental data to demonstrate the creep behavior of soils predicted by the
model.

2. The differential form of one-dimensional creep model

In his Rankine Lecture, Bjerrum [1967] described the compression of clays exhibiting creep under con-
stant effective stress. Building on this work, Garlanger [1972] proposed a creep equation of the form

e = ec−Cα log
τc+ t ′

τc
, (1)

where e is the void ratio, ec is the void ratio at the end of consolidation, t ′ > 0 is the effective creep time,
and Cα is the slope of the e versus log time curve. The time scale parameter τc depends on the history
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of compression and the geometry of the sample. Janbu [1969] developed a construction for evaluating
τc from experimental data.

This expression was later modified by Butterfield [1979] to fit into the framework of critical state soil
mechanics. He introduced the concept of logarithmic strain. The expression of the total volumetric strain,
εv, is

εv = ε
c
v +µ

∗ ln
τc+ t ′

τc
, (2)

where the deformation during primary consolidation is given by εc
v and consists of the elastic settlement

and a part of the delayed settlement, following Bjerrum. The modified secondary compression index µ∗

describes the secondary compression per logarithmic time increment. Equation (2) can be rewritten by
including the components of εc

v as

εv = ε
c
v + ε

cr
v = k∗ ln

σ ′

σ ′0
+ (λ∗− k∗) ln

σ ′pc

σ ′p0
+µ∗ ln

τc+ t ′

τc
, (3)

where

• εv is the total volumetric strain due to an increase in mean effective stress from σ ′0 to σ ′ in a time
period of (τc+ t ′),

• σ ′p0 and σ ′pc represent the preconsolidation pressure corresponding to before-loading state and end-
of-consolidation state respectively,

• k∗, λ∗, µ∗ are the Modified Clam Clay Model parameters [Roscoe and Burland 1968], called re-
spectively the (modified) swelling index, compression index and creep index, and having the values

λ∗ =
Cc

2.3(1+ e0)
, k∗ ≈

3
2.3

(1− ν)
(1+ ν)

Cr

1+ e0
, µ∗ =

Cα
2.3(1+ e0)

, (4)

where Cr is the slope on an e versus log σ ′ diagram of the compression line from σ ′0 to σ ′c, Cc is
the slope of the instant line, Cα is the slope of the e versus log time curve, ν is the Poisson’s ratio,
e0 is the initial void ratio and σ ′c is the preconsolidation pressure [Vermeer et al. 1998].

Equation (3) is valid for a constant mean effective stress, but for transient or continuous loading problems
it is necessary to formulate a constitutive law in differential form. Moreover there is still the question of
how to express the time scale parameter τc analytically. By adopting Bjerrum’s concept that the secondary
compression increases the critical pressure (preconsolidation pressure), by eliminating σ ′pc and τc from
(3), Vermeer et al. proposed a differential form of expression that accounts for creep of soft soil, of the
form

ε̇v = ε̇
e
v + ε̇

c
v = κ

∗
σ̇ ′

σ ′
+
µ∗

τ

(
σ ′

σ ′p

)(λ∗−κ∗)/µ∗
in which σ ′p = σ

′

p0 exp
εc
v

λ∗− κ∗
, (5)

where the parameter τ , which is not the same as τc, is introduced to provide a time scale and an additional
degree of freedom in the soil creep model. For example, in the conventional consolidation test each load
is kept for one day and at the end of the day the isotropic consolidation line with σ ′p = σ

′ is obtained
(overconsolidation ratio = 1). Therefore, in the case of conventional consolidation test the time scale
parameter τ can be taken as precisely 1 day. The quantity εc

v is the accumulated volumetric creep strain.



1860 M. A. K. M. MADURAPPERUMA AND U. G. A. PUSWEWALA

3. Generalization of the one-dimensional model to three dimensions

The expression for volumetric creep strain rate (ε̇c
v) in (5) is extended for a general state of stress and

strain. Well-known stress invariant quantities are adopted for pressure p and deviatoric stress q as p= σoct

and q = 3τoct/
√

2, where σoct and τoct are the octahedral normal stress and octahedral shear stress. In
terms of the principal stresses σ1, σ2, σ3, the pressure p and the deviatoric stress q can be expressed as

p = 1
3 (σ1+ σ2+ σ3) and q =

√
1
2

(
(σ1− σ2)2+ (σ2− σ3)2+ (σ3− σ1)

)2
. (6)

The extension of (6) to a state of general stress and strain yields

p = 1
3 (σi i ) and q =

√
3
2 (si j si j ), (7)

where summation is implied over the indices i, j = 1, 2, 3 and si j denotes the deviatoric stress tensor in
terms of multidimensional states of stress quantities as

si j = σi j −
1
3σi iδi j , (8)

where δi j is Kronecker’s delta. The invariants p and q [Roscoe and Burland 1968] can be used to define
a new stress measure [Vermeer and Neher 1999]

peq
= p+

q2

M2 p
, (9)

called equivalent pressure and having the dimension of pressure. The soil parameter M represents the
slope of the critical state line and can be computed by using the critical state friction angle (φcs) as

M =
6 sinφcs

3− sinφcs
. (10)

(see [Vermeer et al. 1998]). For principal stress quantities yield function is defined as

f = peq
− peq

p , (11)

where peq
p is the apparent equivalent preconsolidation pressure. The yield function f in (11) can be

described as ellipses in p-q space when the principal stress quantities are used to calculate p and q in
(6). The equivalent pressure peq is constant on ellipses and the peaks of the ellipses are located on the
critical state line which is given by the model of [Roscoe and Burland 1968] in p-q space.

Together with p and q in (7), the equivalent pressure peq in (9) leads to

peq
=

1
3σi i +

9 si j si j

2 M2σi i
. (12)

By considering the volumetric creep strain rate part (ε̇c
v) in (5) and introducing the new equivalent pres-

sure peq and the apparent equivalent preconsolidation pressure peq
p the expression for volumetric creep

strain rate can be written as

ε̇c
v =

µ∗

τ

(
peq

peq
p

)(λ∗−κ∗)/µ∗
, with peq

p = peq
p0 exp

εc
v(t)

λ∗− κ∗
, (13)
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where εc
v(t)denotes the accumulated volumetric creep up to the current time t . The coefficient of lateral

earth pressure K NC
0 is used to estimate the initial value of equivalent preconsolidation pressure peq

p0 using
initial preconsolidation pressure σp0 as given in [Vermeer and Neher 1999; Vermeer et al. 1998].

4. Formulation of the soil creep problem

The basic concept used here is that the total strain vector consists of an elastic strain component and a
creep strain component:

ε(t)= εe(t)+ εc(t), (14)

where ε(t) is the current total strain vector, εe(t) the current elastic strain vector, εc(t) the current creep
strain vector, and t denotes the current time. The elastic strain component can be related to the stress
vector σ (t) through the use of a constitutive matrix D as

εe(t)= D−1σ (t). (15)

In the present analysis D is composed of Young’s modulus E and Poisson’s ratio ν, which implies that
the elastic strain is related to stress according to isotropic linear elasticity. In order to introduce general
creep strain, one can adopt the view that creep strain is simply a time-dependent plastic strain. Then it
is logical to assume a flow rule for the creep rate component and equivalent pressure peq is introduced
as the plastic potential function [Vermeer et al. 1998]. Assuming the same yield function as in (11) the
total strain rate can then be obtained as

ε̇(t)= D−1σ̇ (t)+ λ
∂peq

∂σ (t)
, (16)

where the plastic multiplier λ can be eliminated from (16) by adopting the concept that the creep strain
rate is proportional to partial derivative of the plastic potential function with respect to the corresponding
stress component, i.e.,

λ=
ε̇c
v

α
, (17)

where λ can be evaluated for multidimensional situation as

ε̇c
v = ε̇

c
11+ ε̇

c
22+ ε̇

c
33 and α =

(
∂peq

∂σ11
+
∂peq

∂σ22
+
∂peq

∂σ33

)
. (18)

Equations (14)–(18) yield

ε̇c(t)=
ε̇c
v

α

∂peq

∂σ (t)
. (19)

By combining(13) and (19) we obtain

ε̇c(t)=
1
α

µ∗

τ

(
peq

peq
p

)(λ∗−κ∗)/µ∗ ∂peq

∂σ (t)
, with peq

p = peq
p0 exp

εc
v(t)

λ∗− κ∗
. (20)

Note that the subscript 0 is used in the equations to denote initial conditions and that εc
v = 0 for time

t = 0. The derivative quantities of peq and the components of strain rate vector ε̇c are given in the Online
Supplement.

http://pjm.math.berkeley.edu/jomms/2008/3-10/jomms-v3-n10-x05-Appendix.pdf
http://pjm.math.berkeley.edu/jomms/2008/3-10/jomms-v3-n10-x05-Appendix.pdf
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5. Finite element algorithm for creep model

A finite element algorithm was developed for the purpose of incorporating the devised creep model
under plane strain conditions, based on [Puswewala et al. 1992]. At any point within a material domain
of volume V and surface S, discretized by finite elements, the displacement vector field will be denoted
by u, the strain vector by ε, and the stress vector by σ . From the principle of virtual work, equilibrium
of the material domain at the time tk , which is reached after the accumulation of k time steps starting
from t = 0, can be expressed as ∫

v

BTσ kdv+ f k = 0, (21)

where f k is the known force vector consisting of body forces and surface traction forces. Vectors B, u,
ε and the nodal displacement vector a hold the following relationships, i.e.,

ε = Lu, u = Na and ε = L Na = Ba, (22)

where N is the shape function matrix and L is a differential operator matrix. It is necessary to evaluate
ak+1 and σ k+1 at the end of the next time interval 1tk , provided εk, akand σ k at the time tk are known.
In order to evaluate the accumulated volumetric creep strain (εc

v) at the time tk , Equations (14) and (15)
are used since εk, D−1and σ k are known quantities at the time tk . Together with (14), (15) and (22), the
expression for the difference between the stress vectors σ k+1 and σ k can be obtained as

ψk+1 ≡ σ k+1− σ k − DB {ak+1− ak}+ D1tkβ(σ k+θ )= 0. (23)

In the above, the following relationship has been used

εc
k+1− ε

c
k = β(σ k+θ )1tk, (24)

where β denotes the strain rate vector given by (20), and

σ k+θ = (1− θ)σ k + θσ k+1, where 0 6 θ 6 1. (25)

For θ > 1
2 (i.e., to have a unconditionally stable scheme), Newton–Raphson procedure is used to iterate

within the time interval 1tk for the unknowns σ k+1 and ak+1. The iterate number is denoted by a super-
script numeral. After successive iterations, the iteration cycle n can be reached, while the convergence
criterion may not yet be satisfied. At this point, (21) and (23) can be written using the appropriate current
stress and displacement values, but these expressions would now not reduce to zero since convergence has
not yet been achieved. Using the curtailed Taylor expansion on the latter expressions, the following two
equations are obtained to yield the unknown incremental corrections 1σ n

k+1 and 1an
k+1 upon solution

(this is the (n+ 1)-th iterate):

1σ n
k+1 = Dn [B

(
1an

k+1+ an
k+1− ak

)
− D−1 (σ n

k+1− σ k
)
−1tkβ

(
σ n

k+θ
)]
, (26)∫

v

BT Dn B 1an
k+1 dv

=

∫
v

BT Dn {D−1 (σ n
k+1− σ k

)
− B

(
an

k+1− ak
)
+1tkβ

(
σ n

k+θ
)}

dv−
∫
v

BTσ n
k+1dv, (27)
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where σ n
k+θ is obtained from (25) by replacing σ k+1 with σ n

k+1, and

Dn
=
[

D−1
+1tk Snθ

]−1
, (28)

where the matrix

Sn
=

(
∂β

∂σ

)
, (29)

is evaluated for σ n
k+θ . In (27) the right-hand side does not include provisions for increasing body forces. If

convergence occurs at the above (n+1)-the iterate, we set σ k+1= σ
n+1
k+1 (note that σ n+1

k+1 = σ
n
k+1+1σ

n
k+1)

and ak+1 = an+1
k+1, and proceed to the next time step; otherwise iteration is continued. The components

of the matrix Sn and the expressions for the element stiffness matrix and the stress increments are given
in the Online Supplement.

There are several possibilities that can be followed for convergence study, depending on the values
of θ and n (for example, θ 6= 0 and n = 1). The value of θ used in the analysis is 1

2 , which guarantees
the numerical stability of the algorithm. As an approximation has already been incorporated at the stage
of writing (24), the iteration solution is generally curtailed after one or two cycles. Use of sufficiently
small time steps would compensate for these approximations. As per the constitutive model in (20), the
solution process is initiated by obtaining the instantaneous elastic deformation and stress distribution at
the time of application of the initial load (t = 0). These displacement and stress vectors are used to
obtain the incremental displacement and stress vectors during the first time interval 1t0 by solving (26)
and (27). The solution process is repeated for each time interval, until the termination of analysis. The
flow diagram for FEM algorithm is given in Figure 1.

6. Numerical analysis and discussion

The sensitivity analysis of material parameters used in the model is carried out by simulating a concrete
strip foundation on a soil layer. Numerical analyses were carried out by a finite element mesh composed
of 40 eight-node serendipity elements representing an 8 m deep layer of soft soil underlain by a hard
surface like rock (Figure 2). The simulation was done under simplified plane strain conditions, with the
top of the surface subjected to a uniform load of 120 kPa applied over the strip footing. The strip footing
materials were selected as concrete and the basic material properties of the soil were selected similar to
Haney clay investigated by Vaid and Campanella [1977], and the corresponding material parameters are
as follows:

Foundation material parameters: Young’s modulus E = 2.1× 107 kPa; Poisson’s ratio ν = 0.23

Soil properties for the problem configuration in Figures 2 and 6:
E = 2.1× 104 kPa, ν = 0.25, σp0 = 350 kPa, φcs = 32.1,
κ∗ = 0.016, λ∗ = 0.105, µ∗ = 0.004 τ = 1 day

(30)

Figure 3 shows the settlement behavior at the center of the foundation predicted by the constitutive
model for different combinations of Young’s modulus and Poisson’s ratio. The settlement reduces when
Poisson’s ratio is equal to 0.45, which is as expected since incompressible behavior is represented by the
case where Poisson’s ratio equals 0.5. The figure shows the significant effect of parameters E and ν on
the time dependent deformation of the creeping soil medium, implying that these parameters indicate the

http://pjm.math.berkeley.edu/jomms/2008/3-10/jomms-v3-n10-x05-Appendix.pdf


1864 M. A. K. M. MADURAPPERUMA AND U. G. A. PUSWEWALA

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ALLOCATION & INITIALIZATION OF ARRAYS 
Where allocation of memory for arrays and initialization of all memory locations to zero is done 
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TIME INCREMENTING 
Controls time increments 

LOCALIZATION OF ARRAYS 
Extracts local quantities for each element from global arrays 
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Figure 1. Flow diagram for FEM algorithm.

overall stiffness of the soil modeled as a solid continuum in this work. The effect of modified secondary
compression index, µ∗, on the settlement is shown in Figure 4; the settlement with time at the center point
under the surface load of 120 kN/m2 is shown for three different values of µ∗, with all other parameters
as given in (30). Figure 4 clearly indicates that the settlement increases with the increase of modified
secondary compression index. The effect of preconsolidation pressure (σp0) on the settlement is shown
in the Figure 5; the settlement with time at the center point under the surface load of 120 kN/m2 is
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Figure 2. Finite element mesh and loading arrangement for the problem considered for
sensitivity analysis.
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Figure 3. Settlement behavior of the center point with Young’s modulus and Poisson’s ratio.

shown for three different values of σp0, with all other parameters as given in (30). With the decrease
of preconsolidation pressure, the figure indicates higher settlements which confirm Bjerrum’s. If the
preconsolidation pressure is less than the applied pressure then the settlement could be appreciable, but
the problem does not work for those values due to numerical complications inherent in the model.

Another soil-structure interaction problem, where a strip footing is placed on a thick clay stratum, is
considered for numerical simulation. The simulation is carried out by a finite element mesh composed
of 445 eight-node serendipity elements under simplified plane strain conditions (Figure 6). Load is
transferred to the soil through a wall of thickness 0.4 m on a foundation 2.4 m wide and 0.4 m high.
The configuration has symmetry, and the far boundaries of the soil domain are considered at distances
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Figure 5. Settlement behavior of the center point with preconsolidation pressure.

sufficiently far from the foundation to render the boundary effects on the interaction problem insignificant.
A structural load of 300 kN/m is assumed to act along the wall, equivalent to a load of 125 kPa transferred
to the soil through the foundation. The wall and the footing materials were selected as concrete and the
material properties of the soil are given in (30).

The problem configuration shown in Figure 6 deals with a soil-structure interaction that can often
exist in the real field. By taking L as the ratio of distance to the point from the center of the loaded
area to the half the total foundation width (1.2 m), the total settlement with time is shown in Figure 7
for three selected points at the foundation base level. According to this figure, the rate of settlement
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Half of the
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Figure 6. Finite element mesh and loading arrangement for the problem considered for
numerical simulation.

decreases, whereby during the first year it has a rate of 4 mm per year while after eight years it has a
rate of 1mm per year. The settlement of the foundation base with time is shown in Figure 8, which
indicates that delayed settlement is several times the instant settlement. The predicted instant (elastic)
settlement is about 7.5 mm and delayed settlement is about 29 mm underneath the loaded foundation
after approximately eight years.

The vertical average normal stress distribution in the soil along vertical sections at distances of 0.1 m,
0.5 m, 1.1 m and 2.1 m away from the centerline with time are shown in Figures 9–12, respectively.
Figures 9–11 show the time dependent variation of vertical average normal stress in the creeping material
along three vertical sections underneath the loaded foundation, and indicate that stresses increase with
time along the depth, towards the applied average stress at the base. This is equivalent to the geological
phenomena whereby rocks undergoing creep over time reach lithostatic states of stress in the long term.
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Figure 9. Average normal stress distribution at a distance of 0.1 m from the centerline
(underneath the foundation) with time.
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Figure 10. Average normal stress distribution at a distance of 0.5 m from the centerline
(underneath the foundation) with time.

The stress distribution at a vertical section outside the foundation width is shown in Figure 12. The
time dependent average shear stress distributions in the soil along vertical sections at distances of 0.5 m
and 1.1 m away from the centerline are shown in Figures 13 and 14, respectively. A general reduction
in average shear stress with time underneath the loaded foundation can be seen (under the ultimate
lithostatic state expected, shear stress tend to vanish). Figures 12, 13 and 14 show that the far field
effects are insignificant in the general case. A similar trend is shown by the elastic solution indicated
on Figures 9, 10 and 11. However, under the loaded patch, the normal vertical stress in the soil medium
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Figure 11. Average normal stress distribution at a distance of 1.1 m from the centerline
(underneath the foundation) with time.
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Figure 12. Average normal stress distribution at a distance of 2.1 m from the centerline
(outside the foundation) with time.

keeps on increasing with time towards the magnitude of the pressure applied on the footing as a result
of the creep of the material, regardless of the depth of the far boundary.

It is noted that the numerical values presented in this analysis are dependent on the selected material
parameters which are similar to Haney clay [Vaid and Campanella 1977]. However, the numerically
predicted results of the present research compares well with those monitored in the field as reported by
Bjerrum [1967]. The numerically predicted results for the soil-structure interaction problem (given by
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Figure 13. Average shear stress distribution at a distance of 0.5 m from the centerline
(underneath the foundation) with time.

 

-12

-10

-8

-6

-4

-2

0

0 5 10 15 20 25 30 35 40 45

elastic

20 days

1040 days

2640 days

Average shear stress (kPa)

D
is

ta
nc

e 
fr

om
 th

e 
fo

un
da

tio
n 

le
ve

l (
m

)

Figure 14. Average shear stress distribution at a distance of 1.1 m from the centerline
(underneath the foundation) with time.

Figure 6) are shown in Figure 15, which depicts the time-dependent settlement under the mid-point of
the foundation. This time-settlement curve in this last figure shows a behavior qualitatively similar to
the monitored behavior of two buildings: Skoger Sparebank Building, Norway and Konnerud Gate 16
Building, Norway, given by Bjerrum [1967], and reproduced approximately in Figure 16.
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Figure 15. Settlement predicted for the mid-point of foundation depicted in Figure 5 by
the finite element analysis.
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Figure 16. The monitored settlement behavior of the Skoger Sparebank Building, Nor-
way and the Konnerud Gate 16 Building, Norway. From Bjerrum [1967, Figures 23, 25].

7. Conclusion

The modified soil creep model of Bjerrum [1967] has been generalized to multidimensions and imple-
mented in a time-incrementing, iterative, nonlinear finite element code. Analyses were conducted for
two cases of a loaded strip footing placed on a clay stratum, under the assumption of simplified plane
strain conditions. The sensitivity of settlement predicted by the model to various material parameters is
demonstrated. The model predicts that delayed (creep) settlement can be several times the instant (elastic)
settlement. The vertical normal stresses under the loaded foundations increase with time towards the
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applied vertical pressure magnitude and the shear stress under the loaded foundation decreases with time.
This predicted behavior is in confirmation with the tendency of a creeping material to reach a lithostatic
state of stress in the long term. The predicted numerical values, while dependent on the selected magni-
tudes of material parameters, compare qualitatively with reported field data given by Bjerrum. Due to
the complications of nonlinear relationships involved in the model, the numerical algorithm experiences
some difficulties if arbitrary material parameters are selected. The developed model can be extended by
incorporating nonlinear elasticity for elastic strains which was not considered in the present study. But
it was seen to function and yield results that capture the essential trends shown by test data for valid
material parameters. The computer code developed here, when further developed and verified with field
data, would be a useful research tool for estimating settlements in structures founded on soils exhibiting
creep.
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ON A WINKLER LIGAMENT CONTACT BETWEEN A RIGID DISC
AND AN ELASTIC HALFSPACE

A. P. S. SELVADURAI, T. SCARPAS AND N. KRINGOS

This paper presents a variational solution to the problem of the contact between an isotropic elastic
halfspace and a rigid circular indentor, where the contact is achieved through a set of ligaments modeled
by a continuously distributed layer of Winkler elements. The problem is of interest to the modeling of
the ligament-type contact mechanics between a rigid cylinder and a substrate. The limiting solution for
Boussinesq indentation is modified to take into consideration small but finite influences of the elastic
stiffness of the ligaments forming the interface layer.

1. Introduction

The mechanics of contact between a component and a substrate is of interest to many areas of materials
engineering and materials science. The classical definition of adhesive contact between two material
regions assumes the complete compatibility of displacements between the two regions. Other forms of
nonclassical contacts include interacting surfaces that exhibit limited adhesion, frictional constraints and
slip. The developments, both fundamental and applied, in this area are too numerous to cite individ-
ually. We mention [Duvaut and Lions 1976; Selvadurai 1979; 2003; 2007; Gladwell 1980; Haslinger
and Janovský 1983; Johnson 1985; Ciarlet 1988; Frémond 1988; Moreau et al. 1988; Curnier 1992;
Klarbring 1993; Selvadurai and Boulon 1995] for further reviews of the topic. The idealization of
the nature of adhesion is in itself a complex problem, where the fine structure and properties of the
media/processes contributing to the generation of the adhesion need to be taken into consideration in
developing a plausible model that can determine the onset of debonding [Plueddemann 1974; Anderson
et al. 1977; de Lollis 1985; Pizzi and Mittal 1994; Mittal 1995]. Furthermore, depending on the nature
of the interacting regions, the contact between the bodies in adhesive contact can in fact be induced
at discrete regions at the micromechanical scale, which can contribute to the formation of a structural
model of the adhesion zone as opposed to a continuum model. A model of this type was first introduced
by Barenblatt [1959; 1962] in the discussion of brittle fracture and separation at material surfaces and
the concepts were adopted and extended in [Dugdale 1960; Goodier 1968; Goodier and Field 1963;
Goodier and Kanninen 1966; Kanninen 1970] in their studies of the ductile fracture problems, where
cohesive forces of finite magnitude are present at the extremities of a decohesion zone. A key feature in
these models is the structural or reduced continuum representation of the decohesion zone. The linear
and nonlinear ligament models also allow for the interpretation of intermolecular and surface forces
at adhesive zones [Tonck et al. 1988; Israelachvili 1992]. In this paper, we adopt the basic concepts
expounded in the structural model of contact zone response and apply it to the modeling of a contact

Keywords: Winkler ligaments, contact problem, variational method, adhesive contact, compliance of indentor, rigid circular
indentor, variational solution, elastic halfspace indentation.
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between an isotropic elastic halfspace region and a rigid cylindrical indentor, which is achieved through
a continuously distributed set of ligament connections. The term bonded or adhesive is avoided in
the present discussion since these specifically refer to phenomena where complete continuity of dis-
placements is established at the connecting zone. In particular, we restrict attention to the modeling of
the interface as a series of Winkler elements, although the approach can be extended to include more
advanced structural contacts represented by either Vlazov- and Reissner-type layers [Selvadurai 1979],
which provide shear interaction between the Winkler elements, or the constrained elastic layer, where
certain traction boundary conditions at the edges of the ligament zones are satisfied in an integral sense.
A more appropriate terminology that describes this type of contact is structural bonding. An alternative
to this approach is to consider the connecting layer as an elastic continuum itself. An example of such
an application with relevance to nanorheological analysis of the contact between an elastic sphere and
a plane separated by an interfacial elastic layer is given by Trifa et al. [2002] in connection with the
compressive load transfer at a ligament zone. The Winkler ligament approach adopted here is perhaps
not the most all-encompassing treatment of the contact process, but it allows the incorporation of the
influences of a material characteristic that could be attributed to the zones that generate the bonding
mechanism. In particular, the deformability characteristics of the substrate are accounted for in the
modeling.

In this paper we consider the axisymmetric problem of the contact between a rigid cylinder and an
isotropic elastic halfspace region, where the structural bonding zone corresponds to a series of closely
spaced Winkler ligaments. The conventional approach to the solution of the resulting mixed boundary-
value problem is to reduce the analysis to the solution of a Fredholm integral equation of the second kind,
which can only be solved in an approximate fashion either by reducing it to a matrix equation or through
the introduction of a series representation of the solution or through a variational technique itself. Here,
we present a much simpler solution that is based on the application of a direct variational technique. The
variational technique has been successfully applied to the study of the mechanics of contact between
elastic continua and between structural elements and elastic continua [Kalker 1977; Selvadurai 1979;
1980; 1984; Karasudhi 1991]. This latter approach is a suitable approximation, in the sense that it yields
results in closed form, which can be used to establish the influence of the idealized ligament zone in the
load transfer mechanism between the rigid cylinder and the elastic halfspace as well as in the development
of ligament adhesive stresses between the two regions.

2. The Winkler ligament contact problem

We consider the problem of a rigid circular cylinder of radius a and with a flat base, which is connected
to an isotropic elastic halfspace region. The connectivity is provided by a set of Winkler elements that
establishes continuity of displacements between the rigid cylinder and the elastic halfspace (Figure 1).
The Winkler elements are characterized by a linear load-displacement relationship, although the analysis
can be easily extended to include a nonlinear Winkler model with no provision for energy dissipation.
The rigid cylinder is subjected to an axisymmetric force of magnitude P which induces rigid body
displacement of the cylinder, a deformation of the set of Winkler ligaments and the displacements of the
surface of the halfspace region.
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Figure 1. Contact problem for a rigid cylinder achieved through a layer of Winkler ligaments

In the variational approach adopted here, we assume that the vertical displacements of the surface
of the halfspace region, within the contact region, can be approximated by a kinematically admissible
displacement of the form

uHS
z (r, 0)= a

(
C1−C2

( r
a

)2
)
; r ∈ (0, a), (1)

where C1 and C2 are arbitrary constants. Similarly, we assume that due to the loading of the rigid disc,
the Winkler ligaments experience a displacement

uW
z (r, 0)= a

(
C3+C2

( r
a

)2
)
; r ∈ (0, a), (2)

where C3 is an arbitrary constant. The displacement fields (1) and (2) satisfy the kinematic constraints
necessary for the compatibility of the displacements between the elastic halfspace, the Winkler layer and
the rigid disc. The prescribed displacement field in the system is therefore indeterminate to within the
constants Ci (i = 1, 2, 3).

In order to apply the variational procedure, we need to evaluate the total energy of the system consistent
with the displacement fields defined by Equations (1) and (2). The total energy of the systems consists
of the strain energy of the halfspace region, the strain energy of the Winkler layer and the potential
energy of the applied load. In order to calculate the strain energy of the halfspace region, we require the
solution to a mixed boundary value problem where displacements are prescribed over the contact region.
We consider the mixed boundary-value problem related to a halfspace region where the boundary plane
z = 0 is subjected to the boundary conditions

uHS
z (r, 0)= w(r) for r ∈ (0, a), (3)

σzz(r, 0)= 0 for r ∈ (a,∞), (4)

σr z(r, 0)= 0 for r ∈ (0,∞), (5)
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where uHS
z is the axial displacement of the halfspace region and σzz and σr z are the stress components

referred to the cylindrical polar coordinate system (r, θ, z). In addition, the displacements and stress fields
should satisfy regularity conditions, which ensure that the displacement and stress fields decay uniformly
to zero as (r, z)→∞. The solution of the mixed boundary-value problem defined by Equations (3)–(5)
is standard and is given in the classical texts [Sneddon 1951; 1966; Green and Zerna 1968; Selvadurai
1979; 2000a; Gladwell 1980]. Following Green and Zerna [1968] it can be shown that when the shear
traction vanishes on the plane z = 0, the solution to the elasticity problem can be expressed in terms of
a single potential function φ(r, z), such that

2Guz(r, z)= z
∂2φ

∂u2 − 2(1− ν)
∂φ

∂z
, σzz(r, z)= z

∂3φ

∂z3 −
∂2φ

∂z2 , σr z(r, z)= z
∂2φ

∂r∂z
,

where G and ν are the linear elastic shear modulus and Poisson’s ratio for the halfspace material. Using
results of potential theory we use a representation of ∂φ/∂z in the form

∂φ

∂z
=

1
2

∫ a

−a

g(t)dt√
{r2+ (z+ i t)2}

,

where g(t) is an arbitrary function. For this representation in terms of the potential function, the boundary
condition (5) is explicitly satisfied and the remaining boundary conditions (3) and (4) are equivalent to
an Abel integral equation of the form

w(r)=
∫ r

0

g(t)dt
√

r2− t2

which can be solved [Sneddon 1966; Gladwell 1980; Gorenflo and Vessella 1991; Selvadurai 2000a] in
the exact form

g(t)=
2
π

d
dt

∫ t

0

rw(r)dr
√

t2− r2
.

The stresses within the contact region can be expressed as

σzz(r, 0)=−
G

1−ν
1
r
∂

∂r

∫ a

r

tg(t)dt
√

t2− r2
.

Considering the assumed form of the displacement of the halfspace region within the contact zone, de-
fined by (1), it can be shown that the induced stresses are given by

σzz(r, 0)=
2G

π(1− ν)

[
C1

√
a2− r2

+
2C2

a2

(√
a2− r2−

r2
√

a2− r2

)]
. (6)

The strain energy of the halfspace region can be obtained by calculating the work done by the normal
tractions in the contact zone, that is,

UHS =
1
2

∫ 2π

0

∫ a

0
uHS

z (r, 0)σzz(r, 0)r dr dθ.

Similarly, the strain energy of the Winkler ligament zone can be obtained from the result

UW =
1
2

∫ 2π

0

∫ a

0
k
[
uW

z (r, 0)
]2r dr dθ,
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where k is the stiffness of the Winkler ligament per unit area. The work of the applied force P is given
by WP =−P

[
uHS

z (0, 0)+ uW
z (0, 0)

]
. The total potential energy function for the system can be evaluated

in the form

U =
2Ga3

(1− ν)

[
C2

1 −
4
3C1C2+

4
5C2

2
]
+
πka4

2

[ 1
3C2

2 +C2C3+C2
3
]
− Pa[C1+C3].

Considering the principle of minimum total potential energy for a conservative system, the arbitrary
constants are determined from the conditions

∂U
∂C1
=
∂U
∂C2
=
∂U
∂C3
= 0

which gives the undetermined parameters C1, C2 and C3. The constants take the forms

[C1;C2;C3]=
P̄

(16+ 15�)

[
3(7+ 5�);

15
2
;

4
�

]
, (7)

where P̄ = P(1− ν)/4Ga2 and �= πka(1− ν)/16G. The formal variational solution for the contact
problem associated with a set of Winkler ligaments is given by (1), (2), (6) and (7). Both the state of
stress within the halfspace region and within the zone of Winkler ligaments can be determined from these
results in conjunction with Boussinesq’s solution for the loading of a halfspace region by a concentrated
normal force [Timoshenko and Goodier 1970; Davis and Selvadurai 1996; Selvadurai 2001].

3. The role of the Winkler ligament zone

An inspection of the variational solution indicates that as the relative stiffness of the Winkler ligament
zone (as defined by the parameter �) increases, the terms incorporating C2 and C3 will have a diminishing
influence on the load transfer process. In the limit as �→∞, C1→ P̄ and the displacement of the rigid
cylinder is given by w(0)= P(1− ν)/4Ga, and the contact stress within the circular region is

σzz(r, 0)= P/2πa
√

a2− r2,

which is Boussinesq’s classical result for the indentation of a halfspace by a rigid circular indentor with
a flat base. In terms of the contact problem, a ligament zone of high relative stiffness will invariably
result in the development of a singular stress state at the boundary of the circular cylinder, which would
represent a potential location for the development of delamination. For a finite value of the relative
stiffness parameter �, the displacement of the rigid cylinder as well as the stresses in the ligament zone
are influenced by the Winkler ligament stiffness k. Figure 2 illustrates the variation in the normalized
displacement of the rigid disc 1̄ ( defined as 4G1a/P(1− ν), where 1 is the displacement of the rigid
disc) as a function of the relative stiffness parameter �. As can be observed, the reduction to the case of
the classical Boussinesq rigid punch problem is achieved for a value of �> 5. The contact stress at the
cylinder-Winkler ligament layer can similarly be evaluated in explicit form. From (6) and (7) we obtain

σ̄ =
σzz(r, 0)
σ0

=
1

2(15�+ 16)

[
(15�+ 21)√

1− ρ2
+ 15

(√
1− ρ2−

ρ2√
1− ρ2

)]
; ρ ∈ (0, 1), (8)
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Figure 2. Influence of the relative stiffness parameter on the displacement of the bonded disc

where σ0 = P/πa2 and ρ = r/a. Figure 3 illustrates the variation in the contact stress as a function
of the relative stiffness parameter �. As �→ 0, the normal stresses exhibit a nonuniform distribution
at the adhesive zone, but maintain the singular character, derived from the appropriate terms in (8). As
�→∞, the adhesive stresses reduce to the Boussinesq-type distribution, with singular behaviour as
ρ→ 1. It is of interest to examine the influence of the relative stiffness parameter � in moderating the
stress intensity factor at the boundary of the ligament zone, which can be compared with the critical stress
intensity factor necessary to initiate brittle fracture at the boundary of the adhesion zone. Considering
the definition of the Mode I stress intensity factor we have

K a
I = lim

r→a−
[2(a− r)]1/2σzz(r, 0). (9)

Considering (8) and (9) we obtain

K a
I =

σ0
√

a
2

15�+ 6
15�+ 16

.

Again as �→∞, we recover from the above equation the classical result for the stress intensity factor
associated with the axisymmetric problem of an elastic medium of infinite extent with an intact region of
radius a and subjected to a far-field stress that is equivalent to a total force P [Kassir and Sih 1968]. Also,
as �→ 0, the stress intensity factor approaches the value K a

I = 3σ0
√

a/16. This result is consistent with
the observation made by Selvadurai [2000b] with regard to the Mode I stress intensity factor for a penny-
shaped crack that is located at the interface of a functionally graded material where the elastic modulus
exhibits a bounded exponential variation in the axial direction. In the case where the linear elastic shear
modulus at the plane of the crack is lower than the finite value of the far-field shear modulus, the Mode I
stress intensity factor is lower than the corresponding value applicable to the problem of a penny-shaped
crack located in homogeneous elastic solid.

4. Concluding remarks

This paper presents a relatively elementary study of the mechanics of a Winkler ligament zone that forms
the structural bonding between a rigid cylinder and an isotropic elastic substrate of semi-infinite extent.
The variational approach presented here is an approximation to the more complex formulation that would
involve a complete analysis of a Fredholm integral equation of the second kind, which will invariably
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Figure 3. Adhesive stresses at the bonded zone [�→ 0] (left) and [�→∞] (right).

entail a numerical solution technique. The variational procedure provides a convenient approach for
examining the particular influences of the Winkler ligament zone that provides the structural bonding
between the rigid cylinder and the halfspace region. The displacement functions chosen satisfy the
kinematic constraints and the range of the polynomial expressions used can be extended to include further
terms. Such a treatment is perhaps unwarranted in view of the elementary nature of the modeling of the
ligament zone as a continuous distribution of unconnected spring elements. The elementary analysis
nonetheless illustrates trends that are important to the understanding of the mechanics of load transfer
at ligament zones. The form of the displacement functions chosen for the variational treatment still
maintains the singular behaviour of the stress states in the ligament zone for � ∈ (0,∞), although such
an interpretation should be viewed with some caution, since at the outset the stiffness of the ligament
zone is assumed to be finite. In particular, it is noted that the presence of a ligament zone of low relative
stiffness has a tendency to moderate the stress intensity factor at the boundary of the ligament zone. It
should also be borne in mind that structural adherents with lower stiffness generally tend to possess
lower resistance to fracture, indicative of low values of the critical stress intensity factors. Finally, the
variational approach for the solution of contact problems of this nature would be most effective when the
ligaments exhibit nonlinear force-displacement relationships. In such a case, the conventional integral
equation approach leads to nonlinear forms that are not easily solved, except through the use of either
perturbation schemes or a method of successive approximations. The variational approach with improved
representations for the deflected shapes can lead to compact results in exact closed forms.
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DYNAMIC RESPONSE OF MULTIPLE FLEXIBLE STRIPS
ON A MULTILAYERED POROELASTIC HALF-PLANE

TEERAPONG SENJUNTICHAI AND WICHAIRAT KAEWJUEA

We study the dynamic response of multiple flexible strip foundations resting on a multilayered poro-
elastic half-plane subjected to time-harmonic vertical loading. The contact surface between the strip
foundations and the half-plane is assumed to be smooth and either fully permeable or impermeable. The
half-plane under consideration consists of a number of layers with different thicknesses and material
properties, and is governed by Biot’s poroelastodynamic theory. The vertical deflection of the strip
foundation is represented by an admissible function containing a set of generalized coordinates. Solu-
tions for generalized coordinates are obtained by establishing the equations of motion of the foundation
through the application of Lagrange’s equations of motion. Selected numerical results are presented
to demonstrate the influence of foundation rigidity, hydraulic boundary conditions, layer properties
and configuration, and distance of adjacent foundations on dynamic interaction between flexible strip
foundations and a multilayered poroelastic half-plane.

1. Introduction

The study of dynamic interaction between a strip foundation and an elastic medium has received con-
siderable attention over the past forty years due to its useful applications for analysis and design of
foundations subjected to dynamic loading. Mixed-boundary value problems related to vibrations of a
strip foundation have been considered in the past by employing a variety of analytical, semianalytical,
and numerical techniques. Karasudhi et al. [1968] derived analytical solutions for vertical, horizontal,
and rocking vibrations of a rigid smooth strip resting on an elastic half-plane in terms of Fredholm
integral equations. The integral equation solutions were also presented by Luco and Westmann [1972]
for dynamic response of a surface rigid strip bonded to an elastic half-plane. Gazetas and Roesset [1976]
employed a semianalytical technique to obtain dynamic compliances of a rigid strip on a layered elastic
medium. Dynamic interaction between a system of flexible strips and an elastic half-plane was studied by
Wang et al. [1991] by employing a coupled variational-Green’s function technique. Several researchers
have employed numerical approaches to study vibrations of a strip foundation. For example, Chang-
Liang [1974] presented a finite element model of a strip footing on an elastic layer with rigid base. A
boundary element method was used by Israil and Ahmad [1989] to study dynamic interaction between
a rigid strip and a layered viscoelastic medium. In addition, a number of studies related to vibrations of
flexible strips have been presented [Spyrakos and Beskos 1986; Kokkinos and Spyrakos 1991; Spyrakos
and Xu 2004] by employing a hybrid BEM-FEM technique.

Keywords: multiple strip foundations, layered systems, poroelasticity, soil-structure interaction, vibrations.
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All studies mentioned above considered a half-plane as a single-phase elastic medium. However,
geomaterials are often two-phased materials with a solid skeleton and pores filled with water, commonly
known as poroelastic materials in mechanics literature. The first theory of elastic wave propagation in
a poroelastic medium was established by Biot [1956] by adding inertia terms to his quasistatic theory
[Biot 1941]. A limited number of studies related to vibrations of a rigid strip foundation on a poro-
elastic medium have appeared in the literature by employing Biot’s poroelastodynamic theory despite
their relavance to geotechnical engineering and earthquake engineering [Kassir and Xu 1988; Bougacha
et al. 1993; Japón et al. 1997]. In addition, dynamic response of a rigid strip bonded to a multilayered
poroelastic half-plane was also studied by Senjuntichai and Rajapakse [1996] by employing an exact
stiffness matrix scheme [Rajapakse and Senjuntichai 1995] and a discretization technique. In practice,
there exists a situation of a closely spaced foundation system where one needs to consider not only
the interaction between the foundations and the supporting medium but also the interaction that occurs
between the adjacent foundations through the supporting medium. A review of literature indicates that
this structure-soil-structure interaction problem has been investigated in the past for dynamic interaction
between elatic media and rigid circular foudations [Warburton et al. 1971; Wong and Luco 1986], and
flexible strip foundations [Wang et al. 1991]. To our knowledge, the dynamic interaction between a
system of foundations and a poroelastic medium has never been reported in the literature.

In this paper, the dynamic response of a system of flexible strip foundations resting on a multilayered
poroelastic half-plane subjected to time-harmonic vertical loading as shown in Figure 1 is studied. The
interaction problem is analyzed by adopting the coupled variational Green’s function scheme [Wang
et al. 1991] together with a discretization technique. The contact surface between the foundations and
the half-plane is assumed to be smooth. Two extreme fluid flow conditions at the strip-half-plane contact
surface are considered, that is, fully permeable and impermeable contact surfaces. Each layer of the
half-plane is governed by Biot’s theory of poroelastodynamics. The transverse deflection of a strip
foundation is represented by an admissible function containing a set of generalized coordinates. Contact
traction and pore pressure jump under each strip foundation are expressed in term of the generalized
coordinates through the solutions of the flexibility equations based on the influence functions. These
influence functions correspond to the solid and fluid displacements of a multilayered half-plane under a
vertical load and pore pressure loading at the surface level. The generalized coordinates are determined
by establishing the Lagrange equations of motion for the foundation system. Convergence and accuracy
of the present numerical scheme are established through comparison with existing studies. Selected
numerical results are presented to illustrate the influence of poroelastic material parameters, layering,
foundation rigidity, hydraulic boundary conditions, frequency of excitation, and presence of adjacent
foundations on vertical displacement, contact traction, and pore pressure profiles, and bending moment
of the strip foundation system.

2. Basic equations and influence functions

Consider a poroelastic medium with a Cartesian coordinate system (x, y, z) defined such that the z-axis
is perpendicular to the free surface as shown in Figure 1. It is assumed that the deformations are plane
strain in the xz-plane, that is, εxy = εyy = εyz = 0. Let ui and wi denote the average displacement of the
solid matrix and the fluid displacement relative to the solid matrix in the i-direction (i = x, z) respectively.
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Figure 1. Flexible strip foundations on a multilayered poroelastic half plane. 

 

Figure 1. Flexible strip foundations on a multilayered poroelastic half-plane.

The constitutive relations for a homogeneous poroelastic material [Biot 1941] can be expressed by using
standard indicial notations as σi j =2µεi j+λδi jεkk−αδi j p,with i, j= x, z, and p=−αMεkk+Mζ. In the
above equations, σi j and εi j denote the stresses and strains of the bulk material respectively, µ and λ are
Lame’s constants of the bulk material, p is the excess pore fluid pressure (suction is considered negative),
ζ is the variation of the fluid content per unit reference volume defined as ζ =−wi,i , and δi j denotes the
Kronecker delta. In addition, α and M are Biot’s parameters accounting for the compressibility of the
two-phase material.

The equations of motion for a poroelastic medium in the absence of body forces (solid and fluid) and
a fluid source can be expressed in terms of displacements ui and wi as [Biot 1962]

µui, j j + (λ+α
2 M +µ)u j, j i −αMw j, j i = ρüi + ρ f ẅi ,

αMu j, j i +Mw j, j i = ρ f üi +mẅi + bẇi .
(1)

Here ρ and ρ f are the mass densities of the bulk material and the pore fluid respectively, m is a density
parameter that depends on ρ f and the geometry of the pores, and b is the parameter accounting for the
internal friction due to the relative motion between the solid matrix and the pore fluid. If the internal
friction is neglected, then b = 0. In addition, the superscript dot denotes the derivative with respect to
time.

The motion under consideration is time-harmonic with a factor eiωt where ω is the frequency of motion
and i =

√
−1. The term eiωt is hereafter omitted from all expressions for brevity.

The Fourier integral transform of a function f (x, z) and its inverse relationship with respect to the
x-coordinate are given by [Sneddon 1951]

f̄ (ξ, z)=
1
√

2π

∞∫
−∞

f (x, z)e−iξ x dx, f (x, z)=
1
√

2π

∞∫
−∞

f̄ (ξ, z)eiξ x dξ, (2)

where ξ denotes the Fourier transform parameter.
An exact stiffness matrix method proposed by Rajapakse and Senjuntichai [1995] is employed in the

derivation of the influence functions required for analysis of the interaction problem shown in Figure 1.
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In this method, the exact stiffness matrices for the nth layer and an underlying half-plane are derived from
the general solutions of a homogeneous poroelastic material in the Fourier transform space [Senjuntichai
and Rajapakse 1994]. The global stiffness matrix of a multilayered poroelastic half-plane is then obtained
by assembling the layer and half-plane stiffness matrices together with the continuity of traction and fluid
flow at the layer interfaces. The global equation system can be expressed as

K U = F, (3)

where K is the global stiffness matrix, U and F are the global vectors of generalized displacements and
generalized forces defined as

U =
[
u(2) u(2) · · · u(n) · · · u(N ) u(N+1)

]T
, F =

[
f (1) f (2) · · · f (n) · · · f (N ) f (N+1)

]T
,

in which

u(n) =
[
i ū(n)x ū(n)z p̄(n)

]T
, f (n) =

[
i σ̄ (n)zx σ̄

(n)
zz w̄

(n)
z
]T
,

and the superscript n denotes the quantities at the nth interface. Details on the formulation of the exact
stiffness matrix method including the explicit expression of the layer and half-plane stiffness matrices
are given elsewhere [Rajapakse and Senjuntichai 1995].

To determine the influence functions, a boundary value problem corresponding to a multilayered
poroelastic half-plane subjected to a uniform strip load at the surface is solved. The global generalized
force vector can then be expressed as

F =
[

0 −
√

2
π

sin(ξa)
ξ

0 · · · 0

]T

,

where a is half the width of the loading strip. The solutions for displacements and pore pressure at layer
interfaces can be obtained by solving (3) for discrete value of ξ together with the application of numerical
quadrature to evaluate the inverse Fourier transforms defined in (2). In the analysis of the interaction
problem shown in Figure 1, only vertical solid and fluid displacements (uz and wz) at the surface level
are required to establish the flexibility equation for the derivation of the contact stress and pore pressure
jump, which are employed in the formulation presented in the next section.

3. Formulation of interaction problem

Consider a system of NS flexible foundations resting on a multilayered poroelastic medium as shown in
Figure 1. For a foundation with its length much longer than its width subjected to dynamic loading that is
uniform along the longitudinal direction, it is reasonable to consider the foundation as a strip foundation
under plane strain condition. For the i-th strip foundation with a width of 2ai , it is convenient to define
a local coordinate η as η = (x − x i )/ai , with i = 1, 2, 3, . . . , NS, where x i is the x-coordinate at the
center of the i-th foundation. The vertical deflection of the i-th foundation, denoted by wi

st , can then be
expressed as

wi
st(η)=

NT∑
n=0

αi
nη

n, i = 1, 2, 3, . . . , NS, (4)
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where αi
0, α

i
1, . . . , α

i
NT

are a set of generalized coordinates. In view of (4), the bending moment per unit
length acting on the i-th foundation is given by

M i
st(η)=−Di

NT∑
n=0

n(n− 1)αi
nη

n−2, i = 1, 2, 3, . . . , NS, where Di
=

E i
st(h

i
st)

3

12
[
1− (νi

st)
2
] ,

and hi
st , E i

st , and νi
st are the thickness, Young’s modulus, and Poisson’s ratio of the i-th foundation.

In this paper, it is assumed that the contact surface between the strip foundation and the multilayered
half-plane is smooth and either fully permeable or impermeable. For an impermeable strip foundation,
the vertical loading is resisted by contact traction and pore pressure generated at the bottom surface of
the foundation. The resultants of the contact traction and pore pressure of the i-th foundation can be
represented by traction T i

z (η) and pore pressure jump T i
p(η) acting on the contact surface between the

i-th foundation and the half-plane.
To determine T i

z and T i
p, the contact surface between the i-th strip foundation (i = 1, 2, 3, . . . , NS)

and the half-plane is discretized into the total number of N i
E strip elements. The width of each element

is denoted by 1i
k where k = 1, 2, . . . , N i

E (see Figure 2). The vertical displacement compatibility and
the impermeable condition are then imposed at the contact surface between the strip foundation and the
half-plane. This is done by taking each term of the deflection approximation of the i-th foundation, (4)
with αi

n = 1 (i = 1, 2, 3, . . . , NS; n = 0, 1, 2, . . . , NT ). Thereafter, the resulting deflection variation
and zero flow condition are imposed on the nodal locations at the contact surface of the half-plane by
applying contact traction T i

znk and pore pressure jump T i
pnk at the k-th node of the i-th strip foundation.

It is assumed that contact traction and pore pressure jump are constant within each strip element. The
following flexibility equation system can be established to determine the intensities of T i

znk and T i
pnk at

each strip element:

G11
zz G11

zp · · · G1 j
zr · · · G1NS

zz G1NS
zp

G11
pz G11

pp · · · G1 j
pr · · · G1NS

pz G1NS
pp

...
...

. . .
... . . .

...
...

Gi1
qz Gi1

qp · · · Gi j
qr . . . Gi NS

qz Gi NS
qp

...
... . . .

...
. . .

...
...

GNS1
zz GNS1

zp · · · GNS j
zr · · · GNS NS

zz GNS NS
zp

GNS1
pz GNS1

pp · · · GNS j
pr · · · GNS NS

pz GNS NS
pp





T 1
zn

T 1
pn
...

T i
qn
...

T NS
zn

T NS
pn


=



u1
zn

u1
pn
...

ui
qn
...

uNS
zn

uNS
pn


, (5)

where

Gi j
qr =


Gi j

qr,11 Gi j
qr,12 · · · Gi j

qr,1NE

Gi j
qr,21 Gi j

qr,22 · · · Gi j
qr,2NE

...
... Gi j

qr,kl
...

Gi j
qr,NE 1 Gi j

qr,NE 2 · · · Gi j
qr,NE NE

 .
In this equation, the element Gi j

qr,kl (i, j = 1, 2, 3, . . . , NS; k, l = 1, 2, 3, . . . , NE) denotes the vertical
displacement (q = z) and the fluid displacement (q = p) at the center of the k-th strip element of the i-th
foundation due to a vertical load (r = z) and fluid pressure (r = p) applied over the l-th strip element of
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Figure 2. Dicretization of the strip-half-plane contact surface.

the j-th foundation. In addition,

T i
zn =

[
T i

zn1 T i
zn2 · · · T i

znk · · · T i
znNE

]T
, T i

pn =
[
T i

pn1 T i
pn2 · · · T i

pnk · · · T i
pnNE

]T
,

ui
zn =

[
ui

zn1 ui
zn2 · · · ui

znk · · · ui
znNE

]T
, ui

pn =
[
0 0 · · · 0 · · · 0

]T
.

The contact traction and pore pressure jump at the k-th strip element of the i-th foundation that are
required to satisfy the displacement compatibility and the impermeability condition at the contact surface
can be expressed respectively as

T i
zk =

NT∑
n=0

αi
nT i

znk, T i
pk =

NT∑
n=0

αi
nT i

pnk, (6)

where T i
znk and T i

pnk (n = 0, 1, 2, . . . , NT ; k = 1, 2, 3, . . . , NE) denote the intensities of contact traction
and pore pressure jump respectively acting on the k-th strip element of the i-th foundation when ui

znk = η
n
k ,

in which ηk is the local coordinate at the center of the k-th strip element.
For a fully permeable strip foundation, since no pore pressure jump is generated under the foundation,

the flexibility matrix (5) is then reduced to
G11

zz G12
zz · · · G1NS

zz

G12
zz G22

zz · · · G2NS
zz

...
... Gi j

zz
...

GNS1
zz GNS2

zz · · · GNS NS
zz




T 1
zn

T 2
zn
...

T NS
zn

=


u1
zn

u2
zn
...

uNS
zn

 . (7)

The Lagrangian function 5 of the system of NS flexible strip foundations resting on a multilayered
poroelastic half-plane as shown in Figure 1 can be expressed as

5=

NS∑
i=1

{
V i
−U i

−

1∫
−1

[ 1
2

{
T i

z (η)+αT i
p(η)

}
− f i (η)

]
wi

st(η)dη
}
, (8)
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where V i and U i denote the kinetic and strain energies of the i-th strip foundation respectively and

V i
= α̇i M i

st(α̇
i )T , U i

= αi H i
st(α

i )T , i = 1, 2, 3, . . . , NS,

in which αi is a row vector whose elements are the generalized coordinates of the i-th foundation, that
is, αi

=
[
αi

0 α
i
1 α

i
2 · · · α

i
NT

]
. The elements M i

mn and H i
mn of the matrices M i

st and H i
st are given by

M i
mn =

ρi
st h

i
st(a

i )m+n−1

2(m+ n− 1)

[
1− (−1)m+n−1],

H i
mn =

E i (hi
st)

2(ai )m+n−5

24
[
1− (νi

st)
2
] (m− 1)(m− 2)(n− 1)(n− 2)

(m+ n− 5)

[
1− (−1)m+n−5],

where ρi
st is the density of the i-th foundation. In addition, f i (η) denotes the external loading acting on

the i-th foundation and can be written as

f i (η)=

NL∑
m=0

ϕi
mη

m,

where ϕi
m is the coefficient of the loading function.

The Lagrange’s equations of motion for the interaction problem shown in Figure 1 are given by

d
dt

(
∂5

∂ Ȧ

)
−
∂5

∂A
= 0, (9)

where A=
[
α1 α2 α3

· · · αNS
]T
. Substitution of (8) in (9) results in the following equations of motion

to determine αi (i = 1, 2, 3, . . . , NS):
Q A= B, (10)

where
Q =−ω2(Mst +MT

st)+ Hst + HT
st + S+ ST ,

and

Mst = diag[M i
st ], Hst = diag[H i

st ], S= diag[Si
], B =

[
B1 B2 B3

· · · BNS
]T
.

The elements of Si
mn and Bi

m of the matrices Si and Bi (i = 1, 2, . . . , NS;m, n = 1, 2, . . . , NT + 1) are
given by

Si
mn =

1
2

NE∑
k=1

1i
k(ηk)

m−1(T i
z(n−1)k +αT i

p(n−1)k
)
, Bi

m =

NL∑
k=1

ϕi
k(a

i )m+k−1

(m+ k− 1)

[
1− (−1)m+k−1],

where 1i
k denotes the width of the k-th strip element of the i-th foundation.

The solution of a linear simultaneous equation system given by (10) yields the numerical values of the
generalized coordinates αi

n (n = 0, 1, 2, . . . , NT ; i = 1, 2, 3, . . . , NS) for a given foundation-half-plane
system. Finally, vertical displacements, contact traction, and pore pressure jump can then be obtained
by back substituting the generalized coordinates in (4) and (6) respectively.
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4. Numerical results and discussion

Numerical results for dynamic interaction between a system of strip foundations subjected to vertical
loading resting on a multilayered poroelastic half-plane are presented in this section. For impermeable
strip foundations, the first step is to solve the system of linear simultaneous equations given by (5) to
obtain the unknown contact traction T i

znk and pore pressure jump T i
pnk at each strip element of the i-th

foundation (i = 1, 2, 3, . . . , NS) for each n value. For fully permeable foundations, (7) is solved for the
unknown T i

znk . This involves the computation of the influence functions Gi j
qr,kl by solving (3). Since (3)

is established in the Fourier transform space, it has to be solved for discrete values of ξ . The required
influence functions are then determined by numerically integrating the inverse Fourier transform given
by (2).

To perform the numerical integration, it is important to examine the singularities of the integrands.
The main singularities are the branch points and poles that are complex-valued quantities with negative
imaginary parts for all poroelastic materials due to the presence of some internal friction (b 6= 0). There-
fore, the real ξ -axis is free from any singularities and the influence functions can be evaluated by direct
numerical integration along the real ξ -axis when b 6= 0. For poroelastic materials with b = 0 and ideal
elastic materials, 1% attenuation is used to ensure that the real ξ -axis is free from any singularity. In the
present study, the numerical evaluation of the influence functions is performed by employing a globally
adaptive numerical quadrature scheme [Piessens et al. 1983]. This scheme subdivides the interval of
integrand and uses a 21-point Gauss–Kronrod rule to estimate the integral over each interval.

Convergence and numerical stability of the solution scheme were investigated with respect to the
number of terms, NT , in (4), and the number of strip elements, NE , used to discretize the contact surface
between the strip foundation and the half-plane. It was found that converged numerical solutions are
obtained when NT ≥ 8 and NE ≥ 20.

The accuracy of the present solution scheme is verified by comparing with the existing solutions. The
left side of Figure 3 shows a comparison of vertical compliance, CV = wst(0)µ(1)/a f0, of a rigid strip
of width 2a subjected to a uniform load f0 resting on a layered elastic half plane consisting of one
homogeneous layer with a thickness of 2a and an underlying half-plane. Numerical solutions from the
present scheme are compared with those presented by Israil and Ahmad [1989] for different values of
µ(1)/µ(2). The nondimensional frequency δ = ωa

√
ρ(1)/µ(1) is used in the comparison in this figure and

all numerical results presented in this paper. It can be seen from the left side of Figure 3 that the two
solutions agree very closely for all values of µ(1)/µ(2).

The right side of Figure 3 presents a comparison of vertical impedance KV = F0/µawst(0) of a
permeable rigid strip of width 2a on a homogenous poroelastic half-plane subjected to a time-harmonic
vertical force F0. It is evident from the right side of Figure 3 that the solutions from the present scheme
are in very good agreement with those given by Kassir and Xu [1988]. Note that the half-plane in the
present study consists of 10 layers of equal thickness 0.2a and an underlying half-plane. A compari-
son of vertical impedance KV = f0a/µwst(0) of a flexible strip on a homogenous elastic half-plane
subjected to a uniform load of intensity f0 is shown in Figure 4. The nondimensional relative rigidity,
γ = Est h3

st/12(1− ν2
st)a

3µ(1), is used in the comparison. Excellent agreement is noted between the
present solution and the solution given by Wang et al. [1991]. The accuracy of the present solution
scheme is therefore verified by these independent comparisons.
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Figure 3. Comparison of (left) compliance of a rigid strip on a layered elastic half-plane,
and (right) vertical impedance of a rigid strip on a homogenous poroelastic half-plane.
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Figure 4. Comparison of vertical impedance of a flexible strip on an elastic half-plane.

Next, vertical vibrations of strip foundations resting on a multilayered poroelastic half-plane as shown
in Figure 5 are studied. The strip foundations under consideration are either fully permeable or imper-
meable. The half-plane consists of two poroelastic layers bonded to an underlying poroelastic half-plane.
The material properties of both layers and the underlying half-plane are given in Table 1. The first set
of solutions corresponds to vertical vibrations of a single strip foundation on a multilayered poroelastic
half-plane subjected to a uniform load of intensity f0 as shown on the left side of Figure 5. Nondimen-
sional vertical displacement at the center of the strip foundation, w∗st(0)= wst(0)µ(1)/ f0a, is presented
in Figure 6. Both fully permeable and impermeable foundations with different relative rigidity ratio
γ = 0.2, 0.5, 1.0, 5.0, and 100 are considered to investigate the influence of strip foundation rigidity and
hydraulic boundary conditions at the contact surface. Numerical results presented in Figure 6 indicate
that the variation of w∗st(0) with frequency is quite similar for fully permeable and impermeable strips
although both real and imaginary parts of w∗st(0) are larger for the impermeable strip. Both real and
imaginary parts of w∗st(0) decrease with increasing relative rigidity γ . The real part of w∗st(0) shows a
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Figure 5. Flexible strip foundation systems considered in numerical study: (left) single
strip and (right) two strips.

µ λ M ρ ρ f m† α b

First layer 2.5 5.0 25.0 2.0 1.0 3.0 0.95 1.50
Second layer 1.25 1.88 18.8 1.6 1.0 1.8 0.98 0.75

Underlying half-plane 10.0 10.0 20.0 2.4 1.0 4.8 0.90 4.50

Table 1. Material properties of the layered systems considered in numerical study.
Units: µ, λ and M in 108 N/m2; ρ, ρ f and m in 103 kg/m3; b in 106 Ns/m4.

change in sign within the frequency range 1.0< δ < 1.5. The imaginary part of w∗st(0) remains negative
throughout the frequency range 0< δ < 3.0 and it is maximum when the corresponding real part of the
solution is equal to zero. In addition, the strip foundation becomes virtually rigid when γ ≥ 100.

Comparison of nondimensional central bending moment M∗st(0) = Mst(0)/ f0a3 shown in Figure 7
indicates that the bending moment of a strip foundation depends significantly on the relative rigidity γ
and the hydraulic boundary condition at the contact surface. The bending moment at the center of the
strip varies smoothly with frequency and the maximum values of real and imaginary parts of M∗st(0)
are found when 1.0< δ < 1.5. As expected, the magnitudes of both real and imaginary parts of M∗st(0)
increase with increasing γ , and the bending moment at the center of an impermeable foundation is higher
than that of the permeable one.

Figure 8 presents profiles of nondimensional displacement w∗st of an impermeable strip foundation on
the multilayered half-plane for γ = 0.2, 0.5, 1.0, 5.0, and 100, and δ = 0.5 and 2.0. It can be seen from
the left side of Figure 8 that both real and imaginary parts of displacement profiles depend significantly
on relative rigidity and frequency. Both Re[w∗st ] and Im[w∗st ] are maximal at the center of the strip before
monotonically decreasing at the strip edge. In addition, the displacements decrease with decreasing the
relative rigidity γ , and the effect of γ is negligible when γ > 100.

Profiles of nondimensional contact traction T ∗z = Tz/ f0 and pore pressure jump T ∗p = Tp/ f0 under
an impermeable strip foundation on the multilayered half-plane are presented in Figure 9 to investigate
the load transfer mechanism between the strip and the half-plane. It is found that the contact traction
under a flexible strip is distributed more uniformly than that under a rigid strip. Numerical results for
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Figure 6. Displacement at the center of a flexible strip on a multilayered poroelastic
half-plane: (top row) permeable strip and (bottom row) impermeable strip.

the contact traction presented in Figure 9 confirm the presence of classical singular behavior in both real
and imaginary parts of T ∗z near the edge of the strip. Similar behavior was also observed for a rigid
strip [Hryniewicz 1981] and a flexible strip [Wang et al. 1991] on a homogeneous elastic half plane. A
comprehensive review on investigations of the exact local behavior of the contact traction in the vicinity
of the foundation edge was given by Selvadurai [1979]. On the contrary, the pore pressure jump presented
in Figure 9 is not singular near the strip edge. Its real and imaginary parts approach zero near the edge of
both rigid and flexible strips. It is also found that larger pore pressure jump occurs at a higher frequency
(δ = 2.0) than at low frequency (δ = 0.5). This implies that the load is carried by both solid and fluid
phases at higher frequency, whereas at low frequency, the load transfer takes place through the solid
skeleton. Similar behavior was also observed for the load transfer mechanism of a circular plate in a
poroelastic medium [Zeng and Rajapakse 1999; Senjuntichai and Sapsathiarn 2003].

Figure 10 shows nondimensional central displacement w∗st(0) of an impermeable flexible strip foun-
dation (γ = 1.0) on different poroelastic systems. Four poroelastic systems, namely a homogenous half
plane, a homogenous layer of thickness a with an impermeable rigid base, and multilayered systems A
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Figure 7. Bending moment at the center of a flexible strip on a multilayered poroelastic
half-plane: (top row) permeable strip and (bottom row) impermeable strip.
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Figure 8. Displacement profiles of an impermeable strip on a multilayered poroelastic
half-plane.
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Figure 9. Profiles of contact traction and pore pressure jump under an impermeable
strip on a multilayered poroelastic half-plane.

and B, are considered in this figure to investigate the influence of layering and poroelastic material pa-
rameters. The material properties of the homogeneous half-plane and the homogenous layer are identical
to those of the first layer defined in Table 1. The geometries of the multilayered systems A and B are
identical to those shown in Figure 5. The material properties of both systems are given in Table 1 except
the internal friction between solid and fluid is neglected for both layers and the half-plane of system
B (b = 0). The comparison of w∗st(0) presented in Figure 10 indicates substantial differences among
three poroelastic systems. Both real and imaginary parts of w∗st(0) for the strip on the homogenous half-
plane vary smoothly with δ whereas the strip displacement on the homogeneous layer shows oscillatory
variation over the frequency range due to the standing wave generated between the surface and the rigid
base. The difference in strip displacements corresponding to the multilayered systems A and B is mainly
due to the parameter b. Note that all layers in system B have zero internal friction (b = 0) whereas
system A consists of materials with nonzero b values. It is found that both real and imaginary parts of
w∗st(0) in system A are smaller due to the presence of the internal friction between solid and fluid phases
that makes this layered system more stiff and damped.

Numerical results corresponding to vertical vibrations of two impermeable strip foundations of width
2a subjected to uniform loading resting on a multilayered poroelastic half-plane as shown on the right
side of Figure 5 with the properties given by Table 1 are presented next. The two strip foundations are
identical and the distance between them is denoted by d. Variations of nondimensional displacement
and nondimensional bending moment at the center of the left foundation with respect to nondimensional
frequency are presented in Figures 11 and 12 respectively. Two values of the normalized distance between
the two foundations d/a = 1 and 5 and the relative rigidity γ = 0.2, 0.5, 1.0, 5.0, and 100 are considered
in these two figures. It should be noted that the influence of the normalized distance d/a was investigated
by preparing plots similar to those shown in Figures 11 and 12 for different values of d/a. It was found
that the effect of d/a on displacement and bending moment becomes negligible when d/a > 15.

Numerical results presented in Figures 11 and 12 indicate that the presence of the adjacent foundation
significantly influences both displacement and bending moment. Both real and imaginary parts of w∗st(0)
for the two-foundation systems (d/a= 1.0 and 5.0) presented in Figure 11 show more oscillatory variation
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Figure 10. Displacement at the center of an impermeable strip (γ = 1.0) on different
poroelastic systems.
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Figure 11. Displacement at the center of the left strip of two impermeable strip systems
(see Figure 5, right side): (top row) d/a = 1.0 and (bottom row) d/a = 5.0.
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Figure 12. Bending moment at the center of the left strip of two impermeable strip
systems ( see Figure 5, right side) : (top row) d/a = 1.0 and (bottom row) d/a = 5.0.

with frequency when compared to smooth variations observed for a single strip foundation presented in
Figure 6. The comparison of nondimensional displacement in Figure 11 for both two-foundation systems
indicates differences in both magnitude and shape of w∗st(0). The real part of w∗st(0) for d/a = 5.0 shows
a change sign near δ = 1.2 whereas Re[w∗st(0)] for the two-foundation system with d/a = 1.0 remains
positive throughout the frequency range 0< δ < 3.0. The imaginary part of w∗st(0) remains negative for
0 < δ < 3.0 and the maximum values are found near δ = 1.0 for both d/a = 1.0 and 5.0. In addition,
both real and imaginary parts of w∗st(0) decrease with increasing γ and the foundations become virtually
rigid when γ ≥ 100 similar to what observed for a single strip foundation in Figure 6.

The nondimensional bending moment shown for the two-foundation systems in Figure 12 indicates
that both Re[M∗st(0)] and Im[M∗st(0)] exhibit more oscillatory variation with frequency than those ob-
served for a single strip foundation in Figure 7. An important feature of the bending moment results
revealed from Figure 12 is the notable dependence of both Re[M∗st(0)] and Im[M∗st(0)] on the distance
d/a. The variation of both Re[M∗st(0)] and Im[M∗st(0)] with δ for the two-foundation system with
d/a = 5.0 shows considerable oscillations, and it is quite different from that of a two-foundation system
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with d/a = 1.0. Numerical results presented in Figure 12 also indicates that the relative rigidity γ has
more significant influence on the bending moment than on the displacement, similar to what is observed
in Figures 6 and 7 for a single strip foundation. Both real and imaginary parts of M∗st(0) for the two-
foundation systems increase with increasing the relative rigidity γ and their magnitudes are lower than
the corresponding solutions presented in Figure 7.

5. Conclusion

The dynamic interaction between a flexible strip foundation system under time-harmonic vertical loading
resting on a multilayered poroelastic half plane is presented in this paper by using the coupled variational
Green’s function scheme together with a discretization technique. Both fully permeable and impermeable
conditions at the contact surface between the foundations and the multilayered half-plane are considered.
The required influence functions, which are computed by using the exact stiffness matrix method, cor-
respond to a vertical strip load and fluid source applied at the surface of a multilayered poroelastic
half-plane. The present numerical solutions are computationally stable and are in very good agreement
with the existing solutions for both rigid and flexible foundations. Numerical results indicate that the
dynamic response of the strip foundations depends significantly on the frequency of excitation, hydraulic
boundary conditions, relative rigidity γ , poroelastic material properties and the distance between adjacent
foundations. Both permeable and impermeable strip foundations show similar variations of displacement
and bending moment with frequency, and higher magnitudes are observed in the impermeable one. With
increasing the relative rigidity γ , the displacements of both single and multiple strip foundations decrease
whereas their bending moments increase. The effect of the relative rigidity is negligible when γ > 100.
In addition, the displacement and bending moment of the two-foundation system show significant de-
pendence on both the distance between adjacent foundations and the frequency. It is also found that
variations of displacement and bending moment with frequency show more considerable oscillations
when δ > 1.5.
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TIME-DOMAIN THIN LAYER METHOD FOR COMPUTING TRANSIENT
RESPONSE DUE TO SUDDEN/MOVING LOADS

HIROKAZU TAKEMIYA

In this study, the author applied the thin-layer method (TLM) for developing explicit time domain solu-
tions for the ground response due to impulse and moving loads. The Fourier and Laplace transforms for
space and time, respectively, are applied to derive the transformed domain solution that satisfies given
boundary conditions. The eigenvalue decomposition in the Laplace parameter domain and the discrete
wave number superposition for the horizontal wave field description lead to an accurate and efficient
strategy for a stable time-space domain solution. Some demonstrations are given: The first example is a
fundamental problem relating to interpretation of the causal transient responses of the P, S, and Rayleigh
waves due to an impact loading. The second example is also fundamental, and treats the description of
a compound wave field produced by a single moving load, detailing the kinematic as well as the inertial
effects, with the speed being an important parameter. The third example is an engineering application
that demonstrates the track response due to train passage in order to interpret the wave generation in
ground by the high-speed passage. A comparison to measurement data is presented for validation.

1. Introduction

In the 1950s, the importance of studies on the transient and stationary responses of an elastic medium
under impact/moving loads was recognized, and analytical solutions to these problems were derived
under special conditions. These solutions have provided information to learn about the relevant wave
field. Further, they can lead to fundamental solutions to solve the more complicated engineering problem
by the modern numerical methods.

Regarding fixed position loading on an elastic halfspace medium, there exists a classical work by
Lamb [1904] for a time harmonic problem which includes an attempt for a transient response by using
the Fourier series expansion. An impulse problem of a vertical point load was solved by Pekeris [1955]
for the surface response by applying the Laplace transform and the inverse of the transform solution in
the complex plane. Mitra [1964] applied the same method for a disc-type impulse load. Eason [1966]
applied the inverse Laplace transform by a suitable complex number contour integration, leaving some
infinite integrals that contain the Bessel function for all points of the solid. In the wave fields, the
causality of respective wave propagation is of primary interest. By using those obtained Green functions,
the initial-boundary value problems have been solved in the time domain boundary method step-by-step
[Takemiya and Steinfeld 1993; Takemiya and Fujiwara 1994; Takemiya et al. 1994].

Regarding moving loads on an elastic halfspace medium, classical work has been done by applying
the integral transform method. Eason [1965] considered a three-dimensional problem for a moving force

Keywords: transient response, causality, impulse load, moving load, thin layer method, Laplace–Fourier transform, time
domain solution, high-speed train.
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with a constant speed on a homogeneous semi-infinite space (halfspace), deriving the stationary solution
in the range less than the Rayleigh wave speed. Using the Betti–Rayleigh reciprocal theorem, Payton
[1964] dealt with a transient problem of the sudden application of a load and subsequent movement at
constant velocity on an elastic halfspace. Gakenheimer and Miklowitz [1969] employed the Laplace
transform for time and then applied the Cagniard method for the inversion of the transformed solution.
They discussed the transient response for three different states in terms of the speed ratio of the moving
load velocity against the seismic P and S wave velocities. A constant moving velocity constitutes a
stationary problem with the relative coordinates of x − ct where x is distance, t is time and c is the
velocity of the moving load. Recently, such a moving load problem has been advanced in the study
of ground motions induced by a high-speed train [Dieterman and Metrikine 1997; Sheng et al. 1999;
Lombaert et al. 2001; Takemiya 2003; Takemiya and Bian 2005].

As an idealization of the ground, a halfspace has been employed for the sake of closed form solution
that allows for the interpretation of surface wave propagation. However, in view of actual situations in
which soft surface soil is deposited on hard soil, a layer or a layered halfspace may be a more useful model
for interpreting the observed dispersive wave field. In the studies of seismic wave synthesis, a vertically
heterogeneous model has been proposed. The finite element discretization is taken in the direction of
depth by Lysmer and Drake [1972] for the Rayleigh wave analysis.

For the three-dimensional problem, Olson et al. [1984] attempted to apply the wave number decom-
position for the horizontal dependence of the wave motion to the layered system. This formulation,
specially termed a thin layer method (TLM) by Kausel et al. [1975], is used to evaluate the extending
soil effects in the soil-foundation dynamic analysis. The frequency domain formulation results in a set of
algebraic governing equations of wave numbers. If a rigid base underlies the layers, general eigenvalue
determination programs are straightforwardly available for the solution. The eigenvalue decomposition
enables the wave number integral operation in a closed form by residue theory. This corresponds to
solving the locked modes in the layered halfspace, as stated in Harvey [1981], discarding the leaking
modes that Haddon [1987] discussed.

For the former situation, an alternative approach is shown by Kausel [1994] and Touhei [1995] by
taking the closed form inverse Fourier transform for time with a set of discrete wave number superim-
positions for space. To fulfill the required causality of wave propagation, Takemiya and Goda [2000]
applied the Laplace transform instead in the seismic fault rapture problem.

In this paper, by applying the Fourier and Laplace transforms to time and space, respectively, to
the layered ground model, the direct time domain solution is obtained with special attention paid to the
initial condition for the wave propagation. The Laplace transform scheme surpasses the Fourier transform
regarding the causality arguments [Takemiya and Guan 1993].

Firstly, the response of a halfspace medium under a sudden loading on the surface is investigated
with respect to the wave front propagation in time. The accuracy of the thin layer solution is checked
by comparison to the closed form solution. Secondly, the moving load problem on an elastic stratum
with the initial condition and the stationary without it are compared. We focus on the effect of the
moving speed on the predominant wave velocity of the medium as a crucial parameter. The causal wave
generation, given a starting position, is discussed in reference to the frequency domain solution. Thirdly,
for validating the present procedure, wave synthesis is attempted for train loading to compare to the
measurement data under the low- and high-speed passages.
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2. Solution method by Fourier–Laplace transform

The equation of motion governing elastodynamics is given by

µui, j j + (λ+µ)u j, j i + ρüi = fi , (1)

where λ and µ define the Lame constants, ρ is the density, u is the displacement, f is the body force
action, and ü denotes the double differentiation of u with respect to time t . The subscripts i and j
correspond to the Cartesian coordinates x , y, and z. Equation (1) can be reformulated in the Fourier
transform technique as

˜̄u(ξx , ξy, z, s)=
∫
∞

−∞

∫
∞

−∞

∫
∞

0
u(x, y, z, t) exp(−st) exp(iξx x) exp(iξy y) dt dx dy, (2)

u(x, y, z, t)=
1

8π3i

∫
∞

−∞

∫
∞

−∞

∫ σ+i∞

σ−i∞

˜̄u(ξx , ξy, z, s) exp(pt) exp(−iξx x) exp(−iξy y) ds dξx dξy, (3)

where the symbols ∼ and − define the Fourier transform with respect to space coordinates and the Laplace
transform with respect to time, respectively; the notations ξx and ξy are the wave numbers along the x
and y directions respectively; and i is an imaginary unit.

The associated equation is then coordinate transformed by
˜̄ux
˜̄u y
˜̄uz

=
iξx/ξ 0 −iξy/ξ

iξy/ξ 0 iξx/ξ

0 1 0


˜̄u1
˜̄u2
˜̄u3

 , or ˜̄ux,y,z = D ˜̄u1,2,3, (4)

where ξ =
√
(ξ 2

x + ξ
2
y ). The subscripts 1, 2, and 3 correspond to the new orientations after the coordinate

transformation. The associated vector transformation holds for the forces also.

˜̄f x,y,z = D ˜̄f 1,2,3. (5)

The coordinate transformation of (4) polarizes the three-dimensional governing (1) into an expression
for the in-place wave field comprising the P and SV waves and one for the out-of-plane wave field
comprising the SH wave. Then, the respective governing equations are

[
µ 0
0 λ+2µ

]
d2 ˜̄u1n
dz2

d2 ˜̄u2n
dz2

+
[

0 −(λ+µ)ξ

(λ+µ)ξ 0

]
d ˜̄u1n
dz

d ˜̄u1n
dz

+
[
(λ+2µ)k2

α 0
0 −µk2

β

]{
˜̄u1n
˜̄u2n

}
+

{
˜̄f1n
˜̄f2n

}
=

{
0
0

}
,

(6)

µ
d2 ˜̄u3n

dz2 −µk2
β ·
˜̄u3n +

˜̄f3n = 0, (7)

where the notations kα =
√
ξ 2+ (p/Vp)2 for the P wave number and kβ =

√
ξ 2+ (p/Vs)2 for the S

wave number are used.
The discretization of the displacement is employed by the thin layer elements. The use of a linear

interpolation function 8 for the displacements of neighboring nodes leads to the matrix equations
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(
AP-SVξ 2

+ BP-SVξ +CP-SV
+ s2 MP-SV

) ˜̄U
P-SV

123 =
˜̄F

P-SV

123 , (8)(
ASHξ 2

+CSH
+ s2 MSH

) ˜̄U
SH

123 =
˜̄F

SH

123, (9)

where ˜̄U denotes the nodal displacements and ˜̄F the nodal forces. The superscripts P-SV and SH indicate
the wave field concerned; namely, the former refers to the in-plane motion of the P and SV waves and the
latter to the out-of-plane motion of the SH wave. Note here that the above decoupled equations coincide
with those formulated in cylindrical coordinates in such a way that the subscripts 1, 2, and 3 correspond
to r , z, and θ , respectively. Therefore, the coefficient matrices A, B, C, M are described in detail in
the original paper [Kausel et al. 1975]. Equations (8) and (9) can be taken as eigenvalue problems with
respect to the Laplace parameter s, whose general expression is cast as{

ÂP-SV
+ s2 MP-SV

}
8P-SV

m = 0, (10){
ÂSH
+ s2 MSH

}
8m

SH
= 0, (11)

where ÂP-SV
= AP-SVξ 2

+ BP-SVξ +CP-SV and ÂSH
= ASHξ 2

+CSH.
Equation (10) defines the generalized Rayleigh function for the in-plane wave and (11) the generalized

Love waves for the out-of-plane wave by referring to the superscripts. The decomposed eigenvectors 8

satisfy the orthogonal condition:

8P-SV
i MP-SV8P-SV

j = δi j , (12)

8SH
i MSH8SH

j = δi j , (13)

(8P-SV)T AP-SV8P-SV
=3P-SV, (14)

(8SH)T ASH8SH
=3SH, (15)

8P-SV
= [φP-SV

1 φP-SV
2 · · ·φP-SV

2n ], (16)

8SH
=
[
φSH

1 φ
SH
2 · · ·φ

SH
n
]
, (17)

3P-SV
= diag[−(sP-SV

i )2], (i = 1, 2, . . . , 2n), (18)

3SH
= diag[−(sSH

i )2], (i = 1, 2, . . . , n). (19)

Therefore, using the eigenvectors above, the displacement and force vectors are represented as follows
(where we’ve replaced superscript P-SV on 8 by subscript 1 and 2, and superscript SH by subscript 3):{

˜̄U1

˜̄U2

}
=

81 ĒP-SV
8T

1 81 ĒP-SV
8T

1 81 ĒP-SV
8T

2

82 ĒP-SV
8T

1 82 ĒP-SV
8T

1 82 ĒP-SV
8T

2

{F̃1

F̃2

}
, (20)

U3 =

[
83 ĒSH

8T
3 83 ĒSH

8T
3

] {
˜̄F3

}
, (21)

where

˜̄E
P-SV
= diag

{
1

(−sP-SV
j

2
+ s2)

·
˜̄T (ξy, s)

}
, j = 1∼ 2n, (22)
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˜̄E
SH
= diag

{
1

(−sSH
j

2
+ s2)

· T̄ (ξy, s)
}
, j = 1∼ n. (23)

The term ˜̄T (ξy, s) defines the load effect, whose detailed description is given later. the wave number
domain expressions for the load vectors are

F̃1 =

[
−i
ξx

ξ
I − i

ξy

ξ
I
]{

F̃x(ξx , ξy)

F̃y(ξx , ξy)

}
, (24)

F̃2 = F̃z(ξx , ξy), (25)

F̃3 =

[
−i
ξy

ξ
I − i

ξx

ξ
I
] {

F̃x(ξx , ξy)

F̃y(ξx , ξy)

}
, (26)

where I denotes a unit matrix. The expressions in (20) and (21) are now back transformed into the
original Cartesian coordinates by using the transpose of the coefficient matrix of (4).


Ũx
Ũ y
Ũz

=


ξ 2
x
ξ 2 81 Ẽ

P-SV
8T

1 +
ξ 2

y
ξ 2 83 Ẽ

SH
8T

3
ξxξ y
ξ 2 81 Ẽ

P-SV
8T

1 −
ξxξ y
ξ 2 83 Ẽ

SH
8T

3 i ξx
ξ 2 81 Ẽ

P-SV
8T

2

ξxξ y
ξ 2 81 Ẽ

P-SV
8T

1 −
ξxξ y
ξ 2 83 Ẽ

SH
8T

3
ξ 2

y
ξ 2 81 Ẽ

P-SV
v8T

1 +
ξ 2

x
ξ 2 83 Ẽ

SH
8T

3 i
ξ y
ξ 2 81 Ẽ

P-SV
8T

2

−i ξx
ξ 2 82 Ẽ

P-SV
8T

1 −i
ξ y
ξ 2 82 Ẽ

P-SV
8T

1 82 Ẽ
P-SV

8T
2


×


F̃x(ξx , ξy)

F̃y(ξx , ξy)

F̃z(ξx , ξy)

 . (27)

The horizontal loading generates the P-SV and SH waves while the vertical loading generates the P-
SV but not the SH wave. The explicit expression for the analytical inverse Laplace transforms of the
concerned elements ĒP-SV

and ĒSH
are given in the next section for given loading time functions T (t).

The inverse Fourier transform of (3) can be replaced by the following stepwise numerical integration:

u(x, y, z, N1t)=
1

(2π)2

∫
∞

−∞

∫
∞

−∞

ũ(ξx , ξy, z, N1t)e−iξx x e−iξy ydξx dξy, (28)

where N is the number of the time increments 1t used for response duration. The odd and even nature
of ũ(ξx , ξy, z, N1t), when multiplied by e−iξx x e−iξy y , is used to our advantage to carry out the integral
computation over −∞ to +∞ efficiently. The cylindrical coordinate transformation is employed further
to make the integral operation more convenient since the wave number range over the distance ξr is
truncated by certain discrete wave numbers, while that over the angle ξθ is limited to 0∼ π/2. Therefore,

u(x, y, z, n1t)=
1

(2π)2

∫
∞

0

∫ 2π

0
ũ(ξr , ξθ , z, n1t)e−ξr cos ξθ eξr sin ξθ ξr dξr dξθ

∼=
1

(2π)2

π/2∑
m=0

L∑
n=0

Ũ (ξrn, ξθm, z, N1t)e−ξrn cos ξθn eξrn sin ξθn1ξr1ξθ , (29)
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where L is the fundamental wavelength, 1ξr = 2π/L and 1ξθ = π/2N are the wave number increments
for the radius and angle, respectively, for which the total numbers N and M are used for superposition.

3. Modal transient responses due to certain surface loads

3.1. Space distribution. Consider a uniformly distributed surface load of unit intensity over 2bx by 2by

in the x-y plane which is either suddenly applied or impulsively applied at a fixed position. We can say
that the the distribution along the x direction is given by Fx(x), along the y direction by Fy(x), and
along the z direction by δ(z), and the intensity time variation is given by T (t). Then,

Fi (x, y, z; t)= Fx(x)Fy(y)δ(z) · T (t). (30)

The Fourier–Laplace transform of (30) is given by

F̃i (ξx , ξy, s)= F̃x(ξx)F̃y(ξy) · T̄ (s). (31)

(a) Uniform load. A uniform load on the rectangular area is defined as

Fx(x)= [H(x + bx)− H(x − bx)] ⇐⇒ F̃x(ξx)=
sin(ξx bx)

ξx bx
, (32)

Fy(y)= [H(y+ by)− H(y− by)] ⇐⇒ F̃y(ξy)=
sin(ξyby)

ξyby
, (33)

where the notation H( ) defines a Heaviside function and the symbol⇐⇒ indicates Fourier transform
pairs.

(b) Load proportional to the deflection of an elastically supported beam. Consider an elastically sup-
ported beam of the bending rigidity E I on Winkler springs whose stiffness is k per unit length along the
y-axis but constant in width 2bx in the x-direction. The base reaction of the Winkler springs is

Fz(x, y)= Fx(x) · Fy(y)=
1
√

2Lc
exp

(
−

∣∣∣ y
Lc

∣∣∣) sin
(∣∣∣ y

Lc

∣∣∣+ π
4

)
×{H(x + bx)− H(x − bx)}, (34)

where Lc =
4
√

4E I/k.
The Fourier transform of (34) is given by

Fz(ξx , ξy)= Fz(ξx) · Fz(ξy)=
4

4+ (ξy Lc)4
·

2 sin ξx bx

ξx bx
. (35)

3.2. Time function.

(a) Dirac type loading. An impulse loading is defined by a Delta function δ( ). The Laplace transform
pair is

T (t)= δ(t)⇐⇒ T̄ (s)= 1. (36)

(b) Heaviside type loading. A suddenly applied loading is expressed by a Heaviside function H(t). The
corresponding Laplace transform pair is

T (t)= H(t)⇐⇒ T̄ (s)= 1
s
. (37)
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(c) Moving load. A moving load with a space distribution Fy(y) moving at constant speed c along the
y-direction is considered. The mathematical expression is then

Fz(y− ct)⇐⇒ F̃(ξy)
˜̄T (ξy, s), (38)

where
˜̄T (ξy, s)=

1
s− iξyc

. (39)

The Laplace domain representation of the moving load has a similar nature as the modified Heaviside
type loading but with a phase shift such that

T̃ (ξy,t)= eiξyct . (40)

This expression indicates a specific periodicity in time by the train speed under a given site condition.
A loading consisting of N consecutive loads of intensities Fn (n = 1, 2, . . . , N ) is expressed as

Fz(y− ct)=
N∑

n=0

Fnδ(y− c · n1t), (41)

so that the frequency domain counterpart becomes T̃ (ξy,n1t)= eiξyc·n1t . Further, in the case of a moving
load accompanied by a harmonic oscillation of frequency ω0, the following expression holds:

F(y− ct) exp(iω0t)⇐⇒ F̃z(ξy)
˜̄T (ξy, s), (42)

where
˜̄T (ξy, s)=

1
s− i(ξyc−ω0)

. (43)

The inverse Laplace transform is
T̃ (ξy,t)= ei(ξyc−ω0)t . (44)

3.3. Eigenmode response. The transient responses of the decomposed modes are obtained from the
inverse Laplace transforms of Equations (22) and (23) as

EP-SV/ SH
=

1
2π i

∫ γ i+∞

γ i−∞
diag

{
1(

−(sP-SV/ SH
j )2+ s2

) · T̄ (s)}est ds, (45)

which is evaluated from the residue theory for the respective loading types in the previous section. (Here
EP-SV/ SH means that either subscript may be taken consistently across the equation.)

(a) Dirac type loading. Introducing Equation (45) for T̄ (s) from Equation (36) results in the time domain
solution. The damping effect is now taken into account by introducing the damping ratio β j into each
decomposed mode, taken as a system with a single degree of freedom. Then

EP-SV/ SH
= diag

[
exp

(
−β j sP-SV/ SH

j t
) sin

(
sP-SV/ SH

j t
)

sP-SV/ SH
j

]
. (46)
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(b) Heaviside type loading. The response due to a suddenly applied (Heaviside type) loading is straight-
forwardly obtained by introducing T̄ (s) from (36) into (45). However, we can alternatively evaluate it
by integrating the Dirac’s impulse response of (46). The result for the initial condition at rest is then:

EP-SV/ SH
H (t)= diag

[
1− exp(−βsP-SV/ SH

j t)
{
β sin(sP-SV/ SH

j t)+ cos(sP-SV/ SH
j t)

}
(βsP-SV

j )2+ (sP-SV
j )2

]
. (47)

(c) Moving load. For a moving oscillating load of a constant speed c in the y-direction with the frequency
ω0, the inverse Laplace transform gives, after substituting (45) for ˜̄T (ξy, s) from (43):

EP-SV/ SH
= diag

1(
sP-SV/ SH

j

)2
+
(
βsP-SV/ SH

j + i(ξyc−ω0)
)2

×

(
− exp

(
−βsP-SV/ SH

j t
)
β sin

(
sP-SV/ SH

j t
)
+ cos

(
sP-SV/ SH

j t
)
+ cos((ξyc−ω0)t)

− i
(ξyc−ω0

sP-SV/ SH
j

exp
(
−βsP-SV/ SH

j t
)

sin
(
sP-SV/ SH

j t
)
− sin((ξyc−ω0)t)

))
, (48)

which has a dominant contribution along the line ξyc = ω0. Comparing (48) with (47) suggests that the
latter response is reduced to the former response on this line. Therefore, at this resonant situation, the
response due to a moving load turns out to be like that caused by a sudden Heaviside-type loading at the
temporal position by the moving speed.

4. Laplace transform versus Fourier transform

We now discuss the correspondence between the Laplace transform and the Fourier transform. This
will assist the interpretation of the results obtained using the first method described above. The formal
conversion follows by substituting the Laplace parameter “s” with another parameter “iω” of frequency
ω multiplied by an imaginary unit i . Then, (30) becomes

Fi (x, y, z;ω)= Fx(x)Fy(y)δ(z) · T̄ (ω), (49)

where the time function for the moving load (43) is expressed, after some manipulation, by

˜̄T (ξy, ω)=
1
c

i(
ξy −

ω−ω0
c

) = 2π
c
δ

(
ξy −

ω−ω0

c

)
. (50)

The δ() function involved indicates that the wave number along the moving direction of the load can be
selected from the wave number-frequency domain solution as follows:

ξy = (ω−ω0)/c. (51)

The homogeneous equations (10) and (11) are replaced by{
Â

P-SV
−ω2 MP-SV

}
8P-SV

m = 0, (52){
Â

SH
−ω2 MSH

}
8SH

m = 0. (53)
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The solutions corresponding to in-plane and out-of-plane motions provide information on the wave num-
ber versus frequency characteristics of the respective eigenmodes. The inverse Fourier transforms with
respect to wave numbers and frequency yield, in view of (51), the solution

u(x, y, z, t)=
1

(2π)2c

∫
∞

−∞

∫
∞

−∞

u
(
ξx ,

ω−ω0

c
, z, ω

)
e−iξx x

· ei
(
ω0 y

c
)
· eiω

(
t− y

c
)
dξx dω. (54)

Hence, the solution is characterized by the crossings of the wave number versus frequency diagrams of
dispersive wave modes and the speed line of (51).

5. Computational results

5.1. Fundamental problem I: Transient response of a halfspace under a sudden loading. Investigated
first is the transient response of an elastic isotropic homogeneous halfspace when a uniform disk load
of a unit radius is impulsively applied (a Dirac-type loading) on the free surface. The schematic model
is shown on the right. The properties are defined by the density ρ, the P wave and S wave velocities
c1 and c2, respectively, and the Poisson ratio ν. For the sake of the present TLM computation the
halfspace is approximated by a stratum of the rigid base at 228 m deep, which is discretized by sub-
layers as 10@0.4 m + 5@0.8 m + 10@1.0 m ×10 + 10@2.0 m + 10@4.0 m ×10 + 15@10 m. The
fundamental wavelength is set to 700 m for the
analysis. The discrete wave numbers for superpo-
sition are then set to 700. The time increment for
response computation is 1t = 10−3 [s]. The wave
modes employed are 40 for in-plane motion and
20 for out-of-plane motion. These values yield
a reliable solution with less computational time.
The response observation points are as indicated

 2
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�
105 KN/m2

Soil properties

a

 
Fig.1 Model for a halfspace under surface loading 

Figure 1. A halfspace under an impulse load.

in the figure to the right.
The transient responses that reach the static dis-

placements computed by the present method are
depicted by symbols in Figure 2 in the dimension-
less form. The response Ui j can be identified by the subscript i j with i indicating the response direction
and j the loading direction. They are compared with analytical halfspace solutions by lines (denoted
by HS) that are obtained by the author by following Eason’s formulation [1966] for the vertical loading.
Since the Eason solution is limited to times after the S wave arrival, the author improved it as valid for all
times. Further, the author extended it to the horizontal loading case to give an excellent match, when the
loaded area is assumed small enough, with Pekeris’ solution [1955] for a point loading. The letters P , S
and R are designated to indicate the wave front arrivals of the P , S and Rayleigh waves, respectively. A
unit of dimensionless time corresponds to the arrival of the S wave at a focused point. The wave causality
is noted to be clearly fulfilled in view of the respective wave front arrival times. An excellent agreement
is attained between the present and the closed form solutions, as the focused point is at a far distance
from the loading center. In Figure 2, the Rayleigh wave dominates the vertical and horizontal responses,
whereas the P wave contribution appears small.
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Figure 2 Transient response of a halfspace under a vertical disk load 
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Figure 2. Transient response of a halfspace under a vertical disk load: horizontal (radial)
and vertical at distances of 10 m (top left), 20 m (top right), and 100 m (bottom).

5.2. Fundamental problem II: Causality in a transient response for a moving load on a stratum. Com-
parison of the ground surface response is made between the moving Green functions from the Fourier
Transform method [Takemiya 2001; Takemiya et al. 2001] that uses the wave propagation matrix across
layers and the present direct Time Domain TLM. In order to investigate the wave field for a suddenly
applied and then moving load, a simple stratum, as described in Figure 3, is employed for the model. The
load and stratum properties are provided there. The sublayer division is made such that 20 m=50@0.4 m,
which guarantees roughly the shortest wavelength of 2 m at the frequency 100 Hz since there exist 5
nodal points within it. A key consideration in the design of this investigation is the placement of the
observation point at a location which allows the initial effect to be distinguished from the moving effect
of the load.

First, the site characteristics are investigated by computing the wave dispersion curves in the form
of the wave number versus frequency, and the group velocity versus frequency. They are depicted in
Figure 4 (left and right, respectively). In layered soils, the wave generation is significantly affected by
the so-called Airy phase frequency. These frequencies are noted at 4 Hz, 13 Hz, and 12 Hz, respectively,
for the first, second, and third modes of the in-plane motions. The speed of the moving load is also
important for the wave generation. Here, three representative situations, as defined by the speed ratio α
of the moving load against the S wave velocity of the medium, are demonstrated: α < 1 is the subseismic
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Figure 3 Stratum model for analysis under a moving load 
 

Figure 3. Stratum model for analysis under a moving load.

condition, α = 1 the seismic condition, and α > 1 the superseismic condition. These are indicated in
Figure 4 by the dashed lines as a parameter to locate which frequency is most associated with the wave
generation. For the speed ratio α < 1, there is no crossing with the dispersion curves; for α = 1, the
crossing of the speed line with the 1st mode occurs at 6 Hz; and for α = 2, it occurs at 4 Hz.

The TLM computed responses at the ground surface are depicted in Figures 5–7. The distance between
the starting position of the load and the observation point is taken as 40 m along the direction of motion,
with and offset of either 5 m or 10 m perpendicular to the direction of motion. The numbers of wave
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Figure 5. Transient response under a moving load for the α = 0.5 subseismic situation.
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Figure 6. Transient response under a moving load for the α = 1.0 seismic situation.
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Figure 7. Transient response under a moving load for the α = 2.0 superseismic situation.
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modes used are indicated in the figure: the first number refers to the number of in-plane modes and the
second number to the number of out-of-plane mode. By referring to (40), we note that the moving load
has a velocity-dependent periodic nature in addition to that of the Laplace transform for the Heaviside
type loading. The consequences are drastically different response features for different speeds of the
moving load. For the subseismic situation with speed ratio α = 1/2, the initial impact effect appears
at an observation point ahead of the moving load at the time of seismic wave arrivals. The fronts of
the P , SV , and Rayleigh waves are clearly detectable. Therefore, the former can be separated from the
latter by taking a long approach, for instance 200 m, from the starting point to the observation point.
The total response time histories, after the initial effect is excluded by an appropriate time window, are
also depicted. They are denoted by TD with a specific time indicated. The frequency domain solutions,
indicated as FD [Takemiya 2001; 2003], are also depicted in the figure for comparison. These include
a nominal small damping ratio β = 0.01 for the sake of a stable computation. All the resulting FD
responses, regardless of the distance off the moving line, look like kinematic ground deformations; the
responses attain a maximum at the moment the load passes the observation point, with almost symmetric
variation before and after it.

Next, for the seismic resonance situation of the speed ratio α= 1, the response features are described as
an impulsive response, as for a δ-type loading at the temporal position of the load, with small successive
fluctuations with a specific period. This periodicity is distorted in comparison with the frequency domain
solution if the observation point lies in a short distance. However, if the observation point is set as far
as 200 m, then the periodicity agrees well with the 6 Hz periodicity from the frequency domain solution.
This frequency was predicted from the crossing of the speed line with the first wave mode curve.

Lastly, for the superseismic situation of the speed ratio α = 2, the direct effect of the moving load
precedes the wave fronts due to the initial loading. Because of the small contribution, they are embedded
in the dynamic response within the chosen time window in the figure. The respective peak values are
quite similar to those in the seismic resonance case, but smaller. In contrast, the harmonic fluctuations
are more conspicuous in the superseismic situation. This phenomenon may be reasoned as follows: the
periodicity of the tailing response is estimated as 4 Hz, which coincides with the crossing frequency of
the speed line with the first mode wave curve and furthermore corresponds to the Airy phase frequency
of this wave mode.

The Fourier amplitudes of the transient responses in Figure 5–7 are depicted in Figure 8. For the speed
ratio α = 0.5, the amplitudes are almost constant in the frequency range up to several Hz. For α = 1 or
2, it is interesting to note that a peak response due to the moving speed of the load occurs at different
frequencies. For the former case it is at 5.5 Hz and for the latter case it is at 4.5 Hz. In the above low
frequency range or below the peak, a significant response reduction results as the distance increases off
the moving axis. This fact has been already pointed out in [Takemiya and Goda 2000] as a consequence
of the cut-off frequency to be determined by the stratum depth.

5.3. Application: Track response under train passage. Another application of the TLM is applied to an
actual problem to predict the response of a ballast type train track under the passage of trains. The train
geometry is illustrated in Table 1 and Figure 9. The wave fields of layered soils due to the Swedish X-2000
trains of different speeds have already been analyzed in the frequency domain solution method [Takemiya
2001; Takemiya and Bian 2005]. The site condition is prescribed for the equivalent soil properties in
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Figure 8. Fourier amplitudes of transient responses.

Train Car No
(Southbound) 5 4 3 2 1

Pn2, Pn1 (kN) 181.5, 180.0 122.5, 122.5 122.5, 122.5 122.5, 122.5 117.5, 160
an (m) 2.9 2.9 2.9 2.9 2.9
bn (m) 6.6 14.8 14.8 14.8 11.6
Ln (m) 17.17 24.4 24.4 24.4 22.17

Table 1. Swedish X-2000 train geometry (see also Figure 9).
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Figure 7  A train geometry, Swedish X-2000 

 
 
 
 
 

Table 1 Swedish X-200 train geometry   
 

Train Car No 
(Southbound) 5 4 3 2 1 

Pn2, Pn1 (kN) 181.5, 180.0 122.5, 122.5 122.5, 122.5 122.5, 122.5 117.5, 160 
 an (m) 2.9 2.9 2.9 2.9 2.9 
 bn(m) 6.6 14.8 14.8 14.8 11.6 
 Ln (m) 17.17 24.4 24.4 24.4 22.17 

Table 2� Soil properties at Ledsgard 

Shear Velocity (m/s) 
No Properties 19.4m/s 55.6m/s 

Density (t/m3) Poisson ratio 
Layer 

thickness 
(m) 

1 Crust 72.0 65.0 1.5 0.49 1.1 
2 Original Clay 41.0 33.0 1.26 0.49 3.0 
3 Clay 65.0 60.0 1.475 0.49 4.5 
4 Clay 87.0 85.0 1.475 0.49 6.0 

 

Figure 9. A train geometry, Swedish X-2000.

Table 2. Herein a stacked layered soil model is considered for the sake of the TLM computation. An
additional layer of 1.4 m thickness is put at the top to approximate the track portion, and the fictitious
rigid bottom base is set at 45 m depth. The employed subdivision is 4+ 10+ 9+ 12+ 45= 80 layers in
total. An equal sublayer thickness is employed within the respective original geological layers.

The axle loading due to train passage onto the ground beneath is presumed in the form of (34) with
q = (3π/4)Lc = 6.2 m [Takemiya 2001], which means that 9 sleepers of 2 m long are involved together
for a track deflection under the given rigidities of rails and ballast. This set of adjusted loads gives
rise to a train load when the phase distances associated with the train geometry are properly taken into
account. Since these are taken as in a stationary moving state, the causal response due to the initial
condition should be excluded. For this requirement, first, the starting position of the axle load is set at
80 m in front of the focused position for the moving speed of 70 km/h, and 400 m for the moving speed
of 200 km/h. The response time windows are then picked up to exclude the transient response due to
the initial condition by inspection of the duration of these response time histories. Figure 10 shows the
results after superposition of individual responses by following (41) for the given axle loads in Table 1.
The kinematic response at low train speed is reproduced in the computation and shows a good fitting
with the measurement data, although smaller peak values are predicted at the passage of the first and
final axles. A dynamic response at high speed is attained which approximates the measured data quite
acceptably, except for the final response to the passage of the last bogie and thereafter. This discrepancy
may be caused by the track modeling in view of [Takemiya and Bian 2005] and the associated nonlinear
behavior. The mechanism of the wave generation and propagation in the ground is interpreted from the
wave dispersion characteristics that show the frequency versus wave number [Takemiya 2001]. In the

Shear Velocity (m/s) Layer
No Properties 19.4 m/s 55.6 m/s Density (t/m3) Poisson ratio thickness (m)

1 Crust 72.0 65.0 1.5 0.49 1.1
2 Original Clay 41.0 33.0 1.26 0.49 3.0
3 Clay 65.0 60.0 1.475 0.49 4.5
4 Clay 87.0 85.0 1.475 0.49 6.0

Table 2. Soil properties at Ledsgard.
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low speed situation, the train speed line is off-set lower than the fundamental wave mode line, whereas
in the latter situation it indicates the crossing of the speed line with the fundamental wave mode line at
2.5 Hz, the corresponding wavelength is 16.7 m. These facts are confirmed in Figure 10.
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(a) Train speed 70 km/h 
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(b) Train speed  200 km/h 
Figure 8 rack response due to the X-2000 passage 
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(b) Train speed  200 km/h 
Figure 8 rack response due to the X-2000 passage 

 
 

 

 

Figure 10. Track response due to the X2000 train passage at (left) 70 km/h (19.4 m/s)
and (right) 200 km/h (55.6 m/s).

6. Conclusions

The transient responses due to moving loads, initially at rest, have been dealt with by the Laplace–Fourier
transform scheme with respect to time and space, respectively. The TLM is applied for discretization
along the depth of the ground. The wave field can be decomposed into the eigenmodes of wave numbers
in the horizontal dependence once it is decoupled into in-plane and out-of-plane motions. A variety of
space distributions and time variations are considered for loading profiles.

Firstly, an illustrative study is demonstrated for the transient response of a uniform halfspace due to
sudden vertical loading on the surface. The causal responses of the TLM are validated in comparison
with the closed form solution.

Secondly, the transient response due to a constant moving (quasistatic) load is investigated for a stratum
model. The causality features are discussed depending on the speed ratio of the moving load against the
shear velocity of the layer. From the computed results, it is noted that in the case of a short distance
from a starting position to an observation position, the wave field includes the initial touch down effect
as well as the moving load effect. However, as the distance is increased, the former response becomes
substantially separated from the latter response. Regarding the speed ratio of the moving load against the
seismic S wave velocity, distinct response features result. Those are interpreted in the time as well as in
the frequency domains. The wave dispersion characteristics are helpful to give a fundamental knowledge
for predicting the ground borne vibration.

Thirdly, a practical application is attempted to predict train-induced vibration. Since the stationary
response is focused on a constant speed passage, the superposition is taken for a set of responses due to
axle loads, with special care to exclude the causal effects from the initial condition. The validation is
made from the measured data at the site.
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Notation

A, B,C coefficient matrices
c train speed
˜̄E

P-SV
, ˜̄E

SH
diagonal matrices defined in (19) and (20)

F̃1, F̃2, F̃3 force vectors in the Fourier transformed domain
H(t) Heaviside step function
L fundamental wavelength
M mass matrix
s Laplace parameter
s j wave number eigenvalue
T (t) time function
T̃ (s) Laplace transform of time function
U nodal displacement vector
˜̄U1,

˜̄U2,
˜̄U3 Fourier–Laplace transformed displacements

β damping ratio
3P-SV,3SH diagonal matrices eigenwave numbers for waves field as P-SV and SH
ξ wave number
8 mode shape matrix
δ( ) Dirac delta function
ρ density
ω circular frequency
− Laplace transform with respect to time
∼ Fourier transform with respect to space coordinate

Acknowledgement

The author expresses his thanks to S. Yagi for implementing the theory involved into a computer code,
and also to Dr. F. Chen for some recomputation of examples shown here.

References

[Dieterman and Metrikine 1997] H. A. Dieterman and A. V. Metrikine, “Steady-state displacements of a beam on an elastic
half-space due to a uniformly moving constant load”, Eur. J. Mech. A Solids 6:2 (1997), 295–306.

[Eason 1965] G. Eason, “The stresses produced in a semi-infinite solid by a moving surface force”, Int. J. Eng. Sci. 2:6 (1965),
581–609.

[Eason 1966] G. Eason, “The displacements produced in an elastic half-space by a suddenly applied surface force”, J. Inst.
Math. Appl. 2 (1966), 299–326. MR 34 #5361

[Gakenheimer and Miklowitz 1969] D. C. Gakenheimer and J. Miklowitz, “Transient excitation of an elastic halfspace by a
point load traveling on the surface”, J. Appl. Mech. (ASME) 36:3 (1969), 505–515.

[Haddon 1987] R. A. W. Haddon, “A simple exact method for Green’s functions for SH motion in a layered elastic medium
using leaking modes”, Geophys. J. Int. 88:2 (1987), 379–392.

[Harvey 1981] D. J. Harvey, “Seismogram synthesis using normal mode superposition: The locked mode approximation”,
Geophys. J. Int. 66:1 (1981), 37–69.

[Kausel 1994] E. Kausel, “Thin-layer method: Formulation in the time domain”, Int. J. Numer. Methods Eng. 37:6 (1994),
927–941.

http://dx.doi.org/10.1016/0020-7225(65)90038-8
http://www.ams.org/mathscinet-getitem?mr=34:5361
http://dx.doi.org/10.1111/j.1365-246X.1987.tb06648.x
http://dx.doi.org/10.1111/j.1365-246X.1987.tb06648.x
http://dx.doi.org/10.1111/j.1365-246X.1981.tb05947.x
http://dx.doi.org/10.1002/nme.1620370604


1922 HIROKAZU TAKEMIYA

[Kausel et al. 1975] E. Kausel, J. M. Roesset, and G. Waas, “Dynamic analysis of footings on layered media”, J. Eng. Mech.
(ASCE) 101:5 (1975), 679–693.

[Lamb 1904] H. Lamb, “On the propagation of tremors over the surface of an elastic solid”, Philos. Tr. R. Soc. S. A 203 (1904),
1–42.

[Lombaert et al. 2001] G. Lombaert, G. Degrande, and D. Clouteau, “The influence of the soil stratification on free field
traffic-induced vibrations”, Arch. Appl. Mech. 71:10 (2001), 661–678.

[Lysmer and Drake 1972] J. Lysmer and L. A. Drake, “A finite element method for seismology”, Methods Comput. Phys. 11
(1972), 181–216.

[Mitra 1964] M. Mitra, “Disturbance produced in an elastic half-space by impulsive normal pressure”, Proc. Camb. Philos. Soc.
60 (1964), 683–696. MR 29 #5458

[Olson et al. 1984] A. H. Olson, J. A. Orcutt, and G. A. Frazier, “The discrete wavenumber/finite element method for synthetic
seismograms”, Geophys. J. Int. 77:2 (1984), 421–460.

[Payton 1964] R. G. Payton, “An application of the dynamic Betti–Rayleigh reciprocal theorem to moving-point loads in elastic
media”, Quart. Appl. Math. 21:4 (1964), 299–313. MR 27 #5411

[Pekeris 1955] C. L. Pekeris, “The seismic buried pulse”, Proc. Nat. Acad. Sci. U.S.A. 41:9 (1955), 629–639. MR 17,320e

[Sheng et al. 1999] X. Sheng, C. J. C. Jones, and M. Petyt, “Ground vibration generated by a harmonic load acting on a railway
track”, J. Sound Vib. 225:1 (1999), 3–28.

[Takemiya 2001] H. Takemiya, “Noise and vibration from high-speed trains”, Chapter 12, pp. 347–393 in Ground vibrations
alongside tracks induced by high-speed trains: Prediction and mitigation, edited by V. V. Krylov, Thomas Telford, London,
2001.

[Takemiya 2003] H. Takemiya, “Simulation of track-ground vibrations due to a high-speed train: The case of X-2000 at
Ledsgard”, J. Sound Vib. 261:3 (2003), 503–526.

[Takemiya and Bian 2005] H. Takemiya and X. C. Bian, “Substructure simulation of inhomogeneous track and layered ground
dynamic interaction under train passage”, J. Eng. Mech. (ASCE) 131:7 (2005), 699–711.

[Takemiya and Fujiwara 1994] H. Takemiya and A. Fujiwara, “Wave propagation/impediment in a stratum and wave impeding
block (WIB) measured for SSI response reduction”, Soil Dyn. Earthq. Eng. 13:1 (1994), 49–61.

[Takemiya and Goda 2000] H. Takemiya and K. Goda, “Thin layer method simulation of near source ground motions due to
discretized dislocation in layered soils”, J. Struct. Mech. Earthq. Eng. (JSCE) 640:50 (2000), 89–98.

[Takemiya and Guan 1993] H. Takemiya and F. Guan, “Transient Lamb’s solution for surface strip impulses”, J. Eng. Mech.
(ASCE) 119:12 (1993), 2385–2403.

[Takemiya and Steinfeld 1993] H. Takemiya and B. Steinfeld, “Transient 3D Lamb’s solution by classical approach and di-
rect boundary element method”, pp. 307–314 in Proceedings of the Second European Conference on Structural Dynamics
(EURODYN ’93) (Trondheim), edited by T. Moan et al., Balkema, Rotterdam, 1993.

[Takemiya et al. 1994] H. Takemiya, F. Guan, and Y. Sukeyasu, “2-D transient soil-surface foundation interaction and wave
propagation by time domain BEM”, Earthquake Eng. Struct. Dyn. 23:9 (1994), 931–945.

[Takemiya et al. 2001] H. Takemiya, S. Satonaka, and W. P. Xie, “Train-track-ground dynamics due to high speed moving
source and ground vibration transmission”, J. Struct. Mech. Earthq. Eng. (JSCE) 882:56 (2001), 299–309.

[Touhei 1995] T. Touhei, “Propagation of normal modes due to impulsive loading to 3-D medium on a rigid basement”, Earth-
quake Eng. Struct. Dyn. 24:7 (1995), 937–949.

Received 1 Jun 2007. Revised 23 Nov 2007. Accepted 6 Dec 2007.

HIROKAZU TAKEMIYA: takemiya@ed-techno.org
E&D Techno-design, Inc., Haga 5303, Okayama, Japan

http://dx.doi.org/10.1098/rsta.1904.0013
http://dx.doi.org/10.1007/s004190100174
http://dx.doi.org/10.1007/s004190100174
http://www.ams.org/mathscinet-getitem?mr=29:5458
http://dx.doi.org/10.1111/j.1365-246X.1984.tb01942.x
http://dx.doi.org/10.1111/j.1365-246X.1984.tb01942.x
http://www.ams.org/mathscinet-getitem?mr=27:5411
http://www.pnas.org/content/41/9/629.full.pdf+html
http://www.ams.org/mathscinet-getitem?mr=17,320e
http://dx.doi.org/10.1006/jsvi.1999.2232
http://dx.doi.org/10.1006/jsvi.1999.2232
http://dx.doi.org/10.1016/S0022-460X(02)01007-6
http://dx.doi.org/10.1016/S0022-460X(02)01007-6
http://dx.doi.org/10.1061/(ASCE)0733-9399(2005)131:7(699)
http://dx.doi.org/10.1061/(ASCE)0733-9399(2005)131:7(699)
http://dx.doi.org/10.1016/0267-7261(94)90041-8
http://dx.doi.org/10.1016/0267-7261(94)90041-8
http://dx.doi.org/10.1061/(ASCE)0733-9399(1993)119:12(2385)
http://dx.doi.org/10.1002/eqe.4290230902
http://dx.doi.org/10.1002/eqe.4290230902
http://dx.doi.org/10.1002/eqe.4290240702
mailto:takemiya@ed-techno.org


JOURNAL OF MECHANICS OF MATERIALS AND STRUCTURES

Vol. 3, No. 10, 2008

AGING DEGRADATION OF MECHANICAL STRUCTURES

SOMASUNDARAM VALLIAPPAN AND CALVIN K. CHEE

A numerical approach is proposed in this paper for safety assessment of mechanical structures with age-
related degradation. Deterioration occurs in mechanical structures due to various environmental attacks
and operation conditions which leads to changes in structural performance and structural resistance
capacity. By combining techniques such as degradation evaluation methods, damage mechanics, and
the finite element method, the proposed numerical method can be used to analyse the responses and
damages of mechanical structures with age-related degradation. Ageing degradation effects can be taken
into account by introducing degradation factor into formulations of finite element method and damage
mechanics. The numerical results for a notched bar and a plate with a central hole are provided to validate
the proposed numerical method.

1. Introduction

The ageing of mechanical structures can be defined as partial or total loss of their capacity to achieve
the purpose for which they were constructed via a slow, progressive and irreversible process that occurs
over a period of time. Ageing can lead to changes in engineering properties and may affect the static
and dynamic responses, structural resistance/capacity, failure mode, and location of failure initiation.
The ageing effects may impact the ability of mechanical system to withstand various challenges from
operation, environment, and natural events.

Although engineering materials such as steel and concrete are inherently durable, some engineering
structures may need to be improved because of deficiencies in their design and manufacture or as a result
of environmental attacks. The ageing process can directly affect mechanical structures by changing the
characteristics of the materials of which they are made and leading to a loss in their resistance capacity.
Corrosion, irradiation, elevated temperature, or fatigue effects are the main problems for mild steel.
Common problems to concrete include alkali-aggregate reaction (AAR), freezing and thawing, leach-
ing, sulphate attack, cracking due volume changes led by temperature variation, corrosion of concrete,
debonding of steel, etc.

The safety of existing aged mechanical structures is an important research topic owing to ageing
processes altering their strength and stiffness as well as revised predictions of the maximum loads asso-
ciated with severe operation conditions and environmental attacks. Probabilistic degradation evaluation
approaches, damage/fracture mechanics methods, nondestructive detection methods, etc., can be used
for this purpose.

Time dependent changes in engineering structures are random in nature. Safety evaluation of new
and existing structures can be conducted rationally within a probabilistic framework [Shinozuka 1983].

Keywords: mechanical structures, ageing, age-related degradation, finite element method, damage mechanics, numerical
analysis.
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Probability methods are widely used for condition assessment of existing structures. The mathematical
formalism of a probabilistic risk assessment (PRA) provides a means for identifying ageing structural
components that may play a significant role in mitigating structural risk. Structural condition assessments
supporting a decision regarding continued service can be rendered more sufficient if guided by the logic
of a PRA.

Degradation effects can be quantified with fragility curves developed for both undegraded and de-
graded components. Fragility analysis is a technique for assessing, in probabilistic terms, the capability
of an engineered system to withstand a specified event. Fragility modelling requires a focus on the
behavior of the system as a whole and specifically on things that can go wrong with the system. The
fragility modelling process leads to a median-centered (or likely) estimate of system performance coupled
with an estimate of the variability or uncertainty in performance. Braverman et al. [2004] reported on
a fragility analyses performed for concrete structural members and other passive components of nuclear
power plants (NPPs). Structural performance in the presence of uncertainties is depicted by a fragility
curve (or conditional probability of failure). Ellingwood [1998] addressed the issues related to struc-
tural ageing in probabilistic risk assessment of NPPs and proposed a probabilistic framework to assess
degradation in certain critical structural components or system capacities due to reinforcement corrosion
or concrete deterioration from aggressive environmental influences. Naus et al. [1999] summarized the
research program addressing the ageing of nuclear power plant concrete structures. A reliability-based
methodology was developed that can be used to facilitate quantitative assessments of current and future
structural reliability and performance of concrete structures in NPPs. The methodology is able to take
into account the nature of past and future loads, and randomness in strength and in degradation results
from environmental factors. A methodology was presented by Tekie and Ellingwood [2003] for devel-
oping fragilities of concrete gravity dams to assess their performance against seismic hazards. A robust
system reliability evaluation method was proposed for ageing redundant structures by Wang et al. [1997].
Using the advanced first-order second-moment reliability method, the element-level reliability indices are
calculated for individual piles for several strength limit states. The system-level reliability indices of the
pile group are calculated considering the lateral and vertical deflection limit states. An alternative method
to evaluate the safety of engineering structures is by using damage/fracture methods. When engineering
materials are subjected to unfavourable conditions such as cold and hot working processes, temperature
variations, chemical actions, radiation, mechanical loading, or environmental conditions, microscopic
defects and cracks may develop inside the materials. Such damage causes reduction in strength and
stiffness that may lead to failure and shorten the operating life of the structures. Such deterioration in
mechanical properties of a material is known as a damage process [Valliappan et al. 1990].

Because of the significant influence of damage on engineering material properties, a number of studies
have been carried out on modelling and numerical methods for crack growth in structures under various
loading conditions. Valliappan and his coworkers have been one of the pioneers in developing numerical
methods for the analysis of engineering structures using damage mechanics. For example, from the view-
point of continuum damage mechanics concept, Valliappan and Zhang [1996] addressed the problem of
the effect of microscopic defects and cracks within materials in order to study the behavior of structural
components under different loading conditions. A formulation for elasto-plastic analysis of damage
mechanics problems was developed based on the principles of thermodynamics and the associated finite
element method. A theoretical formulation for isotropic and anisotropic elasto-plastic analysis of static
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and dynamic damage mechanics problems was developed by Zhang and Valliappan [1998a]. The formula-
tions were based on the combination of concepts between the internal energy dissipation and the damage
elasto-plasticity energy potential in terms of a set of internal state variables to explain microstructural
changes in damaged materials. And the formulations were introduced into numerical algorithms of the
finite element techniques for static and dynamic analysis of structures including the effect of damage
[Zhang and Valliappan 1998b].

This paper presents a numerical approach for the safety assessment of mechanical structures with age-
related degradation by combining techniques such as degradation evaluation methods, damage mechanics,
and the finite element method. A notched bar and a plate with a central hole are solved as the examples in
the numerical analysis using the proposed method. The results of the analysis validate that the proposed
method is an efficient tool for safety assessment of aged mechanical structures.

2. Numerical method for safety assessment of aged mechanical structures

A dynamic two-dimensional finite element method coupled with damage mechanics is developed to
evaluate damage initiation and propagation for aged mechanical structures. To take into account the
effect of aged-related degradation on the safety of aged mechanical structures, ageing degradation is
quantified according to various mechanical and environmental attacks under various operation conditions.
The quantified age-related degradation factor is then included in the damage model and the finite element
formulation.

2.1. Quantification of ageing degradation of engineering materials. Age-related degradation of engi-
neering materials such as steel and concrete is a complicated process. Degradation of aged steel can be
classified as either material or physical damage. Material damage occurs when the microstructure of the
metal is modified causing changes in its mechanical properties. For example, degradation mechanisms
that can potentially cause material damage to containment steels include: (i) low-temperature exposure,
(ii) high-temperature exposure, (iii) intergranular corrosion, (iv) dealloying corrosion, (v) hydrogen em-
brittlement, and (vi) neutron irradiation. Primary degradation mechanisms that potentially can cause
physical damage to containment pressure boundary components include: (i) general corrosion (atmo-
spheric, aqueous, galvanic, stray-electrical current, and general biological); (ii) localized corrosion (fili-
form, crevice, pitting, and localized biological); (iii) mechanically assisted degradation (erosion, fretting,
cavitation, corrosion fatigue, surface flaws, arc strikes, and overload conditions); (iv) environmentally
induced cracking (stress-corrosion and hydrogen-induced); and (v) fatigue. Degradation of mild steel
reinforcing concrete can occur as a result of corrosion, irradiation, elevated temperature, or fatigue effects.
Prestressing concrete is susceptible to the same degradation mechanism as mild steel concrete, primarily
due to tendon relaxation and concrete creep and shrinkage.

Ageing is a time-dependent process. Ageing degradation of engineering materials, which accumulates
over time by various processes depending on the operating environment and service conditions, will
reduce the strength of structures or their components. Generally, the ageing degradation of the strength
of a structure or a structural component can be expressed by

R(t)= R0G(t) (1)
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in which R0 is the component capacity in the undegraded (original) state and G(t) is a time depen-
dent degradation function defining the fraction of initial strength remaining at time t . The degradation
mechanisms are uncertain, experimental data are lacking, and thus the function G(t) should be treated
as stochastic. However, as it has been found that the variability in G(t) is of minor importance when
compared to mean degradation and local process characteristics, it is assumed that G(t) is deterministic
and equal to mean E[g(t)] = G(t) [Mori and Ellingwood 1993].

Corrosion is one of the main reasons for degradation of aged steel. In this research time-dependent
ageing degradation function for steel is assumed to be given by Broomfield [1997]

G(t)= 1−
1

1+ Ae−Bt (2)

in which A and B are constant parameters and t is the age of the structure.
It is worth pointing out that Equation (1) is applicable to all structural materials whereas (2) is specif-

ically for steel. However, similar to (2) expressions are available for other materials such as concrete.
In fact, the authors have adopted one such function for the stability evaluation of aged concrete gravity
dams.

2.2. Dynamic finite element analysis of aged mechanical structures using damage mechanics. Since
the safety margin reserved in the critical mechanical structures is large, they are considered to be safe
even against hostile loadings larger than expected in their design. However, past experience shows that
engineering structures are susceptible to ageing degradation under various attacks which may affect the
mechanical characteristics of the structures. Whether the aged mechanical structures can still withstand
the challenges from hostile environments and natural events is of great concern to engineers. Therefore,
time-dependent degradation effects should be included when structural safety and reliability are evaluated
for mechanical structures with age-related degradation.

In the past many investigators have studied the effect of cracking on the dynamic response of engi-
neering structures using the concept of fracture mechanics. The concept of fracture mechanics requires
complete details of initiation and propagation of cracks within the structure and the location. Besides,
the numerical modelling of such individual crack propagation requires special techniques such as quarter-
point element, remeshing, etc. [Murti and Valliappan 1986]. Therefore the application of fracture me-
chanics is limited and for cases in which extensive microcracking may develop, it may not be suitable,
especially in dynamic analysis.

The concept of continuum damage mechanics can be used to study the effect of microcracking on the
dynamic responses of engineering structures [Valliappan and Zhang 1996]. Damage mechanics provides
an average measure of material degradation due to microcracking, interfacial debonding, nucleation, and
coalescence of voids. In the microcracking of brittle materials under tensile stress, damage is regarded
as elastic degradation. This material degradation is reflected in the nonlinear behaviour of the structures.

2.2.1. Finite element equations of motion for aged mechanical structures. Modelling of mechanical
structures can be done using the two-dimensional finite element method. The equation of motion for
the dynamic analysis including damage can be written as

M ËU +C∗ ĖU + EP∗( EU )= EFs + EFd , (3)
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where M is the mass matrix of the system and consists of element mass matrices me

me
=

∫
�e

ρ(e)NT Nd�,

where ρ(e) and N represent mass density and shape function matrix for an element, respectively, C∗ is
the damping matrix of the system, EP∗( EU ) represents the vector of restoring forces, and EFs and EFd are
static and dynamic loading vectors, respectively. EP∗( EU ) is a nonlinear function of displacement and
stress-strain history depending on the constitutive law. It can be given by

EP∗( EU )=K∗ EU ,

where K∗ is the system stiffness and is obtained from the assemblage of an element stiffness matrices ke

ke
=

∫
�e

BT Tσ Ẽ∗
(e)

TT
σBd�,

where Tσ is the coordinate transformation matrix, Ẽ∗ is the damaged constitutive matrix taking into
account the age-related degradation in the orthotropic damage space, and B is the strain-displacement
matrix.

2.2.2. Damage model and damage evolution. The formulation of a damage model first requires the def-
inition of threshold of damage, which is the condition that initiates the damage. Secondly, the evolution
of damage with loading must be also defined, and it is a function of a measure of strains, stresses, or
energy. This damage evolution can be any of the following forms

Ḋ = Ḋ(σi j (εi j ), D, . . .) or D = D(σi j (εi j ), . . .), (4)

where σi j is the state of stress at a particular point and D is the damage tensor at that point. Also Ḋ
represents the rate of damage. The most common damage kinetic equation that is used widely is based
on a power function of tensile normal stress and was introduced first by Kachanov [1980]:

Ḋ =

AL

(
σ

1− D

)n

, for σ > σd ,

0, for σ ≤ σd ,

where AL > 0 and n > 1 are material constants depending on the rate of loading, σ is the uniaxial tensile
stress, and σd is the stress at damage threshold. For this model one needs experimental results to obtain
parameters AL and n, but these results are not available for all kinds of loading. As proposed by Bazant
and Lin [1988] and applied by Ghrib and Tinawi [1995], a second model based on Equation (4) (right)
can be used for dynamic analysis.

In the materials, which eventually exhibit strain softening that leads to a complete loss of strength,
the secant modulus decreases with increasing strain [Lubliner et al. 1989]. A widely used assumption is
a triangular stress-strain diagram for uniaxial loading. This gives a linear strain softening relationship.
But various experimental evidences indicate that it is more realistic to assume a strain-softening curve
with a steep initial decline followed by an extended tail [Lubliner et al. 1989]. Then an exponential
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strain-softening model can be given by

σ(ε)=


Eε, for ε ≤ ε0,

f ′t
(
2e−a(ε−ε0)− e−2a(ε−ε0)

)
, for ε0 < ε < εcr ,

0, for ε ≥ εcr

(5)

in which f ′t is the tensile strength and ε0 is the corresponding strain threshold, E is the modulus of
elasticity, a is a dimensionless constant, and εcr is the maximum strain. For aged mechanical structures,
E and f ′t in Equation (5) are given by Equation (1) due to ageing degradation. In this study the value
εcr is calculated when its corresponding stress is equal to 0.02 f ′t . Then

εcr = ε0+
ln
( 2+
√

4−4λ
2λ

)
a

.

When λ= 0.02, the maximum strain εcr is calculated by

εcr = ε0+
4.6
a
.

The fracture energy per unit area, G f , is defined as G f = lchgt , where gt is total area under stress-strain
curve

gt =

∫
∞

0
σ(ε)dε =

3 f ′t
2a
+

f ′t
2E
,

and lch is the characteristic length. From the above two equations the constant a can be given by

a =
3

ε0

(
2EG f

lch f ′2t −1

) ≥ 0.

Based on the hypothesis of strain energy equivalence, the anisotropic damage parameters can be
defined in terms of Young’s modulus [Valliappan et al. 1990]

Di = 1−

√
E∗i
Ei
,

and hence from Equation (5), the proper definition of damage for the uniaxial case is

Di = 1−
√(ε0

ε

)(
2e−a(ε−ε0)−e−2a(ε−ε0)

)
.

In the two equations above i represents the i-th principal direction.

3. Numerical analysis

Two examples – a notched bar and a plate with a central hole – are used for the numerical analysis to
validate the proposed method for safety assessment of aged mechanical structures.

Figure 1 shows the model of the notched bar and its finite element mesh discretization. The dimension
of the bar is 10 cm × 30 cm. Distributed step loading of 1560 kN/cm−1, which is shown in Figure 2, is
applied at one end of the bar in longitudinal direction. The notched bar is modeled as a two-dimensional
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30cm 45
0 

1.5cm 

10cm 
element 99 element 105 

node 1 

Figure 1. Notched bar and its finite element mesh discretization.

plane stress case and is discretized with four nodded isoparametric elements. Because of the symmetries
of geometry and loading, the notched bar is discretized with 105 elements and 128 nodes. The material
properties of the bar are chosen as follows: modulus of elasticity E = 2.0× 1011 Pa; Poisson’s ratio
ν = 0.28; density ρ = 7850.0 kg/m−3; tensile strength f ′t = 4.0× 108 Pa, and fracture energy for unit
area G f = 2.6× 106 N/m−1.

To include ageing degradation effect in the numerical analysis, a degradation function given by Equa-
tion (2) is used to modify the modulus of elasticity and tensile strength of the material. Parameters A and
B in Equation (2) are the two constants that define the ageing degradation effect. In order to determine
their effect on the system responses and damages, in the present study parameter A is considered to be a
fuzzy variable, while parameter B is considered to be a deterministic parameter. It was found that B is
more sensitive to the ageing degradation. Therefore the values of 0.125 and 0.25 were assigned to param-
eter B in the numerical analysis to simulate the degradation processes under different environmental and
working conditions. The value of A is set to 100. Figure 3 shows the deterioration curves of different B
values used in the numerical analysis.

t 

P 

1560 

Figure 2. Step loading: P = 1560 kN/cm.
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Figure 3. Degradation function of steel.

In this study the equation of motion (Equation (3)) in the time domain is solved using Newmark’s
integration method, which is unconditionally convergent. In selecting the time step the natural frequency
of the structure and the type of loading must be considered. However, in the present case, because of
the step loading, it is necessary to consider only the loading, and hence the time step is set as 0.01 s to
check the system responses and damages. Structural responses and damage parameters were obtained
for both cases of B = 0.125 (up to 40 years) and B = 0.25 (up to 20 years) to check the effect of ageing
degradation on the behaviour of the notched bar.

Age = 15 Age = 35 Age = 37 

Damage scale 

1.0 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0.0 

Figure 4. Damage patterns of the notched bar (B = 0.125).
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Figure 5. Global damage, displacement of node 1, and major principal stress, major
principal strain, and stress-strain relationship of element 99, respectively, of the notched
bar (B = 0.125).
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Damage scale 

1.0 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0.0 

Age = 8 Age = 17 Age = 18 

Figure 6. Damage patterns of the notched bar (B = 0.25).

For the case of B = 0.125 Figure 4 shows the damage pattern of the notched bar at times of 15, 35,
and 37 years, and Figure 5 shows the global damage index. The global damage index is defined by the
following equation

Dglobal =

√√√√ nel∑
e=1

∫
�e

(
D(e)

)2 d�e

/√√√√ nel∑
e=1

∫
�e

d�e (6)

in which D(e) is the damage of the e-th element and ‘nel’ represents the total number of the damaged
elements. In determining the damage to the entire structure, it is desirable to take into account the
cumulative effect of the damage occurring in parts of the structure, which are individual elements in the
finite element method. It is well known that there is a size effect when discretization techniques are used.
In the present study this cumulative effect is represented by the expression given in Equation (6) for the
purpose of illustrating the damage to the structure due to ageing degradation. If one desires, any other
alternative expression can be developed for this purpose.

These two figures show that the damage occurs when the bar is 15 years of age and then extends
gradually to the direction of 45◦ as the age of the bar increases. After 37 years, the damage increases
significantly which leads to the failure of the notched bar. Figure 5 shows the displacement at node 1. As
the age of the notched bar increases, the strength of the material decreases which results in an increase
of displacement and damage. Also shown in Figure 5 are the major principal stress, strain, and their
relationship of element 99, respectively.

Figure 6 shows the damage pattern of the notched bar at 8, 17, and 18 years for the case of B= 0.25, and
Figure 7 shows the global damage index. Because the notched bar has suffered more ageing degradation
than the case of B = 0.125, the damage initiates at the age of 8 years and increases dramatically to total
failure after 18 years. Also shown in Figure 7 are the displacement of node 1, the major principal stress,
strain, and their relationship of element 99, respectively.
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Figure 7. Global damage, displacement of node 1, and major principal stress, major
principal strain, and stress-strain relationship of element 99, respectively, of the notched
bar (B = 0.25).
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element 92 

10cm 

2.5cm 

30cm 

node 1 

Figure 8. A plate with a central hole and its finite element mesh discretization.

Figure 8 shows the plate model and its finite element mesh. The dimension of the plate is 10 cm
× 30 cm, and the diameter of the central hole is 2.5 cm. Distributed step loading is also used in the
analysis of which the amplitude is 1380 kN/cm−1. Four nodded isoparametric elements are used in finite
element discretization, and the plate is discretized into 92 elements and 120 nodes due to the symmetries
of geometry and loading. The material properties of the plate are assumed to be the same as those of the
notched bar. The analysis is carried out for the two different deterioration rate B = 0.125 and B = 0.25,
respectively.

Age = 14 Age = 35 Age = 37 

Damage scale 

1.0 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0.0 

Figure 9. Damage patterns of the plate (B = 0.125).
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Figure 20. Major principal stress: element 92 of the plate (B=0.125) 
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Figure 10. Global damage, displacement of node 1, and major principal stress, major
principal strain, and stress-strain relationship of element 92, respectively, of the notched
bar (B = 0.125).
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 Age = 7 Age = 17 Age = 19 

Damage scale 

1.0 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0.0 

Figure 11. Damage patterns of the plate (B = 0.25).

Figure 9 shows the damage pattern of the plate model at 14, 35, and 37 years and Figure 10 shows
the global damage index for the case of B = 0.125. Damage occurs firstly in element 92 at 14 years
and then extends in the direction orthogonal to the loading as the plate suffers more ageing deterioration.
Damage increases significantly after 37 years and leads to total failure of the plate. Figure 10 shows the
displacement of node 1 at different times and the major principal stress, strain, and their relationship of
element 92, respectively.

For the case of B = 0.25 Figures 11 and 12 show the damage pattern of the plate and the global
damage index at 7, 17 and 19 years. Because of more severe ageing degradation for this case, the plate
is damaged initially in element 92 at 7 years and the damage increases gradually up to 18 years. The
damage increases sharply at 19 years which then leads to total failure. The displacement at node 1 is
shown in Figure 12. It shows the same trend as the global damage index. Figure 12 also shows the major
principal stress, strain, and their relationship of element 92, respectively.

4. Conclusions

Ageing is a natural phenomenon via a slow process for mechanical structures due to environmental attacks
and operation conditions. Age-related degradation can reduce the strength, change physical properties of
the mechanical structures, which may result in the decrease of the their capacity to withstand operation
conditions and hostile natural events.

The method presented in this paper is for numerical analysis of mechanical structures with ageing
degradation effect. Using techniques such as the finite element method, damage mechanics, and ageing
degradation evaluation methods, this method can be used for safety assessment of aged mechanical
structures by obtaining initiation and propagation of structural damage over a long period of time. The
proposed method was validated by numerical analyses of a notched bar and a plate with a central hole.
Under step loading condition, structural responses, damage initiation and propagation were studied in
detail for different levels of degradation over a period of several decades. Numerical results show ageing
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Figure 28. Stress-strain relationship: element 92 of the plate (B=0.25) 
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Figure 12. Global damage, displacement of node 1, and major principal stress, major
principal strain, and stress-strain relationship of element 92, respectively, of the notched
bar (B = 0.25).
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degradation can significantly affect structural performance and more severe damages occur for mechan-
ical structures when ageing degradation is included.
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NUMERICAL SIMULATION OF TSUNAMI PROPAGATION USING THE
CHARACTERISTIC-BASED SPLIT METHOD

GUNAWAN BUDI WIJAYA, TAM THANH BUI AND WORSAK KANOK-NUKULCHAI

A disastrous tsunami struck North Sumatra, Indonesia and many other countries on December 26, 2004.
In response to this disaster, we develop a two-dimensional numerical model to simulate tsunami propa-
gation on the open sea. Tsunami propagation — a process during which the wave has a relatively small
height compared to its breadth — is modeled using the shallow water equations. To solve these equations,
our model employs the characteristic-based split method first introduced by Zienkiewicz. Four case
studies are proposed to verify the numerical model, and our results show that the present numerical
model is both accurate and efficient. The numerical model is then used to model the propagation of the
tsunami of December 26, 2004, and gives a relatively close result.

1. Introduction

During the last decades, several tsunamis have occurred, striking coastlines and causing devastating
property damage and loss of life. The 1992 Flores Tsunami killed more than 264 people in Indonesia,
the 1993 Hokkaido tsunami in Japan killed 239 people. One of the worst on record is the December
26, 2004 tsunami, which struck North Sumatra, Indonesia and many other countries, killing more than
289,000 people.

Basically, tsunami can be generated when the sea floor abruptly deforms and vertically displaces
the overlying water. Earthquakes are the most frequent triggers, although in some cases a tsunami is
generated by a landslide, volcanic eruption, explosion, or the impact of a meteorite or asteroid. When
an earthquake occurs beneath the sea, it can cause the water above the deformed area to displace from
its equilibrium position. Waves are formed as the displaced water mass, under the influence of gravity,
moves to regain its equilibrium. When a large enough area of the sea floor suddenly changes elevation,
a tsunami forms.

Tsunami propagation on the open sea is characterized as a shallow-water wave with long period and
small height compared to its breadth. Shallow-water waves move at a speed that is equal to the square root
of the product of the acceleration of gravity (9.8 m/s2) and the water depth. Thus, the deeper the water,
the faster the wave. And since waves lose energy at a rate inversely related to their wavelength, tsunami
can travel at high speeds for long periods of time, losing very little energy in the process. As a tsunami
leaves the deep water of the open ocean and travels into shallower water near a coast, it transforms.
The tsunami’s energy flux, which is dependent on both its wave speed and wave height, remains nearly
constant. Consequently, as the tsunami travels into the shallower water, its speed is reduced and its height

Keywords: tsunami propagation, shallow water equations, finite element method, characteristic-based split method.
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grows. As a result, tsunamis grow to be several meters or more in height near the coast, and may appear
as a rapidly changing tide, a series of breaking waves, or even a bore.

When a tsunami reaches land, it will start to lose some energy due to reflection from the shore, bottom
friction, and turbulence. Although there are energy losses, many tsunami waves don’t break. They simply
surge, flooding low-lying areas, and destroying vegetation, houses, and other coastal structures before
rebounding off of cliffs or hills. Often, this flow back into the ocean causes as much damage as the initial
onslaught.

This physical phenomenon of tsunami propagation can be mathematically modeled using the Shallow
Water Equations (SWE), which are based on the Navier–Stokes equations. In the early days of using
computers to find the numerical solutions of fluid flows, finite difference methods were the main tools
used by researchers. Various finite difference models have been developed for tsunami wave propagation
analysis, such as FUNWAVE, which was developed based on the extended Boussinesq model [Wei and
Kirby 1995], TUNAMI which uses linear shallow water theory in a spherical coordinate system [Ima-
mura 1996], SWAN, a model for shallow water and long waves, ZUNI, which uses a two dimensional
incompressible Navier–Stokes formulation, and SOLA-3D, a three dimensional incompressible Navier–
Stokes model for solving water wave problems of all types. Numerous examples and discussion on the
applications of SWAN, ZUNI and SOLA-3D models are presented in [Mader 2004].

In recent years, finite element methods have been widely considered as an alternative choice to finite
difference methods because of their flexibility in accurately representing arbitrary topography and com-
plex boundary conditions. Several finite element models have been formulated to study shallow water
wave propagation. Grotkop [1973] presents a space-time finite element model for long-period water wave
analysis, however this model requires more computer storage and running time than an explicit difference
model. For tsunami analysis, Houston [1978] uses a hybrid finite element method to study the interaction
of tsunamis with the Hawaiian Islands. Sklarz et al. [1979] simulated the November 29, 1975 tsunami
that hit the Hawaiian Islands. Considerable effort has been devoted to improving the performance of
finite element models. In the realm of time integration techniques, Kawahara et al. [1978] implemented
a two step explicit method which is modified from the Lax–Wendroff finite difference method. Malone
and Kuo [1981] proposed semiimplicit time integration schemes that allow the choice of a time step based
on accuracy, rather than some Courant-type restriction. Peraire et al. [1986] presented a general explicit
formulation which requires little computer storage and can be used on mini- and microcomputers.

The main difficulty of using finite element methods for flow problems is due to the convection terms
in the governing equations of fluid. The solutions of convection-dominated problems are often destroyed
by spurious oscillations if certain parameters exceed a critical value. Severe mesh and time step refine-
ment are required to remove these oscillations. Zienkiewicz and Codina [1995] introduced a new finite
element algorithm which precludes oscillations without the requirement of mesh or time step refinement.
This finite element algorithm is named the characteristic-based split (CBS) method, and combines the
characteristic Galerkin method to deal with advection-dominated flows with a splitting technique to make
the system equations become self-adjoint. Such a system of equations can be solved optimally by using
the Galerkin formulation. In semiimplicit form, the algorithm requires a critical time step dependent only
on the current velocity rather than on the wave celerity. Many studies using the CBS method have been
conducted to solve more general fluid problems [Zienkiewicz et al. 1999; Nithiarasu et al. 2004; Ortiz
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et al. 2004]. Here, the CBS method is used to develop a two-dimensional numerical model to simulate
the propagation of the December 26, 2004 tsunami.

2. Review on shallow water equations

The governing equations for general fluid dynamics problems are the Navier–Stokes equations, which
are derived from fluid’s characteristic conservation of mass and momentum, as shown below:

Continuity Equation:
∂ρ

∂t
+

∂

∂xi
(ρui )= 0 (1)

Momentum Equation:
∂(ρui )

∂t
+

∂

∂x j
[(ρui )u j ] −

∂

∂x j
[τ j i ] +

∂p
∂xi
+ Qi = 0, (2)

where i, j = 1, 2, 3 represent the coordinate directions, ρ is the water density, ui is the velocity vector,
p is the water pressure, and Qi is a source vector term that includes Coriolis force, surface and bottom
shear stresses, and atmospheric gradient.

2.1. Shallow water flow characteristic. Shallow water flow is a nearly horizontal flow. This allows
a considerable simplification in the mathematical formulation and numerical simulation allowing the
assumption that the pressure distribution is hydrostatic. However, shallow water flow is not exactly two-
dimensional. Density stratification due to differences in temperature or salinity cause variations in the
vertical direction. In many shallow water flows, these three-dimensional effects are not essential and it
is sufficient to consider the depth-averaged form, which is two-dimensional in the horizontal plane.

The basic assumption in shallow-water theory is that vertical scales are much smaller than horizontal
ones. The vertical parameters include the water depth H , the variation in the bottom level, and the
variation in water height h. The horizontal ones include the physical dimensions of the basin (length,
width) and the wavelength λ (Figure 1). From linear wave theory, the ratio of water depth to wavelength
must be less than about 0.05 [Le Méhauté 1976]. This can be considered as the upper limit of shallow
water theory. In shallow water flow, the horizontal velocities are of primary importance, and are defined

Figure 1. Shallow water flow profile.
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Figure 2. Velocity distribution of shallow water flow.

as the average velocity: ∫ η

−H
ui dx3 =Ui (H + η)=Ui · h, (3)

where Ui is the average velocity vector (Figure 2).
In general shallow water flow, there are two types of boundary conditions governing the fluid at its

top and bottom:

• A kinematic boundary condition, which states that water particles cannot cross either boundary,
further requires that,

◦ along the solid bottom (z =−H ), velocities normal to the surface must vanish:

−u1
∂H
∂x
− u2

∂H
∂y
− u3 = 0, (4a)

◦ along the free top surface (z = η), since the surface must not move away from itself, the fluid’s
relative normal velocity must vanish:

∂η

∂t
+ u1

∂η

∂x
+ u2

∂η

∂y
− u3 = 0. (4b)

• A dynamic boundary condition, which defines the forces acting at each boundary:

◦ Along the bottom, it is assumed that the viscous fluid sticks to the surface (no slip condition):

u1 = u2 = 0. (4c)

◦ Along the top, it is assumed that the stress in the fluid just below the free surface is the same
as that in the air just above, namely the atmospheric pressure:

p = pa. (4d)

2.2. Shallow water continuity equation. The equation for the free surface is derived by an integration
of the continuity equation (1) over the depth coordinate x3:∫ η

−H

∂u1

∂x
dz+

∫ η

−H

∂u2

∂y
dz+

∫ η

−H

∂u3

∂z
dz = 0. (5)
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By using the Leibniz rule of integrals, Equation (5) can be written as

∂h
∂t
+
∂(hU j )

∂x j
= 0. (6)

With j = 1, 2, Equation (6) can also be written as

∂h
∂t
+
∂(hU1)

∂x
+
∂(hU2)

∂y
= 0. (7)

2.3. Shallow water momentum equations. In shallow water flow, the vertical velocity (u3) is very small,
and the corresponding acceleration can be neglected. So the vertical momentum equation becomes:

1
ρ

∂p
∂x3
+ g = 0. (8)

After integration, we can determine the pressure as

p = ρg(η− z)+ pa. (9)

The other momentum equations for horizontal velocities are also integrated over the depth:∫ η

−H

[
∂(ui )

∂t
+

∂

∂x j
(ui u j )+

1
ρ

∂p
∂xi
−

1
ρ

∂τ j i

∂x j
− Qi

]
dx3 = 0. (10)

Using the definition of p from Equation (9), and with i = 1, 2, Equation (10) can be written as the
conservative form of the depth-averaged equations:

∂(hUi )

∂t
+

∂

∂x j

[
(hUiU j )+ δi j

1
2

g(h2
− H 2)

]
+

∂

∂x j

[
−

h
ρ
τ̄ j i

]
+

[
−

1
ρ

(
τ s

3i
− τ b

3i

)
− h f i − g(h− H)

∂H
∂xi
+

h
ρ

∂Pa

∂xi

]
= 0. (11)

The term τ s
i j is the surface shear stress which is caused by the wind stress. The magnitude and direction

of the wind stress on the sea surface are determined by the flow in the atmosphere. A semiempirical
formula to calculate the magnitude of the wind stress is given by Gill [1982] as

τ s
i j = cd · ρ ·W 2

i , (12)

where

cd = drag coefficient and Wi = wind speed.

The term τ b
i j is the bottom shear stress due to the no-slip boundary condition. This stress is influenced

by the roughness of the bottom layer. A simple approximation to calculate this bottom stress is given by
Groen and Groves [1962] as

τ b
3 j = c f · ρ · |U |Ui , (13)

where

|U | =
√

UiUi and c f = standard friction coefficient.
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The term ∂Pa/∂xi is the atmospheric pressure gradient. This may be important for the simulation of storm
surges [Heaps 1967]. The value of this gradient can be obtained, for example, from a meteorological
forecast.

2.4. Shallow water equations. From the continuity and momentum equation, the complete form of the
Shallow Water Equations can be written in the conservative forms as

∂8

∂t
+
∂Fi

∂xi
+
∂Gi

∂xi
+ Q = 0, (14)

where

8=

 h
hU
hV

= independent variable vector,

Fi =

 hUi

hUUi + δ1i
1
2 g(h2

− H 2)

hV Ui + δ2i
1
2 g(h2

− H 2)

= convective flux vector,

Gi =

 0
−(h/ρ)τ̄1i

−(h/ρ)τ̄2i

= diffusion fluxes,

Q =


0

−h f̂ V − g(h− H)∂H
∂x
−

h
ρ
∂Pa
∂x
−

1
ρ
τ s

31+ c f ·U
√

U 2+ V 2

h f̂ U − g(h− H)∂H
∂y
−

h
ρ
∂Pa
∂y
−

1
ρ
τ s

32+ c f · V
√

U 2+ V 2

= source terms.

For a general shallow water flow, the value of the stress τ̄ j i , the surface stress τ s
i j , the bottom stress τ b

i j ,
and the atmospheric pressure gradient ∂Pa/∂xi are very small and can be neglected, so the shallow water
equations can be simplified as

1
c2

∂p
∂t
+
∂Ui

∂xi
= 0,

∂Ui

∂t
+

∂

∂x j
(u jUi )+

∂p
∂xi
+ Q = 0, (15)

with

Ui = average velocity over the depth,

p =
1
2
(h2
− H 2)= pressure,

c =
√

gh = wave celerity,

Q =−g(h− H)
∂H
∂xi
+ fi = source term,

in which fi is the Coriolis force.
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3. Review on characteristic-based split method

The numerical method used in this study is the characteristic-based split (CBS) algorithm, which was
first proposed by Zienkiewicz and Codina [1995]. It can be applied to solve both compressible and
incompressible flows, and is efficient and accurate. The main concept of this method is to split the
shallow water equations into two parts:

• A set of simple scalar equations of convective-diffusion type that can be solved using a much bigger
time step.

• A set of equations that are self-adjoint and can be discretized optimally by the Galerkin procedure,
which can be solved implicitly and is unconditionally stable.

3.1. CBS time discretization. The time discretization in this scheme will treat the pressure gradient of
the momentum equation (15)2 as a source term, and will evaluate it differently in t = tn

+ θ1t at time
increments 1t as shown below:

∂p
∂xi

n+θ2

= (1− θ2)
∂p
∂xi

n
+ θ2

∂p
∂xi

n+1
. (16)

This equation yields

1Ui =1t
[
−
∂

∂x j
(u jUi )− Q+

1t
2

uk
∂

∂xk

(
∂

∂x j
(u jUi )+ Q

)]n

− (1− θ2)1t
[
∂p
∂xi
−
1t
2

uk
∂

∂xk

(
∂p
∂xi

)]n

− θ21t
[
∂p
∂xi

]n+1

. (17)

This can be split into two parts:
1Ui =1U∗i +1U∗∗i , (18)

where

1U∗i =1t
[
−
∂

∂x j
(u jUi )− Q+

1t
2

uk
∂

∂xk

(
∂

∂x j
(u jUi )+ Q

)]n

, (19)

1U∗∗i =−(1− θ2)1t
[
∂p
∂xi
−
1t
2

uk
∂

∂xk

(
∂p
∂xi

)]n

− θ21t
[
∂p
∂xi

]n+1

=−1t
[
∂pn

∂xi
+ θ2

∂1p
∂xi

]
+ (1− θ2)

1t2

2
uk

∂

∂xk

∂pn

∂xi
,

(20)

1p = pn+1
− pn. (21)

With the same procedure, the shallow water continuity equation can also be discretized in time as( 1
c2

)n
1p =−1t

[
∂Ui

∂xi
+ θ1

∂1Ui

∂xi

]
=−1t

[
∂Ui

∂xi
+ θ1

∂1U∗i
∂xi

+ θ1
∂1U∗∗i

∂xi

]
. (22)

Neglecting third-order terms, this can be written as( 1
c2

)n
1p =−1t

[
∂Ui

∂xi
+ θ1

∂1U∗i
∂xi

−1tθ1

(
∂2 pn

∂xi∂xi
+ θ2

∂21p
∂xi∂xi

)]
. (23)
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This algorithm can be applied to both explicit and semiimplicit schemes, and depends on the selection
of the values θ1 and θ2. The stability criteria will depend on the scheme selected. For the fully explicit
scheme, we have

1/2≤ θ1 ≤ 1, θ2 = 0. (24)

Stability is obtained when the time increment is less than the time limit, defined as

1t ≤1tσ =
a

c+ |u|
, (25)

where

a = element size, c =
√

g · h = wave celerity, |u| =
√

UiUi .

In semiimplicit form, the quantities of θ1 and θ2 are defined as

1/2≤ θ1 ≤ 1, 1/2≤ θ2 ≤ 1. (26)

This algorithm is conditionally stable. Three time limits have to be considered to assure stability:

1t ≤1tσ =
a
|u|
, 1t ≤1tν =

a2

2ν
, 1t ≤

1tσ ·1tν
1tσ +1tν

, (27)

where ν = kinematic viscosity.

3.2. CBS spatial discretization. The finite element methods (FEM) is used to discretize the space. FEM
is an approximate method for solving differential equations of boundary and initial value problems. The
basic concept of FEM is to divide a continuum into many smaller elements of convenient shapes —
triangle, quadrilateral, and so on. Choosing suitable points (‘nodes’) within the elements, the variable
in the differential equation is written as a linear combination of appropriately selected interpolation
functions describing the variable. The governing equations are then transformed into a set of finite
element equations for each element, and assembled into a global system based on the connectivity of the
nodes. The nodal values of the variable are determined from this system of equations.

The spatial discretizations used in these formulations are

Ui = N (Ūi ), 1Ui =1U∗i +1U∗∗i = N (1Ū∗i )+ N · (1Ū∗∗i ), p = N · ( p̄), (28)

where

Ūi =
[
Ū 1

i Ū 2
i · · · Ū k

i

]
= Nodal velocities of a k-node element,

Ni =
[
N 1 N 2

· · · N k
]
= Galerkin shape function of a k-node element.

Equations (19), (20) and (23) are then discretized in space using the standard Galerkin finite element
method. By writing the pressure p in terms of total water height h, these equations can be solved in
three steps, as illustrated by Figure 3.
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Figure 3. CBS solution algorithm.

Step 1: Intermediate momentum equation. We have∫
�

N ·1U∗i d�=1t
[
−

∫
�

N
∂

∂x j
(u jUi )d�−

∫
�

N · Qi d�−
1t
2

∫
�

∂

∂xk
(uk N )

∂

∂x j
(u jUi )d�

+
1t
2

∫
�

(uk · N )
∂Qi

∂xk
d�+

1t
2

∫
∂�

(N · uk)
∂

∂x j
(u jUi )nkd0

]n

, (29)

whose solution is

1Ū∗i =−M ·−11t
[
C · Ū +1t · KuŪ − ( f +1t · fs)−1t · Kb,

]n
, (30)

where

M =
∫
�

N T Nd�, f =
∫
�

N T Qd�,

C =
∫
�

N T ∂

∂x j
(u j N )d�, fs = −

1
2

∫
�

∂

∂xi
(ui N T )Qd�,

Ku =
1
2

∫
�

∂

∂xk
(uk N T )

∂

∂x j
(u j N )d�, Kb =

1
2

∫
∂�

(uk N T )
∂

∂x j
(u j N )nkd0.



1948 GUNAWAN BUDI WIJAYA, TAM THANH BUI AND WORSAK KANOK-NUKULCHAI

Step 2: Total water depth calculation.∫
�

N (1h)d�+1t2θ1θ2

∫
�

∂N
∂xi

(c̃2)
∂(1h)
∂xi

d�

= −1t
[ ∫

�

N
∂U n

i

∂xi
d�+ θ1

∫
�

∂N
∂xi

(
1U∗i −1t (c2)n

∂hn

∂xi

)
d�

−θ1

∫
∂�

N
[
1U∗i −1t

(
(c2)n

∂hn

∂xi
+ θ2(c̃2)

∂(1h)
∂xi

)]
ni d0

]
, (31)

whose solution is

1h̄ = (M̃ +1t2
· θ1θ2c̃2(H − Qb))

−11t

×

[
Q(−U i + θ11U

∗

i )−1tθ1c2 H · h̄+ θ1(1t · c2 Qbh̄−Mb1U
∗

i )
]n
, (32)

where

M̃ =
∫
�

N T Nd�, Mb =

∫
∂�

N T N · ni · d0,

Q =
∫
�

∂N
∂xi

T
N · d�, H =

∫
�

∂N
∂xi

T ∂N
∂xi
· d�, Qb =

∫
∂�

∂N
∂xi

T
N · ni d0.

Step 3: Velocity correction.∫
�

N1U∗∗i d�=−1t · (1− θ2)

∫
�

N (c2)n
∂hn

∂xi
d�−1tθ2

∫
�

N (c2)n+1 ∂hn+1

∂xi
d�

− (1− θ2)
1t2

2

∫
�

∂N
∂xk

uk

(
(c2)n

∂hn

∂xi

)
d�− (1− θ2)

1t2

2

∫
�

N
∂uk

∂xk

(
(c2)n

∂hn

∂x j

)
d�

+ (1− θ2)
1t2

2

∫
∂�

Nuk

(
(c2)n

∂hn

∂x j

)
· ni · d0. (33)

The solution of Equation (33) is

1(U i )
∗∗
= −M ·−11t ·

[
QT [(1− θ2)(c2)n h̄n

+ θ2(c2)n+1h̄n+1]
+
1t
2

P(c2)n h̄n
−
1t
2

Pb(c2)n h̄n
]
, (34)

where

M =
∫
�

N T Nd�, P = (1− θ2)

∫
�

∂

∂xi
(ui N T )

∂N T

∂xi
d�,

Q =
∫
�

∂N
∂xi

T
N .d�, Pb = (1− θ2)

∫
∂�

(uk N T )
∂N T

∂xi
nkd0,

and where i, j, k = 1, 2, and N is the standard finite element shape function. The variable c̃ is the
average value of the celerity over the time step, while � is the flow domain bounded by ∂�, and nk is
the outward normal of the boundary ∂�. Step 1 and Step 3 can be solved explicitly, while Step 2 needs
to be solved implicitly. The velocity is computed in two stages by the characteristic Galerkin method as
shown in Step 1 and Step 3. In Step 2, the pressure, or elevation of the free surface, is solved from a
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self-adjoint Laplacian-type equation, which can be discretized optimally by the Galerkin procedure. In
this semiimplicit form, the algorithm’s time step depends only on the current velocity, rather than on the
wave celerity. By now it should be clear why the CBS method is very efficient.

4. Review on exact solution

The exact solution for water elevation is achieved by solving the continuity equation above. By defining
η as the water elevation, we can get

η(x, t)=
H
2

cos(kx − σ t), (35)

where

k =
2π
L
= the wave number, (36)

σ 2
=

2π
T
= gk ∗ tanh(kh)= the circular frequency, (37)

c =
σ

k
=

2π/T
2π/L

=
L
T
= the wave celerity. (38)

For shallow water waves, where kh is very small (kh < π/10), the hyperbolic function tanh(kh) can be
approximated as kh. With this simplification, the dispersion relationship for shallow water reduces in
such a way that the wave celerity for shallow water wave can be defined as

σ 2
= gk ∗ tanh(kh)= gk2h,

σ 2

k2 = c2
= gh, c =

√
gh. (39)

From the linearized frictionless momentum equations, we have

∂U
∂t
=−g

∂η

∂x
. (40)

Substituting Equation (35) into Equation (40), we get

∂U
∂t
= g

H
2

k sin(kx − σ t),

or

U = g
H
2σ

k cos(kx − σ t)=
c
h
η. (41)

If we further examine the change in wave height due to changes in water depth and channel width, we
find that

H2 = H1

(
h1

h2

)1/4(b1

b2

)1/2

, (42)

where subscript 1 indicates the location at the reference point, and subscript 2 indicates the location at
the examined point. For a special case where the channel width is uniform (b1 = b2), this relationship is
called Green’s Law. This formula implies that a change in water depth or channel width can change the
water height.
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5. Model verification and demonstration

The element used in this study is a standard linear triangular element with three unknowns to be solved in
each node, as shown in Figure 4. These unknowns are h, U , and V which determine the water elevation
and the mass flow in x and y directions. The area and line integrations are calculated numerically using
one Gauss point, as show in Figure 5.

Figure 4. Triangular element.

The wave parameters will be defined based on the characteristic of shallow water wave states where
the ratio of the vertical scale h to the horizontal scale L is very small. Our shallow water condition is:

h/L < 0.05 or kh < π/10. (43)

In this study, water depth is kept constant at the level h = 0.5 m. Using this water depth, we can compute
the wave celerity simply by using Equation (39):

c =
√

gh = 2.214 m/s. (44)

Numerical Area integration Numerical Line integration

∫
� N1d�=

∫
� N2d�=

∫
� N3d�= 1

3 ∗Area
∫
∂� N1d0 =

∫
∂� N2d0 = 1

2 ∗Length∫
∂� N3d0 = 0

Figure 5. Numerical integration.
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Parameter: Symbol Value used

Water depth H 0.5 m
Wave amplitude A 0.02 m
Wave period T 10 s
Time stepping parameter θ1 and θ2 0.5
Time increment 1t 0.0625 s
Lumping parameter B 0.9

Table 1. Parameters used in this study.

Using Equations (36) and (38) with k = 2π/L and L = c · T , we can compute the wave period by

kh <
π

10
→

2π
c · T

h <
π

10
→ T > 4.52 s. (45)

To satisfy this condition, the wave period is set to 10 s, and the wave amplitude is set at 0.02 m. The
wavelength is computed using Equation (38) and is equal to 22.14 m. For the sake of stability, the time
stepping parameters θ1 and θ2 are set to 0.5, following the Crank–Nicolson scheme. The time step
increment, 1t , is set to be 0.0625 s, and the lumping parameter β is set at 0.9. These parameters, used
throughout this study, are summarized in Table 1.

The model will be verified and demonstrated by solving and analyzing four case studies. The analysis
is done by performing a convergence test and, where possible, comparing the numerical results with exact
solutions and laboratory experiments. In cases where the exact solution is not available, the analysis is
based only on the physical characteristics of the water flow. These cases serve as demonstrations of the
capability of the model.

Case 1: Flow in rectangular channel with constant depth. A simple experiment of shallow water wave
propagation is done in a frictionless channel with a length and depth of 50 m and 10 m respectively. The
purpose of this case is to verify that the FEM solution for water elevation, velocity, and pressure converge
well as our mesh gets finer. Other wave parameters will also be verified.

A series of waves are generated on one side, such that they will propagate to the other side and reflect
back. The boundary conditions we apply to the model are the normal velocity on the boundary B-C,
C-D, and A-D is assumed to be zero, while a sinusoidal wave is imposed on the boundary A-B with an
amplitude of 0.02 m and a period of 10 s.

Figure 6. Rectangular profile with constant depth.
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Figure 7. Four types of mesh used in Case 1.

We will study convergence of solutions across four successively refined meshes, as shown in Figure 7.
The convergence test is conducted at regular 5 m intervals within the channel. Figure 8 compares water
elevations in the FEM and exact solutions, at time = 20 s and x = 5, 10, 15, 20, 25 and 30 m.

Looking to Figure 8, we see that the FEM solution using meshes 2, 3, and 4 give results close to the
exact solution. The exact solution given here is for a wave in a steady state. Looking to our results, the
error seems to be increasing as x increases. This can be explained by the fact that, when the wave is
generated, it will first propagate in a transient state, only reaching the steady state after quite some time.
Furthermore, the exact solution gives no wall boundary condition around the channel. If we look at the
steady state region, x ≤ 15 m, the FEM with mesh 4 gives pretty good results. By contrast, at x = 50 m
we see a clear difference between the FEM and exact solutions. The wave in the numerical solution has
yet to arrive, while the wave in the exact solution is already in its steady state. Results from successively
refined meshes do not converge very well, and sometimes the least error is found with a mesh other than
mesh 4, which is the most refined mesh. This is likely the result of the irregular shape and location of
the triangles used in the meshing scheme.

To further confirm our method, we examine the accuracy of the physical results got using mesh 4.
Looking to Figure 9, which shows the wave at time = 25 s, we see that the amplitude of the wave

Figure 8. Water elevation result of Case 1 at time = 20 s.
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Figure 9. Wave properties at time = 25 s.

Figure 10. Velocity in x-direction of Case 1 at time = 20 s.

is consistently 0.0203 m. This is a 1.5% error relative to the initial amplitude of 0.02 m. The FEM
wavelength is computed to be 21.57 m, which is 2.58% in excess of the exact solution 22.14 m. When
the wave hits the wall (at time ≈ 25 s), the maximum water elevation will double, to 0.04 m. The FEM
solution gives this elevation as 0.0420 m, a 5.00% error.

Since the water pressure is derived directly from water elevation (p = 0.5g(h2
− H 2)), it has exactly

the same behavior as water elevation. The velocity in the x-direction for both FEM and exact solutions at
time = 20 s are presented in Figure 10. The convergence test is again conducted at the same 5 m intervals.

The behavior of the velocity is similar to that of the water elevation. FEM solutions of velocity using
meshes 3 and 4 give results close to the exact solution in the steady state region, x < 15 m. Velocity in
the y-direction is zero for all time throughout the channel. This is as expected, as the imposed wave is
symmetrical. Again, the results converge poorly due to the irregular triangular meshing. The maximum
velocity in the x-direction is 0.0952 m/s which has 7.25% error from exact solution 0.0883 m/s.

Case 2: Flow in rectangular channel with irregular depth. Next, we pursue a variation on Case 1, a
rectangular channel with irregular depth as shown in Figure 11. Again, we assume no normal velocity
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Figure 11. Channel profile of Case 2.

along boundaries B-C, C-D, and A-D, with a sinusoidal wave imposed on boundary A-B. The wave’s
amplitude is 0.02 m and its period of 10 s. The water elevation will be computed on the edge of the channel
(y = 14 m) at four different points (x I = 11.5 m, x I I = 23.5 m, x I I I = 29.5 m, and x I V = 35.5 m).

We compare the results of this case study with experimental data, and other numerical result previously
done by Cheng and Kawahara [1991] using the combination of the explicit and quasi explicit standard
Galerkin finite element method.

The water elevations at our four reference points are plotted against time in Figure 12. The dotted line
shows observed experimental data, the solid line shows the numerical result using the standard Galerkin
finite element method, and the dashed line is the numerical result using the CBS method. From the figure

Figure 12. Numerical results of Case 2.
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we see that the values obtained using the CBS method are the better of the numerical results, closer to
the experimental data.

Snapshots of the three-dimensional view of water elevation are shown in Figure 13. From the simula-
tion, it can be seen that when the wave enters the shallower area, its height increases. This corresponds
with the characteristic of tsunami propagation.

Figure 13. Water elevation of Case 2 at various time steps.
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Figure 14. Channel profile for Case 3.

Case 3. Flow passing a solid barrier. In Case 3, a cylindrical barrier with a diameter of 4 m is placed in
the middle of the channel at x = 30 m, as shown in Figure 14. The purpose of this case is to model and
study the behavior of the tsunami wave passing a solid barrier, such as an offshore structure. Again, we
set the normal velocity along boundaries B-C, C-D, and A-D to zero, and propagate a sinusoidal wave
with an amplitude of 0.02 m and a period of 10 s from boundary A-B.

Snapshots of the wave’s elevation at two times are plotted in Figure 15. The solid lines show the water
elevation in the middle of the channel (y = 5 m), while the dashed lines show the water elevation in the
edge of the channel (y = 0 m).

If we look at Figure 15, at time = 15 s there is a difference in water elevation between the water in
the middle of the channel (y = 5 m), which starts to hit the barrier, and the water on the edge of the
channel (y = 0 m), which still propagates with the same amplitude. At time t = 25 s, the maximum
water elevation at the wall is about 0.035 m. In Case 1 where there is no barrier, the maximum water

Figure 15. Water elevation of Case 3 at t = 15 s and t = 25 s.
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Figure 16. Water elevation, pressure, and velocity of Case 3 at t = 25 s.

elevation at the wall is 0.04 m. So in this case, it is shown that the barrier has reduced the maximum
water elevation by up to 12.5%.

Figure 16 shows the water elevation as a three-dimensional view, along with water pressure and also
velocity in x and y directions. From this figure, we can see that the velocity and pressure propagate in the
same manner as the water elevation, which means the higher the water elevation, the higher the velocity
and the pressure. The only difference appears at the wall boundary condition. The water elevation and
pressure are maximized due to the reflecting wave, but the velocity is zero.

Case 4: Flow in circular channel with constant depth. Tsunami propagation due to an earthquake on
the open sea is modeled using a circular channel with a diameter of 50 m and constant depth of 0.5 m, as
shown in Figure 17. The land surrounding the sea is modeled by assuming the normal velocity around
the channel to be zero. The earthquake is modeled by imposing a sinusoidal wave with amplitude of
0.02 m and period of 10 s in a small circular area with a radius of 1 m in the center of the channel.

Figure 18 represents the water elevation in the middle of the channel (y = 0 m) where we can see that
the initial bottom deformation of 0.02 m generates an initial wave with amplitude of 0.02 m. The wave
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Figure 17. Channel profile of Case 4.

Figure 18. Water elevation of Case 3 in the middle of the channel (y = 0 m) at t = 15 s
and t = 215 s.

then propagates symmetrically with a decreased amplitude. When the first wave reaches the wall around
the circular channel, the maximum water elevation is only 0.012 m. This means that while propagating
out to a radius of 25 m, the wave loses up to 70% of its height, or about 2.8% per meter travelled.
Three-dimensional snapshots of the water elevation, pressure, and velocity are shown as Figure 19.

6. Tsunami simulation

In this section, we use the presented finite element method to model the propagation of the December
26, 2004 tsunami. Figure 20 presents the tsunami propagation model in the domain of 10◦ S− 20◦N and
80◦ E− 100◦ E.

To be able to perform analysis of real tsunami propagation, appropriate wave sources for tsunamis must
be employed. These wave sources will have to be derived from earthquakes that occur in the problem
domain. An appropriate wave source model for tsunami propagation problems is still in development.
To illustrate the capability of the present finite element model in predicting tsunami wave traveling time,
our simulation uses a simple wave source in the form of sinusoidal wave with an amplitude of 1 m and
period of 300 seconds.
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Figure 19. Water elevation, pressure, and velocity of Case 4 at t = 25 s.

Figure 21, left, shows the first simulation, estimating wave speed in deep water. In deep water, tsunami
waves move at a speed that is equal to the square root of the product of the acceleration of gravity and
the water depth. In the studied domain, with an average water depth of 6000 m, the analytical tsunami
wave speed is calculated as 240 m/s. The simulation is conducted up to 6000 seconds with the sinusoidal
wave at the left boundary as shown in the same figure. As derived from wave’s ultimate translation, our
model estimates a deep water tsunami wave speed of 225 m/s.

The second simulation serves as a tool to predict tsunami wave traveling time to the shoreline. The
sinusoidal wave source is excited at the island shown in Figure 21, right. From numerical simulation,
the time of tsunami wave traveling from the excited island to Phuket area in the figure is 1 hour and
14 minutes. The result is relatively close to the real observation obtained from the December 26, 2004
Tsunami. This important feature of the present model has been implemented in the Tsunami tracking
and alert system currently under development at Thailand’s Asian Institute of Technology, School of
Engineering and Technology.
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Figure 20. Finite element model for the propagation of the December 26, 2004 tsunami.
Left: mesh created for the domain; middle: bathymetry data; right: composite of both.
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Figure 21. Estimating wave speed in deep water (left) and traveling time to shoreline
(right). Labels are in meters.
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7. Conclusions

This paper presented the characteristic-based split as a method for the solution of the shallow water
equations. The main advantages of this method are its efficiency and accuracy. The efficiency is obtained
from the split procedure, which enables us to solve some equations explicitly. From the numerical results
in Case 2, it is shown that the CBS solution is very accurate, giving results closer to the experimental
data than those given by the standard Galerkin method. The numerical model can also be used to model
tsunami propagation passing a solid barrier, as shown in Case 3, and tsunami propagation due to an
earthquake on the open sea, as shown in Case 4. Using these case studies, we showed the method’s
facility in modeling the characteristics of real tsunami propagation, namely that water elevation increases
as a tsunami enters shallower areas, and that, in general, the higher the water elevation, the higher the
water velocity and pressure. The exception to this correspondence between water velocity and water
elevation appears at the wall boundary, where the water elevation doubles and the wave is reflected from
the wall with zero velocity. Finally, the propagation of the December 26, 2004 tsunami is modeled using
the CBS method. The numerical simulation gives relatively close results compared to actual data from
the event. However, this correspondence is limited due to the lack of an appropriate wave source. The
result using an arbitrary wave source is designed to illustrate the capability of the model, and motivate
its use when appropriate wave sources can be supplied. This analysis of a truly real tsunami will be
addressed in a future paper, after the development of a wave source model for tsunami propagation is
complete.

Acknowledgement

The authors acknowledge the advice of R. L. Taylor and P. Nithiarasu on the coding of the CBS algorithm.

References

[Cheng and Kawahara 1991] J. Y. Cheng and M. Kawahara, “Finite element method for shallow water wave analysis”, pp.
1679–1683 in Computational mechanics: Proceedings of the Asian Pacific Conference on Computational Mechanics (Hong
Kong, 1991), vol. 2, edited by Y. K. Cheung et al., Balkema, Rotterdam, 1991.

[Gill 1982] A. E. Gill, Atmosphere-ocean dynamics, Academic Press, 1982.

[Groen and Groves 1962] P. Groen and G. W. Groves, “Surges”, pp. 611–646 in The sea, vol. I, edited by M. N. Hill, Inter-
science, 1962.

[Grotkop 1973] G. Grotkop, “Finite element analysis of long-period water waves”, Comput. Methods Appl. Mech. Eng. 2:2
(1973), 147–157.

[Heaps 1967] N. S. Heaps, “Storm surges oceanography and marine biology”, Oceanogr. Mar. Biol. 5 (1967), 11–47.

[Houston 1978] J. R. Houston, “Interaction of tsunamis with the Hawaiian islands calculated by a finite-element numerical
model”, J. Phys. Oceanogr. 8:1 (1978), 93–102.

[Imamura 1996] F. Imamura, “Review of tsunami simulation with a finite difference method”, pp. 25–42 in Long-wave runup
models (Friday Harbor, WA, 1995), edited by H. Yeh et al., World Scientific, Singapore, 1996.

[Kawahara et al. 1978] M. Kawahara, N. Takeuchi, and T. Yoshida, “Two step explicit finite element method for tsunami wave
propagation analysis”, Int. J. Numer. Methods Eng. 12:2 (1978), 331–351.

[Le Méhauté 1976] B. Le Méhauté, An introduction to hydrodynamics and water waves, Springer, New York, 1976. MR 57
#11286

[Mader 2004] C. L. Mader, Numerical modelling of water waves, 2nd ed., CRC Press, Boca Raton, FL, 2004.

http://dx.doi.org/10.1016/0045-7825(73)90012-1
http://dx.doi.org/10.1175/1520-0485(1978)008<0093:IOTWTH>2.0.CO;2
http://dx.doi.org/10.1175/1520-0485(1978)008<0093:IOTWTH>2.0.CO;2
http://dx.doi.org/10.1002/nme.1620120213
http://dx.doi.org/10.1002/nme.1620120213
http://www.ams.org/mathscinet-getitem?mr=57:11286
http://www.ams.org/mathscinet-getitem?mr=57:11286


1962 GUNAWAN BUDI WIJAYA, TAM THANH BUI AND WORSAK KANOK-NUKULCHAI

[Malone and Kuo 1981] F. D. Malone and J. T. Kuo, “Semi-implicit finite element methods applied to the solution of the
shallow water equations”, J. Geophys. Res. 86:C5 (1981), 4029–4040.

[Nithiarasu et al. 2004] P. Nithiarasu, J. S. Mathur, N. P. Weatherill, and K. Morgan, “Three-dimensional incompressible flow
calculations using the characteristic based split (CBS) scheme”, Int. J. Numer. Methods Fluids 44:11 (2004), 1207–1229.
MR 2043786

[Ortiz et al. 2004] P. Ortiz, O. C. Zienkiewicz, and J. Szmelter, “CBS finite element modelling of shallow water and transport
problems”, in European Congress on Computational Methods in Applied Sciences and Engineering (Jyväskylä, 2004), edited
by P. Neittaanmäki et al., University of Jyväskylä, Jyväskylä, 2004.

[Peraire et al. 1986] J. Peraire, O. C. Zienkiewicz, and K. Morgan, “Shallow water problems: A general explicit formulation”,
Int. J. Numer. Methods Eng. 22:3 (1986), 547–574. MR 87e:76029

[Sklarz et al. 1979] M. A. Sklarz, L. Q. Spielvogel, and H. G. Loomis, “Numerical simulation of the 29 November 1975 island
of Hawaii tsunami by the finite-element method”, J. Phys. Oceanogr. 9:5 (1979), 1022–1031.

[Wei and Kirby 1995] G. Wei and J. T. Kirby, “Time-dependent numerical code for extended Boussinesq equations”, J. Waterw.
Port C. (ASCE) 121:5 (1995), 251–261.

[Zienkiewicz and Codina 1995] O. C. Zienkiewicz and R. Codina, “A general algorithm for compressible and incompressible
flow, I: The split, characteristic-based scheme”, Int. J. Numer. Methods Fluids 20:8–9 (1995), 869–885. MR 96d:76060a

[Zienkiewicz et al. 1999] O. C. Zienkiewicz, P. Nithiarasu, R. Codina, M. Vázquez, and P. Ortiz, “The characteristic-based-
split procedure: An efficient and accurate algorithm for fluid problems”, Int. J. Numer. Methods Fluids 31:1 (1999), 359–392.
MR 2000g:76084

Received 15 Jun 2007. Revised 19 Feb 2008. Accepted 21 Feb 2008.

GUNAWAN BUDI WIJAYA: gunawan sipil@yahoo.co.uk
School of Engineering and Technology, Asian Institute of Technology, P.O. Box 4 Klong Luang, Pathumthani 12120,
Thailand

TAM THANH BUI: loantam@ait.ac.th
School of Engineering and Technology, Asian Institute of Technology, P.O. Box 4 Klong Luang, Pathumthani 12120,
Thailand

WORSAK KANOK-NUKULCHAI: worsak@ait.ac.th
School of Engineering and Technology, Asian Institute of Technology, P.O. Box 4 Klong Luang, Pathumthani 12120,
Thailand

http://www.agu.org/journals/ABS/1981/JC086iC05p04029.shtml
http://www.agu.org/journals/ABS/1981/JC086iC05p04029.shtml
http://dx.doi.org/10.1002/fld.682
http://dx.doi.org/10.1002/fld.682
http://www.ams.org/mathscinet-getitem?mr=2043786
http://www.imamod.ru/~serge/arc/conf/ECCOMAS_2004/ECCOMAS_V2/proceedings/pdf/429.pdf
http://www.imamod.ru/~serge/arc/conf/ECCOMAS_2004/ECCOMAS_V2/proceedings/pdf/429.pdf
http://dx.doi.org/10.1002/nme.1620220305
http://www.ams.org/mathscinet-getitem?mr=87e:76029
http://dx.doi.org/10.1175/1520-0485(1979)009<1022:NSOTNI>2.0.CO;2
http://dx.doi.org/10.1175/1520-0485(1979)009<1022:NSOTNI>2.0.CO;2
http://dx.doi.org/10.1061/(ASCE)0733-950X(1995)121:5(251)
http://dx.doi.org/10.1002/fld.1650200812
http://dx.doi.org/10.1002/fld.1650200812
http://www.ams.org/mathscinet-getitem?mr=96d:76060a
http://dx.doi.org/10.1002/(SICI)1097-0363(19990915)31:1<359::AID-FLD984>3.0.CO;2-7
http://dx.doi.org/10.1002/(SICI)1097-0363(19990915)31:1<359::AID-FLD984>3.0.CO;2-7
http://www.ams.org/mathscinet-getitem?mr=2000g:76084
mailto:gunawan_sipil@yahoo.co.uk
mailto:loantam@ait.ac.th
mailto:worsak@ait.ac.th


JOURNAL OF MECHANICS OF MATERIALS AND STRUCTURES
Vol. 3, No. 10, 2008

WAVE PROPAGATION IN A PRESTRESSED COMPRESSIBLE ELASTIC LAYER
WITH CONSTRAINED BOUNDARIES

ANIL C. WIJEYEWICKREMA, YOSUKE USHIDA AND PRIZA KAYESTHA

The dynamic motion of a prestressed compressible elastic layer having constrained boundaries is consid-
ered. The dispersion relations which relate wave speed and wave number are obtained for both symmetric
and antisymmetric motions. Both motions can be considered by formulating the incremental boundary-
value problem based on the theory of incremental elastic deformations, and using the propagator matrix
technique. The limiting phase speed at the low wave number limit of symmetric and antisymmetric
waves is obtained. At the low wave number limit, depending on the prestress, for symmetric motion
with slipping boundaries and for antisymmetric motion with vertically unconstrained boundaries, a fi-
nite phase speed may exist for the fundamental mode. Numerical results are presented for a Blatz–Ko
material. The effects of the constrained boundaries are clearly seen in the dispersion curves.

1. Introduction

In general, wave propagation in prestressed incompressible elastic media has been studied before the
analysis of waves in prestressed compressible elastic media. Surface wave propagation in an incompress-
ible elastic half-space was studied in [Dowaikh and Ogden 1990] and the corresponding problem for a
compressible elastic half-space was considered in [Dowaikh and Ogden 1991b]. Interfacial wave propa-
gation in two joined incompressible elastic half-spaces was analyzed in [Dowaikh and Ogden 1991a] and
the problem of compressible elastic half-spaces was considered in [Sotiropoulos 1998]. Vibration and
stability analysis of a prestressed elastic layer was reported in [Ogden and Roxburgh 1993] for incom-
pressible elastic materials and in [Roxburgh and Ogden 1994] for compressible elastic materials. Guided
waves in a layered half-space were studied in [Ogden and Sotiropoulos 1995; 1996] for incompressible
and compressible materials, respectively. Analyses of waves in an elastic layer bonded to two half-spaces
were conducted in [Sotiropoulos and Sifniotopoulos 1995] for incompressible elastic materials and in
[Sotiropoulos 2000] for compressible elastic materials. Propagation and reflection of plane waves in
an incompressible elastic half-space has been considered in [Ogden and Sotiropoulos 1997], while the
corresponding compressible elastic half-space problem has been reported in [Ogden and Sotiropoulos
1998].

The dispersive behavior of time harmonic in-plane waves in a prestressed incompressible symmetric
layered composite with imperfect interface conditions has been analyzed for symmetric waves in [Le-
ungvichcharoen and Wijeyewickrema 2003] and for antisymmetric waves in [Leungvichcharoen et al.
2004]. The corresponding problems for the perfectly bonded interface case were analyzed by [Rogerson
and Sandiford 1997; 2000]. In the present paper, the effect of constrained boundaries on both symmetric

Keywords: wave propagation, prestress, dispersion curves, nonlinear elasticity.
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and antisymmetric time harmonic plane waves in a prestressed compressible symmetric elastic layer are
considered.

The basic equations of infinitesimal time harmonic wave propagation in prestressed, compressible,
elastic media are given in Section 2. Using the propagator matrix, the dispersion relations for symmetric
and antisymmetric motions are obtained in Section 3. The dispersion relation is analyzed in Section 4
and numerical results using Blatz–Ko material are presented in Section 5.

2. Basic equations

The equations for infinitesimal time-harmonic wave propagation in prestressed compressible elastic me-
dia are given in this section [Roxburgh and Ogden 1994; Ogden and Sotiropoulos 1998]. Consider a
homogeneous, compressible, isotropic elastic body with an initial unstressed state Bu , which after being
subjected to pure homogeneous strains has the new configuration Be, the prestressed equilibrium state.
A Cartesian coordinate system Ox1x2x3, with axes coincident with the principal axes of strain is chosen
for configuration Be. Let u be a small, time dependent displacement superimposed on Be. For the
plane strain incremental problem considered here, the nonzero displacement components u1 and u2 are
independent of x3. The incremental equations of motion can be expressed as

α11u1,11+ γ2u1,22+ δu2,12 = ρü1, γ1u2,11+α22u2,22+ δu1,12 = ρü2, (1)

where ρ is the current material density, the superimposed dot and comma indicate differentiation with
respect to time t and the spatial coordinate component in Be, respectively, and αi j =A0i i j j (i = 1, 2),
γ1 = A01212, γ2 = A02121, δ = α12 + γ2 − σ2 = α12 + γ1 − σ1, in which A0i jkl are the components of
the fourth-order tensor of first-order instantaneous moduli of isotropic elastic material which relates the
nominal stress increment tensor and the deformation gradient increment tensor and σi are the principal
Cauchy stress in xi -direction. The instantaneous elastic moduli αi j , γi and the principal Cauchy stress
σi can be expressed in terms of the strain energy function W per unit reference volume and principal
stretches λi as in [Ogden and Sotiropoulos 1998]:

Jαi j = λiλ j Wi j , Jγi =
λ1W1− λ2W2

λ2
1− λ

2
2

λ2
i , Jσ1 = λ1W1, Jσ2 = λ2W2, (2)

where Wi = ∂W/∂λi , Wi j = ∂
2W/∂λi∂λ j (i, j = 1, 2) and J =λ1λ2λ3. Note that the properties α12=α21

and γ1 − σ1 = γ2 − σ2 have been used in obtaining (1). In the case of equibiaxial deformation when
λ1 = λ2, (2) reduces to

Jα11 = Jα22 = λ
2
1W11, Jα12 = λ

2
1W12,

Jγ1 = Jγ2 =
1
2 λ1(λ1W11− λ1W12+W1), Jσ1 = Jσ2 = λ1W1,

that is α11 = α22 = α12 + 2γ2 − σ2. In addition, in the configuration Bu , α11 = λ + 2µ, α12 = λ,

γ1 = γ2 = µ, where λ and µ are the classical Lamé moduli of the material. In the analysis of wave
propagation, the strong ellipticity conditions given by [Ogden and Sotiropoulos 1998] are assumed, that
is, αi i > 0, γi > 0 (i = 1, 2), βc+

√
α11α22γ1γ2 > 0, where 2βc = α11α22+ γ1γ2− δ

2.
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The relevant components of the nominal stress increment tensor in the configuration Be can be ex-
pressed as

s021(x1, x2, t)= γ2u1,2+ (γ2− σ2)u2,1,

s022(x1, x2, t)= α12u1,1+α22u2,2.
(3)

3. Formulation of problem and dispersion relations

The prestressed isotropic compressible elastic layer with constrained boundaries is shown in Figure 1.
The Cartesian coordinate system is chosen such that x1 and x2-axes are coincident with the principal
axes, the x2-direction is normal to the midplane of the layer, the time harmonic wave propagation is in
x1-direction and the origin O lies at the midplane of the layer. The thickness of the layer is 2h. The
homogeneous layer has material parameters α11, α12, α22, γ1, γ2 and mass density ρ.

The superimposed infinitesimal displacements may be expressed as

(u1, u2)= (A1, A2)eq̃kx2eik(x1−vt), (4)

where k is the wave number, v is the phase speed, A1 and A2 are arbitrary constants, and the parameter
q̃ is to be determined. (This is the notation we use for the compressible case; q and q∗ were used in
[Leungvichcharoen and Wijeyewickrema 2003; Leungvichcharoen et al. 2004] for related problems in
the incompressible case.)

Substituting (4) into (1) yields a system of homogeneous equations for which a nontrivial solution
exists provided that

α22γ2q̃4
− (α′11α22+ γ

′

1γ2− δ
2)q̃2
+α′11γ

′

1 = 0, (5)

where α′11 = α11− ρv
2 and γ ′1 = γ1− ρv

2. Let q̃2
1 and q̃2

2 be the roots of the quadratic equation (5); then

q̃2
1 + q̃2

2 =
α′11α22+ γ

′

1γ2− δ
2

α22γ2
, q̃2

1 q̃2
2 =

α′11γ
′

1

α22γ2
.

Define the squared phase speed as the nondimensional quantity ξ = ρv2/γ2, and set

ᾱi j =
αi j

γ2
(i, j = 1, 2), ᾱ′11 =

α′11

γ2
, δ̄ =

δ

γ2
, γ̄1 =

γ1

γ2
, σ̄2 =

σ2

γ2
. (6)
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2x

Figure 1. Prestressed compressible elastic layer with constrained boundaries.
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To obtain the propagator matrix, the incremental displacements and stresses in (3) and (4) are written
in the form of a 4× 1 vector as

(u1, u2, s021, s022)
T
=
[
U1(x2),U2(x2), S021(x2), S022(x2)

]T eik(x1−vt). (7)

From (7) it can be shown after some manipulation that

y(x2)= H Ẽ(x2)a, (8)

where

y(x2)=

[
−iU1(x2),U2(x2),

S021(x2)

ik
,

S022(x2)

k

]T

is the displacement-stress increment vector,

Ẽ(x2)= diag
(
eq̃1kx2, e−q̃1kx2, eq̃2kx2, e−q̃2kx2

)
,

is a diagonal matrix,

a =
[

i A(1)1

q̃1δ̄
,
−i A(2)1

q̃1δ̄
,

i A(3)1

q̃2δ̄
,
−i A(4)1

q̃2δ̄

]T

is a vector of constants, and H is a 4× 4 matrix independent of x2 and defined by

H =


−q̃1δ̄ q̃1δ̄ −q̃2δ̄ q̃2δ̄

f̃ (q̃1) f̃ (q̃1) f̃ (q̃2) f̃ (q̃2)

−γ2 f̃ (q̃1)g̃(q̃2)/δ̄ −γ2 f̃ (q̃1)g̃(q̃2)/δ̄ −γ2 f̃ (q̃2)g̃(q̃1)/δ̄ −γ2 f̃ (q̃2)g̃(q̃1)/δ̄

γ2q̃1g̃(q̃1) −γ2q̃1g̃(q̃1) γ2q̃2g̃(q̃2) −γ2q̃2g̃(q̃2);


with

f̃ (q̃m)= q̃2
m − ᾱ

′

11, g̃(q̃m)= ᾱ22 f̃ (q̃m)+ δ̄ᾱ12 (m = 1, 2). (9)

The vector a is eliminated from (8) by introducing the vector y(x̄2) at an arbitrary location x2 = x̄2

and finally obtain the expression

y(x2)= H Ẽ(x2− x̄2)H−1 y(x̄2)= P(x2− x̄2) y(x̄2). (10)

involving the propagator matrix P , whose entries are given by

P11 = P33 = q̃1q̃2δ̄
2 f̃ (q̃1) f̃ (q̃2)

[
g̃(q̃1)C̃2− g̃(q̃2)C̃1

]
κ̃−1,

P12 = q̃1q̃2δ̄
3[q̃2 f̃ (q̃1)g̃(q̃2)S̃2− q̃1 f̃ (q̃2)g̃(q̃1)S̃1

]
κ̃−1,

P13 = q̃1q̃2δ̄
4[q̃2 f̃ (q̃1)S̃2− q̃1 f̃ (q̃2)S̃1

]
(γ2κ̃)

−1,

P14 =−P23 = q̃1q̃2δ̄
3 f̃ (q̃1) f̃ (q̃2)

[
C̃2− C̃1

]
(γ2κ̃)

−1,

P21 =−P34 = δ̄ f̃ (q̃1) f̃ (q̃2)
[
q̃2 f̃ (q̃1)g̃(q̃2)S̃1− q̃1 f̃ (q̃2)g̃(q̃1)S̃2

]
κ̃−1,

P22 = P44 = q̃1q̃2δ̄
2 f̃ (q̃1) f̃ (q̃2)

[
g̃(q̃1)C̃1− g̃(q̃2)C̃2

]
κ̃−1,

P24 = δ̄
2 f̃ (q̃1) f̃ (q̃2)

[
q̃2 f̃ (q̃1)S̃1− q̃1 f̃ (q̃2)S̃2

]
(γ2κ̃)

−1,
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P31 = γ2 f̃ (q̃1) f̃ (q̃2)
[
q̃1 f̃ (q̃2)g̃(q̃1)

2 S̃2− q̃2 f̃ (q̃1)g̃(q̃2)
2 S̃1
]
κ̃−1,

P32 =−P41 = γ2q̃1q̃2δ̄ f̃ (q̃1) f̃ (q̃2)g̃(q̃1)g̃(q̃2)
[
C̃2− C̃1

]
κ̃−1,

P42 = γ2q̃1q̃2δ̄
2[q̃1 f̃ (q̃2)g̃(q̃1)

2 S̃1− q̃2 f̃ (q̃1)g̃(q̃2)
2 S̃2
]
κ̃−1,

P43 = q̃1q̃2δ̄
3[q̃1 f̃ (q̃2)g̃(q̃1)S̃1− q̃2 f̃ (q̃1)g̃(q̃2)S̃2

]
κ̃−1,

where
S̃m = sinh[q̃mkh], C̃m = cosh[q̃mkh] (m = 1, 2),

κ̃ = q̃1q̃2δ̄
2 f̃ (q̃1) f̃ (q̃2)

[
g̃(q̃1)− g̃(q̃2)

]
.

(11)

For in-plane wave propagation in the x1-direction, since the wave motion can be decoupled into sym-
metric and antisymmetric modes, it is convenient to analyze the symmetric and antisymmetric waves
separately, and it is sufficient to consider only the upper half of the layer (0≤ x2 ≤ h).

The midplane conditions for symmetric and antisymmetric waves can be written as

symmetric waves: U2(0)= S021(0)= 0, (12)

antisymmetric waves: U1(0)= S022(0)= 0. (13)

At the boundary (x2 = h), the shear stress increment is assumed to be proportional to the displacement
increment in the x1-direction and the normal stress increment is assumed to be proportional to the dis-
placement increment in the x2-direction, that is,

S021(h)=
k1γ2

h
U1(h), S022(h)=

k2γ2

h
U2(h), (14)

where k1, k2 are the nondimensional spring parameters.
Substituting the boundary conditions (14) and the midplane conditions, (12), into (10) with x2 = h and

x̄2 = 0, the dispersion relation for symmetric waves in a layer with constrained boundaries is obtained as

{P31 P44− P34 P41}+
γ2k1

kh
{P11 P44− P14 P41}

+
γ2k2

kh
{P31 P24− P34 P21}+

γ2k1

kh
γ2k2

kh
{P11 P24− P14 P21} = 0. (15)

Similarly the dispersion relation for antisymmetric waves can be obtained as

{P32 P43− P33 P42}+
γ2k1
kh
{P12 P43− P13 P42}

+
γ2k2
kh
{P23 P32− P22 P33}+

γ2k1
kh

γ2k2
kh
{P12 P23− P13 P22} = 0. (16)

For symmetric waves we substitute the elements of P(h) into (15) and remove the common factor
γ2q̃1q̃2δ̄

2
[g̃(q̃1)− g̃(q̃2)] from the denominator. The removal of this common factor leads to spurious

roots in the resulting relation

δ̄2(q̃1 f̃ (q̃2)S̃2C̃1− q̃2 f̃ (q̃1)S̃1C̃2
)
+

kh
k1

f̃ (q̃1) f̃ (q̃2)S̃1 S̃2
(
g̃(q̃2)− g̃(q̃1)

)
+

kh
k2
δ̄2q̃1q̃2C̃1C̃2

(
g̃(q̃2)− g̃(q̃1)

)
+
(kh)2

k1k2

(
q̃2 f̃ (q̃1)g̃(q̃2)

2 S̃1C̃2− q̃1 f̃ (q̃2)g̃(q̃1)
2 S̃2C̃1

)
= 0, (17)
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where f̃ (q̃m) and g̃(q̃m) are defined in (9) and C̃m and S̃m are defined in (11).
The dispersion relation for antisymmetric waves can be similarly obtained as

δ̄2(q̃2 f̃ (q̃1)S̃2C̃1− q̃1 f̃ (q̃2)S̃1C̃2
)
+

kh
k1

f̃ (q̃1) f̃ (q̃2)C̃1C̃2
(
g̃(q̃1)− g̃(q̃2)

)
+

kh
k2
δ̄2q̃1q̃2 S̃1 S̃2

(
g̃(q̃1)− g̃(q̃2)

)
+
(kh)2

k1k2

(
q̃1 f̃ (q̃2)g̃(q̃1)

2 S̃1C̃2− q̃2 f̃ (q̃1)g̃(q̃2)
2 S̃2C̃1

)
= 0, (18)

where the common factor removed from the denominator of (16) after substitution of the components of
the propagator matrix is γ2 f̃ (q̃1) f̃ (q̃2)[g̃(q̃1)− g̃(q̃2)].

The dispersion relations for the fixed boundary case and traction free boundary case can be deduced
from the dispersion relations for the constrained boundary case.

When k1, k2→∞, the dispersion relation for waves propagating in a layer with fixed boundaries is
obtained for symmetric waves from (17) as

δ̄2(q̃1 f̃ (q̃2)S̃2C̃1− q̃2 f̃ (q̃1)S̃1C̃2
)
= 0, (19)

and for antisymmetric waves propagating from (18) as

δ̄2(q̃2 f̃ (q̃1)S̃2C̃1− q̃1 f̃ (q̃2)S̃1C̃2
)
= 0.

When k1, k2→ 0, the dispersion relation for waves propagating in a layer with traction free boundaries
is obtained for symmetric waves from (17) as(

q̃2 f̃ (q̃1)g̃(q̃2)
2 S̃1C̃2− q̃1 f̃ (q̃2)g̃(q̃1)

2 S̃2C̃1
)
= 0, (20)

and for antisymmetric waves propagating from (18) as(
q̃1 f̃ (q̃2)g̃(q̃1)

2 S̃1C̃2− q̃2 f̃ (q̃1)g̃(q̃2)
2 S̃2C̃1

)
= 0. (21)

After some manipulation (20) and (21) can be rewritten respectively as

tanh[khq̃1]

tanh[khq̃2]
=

q̃1
[
ᾱ′11

(
γ ′1− (1− σ̄2)

2
)
− q̃2

2 (ᾱ
2
12− ᾱ

′

11ᾱ22)
]

q̃2
[
ᾱ′11

(
γ ′1− (1− σ̄2)2

)
− q̃2

1 (ᾱ
2
12− ᾱ

′

11ᾱ22)
] , (22)

and
tanh[khq̃1]

tanh[khq̃2]
=

q̃2
[
ᾱ′11

(
γ ′1− (1− σ̄2)

2
)
− q2

1 (ᾱ
2
12− ᾱ

′

11ᾱ22)
]

q̃1
[
ᾱ′11

(
γ ′1− (1− σ̄2)2

)
− q2

2 (ᾱ
2
12− ᾱ

′

11ᾱ22)
] . (23)

These agree with [Roxburgh and Ogden 1994, (4.24) and (4.22)].

4. Analysis of dispersion relations

The similarity of the dispersion relation for symmetric and antisymmetric waves shown in Section 3
results in similar behavior for these two kinds of waves, as will be discussed in this section. Equation
(5) can be rewritten in nondimensional form as

ᾱ22q̃4
− (ᾱ′11ᾱ22+ γ̄

′

1− δ̄
2)q̃2
+ ᾱ′11γ̄

′

1 = 0, (24)
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where γ̄ ′1 = γ
′

1/γ2 = γ̄1− ξ in the notation of (6). The roots of the quadratic (24) can be written as

q̃2
1 , q̃2

2 =
1

2ᾱ22

[
ᾱ′11ᾱ22+ γ̄

′

1− δ̄
2
∓

√
(ᾱ′11ᾱ22+ γ̄

′

1− δ̄
2)2− 4(ᾱ22ᾱ

′

11γ̄
′

1)

]
. (25)

For symmetric waves, the common factor γ2q̃1q̃2δ̄
2
[g̃(q̃1)− g̃(q̃2)] taken out from the denominator of

(15) leads to spurious roots of (17) given by

ξ = ξS1, ξS2 = ᾱ11, γ̄1, when q̃1 = 0 or q̃2 = 0, ξ = ξS3,

ξS4 =
(ᾱ22−1)(ᾱ11ᾱ22− γ̄1)− δ̄

2(1+ᾱ22)

(ᾱ22− 1)2
±

2
√
ᾱ22δ̄2

[
δ̄2− (ᾱ22−1)(ᾱ11− γ̄1)

]
(ᾱ22− 1)2

, when g̃(q̃1)= g̃(q̃2).

Similarly for antisymmetric waves the common factor γ2 f̃ (q̃1) f̃ (q̃2)[g̃(q̃1)− g̃(q̃2)] taken out from the
denominator of (16) leads to spurious roots of (18) given by

ξ = ξS1, when f̃ (q̃1) f̃ (q̃2)= 0, ξ = ξS3, ξS4, when g̃(q̃1)= g̃(q̃2).

Low wave number limit kh → 0. When kh→ 0 the thickness of the layer is very small compared to the
wavelength. By considering small argument expansions of the hyperbolic functions, the squared phase
speeds for symmetric waves for the slipping boundary (k1 = 0) are obtained from (17) as

ξ S
= ᾱ11−

ᾱ2
12

k2+ ᾱ22
, (26a)

and when k2 = 0 or k2 =∞ the squared phase speeds for (26a) can be obtained as

ξ S
00 = ᾱ11−

ᾱ2
12

ᾱ22
, ξ S

0∞ = ᾱ11. (26b)

For antisymmetric waves for the vertically unconstrained boundary (k2 = 0) the limiting squared phase
speed as kh→ 0 can be obtained from (18) as

ξ A
= γ̄1−

(1− σ̄2)
2

k1+ 1
, (27a)

and when k1 = 0 or k1 =∞ the squared phase speeds for (27a) can be obtained as

ξ A
00 = γ̄1− (1− σ̄2)

2, ξ A
∞0 = γ̄1. (27b)

Equations (26) and (27) are the finite squared phase speeds of the lowest branches of the dispersion
curves, which have frequencies that tend to zero as kh→ 0. The frequencies of higher modes which
have infinite squared phase speeds (ξ→∞) when kh→ 0 are considered next. When ξ→∞ expressions
for q̃2

1 and q̃2
2 can be obtained from (25) as

q̃2
1 =−1+

−δ̄2
+ ᾱ11(ᾱ22− 1)
(ᾱ22− 1)ξ

+ O(ξ−2), q̃2
2 =−

1
ᾱ22
+
δ̄2
+ γ̄1(ᾱ22− 1)
(ᾱ22− 1)ᾱ22ξ

+ O(ξ−2). (28)

It can be seen that q̃1 and q̃2 are imaginary when ξ →∞. By substituting (28) into (17) and (19),
introducing the nondimensional parameter �= kh

√
ξ and considering small argument expansions of the
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hyperbolic functions, the equation for cut-off frequencies of symmetric waves is obtained as

ωS
1
(
�
(S)
C

)
ωS

2
(
�
(S)
C

)
= 0, (29)

where
ωS

1
(
�
(S)
C

)
=

(
k1 cos

(
�
(S)
C

)
−�

(S)
C sin

(
�
(S)
C

))
,

ωS
2
(
�
(S)
C

)
=

(
k2 sin

(
�
(S)
C /

√
ᾱ22

)
+

√
ᾱ22�

(S)
C cos

(
�
(S)
C /

√
ᾱ22

))
.

(30)

Similarly for antisymmetric waves, the equation for cut-off frequencies is obtained as,

ωA
1
(
�
(A)
C

)
ωA

2
(
�
(A)
C

)
= 0, (31)

where
ωA

1
(
�
(A)
C

)
=

(
k1 sin

(
�
(A)
C

)
+�

(A)
C cos

(
�
(A)
C

))
,

ωA
2
(
�
(A)
C

)
=

(
−k2 cos

(
�
(A)
C /

√
ᾱ22

)
+

√
ᾱ22�

(A)
C sin

(
�
(A)
C /

√
ᾱ22

))
.

(32)

It can be seen that term ωS
1 (�

(S)
C ) and ωA

1 (�
(A)
C ) depend only on nondimensional spring parameter k1

while ωS
2 (�

(S)
C ) and ωA

2 (�
(A)
C ) depend on nondimensional parameters ᾱ22 and k2.

5. Numerical results

The effects of constrained boundaries on wave propagation in a prestressed compressible elastic layer
discussed in the previous sections are illustrated by considering a numerical example in this section. Here
compressible material with a Blatz–Ko strain energy function is considered.

The strain energy function W (BK )
c of Blatz–Ko material [Roxburgh and Ogden 1994] is

W (BK )
c =

µ

2
(λ−2

1 + λ
−2
2 + λ

−2
3 + 2λ1λ2λ3− 5),

and parameters α11, α12, α22, γ1, and γ2 for this material are

α11 =
3µ
Jλ2

1
, α12 = µ, α22 =

3µ
Jλ2

2
, γ1 =

µ

Jλ2
2
, γ2 =

µ

Jλ2
1
,

which yields

ᾱ11 = 3, ᾱ12 = Jλ2
1, ᾱ22 =

3λ2
1

λ2
2
, γ̄1 =

λ2
1

λ2
2
, (33)

and the principal Cauchy stresses are

σi =
µ(λ2

i J − 1)
λ2

i J
(i = 1, 2, 3).

The compressible layer is equibiaxially deformed in the (x1, x2)-plane, that is, λ1 = λ2. The nondi-
mensional parameters prescribed are ᾱ11 = 3 (from (33)), ᾱ12 = 1, and γ̄1 = 1; the computed ones are
ᾱ22 = 3, σ̄2 = 0, and δ̄= 2. The nondimensional squared phase speeds ξ of the fundamental mode and the
next ten modes for symmetric and antisymmetric waves (ξ (n)S , ξ

(n)
A , n = 1, 2, . . . , 11) are shown, using

linear plots as well as log-log plots to clearly show the low wave number limits, in Figures 2 and 3 for
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Figure 2. Dispersion curves of the fundamental mode and next ten modes for k1 = 0,
k2 = 0 (traction free boundary). Linear scale plot (left) and logarithmic scale plot (right);
solid lines for symmetric waves and dashed lines for antisymmetric waves.
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Figure 3. Dispersion curves of the fundamental mode and next ten modes for k1 =∞,
k2 =∞ (fixed boundary). Linear scale plot (left) and logarithmic scale plot (right); solid
lines for symmetric waves and dashed lines for antisymmetric waves.

the two extreme cases k1 = 0, k2 = 0 (corresponding to traction free boundaries) and k1 =∞, k2 =∞

(corresponding to fixed boundaries). When kh→ 0, it can be seen from Figure 2 for the traction free
case (k1 = 0, k2 = 0) that the squared phase speed of the fundamental mode for symmetric waves tends
to a finite limit, that is, ξ (1)S → ξ S

00 = 2.667 while the squared phase speed of the fundamental mode of
antisymmetric waves ξ (1)A tends to zero and the other higher modes have infinite squared phase speeds,
that is, ξ (n)S , ξ

(n)
A →∞ (n = 2, 3, . . .). For the fixed boundary case (k1 =∞, k2 =∞) when kh→ 0,

it can be seen from Figure 3 that both symmetric and antisymmetric modes have infinite squared phase
speeds, that is, ξ (n)S , ξ

(n)
A →∞ (n = 1, 2, . . .).



1972 ANIL C. WIJEYEWICKREMA, YOSUKE USHIDA AND PRIZA KAYESTHA

0.1 1 10
0.1

1

10

 

 

kh
5 10 15 20

0

5

10

15

20

25

30

 

 

kh

0.1 1 10
0.1

1

10

 
 

kh
5 10 15 20

0

5

10

15

20

25

30

 

 

kh

0.1 1 10
0.1

1

10

 

 

kh
5 10 15 20

0

5

10

15

20

25

30

 

 

kh

Figure 4. Dispersion curves of the fundamental mode and next ten modes for k1 = 0,
k2 = 0, 1,∞ (slipping boundary). Nondimensional squared phase speed ξ (left column)
and nondimensional frequency � (right column); solid lines for symmetric waves and
dashed lines for antisymmetric waves.
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Figure 5. Dispersion curves of the fundamental mode and next ten modes for k1 = 1,
k2 = 0, 1,∞ (partially constrained slipping boundary). Nondimensional squared phase
speed ξ (left column) and nondimensional frequency � (right column); solid lines for
symmetric waves and dashed lines for antisymmetric waves.
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Figure 6. Dispersion curves of the fundamental mode and next ten modes for k1 =∞,
k2 = 0, 1,∞ (no slip boundary). Nondimensional squared phase speed ξ (left column)
and nondimensional frequency � (right column); solid lines for symmetric waves and
dashed lines for antisymmetric waves.
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The effect of the spring parameters k1 and k2 are seen in the next three figures. Figure 4 corresponds
to a slipping boundary (k1 = 0), Figure 5 to a partially constrained slipping boundary (k1 = 1) and Figure
6 to a no slip boundary (k1 =∞), for k2 = 0, 1,∞. From the left column of Figure 4 it can be seen that,
when kh→ 0, for the slipping boundary (k1 = 0), the squared phase speed of the fundamental mode
for symmetric waves tends to a finite limit, ξ S

00 = 2.667, ξ S
01 = 2.75, ξ S

0∞ = 3.0, while the fundamental
mode for antisymmetric waves ξ (1)A tends to zero for k2 = 0 but has infinite squared phase speeds for
k2 = 1,∞. For the partially constrained slipping boundary (k1 = 1), when kh→ 0, it can be seen from
the left column of Figure 5 that the fundamental mode for antisymmetric waves ξ (1)A tends to a finite limit,
meaning ξ (1)A → ξ A

10 = 0.5, for k2 = 0, while the fundamental mode for symmetric waves ξ (1)S and the
other higher modes have infinite squared phase speeds, that is, ξ (n)S , ξ

(n)
A →∞ (n = 2, 3, . . .). For the no

slip boundary (k1 =∞), when kh→ 0, it can be seen from the left column of Figure 6 that the behavior
of the different modes are similar to the partially constrained slipping boundary case, the fundamental
mode for antisymmetric waves ξ (1)A tends to a finite limit, that is, ξ (1)A → ξ A

∞0 = 1 for k2 = 0. From the
right columns in Figures 4, 5, and 6, it can be seen that the modes that have finite limiting phase speeds
when kh→ 0, have frequencies that tend to zero. The frequencies of the other modes tend to the cut-off
frequencies calculated from (29)–(32).

6. Summary and conclusions

In the present analysis, the dispersive behavior of in-plane time harmonic waves in a prestressed compress-
ible layer with constrained boundaries is considered. The dispersion relations for both symmetric and
antisymmetric waves are obtained. From the asymptotic analysis of the dispersion relations the limiting
squared phase speed at the low wave number limit is obtained. The equations for cut-off frequencies of
the modes that have infinite phase speeds at the low wave number limit are also obtained.

The behavior of the dispersion curves for symmetric and antisymmetric waves are similar at the low
wave number limit. At low wave number limit, depending on the prestress, at most only one finite
limiting squared phase speed may exist.
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NONLINEAR LOCAL BENDING OF FGM SANDWICH PLATES

JIE YANG, SRITAWAT KITIPORNCHAI AND KIM MEOW LIEW

This paper investigates the nonlinear local bending of a sandwich plate consisting of two composite
laminated face sheets and a graded core subjected to a lateral patch load. It is assumed that the material
composition of the graded layer varies symmetrically along the thickness direction according to a power
law distribution. The present analysis is based on the first order shear deformation plate theory and von
Karman nonlinear kinematics, with the interaction between the loaded face sheet and the graded core
being modeled as an elastic plate resting on a Vlasov-type elastic foundation. A perturbation technique
and Galerkin method are used to determine the nonlinear local bending response. Numerical results show
that compared with conventional sandwich plates with a homogeneous soft core, the use of a functionally
graded core can effectively reduce both the local deformation and interfacial shear stresses. A parametric
study is performed to show the influences of the volume fraction index, Young’s modulus ratio, thickness
of the graded core, boundary condition, and load position.

1. Introduction

Due to their high specific stiffness, light weight, exceptional impact energy absorption, and excellent
thermal and acoustical insulation characteristics, sandwich structures are widely used in many engineer-
ing applications such as infrastructures, marine constructions, automobiles, and the aerospace industry.
A typical sandwich structure consists of two stiff face sheets and a thick intermediate core of low-density
and low-modulus material sandwiched in between. One of the major concerns in using such a structure
is the so-called “interface problem” (possible crack and delamination at the face sheet/core interfaces
caused by the transverse shear stress concentration) that arises from large stiffness differences between
the face sheets and the core which may result in a significant deterioration in structure reliability.

Functionally graded materials (FGMs) constitute a new class of inhomogeneous composites whose
material composition and physical properties change continuously and smoothly in one or more spatial
coordinates so that the interface problem can be effectively mitigated or eliminated. Rapid advances
in manufacturing techniques have enabled the fabrication of bulk FGMs that can be used in large-scale
structural systems [Ichikawa 2001]. This provides an advantageous degree of freedom in incorporating
FGMs into a sandwich structure to achieve a smooth variation in the material property profile. Recent the-
oretical and experimental investigations [Apetre et al. 2002; Anderson 2003; Venkataraman and Sankar
2003; Venkataraman et al. 2004; Kirugulige et al. 2005; Pollien et al. 2005; Das et al. 2006; Apetre
et al. 2006; Zhu and Sankar 2007] have shown that the use of an FGM core can significantly reduce the
interfacial shear stresses.

Keywords: local bending, sandwich struction, functionally graded materials, nonlinear behavior, laminates.
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It is known that under a highly localized lateral load such as a point or a patch load, a sandwich struc-
ture tends to fail not by overall bending but more often by excessive bending deformation or indentation
into the soft core layer around the loaded area. In such a case, the local deformation can be regarded as
the relative deflection of the loaded face sheet against the unloaded face sheet. Quite a few theoretical
and experimental studies have been conducted to address this issue [Corbett and Reid 1993; Thomsen
1993; Thomsen 1995; Frostig and Baruch 1996; Abrate 1997; da Silva and Santos 1998; Polyakov 2001;
Koissin et al. 2004; Hohe and Librescu 2004; Carrera and Ciuffreda 2005], among many others. For
sandwich plate structures with a continuous core layer, the relative deflection can be determined by using
an approximate approach in which the core layer is modeled as an elastic foundation. Weissman-Berman
et al. [1996] treated the loaded face sheet as a Kirchhoff plate resting on a Winkler-type elastic foundation
whose equivalent foundation stiffness was dependent on the material properties of the core. For a thick
core whose shearing effect is important, Thomsen [1993; 1995] suggested a modified Vlasov-type elastic
foundation model and studied the local bending behavior of simply supported rectangular sandwich pan-
els with thin orthotropic face layers. By modeling the sandwich panel as an infinite orthotropic elastic
plate resting on a rigid-plastic foundation, Türk and Fatt [1999] investigated the local damage response of
a composite sandwich panel induced by static indentation of a hemispherical-nose indenter. It is noted
that all of the aforementioned studies were based on the linear displacement-strain relationship only
and did not take into account the geometric nonlinearity which is inevitable when a sandwich structure
is subjected to a localized load of high density. The only work including this effect was reported by
Yang et al. [2001] who presented a nonlinear local bending analysis of composite laminated sandwich
plates with a flexible core under a combination of lateral strip load and uniform edge forces by using the
classical plate theory and a differential quadrature based semi analytical method. Their results showed
that the nonlinear local bending response is considerably different from linear predictions.

This paper investigates the geometrically nonlinear bending response of a rectangular FGM sandwich
plate subjected to a lateral patch load within the framework of von Karman-type geometric nonlinearity
and the first order shear deformation plate theory. The sandwich plate consists of a thick symmetrically
graded core layer bonded by two composite face sheets. The Vlasov-type elastic foundation model is used
to describe the supporting action of the graded core to the loaded face sheet. The nonlinear governing
partial differential equations are first transformed into a group of linear equations through the use of a
perturbation technique and then solved by the Galerkin procedure. Illustrative examples are analyzed to
gain an insight into the effects of the Young’s modulus ratio, the thickness ratio, the boundary condition
as well as the load position on the nonlinear local bending response.

2. Analytical formulations

2.1. Vlasov-type elastic foundation model. Figure 1 shows a rectangular sandwich plate of length a
and width b consisting of an isotropic inhomogeneous thick core of thickness Hc and two composite
laminated face sheets of equal thickness H f . Let (x, y, z) be a set of coordinates with the x- and y-axes
located in the middle plane of the upper face sheet and the z-axis pointing upwards. The material profile
of the core changes continuously along the thickness direction according to a power law distribution and
is compositionally symmetric about its midplane. The effective Young’s modulus at an arbitrary point
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Figure 1. Schematic configuration of an FGM sandwich plate. 
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Figure 1. Schematic configuration of an FGM sandwich plate.

within the core layer can be determined by

Ecore =


(E1− E0)

(
2

z+ h
Hc

)n
+ E0 −h ≤ z ≤−0.5H f ,

(E1− E0)
(
−2

z+ h
Hc

)n
+ E0 −h− 0.5Hc ≤ z ≤−h,

(1)

where h = (Hc+ H f )/2, n is the non-negative volume fraction index, E0 denotes the Young’s modulus
in the mid-plane of the core and is much smaller than the Young’s modulus E1 at the face sheet/core
interface. Poisson’s ratio is taken to be constant throughout the core (νcore = ν0 = ν1).

It is assumed in this study that

(1) the face sheets and the graded core are perfectly bonded so that no separation takes place,

(2) the graded core and the face sheet have the same Young’s modulus, that is, E1 = E f at the face
sheet/core interfaces to achieve a smooth variation in material properties, and

(3) a large value of n is used to obtain a graded soft core whose Ecore in the majority of the cross section
is much smaller than E f .

Suppose that the upper face sheet is subjected to a lateral patch load q(x, y)= q0ϕ(x, y) distributed
over a small area 2aq × 2bq with its center located at (xq , yq). q0 and ϕ(x, y) denote the magnitude
and the distribution function of the load. To take into account the shearing effect in the graded core, the
interaction between the loaded face sheet and the core layer is modeled by a Vlasov-type two-parameter
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foundation as

p = K1w(x, y)− K2∇
2w(x, y), (2)

where w (x, y) is the relative deflection of the upper face sheet against the lower face sheet, p is the
foundation reaction per unit area provided by the graded core, ∇2

= ∂2/∂x2
+ ∂2/∂y2 is the Laplace

operator, K1 and K2 are the equivalent spring stiffness and shear stiffness of the foundation which can
be derived using Lagrange’s principle of virtual work [Selvadurai 1979] as

K1 =

−h f /2∫
−(h f /2+Hc)

Ẽ(z)
[1− ν̃2]

(
dφ(z)

dz

)2

dz, K2 =

−h f /2∫
−(h f /2+Hc)

Ẽ(z)
4[1+ ν̃]

φ(z)2dz, (3)

in which Ẽ = Ecore/(1− ν2
core), ν̃ = νcore/(1− νcore), and φ(z) is the deformation distribution of the core

layer that is considered to be in the plane strain state and takes the exponential form

φ(z)=
sinh[1.5(Hc− z− h)/b]

sinh(1.5 Hc/b)
. (4)

It can be seen from the calculations based on Equations (3) and (4) that both K1 and K2 fall sharply and
then remain almost constant as the volume fraction index n and the modulus ratio E1/E0 increase. The
variation of K1 with the core thickness Hc follows almost the same pattern. The value of K2, however,
increases steadily as Hc increases, implying that the shearing effect of the core material tends to be more
important for sandwich plates with a thick core.

At the interface between the loaded upper face sheet and the graded core (z = −0.5H f ), the stress
components σz, τzx , and τzy can be calculated by

σz|z=−0.5H f = K1w(x, y)− K2∇
2w(x, y), (5a)

τzx |z=−0.5H f = K2 u(x, y,−0.5H f ), (5b)

τzy|z=−0.5H f = K2v(x, y,−0.5H f ), (5c)

where u and v are in-plane displacement components of the loaded face sheet at the interface.

2.2. Governing equations. The face sheet considered in this study may be one of the following: (1)
an antisymmetrically angle-ply laminated plate; (2) a symmetrically cross-ply laminated plate; or (3) a
symmetric angle-ply laminated plate with more than 15 plies. In these cases, the plate stiffness elements
A16 = A26 = D16 = D26 = 0. Both isotropic and orthotropic plates can be treated as special cases.

The first order shear deformation theory is used to account for the transverse shear deformation of the
face sheet. Hence, the displacement field (u, v, w) of the loaded face sheet takes the form

u(x, y, z)
v(x, y, z)
w(x, y, z)

=


ū(x, y)
v̄(x, y)
w̄(x, y)

+ z


ψx(x, y)
ψy(x, y)

0

 , (6)

where (ū, v̄, w̄) are the displacements of a point on the midplane of the face sheet (z = 0) and (ψx , ψy)

are cross sectional rotations about the y- and x-axes, respectively.
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The partial differential equations governing the nonlinear flexural response of the loaded face sheet in
the sense of von Karman-type nonlinear kinematics [Liew et al. 2004] can be written in dimensionless
form as

L11(U )+ L12(V )+ L14(ψx)+ L15(ψy)+µL16(W,W )= 0, (7)

L21(U )+ L22(V )+ L24(ψx)+ L25(ψy)+µβL26(W,W )= 0, (8)

L33(W )+ L34(ψx)+ L35(ψy)+µ
2L36(W,W )+µL37[(U, V, ψx , ψy),W ] = λqϕ(x, y)/µ, (9)

L41(U )+ L42(V )− L43(W )+ L44(ψx)+ L45(ψy)+µL46(W,W )= 0, (10)

L51(U )+ L52(V )− L53(W )+ L54(ψx)+ L55(ψy)+µL56(W,W )= 0, (11)

where the linear partial differential operators L i j (i, j ≤ 5), the nonlinear partial differential operators
L i6 (i = 1, . . . , 5), and L37 are given in the Appendix. The dimensionless quantities in (7)–(11) are

ξ = x/a,

η = y/b,

β = a/b,

µ= H f /a,

(U, V,W )= (ū, v̄, w̄)/H f ,

(k1, k2)= (K1a2, K2)/A11,

λq = q0a/A11,

(γ1, γ2, γ3)= [A44, A45, A55]H 2
f /D11,

(γ11, γ12, γ13, γ14)= [A66, A12+ A66, A12, A22]/A11,

(γ15, γ16, γ17, γ18, γ19, γ110, γ111)= [B11, B16, B66, B12+ B66, B26, B22, B12]/(A11 H f ),

(γ41, γ42)= [D66, D12+ D66]/D11,

(γ43, γ44, γ45, γ46, γ47, γ48)= [B11, B16, B66, B12+ B66, B26, B22]H f /D11,

in which Ai j , Bi j and Di j are the stiffness elements of the face sheet

(Ai j , Bi j , Di j )=

NL∑
k=1

zk+1∫
zk

Q(k)
i j (1, z, z2)dz (i, j = 1, 2, 4, 5, 6), (12)

where Q(k)
i j are the reduced stiffnesses for the kth layer of the NL -ply laminated face sheet and are

functions of fiber orientation of that layer. Their expressions are available in many references; see, for
example, the book by Reddy [1997].

The edges of the loaded face sheet may be either simply supported or clamped with the boundary
conditions

W = 0, ψs = 0, Mn = 0, Nn = 0, Us = 0, (13a)

for a simply supported edge, and

W = 0, ψs = 0, ψn = 0, Un = 0, Us = 0, (13b)



1982 JIE YANG, SRITAWAT KITIPORNCHAI AND KIM MEOW LIEW

for a clamped edge. The subscripts n and s refer to the normal and tangential directions of the edge, and
Nn, Nns,Mn,Mns, Qn are the in-plane forces, moments, and transverse shear force, respectively.

3. Analytical methodology

3.1. Perturbation technique. To determine the local response of the loaded face sheet, a perturbation
technique [Yang et al. 2001; Yang and Shen 2003a; Yang and Shen 2003b] is used, and the unknown
displacement components (U, V,W, ψx , ψy) are expanded in an ascending power series up to the Rth
order for a small perturbation parameter λq as

(U, V,W, ψx , ψy)=

R∑
r

(λq)
r (U (r), V (r),W (r), ψ (r)x , ψ (r)y ). (14)

Following a standard perturbation technique, a set of equations can be obtained in terms of U (r), V (r),
W (r), ψ (r)x , and ψ (r)y :

L11(U (r))+ L12(V (r))+ L14(ψ
(r)
x )+ L15(ψ

(r)
y )= R(r)1 , (15)

L21(U (r))+ L22(V (r))+ L24(ψ
(r)
x )+ L25(ψ

(r)
y )= R(r)2 , (16)

L33(W (r))+ L34(ψ
(r)
x )+ L35(ψ

(r)
y )= R(r)3 , (17)

L41(U (r))+ L42(V (r))− L43(W (r))+ L44(ψ
(r)
x )+ L45(ψ

(r)
y )= R(r)4 , (18)

L51(U (r))+ L52(V (r))− L53(W (r))+ L54(ψ
(r)
x )+ L55(ψ

(r)
y )= R(r)5 , (19)

where

R(1)1 = R(1)2 = R(1)4 = R(1)5 = 0, R(1)3 = ϕ(x, y)/µ, (20)

R(r)i =−µ
i−1∑
s=1

L i6(W (r−s),W (s)) (r = 2, i = 1, 2, 4, 5),

R(2)3 =−µ
2

i−1∑
s=1

L37[(U (r−s), V (r−s), ψ (r−s)
x , ψ (r−s)

y ),W (s)
],

R(r)3 =−µR(r)31 −µ
2

i−1∑
s=1

L37[(U (r−s), V (r−s), ψ (r−s)
x , ψ (r−s)

y ),W (s)
] (r ≥ 3). (21)

Obviously, the right-hand terms R(r)i (i = 1, . . . , 5) have already been determined in the previous pertur-
bation step and can be treated as “pseudoloads” at the current step. In (21), the terms R(r)31 (r ≥ 3), up to
the fifth-order perturbation, are

R(3)31 =

(
∂2W (1)

∂ξ 2 + γ13β
2 ∂

2W (1)

∂η2

)(
∂W (1)

∂ξ

)2

+ 2γ11β
∂2W (1)

∂ξ∂η

∂W (1)

∂ξ

∂W (1)

∂η

+β2
(
γ13
∂2W (1)

∂ξ 2 +β
2γ14

∂2W (1)

∂η2

)(
∂W (1)

∂η

)2

, (22)



NONLINEAR LOCAL BENDING OF FGM SANDWICH PLATES 1983

R(4)31 =

(
∂2W (2)

∂ξ 2 + γ13β
2 ∂

2W (2)

∂η2

)(
∂W (1)

∂ξ

)2

+ 2γ11β

(
∂2W (2)

∂ξ∂η

∂W (1)

∂ξ

∂W (1)

∂η
+
∂2W (1)

∂ξ∂η

∂W (2)

∂ξ

∂W (1)

∂η
+
∂2W (1)

∂ξ∂η

∂W (1)

∂ξ

∂W (2)

∂η

)

+β2
(
γ13
∂2W (2)

∂ξ 2 +β
2γ14

∂2W (2)

∂η2

)(
∂W (1)

∂η

)2

, (23)

R(5)31 =

(
∂2W (1)

∂ξ 2 + γ13β
2 ∂

2W (1)

∂η2

)(
∂W (2)

∂ξ

)2

+

(
∂2W (3)

∂ξ 2 + γ13β
2 ∂

2W (3)

∂η2

)(
∂W (1)

∂ξ

)2

+ 2γ11β

(
∂2W (3)

∂ξ∂η

∂W (1)

∂ξ

∂W (1)

∂η
+
∂2W (1)

∂ξ∂η

∂W (3)

∂ξ

∂W (1)

∂η
+
∂2W (1)

∂ξ∂η

∂W (1)

∂ξ

∂W (3)

∂η

+
∂2W (2)

∂ξ∂η

∂W (2)

∂ξ

∂W (1)

∂η
+
∂2W (2)

∂ξ∂η

∂W (1)

∂ξ

∂W (2)

∂η
+
∂2W (1)

∂ξ∂η

∂W (2)

∂ξ

∂W (2)

∂η

)

+β2
(
γ13
∂2W (1)

∂ξ 2 +β
2γ14

∂2W (1)

∂η2

)(
∂W (2)

∂η

)2

+β2
(
γ13
∂2W (3)

∂ξ 2 +β
2γ14

∂2W (3)

∂η2

)(
∂W (1)

∂η

)2

. (24)

3.2. Solution procedure. The solutions of the perturbation equations (15)–(19) under the associated
boundary conditions in (13) can be expanded in series form:

U (r)
=

M∑
m=1

N∑
n=1

a(r)mnŪm(ξ)Ũn(η), V (r)
=

M∑
m=1

N∑
n=1

b(r)mn V̄m(ξ)Ṽn(η), (25a)

W (r)
=

M∑
m=1

N∑
n=1

c(r)mnW̄m(ξ)W̃n(η), ψ (r)x =

M∑
m=1

N∑
n=1

d(r)mnψ̄xm(ξ)ψ̃xn(η), (25b)

ψ (r)y =

M∑
m=1

N∑
n=1

e(r)mnψ̄ym(ξ)ψ̃yn(η), (25c)

where (a(r)mn, b(r)mn, c(r)mn, d(r)mn, e(r)mn) are constants to be determined, (Ū (r)
m , V̄ (r)

m , W̄ (r)
m , ψ̄

(r)
xm, ψ̄

(r)
ym) and (Ũ (r)

n ,

Ṽ (r)
n , W̃ (r)

n , ψ̃
(r)
xn , ψ̃

(r)
yn ) are the analytical functions that satisfy boundary conditions at edges ξ = 0, 1 and

η = 0, 1, respectively. For example, when the face sheet is simply supported at ξ = 0, 1,

V̄ (r)
m (ξ)= W̄ (r)

m (ξ)= ψ̄ (r)ym(ξ)= sin(mπξ), Ū (r)
m (ξ)= ψ̄ (r)xm(ξ)= cos(mπξ), (26)

and when the face sheet is clamped at ξ = 0, 1,

Ū (r)
m (ξ)= W̄ (r)

m (ξ)= ψ̄ (r)ym(ξ)= Xm(ξ), V̄ (r)
m (ξ)= ψ̄ (r)xm(ξ)=

d Xm(ξ)

dξ
, (27)
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where

Xm(ξ)= sinµmξ − sinhµmξ − θm(cosµmξ − coshµmξ),

θm = (sinµm − sinhµm)/(cosµm − coshµm),

µm = (2m+ 1)π/2.

Substituting (25) into the perturbation equations (15)–(19) and applying the Galerkin approach to
minimize the residual within the face sheet domain leads to a system of linear algebraic equations from
which the constants (a(r)mn, b(r)mn, c(r)mn, d(r)mn, e(r)mn) can be determined step by step. Finally, the nonlinear
load-deflection relationship for a given point p can be obtained by using the relationship in (14) as

Wp = λq W (1)
p + λ

2
q W (2)

p + · · ·+ λ
R
q W (R)

p , (28)

where Wp refers to the dimensionless deflection at point p.

4. Numerical results and discussions

In the following computations, we use third order perturbation and the condition that M = N = 5 in
the solution series in Equation (25). These conditions were chosen based on the convergence study
implemented by means of varying the total number of series terms and increasing the perturbation order.

To validate the present analysis, the linear local bending of a clamped sandwich plate with a PVC core
and orthotropic face sheets subjected to a point load P = 1 kN at the plate center is considered. This
example was previously analyzed by Thomsen [1993] based on the classical plate theory as well. The
geometry and material properties are a = b = 500 mm, H f = 3 mm, E f

11 = 33.6 GPa, E f
22 = 8.4 GPa,

G f
12 = 3.1 GPa, ν f

12 = 0.32 for the orthotropic face sheet and Hc = 30 mm, Ec = 0.1 GPa, νc = 0.35
for the PVC core. Figure 2 displays the lateral deflection profile at the midspan (y = b/2) of the plate.
Severe deformation localization can be observed. The deflection reaches its peak value at the center of
the plate, and then decays steeply as the distance from the center increases. Good agreement is achieved
between the present solution and the finite element method (FEM) results [Thomsen 1993].

The second comparison example concerns the nonlinear bending of a simply supported functionally
graded square plate (a = b = 200 mm, h = 10 mm) under a uniform lateral pressure of intensity q.
The plate is made of a mixture of aluminum (E = 70 GPa, ν = 0.3) and zirconia (E = 151 GPa, ν =
0.3). Figure 3 presents the curves of dimensionless central deflection w0 = w/h versus load parameter
q∗ = qa4/Emh4 for plates with different material compositions where Em is the Young’s modulus of
aluminum. The FEM results [Reddy 2000] based on the higher-order shear deformation plate theory are
also provided for direct comparison. Again, good agreement is observed. The discrepancy in the above
comparisons is due to the different numerical solution methods used in the present analysis and existing
studies [Thomsen 1993; Reddy 2000].

Figures 4–9 give the numerical results for square sandwich plates with a symmetrically graded core and
4-layer (−45◦/45◦/− 45◦/45◦) antisymmetric angle-ply Kevlar/epoxy face sheets of equal ply thickness.
Unless stated otherwise, the plate is assumed to be simply supported at all sides and subjected to a
uniformly distributed patch load over an area (2aq , 2bq) = (2× 0.05a, 2× 0.05b) in the vicinity of
the center of the plate (xq , yq)= (0.5a, 0.5b). The material properties and geometrical parameters are:
E f

11 = 76 GPa, E f
22 = 5.5 GPa, G f

12 = 2.3 GPa, ν f
12 = 0.34, H f = 5 mm, a = b = 500 mm for the face
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Figure 2. Comparison of the linear deflection profile byw 5.0|
 

 of an orthotropic loaded face sheet 

under a point load at the plate center. 
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Figure 2. Comparison of the linear deflection profile w|y=0.5b of an orthotropic loaded
face sheet under a point load at the plate center.
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Figure 3. Nonlinear load-deflection curves of simply supported FGM square plates under uniform 

lateral pressure. 
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Figure 3. Nonlinear load-deflection curves of simply supported FGM square plates un-
der uniform lateral pressure.
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Figure 4. Comparison of nonlinear local bending response of square sandwich plates with a 

homogeneous core and a graded core: (a) deflection profile 2/0 byw
 

; (b) interface shear stress 

2/byyz
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Figure 4. Comparison of the nonlinear local bending response of square sandwich
plates with a homogeneous core and a graded core: (left) deflection profile w0|y=b/2;
(right) interface shear stress τyz|y=b/2.

sheet, and E1 = 76 GPa, E1/E0 = 200, ν = 0.08, Hc/H f = 24, n = 50.0 for the graded core. The load
intensity is q = 20 MPa in Figures 4 and 9 and can vary up to q = 40 MPa in other examples. Numerical
results of normalized deflection w0 = w/H f and stresses (in MPa) at the loaded upper face sheet/graded
core interface are provided.

We first compare the local deflection profiles and interfacial transverse shear stress distributions of
sandwich plates with a graded core (E1= 76 GPa, E0= 0.38 GPa, n= 50.0) and with a homogeneous soft
core (E1 = E0 = 0.38 GPa) subjected to a patch load q = 20 MPa. Due to the symmetry in both structural
configuration and loading condition, only the deformed shape and shear stress τyz at the midspan y = b/2
on the left half of the plate are displayed in Figure 4 where nonlinear and linear results are represented by
solid and dashed curves, respectively. The local deflection and the interfacial shear stress τyz are maximal
at the plate center and decay rapidly towards the plate edge. It is important to note that both deflection and
interfacial shear stress τyz are greatly reduced when a graded core is used. This is because the equivalent
supporting stiffnesses K1 and K2 of the graded core are significantly higher than those of a homogeneous
core. This observation is of particular importance since it indicates that the structural performance of a
sandwich plate can be effectively improved through the use of a graded core that is capable of alleviating
the local deformation and lowering the interfacial shear stress responsible for debonding failure at the
face sheet/core interface.

Figure 5 displays the load-central deflection curves and the load-central interfacial stress curves for
sandwich plates with a homogeneous soft core (E1 = E0 = 0.38 GPa) and a graded core with varying
volume fraction index (E1/E0 = 200, E1 = 76 GPa, n = 20, 50). It should be noted that under the power
law defined in Equation (1), the graded core becomes stiffer as the volume fraction index n decreases,
while n =∞ corresponds to a core that is roughly homogeneous. Because of this, the sandwich plate
with a graded core of n = 20 has the lowest central deflection. An increase in n leads to a higher τyz but
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Figure 5. Comparison of nonlinear local bending response of square sandwich plates with a 

homogeneous core and a graded core: (a) load-central deflection curves; (b) load-central interface 

stress curves. 
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Figure 5. Comparison of the nonlinear local bending response of square sandwich
plates with a homogeneous core and a graded core: (left) load-central deflection curves;
(right) load-central interface stress curves.

a lower σz . As can be observed in Figures 4 and 5, linear solutions greatly overpredict the deflection and
interfacial normal stress σz but on the other hand, considerably underestimate the interfacial shear stress
τyz . This discrepancy becomes even more significant when a graded core with a larger value of n is used.
Note that for the sandwich plate with n = 20, the load-central interfacial normal stress σz relationship is
basically linear. This is due to the fact that its load-central deflection curve is almost linear and the first
term in Equation (5a), which has a much higher weighing than the second term, is directly proportional
to the deflection.

To investigate the effect of modulus ratio E1/E0 of the graded core, the nonlinear load-central deflec-
tion and load-central interfacial stress curves for sandwich plates containing a graded core (n = 50) with
E1/E0 = 100, 500, and 1000 are given in Figure 6. The Young’s modulus at the face sheet/core interface
E1 is kept constant, while that at the core center E0 is varied. Therefore, a larger E1/E0 ratio in fact
indicates a softer graded core with a smaller E0. The nonlinear deflection and interfacial shear stress
τyz increase, whereas the interfacial normal stress σz decreases as the E1/E0 ratio is increased. It is
worth noting that the results for E1/E0 = 500 and 1000 are quite close, implying that the nonlinear local
response will almost not be affected by the change of E1/E0 beyond a certain value, say, E1/E0 ≥ 500
in this example.

Figure 7 examines the influence of the thickness ratio Hc/H f on the nonlinear local bending behavior
of FGM sandwich plates. It is assumed that only the core thickness Hc is changed, while the face
sheet thickness remains constant. Both the central deflection and central interfacial stresses follow a
nonmonotonic variation with the core thickness. A sandwich plate with Hc/H f = 30 has the greatest
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(b) 

Figure 6. Nonlinear local bending response of square FGM sandwich plates with different 01 / EE  

ratios: (a) load-central deflection curves; (b) load-central interface stress curves. 
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Figure 6. Nonlinear local bending response of square FGM sandwich plates with dif-
ferent E1/E0 ratios: (left) load-central deflection curves; (right) load-central interface
stress curves.
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Figure 7. Nonlinear local bending response of square FGM sandwich plates with different fc HH /  

ratios: (a) load-central deflection curves; (b) load-central interface stress curves. 
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Figure 7. Nonlinear local bending response of square FGM sandwich plates with dif-
ferent Hc/H f ratios: (left) load-central deflection curves; (right) load-central interface
stress curves.

central deflections, but its central interfacial stresses are intermediate to those of the plates with Hc/H f =

10 and Hc/H f = 60. The reason is that as the graded core becomes thicker the spring stiffness K1 becomes
smaller but the shear stiffness K2 becomes larger, and the local bending behavior of the plate depends
largely on the combined effects of foundation stiffnesses K1 and K2.

The nonlinear local bending responses of FGM sandwich plates under different boundary conditions
are depicted in Figure 8 in which notations “SSSS”, “CCCC” and “SCSC” stand for, respectively, a simply
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Figure 8. Nonlinear local bending response of square FGM sandwich plates with different boundary 

conditions: (a) load-central deflection curves; (b) load-central interface stress curves. 
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Figure 8. Nonlinear local bending response of square FGM sandwich plates with differ-
ent boundary conditions: (left) load-central deflection curves; (right) load-central inter-
face stress curves.
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Figure 9. Effect of load position on: (a) the dimensionless central deflection profile 2/0 byw
 

; and (b) 

the interface shear stress 
2/byyz
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Figure 9. Effect of load position on: (left) the dimensionless central deflection profile
w0|y=b/2; and (b) the interface shear stress τyz|y=b/2 of a square FGM sandwich plate.

supported sandwich plate, a clamped sandwich plate, and a sandwich plate clamped at edges x = 0, a
and simply supported at edges y = 0, b. The results show that the boundary constraints have a significant
effect on the nonlinear local bending response. The fully clamped plate undergoes the lowest nonlinear
deflection and interfacial stresses. The nonlinear local responses of the SSSS and SCSC sandwich plates
are almost identical.

Figure 9 gives the deflection profiles and interfacial shear stress distributions for simply supported and
clamped FGM sandwich plates under a patch load q = 20 MPa centered some distance away from the
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plate center (xq = 0.1a, 0.3a, yq = 0.50b). As can be observed, both the deflection and interface shear
stress are affected by the load location. In particular, their peak values, which are of the greatest interest
in engineering design, are sensitive to both load location and the boundary conditions. As the load center
moves towards the support, both the deformed zone and the peak of interfacial stress distributions shift
towards the support accordingly.

5. Concluding remarks

The nonlinear local bending response of a composite sandwich plate containing a functionally graded
core under a lateral patch load is investigated based on the first order shear deformation plate theory and
von Karman type geometric nonlinearity. The analysis employs a Vlasov-type elastic foundation model
including the shear effect in the flexible core to model the interaction between the loaded face sheet
and the supporting core, and makes use of a perturbation technique and Galerkin approach to obtain the
numerical solutions. It is found that the deformation localization and interfacial transverse shear stress
concentration can be effectively reduced by using a core with smooth gradient in material properties. The
geometrical nonlinear effect is pronounced at high load levels and must be taken into consideration for
a reliable analysis. The use of a graded core with a smaller volume fraction index and a lower modulus
ratio E1/E0 helps suppress both the nonlinear local deflection and interfacial transverse shear stress but
leads to a higher interfacial normal stress. The nonlinear response is significantly influenced by the
thickness ratio in a nonmonotonic way and is sensitive to boundary conditions as well.

Appendix

Let κ = 5
6 be the shear correction factor. The linear and nonlinear partial differential operators in Equa-

tions (7)–(11) are
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