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ELASTIC CONSTANTS AND THERMAL EXPANSION AVERAGES OF A
NONTEXTURED POLYCRYSTAL

ROLAND DEWIT

This paper gives expressions for the overall average elastic constants and thermal expansion coefficients
of a polycrystal in terms of its single crystal components. The polycrystal is assumed to be statistically
homogeneous, isotropic, and perfectly disordered. Upper and lower bounds for the averages are easily
found by assuming a uniform strain or stress. The upper bound follows from Voigt’s assumption that
the total strain is uniform within the polycrystal while the lower bound follows from Reuss’ original
assumption that the stress is uniform. A self-consistent estimate for the averages can be found if it is
assumed that the overall response of the polycrystal is the same as the average response of each crystallite.
The derivation method is based on Eshelby’s theory of inclusions and inhomogeneities. We define an
equivalent inclusion, which gives an expression for the strain disturbance of the inhomogeneity when
external fields are applied. The equivalent inclusion is then used to represent the crystallites. For the
self-consistent model the average response of the grains has to be the same as the overall response of the
material, or the average strain disturbance must vanish. The result is an implicit equation for the average
polycrystal elastic constants and an explicit equation for the average thermal expansion coefficients.
For the particular case of cubic symmetry the results can be reduced to a cubic equation for the self-
consistent shear modulus. For lower symmetry crystals it is best to calculate the self-consistent bulk and
shear modulus numerically.

Introduction

A polycrystal, whose properties vary in a complicated fashion from point to point over a small micro-
scopic length scale, may appear on average to be uniform or perhaps, more generally, its properties appear
to vary smoothly. The determination of such overall properties from the properties and geometrical
arrangement of the constituent monocrystal grains is our aim. In the simplest case the polycrystal is
assumed to be statistically homogeneous, isotropic, and perfectly disordered. General expressions for
averages can then be derived. Many different properties can be averaged, such as dielectric constants, dif-
fusivity, elastic constants, electrical conductivity, magnetic permeability, magnetostriction, piezoelectric
constants, thermal conductivity, or thermal expansion. In this paper we treat the elastic constants, which
have already received more attention than most other physical properties, and the thermal expansion.

Elastic constants are fundamental physical data needed for the characterization of materials. In ad-
dition to their fundamental importance, elastic constants and properties derived from them are used as
the starting point for the mechanical design of almost all products. Theoretical averaging methods for
the calculation of the isotropic elastic constants of a polycrystal from the single crystal constants of

Keywords: bulk modulus, compliance, cubic, disordered, effective medium, elastic constants, homogeneous, inclusion,
inhomogeneity, isotropic, polycrystal, self-consistent, shear modulus, stiffness, thermal expansion.
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its grains go back more than 100 years. Voigt [1887] assumed that the strain is constant throughout
the polycrystal and he obtained a simple approximate solution. Many years later Reuss [1929] found a
solution by assuming that the stress is constant. Hill [1952] showed that these two solutions provided
upper and lower bounds of the possible average constants. In 1958 Kröner proposed a self-consistent
theory and derived the self-consistent shear modulus of a cubic polycrystal, and Tomé [1998] showed
how to incorporate the effect of thermal expansion into these models.

In this paper we develop a consistent intuitive notation to describe the concepts that have arisen in the
field. The above developments are reviewed in this framework and additional results are presented. We
try to keep the notation as clear as possible in the sometimes detailed calculations. Our major aim is to
show how the relevant equations can be used to calculate explicit results; we give only selected results
and refer to the literature for exhaustive listings. In this sense our paper has the character of a primer.

Relations for material properties are frequently expressed in terms of tensor equations, because tensors
have clear rules for coordinate transformations and rotations. However, the relations are also frequently
expressed in terms of matrices, because matrices allow straightforward mathematical calculations. The
two methods can be used in parallel and are related to each other. We use both in this paper and represent
them in symbolic form.

The analysis starts by defining the concept of an effective medium, which is a model that approximates
the average state of the polycrystal and describes its average properties. In terms of this effective medium
we can define effective elastic constants, which relate the average stress to the average strain in the
effective medium. We can also define an effective thermal expansion coefficient. Various theories then
derive effective properties as averages over crystallographic properties. The Voigt and Reuss models
provide special cases of such an effective medium and the resulting effective properties give upper and
lower bounds.

To get explicit scalar expressions for the effective properties from the symbolic equations we use
the linear tensor invariants. The fundamental property of a tensor invariant is that it is independent of
rotation in space and therefore isotropic. Hence the invariant is equal to its average. This method is used
to derive explicit expressions for the effective elastic constants and thermal expansion coefficient in the
simple theories.

Eshelby’s theory of elastic inclusions and inhomogeneities is used to derive a self-consistent model.
This is the method that was first used by Kröner [1958] to solve for the cubic polycrystal. There is,
however, a more powerful and fundamental method to derive self-consistent estimates called statistical
continuum mechanics, which we do not use in this paper. In an applied stress field, the inhomogeneity
looks like an inclusion. We introduce the equivalent inclusion to determine the stress disturbance of the
homogeneity by using the result of the inclusion. This allows us to solve for the strain disturbance of the
inhomogeneity in an applied field.

The self-consistent model lets the equivalent inclusion represent a grain of the polycrystal. The strain
disturbance then occurs because the local elastic and thermal properties of the grain differ from the
average values for the polycrystal. The condition for self-consistency is that the average grain response
is the same as the overall average of the polycrystal, or that the average disturbance vanishes. This leads
to an implicit equation for the self-consistent effective elastic constants and an explicit equation for the
self-consistent effective thermal expansion coefficient.
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We next apply the results to crystals with cubic symmetry. For this case there are only three indepen-
dent components of the single crystal elastic constants. The analysis can then be simplified considerably
by using Walpole’s notation for the decomposition of unity. This approach leads to the logical choice of
the bulk modulus and shear modulus as the basic elastic constants to use in explicit calculations. When
written out explicitly the equation for the self-consistent elastic constants is complicated but straightfor-
ward. The bulk modulus is isotropic. The equation for the self-consistent effective shear modulus can
be reduced to a cubic equation, which was first obtained by Kröner [1958]. Finally, this equation can be
solved explicitly in closed form. It is easy to calculate average numerical results for cubic crystals.

For lower crystal symmetries the solution of the implicit equation leads to high-order equations for
the effective bulk and shear modulus. It is then best to continue the solution numerically. We present
some results of these calculations.

Hooke’s law

We start with a description of the elastic constants. For a single crystal, Hooke’s law can be written as
follows

σi j = ci jklekl, (i, j, k, l = 1, 2, 3), (1)

where repeated indices are summed, σ and e are the stress and strain, both second rank tensors, and c is
the elastic stiffness, a fourth rank tensor. Hooke’s law can also be written in matrix form as

σi = ci j e j , (i, j = 1, . . . , 6), (2)

where σ and e are the (6 × 1) stress and strain vectors and c is the (6 × 6) stiffness matrix. The two
notations, tensors and matrices, are completely equivalent. The relation between them has been discussed
in detail in [Nye 1960] and [Hearmon 1961]. The matrix form of the elastic stiffness or elastic moduli
was introduced by Voigt [1887] and is frequently referred to as the Voigt notation or reduced notation.
As in matrix theory, it is convenient to use the symbolic notation,

σ = ce, (3)

to represent either of the foregoing equations. Equation (3) can be solved for the strain in terms of the
stress:

e =
σ

c
= sσ,

where s, the elastic compliance, is the inverse of the stiffness c. We shall frequently use this divide
notation, 1/c, instead of the more common inverse notation, c−1. The elastic properties of stiffness and
compliance are usually referred to as the elastic constants of a material.

The effective medium

On a macroscopic scale a polycrystal may appear homogeneous or uniform, or perhaps, more generally,
its properties appear to vary smoothly. Therefore we shall represent it by an effective medium, which
is a model that approximately describes the overall average properties of the medium to some desired
degree of accuracy. This then represents a gross description of the polycrystal. We also assume that in
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the effective medium the average stress 〈σ 〉 and average strain 〈e〉 are related by the same simple form
as Hooke’s law for the single crystal

〈σ 〉 = C〈e〉, (4)

where C is the effective stiffness. So the effective medium is homogeneous. We also assume that it
is isotropic and perfectly disordered. The latter means that there is no texture, no characteristic grain
shapes, no characteristic grain boundary geometry, no correlations between regions of the medium, such
as periodicity. The effective stiffness thus represents the average stiffness of the polycrystal. The bracket
notation stands for volume averages,

〈σ 〉 =
1
V

∫
V

σ dV , 〈e〉 =
1
V

∫
V

e dV ,

and so the average stress or strain can almost be regarded as applied fields or boundary conditions.
Equation (4) can now be solved for the average strain

〈e〉 =
〈σ 〉

C
= S〈σ 〉, (5)

where S is the effective compliance. We have used the convention, suggested by Kröner [1958], that upper
case letters are used for isotropic tensors or matrices that are material properties of the homogeneous
effective medium. So upper case letters will represent the average properties of the polycrystal. Lower
case letters are used for tensors or matrices that vary locally through the heterogeneous medium or the
grains of the polycrystal and thus represent properties of the single crystal.

For an isotropic material there are only two independent elastic constants. Since the effective stiffness
is isotropic, its tensor components can be expressed in terms of the two elastic constants as follows

Ci jkl = K δi jδkl + G
(
δikδ jl + δilδ jk −

2
3 δi jδkl

)
, (6)

where K is the effective bulk modulus, G the effective shear modulus, and δ the Kronecker delta defined
as follows

δi j ≡

{
1 if i = j

0 if i 6= j
,

δkk ≡ 3.

We can solve Equation (6) for K and G. If we calculate the two linear invariants of C we get

{
Ci i j j = 9K

Ci j i j = 3K + 10G
or


K =

1
9 Ci i j j

G =
1

10

(
Ci j i j −

1
3 Ci i j j

)
.

(7)

Thus we have expressed the two scalar elastic constants K and G in terms of the two linear invariants of
the stiffness tensor C . We can do the same manipulations with the effective compliance tensor

Si jkl =
1

9K
δi j δkl +

1
4G

(
δikδ jl + δilδ jk −

2
3 δi jδkl

)
.
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The linear invariants of S are
Si i j j =

1
K

Si j i j =
1

3K
+

5
2G

or


1
K

= Si i j j

1
G

=
2
5

(
Si j i j −

1
3

Si i j j

)
.

(8)

So now we have expressed the two elastic constants also in terms of the two linear invariants of the
compliance tensor S.

The Voigt and Reuss models

To get actual expressions for the average elastic constants of a polycrystal in terms of the single crys-
tal elastic constants, the [Voigt 1887] and [Reuss 1929] models are frequently invoked, because they
provide an easy way to derive effective elastic constants. Furthermore, Hill [1952] showed that they
provide bounds on those constants. Voigt assumed that there is a homogeneous or constant strain in the
polycrystal, thus fulfilling compatibility, but not necessarily equilibrium. Reuss assumed a homogeneous
or constant stress, thus fulfilling equilibrium, but not necessarily compatibility. For the Voigt model the
actual strain is then equal to the average strain,

e = 〈e〉 = constant, (9)

and therefore we can decompose the average of the product of the stiffness and the strain into the product
of the average stiffness and the average strain 〈σ 〉 = 〈ce〉 = 〈c〉〈e〉. Comparing with Equation (4) we find
that for the Voigt model the effective stiffness is the average crystal stiffness,

CV = 〈c〉, (10)

which provides an upper bound on C . In the Reuss model we have

σ = 〈σ 〉 = constant, (11)

and so 〈e〉 = 〈sσ 〉 = 〈s〉〈σ 〉. Comparing with Equation (5) we find that for the Reuss model the effective
compliance is the average crystal compliance,

SR = 〈s〉 or CR = 〈c−1
〉
−1, (12)

which provides an upper bound on S and a lower bound on C . To proceed further and get more explicit
expressions for Equation (10) and Equation (12), we recall that fourth rank tensors have two linear
invariants, and the fundamental property of invariants is that they are scalars and therefore do not depend
on orientation in space. Therefore, each invariant is equal to its volume average. So we have

ci i j j = 〈ci i j j 〉 and ci j i j = 〈ci j i j 〉. (13)

Combining Equation (7), (10), and (13) we get for the Voigt model the result

KV =
1
9 ci i j j ,

GV =
1
10

(
ci j i j −

1
3 ci i j j

)
.

(14)
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In detail, we have both in tensor and matrix notation

9KV = (c1111 + c2222 + c3333)+ 2(c1122 + c1133 + c2233)= (c11 + c22 + c33)+ 2(c12 + c13 + c23),

15GV = (c1111 + c2222 + c3333)− (c1122 + c1133 + c2233)+ 3(c1212 + c1313 + c2323)

= (c11 + c22 + c33)− (c12 + c13 + c23)+ 3(c44 + c55 + c66).

(15)
We also have for the compliance

si i j j = 〈si i j j 〉 and si j i j = 〈si j i j 〉. (16)

Combining Equation (8), (12), and (16) we get for the Reuss model the result

1
K R

= si i j j ,
1

G R
=

2
5

(
si j i j −

1
3

si i j j

)
. (17)

In detail, we have

1
K R

= (s1111 + s2222 + s3333)+ 2(s1122 + s1133 + s2233)= (s11 + s22 + s33)+ 2(s12 + s13 + s23),

15
G R

= 4(s1111 + s2222 + s3333)− 4(s1122 + s1133 + s2233)+ 3(s1212 + s1313 + s2323)

= 4(s11 + s22 + s33)− 4(s12 + s13 + s23)+ 3(s44 + s55 + s66).

(18)

Hearmon [1961] has also derived these explicit equations, but by a different method. Hill [1952] showed
that the Voigt and Reuss averages formed the least upper bound and the greatest lower bound, respectively,
for the aggregate polycrystal.

Cubic polycrystal. For the special case of a cubic polycrystal, the Voigt relations (15) reduce to

3KV = c11 + 2c12, 5GV = c11 − c12 + 3c44. (19)

and the Reuss relations, Equation (18), become

1
3K R

= s11 + 2s12,
5

G R
= 4(s11 − s12)+ 3s44. (20)

The Voigt and Reuss bulk moduli are identical in this case, KV = K R , and also equal to the single
crystal and effective polycrystal bulk modulus. This is only true for cubic symmetry; for other crystal
symmetries, the various estimates of the effective bulk modulus differ from each other.

Thermal expansion

Tomé [1998] showed how thermal expansion can be incorporated into the elastic equations. The stress in
Hooke’s law is related to the elastic strain, so in this case the total strain must be adjusted for the effects
of the thermal expansion in order to get the elastic strain. Equation (3) for the single crystal is therefore
modified to

σ = c(e − αδT ), (21)
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where α is the single crystal thermal expansion coefficient, a second rank tensor or a (6 × 1) vector, and
δT is a small temperature change that takes place uniformly throughout material. Equation (4) for the
effective medium is modified to

〈σ 〉 = C(〈e〉 − AδT ), (22)

where A is the average thermal expansion coefficient of the effective medium. We emphasize the fact
that α and A are tensors or (6 × 1) vectors by writing them boldface to distinguish them from the scalars
below. Equation (21) can be solved for the local strain in the single crystal,

e = sσ + αδT, (23)

and Equation (22) for the average strain in the effective medium,

〈e〉 = S〈σ 〉 + AδT . (24)

The stress or strain and the temperature change in these equations can be applied arbitrarily and therefore
these quantities will be treated as independent variables.

The Voigt model. With Voigt’s assumption of constant strain, Equation (9), Equations (21) and (22) lead
to CV 〈e〉 − CV AV δT = 〈c〉〈e〉 − 〈cα〉δT . Since this equation holds for an arbitrary average strain 〈e〉
and an arbitrary temperature change δT , we can equate their coefficients. The first equality gives the
relation Equation (10), which we already found without taking the influence of a temperature change
into account. The second equality is

CV AV = 〈cα〉 or AV =
〈cα〉

CV
= SV 〈cα〉. (25)

Tomé [1998] also found this result. Since the effective thermal expansion coefficient is isotropic, it can
be expressed as Ai j = Aδi j , where A is the scalar effective thermal expansion coefficient. With the help
of Equation (6), we can derive the relation

A =
1

9K
Ci ikl Akl . (26)

We now take the linear invariant of Equation (25) and substitute it into Equation (26), remembering that
the invariant is equal to its average, to get the effective thermal expansion coefficient for the Voigt model

AV =
1

9KV
ci iklαkl . (27)

In detail we have in both tensor and matrix notation

9KV AV = (c1111 + c1122 + c1133)α11 + (c1122 + c2222 + c2233)α22

+(c1133 + c2233 + c3333)α33 + 2(c1112 + c1222 + c1233)α12

+2(c1113 + c1333 + c2213)α13 + 2(c1123 + c2223 + c2333)α23,

= (c11 + c12 + c13)α1 + (c12 + c22 + c23)α2 + (c13 + c23 + c33)α3

+2(c14 + c24 + c34)α4 + 2(c15 + c25 + c35)α5 + 2(c16 + c26 + c36)α6. (28)
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Note that the effective thermal expansion coefficient of a polycrystal is coupled to the elastic constants in
the Voigt model. For crystal structures where the off-diagonal terms of the elastic constant matrix vanish,
such as cubic, hexagonal, tetragonal, and orthorhombic, the second line of Equation (28) vanishes and
the equation simplifies considerably.

The Reuss model. With Reuss’ assumption of constant stress, Equation (11), Equations (23) and (24)
lead to SR〈σ 〉 + ARδT = 〈s〉〈σ 〉 + 〈α〉δT . Since this equation holds for arbitrary average stress 〈σ 〉 and
arbitrary temperature change δT , we can equate their coefficients. The first equality gives the relation
Equation (12), which we already found without the influence of temperature. The second equality is

AR = 〈α〉. (29)

Tomé [1998] also found this result. The linear invariant of this equation is

AR =
1
3 αi i . (30)

In detail, we have the simple result

AR =
1
3 (α11 +α22 +α33)=

1
3(α1 +α2 +α3). (31)

So in the Reuss model the overall thermal properties are independent of the elastic properties.

Eshelby’s theory

To obtain a self-consistent estimate of the effective properties we use Eshelby’s theory of elastic inclu-
sions and inhomogeneities [Eshelby 1961]. That is the method Kröner [1958] first used to get a solution
for the cubic polycrystal. Kröner [1972] later used statistical continuum mechanics to derive the same as
well as additional results. The subject of inclusions, inhomogeneities, and the equivalent inclusion has
been treated in detail by Mura [1982]. In the present treatment we also include Tomé’s contribution for
thermal expansion [Tomé 1998].

The inclusion. Consider an infinitely extended homogeneous material in domain D with elastic con-
stants C everywhere, containing a domain � with a stress-free strain eP , which is called the transformed
inclusion. This inclusion causes a local stress σ ′ and strain e′, which are related by Hooke’s law

σ ′
= C(e′

− eP), in �,

σ ′
= Ce′, in D −�.

If eP is uniform and � is an ellipsoid, then the stress σ ′ and strain e′ are also uniform in � and related
to eP by

e′
= EeP , in �, (32)

where E is the Eshelby tensor, which is a constant. Let us apply a stress σ̄ at infinity with a corresponding
strain ē, and a temperature change δT . The bar is used to denote that these quantities will be overall
average values. They are related by Hooke’s law σ̄ = C(ē − AδT ). The resulting total stress σ is then
given by

σ = σ̄ + σ ′
= C(ē + e′

− eP
− AδT ), in �,

σ = σ̄ + σ ′
= C(ē + e′

− AδT ), in D −�.
(33)
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The prime represents deviations from the average value.

The inhomogeneity. Consider an infinitely extended material in domain D with the elastic constants C
and thermal expansion A containing a domain � with the elastic constants c and thermal expansion α,
which is called an inhomogeneity. We investigate the disturbance in an applied stress and temperature
increment caused by the presence of this inhomogeneity. Let us again denote the applied stress at infinity
by σ̄ and the corresponding strain by ē, and the temperature increment by δT , while the stress disturbance
and the strain disturbance are denoted by σ ′ and e′, respectively. The total stress (actual stress) is σ , and
the total strain is e. Hooke’s law is written as

σ = σ̄ + σ ′
= c(e − αδT )= c(ē + e′

− αδT ), in �,

σ = σ̄ + σ ′
= C(e − AδT )= C(ē + e′

− AδT ), in D −�.
(34)

The equivalent inclusion. The equivalent inclusion is a method to determine the stress disturbance of
the inhomogeneity using the result of the inclusion. So the inclusion has been introduced arbitrarily in
order to simulate the inhomogeneity problem. In an applied stress or strain field, the inhomogeneity
looks like an inclusion. The necessary and sufficient condition for the equivalency of the stresses and
strains in the above two problems of inhomogeneity and inclusion is

c(ē + e′
− αδT )= C(ē + e′

− eP
− AδT ), in �. (35)

This equation can solved for e′ when the transformed inclusion problem, Equation (32), in the homo-
geneous material is solved for E . After obtaining e′, the stress σ can be found from Equation (34) or
Equation (33). If σ̄ is a uniform stress and δT a uniform temperature change, eP is also uniform in �
and Eshelby’s Equation (32) can be used. Substitution of Equation (32) into Equation (35) gives

c(ē + e′
− αδT )= C

(
ē + e′

−
e′

E
− AδT

)
, in �.

The solution of this equation for the strain disturbance is

e′
= E

−δcē + (cα − C A)δT
δcE + C

, (36)

where we have defined δc ≡ c − C . So Equation (36) represents the local strain disturbance at the
inhomogeneity when a uniform strain ē and temperature change δT is applied to the domain.

The self-consistent model

We now take the equivalent inclusion to represent a grain in the polycrystal. The interpretation of Equa-
tion (36) is then as follows. The applied strain ē and temperature change δT cause a strain disturbance
e′ in the grain because the local elastic and thermal properties of the grain differ from the average elastic
and thermal properties of the polycrystal. The condition for self-consistency is that the average grain
response is the same as the overall average for the polycrystal, or that the average disturbance vanishes:
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〈e′
〉 = 0. Since ē and δT are independent and E is constant, we then get from Equation (36)〈 δc

δcE + C

〉
= 0, (37)〈

cα − C A
δcE + C

〉
= 0. (38)

These equations are consistent with those of Tomé [1998]. Equation (37) is an implicit equation for
the self-consistent effective elastic stiffness C . For cubic crystal symmetry it leads to a cubic equation
for the self-consistent effective shear modulus, discussed below. It can also be solved for lower crystal
symmetries, but then leads to a pair of high-order coupled equations for the effective bulk and shear
modulus. For example, for hexagonal symmetry it leads to one equation that is quadratic in both K and
G, and another equation that is quadratic in K and sixth order in G. In general, the simpler equation can
be solved for K in terms of G and the result substituted into the other equation. It is then best to solve
this latter equation numerically rather than symbolically. There are many solutions, but usually there is
only one real positive one. The expression Equation (38) can be solved as

A =

〈 cα
δcE+C

〉〈 C
δcE+C

〉 , (39)

once the stiffness C has been obtained. For numerical purposes, this equation is rather tedious and
lengthy. The calculation can be simplified as follows. If we define the (6 × 1) vector

v =
cα

δcE + C
,

and the (6 × 6) matrix

M =

〈 C
δcE + C

〉
,

then the scalar effective thermal expansion coefficient is given by

A =
v1 + v2 + v3

3(M11 + 2M12)
. (40)

Upper limit. If we assume that the inhomogeneity is very soft, that is, E = 0, then Equations (37) and
(39) reduce to

〈c − C〉 = 0, and A =

〈cα
C

〉
,

which reduce to the Voigt solutions, Equation (10) and Equation (25).

Lower limit. If we assume the inhomogeneity is very hard, E = I , then Equation (37) and Equation (39)
reduce to 〈c − C

c

〉
= 0, A =

〈C
c

〉−1
〈α〉, (41)

which reduce to the Reuss solutions, Equation (12) and Equation (29), when we note that from Equation
(41) we have 〈C

c

〉−1
= I . (42)
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The Walpole notation

Walpole [1981] introduced a notation that greatly simplifies symbolic manipulations for isotropic and
cubic materials. A fourth-order tensor will generally have a structure that reflects some underlying
geometric symmetry, like that of a crystal. An appropriate decomposition of the structure of a tensor can
reflect valuable physical insight while offering to simplify greatly the calculation of various inverses and
inner products. Isotropic tensors are the principal ones to be prepared for in detailed calculations and
there is a smaller role for anisotropic tensors that reflect the symmetry of cubic crystals.

Isotropic case. Walpole decomposed unity as I = J + K . In terms of fourth rank tensors these symbols
are defined as

Ii jkl ≡
1
2(δikδ jl + δilδ jk), Ji jkl ≡

1
3 δi jδkl,

Ki jkl ≡
1
2

(
δikδ jl + δilδ jk −

2
3 δi jδkl

)
.

In terms of (6 × 6) matrices we have the definitions

I ≡



1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1


, J ≡



1
3

1
3

1
3 0 0 0

1
3

1
3

1
3 0 0 0

1
3

1
3

1
3 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0


, K ≡



2
3 −

1
3 −

1
3 0 0 0

−
1
3

2
3 −

1
3 0 0 0

−
1
3 −

1
3

2
3 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1


.

The decomposition is idempotent and orthogonal:

J J = J, K K = K , J K = K J = 0.

The linear invariants are

Ii i j j = 3, Ji i j j= 3, Ki i j j = 0,

Ii j i j = 6, Ji j i j= 1, Ki j i j = 5. (43)

In the matrix notation the first invariant is the sum of all elements in the upper left quadrant, and the second
invariant is the sum of all the diagonal elements. With this notation the effective stiffness, Equation (6),
can now be written in symbolic notation

C = 3K J + 2G K . (44)

We see that decomposition reflects a split into an isotropic or dilatational part and a deviatoric or shear
part. The Eshelby tensor for a spherical inclusion can be found in many texts [Kröner 1958; Eshelby
1961; Kröner 1972; Walpole 1981; Mura 1982; Tomé 1998] and in this notation it can be written

E =
3K

4G + 3K
J +

6
5

2G + K
4G + 3K

K .
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Cubic symmetry. For a cubic crystal, Walpole further decomposed K as K = K ′
+ K ′′. For the tensor

definitions of these symbols see Walpole. In terms of (6 × 6) matrices,

K ′
≡



2
3 −

1
3 −

1
3 0 0 0

−
1
3

2
3 −

1
3 0 0 0

−
1
3 −

1
3

2
3 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0


, K ′′

≡



0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1


.

This decomposition is also idempotent and orthogonal:

K ′ K ′
= K ′,

K ′′ K ′′
= K ′′,

K ′ K ′′
= K ′′ K ′

= 0,

J K ′
= K ′ J = 0,

J K ′′
= K ′′ J = 0.

(45)

The linear invariants are

K ′

i i j j = 0, K ′′

i i j j = 0,

K ′

i j i j = 2, K ′′

i j i j = 3. (46)

With this notation the cubic crystal elastic stiffness can be written in a form that resembles the isotropic
case

c = 3κ J + 2µ′ K ′
+ 2µ′′ K ′′, (47)

where κ is the bulk modulus. Here µ′ and µ′′ are the {001}〈110〉 and {001}〈100〉 shear resistance of
the crystal, respectively. For cubic crystals these moduli can be regarded as more fundamental elastic
constants than the stiffness and compliance. They are related as follows

κ =
1
3
(c11 + 2c12)=

1
3(s11 + 2s12)

,

µ′
=

1
2
(c11 − c12)=

1
2(s11 − s12)

,

µ′′
= c44 =

1
s44
.

(48)

The relations Equation (45) make it simple to calculate inverses, such as the elastic compliance

s =
1
c

=
J

3κ
+

K ′

2µ′
+

K ′′

2µ′′
. (49)

To prove this relation, take the matrix product of Equations (47) and (49) and show that it is unity.
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Cubic crystal symmetry

We next apply some of the foregoing equations to the special case of cubic symmetry. For cubic symmetry,
the results are much simpler than for all the lower crystal structures.

Voigt model. We illustrate the application of the concepts first to the Voigt model. From Equations (14),
(47), (43), and (46) we have KV = κ , and

GV =
2
5
µ′

+
3
5
µ′′. (50)

These results are the same as Equation (19). Furthermore, Equation (50) illustrates a general rule for
averaging the cubic shear components, that is, take two fifths the coefficient of K ′ plus three fifths the
coefficient of K ′′.

Reuss model. For the Reuss model, we have from Equations (49), (43), and (46) K R = κ and

5
G R

=
2
µ′

+
3
µ′′
. (51)

These results are the same as Equation (20). Equation (51) illustrates the general rule mentioned above.

Self-consistent model. In terms of the Walpole notation we have from Equation (44) and Equation (47)

δc ≡ c − C = 3(κ − K )J + 2(µ′
− G)K ′

+ 2(µ′′
− G)K ′′.

Using this we can also write

C
δc

=
K

κ − K
J +

G
µ′ − G

K ′
+

G
µ′′ − G

K ′′.

Therefore

δc
δcE + C

=
I

E +
C
δc

=
J

3K
4G+3K +

K
κ−K

+
K ′

6
5

2G+K
4G+3K +

G
µ′−G

+
K ′′

6
5

2G+K
4G+3K +

G
µ′′−G

. (52)

Setting the average equal to zero, Equation (37), we have

J
3K

4G+3K +
K

κ−K

+
2
5

K
6
5

2G+K
4G+3K +

G
µ′−G

+
3
5

K
6
5

2G+K
4G+3K +

G
µ′′−G

= 0.

Since J and K are independent, their coefficients must vanish separately

1
3K

4G+3K +
K

κ−K

= 0,
2

6
5

2G+K
4G+3K +

G
µ′−G

+
3

6
5

2G+K
4G+3K +

G
µ′′−G

= 0.

The first equation can also be obtained by setting the first invariant of Equation (52) equal to zero, and
has the solution

K = κ. (53)
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The second equation can also be found by setting the second invariant of Equation (52) equal to zero,
and can be reduced to the form

8G3
+ (9κ + 4µ′)G2

− 3(κ + 4µ′)µ′′G − 6κµ′µ′′
= 0. (54)

This is a cubic equation for the self-consistent effective shear modulus G of a cubic polycrystal that is
statistically homogeneous, isotropic, and perfectly disordered. It was first obtained by Kröner [1958].
Hershey [1954] previously obtained a quartic equation that included Equation (54) as a factor.

The solution. There are general closed form solutions for cubic equations. If we write Equation (54) as
follows

γ3G3
+ γ2G2

+ γ1G + γ0 = 0, (55)

with the coefficients
γ3 ≡ 8, γ2 ≡ 9κ + 4µ′,

γ1 ≡ −3(κ + 4µ′)µ′′, γ0 ≡ −6κµ′µ′′,
(56)

and define

p ≡

√(γ2

3

)2
−
γ1γ3

3
, q ≡ −2

(γ2

3

)3
+
γ1γ2γ3

3
− γ0γ

2
3 , (57)

then the only nonnegative solution of Equation (55) for the effective self-consistent shear modulus of a
cubic polycrystal is

G = 2
p
γ3

cos
[1

3
arccos

( q
2p3

)]
−
γ2

3γ3
. (58)

It is now straightforward to calculate the average cubic polycrystal shear modulus from the single crystal
elastic constants. Ledbetter calls this approach the Hershey–Kröner–Eshelby model. He measured elastic
constants for copper [Ledbetter 1981] and stainless steel [Ledbetter 1984] and found that among nine
different averaging models this model works best.

Thermal expansion. For a cubic crystal the thermal expansion coefficient is isotropic: αi j = αδi j . There-
fore all cases, that is the Voigt model Equation (27), the Reuss model Equation (30), and the self-
consistent model Equation (38), reduce to A = α. Since the thermal expansion is isotropic in cubic
crystals there is no difference between the polycrystal and the single crystal.

Some numerical results for cubic crystals. Table 1 shows the single crystal elastic constants of several
cubic crystals at room temperature. The values are obtained from the handbook by Simmons and Wang
[1971] except that those for calcium are from [Ledbetter and Kim 2001].

We have chosen a set of materials covering a wide range of anisotropy, where the Zener anisotropy
factor is given from the formula [Zener 1948]

A =
µ′′

µ′
=

2c44

c11 − c12
=

2(s11 − s12)

s44
.

Table 2 shows values of the average bulk and shear modulus for cubic polycrystals calculated from the
data in Table 1, using Equations (48), (53), (50), (51), (56), (57), and (58). The Voigt and Reuss values
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Material c11 c12 c44 Anisotropy

Aluminum 1.073 0.609 0.283 1.22
Calcium 1.076 0.125 0.5758 1.21
Calcium Fluoride 1.628 0.433 0.334 0.56
Copper 1.684 1.214 0.754 3.21
Diamond 9.5 3.9 4.3 1.54
Gold 1.7893 1.4863 0.4367 2.88
Lead 0.466 0.392 0.1441 3.89
Lithium 0.135 0.1144 0.0878 8.52
Silver 1.24 0.934 0.461 3.01
Silver Chloride 0.601 0.362 0.0625 0.52
Sodium 0.0526 0.0404 0.0426 6.98
Sodium Chloride 0.487 0.124 0.126 0.69

Table 1. Single crystal elastic constants for several cubic crystals in units of Mbar.

Material K GV GR GV RH GS

Aluminum 0.764 0.263 0.260 0.261 0.261
Calcium 0.442 0.536 0.531 0.533 0.533
Calcium Fluoride 0.831 0.439 0.406 0.423 0.422
Copper 1.371 0.546 0.400 0.473 0.482
Diamond 5.767 3.700 3.541 3.621 3.625
Gold 1.587 0.323 0.249 0.286 0.292
Lead 0.416 0.101 0.067 0.084 0.087
Lithium 0.121 0.057 0.022 0.039 0.040
Silver 1.036 0.338 0.255 0.297 0.302
Silver Chloride 0.442 0.085 0.077 0.081 0.081
Sodium 0.045 0.028 0.013 0.020 0.021
Sodium Chloride 0.245 0.148 0.144 0.146 0.146

Table 2. Average elastic constants for several cubic polycrystals in units of Mbar. The
bulk modulus is denoted by K and the shear modulus by G. The subscripts denote Voigt
(V), Reuss (R), Hill (VRH), and self-consistent (S).

always bracket the self-consistent value. The Hill average is defined as the arithmetic mean of the Voigt
and Reuss average [Hill 1952]:

GVRH =
1
2 (GV + G R).

It is often close to the self-consistent value, GS . More exhaustive listings are given in [Kröner 1972] and
[Ledbetter and Kim 2001].



210 ROLAND DEWIT

Other crystal symmetries

For symmetries lower than cubic, Equation (37) is better solved numerically. Tables 3 and 4 give the
single crystal elastic constants and thermal expansion coefficients of several different crystal structures
at room temperature [Simmons and Wang 1971; Krishnan et al. 1979].

The anisotropy factor for these crystal structures is a generalization of the Zener factor and is given by

AI =
2(c44 + c55 + c66)

c11 + c22 + c33 − c12 − c13 − c23
.

To obtain the self-consistent values, Equation (37) is solved simultaneously for the bulk modulus, K , and
the shear modulus, G, which are then denoted by KS and GS . The results are given in Table 5. The Voigt
and Reuss values are given by Equations (15) and (18). As before, the Hill values are the arithmetic
mean of the Voigt and Reuss averages, and lie close to the self-consistent values.

Material Crystal c11 c12 c13 c23 c14 c22

Titanium hexagonal 1.624 0.92 0.69 0.69 0.0 1.624
Zirconium hexagonal 1.434 0.728 0.653 0.653 0.0 1.434
Indium tetragonal 0.445 0.395 0.405 0.405 0.0 0.445
Tin tetragonal 0.86 0.35 0.3 0.3 0.0 0.86
Calcite trigonal 1.4626 0.597 0.5076 0.5076 −0.2076 1.4626
Quartz trigonal 0.8501 0.0696 0.1412 0.1412 0.1678 0.8501
Aragonite orthorhombic 1.5958 0.3663 0.0197 0.1591 0.0 0.8697
Uranium orthorhombic 2.148 0.465 0.218 1.076 0.0 1.986

Table 3. Single crystal elastic constants for several crystals in units of Mbar.

Material c33 c44 c55 c66 Anisotropy α1 α2 α3

Titanium 1.807 0.467 0.467 0.352 0.93 9.55 9.55 10.65
Zirconium 1.648 0.32 0.32 0.353 0.80 5.7 5.7 11.4
Indium 0.444 0.0655 0.0655 0.122 3.92 1.2 1.3 −0.81
Tin 1.33 0.49 0.49 0.53 1.44 14.64 14.64 28.14
Calcite 0.8531 0.3405 0.3405 0.4328 1.03 −5.6 −5.6 25
Quartz 1.0535 0.5722 0.5722 0.39025 1.28 13 13 8
Aragonite 0.8503 0.4132 0.2564 0.4274 0.79 35 17 10
Uranium 2.671 1.244 0.734 0.743 1.08 25.41 0.65 20.65

Table 4. Single crystal elastic constants in units of Mbar and thermal expansion coeffi-
cients in units of 10−6K −1 for several crystals.
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Material K V K R K V RH K S GV G R GV RH GS

Titanium 1.073 1.073 1.073 1.073 0.441 0.426 0.434 0.434
Zirconium 0.954 0.952 0.953 0.953 0.364 0.356 0.360 0.360
Indium 0.416 0.416 0.416 0.416 0.0592 0.0372 0.0482 0.0491
Tin 0.550 0.535 0.543 0.542 0.442 0.410 0.426 0.428
Calcite 0.778 0.716 0.747 0.750 0.367 0.269 0.318 0.315
Quartz 0.384 0.377 0.381 0.381 0.467 0.405 0.436 0.433
Aragonite 0.490 0.447 0.468 0.464 0.404 0.367 0.385 0.383
Uranium 1.147 1.114 1.131 1.128 0.881 0.807 0.844 0.842

Table 5. Average elastic constants for several polycrystals in units of Mbar. The bulk
modulus is denoted by K and the shear modulus by G. The subscripts denote Voigt (V),
Reuss (R), Hill (VRH), and self-consistent (S).

Table 6 shows the effective thermal expansion coefficients calculated from Equations (28), (31), and
(40).

Summary

The concept of effective medium and effective material properties has been described, in particular for
elastic constants and thermal expansion. The effective properties are used to represent the overall average
properties of a polycrystal. The concept is then applied to the particular cases of the Voigt, Reuss, and
self-consistent models to obtain expressions for the overall average properties of a polycrystal in terms
of the single crystal components. The self-consistent model is derived by invoking Eshelby’s theory of
inclusion and inhomogeneities. It gives an implicit equation for the self-consistent elastic constants and
an explicit equation for the self-consistent thermal expansion coefficient. A brief description is given of
the Walpole notation for isotropic and cubic materials. For the particular case of cubic symmetry the

Material AV AR AV RH AS Crystal

Titanium 9.913 9.917 9.915 9.915 hexagonal
Zirconium 7.662 7.600 7.631 7.629 hexagonal
Indium 0.527 0.530 0.528 0.527 tetragonal
Tin 19.90 19.14 19.52 19.52 tetragonal
Calcite 2.564 4.60 3.582 3.440 trigonal
Quartz 11.07 11.33 11.20 11.20 trigonal
Aragonite 23.46 20.67 22.06 21.79 orthorhombic
Uranium 15.12 15.57 15.34 15.39 orthorhombic

Table 6. Average thermal expansion coefficients in units of 10−6K −1 for several poly-
crystals of different crystal symmetries.
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bulk modulus and thermal expansion are isotropic and the self-consistent shear modulus satisfies a cubic
equation, which can be solved explicitly. Some numerical results calculated from the solution are listed.
For lower crystal symmetries, the equations are solved numerically. Results are given for the average bulk
modulus, shear modulus, and thermal expansion coefficients of various hexagonal, tetragonal, trigonal,
and orthorhombic polycrystals. In general, it is found that the Hill average is close to the self-consistent
value.
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ROBUSTNESS ANALYSIS OF STRUCTURES BASED ON PLASTIC LIMIT
ANALYSIS WITH UNCERTAIN LOADS

YU MATSUDA AND YOSHIHIRO KANNO

This paper presents a method for computing an info-gap robustness function of structures, which is
regarded as one measure of structural robustness, under uncertainties associated with the limit load factor.
We assume that the external load in the plastic limit analysis is uncertain around its nominal value.
Various uncertainties are considered for the live, dead, and reference disturbance loads based on the
nonstochastic info-gap uncertainty model. Although the robustness function is originally defined by
using the optimization problem with infinitely many constraints, we show that the robustness function
is obtained as an optimal value of a linear programming (LP) problem. Hence, we can easily compute
the info-gap robustness function associated with the limit load factor by solving an LP problem. As the
second contribution, we show that the robust structural optimization problems of trusses and frames can
also be reduced to LP problems. In numerical examples, the robustness functions, as well as the robust
optimal designs, are computed for trusses and framed structures by solving LP problems.

1. Introduction

In designing civil, mechanical and aerospace structures, plastic limit analysis has been used widely for
decades as a means of estimating the ultimate strength of structures. On the other hand, structural analysis
considering the uncertainties have received fast-growing interest, because structures that are actually
built will always have various uncertainties caused by manufacturing errors, limitation of knowledge of
input disturbances, observation errors, simplification for modeling, etc. This paper discusses a solution
technique for computing the measure of robustness of structures, where the applied loads are supposed
to be uncertain. We assume that the dead, live, and/or the reference disturbance loads in limit analysis
are uncertain around their nominal values. It should be emphasized that arbitrarily large uncertainty of
these loads can be dealt with in our framework.

The limit analysis still receives much attention by numerous researchers from the viewpoint of solution
techniques [Muralidhar and Jagannatha Rao 1997; Andersen et al. 1998; Cocchetti and Maier 2003;
Krabbenhoft and Damkilde 2003]. Based on the probabilistic uncertainty models of structural systems,
various approaches to stochastic limit analysis have also been proposed [Llyoyd Smith et al. 1990; Rocho
and Sonnenberg 2003; Staat and Heitzer 2003; Marti and Stoeckel 2004]. Recently, based on the non-
probabilistic uncertainty model, Kanno and Takewaki [2007] has proposed a global optimization method
for computing the smallest limit load factor of truss structures, in which the applied dead load is assumed
to be uncertain but bounded.

Reliability-based structural design methods have been investigated extensively based on the frame-
work of probabilistic uncertainty models [Kharmanda et al. 2004; Zang et al. 2005]. Nonprobabilistic

Keywords: data uncertainty, linear program, plastic limit analysis, robust optimization, info-gap analysis.
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uncertainty models have also been developed for uncertain structural analysis. In such a nonprobabilistic
uncertainty model, a mechanical system contains some unknown parameters which are assumed to be
bounded. Ben-Haim and Elishakoff [1990] developed the well-known convex model approach, which
has been applied to a robust truss optimization by Ganzerli and Pantelides [1999]. The interval linear
algebra has been well developed for the so-called uncertain linear equations [Alefeld and Mayer 2000],
which were employed in structural analysis considering various uncertainties [Qiu and Elishakoff 1998;
Muhanna and Mullen 2001; Chen et al. 2002].

Recently, the info-gap decision theory has been proposed as a nonprobabilistic decision theory under
uncertainties [Ben-Haim 2006], and has been applied to wide fields. In the info-gap decision theory, the
robustness function plays a key role as a measure of robustness of systems having uncertainties [Ben-
Haim 2006]. In structural engineering, the info-gap robustness function represents the greatest level of
uncertainty at which any constraint on mechanical performance cannot be violated. The constraints on
mechanical performance can be violated only at the large level of uncertainty in a structure with a large
robustness function, while they can possibly be violated at a small level of uncertainty in a structure with
a small robustness function. Thus, we can compare robustness of structures quantitatively in terms of
the robustness function.

Unfortunately, in many practical situations it is difficult to compute the exact value of the robustness
function of a structure. This is because the robustness function is defined as the optimal value of an
optimization problem with infinitely many constraints. Kanno and Takewaki [2006a] proposed a method
for computing a lower bound of the robustness function for trusses associated with stress and/or dis-
placement constraints. Takewaki and Ben-Haim [2005] computed the robustness function of damped
structures considering the dynamic response constraints. In the case of Takewaki and Ben-Haim [2005],
the worst case of the uncertain parameters can be obtained analytically, which enables us to compute the
exact value of the robustness function.

In this paper, we investigate the info-gap robustness function of structures associated with the lower
bound constraint on the limit load factor. In the plastic limit analysis, we consider the uncertainties of
the dead, live, and/or the reference disturbance loads, which obey the info-gap uncertainty models. As a
main contribution, we show that the robustness function considering the limit load factor constraint can be
obtained as an optimal value of a linear programming (LP) problem, which implies that the exact value of
the robustness function can be computed easily. This is rather amazing, because it is not straightforward
to find the worst case of the limit load factor under the uncertainty of dead load. Indeed, we have to
find the global optimal solution of a nonlinear optimization problem in order to detect the worst-case
limit load factor [Kanno and Takewaki 2007]. Thus, the results of this paper imply that computing the
robustness function is much easier than finding the worst-case limit load factor. Consequently, there
exists a class of constraints such that the robustness function can be computed easily while it is very
difficult to find the worst case.

As the second contribution, we formulate the robust counterpart to the structural optimization associ-
ated with the limit load factor and present its tractable reformulation. For convex optimization problems,
the notion and methodology of robust counterpart problem were developed by Ben-Tal and Nemirovski
[2002], and were applied to robust compliance minimization of trusses [Ben-Tal and Nemirovski 1997].
As an alternative approach, robust optimization problems were formulated for structures based on the
convex model analysis [Elishakoff et al. 1994; Ganzerli and Pantelides 1999], provided that the variations
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of uncertain parameters are sufficiently small. The maximization problem of the robustness function of
trusses associated with stress constraints was studied in [Kanno and Takewaki 2006b]. For a comprehen-
sive survey on the robust structural design, the readers may refer to the review papers [Zang et al. 2005;
Beyer and Sendhoff 2007].

For the limit load factor constraint, we formulate the minimization problem of the structural volume
under the constraint such that the lower bound constraint on the limit load factor is always satisfied for
the given level of uncertainty. In this problem, the major difficulty arises where the constraint includes
the sublevel optimization problem even in the nominal case, because the limit load factor is defined as
an optimal value of an optimization problem. It is shown that this robust optimization problem can be
reformulated as an LP problem for trusses as well as frames with sandwich cross-sections.

This paper is organized as follows. In Section 2 we prepare the LP problem for the conventional limit
analysis and introduce the definition of robustness function as well as the info-gap uncertainty model for
structural analysis. For trusses, the robustness function associated with the lower bound constraint on
the limit load factor is defined in Section 3 for various uncertainty models of external load, and for each
model an LP problem is formulated which provides the robustness function. In Section 4, we show that
the robustness function for a framed structure can be computed by solving an LP problem. Numerical
experiments are presented in Section 5 for a truss and frames. The robust optimization problems associ-
ated with the limit load factor are formulated for trusses and frames in Sections 6.1 and 6.2, respectively,
and they are reformulated into LP problems. Numerical experiments are presented in Section 6.3 for
robust structural optimization, while conclusions are drawn in Section 7.

2. Preliminaries

2.1. Notation. The `p-norm of the vector x = (xi ) ∈ <
n for 1 ≤ p <∞ is defined as

‖x‖p =

(
n∑

i=1

|xi |
p

)1/p

.

In particular, the `1- and `2-norms are written as

‖ p‖1 =

n∑
i=1

|pi |, ‖ p‖2 = ( p> p)1/2.

The `∞-norm is defined as ‖ p‖∞ = maxi∈{1,...,n} |pi |. For p satisfying 1< p <∞, p∗ is defined by

1
p

+
1
p∗

= 1.

For p = 1 and p = ∞, we simply set p∗
= ∞ and p∗

= 1, respectively.
For column vectors p = (pi ) ∈ <

m and q = (qi ) ∈ <
n , the (m + n)-dimensional column vector

( p>, q>)> is often written simply as ( p, q). We write p ≥ 0 if pi ≥ 0 (i = 1, . . . ,m). Define <
n
+

and
<

n
++

by

<
n
+

= {x ∈ <
n
| x ≥ 0},

<
n
++

= {x = (xi ) ∈ <
n
| xi > 0 (i = 1, . . . , n)}.
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The two sets A ⊆ <
m and B ⊆ <

n have Cartesian products defined by

A × B = {(a>, b>)> ∈ <
m+n

| a ∈ A, b ∈ B}.

In particular, we write <
m+n

= <
m

× <
n . The empty set is denoted by ∅.

2.2. Robustness function associated with limit load factor. The robustness function was proposed as
a measure of robustness for a general uncertain system, whose uncertainty is described by an info-gap
uncertainty model [Ben-Haim 2006]. In this section, we formulate the robustness function of engineer-
ing structures for a particular case in which the limit load factor is chosen as a measure of structural
performance.

Consider a finitely discretized structure. Small rotations and small strains are assumed. Let f ∈

<
nd

denote the vector of the external forces, where nd denotes the number of degrees of freedom of
displacements. Suppose that f consists of the constant part f D and proportionally increasing part λ f R
as

f = λ f R + f D. (1)

Notice here that λ f R is defined by the monotonically increasing load parameter λ ∈ <+ and the constant
reference load f R ∈ <

nd
\ {0}. In civil engineering, f D consists of the dead load, live load, etc., while

λ f R is referred to as the live or disturbance load which may be a static approximation of dynamical loads
caused by earthquakes, winds, etc. In this paper, f D is simply called the dead load and f R is called the
reference disturbance load for simplicity of presentation.

For the given f R and f D, let λ∗( f R, f D) denote the limit load factor. Throughout the paper, we
assume λ∗(0, f D) > 0, that is, the plastic collapse does not occur with the dead load f D only. Let
λ denote the lower bound of the limit load factor, which is the performance requirement imposed by
engineers. For the given λ ∈ <++, the conventional constraint on the limit load factor is written as

λ∗( f R, f D)≥ λ. (2)

We next suppose that f R and f D are known imprecisely. Let f̃ R ∈ <
nd

and f̃ D ∈ <
nd

denote the
nominal values (or the best estimates) of f R and f D, respectively. For the given α ∈ <+, f̃ R, and f̃ D, let
Rp(α, f̃ R)⊂ <

nd
and Dp(α, f̃ D)⊂ <

nd
be bounded sets. The rigorous and concrete definitions of Rp

and Dp will be given in Section 3. The subscript p of Rp and Dp implies that the sets Rp and Dp are
defined by using the `p-norm (1 ≤ p ≤ +∞) as shown below. The parameter α represents the magnitude
of the uncertainty, and hence α is referred to as the uncertainty parameter [Ben-Haim 2006].

The uncertainties of f R and f D are modeled as follows. For any f R and f D, assume that there exists
an α ∈ <+ such that the conditions

f R ∈ Rp(α, f̃ R), f D ∈ Dp(α, f̃ R), (3)

are satisfied. We call Rp and Dp the uncertainty sets of f R and f D, respectively. We further assume
that Rp and Dp satisfy the two basic axioms of the info-gap model [Ben-Haim 2006]:

(i) Nesting: 0 ≤ α1 < α2 implies Rp(α1, f̃ R)× Dp(α1, f̃ D)⊂ Rp(α2, f̃ R)× Dp(α2, f̃ D),

(ii) Contraction: Rp(0, f̃ R)= { f̃ R} and Dp(0, f̃ D)= { f̃ D}.
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From the nesting axiom we see that the uncertainty sets Rp(α, f̃ R) and Dp(α, f̃ D) become more
inclusive as α becomes larger. The greater the value of α, the greater the ranges of possible variations
of f R and f D. The contraction axiom guarantees that the estimates f̃ R and f̃ D are exact at α = 0. Note
that the value of α is usually unknown in actual structures. Throughout the following robustness analysis
we do not use any knowledge of the actual range of uncertainty of loads, which is regarded as one of the
advantages of using the info-gap theory.

For the fixed α ∈ <+, the robust counterpart of the constraint (2), is written as

λ∗( f R, f D)≥ λ, for all f R ∈ Rp(α, f̃ R), for all f D ∈ Dp(α, f̃ D). (4)

Throughout the paper, we assume λ∗( f̃ R, f̃ D)≥ λ, that is, the robust constraint, Equation (4), is satisfied
at the nominal situation. The robustness function represents the largest value of α with which the robust
constraint, (4), is satisfied. More precisely, the robustness function α̂ : <+ → [0,+∞] associated with
the constraint of the limit load factor is defined as

α̂(λ)= max
{
α

∣∣∣ λ∗( f R, f D)≥ λ
(

for all ( f R, f D) ∈ Rp(α, f̃ R)× Dp(α, f̃ D)
)}
. (5)

Thus, α̂ is the function of the performance requirement λ, as well as of the design variables of the structure.
For the fixed λ, the constraint, Equation (4), can be violated only at a large level of uncertainty if the
structure has a large value of α̂(λ). On the other hand, (4) can be violated at a small level of uncertainty if
the structure has a small value of α̂(λ). In this way, we can compare robustness of structures quantitatively
in terms of the robustness function.

The problem (5), is classified to the semiinfinite programming, which means an optimization problem
having a finite number of variables and infinitely many inequality constraints. Unfortunately, it is difficult
to solve (5) directly, which motivates us to investigate a tractable reformulation in the following sections.

3. Robustness analysis of trusses

We investigate a tractable reformulation of the info-gap robustness function of trusses under various
uncertainty models of external loads.

3.1. Basic problem of limit analysis of trusses. In this section, in order to make the paper self-contained,
we prepare an LP problem for the conventional limit analysis of trusses. Consider an elastic/perfectly-
plastic truss in the two- or three-dimensional space. Let nm denote the number of members. We denote
by q = (qi ) ∈ <

nm
the vector of member axial forces. The system of equilibrium equations between q

and the external load f are written in the form of

H q = f , (6)

where H ∈ <
nd

×nm
is a constant matrix. Recall that f is divided into two parts as Equation (1).

Let σ̄i > 0 and −σ̄i denote the yield stresses of the i th member in tension and compression, respectively.
Here, we assume for simplicity that the yield stresses in tension and compression share a common
absolute value. The member cross-sectional area is denoted by ai > 0. Define q̄i by

q̄i = σ̄i ai , (7)
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which is the absolute value of the admissible axial force. The admissible set Q ⊂ <
nm

of the axial forces
is written as

Q =

{
q ∈ <

nm
∣∣∣ q̄i ≥ |qi | (i = 1, . . . , nm)

}
. (8)

From the static (or lower bound) principle [Hodge 1959], and by using Equation (1), (6), and (8), the
limit load factor λ∗ is obtained by solving the following LP problem:

λ∗( f R, f D)= max
λ,q

{
λ
∣∣ H q = λ f R + f D, q ∈ Q

}
, (9)

where the variables are λ and q. Note that the limit load factor λ∗ is regarded as a function of f R and
f D. Then the robustness function of the truss is defined as Equation (5). In the following discussion, we
consider various models of the uncertainty sets Rp(α, f̃ R) and Dp(α, f̃ D), and discuss how to compute
the robustness function α̂(λ).

3.2. Uncertainty of dead load. In this section, we suppose that the dead load f D possesses uncertainty,
while the reference disturbance load f R is assumed to be certain. Let ζ ∈ <

nz
denote the vector of param-

eters that are considered to be unknown, or uncertain, where nz denotes the number of such parameters.
We describe the uncertainty of f D in terms of the unknown ζ . Suppose that f D depend on ζ affinely so
that the uncertainty set in Equation (3) is defined as

Dp(α, f̃ D)=

{
f D ∈ <

nd
∣∣∣ f D = f̃ D + F0ζ , α ≥ ‖ζ‖p

}
, (10)

where 1 ≤ p ≤ +∞. Note that Equation (10) is the unified description of uncertainty models defined
by using various norms, that is, the choice of p provides us with a variety of uncertainty models. In the
uncertainty set, Equation (10), the constant matrix F0 ∈ <

nd
×nz

represents the relative magnitude of the
uncertainty of fD j and the correlation of the uncertainties among fD1, . . . , fDnd . Each component of F0

has the unit of force. Hence, neither ζ nor α has no physical unit. It is easy to verify that the uncertainty
set Dp defined by Equation (10) satisfies the axioms of the info-gap model introduced in Section 2.2.

An example of a truss is illustrated in Figure 1. To impose a nominal dead load f̃ D, we suppose that
external forces are applied at the nodes (f) and (g). The nominal reference disturbance load f̃ R is defined
such that the proportionally increasing forces are applied at the nodes (c) and (d). In order to guarantee
that f R is certain, F0 is assumed to satisfy the condition that the components of F0 ζ corresponding to
the external forces applied to the nodes (c) and (d) vanish for any ζ ∈ <

nz
.

According to Equation (5), the robustness function α̂:<+ → [0,+∞] with the uncertainty model
f D ∈ Dp(α, f̃ D) is defined as

α̂(λ)= max
α

{
α

∣∣∣ λ∗( f̃ R, f D)≥ λ
(

for all f D ∈ Dp(α, f̃ D)
)}
. (11)

For simplicity, we write f R = f̃ R in the remainder of this section.
For r ∈ <+, we define the set Bp(r)⊂ <

nz
by

Bp(r)=

{
ζ ∈ <

nz
∣∣∣ r ≥ ‖ζ‖p

}
.
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Figure 1. 3 × 3 truss.

The following proposition prepares the reformulation of the semiinfinite optimization problem (11) by
eliminating λ∗.

Proposition 3.1. Define r̂ by

r̂ = max
r,q

{
r
∣∣∣ H q = λ f R + f̃ D + F0ζ , q ∈ Q (for all ζ ∈ Bp(r))

}
. (12)

Then the robustness function α̂(λ) defined by Equation (10) and (11) satisfies α̂(λ)= r̂ .

Proof. The constraint of (12) implies that the condition

∃ q ′
∈ <

nm
: H q ′

= λ f R + f̃ D + F0ζ , q ′
∈ Q (13)

is satisfied for any ζ satisfying r̂ > ‖ζ‖p. For a fixed λ ∈ <+, define the set V(λ)⊂ <
nm

as

V(λ)=

{
q ∈ <

nm
∣∣∣ H q = λ f R + F̃D, q ∈ Q

}
.

Note that q ∈ V(λ) if and only if (λ, q) is a feasible solution of the problem, Equation (9). Since (13)
holds for ζ = 0, we see that q ′

∈ V(λ) is satisfied. From this observation and (9), we obtain

λ∗( f R, f D(ζ ))≥ λ, (14)

where f D(ζ )= f̃ D + F0ζ . Since we can show that Equation (14) holds for any ζ satisfying r̂ > ‖ζ‖p,
the definition (11) of α̂ implies

α̂(λ)≥ r̂ . (15)
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On the other hand, choose ζ ′ satisfying α̂ > ζ ′. It follows from Equation (11) that V(λ∗( f R, f D(ζ
′))) 6=∅

and V(0) 6= ∅. Moreover, the set {(λ, q) ∈ <×<
nm

| q ∈ V(λ)} is convex, from which it follows that for
any λ satisfying 0 ≤ λ≤ λ∗( f R, f D(ζ

′)), V(λ) 6= ∅ is satisfied, that is, Equation (13) is satisfied. Since
this observation holds for any ζ ′ satisfying α̂ > ‖ζ ′

‖p, the definition (12) of r̂ implies

α̂(λ)≤ r̂ . (16)

Consequently, from Equation (15) and (16) we obtain α̂(λ)= r̂ , which concludes the proof. �

It is still difficult to solve Equation (12) because it requires that the constraints hold for infinitely many
ζ satisfying ζ ∈ Bp(r).

Let H †
∈ <

nm
×nd

denote the pseudoinverse of H . A basis for the null space of H is denoted by
H⊥

∈ <
nm

×nξ , where nξ = nm
− rank(H). Let h†

i and h⊥

i the i th row vectors of H † and H⊥, respectively,
that is,

H †
=

 h†
1
...

h†
nm

 , H⊥
=

 h⊥

1
...

h⊥

nm

 .
Proposition 3.2. r̂ defined by Equation (12) is equal to the optimal value of the LP problem

r̂ = max
r,ξ

{
r
∣∣∣ h†

i (λ f R + f̃ D)+ r‖h†
i F0‖p∗ + h⊥

i ξ ≤ q̄i , i = 1, . . . , nm,

−h†
i (λ f R + f̃ D)+ r‖h†

i F0‖p∗ − h⊥

i ξ ≤ q̄i , i = 1, . . . , nm
}

(17)

in the variables r ∈ < and ξ ∈ <
nξ .

Proof. Observe that any q ∈ <
nm

satisfying the equilibrium equations

H q = λ f R + f̃ D + F0ζ ,

can be represented as

q = H †(λ f R + f̃ D + F0ζ )+ H⊥ξ , ξ ∈ <
nξ . (18)

In Equation (18), we may regard qi as a function of ζ , that is,

qi (ζ ): = h†
i (λ f R + f̃ D)+ h†

i F0ζ + h⊥

i ξ , i = 1, . . . , nm. (19)

From the definition Equation (8) of Q it follows that the constraints of (12) are equivalently rewritten as

qi (ζ )≤ q̄i (for all ζ ∈ Bp(r)), i = 1, . . . , nm, (20)

−qi (ζ )≤ q̄i (for all ζ ∈ Bp(r)), i = 1, . . . , nm. (21)

Moreover, Equation (20) and (21) are equivalent to

max
ζ

{
qi (ζ )

∣∣ r ≥ ‖ζ‖p
}

≤ q̄i , i = 1, . . . , nm,

max
ζ

{
−qi (ζ )

∣∣ r ≥ ‖ζ‖p
}

≤ q̄i , i = 1, . . . , nm.
(22)
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By using Equation (19) and the Hölder inequality [Michael Sttele 2004], we see that

max
ζ

{
h†

i F0ζ

∣∣∣ r ≥ ‖ζ‖p

}
= r‖h†

i F0‖p∗, (23)

from which it follows that (22) is equivalently rewritten as

h†
i (λ f R + f̃ D)+ r‖h†

i F0‖p∗ + h⊥

i ξ ≤ q̄i , i = 1, . . . , nm,

−h†
i (λ f R + f̃ D)+ r‖h†

i F0‖p∗ − h⊥

i ξ ≤ q̄i , i = 1, . . . , nm.
(24)

Consequently, the constraints of Equation (12) are equivalent to (24), which concludes the proof. �

Proposition 3.2, together with Proposition 3.1, implies that the robustness function α̂(λ) can be ob-
tained easily by solving an LP problem (17), contradicting the fact that it is very difficult to solve the
semiinfinite optimization problem (11).

3.3. Uncertainty of reference disturbance load. In this section, we investigate the uncertainty model of
the reference disturbance load f R in Equation (1), while the dead load f D is assumed to be certain. For
the given nominal value f̃ R and fixed α ∈ <+, let Rp(α, f̃ R) denote the uncertainty set of f R, which
shall be rigorously defined below. According to Equation (5), the robustness function α̂ : <+ → [0,+∞]

in this case is defined as

α̂(λ)= max
α

{
α

∣∣∣ λ∗( f R, f̃ D)≥ λ
(

for all f R ∈ Rp(α, f̃ R)
)}
. (25)

For simplicity, we write f D = f̃ D in the remainder of this section .

3.3.1. Uncertainty of load distribution. Consider the uncertainty (or variations) of the distribution of the
reference disturbance load.

Recall the example of a truss illustrated in Figure 1, which has been studied for the uncertainty model
Dp in Equation (10). At the nodes of the left side, the external forces are applied as the reference
disturbance load. The nominal forces applied at the nodes (c) and (d) are illustrated in Figure 2 as f (c)R
and f (d)R . Suppose that the directions of these forces do not change, while the distribution is unknown as
shown in Figure 2 as f (c)R and f (d)R . The additional force may possibly be applied at the node (e), which
is illustrated as f (e)R in Figure 2. Such an uncertainty model can be written as f R ∈ Rp(α, f̃ R) with

Rp(α, f̃ R)=

{
f R ∈ <

nd

∣∣∣∣∣ f R = f̃ R + F0ζ , α ≥ ‖ζ‖p,

nz∑
i=1

ζi = 0

}
. (26)

Here, F0 is assumed to satisfy the condition that the components of the vector F0 ζ corresponding to the
directions of f̃ R only are possibly not equal to zeros for any ζ ∈ <

nz
as shown in Figure 2. Note that

nz
= 3 and rank(F0)= 3 in the example of Figure 2. The condition

∑nz

i=1 ζi = 0 in (26) is added in order
to normalize the magnitude of f R. We can easily see that the uncertainty set Dp defined by Equation
(26) satisfies the nesting and contraction axioms of the info-gap uncertainty model introduced in Section
2.2.

Let p = 2 in the uncertainty model (26). Then the following proposition implies that the robustness
function defined by (25) is obtained as the optimal value of an LP problem.
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Figure 2. Uncertainty of distribution of the reference disturbance load f R.

Proposition 3.3. Define n ∈ <
nz

by

n =
1

√
nz
(1, 1, . . . , 1)>. (27)

Then the robustness function, α̂(λ) defined by (25) and (26) with p = 2, is obtained as the optimal value
of the LP problem

α̂(λ)= max
r,ξ

{
r
∣∣∣ h†

i (λ f̃ R + f D)+ r
√

‖h†
i F0‖

2
2 − (h†

i F0n)2 + h⊥

i ξ ≤ q̄i , i = 1, . . . , nm,

−h†
i (λ f̃ R + f D)+ r

√
‖h†

i F0‖
2
2 − (h†

i F0n)2 − h⊥

i ξ ≤ q̄i , i = 1, . . . , nm
}

(28)

in the variables r ∈ < and ξ ∈ <
nξ .

Proof. In a manner similar to Proposition 3.1, we can show that

α̂(λ)= max
r,q,ζ

{
r
∣∣∣ H q = λ f̃ R + f D + λF0ζ , q ∈ Q (for all ζ ∈ Bp(r))

}
(29)

holds, because we may replace F0 ζ with λF0 ζ in the proof of Proposition 3.1. In a manner similar to
Equation (22), we see that the constraints of the problem (29) are equivalently rewritten as

h†
i (λ f̃ R + f D)+ h⊥

i ξ + qmax
i ≤ q̄i , i = 1, . . . , nm, (30)

h†
i (λ f̃ R + f D)+ h⊥

i ξ + qmin
i ≤ q̄i , i = 1, . . . , nm, (31)

where

qmax
i : = max

ζ

{
h†

i F0ζ

∣∣∣∣∣ r ≥ ‖ζ‖2,

nz∑
i=1

ζi = 0

}
, (32)

qmin
i : = min

ζ

{
h†

i F0ζ

∣∣∣∣∣ r ≥ ‖ζ‖2,

nz∑
i=1

ζi = 0

}
= −qmax

i . (33)
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Analogous to the key equation, (23), in the proof of Proposition 3.2, we next evaluate qmax
i defined by

(32) analytically. Note that n defined in Proposition 3.3 corresponds to the unit normal vector of the
hyperplane

π =

{
ζ ∈ <

nz

∣∣∣∣∣
nz∑

i=1

ζi = 0

}
.

Define bi ∈ <
nz

by bi = (h†
i F0)

> for simplicity. Let wi ∈ <
nz

denote the projection of the vector bi onto
π , which is written as

wi = bi − (b>

i n)n

= (h†
i F0)

>
− (h†

i F0n)n. (34)

Since ‖n‖2 = 1, we obtain

‖wi‖
2
2 = ‖bi‖

2
2 − (b>

i n)2. (35)

Then qmax
i in Equation (32) is written as

qmax
i = max

ζ

{
b>

i ζ

∣∣∣∣∣ r ≥ ‖ζ‖2,

nz∑
i=1

ζi = 0

}
= max

ζ

{
w>

i ζ | r ≥ ‖ζ‖2, ζ ∈ π
}
.

Since both wi and ζ i are on the hyperplane π , we obtain

qmax
i = max

ζ
{‖wi‖2‖ζ‖2 | r ≥ ‖ζ‖2 } = r‖wi‖2. (36)

By using Equation (35), we see that (36) is rewritten as

qmax
i = r

√
‖bi‖

2
2 − (b>

i n)2. (37)

By substituting Equation (37) into (30) and (31), and by using (29), we obtain (28). �

The following proposition provides an LP problem to compute the robustness function (25) in the case
of p = ∞ in Equation (26).

Proposition 3.4. Let li be

li = max
j∈{1,...,nz}

|wi j |, i = 1, . . . , nm,

where the vector wi = (wi j )∈ <
nz

is defined by Equation (34). Then the robustness function α̂(λ) defined
by (25) and (26) with p = ∞ is obtained as the optimal value of the LP problem

α̂(λ)= max
r,ξ

{
r
∣∣∣ h†

i (λ f̃ R + f D)+ r
[
‖h†

i F0‖
2
2 − (h†

i F0n)2
]
/ li + h⊥

i ξ ≤ q̄i , i = 1, . . . , nm,

−h†
i (λ f̃ R + f D)+ r

[
‖h†

i F0‖
2
2 − (h†

i F0n)2
]
/ li − h⊥

i ξ ≤ q̄i , i = 1, . . . , nm
} (38)

in the variables r ∈ < and ξ ∈ <
nξ .
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Figure 3. Uncertainty of direction of the reference disturbance load f R.

Proof. The assertion can be shown in a manner similar to Proposition 3.3. Particularly, we should
evaluate

qmax,∞
i : = max

ζ

{
h†

i F0ζ

∣∣∣∣∣ r ≥ ‖ζ‖∞,

nz∑
i=1

ζi = 0

}
(39)

instead of Equation (32). Observe that

max
ζ ,β

{‖ζ‖2 | r ≥ ‖ζ‖∞, ζ = βwi } =
1
li

‖wi‖2,

from which we see that Equation (39) is reduced to

qmax,∞
i = max

ζ

{
b>

i ζ

∣∣∣∣∣ r ≥ ‖ζ‖∞,

nz∑
i=1

ζi = 0

}

= max
ζ

{
w>

i ζ | r ≥ ‖ζ‖∞, ζ ∈ π
}

= max
ζ ,β

{‖wi‖2‖ζ‖2 | r ≥ ‖ζ‖∞, ζ = βwi }

=
r
li

‖wi‖
2
2. (40)

By substituting (34) and (40) into (30) and (31), we obtain the constraints of the problem (38), which
concludes the proof. �

3.3.2. Uncertainty of load direction. Recall the example of a truss illustrated in Figure 1. To apply the
reference disturbance load f R, external forces are applied at the nodes (c) and (d), which are denoted
by f (c)R and f (d)R , respectively. Suppose that the directions of f (c)R and f (d)R are uncertain as illustrated in
Figure 3. Such an uncertainty model can be realized as f R ∈ Rp(α, f̃ R) with

Rp(α, f̃ R)=

{
f R ∈ <

nd
∣∣∣ f R = f̃ R + F0ζ , α ≥ ‖ζ‖p

}
. (41)

Here, F0 is assumed to satisfy the condition that the components of F0 ζ corresponding only to the
directions orthogonal to the f̃ R are possibly not equal to zeros as illustrated in Figure 3. Note that nz

= 2
and rank(F0)= 2 in the case of Figure 3.
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In this section, we assume that the magnitude of uncertainty α in the uncertainty model (41) of f R
is sufficiently small. This is because the magnitude of the reference load f R varies in (41). Obviously,
formulations presented below are valid for arbitrary large value of α. However, from the engineering
view point, we restrict ourselves to the case in which the variation of the magnitude of f R does not
cause the ambiguity of the definition of the limit load factor when f R is running through Rp(α, f̃ R)

defined by (41). Under this assumption, the definition (25) of the robustness function is guaranteed to be
a proper measure of robustness. On the other hand, if this assumption is not satisfied, then the constraint
λ( f R, f̃ D)≥ λ does not have a proper meaning. To date, it is not clear whether the robustness function
can be reformulated into a tractable form or not when we add the condition of normalization to the
magnitude of f R in Equation (41). Instead, we can show that the robustness function is computed easily
without a normalization condition, which is the contribution of this section. Note again that all results
other than those in this section are valid for arbitrary large magnitude α of uncertainties. Particularly,
in Section 3.3.1, it should be emphasized that we have considered the normalization condition of f R in
(26).

The following proposition is obtained easily in a manner similar to Proposition 3.2.

Proposition 3.5. The robustness function α̂(λ) defined by (25) and (41) is obtained as the optimal value
of the LP problem

α̂(λ)= max
r,ξ

{
r
∣∣∣ h†

i (λ f̃ R + f D)+ rλ‖h†
i F0‖p∗ + h⊥

i ξ ≤ q̄i , i = 1, . . . , nm,

−h†
i (λ f̃ R + f D)+ rλ‖h†

i F0‖p∗ − h⊥

i ξ ≤ q̄i , i = 1, . . . , nm
}

(42)

in the variables r ∈ < and ξ ∈ <
nξ .

4. Robustness analysis of framed structures

4.1. Basic problem of limit analysis of frames. Consider a framed structure in the two-dimensional
space that consists of a finite number of the conventional Euler–Bernoulli beam elements. The number
of elements is denoted by nm. Let qi denote the axial force of the i th member. The moments acting on
two endpoints are denoted by m1

i and m2
i . The shear force at the endpoint of the i th member is denoted

by τi .
The equilibrium equations between the external force (λ f R + f D) and the internal forces q, m1, m2,

and τ can be written in the form of

Hq q + H m
1 m1

+ H m
2 m2

+ H ττ = λ f R + f D, (43)

where q = (qi ) ∈ <
nm

, m1
= (m1

i ) ∈ <
nm

, m2
= (m2

i ) ∈ <
nm

, and τ = (τi ) ∈ <
nm

. The matrices Hq ,
H m

1 , H m
2 , and H τ

∈ <
nd

×nm
are constant matrices, where nd denotes the number of degrees of freedom

of displacements of the frame. The moment equilibria of internal forces are written as

liτi + m1
i + m2

i = 0, i = 1, . . . , nm. (44)
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By letting y = (q,m1,m2, τ ) ∈ <
nm

× <
nm

× <
nm

× <
nm

for simplicity, the equilibrium equations (43)
and (44) can be condensed in the form of

H y = λ f 0
R + f 0

D, (45)

where H is a constant matrix. Here, the constant vector f 0
R consists of the components of f R and 0,

while f 0
D consists of the components of f D and 0.

We next introduce the yielding condition of a beam element. Suppose that the members experience
plastic deformations only at their two ends. Provided that the dependence of the yield condition on the
shear force is negligible, the admissible set of internal forces is given as

Y =

{
y = (q,m1,m2, τ )

∣∣∣∣∣ |qi + qp
i |

q̄i
+

|m j
i |

m̄i
≤ 1 (for all i ∈ {1, . . . , nm

}, for all j ∈ {1, 2})

}
, (46)

where the set Y is illustrated in Figure 4. Here, q̄i , m̄i , and qp
i are given constants.

From (45) and (46), the limit load factor for the fixed f R and f D is obtained by solving the following
LP problem:

λ∗( f R, f D)= max
λ, y

{
λ
∣∣ H y = λ f 0

R + f 0
D, y ∈ Y

}
. (47)

4.2. Robustness function under uncertain dead load. In a manner similar to a truss investigated in
Section 3, we can formulate LP problems providing the robustness function under various uncertainty
models of the dead load f D and the reference disturbance load f R. For simplicity of the presentation,
we pay attention only to the uncertainty model (10) of f D. It is straightforward to extend the result below
to the other uncertainty models investigated in Section 3.3. The remainder of this section is devoted to
reformulating the problem (11) for framed structures into a numerically tractable problem.

m−m

q−q
p

−q
p

−q−q
p

q

m

Figure 4. Yielding surface of the beam element.
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Analogous to (18) in the proof of Proposition 3.2, any y that solves the system of linear equations
(45) can be written as

y = H †(λ f 0
R + f̃ 0

D)+ (H
† F0)ζ + H⊥ξ , ξ ∈ <

nξ . (48)

For simplicity, we write Equation (48) component-wise as

qi =
1
q̄i

[
hq

i (λ f 0
R + f̃ 0

D)+ (h
q
i F0)ζ + h̄q

i ξ
]
, i = 1, . . . , nm, (49)

m1
i =

1
m̄i

[
hm

i,1(λ f 0
R + f̃ 0

D)+ (h
m
i,1 F0)ζ + h̄m

i,1ξ
]
, i = 1, . . . , nm, (50)

m2
i =

1
m̄i

[
hm

i,2(λ f 0
R + f̃ 0

D)+ (h
m
i,2 F0)ζ + h̄m

i,2ξ
]
, i = 1, . . . , nm, (51)

where hq
i /q̄i , hm

i,1/m̄i , and hm
i,2/m̄i denote appropriate row vectors of H †. Similarly, h̄q

i /q̄i , h̄m
i,1/m̄i , and

h̄m
i,2/m̄i correspond to appropriate row vectors of H⊥.

Proposition 4.1. For a framed structure with the yield condition (46), the robustness function α̂(λ)
defined by (10) and (11) is obtained as the optimal value of the LP problem

α̂(λ)= max
r,ξ

{
r
∣∣∣ [(−1)µhq

i /q̄i + (−1)νhm
i, j/m̄i

]
(λ f 0

R + f̃ 0
D)+ (−1)µqp

i /q̄i

+ r
∥∥∥[(−1)µhq

i /q̄i + (−1)νhm
i, j/m̄i

]
F0

∥∥∥
p∗

+

[
(−1)µh̄q

i /q̄i + (−1)ν h̄m
i, j/m̄i

]
ξ ≤ 1,

i = 1, . . . , nm, ( j, µ, ν) ∈ {1, 2}
3
}

(52)

in the variables r ∈ < and ξ ∈ <
nξ .

Proof. In a manner similar to Proposition 3.1, we can show that α̂(λ) is obtained as

α̂(λ)= max
r, y

{
r
∣∣∣ H y = λ f 0

R + f̃ 0
D + F0ζ , y ∈ Y (for all ζ ∈ Bp(r))

}
. (53)

Analogous to the proof of Proposition 3.2, we investigate the constraints of the problem (53). Since qi ,
m1

i , and m2
i in (49)–(51) are regarded as linear functions of ζ , we write qi (ζ ), m1

i (ζ ), and m2
i (ζ ) for
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simplicity. By using the definition (46) of Y, the constraints of (53) can be rewritten as

max
ζ

{
qi (ζ )− qp

i

q̄i
+

m j
i (ζ )

m̄i

∣∣∣∣∣ ζ ∈ Bp(r)

}
≤ 1,

max
ζ

{
qi (ζ )− qp

i

q̄i
−

m j
i (ζ )

m̄i

∣∣∣∣∣ ζ ∈ Bp(r)

}
≤ 1,

max
ζ

{
−

qi (ζ )− qp
i

q̄i
+

m j
i (ζ )

m̄i

∣∣∣∣∣ ζ ∈ Bp(r)

}
≤ 1,

max
ζ

{
−

qi (ζ )− qp
i

q̄i
−

m j
i (ζ )

m̄i

∣∣∣∣∣ ζ ∈ Bp(r)

}
≤ 1, for all i ∈ {1, . . . , nm

}, j ∈ {1, 2},

which are simply written as

max
ζ

{
(−1)µ

qi (ζ )− qp
i

q̄i
+ (−1)ν

m j
i (ζ )

m̄i

∣∣∣∣∣ r ≥ ‖ζ‖p

}
≤ 1, (54)

for all i ∈ {1, . . . , nm
}, j ∈ {1, 2}, µ ∈ {1, 2}, ν ∈ {1, 2}. (55)

From the Hölder inequality [Michael Sttele 2004], the equation

max
ζ

{
b>ζ

∣∣ r ≥ ‖ζ‖p
}

= r‖b‖p∗

holds for any constant b ∈ <
k , from which it follows that Equation (55) is equivalent to[

(−1)µhq
i /q̄i + (−1)νhm

i, j/m̄i

]
(λ f 0

R + f̃ 0
D)+ (−1)µqp

i /q̄i

+ r
∥∥∥[(−1)µhq

i /q̄i + (−1)νhm
i, j/m̄i

]
F0

∥∥∥
p∗

+

[
(−1)µh̄q

i /q̄i + (−1)ν h̄m
i, j/m̄i

]
ξ ≤ 1, for all i ∈ {1, . . . , nm

}, j ∈ {1, 2}, µ ∈ {1, 2}, ν ∈ {1, 2}. (56)

Substitution of Equation (56) into (53) results in (52), which concludes the proof. �

Proposition 4.1 is important, because it implies that the robustness function of a framed structure can
be obtained easily by solving the LP problem (52). Similarly, it can be shown that the robustness function
with respect to the uncertain reference disturbance load f R is also obtained as the optimal value of an
LP problem, provided that f R obeys the uncertainty model introduced in Section 3.3.

5. Numerical experiments

In the following examples, computation was carried out on a Pentium M (1.7 GHz with 512 MB memory)
with MATLAB V. 7.3 [MatLab 2006]. We solve an LP problem by using the MATLAB built-in function
linprog. In the following examples, we mainly consider the uncertainty (10) of the dead load f D with
p = 2 in order to avoid the redundancy of presentation. However, it should be emphasized that our major
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contribution of this paper is to present the LP reformulation of the info-gap robustness function under
various uncertainty models of f D and f R.

5.1. 3×3 truss. Consider a plane truss illustrated in Figure 1, where W = 70.0 cm, H = 50.0 cm, nd
= 28,

and nm
= 42. The nodes (a) and (b) are pin-supported.

As the nominal dead load f̃ D, we apply the external forces (0,−300.0) kN at the nodes (f) and (g)
as shown in Figure 1. Note again that f D represents the sum of conventional live load and dead load
in civil engineering. The nominal reference disturbance load f̃ R is defined such that (100.0, 0) kN and
(50.0, 0) kN, respectively, are applied at the nodes (c) and (d). For each member, the yield stress is
σ

y
i = 400 MPa and cross-sectional area is ai = 25.0 cm2 in Equation (7). Note that this example is

similar to the example investigated in [Kanno and Takewaki 2007] for computing the worst-case limit
load factor under the uncertainty of dead load.

The limit load factor under the nominal load is computed as λ∗( f̃ R, f̃ D)= 24.18 by employing the
usual limit analysis, that is, by solving the LP problem (9). The collapse mode corresponds to the sway-
type with horizontal displacements of the joints as shown in Figure 5.

Firstly, suppose that the dead load f D obeys the uncertainty model (10), while f R is assumed to be
certain. Consider the following two cases:

Case 1: p = 2 in Equation (10);

Case 2: p = ∞ in Equation (10).

The uncertain dead load F0 ζ is assumed to exist possibly at all free nodes except for the nodes (c) and (d).
At the nodes (f) and (g), the uncertain load is supposed to exist in the directions orthogonal to f̃ D. Hence,
the reference disturbance load is guaranteed to be unchanged as discussed in Section 3.2, where nz

= 22
in Equation (10). The coefficient matrix F0 is defined so that the uncertainties of components of the
vector F0 ζ have no correlation, and each nonzero component of F0 is equal to 100.0 kN. Accordingly,
in Case 2, the uncertain load F0 ζ runs through the squares and arrows depicted with the dotted lines in
Figure 1. We set λ= 23.0 in Equation (11). By solving the LP problem (17), we obtain α̂(λ)= 0.4170
in Case 1 and α̂(λ)= 0.1000 in Case 2.

Figure 5. Collapse mode of 3 × 3 truss with the nominal external load.
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Figure 6. Limit load factor of the 3 × 3 truss in Case 1 for the uncertain f D correspond-
ing to randomly generated ζ (— nominal limit load factor λ∗( f̃ R, f̃ D); – – performance
requirement λ.

For Case 1, we randomly generate a number of ζ satisfying ‖ζ‖2 = α̂ = 0.4170, and perform the
limit analysis. The limit load factors λ∗( f̃ R, f D(ζ )) obtained are shown in Figure 6 as many points.
It is observed from Figure 6 that all generated limit load factors are larger than the lower bound λ,
which supports the assertion that the constraint λ∗( f̃ R, f D) ≥ λ is guaranteed to be satisfied for any
f D ∈ D2(α̂, f̃ D). Note that the actual worst-case dead load cannot be exactly predicted, in general, by
taking a rather small number of random samples of ζ . Hence, in Figure 6 we cannot find the case in
which the limit load factor coincides with λ.

Figure 7 depicts the variation of the robustness function α̂ with respect to the performance requirement
λ. It is observed from Figure 7 that α̂ = 0 corresponds to λ= λ∗( f̃ R, f̃ D), that is, the robustness function
vanishes if λ is equal to the nominal limit load factor. The variation of α̂ possesses an angular point.
This is because the worst-case dead load as well as the collapse mode in the worst case depends on the
magnitude of uncertainty as observed in [Kanno and Takewaki 2007, section 6.1].

We next investigate robustness of the truss against the uncertain reference disturbance load f R as
discussed in Section 3.3. The dead load f D is supposed to be certain. Consider the following three
cases:

Case 3: p = 2 in Equation (26);

Case 4: p = ∞ in Equation (26);

Case 5: p = 2 in Equation (41).

Note that nz
= 3 in Case 3 and Case 4 as illustrated in Figure 2, while nz

= 2 in Case 5 as illustrated in
Figure 3. Each nonzero component of F0 is equal to 100.0 kN. We set λ= 23.0 in Equation (25). The
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Figure 7. Variation of the robustness function α̂ of the 3 × 3 truss in Case 1 with respect
to the performance requirement λ.
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Figure 8. Limit load factor of the 3 × 3 truss in Case 4 for the uncertain f R correspond-
ing to randomly generated ζ (— nominal limit load factor λ∗( f̃ R, f̃ D); – – performance
requirement λ.
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Figure 9. 68-member frame.

robustness functions are computed by solving the LP problems (28), (38), and (42) as α̂(λ) = 0.1739,
0.1424, and 0.1207, respectively, in Case 3, Case 4, and Case 5. For Case 4, we randomly generate a
number of ζ satisfying ‖ζ‖∞ = α̂ = 0.1424. The corresponding limit load factors λ∗( f R(ζ ), f̃ D) are
depicted in Figure 8. It is observed from Figure 8 that all generated limit load factors are not smaller than
the performance requirement λ. Moreover, there exists the case in which the limit load factor coincides
with λ.

5.2. 68-member frame. Consider a plane frame illustrated in Figure 9, where W = 200.0 cm and H =

200.0 cm. The intersecting pair of diagonals is not connected at their center. All lowest nodes are the
fixed supports, that is, nd

= 60 and nm
= 68.

As the nominal dead load f̃ D, we apply the external forces (0,−300.0) kN at the nodes (d)–(f) as
shown in Figure 9. The nominal reference disturbance load f̃ R is defined such that (100.0, 0) kN,
(70.0, 0) kN, and (40.0, 0) kN are applied at the nodes (a)–(c), respectively.

For each member, the yield criterion is defined by (46) with q̄i = 1000.0 kN, M̄i = 1000.0 kN · m, and
N p

i = 250.0 kN. The limit load factor under the nominal dead load is computed as λ∗( f̃ R, f̃ D)= 28.58
by employing the usual limit analysis, that is, by solving the LP problem (47).

Suppose that the dead load f D has uncertainty and runs though the uncertainty set, Equation (10),
while the reference disturbance load f R is assumed to be certain. The uncertain dead load F0 ζ is
assumed to exist possibly at all free nodes except for the nodes (a)–(c). At the nodes (d)–(f), the uncertain
dead load is supposed to exist in the direction of the x-axis. Note that the uncertain external moment
is not considered, and hence nz

= 31 in Equation (10). The coefficient matrix F0 is defined so that the
uncertainties of components of F0 ζ have no correlation, and each nonzero component of F0 is equal to
100.0 kN.
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Figure 10. Variation of the robustness function α̂ of the 68-member frame with respect
to the performance requirement λ.

For a fixed λ and p = 2, the robustness function α̂(λ) is computed by solving the LP problem (52).
Figure 10 depicts the variation of the robustness function α̂ with respect to the performance requirement
λ. It is observed from Figure 10 that α̂ is a nonlinear function of λ, since the collapse mode in the worst
case depends on the magnitude of uncertainty of the dead load.

5.3. 36-member frame. Consider a plane frame illustrated in Figure 11, where

W = 200.0 cm, H = 200.0 cm,

nd
= 60, nm

= 36.

As the nominal dead load f̃ D, we apply the external forces (0,−300.0) kN at the nodes (d)–(h) as shown
in Figure 11. The nominal reference disturbance load f̃ R is defined such that (100.0, 0) kN, (30.0, 0) kN,
and (20.0, 0) kN, respectively, are applied at the nodes (a), (c), and (d), respectively. The nominal limit
load factor is computed as λ∗( f̃ R, f̃ D)= 15.00.

Suppose that the dead load f D has uncertainty such that f D ∈ D2(α, f̃ D), while the reference distur-
bance load f R is assumed to be certain. The uncertain dead load F0 ζ is assumed to exist possibly at all
free nodes except for the nodes (a)–(d). At the nodes (e)–(h), the uncertain dead forces are supposed to
exist in the direction of the x-axis. Note that the uncertain external moment is not considered, and hence
nz

= 28 in Equation (10). The coefficient matrix F0 is defined so that the uncertainties of components
of F0 ζ have no correlation, and each nonzero component of F0 is equal to 100.0 kN. Figure 12 depicts
the variation of the robustness function α̂ with respect to the performance requirement λ. It is observed
from Figure 12 that α̂ is a nonlinear function of λ.
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Figure 11. 36-member frame.
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Figure 12. Variation of the robustness function α̂ of the 36-member frame with respect
to the performance requirement λ.
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6. Robust optimization and level of uncertainty

The robust optimization problem is investigated under the limit load factor constraint with the uncertain
dead load. The level α of the uncertainty is fixed throughout this section.

6.1. Robust optimization of trusses. In this section, we formulate the robust optimization problem of
trusses associated with the limit load factor by utilizing the theoretical results in Section 3. The notation
introduced in Section 3 are used in this section again.

Let li denote the length of the i th member. The vector of member cross-sectional areas is denoted by
a = (ai ) ∈ <

nm
, which is regarded as a design variable vector. Without uncertainty of the external load,

we first consider the minimization problem of the structural volume over the lower bound constraint of
the limit load factor, which is formulated as

min
a

l>a such that

{
λ∗( f R, f D)≥ λ,

a ≥ 0,
(57)

Note that the limit load factor λ∗( f R, f D) depends on a implicitly in (57), because the absolute value of
admissible axial force q̄i in (8) depends on ai as (7). We can regard (57) as the nominal (or conventional)
structural optimization problem associated with the limit load factor.

Suppose that f D is uncertain obeying the uncertainty model (10) for the fixed α ∈ <++, while f R is
assumed to be certain. For simplicity, we write f R = f̃ R in the remainder of this section. The robust
counterpart problem [Ben-Tal and Nemirovski 2002] of (57) is formulated as

min
a

l>a such that

{
λ∗( f R, f D)≥ λ (for all f D ∈ Dp(α, f̃ D)),

a ≥ 0.
(58)

Note again that α is fixed in Equation (58), while α has been regarded as a variable in (11). Observe that
the constraint

λ∗( f R, f D)≥ λ (for all f D ∈ Dp(α, f̃ D)) (59)

becomes active at an optimal solution of (58). Hence, the robustness function of the optimal solution of
(58) is given by

α̂(λ)= α. (60)

It follows from the result of Proposition 3.2 that the robust constraint (59) of (58) is equivalently
rewritten as

h†
i (λ f R + f̃ D)+α‖h†

i F0‖p∗ + h⊥

i ξ ≤ q̄i , i = 1, . . . , nm,

−h†
i (λ f R + f̃ D)+α‖h†

i Fi‖p∗ − h⊥

i ξ ≤ q̄i , i = 1, . . . , nm.
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Consequently, by using Equation (7), the problem (58) is equivalent to the following LP problem in the
variables a and ξ :

min
a,ξ

l>a such that


h†

i (λ f R + f̃ D)+α‖h†
i F0‖p∗ + h⊥

i ξ ≤ σ̄i ai , i = 1, . . . , nm,

−h†
i (λ f R + f̃ D)+α‖h†

i Fi‖p∗ − h⊥

i ξ ≤ σ̄i ai , i = 1, . . . , nm,

a ≥ 0.
(61)

It is rather amazing that the robust optimization problem (58) can be reformulated into the LP problem
(61).

Similarly, it can be shown that the robust optimization problem under the uncertain reference distur-
bance load f R is also reformulated into an LP problem, if f R obeys the uncertainty model introduced
in Section 3.3.

6.2. Robust optimization of framed structures. In this section, we show that a robust optimization prob-
lem of frames associated with the limit load factor can be reformulated as an LP problem. The notation
introduced in Section 4 are used in this section again.

Let li and ai denote the length and cross-sectional area of the i th member, respectively. Consider the
sandwich cross-section with the radius di , the moment of inertia of which is written as ti = d2

i ai . Then
q̄i and m̄i in (46) are written as

q̄i = σ̄i ai , m̄i = σ̄i di ai . (62)

Provided that di is fixed, we can assume that only a is the design variables vector. Hence, the nominal
optimization problem of frames can be formulated in the form of (57).

Suppose that f D is uncertain and obeys the uncertainty model (10) for the fixed α ∈ <++. The
robust counterpart of the optimization problem is formulated in the form of (58). In a manner similar
to Section 6.1, it follows from the result of Proposition 4.1 that the robust constraint (59) for frames is
equivalently rewritten into the constraints of (52). Consequently, by using (62), the problem (58) for
frames is equivalent to the following LP problem in the variables a and ξ :

min
a,ξ

l>a such that[
(−1)µhq

i + (−1)νhm
i, j/di

]
(λ f 0

R + f̃ 0
D)+ (−1)µqp

i +α

∥∥∥[(−1)µhq
i + (−1)νhm

i, j/di

]
F0

∥∥∥
p∗

+

[
(−1)µh̄q

i + (−1)ν h̄m
i, j/di

]
ξ ≤ σ̄i ai , i = 1, . . . , nm, ( j, µ, ν) ∈ {1, 2}

3, a ≥ 0. (63)

6.3. Level of uncertainty and optimal structural volume. By using the LP formulations (61) and (62),
we investigate the relation between the level of uncertainty α and the structural volume l>a at the optimal
design of the robust optimization problem.

6.3.1. Truss example. Recall the 3 × 3 truss illustrated in Figure 1, the loading condition of which has
been defined in Section 5.1. Consider the robust optimization problem (58) with λ= 23.0 and α = 0.4.
The robust optimal design found by solving (61) is shown in Figure 13, where the width of each member
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Figure 13. Robust optimal design of the 3 × 3 truss at (α̂, λ) = (0.4, 23.0) and the
collapse mode with the nominal external load.

is proportional to its cross-sectional area. The limit load factor of this design under the nominal dead
load is λ∗( f̃ R, f̃ D)= 23.57. The corresponding collapse mode is also illustrated in Figure 13.

Figure 14 depicts the relation between the structural volume and the robustness function at the optimal
design. Note again that (60) holds at an optimal solution of (61). Moreover, the optimal solution of (61)
at α = 0 coincides with the optimal solution of the nominal optimization problem (57). It is of interest
to note that, from the definition of the robustness function, any truss design satisfying the constraint (59)
with λ= 24.0 is plotted in (or on the boundary of) the domain F in Figure 14. Thus, engineers may be
able to make decisions incorporating the tradeoff between the robustness and the structural volume by
using Figure 14. Note that the optimal value of the problem (61) depends linearly on α if the active set
of constraints does not change when α increases. Hence, the optimal structural volume is a piecewise
linear function of α in this example.

6.3.2. Frame example. Recall the 68-member frame illustrated in Figure 9, the loading condition of
which has been defined in Section 5.2. The cross-section of each member is assumed to be sandwich,
where di = 1.0 for simplicity. Supposing that f D is uncertain, consider the robust optimization problem
(58), where λ= 27.0 and α = 0.5.

The robust optimal design found by solving Equation (62) is shown in Figure 15, where the width of
each member is proportional to its cross-sectional area. The limit load factor of this design under the
nominal dead load is λ∗( f̃ R, f̃ D)= 28.47. Figure 16 depicts the relation between the optimal structural
volume and the robustness function for various values of λ.

7. Conclusions

In this paper, we have proposed tractable numerical methods for robustness analysis of structures asso-
ciated with the limit load factor under the load uncertainties. Particularly, it has been shown that the
info-gap robustness function can be obtained by solving a linear programming (LP) problem. The effec-
tive method for computing the robustness function may permit us to apply the info-gap decision theory
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Figure 14. Relation between the robustness function α̂ and the optimal structural vol-
ume of the 3 × 3 truss (— λ= 22.0; – – λ= 23.0; – · – λ= 24.0).

[Ben-Haim 2006] to designing structures which never encounter violation of mechanical performance
constraints under the uncertainty considered.

A main contribution of this paper is to show that the robustness function associated with the constraint
on the limit load factor can be obtained as the optimal value of an LP problem. It is rather amazing that the
robustness function can be computed easily by solving an LP problem, because the robustness function
is originally defined in terms of the optimization problem over the infinitely many constraints. Moreover,
for the given magnitude of uncertainty, detecting the worst-case limit load factor corresponds to finding a

Figure 15. Robust optimal solution of the 68-member frame at (α̂, λ)= (0.5, 27.0).
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Figure 16. Relation between the robustness function α̂ and the optimal structural vol-
ume of the 68-member frame (— λ= 26.0; – – λ= 27.0; – · – λ= 28.0).

global optimal solution of a nonlinear optimization problem as discussed in [Kanno and Takewaki 2007],
that is, the results of this paper imply that computation of the robustness function is much easier than
finding the worst case. Thus, we have shown that the constraint on the limit load factor is regarded as a
tractable class of problems for computing the robustness function, although it is very difficult to compute
the exact value of the robustness function in general.

We can compare the robustness of structures quantitatively by using the robustness function. In the nu-
merical examples, the robustness function has been computed for uncertain trusses and framed structures
by solving LP problems. The nonlinear relation between the robustness function and the performance
requirement has been observed. It should be emphasized that most convex model approaches for ro-
bustness and/or uncertainty analysis have been developed based on first-order perturbation, while the
proposed method does not use any approximation. Hence, the method presented is valid even for a large
magnitude of uncertainty.

As a second contribution, the robust structural optimization associated with the limit load factor has
been formulated for a given magnitude of uncertainty. It has been shown that this robust optimization
problem can be reformulated as an LP problem for trusses as well as frames with sandwich cross-sections.
In the numerical examples, robust optimal designs of a truss and frame are computed by solving LP
problems. The relation between the robustness function and the optimal structural volume has been
investigated by solving the robust optimization problems for various magnitudes of uncertainty.
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EULERIAN CONJUGATE STRESS AND STRAIN

ANDREW N. NORRIS

New results are presented for the stress conjugate to arbitrary Eulerian strain measures. The conjugate
stress depends on two arbitrary quantities: the strain measure f (V) and the corotational rate defined by
the spin �. It is shown that for every choice of f there is a unique spin, called the f-spin, which makes
the conjugate stress as close as possible to the Cauchy stress. The f-spin reduces to the logarithmic
spin when the strain measure is the Hencky strain ln V. The formulation and the results emphasize the
similarities in form of the Eulerian and Lagrangian stresses conjugate to the strains f (V) and f (U),
respectively. Many of the results involve the solution to the equation AX − XA = Y, which is presented
in a succinct format.

1. Introduction

The notion of stress and strain are interlinked, regardless of the existence of a strain energy function. At
the most basic level they are related by mechanical power, the rate of work per unit current volume of
material,

tr (σD)= ẇ. (1–1)

Here σ is the Cauchy stress and D the stretching tensor. This work-conjugate relation is independent of
any notion of a reference configuration, although it is useful to introduce one. Let F be the deformation
gradient between the current and reference states, and let T and E be the stress and strain associated with
the reference state, respectively. T and E are mutually conjugate if they satisfy

tr (TĖ)= ẇ det F, (1–2)

where the factor det F arises from the change in volume between the current and reference descriptions.
In fact, Equation (1–2) is usually taken as the starting point for determining stress. The choice of the
strain E is not unique, but once chosen it fixes the definition of T through the work conjugacy of Equation
(1–2). It is strange but true that the same simple connection does not apply to the relation between current
or Eulerian strain and the Cauchy stress. The difficulty is in the definition of strain, say e. What e is such
that ė = D? It turns out that this question is incomplete and that we must broaden it and seek the strain
for which

◦

e= D, where ◦ signifies a corotational rate. Actually, the corotational rate itself also has to be
found. Fortunately, both the strain and the rate have been determined: Xiao et al. [1998a] showed that
the unique solution is obtained by using the Hencky strain ln V in combination with the logarithmic rate.
But we are getting ahead of ourselves.

It is evident that work-conjugacy is simpler for reference or Lagrangian stress and strain than for their
counterparts in the current or Eulerian configuration. Note that the distinction between Lagrangian and

Keywords: conjugate, Eulerian, stress, logarithmic strain rate, Hencky, corotational.
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Eulerian is made explicit by the polar decomposition F = RU = VR; quantities associated with or defined
by U and V will be called Lagrangian and Eulerian, respectively.

It is instructive to review work-conjugacy for Lagrangian stress and strain. The starting point is the
fact that the stretching tensor D is the symmetric part of ḞF−1. Let the strain be chosen, quite generally,
as E = f (U), where the function f is sufficiently smooth, then Equations (1–1) and (1–2) imply

tr
(
T
[
∇ f (U)

]
U̇
)
= tr (σD) det F. (1–3)

The gradient ∇ f (U) is a fourth order tensor function which will be described later. At the same time the
kinematic quantities, strain rate U̇ and stretching D, may be related quite easily (see Appendix A)

U̇ = 2(U � I + I � U)−1(U � U)Rt DR. (1–4)

Using the independence of D, Equations (1–3) and (1–4) imply, formally at least, that the stress conjugate
to the Lagrangian strain f (U) is

T =
(
∇ f (U)

)−1 T(1), (1–5)

where T(1), sometimes called the Biot stress or the Jaumann stress, and S, the second Piola–Kirchhoff
stress tensor, are

T(1) = 1
2(U � I + I � U)S,

S = F−1σF−t det F.
(1–6)

We have used the symmetry of T and certain commutative properties to express the stress in Equation
(1–5) as a fourth order tensor acting on T(1). The tensor product notation, �, explained in the next
section, is used throughout as we find it makes results more transparent. Equations (1–5) and (1–6)
embody work-conjugacy for arbitrary Lagrangian strain f (U).

Although the notation in Equation (1–5) might be unfamiliar, the result is not (see [Ogden 1984, eq.
(3.5.31)]). The fourth order gradient tensor ∇ f (U) is discussed in detail by Norris [2007]. In particular,
it is positive definite, symmetric, and invertible for any strain measure function [Hill 1978]. Examples
will be presented for the Seth–Hill strain measure functions,

f (m)(x)= m−1(xm
− 1).

For instance, the stress T(m) associated with f (m)(U) is

T(0) =
(
∇ ln U

)−1 T(1) =
∫ 1

0
dx Ux � U1−x T(1), (1–7a)

T(
1
3 ) = 1

3(U
2/3 � I + U1/3 � U1/3

+ I � U2/3)T(1), (1–7b)

T(
1
2 ) = 1

2(
√

U � I + I �
√

U)T(1), (1–7c)

T(2) = S, (1–7d)

T(−m)
= (Um � Um)T(m). (1–7e)

Some of the conjugate stresses listed are well known, for instance m = 1, 2,−2 [Hill 1978; Ogden
1984], and Equation (1–7e) follows from [Ogden 1984, p. 158]. Identities Equation (1–7a)–(1–7c) and
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the others will become evident later. The second identity in Equation (1–7a) follows from [Norris 2007].
We note that the Piola–Kirchhoff stress is conjugate to E =

1
2(U

2
−1), the Green strain, which is typically

used in applications.
A principal objective of this paper is to find analogous expressions for the Eulerian stress τ conjugate

to the strain e = f (V), where V is the right stretch tensor, and the function f is again arbitrary. We also
require that the Cauchy stress be included among the Eulerian stresses, just as the Piola–Kirchhoff stress
appears naturally for the Green strain.

Unlike the Lagrangian strains, ḟ (V) is not an objective tensor [Dill 2006], and it is known that this
strain rate does not, in general, possess a conjugate stress [MacVean 1968]. This difficulty can be avoided
by defining conjugacy in terms of corotational strain rates. The corotational rate of a symmetric second
order tensor A(t) is

◦

A≡ Ȧ + A� − �A,
where the skew symmetric tensor � is called the spin. Xiao et al. [1998c; 1998b] showed that an objective
spin has the general form

� = W + P(V)D, (1–8)

where W is the skew symmetric part of Ḟ F−1 and P is an isotropic fourth order tensor-valued function of
V. Lehmann and Liang [1993] showed that using the rate associated with R, a corotational spin equal to
the “twirl” �R

= Ṙ Rt , the Eulerian and Lagrangian stresses conjugate to f (V) and f (U) are related by
τ = R T Rt . This relationship simply rotates the Lagrangian stress, but does not reproduce the Cauchy
stress for any choice of f .

The fundamental relation for Eulerian conjugate stress is based on the finding of Xiao et al. [1997]
that

◦log

ln(V)= D, (1–9)

where ◦log denotes an objective corotational rate defined by the logarithmic spin �log [Xiao et al. 1997].
We will discuss �log in detail, providing a new derivation and representation, and comparison with �R .
Equation (1–9) allows us to define a class of work-conjugate Eulerian stress-strain pairs for all f (V) that
includes the Cauchy stress. However, it should be borne in mind that the logarithmic rate is but one of a
continuum of possibilities.

A second objective of this paper is a generalization of Equation (1–9) to arbitrary strain measure
f (V). Xiao et al. [1997] proved that D is recovered only from the Hencky strain ln(V) combined with
the logarithmic spin; no other strain measure can yield D, no matter what spin is used. Here we will
show that for a given strain measure f (V), there is a unique spin which provides the best approximation
of D, and the corresponding conjugate stress is the best approximation of the Cauchy stress.

1.1. Summary of principal results. Our first main result is:

Theorem 1. The stress conjugate to the Eulerian strain f (V) is

τ =
(
∇ f (V)

)−1
τ (1)(�), (1–10)

where τ (1) depends on the corotational rate used as

τ (1)(�)=
[
V2 � I + I � V2

+ (V2 � I − I � V2)P(V)
]−1
(V � I + I � V) σ .
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We will explain this result in detail, and provide alternative representations for Equation (1–10). We note
at this stage the similarity in form between Equations (1–5) and (1–10). In particular, the stress τ (m)

conjugate to the strain f (m)(V) is

τ (0) =
(
∇ ln V

)−1
τ (1) =

∫ 1

0
dx Vx � V1−x τ (1),

τ
(

1
3 ) = 1

3(V
2/3 � I + V1/3 � V1/3

+ I � V2/3) τ (1),

τ
(

1
2 ) = 1

2(
√

V � I + I �
√

V) τ (1),

τ (2) = 2(V � I + I � V)−1τ (1),

τ (−m)
= (Vm � Vm) τ (m).

The second principal result introduces a new spin defined by the Eulerian strain measure.

Theorem 2. For every Eulerian strain measure f (V) there is a unique corotational rate which minimizes
the difference between the conjugate stress and the Cauchy stress. The rate is defined by the f-spin
� f

= W + P f D which depends upon the function f via the fourth order projection tensor

P f
= (V � I − I � V)∗

[(
∇ f (V)

)−1
− (V � I + I � V)−1(V2 � I + I � V2)

]
,

and A∗ denotes the pseudo-inverse (or Moore–Penrose inverse) of the tensor A. The conjugate stress
using the f-spin is

τ = σ f
≡ σ +

n∑
i=1

( 1
λi f ′(λi )

− 1
)

Vi � Viσ , (1–11)

where λi are the principal stretches, Vi the principal dyads, that is, the eigenvalues and eigentensors of V,
and the eigen-index n ∈ {1, 2, 3} is the number of distinct eigenvalues. The conjugate stress is minimal
in the sense that |τ − σ |> |σ f

− σ | for any other corotational rate.

The pseudo-inverse is a unique quantity and will be defined in detail later.
The logarithmic spin [Xiao et al. 1998a] is a very special case of the f-spin. It is clear from Equation

(1–11) that when f (x)= ln x and the f-spin is used then the conjugate stress is simply the Cauchy stress,
so σ ln

= σ . Note that σ is recovered as τ (0), the stress conjugate to the Hencky strain ln (V). No other
spin reproduces the Cauchy stress as the conjugate of any strain [Xiao et al. 1997]. This emphasizes the
mutual relation between the Hencky strain and the logarithmic spin.

1.2. Review and plan of the paper. No attempt is made to summarize the considerable literature on
work-conjugacy, strain measures and associated stresses, although two introductory reviews are worthy
of mention. Curnier and Rakotomanana [1991] provide an instructive overview of strain measures and
conjugate stresses, with extensive references to the literature prior to 1990. A more concise but in-depth
description of work conjugacy and its implications is given by Ogden [1984]. These reviews and most
of the work prior to 1991 dealt with stress conjugate to Lagrangian strain measures, although there had
been some relevant work on quantities related to ln(V). For instance, Fitzgerald [1980] considered the
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stress conjugate to ln(V) in the context of hyperelasticity. Hoger [1987] derived expressions for the
rate of change of U, which subsequently proved useful for Lehmann et al. [1991; 1993] when they
considered V specifically. The focus here is on Eulerian strain and its work-conjugate stress, and builds
upon developments in the 1990s. Lehmann and Liang [1993] introduced a clear procedure to extend the
idea of work-conjugacy to strains whose rates are not objective in a fixed frame (see also [Lehmann and
Guo 1991]). The idea, reviewed in Section 4, permits the use of corotational rates. This is especially
important for Eulerian strain measures since Xiao et al. [1997] proved that the only way to obtain D with
Eulerian strain is as the logarithmic rate of ln(V). We emphasize that the pointwise rate of working ẇ is
the focus as we consider its implications for pointwise stress based on different definitions of strain. No
assumptions of material homogeneity, isotropy, or otherwise is assumed or required.

In a series of groundbreaking papers, Xiao et al. [1997; 1998b; 1998c] provide the most complete
and thorough analysis of Eulerian conjugate stress and strain. Culminating with [Xiao et al. 1998a],
these authors showed that the notion of conjugate stress is just as relevant to Eulerian strain as it is
for Lagrangian strain. Because the role of the rate, or spin, is central to the Eulerian problem but is
absent from Lagrangian work-conjugacy, it is essential to have a thorough understanding of the possible
spin tensors and their dependence on quantities such as D, W, and V. Once this is understood then the
form of the conjugate stress becomes apparent. Xiao et al. [1998a] derived expressions for the Eulerian
conjugate stress for arbitrary strain measures f and for arbitrary permissible corotational strain rate. Their
subsequent work has highlighted the role of the logarithmic rate and the Hencky strain in applications to
hyperelasticity and other constitutive theories; see [Xiao et al. 2006] for a thorough review.

This paper presents new results which extend the work of Xiao et al. in several directions. The
introduction and discovery of the role of the f-spin shows that there is a certain unique conjugate stress
associated with every Eulerian strain measure. The dual formulation for the Eulerian and Lagrangian
conjugate stresses in Equations (1–5) and (1–10) further emphasizes the similarities in the two descrip-
tions. The formulation throughout is in direct tensor notation, which we believe makes the results more
transparent.

The plan of the paper is as follows. The notation is introduced in Section 2, where the gradient and
the pseudo-inverse of a tensor are defined. Corotational strain rates are discussed in Section 3 and some
basic results for Eulerian strain measures are derived. The f-spin is introduced and discussed in Section
4. It is shown that the corotational rate defined by the f-spin, or f-rate, has certain unique and desirable
properties. The main results for conjugate stress-strain pairs are deduced in Section 5.

2. Tensors functions and the pseudo-inverse.

2.1. Preliminaries. We will be dealing with tensors of second and fourth order. Second order tensors act
on vectors in a three dimensional inner product space, x → Ax with transpose At such that y ·Ax = x ·At y.
Spaces of symmetric and skew-symmetric tensors are distinguished, Lin = Sym ⊕ Skw where A ∈ Sym
(Skw) if and only if At

= A (At
= − A). The inner product on Lin is defined by A · B = tr (ABt). The

product AB ∈ Lin is defined by y · ABx = (At y) · Bx.
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Psym is the space of positive definite second order tensors. When dealing with functions of a sym-
metric tensor it is often useful to rephrase the functional form in terms of the spectral decomposition:

A =

n∑
i=1

αi Ai , I =

n∑
i=1

Ai , Ai A j =

{
Ai , i = j,

0, i 6= j,

where Ai ∈ Psym, and n ≤ 3 is the eigen-index. Thus,

f (A)=

n∑
i=1

f (αi )Ai .

The Poisson bracket of two second order tensors is{
A,B

}
= AB − BA.

Lin is the space of fourth order tensors acting on Lin, X → AX with transpose At such that

Y · AX = X · At Y

for all X, Y ∈ Lin. The vector space may be decomposed Lin = Sym⊕Skw where Sym and Skw denote
the spaces of symmetric (At

= A) and skew-symmetric (At
= − A) tensors, respectively. Any A ∈ Lin

can be uniquely partitioned into symmetric and skew parts: A = A(+)
+ A(−), where A(±)

= (A ± At)/2.
The identity I satisfies IX = X for all X ∈ Lin. The product AB ∈ Lin is defined by Y ·ABX = (At Y) ·BX.
Psym is the space of positive definite fourth order tensors: A ∈ Psym if and only if X · AX> 0, for all
nonzero X ∈ Sym.

The square tensor product X � Y, Lin × Lin → Lin, is defined by [Rosati 2000]

(X � Y)Z = XZYt , for all Z ∈ Lin.

In particular, we note the property (A � B)(X � Y)= (AX)� (BY).

2.1.1. The tensor gradient function and its inverse. The gradient of a tensor function f (A) is a fourth
order tensor ∇ f ∈ Lin defined by

∇ f (A)X = lim
ε→0

1
ε

[
f (A + εX)− f (A)

]
. (2–1)

We make extensive use of the following representation, which uses the spectral form of A,

∇ f (A)=

n∑
i, j=1

f (αi )− f (α j )

αi −α j
Ai � A j ,

where the ratio becomes f ′(αi ) for i = j . Equation (2–1) for the first derivative is well known[Ogden
1984; Xiao 1995]. Norris [2007] provides formulas for the nth derivative of a tensor valued-function.
We define the inverse tensor function 4 f (A) ∈ Lin by

4 f (A)≡
(
∇ f (A)

)−1
=

n∑
i, j=1

αi −α j

f (αi )− f (α j )
Ai � A j ,
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where the ratio is 1/ f ′(αi ) for i = j . The definition of 4 f (A) is problematic if f ′(αi ) vanishes, but we
preclude this possibility next by restricting consideration to strictly monotonic functions: strain measure
functions.

2.2. Strain measure functions. The function f is a strain measure [Hill 1978; Scheidler 1991] if it is
a smooth function f : R+

→ R which satisfies

f (1)= 0, f ′(1)= 1, f ′ > 0.

It may be shown [Norris 2007] that the gradient of a strain measure function and its inverse are positive
definite fourth order tensors, for instance, ∇ f (A),4 f (A)∈ Psym. We restrict attention to strain measure
functions for the remainder of the paper.

2.3. The pseudo-inverse. For A ∈ Psym consider the equation{
A,X

}
= Y, (2–2)

for the unknown X in terms of Y. It is assumed that Y is either symmetric or skew and that X is of the
opposite parity [Dui 2006]. The equation can be written AX − XA = Y, or

J(A)X = Y, (2–3)

where J(A) ≡ A � I − I � A. We will only consider J(A) for symmetric A, implying J ∈ Sym and J

maps Sym→Skw and Skw→Sym. Therefore, J does not possess eigenvalues, eigenvectors or an inverse
in the usual sense.

The unique solution of the tensorial Equation (2–2) is [Norris 2007]

X = J∗(A)Y = (A � I − I � A)∗Y. (2–4)

The pseudo-inverse, or equivalently the Moore–Penrose inverse, J∗, is defined such that

JJ∗J = J, J∗JJ∗
= J∗. (2–5)

The spectral forms of J(A) and its pseudo-inverse are

J(A)=

n∑
i, j=1

(αi −α j )Ai � A j , J∗(A)=

n∑
i, j=1
i 6= j

(αi −α j )
−1Ai � A j ,

which clearly satisfy Equation (2–5).
Further insight into the pseudo-inverse is gained by introducing the set of N ≤ 6 fourth order tensors

associated with A ∈ Sym,

AI =

{
AI � AI , I = 1, . . . , n,

Ai � A j + A j � Ai , I = n + 1, . . . N .
(2–6)
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N = 6 for n = 3, and the indices I = 4, 5, 6 correspond to (i, j) = (2, 3), (3, 1), (1, 2), respectively.
Similarly N = 3 if n = 2 and N = 1 if n = 1. Note that

I =

N∑
I=1

AI , (2–7)

and

AI AJ =

{
AI I = J,

0, I 6= J.
(2–8)

The identity I = I � I implies the partition of unity in Equation (2–7), and it may be readily checked that
the AI satisfy the orthogonality conditions of Equation (2–8).

The pseudo-inverse satisfies

J∗J = JJ∗
= I −

n∑
I=1

AI =

N∑
I=n+1

AI . (2–9)

This is never equal to the identity I, which is the property that distinguishes the pseudo-inverse from the
standard notion of inverse. Further properties of the pseudo-inverse are presented in [Norris 2007]. The
explicit solution of Equation (2–3) can be expressed in a variety of ways without the use of fourth order
tensors. Perhaps the simplest is the recently discovered solution of Dui et al. [2007]:

X =
(
3A′2

−
1
2(tr A′2) I

)−1
(2A′Y + YA′),

where A′ is the deviatoric part of A.

3. Kinematics

3.1. Basics. The polar decomposition of the deformation gradient is F = RU = VR where R ∈ SO(3)
satisfies RRt

= Rt R = I and the right and left stretch tensors U and V are positive definite and related
by V = (R � R)U. The fundamental Eulerian strain can be taken as either V or its square, B = V2

= FFt .
The spectral representations of V and B are

V =

n∑
i=1

λi Vi , B =

n∑
i=1

βi Vi , Vi V j =

{
Vi , i = j,

0, i 6= j,
(3–1)

where λi > 0 and βi = λ2
i .

The rate of change of B is Ḃ = LB + BLt where L = ḞF−1. Let D ∈ Sym and W ∈ Skw be the
symmetric and skew-symmetric parts of L, respectively. Thus, L = D + W and Ḃ can be expressed

Ḃ = (I � B − B � I)W + (I � B + B � I)D. (3–2)

We will find this form useful for deriving more general strain rates.
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3.2. Corotational rates. Let A(t) be a symmetric second order tensor, and � is skew and arbitrary.
Define the corotational rate

◦

A ≡ Ȧ + {A,�}, � ∈ Skw. (3–3)

For any �(t) ∈ Skw we can identify a rotation Q(t) ∈ SO(3) such that

˙QAQt = Q
◦

AQt .

Differentiating the left member and using Equation (3–3) for the right member implies that � = − Qt Q̇.
Hence, Q must satisfy Q̇ = − Q�, with solution unique up to a rigid body rotation. The corotational
rate may therefore be interpreted as the Lie derivative with respect to spatial rotation defined by Q(t).
Thus, let φ define the mapping (rotation) x → Qx, then the corotational rate is φ[

d
dt φ

−1(·)].

The Jaumann rate
◦J
A defined by � = W corresponds to P = 0 in Equation (1–8). Using the latter

formula to parameterize the spin � allows us to express the general corotational rate of A as
◦

A =
◦J
A +(A � I − I � A)P(V)D. (3–4)

Equation (3–2) implies that the Jaumann rate of B is
◦J
B = (I � B + B � I)D. The general rate

◦

B then

follows from Equation (3–4), and
◦

V can be determined from the identity
◦

B = (V � I + I � V)
◦

V. In
summary, the general form of the corotational rate of the fundamental Eulerian strains are

◦

B =
[
B � I + I � B + (B � I − I � B)P(V)

]
D, (3–5a)

◦

V =
[
(V � I + I � V)−1(V2 � I + I � V2)+ (V � I − I � V)P(V)

]
D. (3–5b)

3.3. Spins. Many candidates have been considered from the infinity of possible spins [Dill 2006]. For
instance, the polar spin

�R
= ṘRt , (3–6)

corresponding to Q = Rt , is useful as a comparison spin. Other common spins [Xiao et al. 1998c] are
�E defined by the twirl of the Eulerian principal axes and �L related to the Lagrangian principal axes.
It is shown in Appendix A that �α

= W + PαD, α = R, E, L , where

PR
= (I � V − V � I)(I � V + V � I)−1, (3–7a)

PE
= (I � V2

− V2 � I)∗(I � V2
+ V2 � I), (3–7b)

PL
= (I � V2

− V2 � I)∗ 2V � V. (3–7c)

The three spins �R , �E and �L are related by �E
− �R

= �L
− W (see Appendix A). The fourth

order projection tensors are therefore connected by PE
− PL

= PR , and we note the additional relation
PE

+ PL
= PR∗, which is readily verified.

The most general form of the isotropic tensor-valued function P ∈ Sym involves three isotropic scalar
functions ν1, ν2, ν3 [Xiao et al. 1998c],

P(V)= (V � I − I � V)
[
ν1I + ν2(V � I + I � V)+ ν3V � V

]
=

n∑
i, j=1
i 6= j

pi j Vi � V j , (3–8)
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where

pi j = (λi − λ j )
[
ν1 + (λi + λ j )ν2 + λiλ jν3

]
, νk = νk(I1, I2, I3), k = 1, 2, 3.

Here, I1, I2, I3 are the invariants of V: I1 = tr (V), I2 =
1
2 I 2

1 −
1
2 tr (V2), I3 = det V.

The corotational rate of V can now be written
◦

V = QD, (3–9)

where the fourth order tensor Q ∈ Sym follows from Equation (3–5b),

Q = (V � I + I � V)−1(V2 � I + I � V2)+ (V � I − I � V)P(V) =

n∑
i, j=1

qi j Vi � V j ,

and

qi j = (λi − λ j )pi j +
λ2

i + λ2
j

λi + λ j
. (3–10)

3.4. Eulerian strain measures. The Lagrangian Seth–Hill strain E(m) = m−1(Um
− I) corresponds to

f (x)= f (m)(x). We define the analogous Eulerian strain

e(m) = f (m)(V)= m−1(Vm
− I),

and note in particular the Hencky strain e(0) = ln V. Other examples include

e(1) = V − I, e(2) = 1
2(B − I), e(−1)

= I − V−1, e(−2)
=

1
2(I − B−1).

3.5. Eulerian strain rates. We now present some identities for the corotational rates of Eulerian strains.
These will prove useful later in deriving conjugate Eulerian stresses. The first identity applies to arbitrary
strain measures:

Lemma 1. The corotational rate of any Eulerian strain measure f (V) is
◦

f (V)= [∇ f (V)] Q(V)D.

The proof is a simple application of the chain rule, using Equation (3–9) for
◦

V. This separates the
dependence on the strain measure f from the dependence on the particular corotational rate used, which
determines Q.

The second identity connects the strain rate with the Hencky strain:

Lemma 2. The strain rate of any Eulerian strain measure f (V) can be expressed in terms of the Hencky
strain rate as

◦

f (V)= [∇ f (V)](4 ln V)
◦

ln V.

The proof is a straightforward generalization of the chain rule of differentiation [Xiao et al. 1998c, The-
orem 2]. Let M = ln V and f (V)= f̂ (M) then,

◦

f̂ (M)= ∇M f̂ (M)
◦

M = ∇ f (V) (∇MV)
◦

M .

But the fourth order tensor ∇MV is just the inverse of ∇VM since ∇VV = I.
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4. The f-spin and the logarithmic spin

4.1. Strain rate and the stretching tensor. In order to make the connection between the kinematics and
the power ẇ we must relate some strain rate to the stretching tensor D. A general connection can be
found by starting with the rate of change of an arbitrary tensor valued function of B. Thus,

˙̃f (B)= [∇ f̃ (B)] Ḃ =

n∑
i, j=1

f̃ (βi )− f̃ (β j )

βi −β j
Vi � V j Ḃ,

where the temporary definition f̃ (x)= f (x2) is used, so that f (V)= f̃ (B). Reverting to f (V) and using
βi = λ2

i , the rate of change of the associated function of V is

ḟ (V)=

n∑
i, j=1

f (λi )− f (λ j )

λ2
i − λ2

j
Vi � V j Ḃ, (4–1)

where the ratio becomes f ′(λi )/(2λi ) for i = j . Substituting Ḃ into Equation (4–1) and using the filtering
properties of Vi , such as (Vi � V j )(I � B)= β j Vi � V j , gives

ḟ (V)=

n∑
i, j=1

(
f (λ j )− f (λi )

)
Vi � V j W +

n∑
i, j=1

f (λi )− f (λ j )

βi −β j
(βi +β j )Vi � V j D

=
{
W, f (V)

}
+

n∑
i, j=1

λ2
i + λ2

j

λ2
i − λ2

j

(
f (λi )− f (λ j )

)
Vi � V j D.

Adding and subtracting terms, this becomes

ḟ (V)= D̂ +
{
W, f (V)

}
+

n∑
i, j=1
i 6= j

[λ2
i + λ2

j

λ2
i − λ2

j
−

1
f (λi )− f (λ j )

](
f (λi )− f (λ j )

)
Vi � V j D, (4–2)

where D̂ is a modified version of the stretching tensor,

D̂ = D +

n∑
i=1

[
λi f ′(λi )− 1

]
Vi � Vi D. (4–3)

Note that the double sum in Equation (4–2) excludes the i = j terms. We can therefore rewrite it in a
form suggestive of a new corotational rate,

ḟ (V)= D̂ +
{
� f , f (V)

}
, � f

= W + P f D, (4–4)

where � f
∈ Skw is called the f-spin, and its fourth order projection tensor is

P f
= (V � I − I � V)∗

[
4 f (V)− (V � I + I � V)−1(V2 � I + I � V2)

]
. (4–5)
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Alternatively, P f can be expressed in the form Equation (3–8) with matrix elements

p f
i j =

1
f (λi )− f (λ j )

−
λ2

i + λ2
j

λ2
i − λ2

j
.

Note that � f can blow up, but the action
{
� f , g(V)

}
remains finite for any differentiable function g,

including f . In particular, the f-spin is an objective material spin in the sense defined by [Xiao et al.
1998c].

The corotational rate associated with the f-spin is defined in the usual manner as

◦ f

g(V)= ġ(V)+
{
g(V),� f }.

The reason for introducing this new rate is
◦ f

f (V)= D̂, which follows from Equation (4–4). This shows
that for a particular choice of spin the corotational rate of an arbitrary strain measure f (V) is related to
the modified stretching tensor D̂. The important point is that this is the closest, in a sense to be defined,
the strain rate can get to the actual stretching tensor D. These ideas are made concrete through:

Lemma 3. For any objective corotational rate

|
◦

f (V)−D|
2
= |

◦

f (V)−D̂|
2
+ |D̂ − D|

2, (4–6)

where D̂ is the modified stretching tensor defined by Equation (4–3).

The proof follows by writing

◦

f (V)−D =
◦

f (V)−D̂ + (D̂ − D)=
◦

f (V)−

◦ f

f (V)+(D̂ − D)

=

n∑
i, j=1
i 6= j

(pi j − p f
i j )
(

f (λi )− f (λ j )
)
Vi � V j D +

n∑
i=1

[
λi f ′(λi )− 1

]
Vi � Vi D. (4–7)

Hence,

|
◦

f (V)−D|
2
=

n∑
i, j=1
i 6= j

[
(pi j − p f

i j )
(

f (λi )− f (λ j )
)
tr (Vi DV j )

]2
+

n∑
i=1

[(
λi f ′(λi )− 1

)
tr (Vi D)

]2
,

where the two sums on the right hand side are the corresponding terms in Equation (4–6).
Therefore, we get:

Lemma 4. For every Eulerian strain measure f there is a unique spin which minimizes the difference

between
◦

f (V) and D, and that spin is � f . The minimal difference is

|

◦ f

f (V)−D|
2
=

n∑
i=1

[(
λi f ′(λi )− 1

)
tr (Vi D)

]2
.
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The proof follows using Lemma 3 in the form

|
◦

f (V)−D|
2
≥ |D̂ − D|

2,

with equality if and only if � = � f.

4.2. The logarithmic spin. Lemma 4 implies that the corotational rate of strain equals D if the strain
measure has the property x f ′(x)− 1 = 0. The only solution that satisfies the condition f (1) = 0 is
f (x)= ln x , and the associated spin follows from Equation (4–5) as �log

= W + PlogD where

plog
i j =

1
ln λi − ln λ j

−
λ2

i + λ2
j

λ2
i − λ2

j
.

�log is the well known logarithmic spin [Xiao et al. 1997]. Hence, of all possible rates and of all possible
Eulerian strain measures only the combination of the Hencky strain and the rate defined by the logarithmic
spin together yield the strain rate D. This is the unique relationship between ln V, D, and �log which
makes both the Hencky strain and the logarithmic spin special. This result was first derived by Xiao et al.
[1997], and may be summarized as:

Lemma 5. The strain rate D is recovered only as the corotational rate of the Eulerian strain e(0) = ln V
with spin �log where the fourth order projection tensor Plog is given by Equation (4–5) with f = ln. That
is,

◦log

ln V= D.

4.2.1. Some properties of the logarithmic spin. An instructive alternative form for Plog is obtained by
introducing

Pln
≡ (V � I − I � V)∗4 ln(V),

so that
Plog

= Pln
+ PE

= Pln
+ PL

+ PR.

Each of the projection tensors may be expressed in terms of matrix elements pi j = − p j i according to
Equation (3–8) as

pR
i j = −

λi − λ j

λi + λ j
, pE

i j = −
λ2

i + λ2
j

λ2
i − λ2

j
, pL

i j = −
2λiλ j

λ2
i − λ2

j
, pln

i j =
1

ln λi − ln λ j
.

The form of plog
i j agrees with the formula for Plog derived by Xiao et al. [1997, Equation (41)]. Note that

sgnplog
i j = sgnpR

i j = − sgn(plog
i j − pR

i j ).

The implications are twofold. The first equalities indicate that the spin induced by both �log and by �R

are in the same sense relative to the underlying spin W. The latter equalities imply that the relative spin
induced by �log is of smaller magnitude than that of �R .

The f-spin, which is uniquely defined by the strain measure f , defines the skew matrix elements p f
i j .

Consider the reverse problem: given some objective corotational rate defined by elements pi j , is there a
function f such that p f

i j = pi j ? There is no such function for the spins �R , �E and �L , as the reader can



256 ANDREW N. NORRIS

readily verify. Obviously, f = ln for � = �log, but it remains an open question for general � whether a
strain measure function exists such that � = � f .

5. Eulerian conjugate stress-strain pairs

5.1. Arbitrary strain and corotational rate. It was noted in Section 1 that the concept of work-conjugate
stress-strain pairs is more complicated for Eulerian quantities owing to the fact that the connection be-
tween the strain rate and the stretching tensor is not evident a priori. This issue was resolved by Lehmann
and Liang [1993], who introduced the notion that the Eulerian pair τ and e are defined to be conjugate
if

ẇ = tr
(
QτQt ˙QeQt

)
, (5–1)

for some rotation Q. This clearly generalizes the Lagrangian work-conjugacy condition Equation (1–2),
but it is necessary because of the fact that Eulerian rates are not as restricted. The definition in Equation
(5–1) is equivalent to

ẇ = tr (τ
◦

e), (5–2)

where
◦

e = ė + {e,�} and � = − Qt Q̇. Equation (5–2) is taken as the starting point, since it depends
only on the corotational rate through the spin �, therefore Q is not required.

For a given strain measure e = f (V) and corotational rate � = W + PD the strain rate
◦

e follows from
Equation (3–3). The stress τ is therefore conjugate to e if the following holds for all stretching tensors
D:

tr
(
τ [∇ f (V)] Q(V)D

)
= tr

(
σ D

)
.

The fourth order tensor ∇ f (V) is invertible for all strain measures. The necessary and sufficient condition
required to determine τ is therefore that the fourth order tensor Q is invertible. This requirement was
obtained by Xiao et al. [1997] in a slightly different manner; basically, that the six elements qi j of
Equation (3–10) are all nonzero. Hence, q−1

i j are bounded, and Q−1 exists. We refer the reader to [Xiao
et al. 1997] for further details.

In summary, the conjugate stress is

τ = [4 f (V)]Q−1σ ,

where the order of [4 f (V)] and Q−1 are arbitrary since they commute. This is Theorem 1.

5.2. Conjugate stress and the f-rate. An alternative approach is suggested by Equation (4–7). Let
◦

e = FD, then the fourth order tensor F is by assumption invertible and the conjugate stress is simply
τ = F−1σ . The tensor F can be obtained directly in spectral form from Equation (4–7) and easily
inverted, to give

Lemma 6. For arbitrary strain measure and rate the conjugate stress can be expressed

τ = σ f
−

n∑
i, j=1
i 6= j

1

1 +
[
(pi j − p f

i j )
(

f (λi )− f (λ j )
)]−1 Vi � V jσ . (5–3)
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The conjugate stress satisfies

|τ − σ |
2
= |τ − σ f

|
2
+ |σ f

− σ |
2, (5–4)

where the modified stress tensor σ f is

σ f
= σ +

n∑
i=1

[ 1
λi f ′(λi )

− 1
]
Vi � Viσ .

The proof follows from Equation (5–3) by analogy with the proof of Lemma 3. Hence,

|τ − σ |
2
≥ |σ f

− σ |
2

with equality if and only if � = � f , and we deduce the following.

Lemma 7. For every Eulerian strain measure f (V) the corotational rate of the f-spin � f minimizes the
difference between the conjugate stress and the Cauchy stress. The conjugate stress is then τ = σ f and
the minimal difference is

|τ − σ |
2
=

n∑
i=1

[( 1
λi f ′(λi )

− 1
)

tr (Viσ )
]2
.

This proves Theorem 2.
In general σ f is not equal to the Cauchy stress for any strain measure, with the exception of f = ln,

discussed below. It is, however, possible for σ f and σ to coincide under special circumstances: if the
three elements tr (Viσ ) simultaneously vanish. This is by definition a state of pure shear [Norris 2006].
Hence, we have the following statement.

Lemma 8. If the Cauchy stress is a state of pure shear with diag (σ )= 0 in the principal axes of V, then

σ f
= σ .

The stress conjugate to f (V) equals the Cauchy stress if the f-rate is used.

If the material is isotropic then the stress and strain share the same triad of principal axes. In that case
diag (σ ) expressed in the principal axes of V is simply the principle stresses, which vanishes only in the
absence of stress. Hence the circumstances under which Lemma 8 applies cannot occur for isotropic
materials. If the material is not isotropic, but we restrict attention to linear anisotropic elasticity, then
diag (σ ) expressed in the principal axes of strain e will vanish only if both stress and strain are zero. This
follows from the assumed positive definite property of the strain energy, equal to 1

2 tr (σe). In summary,
the circumstances under which Lemma 8 apply require nonlinear and anisotropic elasticity. This does
not eliminate its possibility but it makes it difficult to envision a situation when Lemma 8 would occur.

5.3. Logarithmic rate. The logarithmic rate, as noted before, is a special case of the f-rate. We conclude
by examining the conjugate stress for arbitrary strain measure using the logarithmic rate. Xiao et al.
[1997] showed that the logarithmic rate is the only one with the property of Lemma 5, which is that
among all strains and all rates, only ln V and �log correspond to the stretching tensor D. This fundamental
result for ln(V) is generalized to arbitrary Eulerian strain measure e = f (V) by

◦log
e =

(
∇ f (V)

)
(4 ln V)D,
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which follows from Lemmas 2 and 5. Now require that the work-conjugacy identity tr (τ
◦log
e )= tr (σD)

holds for all D, and use the invertibility of the fourth order tensors ∇ f (V) and 4 ln V plus the property
that they commute. This implies that the stress conjugate to the Eulerian strain e = f (V) is

τ =
(
4 f (V)

)
(∇ ln V) σ ,

for � = �log. It is straightforward to show that this can be expressed in spectral form as

τ = σ f
+

n∑
i, j=1

( ln λi − ln λ j

f (λi )− f (λ j )
− 1

)
Vi � V jσ , (5–5)

again for � = �log. This identity, although valid only for the logarithmic rate, shows how the conjugate
stress in that case is related to the modified stress σ f . The latter depends upon the strain measure f ,
and is optimal in the sense of best for all possible strain rates. Equation (5–5) shows that the logarithmic
rate is not optimal since τ satisfies Equation (5–4) with both terms on the RHS of the latter nonzero.
However, when the strain measure f reduces to ln then σ f

→ σ and the sum in Equation (5–5) vanishes.
This again shows the combined properties of the Hencky strain and the logarithmic rate as being doubly
optimal for all strain measures and spins.

6. Conclusion

We have examined the implications of work-conjugacy with emphasis on Eulerian stress-strain pairs.
There is, however, remarkable similarity in the form of the dual conjugate stresses for both Lagrangian
and Eulerian strains. The similarity is evident from the identical format of Equations (1–5) and (1–10),
which involve fundamental stresses T(1) and τ (1) defined by the strains f (U) and f (V), respectively. The
Lagrangian stress T(1) is called Biot stress or Jaumann stress, but there does not appear to be a common
term for its Eulerian counterpart τ (1).

The major distinction between Lagrangian and Eulerian work-conjugacy is that the latter requires the
introduction of the corotational rate, which itself is quite arbitrary. We have shown that every permissible
Eulerian strain measure f (V) has associated with it a unique corotational rate, the f-rate. The conjugate
stress obtained using the f-rate is optimal in the sense that it is the closest possible to the Cauchy stress
σ . The optimal stress, σ f , is defined by f and σ through Lemma 6, and it reduces to the Cauchy stress
if and only if f = ln. This reinforces the results of Xiao et al. [1998a] for the logarithmic rate and the
Hencky strain, while generalizing the notion of the logarithmic rate to arbitrary strain functions through
the strain dependent spin � f .

Appendix A: The spins �R, �E and �L

From the definition of �R in Equation (3–6), and using F = RU, we have

L = ḞF−1
= �R

+ RU̇U−1Rt .

The symmetric and skew parts of this relation yield [Truesdell and Noll 1965]

D =
1
2 R (U̇U−1

+ U−1U̇)Rt , (A.1)
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and
W = �R

+
1
2 R(U̇U−1

− U−1U̇)Rt . (A.2)

Equation (A.1) may be solved for U̇ in the form given by Equation (1–4). Substituting U̇ in Equation
(A.2) gives

�R
= W + (I � V − V � I)(I � V + V � I)−1D.

Let vi , i = 1, . . . , n ≤ 3, be the principal axes of B and V. The twirl �E defines the rate of rotation
of this triad by v̇i = �E vi . The rate of change of the eigentensors of B follows from Vi = vi ⊗ vi as
V̇i = {�E ,Vi }. The second portion of Equation (3–1) then gives

Ḃ =

n∑
i=1

β̇i Vi + {�E ,B}, (A.3)

which can be considered as an equation for �E , similar to Equation (2–2). The solution follows from
Equations (2–4) and (3–2) as

�E
= (I � B − B � I)∗

(
Ḃ −

n∑
i=1

β̇i Vi
)
= W + (I � B − B � I)∗(I � B + B � I)D.

Hence �E
= W + PE D where PE is given by Equation (3–7b). The rate of change of the principal

stretches are obtained by substituting �E into Equation (A.3), as

n∑
i=1

β̇i Vi =
[
I − (I � B − B � I)∗(I � B − B � I)

]
(I � B + B � I)D.

Then using Equations (2–6) and (2–9), we obtain the well known result

n∑
i=1

β̇i Vi = 2
n∑

i=1

βi Vi � Vi D ⇔ λ̇i = λi tr (Vi D).

The twirl �̃L defines the rate of rotation of the Lagrangian principal axes ui , i = 1, . . . , n as u̇i = �̃Lui .
Hence, U̇i = {�̃L ,Ui }, where Ui = ui ⊗ ui , are the eigentensors of U. Taking the rate of change of the
identity Vi = (R � R)Ui , linking the Eulerian and Lagrangian eigentensors, gives

U̇i = (R � R)−1
{�E

−�R,Vi }.

The Lagrangian twirl is therefore

�̃L
= (R � R)−1(�E

−�R)= (I � U2
− U2 � I)∗2(U � U)(R � R)−1 D.

This is related to the spin�L
= W+PLD defined via PL of Equation (3–7c) by �̃L

= (R�R)−1(�L
−W).
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OUT-OF-PLANE STRESS AND DISPLACEMENT FOR
THROUGH-THE-THICKNESS CRACKS IN PLATES OF FINITE THICKNESS

JOHN CODRINGTON, ANDREI KOTOUSOV AND SOOK YING HO

The out-of-plane stress and displacement fields are investigated analytically for mode I through-the-
thickness cracks in an infinite plate of finite thickness within the first-order plate theory. The developed
method is based on the distributed dislocation approach and an earlier derived three-dimensional solu-
tion for an edge dislocation. Numerical results are obtained through application of Gauss–Chebyshev
quadrature for both finite length and semiinfinite crack cases. The calculated stress and displacement
fields are found to be in good agreement with already published experimental and finite element studies.
Further results for the averaged through-the-thickness stress intensity factor are given and again found
to be in good agreement with previous finite element values. The developed solutions can therefore be
used in experimental techniques for the assessment of the stress intensity factor using the out-of-plane
displacement measurements, for example by the interferometry method.

1. Introduction

The investigation of geometric singularities like edges or cracks in engineering structures requires an
understanding of the complicated three-dimensional stress field surrounding the singularity. Over the past
fifty years, analytical and numerical investigations in fracture mechanics have mainly focused on two-
dimensional or axisymmetric geometries. This is due to the much needed simplifications that the classic
two-dimensional theories of elasticity bring to the mathematical analysis. Three-dimensional effects
are often acknowledged in these studies as the true crack tip stress field is always triaxial. However,
the relationship between the actual three-dimensional distribution and the results obtained within the
two-dimensional theories is still not completely understood. For that reason, three-dimensional crack
problems have been identified as a critical area where further research is needed [Erdogan 2000].

The three-dimensional crack-front stress and displacement fields have been investigated by many re-
searchers including Cruse [1970], Burton et al. [1984], Yang and Freund [1985], Nakamura and Parks
[1988], Leung and Su [1995] and Nevalainen and Dodds [1995], to name only a few. In particular, Har-
tranft and Sih [1970] proposed an approximate three-dimensional theory and studied the effects of plate
thickness on the stress intensity factor. A comprehensive literature review on the earlier investigations
of three-dimensional crack problems is provided by Kwon and Sun [2000].

The triaxial stress state in the vicinity of a crack tip in a sufficiently brittle material has been found to
have a significant influence on fracture behavior [Kong et al. 1995]. Yang and Freund [1985] and Yuan

Keywords: distributed dislocation technique, edge dislocation, out-of-plane constraint factor, out-of-plane displacement, plate
thickness effect, through-the-thickness crack.
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and Brocks [1998] have shown that the specimen thickness significantly effects the crack tip stress and
displacement fields, which play a crucial role in the initiation and propagation of cracks [Guo 2000].

A number of experimental investigations have been undertaken to determine the three-dimensional
stress and displacement fields in the vicinity of the crack tip for a range of cracked geometries. In an
experimental study by Rosakis and Ravi-Chandar [1986], the method of caustics by transmission and
reflection was employed to determine the extent of the three-dimensional crack tip region. They found
that plane stress conditions are recovered at a radial distance of around half the plate thickness, which
confirms the analytical results of Yang and Freund [1985]. Similar conclusions were made by Pfaff et al.
[1994] and Humbert et al. [2000] who utilized interferometry to determine the out-of-plane displacement
field surrounding a mode I crack.

Theoretical investigations of three-dimensional crack tip stress and displacement fields have mainly
utilized finite element (FE) techniques. Several researchers, including Nakamura and Parks [1988] and
She and Guo [2007b], have provided detailed analyzes of the crack tip region for mode I and mixed mode
(I–II) semiinfinite cracks, respectively. It was shown that the out-of-plane stress and displacement fields
exhibit significant three-dimensional effects within a radial distance from the crack tip of about half the
plate thickness and converge with the plane stress solutions at around 1.5 times the plate thickness. The
FE results of Nakamura and Parks [1988] were found to be in reasonable agreement with the experimental
study by Pfaff et al. [1994].

The purpose of this paper is to present an analytical method for calculating the stress and displacement
fields at the tip of a through-the-thickness crack using the first order plate theory. This theory was previ-
ously utilized by Yang and Freund [1985] for investigating three-dimensional effects for a semiinfinite
crack though only qualitative comparison with experimental results was provided in their work. The
methods developed in the current paper are based on the distributed dislocation technique (DDT) and
the solution for an edge dislocation in a plate of arbitrary thickness [Kotousov and Wang 2002]. Both
semiinfinite and finite length cracks are investigated covering almost all geometries considered in the
previous studies. The calculated results compare well with the previously published data. These solutions
can therefore be used in experimental techniques for the assessment of the stress intensity factor using
the out-of-plane displacement measurements, for example by the interferometry method.

In this paper, a brief review of the DDT for semiinfinite cracks is first given followed by the results for
the out-of-plane constraint factor. In the next section, the formulation of the finite length crack problem
is presented along with the results for the out-of-plane displacement.

2. Semiinfinite crack in a finite thickness plate

We will begin by providing an outline of the DDT as applied to a straight semiinfinite crack in a plate
of thickness 2h. A full description of the technique has already been given by Codrington and Kotousov
[2007]; however, a brief review will be presented here for completeness. It is assumed that a through-
the-thickness crack lies along the x axis (−∞< x < 1) in an infinite plane and is subjected to a remotely
applied mode I stress intensity factor K . If the crack is replaced with a continuous distribution of
dislocations along the x axis then the y-stress field is given by the superposition principle as the singular
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integral equation [Hills et al. 1996]

σyy(x, y)=
1
π

∫ 1

−∞

By(ξ)G yy(x − ξ, y) dξ . (1)

In Equation (1), By(ξ) is the unknown dislocation density function; it is related to the separation of the
crack faces g(ξ) by By(ξ)= −dg(ξ)/dξ . The function G yy(x, y) is the dislocation influence function,
which forms the singular kernel of the system. The influence functions depend on the geometry of the
problem under investigation and various solutions are available in the literature. A comprehensive review
is provided by Hills et al. [1996]. In the case of a plane stress or plane strain analysis, the y direction
influence function for a dislocation in an infinite plane is given by Hills et al. [1996] as

G yy(x, y) =
2µ

(κ + 1)
x
ρ4 (x

2
+ 3y2), (2)

where µ is the shear modulus, κ is Kolosov’s constant being either (3 − ν)/(1 + ν) for plane stress or
3 − 4ν for plane strain, with ν being Poisson’s ratio, and ρ2

= x2
+ y2.

Three-dimensional geometry effects will be considered for the case of a finite thickness plate by ap-
plying the solution for an edge dislocation in an infinite plate of thickness 2h [Kotousov and Wang 2002].
The developed influence functions are based on first-order plate theory [Kane and Mindlin 1956] whereby
it is assumed that the out-of-plane strain is uniform in the thickness direction. Namely, generalized plane
strain conditions are assumed to exist. In addition, the simplification is made that the dislocation Burgers
vector and each of the triaxial stress components are uniform across the thickness of the plate and are
equal to the average through-the-thickness values. Results obtained from this theory have been shown to
be in good agreement with the through-the-thickness averages from careful three-dimensional FE studies
[Berto et al. 2004; Kaèianauskas et al. 2005; She and Guo 2007a]. The y direction influence function
for the case of a finite thickness plate is determined by Kotousov and Wang [2002] as

G yy(x, y)= −
E

4(1 − ν2)

x
ρ2

[
−(1 − ν2)+

4ν2

(λρ)2
− 2ν2K0(λρ)−

2ν2 (2 + (λρ)2) K1(λρ)

λρ

]
, (3)

where E is Young’s modulus, K0(·) and K1(·) are the modified Bessel functions of the second kind of
order 0 and 1, respectively, and the parameter λ is given by

λ=
1
h

√
6

1 − ν
.

To solve the integral equation (1) via Gauss–Chebyshev quadrature, we need first to introduce the
coordinate transformations

x =
2t

t + 1
, ξ =

2s
s + 1

, (4)

which give rise to the transformed integral equation

σ̄yy(t, y)=
2
π

∫ 1

−1
B̄y(s)Ḡ yy(t − s, y)

ds
(s + 1)2

. (5)
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By applying Gauss–Chebyshev quadrature to (5), the integral is reduced to a linear series in n unknowns,
φ̄(si ), such that

σ̄yy(t, y)=
2
n

n∑
i=1

1
si + 1

φ̄(si ) Ḡ yy(t − si , y), (6)

where n is the number of integration points and

si = cos
(2i − 1

2n
π
)
, i = 1 · · · n.

Along the length of the crack, where x < 1 and y = 0, the summation (6) is only valid at the discrete
collocation points, which are

tk = cos
(k

n
π
)
, k = 1 . . . n − 1.

Outside of the crack interval, where x > 1 or y 6= 0, Equation (6) may be evaluated at any point.
The nonsingular function φ̄(s) is related to the dislocation density by

B̄y(s)= φ̄(s)(1 + s)1/2(1 − s)−1/2. (7)

It is assumed in Equation (7) that the stress field and, similarly, the gradient of the crack opening dis-
placement are square root singular at the crack tip, where x = s = 1. Furthermore, the singularity is taken
as being uniform across the entire thickness of the plate. This is due to the averaging nature of the first-
order plate theory employed in the dislocation solution, which assumes a constant Burgers vector and
uniform stresses across the plate thickness. Other singularities that are associated with three-dimensional
geometry are, as a result, unable to be described in the analysis, for example the corner singularity found
at the intersection of the crack front and the free surface of the plate [Benthem 1980]. As x → −∞

or s → −1, the gradient of the crack opening displacement approaches zero and this has also been
incorporated into Equation (7).

The through-the-thickness average crack tip stress intensity factor can be determined directly from an
asymptotic analysis of the crack tip opening displacement or stress field near the crack tip. In the case
of the plane stress or plane strain analysis, this gives

Ktip = lim
r→0

√
2πr

2µ
κ + 1

∂ ĝ(r)
∂r

=
√

2π
2µ
κ + 1

φ̄(1), (θ = π) (8)

and for the case of a finite thickness plate

Ktip = lim
r→0

√
2πr σ̂ yy(r, 0)=

√
2πE

4(1 − ν2)
φ̄(1). (9)

Here, ĝ(r)= g(x) for θ = π or 0, σ̂yy(r, θ)= σyy(x, y) and the conversion between Cartesian and polar
coordinates can be made via the transformations x = r cos(θ)+ 1 and y = r sin(θ). From inspection of
Equation (9), it can be seen that the stress intensity factor for the finite thickness plate is simply the plane
strain form of (8). However, it should be noted that the stress state is actually generalized plane strain, in
accordance with the first-order plate theory, not plane strain as (9) suggests. The function φ̄ has only been
defined at each of the integration points; therefore, φ̄(1) may be found using the extrapolation formula
obtained by Krenk [1975] and Hills et al. [1996]. In most cases it is generally sufficient to approximate
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φ̄(1) by φ̄(s1), since the computations for the exact value of φ̄(1) are quite lengthy. In a similar manner,
the side condition of a stress intensity factor, Kfar, applied remotely from the crack tip can be written as

φ̄(Sn)=
Kfar
√

2π

κ + 1
2µ

(10)

for the cases of plane stress and strain. In the finite thickness plate analysis, it is assumed that plane stress
conditions will prevail remotely from the crack tip [Yang and Freund 1985] and therefore the plane stress
form of (10) is employed.

Use is now made of the requirement that the crack faces must remain traction free, which means that
σyy(x, 0) = 0 along the crack length or simply σ̄yy(tk, 0) = 0. This constraint, together with Equation
(6), provides a system of n − 1 linear equations in n unknowns φ̄(si ). Depending on whether a plane
stress/strain analysis or a finite thickness plate analysis is undertaken, the choice of the kernel function
G yy(x, y) as either (2) or (3) respectively is made. The nth equation which completes the set of linear
equations is given by the condition of the remotely applied stress intensity factor (10). The set of n linear
equations in n unknowns can now be solved via any standard method.

3. Results for the out-of-plane stress

In this section, results for the out-of-plane stress field are presented for a semiinfinite crack in a plate of
finite thickness. The effect of the out-of-plane stresses are commonly described in the literature by the
out-of-plane constraint factor

_

Tz(r, θ)= Tz(x, y)=
σzz(x, y)

ν[σxx(x, y)+ σyy(x, y)]

where the stress components σxx(x, y) and σzz(x, y) are found in a similar manner to (6) by replacing
the kernel with

Gxx(x, y)=
E

4(1 − ν2)

x
ρ2

[
(1 − ν2)+

4ν2

(λρ)2
− 2ν2K0(λρ)−

4ν2K1(λρ)

λρ

]
,

Gzz(x, y)=
Eν

2(1 − ν2)

λx
ρ

K1(λρ),

respectively [Kotousov and Wang 2002].
Results for the out-of-plane constraint factor crack are shown in Figure 1, for a semiinfinite, as a

function of the radial distance from the crack tip to plate thickness ratio r/2h with θ = 0. FE results
by Nakamura and Parks [1988] and She and Guo [2007b] for semiinfinite cracks are also provided
as a comparison. Both the mid-thickness (MT) and through-the-thickness average (AV) FE values are
given. It can be seen that the mid-thickness results are in better agreement with the present values than
the average results are. This is due to the different modeling assumptions made in each of the studies.
Namely, the current investigation makes the simplification of generalized plane strain conditions in the
vicinity of the crack tip. Furthermore, FE techniques are limited by the finite mesh size in representing
the singular stress field near the crack tip. Figure 1 shows that at the crack tip the conditions reach near
plane strain while at approximately r/2h = 1.5 the plane stress solution is recovered. In these and all
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Figure 1. Out-of-plane constraint factor as a function of the ratio r/2h for a semiinfinite
crack (θ = 0◦).

subsequent calculations, Poisson’s ratio is taken as ν = 0.3 though any variation of ν has minimal effect
on the constraint factor. Approximately 250 integration points are required to reach a convergence in the
solution.

Figure 2 shows the results for the out-of-plane constraint factor as a function of θ for various r/2h.
Again a semiinfinite crack model has been used. The mid-thickness FE results by She and Guo [2007b]
are given and they show a good agreement with the present results. Results for the ratio of the average
crack tip stress intensity factor to the far-field stress intensity factor are shown in Figure 3 as a function of
Poisson’s ratio. The crack tip stress intensity factor for the case of a finite thickness plate is determined
by Equation (9). The present results are identical to the through-the-thickness average of the values
presented by She and Guo [2007b] and Nakamura and Parks [1988] for semiinfinite cracks.
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Figure 2. Out-of-plane constraint factor as a function of θ for various r/2h for a semi-
infinite crack.
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Figure 3. Ratio of the average crack tip stress intensity factor to the far-field stress
intensity factor as a function of Poisson’s ratio for a semiinfinite crack.

4. Results for the out-of-plane displacement

The out-of-plane displacement for the case of a semiinfinite crack can be determined at any point within
the plate by the function

_uz(r, θ, z)= uz(x, y, z)=
z
πh

∫ 1

−∞

By(ξ)Guz(x − ξ, y) dξ,

where the plate mid-thickness is at z = 0 and the plate surfaces are at z = ±h. The displacement kernel
for the finite thickness plate analysis is given by Kotousov and Wang [2002] as

Guz(x, y)= −
νhλ

2
x
ρ

[
1
λρ

− K1(λρ)

]
and in the case of plane stress is

Guz(x, y)= −
νh
2

x
ρ2 .

The formulation of the finite length crack problem is very similar to that of the semiinfinite crack as
outlined in Section 2 and thus most details are omitted. It is assumed that a through-the-thickness crack
of length 2a lies within −a < x < a on the x axis in an infinite plane and is subjected to remotely applied
stress, σ∞

yy (x). The governing singular integral equation therefore becomes [Hills et al. 1996]

σyy(x, y)=
1
π

∫ a

−a
By(ξ)G yy(x − ξ, y) dξ + σ∞

yy (x). (11)

Solution to the integral equation (11) follows via application of Gauss–Chebyshev quadrature in a similar
manner as for the semiinfinite crack case. The transformations (4), however, are replaced with the new
transformations:

x = at, ξ = as,
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Figure 4. Normalized out-of-plane surface displacement as a function of r/2h in the
case of a semiinfinite crack.

and the nonsingular function φ̄(s) is now related to the dislocation density by

B̄y(s)= φ̄(s)(1 + s)−1/2 (1 − s)−1/2.

Here it is assumed that the dislocation density function is square root singular at both s = − 1 and s = 1
since there is a singularity in the displacement gradient and stress fields at each of the crack tips.

The out-of-plane displacement for the finite length crack may be determined by

_uz(r, θ, z)= uz(x, y, z)=
z
πh

∫ a

−a
By(ξ)Guz(x − ξ, y) dξ −

ν

E
z σ∞

yy (x),
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Figure 5. Normalized out-of-plane surface displacement as a function of r/a in the case
of a finite length crack (θ = 0◦).
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where the extra term is due to the uniform lateral contraction of the infinite plate loaded by the remote
tensile stress σ∞

yy (x). The conversion between Cartesian and polar coordinates is then made by y = r sin θ
and x = r cos θ + a.

Results for normalized out-of-plane surface displacement along the line of the crack are presented in
Figure 4 in the case of a semiinfinite crack. The empirical fit by Pfaff et al. [1994] to the FE results by
Nakamura and Parks [1988] is also given as a comparison. The difference between the finite element
results and the present ones could be explained by the mesh refinement issues at the crack tip in the FE
model. Figure 5 displays the results for the normalized out-of-plane displacement ahead of the crack tip
for the case of a finite length crack. The present results are in good agreement with the experimental
values of Humbert et al. [2000]. The difference is less than 10% and can be partially explained by the
presence of the process zone at the crack tip where the material is subjected to inelastic deformations.

5. Conclusion

An analytical method is presented for calculating the out-of-plane stress and displacement fields in plates
of finite thickness. The developed method is based on the DDT and the three-dimensional solution for
an edge dislocation in plates of arbitrary thickness. Numerical results are obtained for both finite length
and semiinfinite crack models through application of Gauss–Chebyshev quadrature. Results for the
normalized out-of-plane constraint factor and the out-of-plane surface displacement are presented. The
present values are compared with finite element and experimental results and found to be consistent.
Further results for the ratio of the crack tip stress intensity factor to the applied stress intensity factor are
given. A comparison with the through-the-thickness average values from previous finite element studies
shows a very good agreement. These solutions can therefore be used in the experimental techniques for
the assessment of the stress intensity factor using the out-of-plane displacement measurements.
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INVESTIGATION OF MODE II CRACK GROWTH FOLLOWING A VERY HIGH
SPEED IMPACT

WEI MA AND ZHUPING DUAN

A recoverable plate impact testing technology has been developed for studying fracture mechanisms
of mode II crack. With this technology, a single duration stress pulse with submicrosecond duration
and high loading rates, up to 108 MPa m1/2s−1, can be produced. Dynamic failure tests of Hard-C 60#

steel were carried out under asymmetrical impacting conditions with short stress-pulse loading. Exper-
imental results show that the nucleation and growth of several microcracks ahead of the crack tip, and
the interactions between them, induce unsteady crack growth. Failure mode transitions during crack
growth, both from mode I crack to mode II and from brittle to ductile fracture, were observed. Based
on experimental observations, a discontinuous crack growth model was established. Analysis of the
crack growth mechanisms using our model shows that the shear crack extension is unsteady when the
extending speed is between the Rayleigh wave speed cR and the shear wave speed cs. However, when the
crack advancing speed is beyond cs, the crack grows at a steady intersonic speed approaching

√
2cs. It

also shows that the transient mechanisms, such as nucleation, growth, interaction and coalescence among
microcracks, make the main crack speed jump from subsonic to intersonic and the steady growth of all
the subcracks causes the main crack to grow at a stable intersonic speed.

1. Introduction

During the past several decades, researchers have made great progress in experiments on dynamic failure
mechanisms [Erdogan and Sih 1963; Kalthoff 1987; 1988; Ravichandran and Clifton 1989; Kalthoff
1990; Prakash and Clifton 1992; Ravi-Chandar 1995; Zhou et al. 1996; Needleman 1999; Rosakis et al.
1999; Abraham and Gao 2000; Ravi-Chandar et al. 2000; Rosakis et al. 2000; Geubelle and Kubair
2001; Samudrala et al. 2002; Cox et al. 2005]. Usually, experiments on how cracks start and grow are
conducted with apparatus such as the Hopkinson bar; however, it produces relatively low loading rates
from 101 to 106 MPa m1/2s−1. Hence, these experiments do not clearly reveal the transients of crack
initiation.

Recently, Ravichandran and Clifton [1989] and Prakash and Clifton [1992] developed a plate impact
technique with a high loading rate for understanding the essential fracture dynamics. This technique can
produce a plane strain mode I crack using a square tensile pulse lasting less than a microsecond. It raises
the loading rates by two orders of magnitude over the Hopkinson bar technique and is a noteworthy
advance for the study of the transient mechanisms of material failure. However, for investigating the

Keywords: plate impact tests, dynamic fracture, failure mode transition, intersonic crack extension, discontinuous crack
growth model.
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fracture mechanisms of mode II cracks, the technique needs to be improved. We address some aspects
of this problem.

So far, restrictions in current testing technology have prevented complete understanding of the failure
mechanisms in mode II fractures, notwithstanding a great number of investigations and the observation of
many interesting phenomena [Kalthoff 1987; 1988; 1990; Ravi-Chandar 1995; Ravi-Chandar et al. 2000].
Kalthoff [1987; 1988] has studied the failure of high strength steel loading including dynamic mode II
cracks and have shown that low speed impact induces cleavage fracture. The cracks extend at an angle
of about 70◦ with respect to the original crack line, which shows that the maximum hoop stress criterion
[Erdogan and Sih 1963] governs the crack initiation and growth. When the impact speed exceeds a critical
value, the failure mode changes from crack fracture to shear band failure, and microscope images of the
fracture surface revealed that the failure mechanism had also changed from cleavage fracture to ductile
shear failure.

In similar investigations, Ravi-Chandar [1995] and Ravi-Chandar et al. [2000] demonstrated that at
low loading rates, the crack tip formed a plastic zone around it, but no crack started; at moderate loading
rates, a brittle crack began and the failure mode changed from ductile to brittle; and at high loading
rates, the crack formed and advanced along the original crack line but was arrested in the specimen.
Postmortem microstructural examination of the failure surface indicated that the maximum shear stress
criterion governed the fracture process.

Elsewhere, Zhou et al. [1996] studied the initiation and propagation of shear bands by applying asym-
metric mode II crack impact loading to a prenotched plate specimen. Results show that, when the impact
velocity exceeds a critical value, a shear band advances throughout the specimen. When the impact
velocity falls below this critical value, a shear band arrests first inside the specimen, and then a crack
starts from the arrested shear band tip and grows along the propagating shear band. Under a microscope,
the fracture surfaces show that a ductile mode shear failure occurs inside the shear band, and the crack
fails in an opening mode. The coexistence of shear band failure and crack fracture implies that the mode
II crack loading changes the failure mode from shear band failure to crack fracture.

Recently, much attention focuses on shear-dominated intersonic crack extension mechanisms. Inter-
sonic cracking has been directly observed in asymmetrical impact tests on a specimen consisting of a
homogeneous and isotropic solid with an artificial weak band plane [Rosakis et al. 1999, 2000], in which
the shear cracks propagated initially with a speed just above the shear wave speed cs, accelerated sharply
to the longitudinal wave speed cl, and finally approached a steady intersonic speed

√
2cs.

Motivated by the experimental observations, many researchers have paid great attention to intersonic
cracking [Needleman 1999; Abraham and Gao 2000; Geubelle and Kubair 2001; Samudrala et al. 2002].
The studies, based on continuum elastodynamics and molecular dynamics [Abraham and Gao 2000],
show that when a shear crack propagates along a weak plane, a daughter crack first initiates in front of
the crack tip, and then joins with the mother crack, and, as a result, the crack propagates with intersonic
speeds. This conclusion has been confirmed by the fact that when a daughter crack growing at intersonic
speed nucleates just ahead of the mother crack tip, the Mach cone angles at the daughter crack tip show
that its velocity is consistent with the longitudinal wave speed.

The simulation study also shows that a finite peak stress ahead of the mother crack is the only possible
mechanism of daughter crack nucleation. Therefore, the interaction of the “mother-daughter” crack
causes a subsonic shear crack to jump over the forbidden velocity zone between the Rayleigh wave
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speed cR and shear wave speed cs. Identical results followed from numerical calculations [Needleman
1999].

Samudrala et al. [2002] found analytical results for the subsonic and intersonic mode II crack prop-
agation with a rate-dependent cohesive zone, indicating that the subsonic regime is inherently unstable
for mode II crack propagation, but, with increasing rate sensitivity, stable mode II crack growth prevails
at low subsonic speeds. At intersonic speeds, the mode II crack growth is unstable up to a critical speed
higher than

√
2cs, above which it becomes stable.

Samudrala et al. [2002] also investigated the effect on crack propagation of a dimensionless rate
parameter and of shear strength of the crack plane. In the cohesive zone model, they found that fracture
energy is finite at intersonic crack speeds and that more energy is dissipated when intersonic speeds are
close to cl. Furthermore, the fracture energy is sensitive to a rate parameter describing the influence of
shear stress on the local sliding rate in the cohesive zone. By decreasing the crack plane strength, they
found that an intersonic mode II crack would accelerate all the way up to cl, whereas increasing it seems
to favor steady crack growth with an intersonic speed close to

√
2cs. These results agree with the crack

speed characteristics observed in the experiments of Rosakis et al. [1999; 2000].
Numerical calculations by Geubelle and Kubair [2001] show an extension speed transition of a shear

dominated crack from subsonic to intersonic. Usually, a rapid acceleration of the primary cohesive zone
at the crack tip induces the transition. Occasionally, a secondary failure zone or perhaps a microcrack
generated ahead of the crack, which quickly coalesces with the primary failure zone, can induce the
transition as well. The calculations reveal that intersonic crack propagation is possible for a wide range
of loading conditions, as long as the shear-dominated loading intensity is a major fraction of the strength
of the fracture plane. Moreover, under mixed-mode loading conditions when the shear component of the
external loading is sufficiently large, cracks can propagate intersonically. When the crack grows steadily
at an intersonic speed, cohesive failure is mainly induced by shear stresses, even though the remote
loading is of mixed mode.

To understand the mechanisms of mode II crack growth under high-speed impact loading, we have
developed an improved plate impact testing technique and conducted dynamic failure tests of Hard-C
60# steel. The technique can generate a compressive stress pulse lasting less than a microsecond with a
loading rate as high as 108 MPa m1/2s−1. During an asymmetrical impact, an edge crack plate specimen
develops a plane strain deformation state at the crack tip. Experimental results demonstrate that the
nucleation and growth of microcracks ahead of a main crack result in unstable crack propagation with
nonuniform extension speeds increasing from subsonic to intersonic.

In addition, failure mode transitions, both from mode I to mode II crack and from brittle to ductile
failure, were observed during the crack growth. Based on these observations, we propose a discontinuous
transient crack growth model. We discuss the relevant dynamic mechanisms of crack initiation and
growth, using the energy principle of dynamic fracture mechanics.

The article is organized as follows. In Section 2, we give the relevant theory for describing the crack
dynamics in an asymmetrical plate. Then, in Sections 3 and 5, we describe the experimental details,
including material properties, specimen configurations, the experimental setup, and the testing approach.
In Section 5, we analyze under a microscope the crack growth mechanisms. Finally, we propose a
discontinuous transient crack growth model for describing of intersonic crack growth qualitatively and
discuss the results.
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2. Theoretical background

The dynamic fracture process displays many complex features, such as the response of material crystal
and atomic structures, inelastic properties, microdefects, strain rate sensitivities, and so on; however,
moving crack tips in a variety of materials all exhibit the phenomena of crack initiation, kinking, and
bifurcation, all of which are assumed to occur in continuous media. Thus, we can still effectively use
continuum mechanics for describing the essential dynamic failure mechanisms. Here, we present the
elastic wave theory [Achenbach 1973] as the theoretical basis for improving the plate impacting technique.
Then, we use the energy methods of elastodynamic fracture theory [Freund 1990] and the analytic results
of the linear elastodynamic problem [Ma 1998] to interpret the failure mechanisms of materials and
investigate the behaviors of crack growth.

With the asymmetrical plate impact technique, it is easy to produce a mode II crack deformation
field in an edge crack plate specimen. Such a specimen is effectively simulated as semiinfinite crack tip
field in an infinite elastic body. It is reasonable to assume that one-dimensional stress waves propagate
during the collision. Furthermore, we assume that no incident stress pulses reflect from the component
interfaces because all collision components have the same impedance and they are joined without gaps.
Figure 1 illustrates a distance-time (x, t) diagram of the stress wave fronts prevailing in the collision and
the smaller velocity-stress (v, σ ) diagram characterizing each region in the (x, t) diagram. The figure
shows that at time t3 two unloading stress pulses meet in the momentum trap, and create a tension stress
pulse. At time t4, when the pulse reaches the interface between the specimen and the momentum trap,
the interface splits and the momentum trap separates from the specimen. Because the momentum trap is
thicker than the flyer, it can trap the entire tensile pulse. Thus, the flyer transfers its momentum to the
momentum trap, and, in the collision process, the specimen feels only the impact of a single duration
compressive stress pulse. In addition, the diameter-to-thickness ratio of the specimens is chosen larger

t3

t4

2

1

3

4

v

4

Momentum 
Trap

4

1

2,3

v0

0

1

0

3

x

Specimen

t

Flyer Transmission 
Plate

2

0

1

t3

t2

1

01
t1

0

2

2

t4

o
 

Fig. 1 

 1

Figure 1. Distance-time (x, t) diagram in the asymmetrical plate impact procedure,
with velocity-stress (v, σ ) illustrated in the inset.
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than four, effectively reducing the effect of their boundaries on crack growth. These measures ensure
that a plane strain mode II crack deformation field develops in the central region of the edge crack plate
specimen, which can be confirmed in the microscope images of the fracture surface described below.

In asymmetrical impact loading, strictly speaking, a transient mixed-mode deformation field develops
at the crack tip, in which the mode II crack deformation field predominates because of the shear effects
produced by the high strength compressive stress pulses; however, a time-dependent mode I deformation
weak field also forms [Freund 1990]. Figure 2 illustrates the wavefront for the stress pulse scattered by the
crack tip when the impact is shorter than 2l/cl. Generally, a longitudinal plane pulse (1) induces a mode
II crack deformation field; the competition between the inertial resistance and Poisson’s effect creates a
mode I deformation weak field, and the cylindrical waves (2)–(8) generate a mixed-mode deformation
field. In this study, we directly measure variations of the compressive stress pulses using the Mn-Cu
gauge technique [Raiser et al. 1990; Fowles et al. 1970]. To validate the measurements, we compare the
amplitudes of stress pulses with the calculated values based on the measured impact speeds V0 and the
elastodynamic relation, σ0 = ρclV0/2.

The energetics relevant to dynamic fracture are briefly described below; more details can be found in
[Freund 1990]. For mixed-mode crack growth at nonuniform speed v, the dynamic energy release rate
is given by

G =
1 −µ2

E
[AI(v)K 2

I + AII(v)K 2
II], (2–1)

where

AI(v)=
v2αd

(1 −µ)c2
s D
, AII(v)=

v2αs

(1 −µ)c2
s D
,

D = 4αdαs − (1 +α2
s )

2, α2
d = 1 − v2/c2

l , α2
s = 1 − v2/c2

s .

Fig.2 
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Figure 2. The wave fronts of the stress pulses scattering by the crack tip in the asym-
metrical impact procedure.
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The dimensionless functions AI(v) and AII(v) are universal functions of the crack speed v and the prop-
erties of the materials. They do not depend on the load or the crack body configuration. E and µ are
the Young’s modulus and Poisson’s ratio. KI and KII are the time-dependent stress intensity factors of
mode I and II with the instantaneous crack length vt . According to Griffith’s critical energy release rate
criterion, a crack must extend so that the crack tip releases energy at a rate equal to the dynamic fracture
energy of the material. Hence, under isothermal conditions, the growth criterion is G = 0, where G
is the energy release rate and 0 is the special fracture energy of arbitrary crack growth at nonuniform
speed. (These standard descriptions of G and 0 are more intuitive than precise, as they have dimensions
of energy per area or force per length.) Generally, G is a property of the local mechanical field of the
crack tip; it represents the effect of applied loading, the body configuration, and bulk material parameters.
0 characterizes resistance to crack extension and is related to the current crack length and speed.

A theoretical study by Lee and Freund [1990] analyzed the two-dimensional elastodynamic problem
of a semiinfinite plate containing a static edge crack under asymmetrical impact loading with a normal
velocity imposed suddenly on one side of the edge cracked plate. By using a universal function of the
crack growth speed and the static stress intensity factor, the time-dependent stress intensity factors KI

and KII are expressed as

KI(t, l, v)= kI(v)Kc(t, l, 0), KII(t, l, v)= kII(v)Kc(t, l, 0)

in which Kc(t, l, 0)= λ/(2πl)1/2, kI(v) and kII(v) can be found in [Lee and Freund 1990; Ravi-Chandar
et al. 2000], and λ is proportional to the stress pulse amplitude. Here, it is assumed that the results can
generalize for the situation of dynamic crack growth. That is, the stress intensity factor is a function of
crack length and time, as well as the crack speeds. Thus, we use the time-dependent intensity factors KI

and KII of Equation (2–1) to evaluate the crack growth speeds and dynamic stress intensity factors.

3. Experimental details

3.1. Materials. We test Hard-C 60# steel. Because its behavior reveals clear rate-dependent characteris-
tics in dynamic loading, it is a suitable material for examining how loading rates affect macroscopic and
microscopic failure. The material properties of Hard-C 60# steel are given in reference [Ma and Duan
2000]. Before testing, the material was normalized at 880◦ C, quenched rapidly in oil, and then tem-
pered at 200◦ C for 3 hours. The treatment created a relatively homogeneous martensitic microstructure,
significantly increasing the yield limit. Uniaxial tensile tests, under loading at a strain rate of 10−1 s−1,
show that the yield stress increases from 420 MPa to about 580 MPa. Quasistatic three-point bending
tests show that the fracture toughness is about 55.2 MPa m1/2. Figure 3 shows a SEM image of the
quasistatic fracture surface. It clearly reveals cleavage fracture traits. Measurements indicate that the
average hardness has reached 54 HRC, which is brittle enough for our purposes. Hence, we can assume
that the plastic deformation region, if it even exists at the dynamic crack tip, is negligibly small, and that
the results of impacting experiments can be interpreted using elastodynamic fracture theory outlined in
the previous section.
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Fig. 3
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Figure 3. The SEM picture of the brittle fracture surface of the opening mode cracks
under the quasistatic three-point bending loading conditions. The inset shows the corre-
sponding visual field.

4. Components in the collision system

To create a plane strain state at the crack tip in the edge crack plate specimen, we employ a special impact
system consisting of the flyer, specimen, transmission plate, and momentum trap. The geometry of the
impact components is shown in Figure 4. The single edge-notched specimen is a round disc 50 mm
in diameter and 10 mm thick. The initial notch about 5 mm long and 150µm wide is cut by electric
discharge machining; see Figure 4a. The other components are half round discs with same material and
radius, but with different thickness (see again Figure 4). Before the impact tests, all component surfaces
were machine-lapped flat using 3–15µm diamond powder papers and then polished on Texmeth cloth
over a flat plate using a 0.1–0.3µm diamond paste. The process ensured the surfaces were flattened to
an accuracy better than one Newton’s ring.

4.1. Experimental setup. The experiment consists of the following: a pressure-shear gas gun for pro-
ducing the compressive stress pulses; Mn-Cu stress gauge units for directly measuring the compressive
stress-time profiles [Ma 1998]; a soft recovery apparatus [Raiser et al. 1990]; two electrical circuits,
one for measuring the projectile impact velocities and another for examining the misalignment angles
between the impacting planes.

The pressure-shear gas gun has a launch tube 60 mm in diameter and 6 m long. A keyway runs along
the tube’s length to prevent the projectile from rotating during firing. The main part of the projectile is a
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Figure 4. The configurations and geometries of the crashing components used in this
study, including the specimen (a), transmission plate and flyer (b), and momentum plate
(c).

high-density plastic foam column 58 mm in diameter and 0.25 m long. Its front face is bonded to the flyer
and its rear end is connected an aluminum tail that holds two sealing O-rings and a key fit to the keyway.
Because the plastic foam has much lower impedance than the flyer, it can be taken for granted that the
compressive stress pulse is reflected into the tensile unloading pulse at the bond interface between the
flyer and the plastic projectile.

Figure 5 shows the experimental configuration schematically. The target assembly consists of an
inner ring supporting the specimens and an outer tapped ring connected to a holder. The holder system is
designed so that it can be accurately adjusted with small translations along the three axial directions and
small rotations in the three angle coordinates. (See the inset in Figure 5). Thus, the relative position and
orientation of the flyer and the specimen can be precisely fixed before the impact tests. A heavy steel
anvil is placed ahead of the momentum trap to reduce the influence of the projectile’s impulse. During
impact, the projectile momentum consists of two parts: one from the fast moving flyer and another from
its aluminum tail. In first collision stage, that is, when the flyer hits the transmission plate, the flyer
imparts its momentum to the momentum trap, causing stress wave propagation, but is then taken away
after it separates from the specimen. In this way, we prevent the tensile unloading pulse from again
loading the specimen and ensure that it is only loaded with a single pulse. In the later stage of impact,

Fig. 5 

 1

Figure 5. The schematic of the target assembly.
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the aluminum tail hits the steel anvil and transfers its momentum to the steel anvil. Energy is further
dissipated through the plastic deformation of lead sheets located in the other end of pressure chamber;
see Figure 5. The steel anvil then contains specimens which can be easily seen and recovered intact for
the postmortem microscopic analysis.

4.2. Experimental procedure. The impact test takes place in a pressure chamber which can sustain a gas
pressure up to 16 MPa. Prior to the test, it is evacuated to a pressure of 2–3×10−6 Pa, and, during the test,
its internal pressure remains at 2–5 × 10−5 Pa. The inclination pitch between the flyer’s impacting planes
and the target plate is measured using a tilt system consisting of three pairs of pins and an amplifying
circuit. The measurements show that the inclination pitches are well controlled on the order of 2–4×10−5

radians. The impinging velocities of the flyer are initialized by the method described in [Fowles et al.
1970]; the largest measured relative difference among the impact velocities is less than 2 percent. The
Mn-Cu stress gauge technique [Ma 1998] is used to measure how the compressive stress varies with
time at impact. Gauges are embedded at two interfaces of the collision system; one is in front of the
specimen and anther is behind it (see Figure 5). For each shot, a TPM3323 oscilloscope records two sets
of compressive stress-time data. We use the data for analyzing the experimental results in the following
section.

5. Experimental results and discussion

In the impact experiment, we conducted nine shots with the asymmetrical plate impact technique. We
observed two different types of failure mechanisms when the impact velocity increased from 150 m/s to
210 m/s. At velocities less than 180 m/s, only crack fracture occurs. As the impact velocity is increased
into the range of 190–210 m/s, a complex failure takes place involving both crack fracture and microcavity
damage in the crack tip field. The former catches our attention in this article, but we may consider the
latter in the future. This result shows that the failure behaviors are closely related to the loading rates.

Figure 6 shows the compressive stress-time profiles of two shots at the impact velocities of 173 m/s
and 204 m/s. It is clear that the stress pulses last for less than a microsecond and approach very nearly
the theoretical value 830 ns. The pulse rise time is less than 200 ns. In this figure, the curve with the
higher peak stress is the input stress pulse measured at the interface between the transmission plate and
the specimen, and the curve with lower peak stress is the output stress pulse measured at the interface
between the specimen and the momentum trap. The dissimilarity between the two stress pulse profiles a
and b (see Figure 6) implies that more mechanical energy flows into the specimen than out of it. Therefore,
some mechanical energy is dissipated as the internal structure changes through microcrack formation,
crack growth, plastic flow and microcavity damage. Note from the figure that a larger difference of the
amplitudes of stress pulses usually presents before the peak compressive stress is reached. This indicates
that dissipation of mechanical energy and change of material microstructure has already taken place
during the first half of the stress pulses. At low impact speed (see Figure 6a), the similarity between the
curves suggests that the stress pulses induce an elastodynamic response and only uncomplicated failure
mechanisms such as crack growth occur; at high impact speed (see Figure 6b), the differing curves
indicate that more complex failure mechanisms occur, involving not only crack growth, but also plastic
softening and material damage. Ma and Duan [2000] report related results in detail.
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Figure 6. The compressive stress-time functions measured by Mn-Cu stress gauges, at
impact velocities of 173 m/s (the first figure) and 204 m/s. The curve a represents the
gauges embedded at the interface between the transmission plate and specimen, and the
curve b is for gauges between the specimen and momentum plate.

Figure 7 shows the SEM images of the fracture surface when the impact speed was 173 m/s. The
fracture surface consists of three distinct regions: a prenotched region, a dynamic fracture region, and
a static fracture region. The uniform dynamic crack growth region suggests that a plane strain state at
the extending crack tip prevails during impact. Figure 8 shows the corresponding SEM picture of the
crack growth path, which has a straightforward interpretation as a discontinuous extension mechanism
of moving cracks. Clearly, the crack grows in two stages. During the first, the crack begins to form
at the notch tip on the impacting side and extends about 130µm normal to the notch periphery before
kinking. Because the loading rate is high enough, the stress intensity factor of the notch tip field reaches
the material’s fracture toughness and initiates a crack. Additionally, because the notch tip lacks surface
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Figure 7. The SEM picture taken from the central region of the specimen fracture sur-
face. The inset shows explicitly the fracture mechanism of the plane strain state at the
crack tip.

Fig. 8 
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Figure 8. As seen under a microscope, the main crack interacting with the microcracks.
The visual field is located in the sample’s symmetry plane.
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traction, the crack must be initiated by the hoop tensile stress, whose the intensity has gone beyond the
yield limit, resulting in plastic softening. It seems clear that the cracks have started through the ductile
initiation mechanism. This conclusion is also supported strongly by the residual opening displacement
of the crack face indicated by the ellipse (1) in the figure. Moreover, in our prior impact experiments
[Ma and Duan 2000], we have observed that the angle of crack initiation relative to the original prenotch
line is approximately 55o, which does not deviate far from the location of crack initiation observed in
[Ravi-Chandar 1995; Ravi-Chandar et al. 2000], nor from the point of maximum circumferential stress
calculated by [Lee and Freund 1990]. Evidently, the geometry the notch tip and the mechanism of the
plastic softening are responsible for the slight discrepancy. Furthermore, the crack extends approximately
normally to the notch periphery. This suggests that the crack growth mechanism is dominated by mode
I cracking at this time even though the intense compressive stress pulse generates a mixed-mode stress
field at the crack tip. The first image in Figure 9 magnifies the fracture surface. Comparing the observed
features with the static brittle features shown in Figure 3, we see that the crack growth behaviors exhibit
obvious cleavage characteristics. Therefore, in this stage, the mode I crack begins and grows by dif-
ferent mechanisms, that is, by ductile initiation and brittle growth. The maximum hoop stress criterion
[Ravichandran and Clifton 1989] causes these to mechanisms occur.

In the second stage, the growing crack changes its extension orientation from perpendicular to the
notch periphery to compressive stress pulse propagation. That is, the crack grows along the original
crack line on which shear stress is maximal. Hence, the maximum shear stress criterion now governs the
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Figure 9. Microscopic image of the dynamic fracture surface after mode I cracking
illustrates ductile cracking under asymmetrical impact conditions; the view field is above.
The second image illustrates the same, but with mode II cracking.
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crack extension. Microscopic images of the dynamic fracture surface (see the second image in Figure
9) show extensive dimpling and drawing, implying that ductile fracture has become the dominant failure
mechanism. Actually, it is the large shear stress on the crack line that induces the heating and plastic
softening. From the discussion above, we conclude that the crack fracture extension mode has undergone
a transition from mode I to mode II, and the failure mode has also experienced a complex change from
ductile initiation, to brittle growth, and back again to ductile growth, after the dominant stress driving the
crack growth changes from the maximum hoop tensile stress at the crack tip to maximum shear stress
along the crack line.

From the experimental results obtained above, we have seen that two crucial mechanisms of the crack
growth need further attention. The first is the kinking phenomenon along a curved path. It should be
noted from Figure 8 that the crack kinking occurs at the point where the mode I crack growth ends and the
mode II crack growth starts, as indicated by the ellipse marked (2). On the one hand, the asymmetrical
impact loading produces an elastic, perhaps following plastic, compressive stress pulse that propagates
as a plane pulse in the impacted side of the specimen. When the pulse reaches the notch tip, an unloading
tensile pulse is generated due to the dispersion the stress wave. Because the impact speed is high, the
consequent tensile pulse is strong enough to induce mode I crack initiation and growth. As the energy
dissipation needed for crack growth increases, the intensity of the hoop tensile stress decreases rapidly;
in contrast, the shear stress intensity increases quickly. As the hoop stress becomes weaker than the shear
stress, shear stress effects begin to dominate the crack growth. On the other hand, inherent flaws in the
material, such as those marked by ellipse (2) Figure 8, can also potentially cause the crack to kink. At
very least, these flaws favor crack kinking. Evidently, both the local mechanical field and the internal
structure of the material can cause crack kinking.

The second crack growth mechanism is one of discontinuous extension. During the impact process,
the precursor of the compressive stress pulse first makes the material flaws nucleate, grow, and develop
into a number of microcracks. Then, the shear stress acting along crack line initiates and extends micro-
cracks ahead of main crack. Finally, these microcracks develop into a series of macroscopic subcracks.
Subsequently, the interaction and coalescence of these subcracks result in an unsteady advance of the
main crack. This extension mechanism can be clearly seen from the crack growth path illustrated in
Figure 8. Material flaws are marked by six ellipses numbered (1)–(6). These nuclei develop later into
microcracks. At the bottom, mark (6) denotes a microcavity, near which the crack has arrested but
not yet coalesced. This demonstrates that several mechanisms are active as the unsteady crack extends.
For instance, when the main crack interacts with mature microcracks near the crack tip and coalesces
with them, the remaining microcracks a bit farther from the crack tip simultaneously nucleate and grow
due to the shear stress, and then the subsequent interaction and coalescence of the cracks result in the
discontinuous crack growth. In the present example, the high intensity stress pulses have caused five
subcracks to nucleate and grow, exhibiting the entire process of unsteady crack extension. In the low
speed shots of our experimental study [Ma and Duan 2000] and other previous studies [Ravi-Chandar
and Knauss 1984], authods observed and investigated theoretically [Abraham and Gao 2000; Needleman
1999] only the interaction between the main crack and one subcrack ahead of the crack tip. However, it
is worthwhile to investigate the mechanisms of multiple subcrack nucleation and growth. We hope that
more interesting mechanisms of crack growth will be revealed which would probably not be found when
only studying the interaction between a main crack and a single subcrack.



284 WEI MA AND ZHUPING DUAN

6. Discontinuous transient crack growth model

During an asymmetrical impact of an edge crack plate specimen, the flyer’s kinetic energy is transformed
into the total impact energy of the collision system in such a way that compressive stress pulses enter the
specimen at the face hit by the flyer and exit from other face into the momentum trap (see Figure 5). This
implies that both positive and negative work have been done on the specimen body during the impact.
Precisely, the former is equal to the kinetic energy of flyer and the latter is the kinetic energy of the
momentum trap. Clearly, the net work adds to the internal energy of the material and dissipates through
mechanisms such as crack growth, plastic deformation, and material damage. The energy equilibrium
condition for the process [Freund 1990] is

t2∫
t1

∫
S1

σ
(1)
i j n(1)j

∂u(1)i

∂τ
d S1 dτ −

t2∫
t1

∫
S2

σ
(2)
i j n(2)j

∂u(2)i

∂τ
d S2 dτ =

t2∫
t1

FC dτ , (6–1)

where Si (i = 1, 2) are the plane curves around the areas affected by the compressive stress pulses σ (i).
1t = t2 − t1 is the pulse time interval. The two terms on the left side of the equal sign in Equation
(6–1) represent the positive and negative work done by the stress pulse in the interval, and therefore,
the right side becomes the net work and is equal to the total energy dissipated in the specimen as the
material responds to the dynamic loading. If we are only considering the crack growth mechanism and
neglecting other energy dissipation mechanisms such as plastic deformation and material heating, the
integrated function FC is the instantaneous rate of energy flow toward the crack tip contour C through
a small contour around it. The energy dissipation rates can be determined from the energy equilibrium
relation Equation (6–1) and the compressive stress-time curves (see Figure 6). They are shown in Figure
10. The figure shows that the energy dissipates in four stages. The first corresponds to rapid energy
dissipation (O–A in Figure 10), which suggests that not only the first subcrack initiates and grows but
that other subcracks, such as the second and third, also initiate and advance, one after the other. Hence,
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Figure 10. The energy dissipation rates are obtained from the measured stress pulse
time series.
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a great quantity of energy dissipates through the crack forces. In the second stage (A–B in Figure 10),
the energy dissipation becomes much more stable, implying either that no new subcracks form or that
some do but arrest immediately. In the third stage (B–C in Figure 10), an abrupt decrease in energy
dissipation implies that the subcracks have coalesced and the main crack has stalled in the specimen. In
the last stage (C–D in Figure 10), energy dissipates at a constant low level, suggesting the process of
crack growth has stopped. The energy put into crack initiation and growth is mainly associated with the
first three stages of the energy dissipation process.

The main, rapidly propagating crack consists of five subcracks with lengths lk (k = 1, 2, . . . , 5) (see
Table 1). For simplicity, we assume that the subcracks grow at constant velocity after they form and
dissipate energy each in proportion to its length. Thus, each subcrack grows steadily, but the main crack
advances unsteadily with nonuniform velocities due to the different initial time and growth rate of each
subcrack. Each subcrack dissipates energy Gk :

Gk = Ck

ta
k∫

t i
k

[E(t)− Ea] dt, Ck = lk/ l, (6–2)

where E(t) is the current rate of energy dissipation of crack growth. Ea and l are the rate of energy
dissipation of the crack arrest and the length of the main crack. If the critical energy release rates for crack
initiation are assumed to be equal to those of the crack arrest fracture energy, then the initiation times
t i
k (k = 1, 2, . . . , 4) of the first four subcracks can be determined from the energy dissipation in Figure

10, and the corresponding ending times of subcrack growth, ta
k (k = 1, 2, . . . , 4), can be determined by

integrating the equations for dynamic crack tip motion Equation (2–1) and using the relation (6–2) as

1 −µ2

E

ta
k∫

t i
k

[
AI(v)K 2

I + AII(v)K 2
II
]
v dt = 0k, (6–3)

Experimental results Results based on Results obtained from the
in this study the dynamic fracture theory† elastodynamic problem††

No. (k) lk (mm) V a
k (mm/µs) t i

k (ns) 1tk (ns) V a
k (mm/µs) t i

k (ns) 1t (ns)
1 0.132 1.34 168 98.51 1.59 168 83.02
2 0.128 1.47 198 87.10 1.77 198 72.32
3 0.048 2.82 220 17.02 2.49 220 18.28
4 0.068 2.73 245 24.91 2.21 245 30.77
5 0.076 2.54 352 29.92 1.97 337 38.58

Table 1. Characteristic parameters of each subcrack. Here the lk (k = 1, 2, . . . , 5) are
the lengths of five subcracks. t i

k , V a
k , and 1tk are the initial time, average velocities, and

interval of time for growth of each subcrack. †[Freund 1990]; ††[Lee and Freund 1990].
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for k = 1, 2, . . . , 5, where 0k = Gk/ lk is the mechanical energy flowing into the subcrack tip per unit
crack advance length. For the last subcrack, the arrest time ta

5 can be determined directly from Figure
10, and it initiation time t i

5 can be obtained from (6–3). Table 1 shows the results.
Figure 11 shows the lengths of the subcracks and the positions of the main crack tip at times, t i

k ,
(k = 1, 2, . . . , 5). The first shows results of the dynamic fracture theory [Freund 1990], and the second
shows analytic results of the idealized elastodynamic problem [Lee and Freund 1990]. As the first
subcrack is advancing (with an average velocity of V a

1 ), the compressive stress pulses propagating at
the longitudinal wave speed 6020 m/s arrive at the initial location of the second subcrack, causing it to
initiate at time t i

2. This implies that, on the macroscopic scale, the main crack grows suddenly longer and
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Figure 11. The lengths of the subcracks and the site of the main crack tip at characteris-
tic times. (a) displays the analytic results from classical dynamic fracture theory and (b)
is that of Lee and Freund [1990].
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the growth velocities jump discontinuously from slow to fast. Note that, at this time, the second subcrack
tip replaces the first subcrack tip to become the main crack tip. In the same way, subsequent initiation
and growth of other subcracks induce crack growth velocity jumps. By assuming that the behavior of
each subcrack follows from the elastodynamic theory of continuum mechanics, we explain the unsteady
growth of the main crack by some interesting features in the history of the extension velocities.

By fitting results in Figure 11 to curves, we can obtain crack tip positions as a function of time. By
differentiating, we find speed versus time, illustrated in Figure 12. At t i

1, crack growth begins. Only the
first subcrack has started. Its uniform speed V a

1 completely determines the overall growth rate and the
initiation of the main crack. Then, as other subcracks begin to form and grow, the main crack grows
faster and more erratically: its speed goes from constant subsonic speeds less than Rayleigh wave speed
cR to nonuniform intersonic speeds higher than shear wave speed cs. After that, some of the subcracks
stop growing, but a few that extend continuously into the main crack continue to grow steadily for about
100 ns at an intersonic speed near

√
2cs. Finally, when the first several subcracks stop advancing and

coalesce, the main crack growth is completely governed by the last, unsteadily growing, subcrack. The
extending speed quickly decreases to subsonic levels, and the cracking ceases.

The theoretical and numerical simulation studies [Needleman 1999; Rosakis et al. 1999; 2000; Abra-
ham and Gao 2000; Geubelle and Kubair 2001] have shown two key characteristics of intersonic crack
growth: (i) if crack growth speed is between cR and cs, the energy release rate of the moving crack
tip is negative, and elastodynamic fracture energy theory cannot describe the mechanisms of unsteady
intersonic crack growth; (ii) the steady growth speed of a mode II crack should be either subsonic (that
is, lower than cR) or intersonic (higher than the cs), but stable intersonic growth speed will consistently
come close to a constant speed of about

√
2cs. Based on the discontinuous crack growth model, we can

conclude that the initial compressive stress pulses control the subcrack initiation. Actually, whether the
subcrack can initiate under asymmetrical impact loading depends completely on the energy flux toward
the crack tip, that is, the intensity of the stress pulse. The initial time is closely related to the propagation
speed of the stress pulse. Here, the compressive stress pulse propagates at the longitudinal wave speed,
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Figure 12. The speed-time profiles of the main crack growth from the interacting tran-
sient cracking model.
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which in all probability makes the subcracks initiate continuously in short time intervals competing with
the arrival of the longitudinal wave. Hence, the continuous initiation and growth mechanisms of several
subcracks ahead of the crack tip lead to an extremely rapid increase of the crack growth speed, which is
responsible for the transition from subsonic to intersonic.

Generally, the theory of continuum mechanics can effectively predict the growth of a single crack;
however, it is too limited to explain the simultaneous initiation and growth of several cracks. This is
possibly the source of the nonsensical negative energy release rate. However, using the discontinuous
crack growth model put forward here, this nonsense is straightforwardly and reasonably interpreted.
Moreover, we have seen that the successive growth and coalescence among the subcracks make the main
crack grow steadily at intersonic speeds of about

√
2cs, but the reason for this specific speed cannot

yet be understood clearly through qualitative analysis based on the discontinuous crack growth model.
Quantitive understanding of intersonic crack growth will require more delicate and profound theoretical
analysis and numeral simulation. In conclusion, the discontinuous transient crack growth model can
explain very well why the crack growth speed quickly increases from subsonic to intersonic and can at
least qualitatively describe the various features of the intersonic crack growth.

7. Conclusion and remarks

We summarize as follows:

(1) We developed a recoverable plate impact experiment with loading rate of 108 MPa m1/2s−1 for
studying the mechanisms of the shear dominated crack extension. Using this technique, we can
generate a single compressive stress pulse of submicrosecond duration and produce a plane strain
deformation field at a mode II crack tip in the edge crack plate specimen.

(2) The dynamic fracture testing results of Hard-C 60# steel indicate that the stress pulse can induce
several microcracks ahead of the crack tip to nucleate and grow simultaneously and to finally develop
into macroscopic subcracks. The interaction and coalescence of these subcracks is responsible for
unsteady extension of the shear dominated cracks. We inferred failure mode transitions, both from
a mode I to mode II crack and from cleavage to ductile fracture.

(3) We established a discontinuous transient crack growth model and analyzed the unstable extension
of the shear dominated cracks with discontinuously varying extension speeds. The model describes
qualitatively the main characteristics of the intersonic crack extension, such as the forbidden speed
region between cR and cs, and the steady limit speed

√
2cs when the crack growth rates increase

from subsonic to intersonic. The results show that transient mechanisms such as the nucleation,
interaction and coalescence among the subcracks cause the main crack extension speed to rapidly
exceed the forbidden speed and that subsequent stable growth of subcracks cause the intersonic
growth of the main crack.
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ANISOTROPIC STRESS STATE AROUND INTERNALLY PRESSURIZED
MICROCHANNELS

YONG XUE GAN

This work derives internal pressure induced stresses in material imbedded with square-shaped microchan-
nels. The first part provides background on microchanneled materials at micro and nanoscale to motivate
investigating the stress and deformation states. The second part develops a simplified model to charac-
terize the plastic flow and/or motion of dislocations within crystalline, microchanneled materials. The
model helps identify slip bands around the channels under plane strain deformation conditions. The
third part derives solutions to the stress states around the microchannels, obtaining closed form solu-
tions which hold for regions containing and away from the channel boundary. Figures depict the stress
solutions in both physical and stress space. The results predict nonuniform deformation states around
the channels and also reveal the yield conditions associated with the plastic flow along different slip
bands. The work concludes with case studies on the stress states of microneedles containing square
microchannels for applications such as fluid injection, nanofiber growth, and cell registration.

1. Introduction

Microchannels and arrays of channels function as important components in many microscale and nano-
scale systems [Allen 2005]. For example, microchannels and their arrays can be fabricated for molecular
sieves, particle filters, capillary pores, or nutrient delivery units. Microchannels have also been used for
chemical reaction flow beds, nanoimprinting molds, ink jets, and templates for synthesis of nanofibers.
Fabrication technology for microfluidic channels has been extensively studied [Franssila 2004]. To make
a microchannel, it is very common to sandwich a sacrificial photoresist layer between two layers. Support-
ing posts may be added into the photoresist to allow larger embedded features, as shown by Hwang and
Song [2007]. After photolithography, microchannels form from selective dissolution of the photoresist
[Senturia 2001].

Many publications explore new technology for fabricating microchannels. A three dimensional manu-
facturing process has been developed to make embedded microchannels using scanning laser systems, as
shown by Lee et al. [2003], Li et al. [2004], Yu et al. [2004], Yu et al. [2006a], and Yu et al. [2006b]. The
authors discussed potential ways to manipulate and position cells using suction forces. Recently, Ziegler
et al. [2006] fabricated neural probes with built-in microfluidic channels by micromolding and thermal
bonding of Parylene without using a photoresist. The probes containing the fluidic channels were tested
for delivering small amounts of drugs into biological tissue as well as for neural recording.

Keywords: microchannel, anisotropic deformation, stress field, plastic flow, nanocrystalline material.
This work is supported by The Durbin Faculty Development Grant from The Cooper Union for the Advancement of Science
and Art.
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One issue confronting microchannels is mechanical deformation. Engineers must ensure that the
channels maintain a constant size, even as they are put through the rigors of their various applications.
For microchannels used for inkjet printing, biofluid printing, fuel injection, drug delivery, or integrated
circuits (IC), dimensional stability requires good cooling. A constant size is also required to successfully
register a single cell in a microwell or channel. And, when using microchannels for bioparticle registra-
tion [Zhe et al. 2007] or microinjection [Lu et al. 2007], controlling their size is necessary for accurate
counting or medicine delivery.

Microchannels in devices such as microfluid droplet injectors are typically under under both thermal
and internal compressive loads, as addressed by Tseng et al. [2002a] and Tseng et al. [2002b]. These
loads can cause single channels to deform in a way the could significantly influence the performance of
the entire channel array structure, in view of hydraulic cross-talk, flow resistance and fluid accumulation.
In microfluidic devices, the stresses around the microchannels come from other sources, such as fluid
pressure, electric potential, van der Waals, and capillary forces. Sidewall contact friction, as described by
Timpe and Komvopoulos [2006], may also cause the stresses to redistribute around the microchannels.
Predicting the deformation state around a microchannel requires determining the stress field.

The problem of microcavities in isotropic plastic materials has caught much attention because of their
importance in fracture mechanics. For example, Tvergaard and Hutchinson [2002] analyzed numerically
a two-dimensional plane strain model with multiple discrete cavities and found that cavity interaction
determines the threshold for crack initiation and their resistance to growth. Lubarda et al. [2004] studied
how cavities grow by emitting dislocations and proposed an onset criterion for such events at the surface
of a cavity under remote tension. They also calculated, for any initial cavity size, the critical stress for
emitting a single dislocation or a dislocation pair. They found that the critical stress decreases with
increasing cavity size and also found that dislocations with a wider core are more likely to be emitted
than ones with a narrow core.

Many factors influence the growth of cavities in elastic-plastic crystalline solids, for example, plastic
anisotropy [O’Regan et al. 1997] and crystallographic orientation [Schacht et al. 2003]. The length-scale
effect in plastic deformation has also been found in the growth of microcavities [Fleck et al. 1994];
the nonlocal elastic-plastic material model reveals that the rate of cavity growth decreases significantly
when the cavities are shrunk to sizes approaching the characteristic length of the material [Tvergaard
and Niordson 2004]. The cavity size distribution also affects the crack growth rate [Needleman and
Tvergaard 1991]. Huang et al. [1991] and Tvergaard [1991] have addressed cavitation instabilities in
elastic-plastic solids.

Using the formalism of anisotropic slip line theory, Kysar et al. [2005] derived the stress state in a
cylindrical void due to far-field external compression. In recent work [Gan and Kysar 2007], we presented
the solutions to the stresses from both internal pressure and far-field loading. In addition, we obtained
experimental and simulation results to validate the theory predicting the deformed state in materials
containing microcavities [Gan et al. 2006]. In fabricating microelectromechanical systems (MEMS) and
nanoelectromechanical systems (NEMS) in single crystalline materials such as Si, Cu, Ni, Ag, Au, and
Pd, sharp-cornered channels may form because of anisotropic etching [Senturia 2001]. Understanding
the deformation of materials containing such channels — which will entail studying the anisotropic stress
states around them — will be helpful for MEMS and NEMS design.
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This work uses a simplified plastic flow model to derive stresses near square-shaped microchannels.
We determine slip bands around the channels in materials under plane strain deformation conditions and
establish different stress zones associated with the active slip of two systems. We derive closed-form
solutions in stress zones that either contain or are away from the channel inner boundary. The stress
solutions are plotted in both physical space and stress space. The results will be used to analyze the
deformation state around the microchannels. Finally, we give stress maps of microneedles containing
square shaped microchannels.

2. Plasticity analysis

2.1. Slip model. If the matrix material containing microchannels has a well defined yield point, the
plastic flow analysis of Nadai [1950] will determine the stress state in the infinitesimal control volume
containing the boundary point O shown in Figure 1a. Define x-y coordinates so that the x-axis is parallel
to the internal pressure. Also define local ξ -η coordinates so the ξ -axis follows the plastic flow. The ξ -η
coordinates define the principal stresses of the problem. The maximum normal stress σm is parallel to
the η-axis, and the maximum shear stress τm is along the ξ -axis.

Assuming that the angle between x and ξ is φ, the principal stress components are

σm = −
p
2

[1 − cos(2φ)] , τm = −
p
2

sin(2φ).

Define −εxx as the compressive plastic strain in the η direction. Assuming incompressibility, the mate-
rials expands in all other directions, and the magnitude of strain due to the expansion must be εxx/2. If
the pressure along the entire boundary NT is uniform, as shown in Figure 1b, the normal strain along the

−φ

φ

ξ

η

x

y

σ   = − p
xx

Sl
ip

 b
an

d 
1

Slip band 2

M N

TS

(a) (b)

OO

σ

τ m

m

Figure 1. Schematic of a microchannel and the deformation state: (a) square microchan-
nel, (b) magnified region around point O showing the slip in the material under internal
pressure.
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η-axis, εm , and the shear strain along the ξ -axis, γm , are

εm =
εxx

4
[1 + 3 cos(2φ)] , γm =

3εxx

4
sin(2φ).

In this problem, we consider slip to be the major plastic deformation mechanism. The plastic flow along
the ξ -axis results in vanishing net normal strain, that is

εm =
εxx

4
[1 + 3 cos(2φ)] = 0,

from which cos(2φ)= − 1/3 and φ = 54.7◦. By symmetry, another solution φ = − 54.7◦ holds in the
quadrant with y < 0 and x > 0, as schematically shown in Figure 1b. Also by symmetry, we obtain the
distribution of all the slip bands around the microchannel, as shown in Figure 2. From Figure 2, only one
slip band exists in each half-quadrant, that is, only one slip system is active. For example, in the angular
region 0 ≤ θ ≤ π/4, slip system 1 is active, while in π/4 ≤ θ ≤ π/2, only slip system 2 is active, and
so forth. According to Rice [1973], if the single slip condition holds, the two families of slip lines form
mutually orthogonal nets. Slip lines parallel to the slip direction are defined as α-lines; and those normal
to the slip plane are called β-lines. In this case, the α-lines are along the ξ -axis, while the β-lines are
along the η-axis.

2.2. Yield surface. Schmid’s Law for a single split system describes the state just before it yields:

n ·6 · s = ±τ, (1)

54.7 o

-54.7o

y

x

Figure 2. Illustration of the slip bands around the microchannel.



ANISOTROPIC STRESS STATE AROUND INTERNALLY PRESSURIZED MICROCHANNELS 295

X X

Y

Y

O

X

Y

OAC

B

D

A
B

C
D

E

F

τ

δ

(a) (b)

(1)
(1)

(1)
(1)

(2)

(2)

(2)

(2)

Figure 3. Yield surface associated with the two active slip systems: (a) yield surface
without rotation, (b) rotated yield surface.

where τ is the shear strength, n is the surface normal of the slip plane, s is a unit vector along the slip
direction, and 6 is the stress tensor given in rectangular coordinates as

6 =

 σxx σxy σxz

σyx σyy σyz

σzx σzy σzz

 . (2)

We denote the rectangular components of n and s by (sx , sy, sz) and (nx , ny, nz). Because we consider
here deformation under the plane strain conditions, the slip occurs within the x-y plane, and sz = 0. For
the plane strain state, σxz = σzx = 0 and σyz = σzy = 0. Also, because the stress tensor is symmetric,
σxy = σxy .

Fully written out in components, Equation (1) reads

nxσxx sx + nyσyx sx + nxσxysy + nyσyysy = ±τ,

or, rearranging,
nx sxσxx + nysyσyys + (nx sy + nysx)σyx = ±τ.

The components of s and n are expressed in the slip angle φ as

sx = cosφ, sy = sinφ,

nx = − sy = − sinφ, ny = sx = cosφ,

and the yield condition becomes either of

sin(2φ)
σxx − σyy

2
+ cos(2φ)σxy = ± τ or σxy = tan(2φ)

σxx − σyy

2
±

τ

cos(2φ)
. (3)

Let X = (σxx − σyy)/2 and Y = σxy . The yield functions as defined by Equation (3) can be plotted
in the stress space or 5-plane with X as the abscissa and Y as the axis. The function can be used to
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Vertex A B C D

X
(
σxx − σyy

2τ

)
3
√

2
4

0 −
3
√

2
4

0

Y
(σxy

τ

)
0 3 0 −3

Table 1. Yield surface vertices on (left) X -Y plane and (right) the X∗-Y ∗ plane.

define a yield surface shown in Figure 3a and derived as follows. Obviously, two parallel lines define
the yield condition for the active slip of slip system 1 with the angle φ. The slope of the two lines is
tan(2φ), and the two lines intercept the Y -axis at ±τ/ cos(2φ). Similarly, for the slip system with the
slip angle −φ, slip system 2, the yield surfaces are represented by another two lines with slope − tan(2φ)
and intercepting the Y -axis at ±τ/ cos(2φ). Altogether, these four lines draw the diamond shape shown
in the figure. Table 1 lists the coordinates of the diamond’s vertices.

In a local ξ -η coordinate system with the ξ -axis along the slip direction s and the η-axis along the slip
plane normal n, the yield surface is obtained by rotating clockwise by 2φ the original yield surface in
the 5-plane. Figure 3b shows the rotated yield surface plotted on the 5∗-plane with X∗ as the abscissa
and Y ∗ as the axis. Table 2 lists the vertices.

We will use these results from the analysis of yielding for solving the stresses in Section 3.

3. Stress field solution

3.1. Boundary condition. Because the inner surface of the microchannel is under compression, we have
at point O that σxx = − p, where p is the internal pressure. As an approximation, we assume that this
boundary condition propagates into the inner vertical wall of the channel. We assume that σxy = 0 on
the inner wall because the free surface condition holds. However, σyy needs to be determined from the
yield conditions. We note that the sign before τ in the right hand sides of Equation (3) should be positive
because the compressive state inside the channel implies (σxx − σyy)/2 < 0. Thus, the stress state at
point O in the x-y physical space corresponds to point C in the X -Y stress space.

Vertex A∗ B∗ C∗ D∗

X∗

(
σxx − σyy

2τ

)
−

1

2
√

2
2
√

2
1

2
√

2
−2

√
2

Y ∗

(σxy

τ

)
−1 −1 1 1

Table 2. Yield surface vertices on the X∗-Y ∗ plane.
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Figure 4. Typical stress zones in the angular region 0 ≤ θ ≤ π/4.

Once the sign before τ in Equation (3) is known, the stress component σyy can be found from a
simplified yield condition, that is,

σxy = tan(2φ)
σxx − σyy

2
+

τ

cos(2φ)
.

Substituting σxx and σxy into this equation and solving for σyy yields

σyy =
τ

sin(2φ)
− p.

Therefore, the boundary conditions can be expressed as

σxx = − p, σyy =
τ

sin(2φ)
− p, σxy = 0.

In polar coordinates, the stress components on the boundary are

σrr = σxx cos2 θ + σyy sin2 θ + σxy sin(2θ)=
2τ sin2 θ

sin(2φ)
− p,

σθθ = σxx sin2 θ + σyy cos2 θ − σxy sin(2θ)=
2τ cos2 θ

sin(2φ)
− p,

σrθ = −
1
2
(σxx − σyy) sin(2θ)+ σxy cos(2θ)=

τ sin(2θ)
sin(2φ)

.
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Vertex x-position y-position

a 1 0
b 1 1

c 1 +
√

2/3 2/3

d 1 +
√

2 0

e 2 +
√

2 2 +
√

2

f 2 + 5
√

2/3 4/3 +
√

2

g 4 + 3
√

2 0

Table 3. Stress zone vertices.

3.2. Stress zones. The analysis of plastic flow and slip band in Section 2.1 implies the region around the
microchannel can be divided into discrete zones as shown in Figure 4. In each zone, the stresses show
similar properties. For example, in stress zone 1, the stresses are influenced by the boundary conditions
given in Section 3.1. Stress zone 2 is adjacent to stress zone 1, and all the points in the two zones share
the same β-line. Stress zone 3 is also adjacent to stress zone 1, but all the points in these two zones
share the same α-line. Stress zone 4 is bounded by two α-lines (ce and d f ) and two β-lines (cd and e f ).
Additional stress zones such as stress zone 5 and stress zone 6 can be defined, as illustrated in Figure 4.
For convenience, Table 3 lists the vertex coordinates in these stress zones.

3.3. Stress zone 1. Suppose that R1 is an arbitrary point within stress zone 1. The α-line passing through
R1 intercepts the inner boundary of the microchannel at point P1, while the β-line intercepts the inner

54.7 o
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Figure 5. Drawing for finding stress in stress zone 1.
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boundary at point Q1, as shown in Figure 5. At the boundary points P1 and Q2, the stress states are

at P1 :



σrr =
2τ sin2 θp1

sin(2φ)
− p,

σθθ =
2τ cos2 θp1

sin(2φ)
− p,

σrθ =
τ sin(2θp1)

sin(2φ)
,

at Q1 :



σrr =
2τ sin2 θq1

sin(2φ)
− p,

σθθ =
2τ cos2 θq1

sin(2φ)
− p,

σrθ =
τ sin(2θq1)

sin(2φ)
,

where θp1 and θq1 are defined as in Figure 5.
Now define a local ξ -η coordinate system with its ξ -axis along the α-line and the η-axis along the

β-line for the split system with slip angle φ = 54.7◦. By applying the slip line theory as developed
by Hill [1998] and Rice and Tracey [1969], the stress component σξξ in these coordinates is, at point
R1, the same as at point P1, while σηη at point R1 equals that at Q1. This is because the equilibrium
equations are satisfied just before yielding. If there is no body force, the equilibrium conditions in the
two dimensional Cartesian coordinate x-y system are

∂σxx

∂x
+
∂σxy

∂y
= 0,

∂σyx

∂x
+
∂σyy

∂y
= 0.

Because the equilibrium must be satisfied for the entire stress zone, it is possible to seek a solution
along the characteristics that are the anisotropic slip line traces, as mentioned before. Therefore, we are
ready to determine the relationship among stress components along the α-line or β-line. If a new ξ -η
coordinate system is chosen so that ξ and η coincide with the α-line and the the β-line, σξη = σηξ = τ

holds in the initial stage of yielding, with τ being the critical shear stress for the active slip system. This
ignores any strain hardening effect. The equilibrium conditions in the local ξ -η coordinate system are

∂σξξ

∂ξ
= 0,

∂σηη

∂η
= 0.

The solutions of characteristics are

σξξ = σξξ (ξ1, η1) along the α-line:
dy
dx

= tanφ,

σηη = σηη(ξ2, η2) along the β-line:
dy
dx

= − cotφ,

σξη = σηξ = τ along both the α- and β-lines,

(4)

where φ is the slip angle, (ξ1, η1) and (ξ2, η2) are boundary points, and P1 and Q1 are associated with
the α-line and β-line, respectively. Using this, the yield conditions, and the related boundary conditions,
the stress state in stress zone 1 at the initial stage of plastic deformation can be fully determined.

At point P1, the value of σξξ is found from the polar stress components, that is,

σξξ =
σrr + σθθ

2
+
σrr − σθθ

2
cos [2(φ− θ)] + σrθ sin [2(φ− θ)] .
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Substituting the values of polar stresses at point P1 from Section 3.3 yields

σξξ = − p +
τ

sin(2φ)
−
τ cos(2θp1)

sin(2φ)
cos [2(φ− θ)] +

τ sin(2θp1)

sin(2φ)
sin [2(φ− θ)] , (5)

where θp1, which is related to the position of R1(r, θ), can be expressed as

θp1 = arctan
[
r(sin θ −

√
2 cos θ)+

√
2
]
.

Similarly, at point Q1, the value of σηη can be expressed as

σηη =
σrr + σθθ

2
+
σrr − σθθ

2
cos [2(φ− θ)] − σrθ sin [2(φ− θ)] .

Substituting the polar stresses at point Q1 from Section 3.3 gives

σηη = − p +
τ

sin(2φ)
+
τ cos(2θq1)

sin(2φ)
cos [2(φ− θ)] −

τ sin(2θq1)

sin(2φ)
sin [2(φ− θ)] , (6)

where

θq1 = arctan
[

r
(

sin θ +
cos θ
√

2

)
−

1
√

2

]
. (7)

If the yield condition holds in stress zone 1, the stress component σξη = τ .

3.4. Stress zone 2. This stress zone shares its β-line with stress zone 1, as illustrated in Figure 6. Ac-
cording to the slip line theory, the stress component σηη in the two zones takes the same form, that is,
Equation (6). To find σξξ in stress zone 2, we use the yield condition along line θ = 0+ because the
α-line intercepts the abscissa.

The boundary line θ = 0+ in physical space maps to the rotated stress space point C∗. From the
rotated yield surface as shown in Figure 6, the relationship between σξξ and σηη at any boundary point,
P2 is

σξξ (r∗, 0+)− σηη(r∗, 0+)

2τ
=

1

2
√

2
. (8)
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Figure 6. Drawing for finding stress in stress zone 2.



ANISOTROPIC STRESS STATE AROUND INTERNALLY PRESSURIZED MICROCHANNELS 301

Rearranging this yields

σξξ (r∗, 0+)= σηη(r∗, 0+)+
τ

√
2
. (9)

σηη(r∗, 0+) can be found from Equation (6) by setting θ = 0+ and replacing θq1 by θq2 = θq1(r∗, 0+):

σηη(r∗, 0+)= − p +
τ

sin(2φ)
+ τ cot(2φ) cos(2θq2)− τ sin(2θq2), (10)

where θq2 is related to r∗, which can be determined from Equation (7) as

θq2 = arctan
[

1
√

2
(r∗

− 1)
]
. (11)

Substituting Equation (10) into Equation (9) yields

σξξ (r∗, 0+)= − p +
τ

sin(2φ)
+ τ cot(2φ) cos(2θq2)− τ sin(2θq2)+

τ
√

2
.

To find the stress state inside the entire region defined as stress zone 2, we apply the variation method.
This is done by expressing r∗ and θq2 as functions of r and θ . With respect to Figure 6, if the boundary
point P2(r∗, 0+) goes into stress zone 2, the law of sines requires

r∗
= r

sin(φ− θ)

sinφ
=

√
3r

√
2

sin(φ− θ). (12)

The general form of θq2 follows from Equation (11) and Equation (12), that is,

θq2 = arctan

[√
3r
2

sin(φ− θ)−
1

√
2

]
.

Therefore, the stress state in stress zone 2 is

σξξ = − p +
τ

sin(2φ)
+ τ cot(2φ) cos(2θq2)− τ sin(2θq2)+

τ
√

2
,

σηη = − p +
τ

sin(2φ)
+
τ cos(2θq1)

sin(2φ)
cos [2(φ− θ)] −

τ sin(2θq1)

sin(2φ)
sin [2(φ− θ)] ,

σξη = τ.

3.5. Stress zone (3). According to Figure 7, stress zone 3 and stress zone 1 share the same α-line and
also the stress component σξξ . To find the stress component σηη, we use the yield condition along the
boundary line θ = π/4. The yield condition is mapped from the point D∗ on the rotated yield surface
and can be expressed as

σξ (r∗∗, π/4)− σηη(r∗∗, π/4)
2τ

= − 2
√

2.

From this and Equation (5), σηη(r∗∗, π/4) can be found by setting θ = π/4 and θp1 = θp3 as

σηη(r∗∗,
π

4
)=−p+

τ

sin(2φ)
−
τ cos(2θp3)

sin(2φ)
cos

[
2(φ−

π

4
)
]
+
τ sin(2θp3)

sin(2φ)
sin
[
2(φ−

π

4
)
]
+4

√
2τ, (13)
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where θp3 is θp1 at r = r∗∗ and θ = π/4, that is,

θp3 = arctan
[

r∗∗

(
1

√
2

− 1
)

+
√

2
]
. (14)

Noting that φ = 54.7◦, Equation (13) simplifies to

σηη(r∗∗,
π

4
)= − p +

τ

sin(2φ)
−

2
√

2τ cos(2θp3)

3 sin(2φ)
+
τ sin(2θp3)

3 sin(2φ)
+ 4

√
2τ.

To extend the stress solutions to the entire stress zone 3, r∗∗, as a function of r and θ , becomes, by the
law of sines,

r∗∗
=

√
2r

1 +
√

2
(cos θ +

√
2 sin θ). (15)

Therefore, the stress state in stress zone 3 is

σξξ = − p +
τ

sin(2φ)
−
τ cos(2θp1)

sin(2φ)
cos [2(φ− θ)] +

τ sin(2θp1)

sin(2φ)
sin [2(φ− θ)] ,

σηη = − p +
τ

sin(2φ)
−

2
√

2τ cos(2θp3)

3 sin(2φ)
+
τ sin(2θp3)

3 sin(2φ)
+ 4

√
2τ,

σξη = τ.

The general form of θp3 follows from substituting r∗∗ in (15) into (14):

θp3 = arctan
[√

2 − r(cos θ +
√

2 sin θ)(3 − 2
√

2)
]
.
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Figure 7. Drawing for finding stress in stress zone 3.
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Figure 8. Drawing for finding stress in stress zone 4.

3.6. Stress zone 4. The analysis of this zone (and the next) is very much like that of stress zone 3.
According to Figure 8, stress zone 4 and stress zone 2 share the same α-line and σξξ . Also, stress zone
4 and stress zone 3 share the same β-line, and thus σηη as well. Therefore, the stress state in stress zone
4 can be obtained as

σξξ = − p +
τ

sin(2φ)
+ τ cot(2φ) cos(2θq2)− τ sin(2θq2)+

τ
√

2
,

σηη = − p +
τ

sin(2φ)
−

2
√

2τ cos(2θp3)

3 sin(2φ)
+
τ sin(2θp3)

3 sin(2φ)
+ 4

√
2τ,

σξη = τ.

(16)

3.7. Stress zone 5. From Figure 9, stress zone 5 and stress zone 4 share a β-line and σηη in the form
given by Equation (16). To find σξξ in stress zone 5, we use the same method as used for finding σξξ in
stress zone 2. We apply the yield condition along line θ = 0+, as shown in Equation (8), for establishing
the relationship between σξξ and σηη at any point on this boundary.

We define a new parameter θp5 = θp3(r∗, 0+) for deriving σξξ in this zone, that is,

θp5 = arctan
[√

2 − r∗(3 − 2
√

2)
]
.

A more general form of θp5 for points inside the stress zone is

θp5 = arctan

[
√

2 −
3 − 2

√
2

√
2

r(
√

2 cos θ − sin θ)

]
.
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The stress state in stress zone 5 is

σξξ = − p +
τ

sin(2φ)
−

2
√

2τ
3 sin(2φ)

cos(2θp5)+
τ sin(2θp5)

sin(2φ)
+

τ
√

2
+ 4

√
2τ,

σηη = − p +
τ

sin(2φ)
−

2
√

2τ cos(2θp3)

3 sin(2φ)
+
τ sin(2θp3)

3 sin(2φ)
+ 4

√
2τ,

σξη = τ.

3.8. Stress zone 6. The procedures for finding the stresses in stress zone 6 are the same those for stress
zone 3. Stress zone 6 and stress zone 4 share the an α-line and σξξ . The stress component σηη is found
from the yield condition along the boundary line θ = π/4, which is shown in Section 3.5.

For the points on the boundary θ = π/4, we define θq6, a function of r∗∗, as

θq6 = arctan

(√
2 − 1
2

r∗∗
−

1
√

2

)
.

For the points within stress zone 6, θq6 is a function of r and θ , that is,

θq6 = arctan

(
3
√

2 − 4
2

r(cos θ +
√

2 sin θ)−
1

√
2

)
.

Therefore, the stress state in stress zone 6 is given by

σξξ = − p +
τ

sin(2φ)
+ τ cot(2φ) cos(2θq2)− τ sin(2θq2)+

τ
√

2
,

σηη = − p +
τ

sin(2φ)
+ τ cot(2φ) cos(2θq6)− τ sin(2θq6)+

τ
√

2
+ 4

√
2τ,

σξη = τ.
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4. Results and discussion

4.1. Stress along circumferential paths. The analytical solutions in the region 0 ≤ θ ≤ 45◦, as presented
in Sections 3.3 to Section 3.8, provide for obtaining the stress field around the microchannel through a
series of mapping operations along special symmetrical lines. The first mapping is that the solutions in
0 ≤ θ ≤ 45◦ can be reflected over the line θ = 45◦ to get the solutions in 45◦

≤ θ ≤ 90◦. The solution
from 0 ≤ θ ≤ 90◦ can be translated 90◦ for solving in 90◦

≤ θ ≤ 180◦. Once we know the stress around
the upper half of the channel, the values in lower half plane follow from reflection across x-axis.

In the following discussion, the half width of the microchannel is defined as w◦. To show the stress
solutions quantitatively and for simplicity, we set to unity the half width of the channel. We also set τ
to unity, and the internal pressure becomes

p =
τ

sinφ cosφ
=

3
√

2
,

which is the critical value for initiation yielding at the boundary point O of Figure 1.
Figure 10 and Figure 11 show the stress state along circumferential paths in the angular range 0 ≤

θ ≤ 180◦. Figure 10 depicts the stresses along the path r/w◦ = rb/w◦ =
√

2. There, the stresses
are normalized by the critical shear strength τ . Figure 10a shows the stress components in the local
ξ -η coordinate system. The normal stresses σξξ and σηη show jump abruptly θ = 45◦ and θ = 135◦.
Nevertheless, the most rapid change in the shear stress σξη occurs at θ = 90◦.
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Figure 10. Stress state around the circumferential path r/w◦ = rb/w◦ =
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ized stress components in the local ξ -η coordinates, (b) normalized stress components
in x-y Cartesian coordinates, (c) normalized stress components in r -θ polar coordinates,
(d) the normalized out-of-plane stress component.
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Figure 10b shows the stresses in the x-y Cartesian coordinates. The shear stress σxy is almost equal
to zero, which is reasonable because the circumferential path is very close to the inner wall of the
microchannel. On the inner wall of the channel, the nonshear boundary condition holds. By the same
logic, the numerical values of normal stresses σxx and σyy also recover the boundary conditions. For
example, in the angular ranges 0 ≤ θ ≤ 45◦ and 135◦

≤ θ ≤ 180◦, σxx ≈ −p = − 3/
√

2, and σyy ≈ 0,
which means that material near the two vertical walls of the microchannels is under a horizontal pressure
of about −p. Nevertheless, in the range 45◦

≤ θ ≤ 135◦, σxx ≈ 0 and σyy ≈ −p = −3/
√

2, indicating that
material close to the top horizontal wall of the microchannel undergoes a vertical compressive pressure
of about −p.

In polar coordinates, the shear stress σrθ changes abruptly at θ = 45◦ and θ = 135◦, as shown in Figure
10c. σrθ is a periodic function with period 90◦. The radial and hoop stress components, σrr and σθθ , are
also 90◦-periodic functions. In addition, they show mirror symmetry about the line θ = 90◦. Figure 10d
shows how the the trace of the stresses changes along the angular path. Under the assumed isochoric
condition, the trace of the stresses is equal to the out-of-plane stress.

We also examine the stress solutions along another two circumferential paths,

r/w◦ = (rb + rc)/(2w◦)≈ 1.52 and r/w◦ = rc/w◦ =

√
5 + 2

√
2/

√
3 ≈ 1.62.

The stresses along these two constant-radius lines show the same trend, that is, the stress state is nonuni-
form, resulting in anisotropic deformation of material around the microchannel. Another common feature
which can be seen from the results is that all stress components except for σξη peak either along the lines
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Figure 11. Stress state around the circumferential path r/w◦ = rd/w◦ = 1 +
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θ = 45◦ and θ = 135◦ or close to these lines. Evidently, the regions containing the radial lines θ = 45◦

and θ = 135◦ experience higher loading than elsewhere, and we expect intense shear deformation along
these two lines. This agrees with the slip model shown in Figure 1.

Figure 11 shows the stress state along the path, r/w◦ = rd/w◦ = 1+
√

2. The stress field is not uniform
along this path, which indicates an anisotropic deformation state. Specifically, Figure 11d illustrates the
yield surface along the path. The plastic deformation there comes from the active slip of the two slip
systems marked (1) and (2). Obviously, Figure 11d recovers well the yield conditions from the analytical
model of plasticity in Section 2.2 and shown in Figure 3b. We note that the line θ = 45◦ is the boundary
for slip system 1 and slip system 2. Similarly, θ = 135◦ is also a slip sector boundary. These are the
places where stress concentrates before yielding due to the corner effect. Material on these boundaries
can flow along either slip system 1 or slip system 2. Thus, the yield surface bifurcates at the intercept
points on the vertical axis in Figure 11d.

4.2. Stress maps. In this section, we present the stress maps of microneedles containing square mi-
crochannels. These have potential applications for cell registration, fluid injection, and nanofiber synthe-
sis. As a case study, we choose a cylindrical microneedle with radius r/w◦ = re/w◦ = 2+2

√
2 ≈ 4.83. w◦

is the microchannel half-width, as defined in Section 4.1. The channel itself is centered in the cylindrical
needle. We assume here that internal pressure controls the deformation. Thus, the boundary conditions
for stresses on the inside wall propagate in material around the channel along the characteristics (slip-
lines). The assumption is reasonable for cases such as confined growth of nanofibers within the channel,
fluid injection from the channel, and cell registration under suction by internal pressure.

Figure 12 shows stress zones in the needle around the microchannel, which exhibit the expected
four-fold symmetry. Figures 13–16 show stress maps in different coordinate systems and various other
features, as discussed below.

Figure 13 maps the normalized radial stress σrr/τ ; the map reveals evenly distributed compressive
regions near the inner wall of the channel. These compressive regions propagate along the slip sector
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Figure 12. Contour plot showing the stress zones around the microchannel.
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Figure 13. Contour map showing the normalized polar stress σrr/τ around the microchannel.

boundaries, that is, along multiples of θ = π/4. The compressed regions are separate from the regions
under intense tension away from the channel. The normalized hoop stress σθθ/τ , shown in Figure 14,
shows a similar compressed region near the channel’s inner wall. However, close to the outer boundary
of the microneedle, the σθθ/τ implies a tension state. On the map of normalized polar shear stress (σrθ/τ

in Figure 15), we see neutral zones around the channel. Away from the channel and along circumferential
paths — for example, at r/w◦ = 1 +

√
2 — the stress state alternates between compression and tension.

We can also examine in the x-y global Cartesian coordinate system the stress maps for σxx/τ and
σyy/τ . They exhibit discrete tension and compression zones. The inner boundary conditions propagate
in the stress zones adjacent to the inner wall. For example, we find σxx = − p in 0 ≤ θ ≤ 45◦ within the
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Figure 15. Contour map showing the normalized polar stress σrθ/τ around the microchannel.

zone containing the channel’s vertical wall, while σyy = − p in 45◦
≤ θ ≤ 90◦ within the zone horizontal

wall. Tension stress states occupy the region near to the outer boundary of the microneedle. We note
that the map σyy/τ is just σxx/τ rotated by π/2. On the map for normalized shear stress σxy/τ , the inner
wall satisfies the nonshear condition. The nonshear zones are located along both the x- and y-axis. The
shear zones appear at multiples of θ = π/4.

Figure 16 shows, in the ξ -η local Cartesian coordinate system, the stress maps for σξξ/τ . Obviously,
the σηη/τ map can be obtained by rotating the figure by π/2. In this map, the normalized stress σξξ/τ is
constant along the characteristics, or α-lines. Similarly, σηη/τ is constant along β-lines. This agrees with
the predictions of slip line theory. In the local coordinate system, the normalized shear stress σξη/τ stays
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310 YONG XUE GAN

constant in each quadrant, revealing the anisotropic plasticity of the material. The results also indicate
the deformation behavior of global yielding without any strain hardening.

We can also look at the trace of the stresses. In the plane, the trace is related to pressure; out of the
plane, it represents stress under isochoric conditions. The trace results show the nonuniform distributions
in the in-plane pressure and the out-of-plane stress. Finally, we examine the normalized in-plane stress
difference (σxx − σyy)/(2τ), which is the stress measure on the stress space abscissa. This difference
shows symmetrically distributed zones. The stress maps of Figures 12–16 reveal the nonuniform stress
states to be as predicted by the analytical solutions in Section 3, namely, that materials containing mi-
crochannels under internal pressure exhibit anisotropic plastic deformation.

We stress that the model here is an idealized and simplified one which provides some preliminary
results. For more sophisticated material models, it is difficult to obtain closed form solutions, and only
numerical solutions may be available. Thus, subsequent finite element simulations should be imple-
mented to treat real world problems with different strain hardening laws. Because analytical solutions
can only be obtained from simplified models that assume an ideally rigid plastic solid, this work may be
considered as a good starting point for tackling more complicated cases. Already underway are system-
atic finite element simulations of microchannels with different geometrical configurations shaped like
as squares, circles, cylinders, and ellipses; these are based on material models with a prescribed elastic-
plastic constitutive relation. Using the preliminary results presented in this work, it may be possible to
compare the analytical predictions with numerical ones.

Another issue facing the practical applications is the stress concentration problem. Typically, stress
concentrates at sharp corners and cracks. In this model, stress will concentrate at the four microchannel
corners with θ = π/4, 3π/4, 5π/4, and 7π/4. Stress concentrations cause the material to yield at a
lower overall stress level. Thus, the yield surface will contract and the points B and D shown in Figure
3a will move towards the origin. Consequently, the yield surface will change from a diamond to a more
complex shape. The stress zones would need to be redefined and the processes for seeking the analytical
solutions to the stresses would be more complicated. In the end, finite element simulations may be the
proper way to deal with the stress concentration issue.

5. Conclusions

From our studies of the stress states around microchannels under internal compressive loading, the fol-
lowing conclusions can be made.

First, the simplified yielding model can be used to characterize the plastic flow in materials containing
microchannels. When the material is under strain deformation conditions, the model allows identification
of slip bands around the channels.

Second, we can obtain closed form solutions to stress fields around the microchannels. The solutions
hold in both the zones containing and those away from the inner boundary. The stress distributions are
nonuniform. The results predict anisotropic deformation states around the channels.

Third, we determine the yield conditions associated with the plastic flow along different slip bands.
From the yield surface along circumferential paths, it is found that, at the corner of the square-shaped
microchannel, two slip systems have the same chance of being activated.
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Finally, the stress maps of microneedles containing square microchannels reveal discrete isostress
zones and predict anisotropic plastic deformation of the material around the channels.
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DYNAMIC RIGID-PLASTIC DEFORMATION OF ARBITRARILY SHAPED
PLATES

TATIANA PAVLOVNA ROMANOVA AND YURI VLADIMIROVICH NEMIROVSKY

A rigid, perfectly-plastic model of solids is applied to study the dynamic behavior of simply supported
or clamped, arbitrarily shaped plates on visco-elastic foundation. The role of membrane forces and trans-
verse shear forces in the yield condition and the influence of geometry changes are neglected. The plate
is subjected to explosive loads uniformly distributed over the surface. Several mechanisms of dynamic
deformation of the plate are considered. For each mechanism, equations of the dynamic behavior are
obtained. Operating conditions of these mechanisms are analyzed. Analytical expressions for the limit
and high loads and for the maximum final deflections are obtained. Detailed analyses are given for an
astroid-shaped plate, for a plate with a contour consisting of two arcs and for a plate with an internal free
hole or a rigid insert.

1. Introduction

The issues involved in calculating structural deformation under the action of intensive short-time loads
are important in modern solid mechanics. To solve such problems, the model of a rigid-plastic body
is widely used [Komarov and Nemirovsky 1984]. The model is based on the assumption that the body
starts deforming if the stress reaches the limiting value and plastic deformations become possible. Elastic
deformations are neglected. For thin-walled elements of structures, this simplification allows solving nu-
merous important practical problems. Nevertheless, all well-known solutions concern only axisymmetric
and rectangular plates.

The method proposed in the present work allows, on the basis of the theory of a rigid, perfectly-plastic
body, calculating any supported plates of an arbitrary piecewise smooth curvilinear contour, subjected to
short-time intensive dynamic loads. The method can be useful in engineering practice.

Notation

P intensity of load
Pmax maximum value of load
P0, P̄0 limit loads
P1 load defining high loads
p0, p1, Pm dimensionless loads
t, t0 current and initial times
K1, K2 factors of elastic and viscous resistance

Keywords: rigid-plastic plate, arbitrarily shaped plate, dynamic load, limit load, final deflection.
This work was supported by the Russian Foundation for Basic Research (grant no. 05-01-00161-a).
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Z1, Z2, Sp regions in plate
l contour of plate
dl element of contour l
l1, l2 plastic hinge curves
(x, y), (x1, y1),
(x2, y2), (xh, yh) Cartesian coordinates

ϕ, ϕh parameters
ϕi , ϕ j , ϕD , ϕhi , ϕb, ϕb

h boundary values of parameter ϕ
ϕ0 initial value of parameter ϕD

Dh , Dmin, Dmax, D,
D0, Da , di , d1, d2 distances

K , A, N powers of inertial, external and internal forces
S area of plate
ds element of area
u, wc deflections
wmax maximum of final deflection
ρ, ρa surface density of plate material and insert material
lm lines of discontinuity of angular velocity
m quantity of lines of discontinuity of angular velocities
[∂θm/∂t] discontinuity of angular velocities on lm

dlm element of line lm

κ1, κ2 main curvatures of surface of deflection rate of plate
α̇ rate of change of angle of rotation
∗ index denoting admissible velocities
Mm bending moment on lm

M0 limit bending moment
n normal to the contour l
AB, AC normals to the contour l
η parameter of supported contour
β parameter of internal contour
i, j indexes
(ν1, ν2) curvilinear orthogonal coordinates
ν2h parameter corresponding to ν2

ν2 j boundary value of parameter ν2

a1, b1 semiaxes of semiellipse
a parameter of astroid-shaped plate
L function designated in Equation (2)
Lh function designated in Equation (15)
61,62,63,64,65,66,G,G1,F factors
T time of removing of load
t1 time of end of first phase of deformation
t f time of stop of plate
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R, γ radius and half of central corner of arc of circle
I, I∗ integral characteristics of load
l̄, l̄2 polygonal contours
δ, δ0 dimensionless functions
r radius of curvature of curve l
r1 radius
ξ, ς coordinates of center of curvature of curve l
ρ1, ρ2 radiuses of curvature
N1, N2, N3, N4 components of power of internal forces in plate
l3 tangent to curve l1

AB E , B E D1, AE D1, AD2 E planes
ψ1, ψ2, β1, β2 angles in Figure 3

2. Model, assumptions and equations of motion

We consider a thin rigid perfectly-plastic simply supported or clamped plate of an arbitrary piecewise
smooth curvilinear contour l (Figure 1). The plate is subjected to a uniformly distributed short-time
intensive dynamic load of high intensity P(t). We consider explosive load characterized by the instan-
taneous reaching of the maximum value Pmax = P(t0) at the initial time t0 with the subsequent rapid
decrease. The plate rests on a viscoelastic foundation (K1 and K2 are the coefficients of elastic and
viscous resistance). The deflections are small. The role of membrane forces and transverse shear forces
in the yield condition and the influence of geometry changes are ignored.

Let the equations for the contour l of the plate be written in a parametric form

x = x1(ϕ), y = y1(ϕ), with 0 ≤ ϕ ≤ 2π.

Except for singular points, the radius of curvature of the contour l is equal to

r(ϕ)=
L3

x ′

1 y′′

1 − y′

1x ′′

1
, (1)

L(ϕ)=

√
x ′2

1(ϕ)+ y′2
1(ϕ), (·)′ = ∂(·)/∂ϕ. (2)

To be specific, we assume that the x-size of the plate is not smaller than its geometric size along the y
axis. We have two assumptions about the shape of the deformable plate.

Assumption 1. Under the loads slightly higher than the limit load P0, a plastic hinge line l1 is formed
in the internal area of the plate (Figure 1). As a result, the plate is deformed into parts of certain ruled
surfaces. The normal bending moment on the line l1 is equal to the limit bending moment M0. The line
l1 can consist of several parts (Figure 1 bottom) or degenerate into a point (for a circular plate). The
parts of the plastic hinge line l1 can be either rectilinear or curvilinear. If there are singular points on the
contour l then the line l1 intersects them (the top left and bottom of Figure 1).

We assume that the rate of variation of the angle of plate-surface rotation with respect to the horizontal
plane at the contour l is independent of the parameter ϕ and that the position of the line l1 is determined
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Figure 1. Mechanism 1 for the plates of different shapes.

from the condition of equality of the distances measured along the normal to the external contour l
from the line l1 to the contour l. This assumption is substantiated for a sector plate by Nemirovsky and
Romanova [2004], based on the condition of minimum of the limit load. This assumption is obviously
valid for a circular plate [Hopkins and Prager 1953].

Figure 2. Mechanism 2 and 3 for the plates of different shapes (the positions of the
coordinate axes are the same as those in Figure 1).
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Assumption 2. Under rather high loads, a region Sp of an intense plastic deformation is formed in the
internal area of the plate (Figure 2). The region Sp moves translationally. The contour of the region Sp

is the plastic hinge line l2, and the normal bending moment on the line l2 is equal to M0.

Let the equations for the line l1 have the form x = xh(ϕ), y = yh(ϕ). The distance Dh measured along
the normal to the contour l from the line l to l1 is

Dh(ϕ)=

√
[x1(ϕ)− xh(ϕ)]2 + [y1(ϕ)− yh(ϕ)]2. (3)

From the Assumption 1, it follows that the line l1 is defined by the system of equations

x ′

1(ϕ)[xh(ϕ)− x1(ϕ)] + y′

1(ϕ)[yh(ϕ)− y1(ϕ)] = 0,

x ′

1(ϕh)[xh(ϕ)− x1(ϕh)] + y′

1(ϕh)[yh(ϕ)− y1(ϕh)] = 0,

Dh(ϕ)= Dh(ϕh), xh(ϕ)= xh(ϕh), yh(ϕ)= yh(ϕh). (4)

Here ϕh corresponds to ϕ parameter of the contour l, for which the relation |AB| = |AC | holds (AB,
AC are the perpendiculars to the contour l in Figure 1). The plates of different shapes and the positions
of the lines l1 in the plates are presented in Figure 1.

The normal to the contour curve l directed inward the region occupied by the plate gets either on
the line l1, or on the line l2: x = x2(ϕ), y = y2(ϕ). We denote by Zi the region of the plate that does
not involve the region Sp in which the normal from any point to the contour l gets on the line li for
i = 1, 2 (Figures 1–2). The number of the regions Zi depends on the shape of the support counter l of
the plate. In Appendix A, it is shown that the normal to the curve l2 is also the normal to the contour
l. In Appendix B, it is shown that, in any smooth part of the contour l, the distance between curves l2

and l is independent of the parameter ϕ and the equation for the curve l2 looks like Equation (B.5) if
the region Sp is nonsingular. From the definition of the line l1, it follows that at the boundaries of the
regions Z1 and Z2 the relations D(t)= Dh(ϕ

b(t))= Dh(ϕ
b
h(t)) where ϕb, ϕb

h are the parameters of the
boundaries of the regions Z1 and Z2. Consequently, the distance between curves l2 and l in all regions
Z2 is the same and is equal to D(t) (Figure 2).

Depending on the value of Pmax, three mechanisms of deformation are possible in the dynamics of
a rigid-plastic plate. Under the loads lower than the limit load (low loads, 0 < Pmax ≤ P0), the plate
remains at rest. For the loads slightly higher than the limit load (moderate loads, P0< Pmax ≤ P1) as in the
cases of a bending of beams [Mazalov and Nemirovsky 1975; Komarov and Nemirovsky 1984], circular
and annular plates [Hopkins and Prager 1953; 1954; Perzyna 1958; Florence 1965; 1966; Youngdahl
1971], rectangular and polygonal plates [Jones et al. 1970; Virma 1972; Mazalov and Nemirovsky 1975;
Nemirovsky and Romanova 1987; 1988], the plastic hinge line l1 is formed in the internal area of the
plate (see Assumption 1). Let us call this mechanism of deformation mechanism 1 (Figure 1). For the
values of Pmax(Pmax > P1) high enough, the dynamics of the plate as the dynamics of all above-listed
structures yields the emergence of the intense plastic deformation region Sp that moves translationally
(see Assumption 2). Thus, two situations are possible: that the line l1 is present (mechanism 2 is presented
in the top left, top right and the bottom right of Figure 2 for high loads) and that the line l1 does not
present (mechanism 3 is presented in the bottom left of Figure 2 for super high loads).
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Let us denote
max
ϕ

Dh(ϕ)= Dmax and min
ϕ

Dh(ϕ)= Dmin.

For the curve l2 that has no mutually intersected segments, the following conditions must be satisfied.

D < Dmax and y2(ϕ)≥ yh(ϕ), y2(ϕh)≤ yh(ϕh),

(see the plates presented in the top left and top right of Figure 2 for example). Therefore, the curve l2

presented in (B.5) is not determined for all values of ϕ. The case D ≥ Dmax corresponds to mechanism
1 that the region Sp and the curve l2 are absent (Figure 1); the case Dmin ≤ D < Dmax corresponds to
mechanism 2 (top left, top right and the bottom right of Figure 2); the case D < Dmin corresponds to
mechanism 3. For the plates with singular points on the supporting contour l, equality Dmin = 0 carries
out. Therefore, such plates are not deformed according to mechanism 3 (Figure 2, top left and bottom
right) and they have plastic hinge line l1 present in deformation with any action of the loads exceeding
the the limit load. Mechanism 3 is realized only for plates with a smooth contour l (Figure 2, bottom
left).

Mechanism 2 corresponds to a general case of deformation of the plate. In the absence of the region
Sp, it corresponds to mechanism 1. If the line l1 is absent then it corresponds to mechanism 3. Let us
consider mechanism 2 in detail.

According to mechanism 2, the equations of motion of the plate, that we obtain from the virtual power
principle and d’Alembert principle [Erkhov 1978], are

K = A − N , (5)

K =

∫∫
S

ρ
∂2u
∂t2

∂u∗

∂t
ds, A =

∫∫
S

[
P(t)− K1u − K2

∂u
∂t

]
∂u∗

∂t
ds, (6)

N =

∑
m

∫
lm

Mm

[∂θ∗

∂t

]
lm

dlm + M0

∫∫
S

(|κ∗

1 | + |κ∗

2 |)ds. (7)

Here K , A, N are the powers of inertial, external and internal forces in the plate, respectively; S is the
area of the plate; u is the deflection; ρ is the surface density of the plate material; t is the current time;
ds is the element of area of the plate; m is the index of the lines of discontinuity of angular velocity;
lm are the lines of discontinuity in angular velocity including the contour of the plate; [∂θ/∂t]lm is the
discontinuity in angular velocity on lm ; Mm is the bending moment on lm ; dlm is the element of line
for lm ; κ1 and κ2 are the main curvatures of surface of deflection rate of plate. The upper index “∗”
denotes the admissible velocities. If there is no resistance foundation, Equation (5) coincides with the
equation of motion of [Jones 1971a], the axial forces being assumed to equal zero, which means that
geometrical changes are ignored. Note that Jones [1971a] suggests using this equation for plates of an
arbitrary contour and arbitrary edge conditions; however, it has been used in the literature up to now for
circular and rectangular plates only [Jones 1971b; Jones and Shen 1993; Jones 1973; Zhu et al. 1994].

Let us denote the deflection and the velocity of the deflection in the region Sp by wc(t) and ẇc(t),
where ḟ = ∂ f/∂t for function f . Let us denote the angle of rotation of the region Z2 from the horizontal
plane at the supported contour by α. Because of the continuity of velocities at the boundaries of the
regions Sp and Z2, the rate of variation of this angle α is independent of the parameter ϕ. Taking into
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account of the continuity of velocities at the boundary of the regions Z1 and Z2 and Assumption 1, we
obtain that the rate of variation of the angle of rotation of the region Z1 at the supported contour is equal
to α̇(t). The deflection rate in the different regions of the plate is given by

(x, y) ∈ Zi : u̇(x, y, t)= α̇(t)di (x, y), i = 1, 2,

(x, y) ∈ Sp : u̇(x, y, t)= ẇc(t), (8)

where di (x, y) is the distance from a point (x, y) to the supported contour of the region Zi (Figure 1–2).
We introduce the curvilinear orthogonal coordinate system (ν1, ν2) related to the Cartesian coordinate

system by the relations

x = x1(ν2)− ν1
y′

1(ν2)

L(ν2)
, y = y1(ν2)+ ν1

x ′

1(ν2)

L(ν2)
. (9)

The curves ν1 = const are at the distance ν1 from the contour l and have the radius of the curvature
ρ1 = r(ν2)− ν1. The straight lines ν2 = const are the perpendiculars to the external contour l of the plate.
Their radius of the curvature is ρ2 = ∞. The element of area is ds = L(1 − ν1/r)dν1dν2. Then the
equation of the supported contour l has the form ν1 = 0 for 0 ≤ ν2 ≤ 2π . If the line l1 consists of one
part then its equation has the form ν1 = Dh(ν2) for 0 ≤ ν2 ≤ ϕ1, ϕ2 ≤ ν2 ≤ π . The equation of the line l2

has the form ν1 = D(t) for ϕ1 ≤ ν2 ≤ ϕ2, ϕh2 ≤ ν2 ≤ ϕh1 where, for i = 1, 2, ϕi , ϕhi are boundary values.
Then the deflection rate of the plate (8) is given by:

(x, y) ∈ Zi : u̇(ν1, ν2, t)= α̇(t)ν1, i = 1, 2,

(x, y) ∈ Sp : u̇(ν1, ν2, t)= ẇc(t).
(10)

With the introduced denotations and (10) taken into account, the expressions (6) become

K = ρ

[
α̇∗α̈

2∑
i=1

∫∫
Zi

ν2
1ds + ẇ∗

c ẅc

∫∫
Sp

ds

]
,

A = α̇∗

2∑
i=1

∫∫
Zi

[P(t)− K1αν1 − K2α̇ν1]ν1ds + ẇ∗

c

∫∫
Sp

[P(t)− K1wc − K2ẇc]ds.

(11)

We represent the expression (7) for the power of internal forces in the plate in the form

N =

4∑
i=1

Ni (12)

where N1, N2, N3, N4 are the powers of internal forces on the contour l, in the regions Z1 and Z2, on
the line l2 and on the line l1, respectively:

N1 = (1 − η)M0

∮
l
[θ̇∗

]ldl, N2 = M0

∫∫
Z1∪Z2

(|κ∗

1 | + |κ∗

2 |)ds,

N3 = M0

∮
l2

[
θ̇∗
]

l2
dl2, N4 = M0

∫
l1

[
θ̇∗
]

l1
dl1. (13)
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Figure 3. Supplementary construction for the calculation of the discontinuity of angular
velocity on l1.

Here η = 0 for the clamped contour l and η = 1 for the simply supported contour.
From (10) and the normal to the line l2 is the normal to the contour l, it follows that

[θ̇∗
]l = [θ̇∗

]l2 = α̇, κ1 =
∂2u̇
∂ν2

1
= 0, κ2 =

1
ρ1

∂ u̇
∂ν1

=
α̇(t)

r − ν1
.

Then we have

N1 = (1−η)M0α̇
∗

∫ 2π

0
Ldν2,

N2 = M0α̇
∗

∫∫
Z1∪Z2

1
r−ν1

ds

= M0α̇
∗

[ ϕ1∫
0

L Dh

r
dν2+

( ϕ2∫
ϕ1

L
r

dν2

)
D(t)+

ϕh2∫
ϕ2

L Dh

r
dν2+

( 2π−ϕh1∫
2π−ϕh2

L
r

dν2

)
D(t)+

2π∫
ϕh1

L Dh

r
dν2

]
,

N3 = M0α̇
∗

∮
l2

dl2 = M0α̇
∗

{ ∫ ϕ2

ϕ1

L
[
1−

D(t)
r

]
dν2+

∫ ϕh1

ϕh2

L
[
1−

D(t)
r

]
dν2

}
.

(14)

To calculate N4 in (13), we have

dl1 = Lhdν2, where Lh =

√
x ′2

h + y′2
h . (15)

We consider a case where the line l1 consists of one part. For the calculation of [θ̇∗
]l1 with ν2 ∈ [0, ϕ1]

at point A = (Dh(ν2), ν2) ∈ l1 of the undeformed plate, we draw the perpendiculars AB and AC that
they intersect the contour l at B = (0, ν2) and C = (0, ν2h) so AB⊥l, AC⊥l, |AB| = |AC | = Dh(ν2)

(Figure 1, 3). At point A, we draw the line l3 which is tangent to the line l1. Through the segment AB,
we draw the plane AB E which is perpendicular to an initial surface of the plate, where AE⊥AB (Figure
3). We draw the plane B E D1 which is tangent to the deformed surface of the plate along the straight
line B E . Then we have 6 AB E = α. Through point B, we draw the plane AE D1 which is perpendicular
to the line l3. Let us denote 6 AD1 E = β1. With the similar constructions for point C , we obtain point
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D2 such that the equality 6 AD2 E = β2 holds. Then we have [θ̇∗
]l1(ν2)= β̇1 + β̇2. From |AE | = |AB|α,

|AE | = |AD1|β1 and AB⊥B D1, it follows that

β̇1 = α̇ sinψ1, (16)

where ψ1 is the minimum angle between the segment AB and the line l3 such that

sinψ1 =
y′

1 y′

h + x ′

1x ′

h

L Lh
. (17)

In a similar manner, β̇2 = α̇ sinψ2 where ψ2 is the minimum angle between the segment AC and the line
l3. From (15)–(17), it follows that

β̇1dl1 = α̇
y′

1 y′

h + x ′

1x ′

h

L
dν2.

From (1), (3), (4), it follows that

y′

1 y′

h + x ′

1x ′

h

L
= L

[
1 −

Dh(ν2)

r

]
;

then we have

β̇1dl1 = α̇L
[

1 −
Dh(ν2)

r

]
dν2 for ν2 ∈ [0, ϕ1].

In a like manner, we obtain

β̇2dl1 = α̇L
[

1 −
Dh(ν2)

r

]
dν2 for ν2 ∈ [ϕh1, 2π ].

We have similar expression for ν2 ∈ [ϕ2, π] and ν2 ∈ [π, ϕh2]. Then the expression (13) for N4 looks like

N4 = M0α̇
∗

[ ∫ ϕ1

0
L
(

1 −
Dh

r

)
dν2 +

∫ ϕh2

ϕ2

L
(

1 −
Dh

r

)
dν2 +

∫ 2π

ϕh1

L
(

1 −
Dh

r

)
dν2

]
. (18)

Substituting the expressions (14), (18) into (12), we get the power of internal forces in the plate

N = M0(2 − η)α̇∗

∫
l
dl. (19)

The expression (19) for the cases of smooth or pyramidal shape of the deformable plate coincides with
the result obtained by Rzhanitsyn [1982]. It is possible to show that the expression (7) for the power of
internal forces has the form (19) also in the case that the line l1 consists of several parts.

Substituting equalities (11), (19) into (5) and taking into account that ẇ∗
c (t) and α̇∗(t) are independent,

we obtain the following equations of motion(
ρα̈+ K2α̇+ K1α

)∑
i

∫∫
Zi

ν2
1ds = P(t)

∑
i

∫∫
Zi

ν1ds − M0(2 − η)

∫
l
dl, (i = 1, 2) (20)

ρẅc + K2ẇc + K1wc = P(t). (21)
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The condition of the continuity of velocities at the boundaries of the regions Sp and Z2 yields the equality

α̇D = ẇc. (22)

At the boundaries of the regions Z1 and Z2, we have the following relations

D = Dh(ν2 j ) (23)

where j = 1, . . . and ν2 j (t) are the parameters of the boundaries of the regions Z1 and Z2.
At the initial time, the plate is at rest and undeformed as

α(t0)= α̇(t0)= wc(t0)= ẇc(t0)= 0. (24)

The initial value D0 = D(t0) depends on the value of Pmax. This is shown below for some special cases.
The system of Equations (20)–(23), for i = 1, 2 describes the plate motion according to mechanism

2. In the case of deformation according to mechanism 1, the regions Sp and Z2 are absent and the plate
motion is described by Equation (20) for i = 1. In the case of deformation according to mechanism 3,
the region Z1 does not present and the behavior of the plate is governed by Equations (20)–(22) for i = 2.

The method described in the present work is used to study the dynamic behavior of the following plates
in the absence of resistance foundation: elliptical plates [Nemirovsky and Romanova 2002a], a plate with
a contour consisting of a semicircle of radius a1 and a semiellipse with semiaxes a1 and b1 with b1 ≤ a1

(the top right of Figure 1, the top right , bottom left of Figure 2) [Nemirovsky and Romanova 2002b], a
plate with a contour consisting of straight-line and arbitrary smooth curvilinear parts [Nemirovsky and
Romanova 2002c], a plate with a contour consisting of two semicircles and two straight-line segments
[Nemirovsky and Romanova 2001b], sector plates [Nemirovsky and Romanova 2004] (the bottom of
Figure 1 and the bottom right of Figure 2).

Below we consider the examples of the dynamic behavior of plates of an arbitrary contour in the absent
of visco-elastic foundation. The method proposed in the present work allows to take into account resis-
tance foundation. The influence of visco-elastic foundation on final deflections and the opportunity of
the optimization of the process of pulsed forming of metal plates of sophisticated contour were discussed
by Nemirovsky and Romanova [1991; 2001a].

3. Dynamic behavior of a rigid-plastic astroid-shaped plate

We consider the dynamic behavior of the plates of an arbitrary contour by an example of the astroid-
shaped plate whose contour is written in a parametric form x1 =a cos3 ϕ and y1 =a sin3 ϕ with 0 ≤ϕ≤ 2π
(Figure 4 left). For this plate, we have

L(ϕ)= 3a|sinϕ cosϕ|, Dh(ϕ)= a|sin3 ϕ/ cosϕ|, Dmax = Dh(π/4)= a/2.

Depending on the value of Pmax, two mechanisms of deformation are possible for the plate being consid-
ered. Under moderate loads, the plate is deformed into four parts of a ruled surface with the formation of
four rectilinear plastic hinge lines located on the coordinate axes (mechanism 1 is presented in Figure 4,
left). Under high loads, the region Sp is formed in the central part of the plate. The region Sp moves
translationally (mechanism 2 is presented in Figure 4, right). Equation (B.5) for the contour of Sp
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becomes

x2 = a cos3 ϕ− D sinϕ sign(sin 2ϕ), y2 = a sin3 ϕ− D cosϕ sign(sin 2ϕ)

where

ϕD ≤ ϕ ≤ π/2 −ϕD, π/2 +ϕD ≤ ϕ ≤ π −ϕD,

π +ϕD ≤ ϕ ≤ 3π/2 −ϕD, 3π/2 +ϕD ≤ ϕ ≤ 2π −ϕD.

ϕD(t) is the parameter determining the size of the region Sp and 0< ϕD ≤ π/4. The regions Sp and Z2

are not present if ϕD = π/4.
Equations (20), (21), (23) for mechanism 2 of the astroid-shaped plate in the absence of resistance

foundation look like

ρα̈(61 +62)= P(t)(63 +64)− M0(2 − η)65, (25)

ρ(α̇D)· = P(t), (26)

D =66. (27)

Here

61(ϕD)=

∫∫
Z1

ν2
1ds = 8

∫ ϕD

0

[∫ Dh(ν2)

0
ν2

1 F(ν1, ν2)dν1

]
dν2

=
2a4

3

(sin11 ϕD

cos3 ϕD
+

sin9 ϕD

cosϕD
+

9
8

sin7 ϕD cosϕD +
63
48

sin5 ϕD cosϕD

+
315
192

sin3 ϕD cosϕD −
315
128

(ϕD − sinϕD cosϕD)
)
,

62(ϕD)=

∫∫
Z2

ν2
1ds = 8

∫ π/4

ϕD

[∫ D

0
ν2

1 F(ν1, ν2)dν1

]
dν2

Figure 4. Mechanism 1 (left) and 2 (right) for astroid-shaped plate (the positions of the
coordinate axes on the right are the same as those on the left).
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=
2a4 sin9 ϕD

cos3 ϕD

[
sin3 ϕD

cosϕD
(π/4 −ϕD)+ 1 − 2 sin2 ϕD

]
,

63(ϕD)=

∫∫
Z1

ν1ds = 8
∫ ϕD

0

[ ∫ Dh(ν2)

0
ν1 F(ν1, ν2)dν1

]
dν2

=
4a3

3

(
sin10 ϕD

cos2 ϕD
+ sin8 ϕD −

sin6 ϕD

6
−

sin4 ϕD

4
−

sin2 ϕD

2
− ln cosϕD

)
,

64(ϕD)=

∫∫
Z2

ν1ds = 8
∫ π/4

ϕD

[ ∫ D

0
ν1 F(ν1, ν2)dν1

]
dν2

=
2a3 sin6 ϕD

3 cos2 ϕD

[
4 sin3 ϕD

cosϕD
(π/4 −ϕD)+ 9

(1
2

− sin2 ϕD

)]
,

65 =

∫
l
dl = 8

∫ π/4

0
L(ϕ)dϕ = 6a,

66(ϕD)= a sin3 ϕD/ cosϕD,

where F(ν1, ν2)= ν1 + 3a sin ν2 cos ν2.
If 0 < Pmax ≤ P0 (low loads), the plate remains undeformed. We determine the limit load P0 from

Equation (25) at the moment t0 of the beginning of the deformation (24) and from the condition α̈(t0)= 0,

P0 = min
0<ϕD≤π/4

M0(2 − η)65

63 +64
=

M0(2 − η)65

63(π/4)
≈ 32.55

M0(2 − η)

a2 .

Thus the region Sp degenerates into a point which is the center of the coordinates.
If P0 < Pmax ≤ P1 (moderate loads), where P1 is the load under which the region Sp appears, the plate

is deformed in accordance with mechanism 1. We determine the load P1 as follows. From (25), (26) we
eliminate α̈. As a result, we have

−
ρα̇ Ḋ

D
(61 +62)= P(t)

[
63 +64 −

61 +62

D

]
− M0(2 − η)65. (28)

Taking into account that the relations

α̇(t0)= 0, P1 = P(t0), ϕD(t0)= π/4, D(t0)= a/2

hold if the region Sp appears at the initial time t0 whereas the regions Sp and Z2 are absent, we obtain
from (28) that

P1 =
M0(2 − η)65

63(π/4)− 2
a61(π/4)

≈ 63.33
M0(2 − η)

a2 .

For moderate loads, the plate motion is governed by the Equation (25) for ϕD = π/4, which becomes

α̈(t)= G[P(t)− P0] (29)
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where G =63(π/4)/[ρ61(π/4)]. The initial conditions have the form (24). The load is removed at the
time t = T , and the plate moves inertially for certain time.

For t0 ≤ t ≤ T , integrating Equation (29), we have

α̇(t)= G

[ ∫ t

t0
P(τ )dτ−P0(t − t0)

]
, α(t)= G

[ ∫ t

t0

∫ m

t0
P(τ )dτdm−P0

(t − t0)2

2

]
.

At T < t ≤ t f , the motion of the plate occurs due to inertia until the plate stops at the time t f and it
is governed by the equation α̈(t) = −G P0 with the initial conditions α̇(T ), α(T ). The moment t f is
determined by the condition

α̇(t f )= 0. (30)

Integrating the equation of motion, we obtain

α̇(t)= α̇(T )− G P0(t − T ),

α(t)= α(T )+ α̇(T )(t − T )− G P0(t − T )2/2.
(31)

It follows Equations (30), (31) that

t f = t0 +

∫ T

t0
P(t)dt

/
P0. (32)

The deflections are calculated from (8) or (10). The maximum final deflection is in the center of the plate
and it is

wmax = Dmax G

[( ∫ T

t0
P(t)dt

)2/
(2P0)−

∫ T

t0
(t − t0)P(t)dt

]
. (33)

If Pmax > P1 (high loads), the plate motion begins with the developed region Sp and ϕ0 = ϕD(t0)
which is less than π/4. The initial value ϕ0 is determined by Equation (28) with the equality α̇(t0)= 0
and the relation (27):

Pmax

[
63(ϕ0)+64(ϕ0)−

61(ϕ0)+62(ϕ0)

66(ϕ0)

]
= M0(2 − η)65. (34)

In the first phase (t0 < t ≤ t1) of deformation, the plate motion occurs according to mechanism 2 and is
described by Equations (22), (25)–(27) with the initial conditions (24) and (34). In this phase, the region
Sp decreases by the law described by Equation (28). The time t1 corresponding to the disappearance of
the region Sp is determined by the equality ϕD(t1)= π/4. At the end of this phase, the values of α̇(t1)
and α(t1) are determined.

The second phase (t1 < t ≤ t f ) of the plate motion occurs according to mechanism 1 until the stop at
the time t f . The deformation is governed by Equation (29) subject to the initial conditions determined
at the end of the first phase. The time t f is determined by (30). All deflections in the plate are calculated
from (8) or (10) and (22) with allowance for all phases of motion.

In the case of high load represented by a rectangular pulse (P(t)= Pmax for t0 ≤ t ≤ T and P(t)= 0
for t > T ), the motion occurs with the constant region Sp during the action of the load (t0 ≤ t ≤ T ) and is
described by Equations (22), (25)–(27) for ϕD = ϕ0 determined from (34) with the initial conditions (24).
After removal of the load, the second and the third phases of motion (T < t ≤ t1 and t1 < t ≤ t f ) occur.
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They are described by the same equations in the first and second phases of motion of the plate under
explosive loading but for the condition P(t)= 0.

The results of the deflections w = ua2ρ/(M0T 2) of the simply supported astroid-shaped plate in
the cross section y = x are shown in Figure 5. Curves 1–3 correspond to the deflections of the plate
under a high load of a rectangular pulse with Pmax = 135.27M0/a2 at the times t = T , t = t1 = 2.14T ,
t = t f = 4.16T , respectively. Curves 4–6 refer to the deflections of the plate under a high load with a
linear decreasing ramp time (P(t)= 310.28(T − t)M0/a2 for 0 ≤ t ≤ T and P(t)= 0 for t > T ) at the
times t = T , t = t1 = 2.5T , t = t f = 4.77T , respectively. The numerical calculations show that

t1 = I/P1, t f = I/P0, (35)

where I =
∫ T

0 P(t)dt is the full pulse of the load.

4. Dynamic behavior of a plate whose contour consists of two arcs of circle

As another example, we consider the dynamic behavior of the plate with a contour consisting of two arcs
of circle of the radius R and the central corner 2γ (Figure 1, top left; Figure 6). For this plate, ν1 = R −r1,
ν2 = φ where (r1, φ) is the polar coordinate system with the pole located in the point x = 0,y = − R cos γ .
We have

Dh(ϕ)= R[1 − cos γ / cos(γ −ϕ)], Dmax = Dh(γ )= R(1 − cos γ )

with 0 ≤ ϕ ≤ γ and 0< γ ≤ π/2. Depending on the value of Pmax, two mechanisms of deformation are
possible for this plate. Under moderate loads, the plate is deformed into two parts of a cone surface with
the formation of the rectilinear plastic hinge line locating on the x-axis (mechanism 1 is presented in
Figure 1, top left). Under high loads, the region Sp is formed in the central part of the plate. The region
Sp moves translationally (mechanism 2 is presented in Figure 6). The contour of the region Sp consists
of two arcs of circle of the radius R − D and the central corner 2(γ −ϕD), where ϕD(t) is the parameter
determining the size of the region Sp(0< ϕD ≤ γ ). At ϕD = γ , the regions Sp and Z2 are not present.

Figure 5. Deflections of a simply supported astroid-shaped plate in the cross section x = y.
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Figure 6. Mechanism 2 for the plate with a contour consisting of two arcs of a circle.

The equations of motion (20)–(23) for mechanism 2 of the plate being considered in the absence of
resistance foundation look like (22), (25)–(27) where

61(ϕD)=

∫∫
Z1

d2
1 ds =4

∫ ϕD

0

[ ∫ R

R cos γ
cos(γ−ϕ)

r1(R − r1)
2dr1

]
dϕ

=
R4

3

{
ϕD − 2 cos2 γ (3 + cos2 γ )[tgγ − tg(γ −ϕD)]

+4 cos3 γ

[
tgγ

cos γ
−

tg(γ −ϕD)

cos(γ −ϕD)
+ ln

cos γ [1 − sin(γ −ϕD)]

cos(γ −ϕD)(1 − sin γ )

]
+ cos4 γ

[
sin(γ −ϕD)

cos3(γ −ϕD)
−

sin γ
cos3 γ

]}
,

62(ϕD)=

∫∫
Z2

d2
2 ds = 4

∫ γ−ϕD

0

[ ∫ R

R−D
r1(R − r1)

2dr1

]
dϕ

=
(γ −ϕD)R4

3

[
1 −

cos γ
cos(γ −ϕD)

]3[
1 +

3 cos γ
cos(γ −ϕD)

]
,

63(ϕD)=

∫∫
Z1

d1ds = 4
∫ ϕD

0

[ ∫ R

R cos γ
cos(γ−ϕ)

r1(R − r1)dr1

]
dϕ =

2R3

3

{
ϕD − cos2 γ [2tgγ − 3tg(γ −ϕD)]

+ cos3 γ

[
ln

cos γ [1 − sin(γ −ϕD)]

cos(γ −ϕD)(1 − sin γ )
−

tg(γ −ϕD)

cos(γ −ϕD)

]}
,

64(ϕD)=

∫∫
Z2

d2ds = 4
∫ γ−ϕD

0

[ ∫ R

R−D
r1(R − r1)dr1

]
dϕ

=
2(γ −ϕD)R3

3

[
1 −

cos γ
cos(γ −ϕD)

]2[
1 +

2 cos γ
cos(γ −ϕD)

]
,
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Figure 7. Dimensionless loads p0 (curve 1) and p1 (curve 2) for plate with a contour
consisting of two arcs of a circle.

65 =

∫
l
dl = 4γ R,

66(ϕD)= R[1 − cos γ / cos(γ −ϕD)].

The analysis of the dynamic behavior of the plate being considered is similar to the analysis performed
above for the astroid-shaped plate. We present some results. The limit load is calculated by the formula

P0 = min
0<ϕD≤γ

M0(2 − η)65

63 +64
=

M0(2 − η)65

63(γ )

=
M0(2 − η)

R2

6γ
γ − sin 2γ + cos3 γ ln[cos γ /(1 − sin γ )]

.

(36)

The load P1 under which the region Sp appears is found by the formula

P1 =
M0(2 − η)65

63(γ )−61(γ )/Dmax

=
12M0(2 − η)γ

R2

/[
2
(
γ − sin 2γ + cos3 γ ln

cos γ
1 − sin γ

)
−

γ − 3 sin γ cos γ + 2 cos3 γ
(
2 ln cos γ

1−sin γ − sin γ
)

1 − cos γ

]
.

(37)

For the central corner γ = π/2, the plate being considered becomes a circular plate of the radius R.
The limit load for it from the formula (36) is P0 = 6M0(2 − η)/R2. In the simply supported case, this
value is equal to the exact value of the limit load P̄0 obtained by Hopkins and Prager [1954]. For the
clamped contour, the limit load from the formula (36) is equal to 2P̄0. In [Florence 1966], it is obtained
as a result of the approached decision using the Tresca yield criterion and is equal to 1.875P̄0. For a
circular plate, the formula (37) gives P1 = 2P0. In the simply supported case, this result coincides with
those obtained by Hopkins and Prager [1954] and Perzyna [1958]. In the clamped case, Florence [1966]
obtained that P1 = 1.998×1.875P̄0 = 3.746P̄0. Figure 7 shows the dimensionless loads p0 and p1 versus
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Figure 8. Deflections of a simply supported plate with a contour consisting of two arcs
of a circle in the cross section x = 0.

the geometrical parameter γ (pi = Pi R2/[(2 − η)M0], i = 0, 1). The curves 1, 2 correspond to the loads
p0, p1, respectively.

For moderate loads, the final deflection in the center of the plate being considered is calculated from
the formula (33) G =63(γ )/ [ρ61(γ )].

The results of the deflections w= u R2ρ/(M0T 2) of the simply supported plate being considered in the
cross section x = 0 are in Figure 8. The plate is subjected to a high load represented by rectangular pulse
P(t)= Pm M0/R2 for 0 ≤ t ≤ T and P(t)= 0 for t > T . Curves 1–3 correspond to the deflections of the
plate with γ = 1, 2, Dmax = 0.638R and Pm = 38.37 at the times t = T , t = t1 = 1.48T , t = t f = 3.22T ,
respectively. Curves 4–6 correspond to the deflections of the plate with γ = π/4, Dmax = 0.293R and
Pm = 152.22 at the times t = T , t = t1 = 1.38T , t = t f = 3.13T , respectively. As in the case of the
astroid plate, the numerical calculations show that the equalities (35) are valid.

For circular simply supported plate (γ = π/2, η = 1), the final deflection and the duration of response
obtained by the offered method coincide with the result obtained by Perzyna [1958] and Youngdahl
[1971].

By the method described in the present work, we analyzed an astroid-shaped plate and a plate with
a contour consisting of two arches of circle under explosive loads represented by the various form of
a pulse in the absence of resistance foundation. All calculations show that the equalities (35) are valid.
In addition, it is established that the plates have the equal final deflections if different loads have two
equal integral characteristics I and I∗ =

∫ T
0 t P(t)dt . This property for the maximum final deflection

is obtained analytically for rigid-plastic circular plates by Youngdahl [1971] and for regular polygonal
plates by Nemirovsky and Romanova [1995].

5. Dynamic behavior of a plate with an internal free hole or a rigid insert

The previous result is easy to modify for the determination of the dynamic deformation of the plates of
a smooth curvilinear convex contour l, having an internal hole l2 which can be either free or clamped by
an absolutely rigid insert, which is located at the identical distance Da from the external contour. We
assume that Da ≤ Dmin. The equation of the internal contour l2 has the form (B.5) for D = Da (see
Appendix B). We consider the following. By the action of the load P(t), the plate is deformed into
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a cone-shaped surface without the formation of the region of intense plastic deformation whereas the
rigid insert and the points of the internal contour l2 move translationally with the identical velocity ẇc(t).
Consequently, the angle of rotation of the plate surface around of the contour l is identical for all ϕ. Let
us denote this angle by α(t).

Since, on the internal contour l2, the normal bending moment is equal to zero for the free contour and
equal to M0 for the case of a rigid insert, the power of internal forces is

N = α̇∗M0

[
(2 − η)

∫
l
dl −β

∫
l2

dl
]
, (38)

where β = 1 for the case of a free hole and β = 0 for the plate with a rigid insert. We have∫
l
dl =

∫ 2π

0
L(ϕ)dϕ,

∫
l2

dl =

∫ 2π

0

√
x ′2

2 + y′2
2dϕ,

where L(ϕ) is determined in (2). Taking into account the expression (B.5) for l2, we get∫
l2

dl =

∫ 2π

0
L(ϕ)dϕ− Da

∫ 2π

0

L(ϕ)
r(ϕ)

dϕ.

Then the expression (38) for N becomes

N = α̇∗M0

[
(2 − η−β)

∫ 2π

0
L(ϕ)dϕ+ Daβ

∫ 2π

0

L(ϕ)
r(ϕ)

dϕ

]
.

The expressions (6) look like

K = ρα̇∗α̈

∫∫
Z2

ν2
1ds + (1 −β)ρaẇ

∗

c ẅc

∫∫
Sp

ds,

A = α̇∗

[
P(t)

∫∫
Z2

ν1ds − (K1α+ K2α̇)

∫∫
Z2

ν2
1ds

]

+ (1 −β)ẇ∗

c
[
P(t)− K1wc − K2ẇ2

] ∫∫
Sp

ds,

where ρa is the surface density of the insert material. Substituting the expressions K , A, N into (5) and
taking into account the condition (22) of continuity of the velocities at the contour l2 for D = Da , we
obtain the equation of motion of the plate under consideration:(
ρα̈+ K1α+ K2α̇

) ∫∫
Z2

ν2
1ds + (1 −β)D2

a
(
ρaα̈+ K1α+ K2α̇

) ∫∫
Sp

ds

= P(t)

[∫∫
Z2

ν1ds + (1 −β)Da

∫∫
Sp

ds

]
−M0

[
(2 − η−β)

∫ 2π

0
L(ϕ)dϕ+ Daβ

∫ 2π

0

L(ϕ)
r(ϕ)

dϕ

]
.

(39)

The initial conditions look like (24).
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We determine the limit load P0 from (39), (24) and α̈(t0)= 0. Then, we have

P0 = M0

[
(2 − η−β)

∫ 2π

0
L(ϕ)dϕ+ Daβ

∫ 2π

0

L(ϕ)
r(ϕ)

dϕ
]/[∫∫

Z2

ν1ds + (1 −β)Da

∫∫
Sp

ds
]
.

In the case of an annular plate of radius R with a free internal contour (β = 1), the limit load is

P0 =
6M0(1 − η+ Da/R)

D2
a(3 − 2Da/R)

.

For the simply supported external contour, this result coincides with that obtained by Grigoriev [1953].
For the clamped external contour, this limit load for various Da/R exceeds the result calculated by
Grigoriev [1953] by approximately 7%.

Equation (39) is an ordinary differential equation of 2-nd order with constant coefficients and a variable
right part. Methods of solution of the Cauchy problem for such equations are well-known.

We determine the solution of the problem in the case of a free internal hole (β = 1) and in the absence
of resistance foundation (K1 = K2 = 0). Then Equation (39) becomes (29) for G = G1 where

G1 =

∫∫
Z2

ν1ds
/(

ρ

∫∫
Z2

ν2
1ds

)
.

Therefore, the analysis of the behavior of the plate being considered is similar to the analysis of the
behavior of the plate under a moderate load, which is performed above in the part 3, for G = G1 and
Dmax = Da . The moment that the plate comes to rest is determined by (32). The final deflection on the
contour l2 is calculated from (33). For an annular plate with the simply supported external contour, this
result coincides with that obtained by Mroz [1958] for a moderate load.

6. Conclusions

A rigid-plastic model is applied to study the dynamic behavior of simply supported or clamped plates of
arbitrary piecewise smooth curvilinear contour under uniformly distributed short-time intensive loads on
visco-elastic foundation. Several mechanisms of the dynamic deformation of the plates are considered.
For each mechanism, equations of the dynamic deformation are derived. Operating conditions of these
mechanisms are analyzed. The equations for the plastic hinge lines in the plate are obtained. A curvilinear
orthogonal coordinate system in which double integrals in the equations of motion can be conveniently
calculated is proposed. Analytical expressions for the limit and high loads and the maximum final
deflections are obtained. Detailed analyses are given for an astroid-shaped plate and for the plate with a
contour consisting of two arcs of circle. The calculations show that the fact that different explosive loads
having two equal integral characteristics I and I∗ is responsible for the identical final deflections of the
plates. The governing equations for the behavior of a plate with an internal free hole or a rigid insert are
obtained on analytically solvable form and details of the behavior are studied.
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Appendix A

We show that the line normal to the curve l2 is also the normal to the contour l. We approximate the
curvilinear contour l by polygonal contour l̄. For the polygonal plate obtained, the contour of the internal
region which moves translationally becomes a polygonal contour l̄2. Nemirovsky and Romanova [1987;
1988] showed that segments of the internal contour l̄2 are parallel to the corresponding segments of an
external contour l̄ and line normal to any segments of l̄2 is also normal to corresponding side of l̄. Hence,
as the number of segments of the polygonal contour l̄ tends to be infinity, the contour l̄2 comes closer
and closer to l2, and the normal to the curve l2 at any point of l2 is also a normal to the contour l.

Appendix B

Let us consider any smooth part of the contour l. We draw the normal to the curve l2 from point (x2, y2)∈

l2 so that it intersects l at point (x1, y1) ∈ l. The distance between curves l and l2 is written as D = δr ,
where r(ϕ) is the radius of curvature of the curve l and δ = δ(ϕ, t)≥ 0 is a dimensionless function. The
equation for the curve l2 has the form

x2 = x1 − δ(x1 − ξ), y2 = y1 − δ(y1 − ς).

Here ξ, ς are the coordinates of the center of curvature of the curve l:

ξ = x1 −
y′

1L2

x ′

1 y′′

1 − y′

1x ′′

1
, ς = y1 +

x ′

1L2

x ′

1 y′′

1 − y′

1x ′′

1
,

where L(ϕ) is given in (2)
Then the equations for the curve l2 look like

x2 = x1 − δ
y′

1L2

x ′

1 y′′

1 − y′

1x ′′

1
, y2 = y1 + δ

x ′

1L2

x ′

1 y′′

1 − y′

1x ′′

1
. (B.1)

As the normal to the contour l is also the normal to l2 (Appendix A), we obtain

x ′

2(x2 − x1)+ y′

2(y2 − y1)= 0, x ′

1(x1 − x2)+ y′

1(y1 − y2)= 0.

These relations yield

x ′

2 y′

1 = y′

2x ′

1. (B.2)

Differentiating (B.1) and substituting the resulting relations into (B.2), we arrive at the differential equa-
tion for the function δ(ϕ, t)

δ′
L4

x ′

1 y′′

1 − y′

1x ′′

1
+ δ

{
x ′

1

[
x ′

1L2

x ′

1 y′′

1 − y′

1x ′′

1

]′

+ y′

1

[
y′

1L2

x ′

1 y′′

1 − y′

1x ′′

1

]′
}

= 0.
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Taking into account the following relations

x ′

1

[
x ′

1L2

x ′

1 y′′

1 − y′

1x ′′

1

]′

+ y′

1

[
y′

1L2

x ′

1 y′′

1 − y′

1x ′′

1

]′

= (x ′

1x ′′

1 + y′

1 y′′

1 )
L2

x ′

1 y′′

1 − y′

1x ′′
+ (x ′2

1 + y′2
1)

[
L2

x ′

1 y′′

1 − y′

1x ′′

1

]′

= L L ′
L2

x ′

1 y′′

1 − y′

1x ′′
+ L2

[
L2

x ′

1 y′′

1 − y′

1x ′′

1

]′

= L
[

L3

x ′

1 y′′

1 − y′

1x ′′

1

]′

,

we obtain the solution of the equation for the function δ(ϕ, t):

δ = δ0(x ′

1 y′′

1 − y′

1x ′′

1 )/L3, δ0 = δ0(t)≥ 0. (B.3)

The radius of curvature r(ϕ) of the curve l has the form (1); then, it follows (B.3) that

D = δ(ϕ, t)r(ϕ)= δ0(t). (B.4)

Consequently, the distance D between the curves l and l2 is independent of the parameter ϕ. With
(B.3), (B.4), (B.1) for l2 becomes

x2 = x1 − Dy′

1/L , y2 = y1 + Dx ′

1/L . (B.5)
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INTERACTION OF A DISLOCATION WITH COLLINEAR RIGID LINES AT THE
INTERFACE OF PIEZOELECTRIC MEDIA

ZHONGMIN XIAO, HONGXIA ZHANG AND BINGJIN CHEN

This paper investigates the electroelastic interaction between a dislocation and collinear interfacial rigid
lines in two dissimilar piezoelectric materials subjected to remote loadings. Both conducting and dielec-
tric rigid lines are considered. The general solutions for the field variables are obtained based on the
Stroh formalism and analytical function theory. The stress and electric displacement fields at the tips of
rigid conducting lines are present as either a square root singularity or a combination of any two of the
three kinds of singularities: square root singularity, nonsquare root singularity and oscillatory singularity.
The stress and electric displacement fields at the tips of rigid dielectric lines exhibit either a square root
singularity or a combination of square root and oscillatory singularities. Singularities depend on the
electroelastic properties of the two piezoelectric materials. The rigid line extension force is expressed
in terms of the strain and electric field intensity factors which are analogous to the stress and electric
displacement intensity factors defined for interfacial cracks. The exact field solutions for the case of a
single interfacial rigid line are presented. The tangential and radial components of the image force on
the dislocation are calculated. Numerical examples are presented to demonstrate the effects of some
important parameters on the image force.

1. Introduction

Piezoelectric materials are widely used as sensors, actuators, and electromechanical devices due to their
inherent electromechanical coupling behavior. However, defects such as dislocations, cracks, cavities,
and inclusions can adversely influence the performance of such piezoelectric devices. Therefore it is
of great importance to investigate the behaviors of various defects in electroelastic fields in order to
understand the fracture behaviors of these materials and predict the integrity of theses devices.

Many efforts have been devoted to the crack models in piezoelectric materials [Pak 1990a; Sosa and
Pak 1990; Suo et al. 1992]. Suo et al. [1992] analyzed the generalized two dimensional problem of an
interfacial impermeable crack in piezoelectric bimaterials. They discovered that the crack tip fields show
the type of singularities of order r−1/2±iε and r−1/2∓κ . Ou and Wu [2003] further proved that either
ε or κ is equal to zero for the problem of an interfacial impermeable crack in a transversely isotropic
piezoelectric bimaterial system. Beom [2003] and Hausler et al. [2004] examined a permeable crack at
the interface of two piezoelectric media and identified an oscillatory singularity for the fields. Beom and
Atluri [2002] derived two pairs of oscillatory singularities for the fields around an interfacial conducting
crack tip in piezoelectric bimaterials. Ru [2000] studied a conducting crack between electrode layers and
piezoelectric ceramics. He identified a square root singularity for the tip tensile stress and a nonsquare
root singularity for the shear stress. Wang and Shen [2002] gave a general treatment on various interfacial

Keywords: piezoelectric, bimaterials, dislocation, rigid lines, interface, energy release rate, image force.
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defects in piezoelectric media. Xiao and Zhao [2004] analyzed a Zener–Stroh crack at the interface of
metal/piezoelectric bimaterials by means of Green’s function. Contributions have also been made to study
the dislocation-inclusion/interface/crack interaction in piezoelectric materials, for example [Meguid and
Deng 1998; Xiao et al. 2004; Fang et al. 2005; Chen et al. 2005a; Chen et al. 2005b] and [Gao et al.
2005].

Rigid line problems also attract researchers’ attention. Some solutions for the problems of rigid lines
in purely elastic materials under mechanical loading were obtained by Li and Ting [1989], Jiang [1991],
Ballarini [1990], Wu [1990], Jiang and Liu [1992], and Asundi and Deng [1995]. The stresses possess a
pronounced oscillatory character at the tip of interfacial rigid lines. Deng and Meguid [1998] analyzed
all the possible singularities of the field variables at an interfacial rigid conducting line tip in piezoelectric
materials loaded at infinity. Recently, the interactions of a screw dislocation with interfacial rigid lines in
piezoelectric solids have been studied by Liu et al. [2004] and Xiao et al. [2007]. Chen et al. [2007] exam-
ined the interaction of a dislocation with collinear rigid lines in a piezoelectric solid. To our knowledge,
however, no attempt has been made to investigate the generalized two-dimensional interaction between
a dislocation and interfacial rigid lines in piezoelectric media.

The current work presents the interactive solution for a dislocation and collinear rigid lines at the
interface of two piezoelectric materials. Rigid conducting and dielectric lines are modeled. The field
solutions and the near-tip singularities are discussed in detail in Section 4 andSection 5. The generalized
strain intensity factors are introduced to characterize the near-tip fields and rigid line extension forces
are obtained. In Section 6, the exact solutions for a special case of a single interfacial rigid line are
given. The image force on the dislocation is calculated in Section 7. In Section 8, the influences of
some important parameters, such as the Burgers vector and dislocation position, on the image force are
analyzed. A conclusion is given in Section 9.

2. Stroh formalism

Consider a linear piezoelectric solid in a Cartesian coordinate system (x1, x2, x3). For a two-dimensional
problem where all the field variables depend on x1 and x2 only, a general solution can be expressed as

u = A f (z)+ Ā f (z), 8 = B f (z)+ B̄ f (z),

with

u = [u1, u2, u3, u4]
T , 8 = [φ1, φ2, φ3, φ4]

T ,

f (z)= [ f1(z), f2(z), f3(z), f4(z)]T .

In the above equations, u and 8 denote the generalized displacement and stress function vectors, respec-
tively, A and B are the 4 × 4 matrices determined from material constants, and f (z) is a function vector
to be found. For simplicity, each component of f (z) is considered to be a function of one complex
variable z instead of zα = x1 + pαx2 (α = 1, 2, 3, 4) [Suo et al. 1992], where pα is a complex eigenvalue
with positive imaginary part. Thus, the generalized strains (strain and electric field) and the generalized
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stresses (stress and electric displacement) are given by

u,1 =
[
u j,1,−E1

]T
= A f (z)+ ĀF(z), (1)

8,1 =
[
σ2 j , D2

]T
= B F(z)+ B̄ F(z), (2)

8,2 =
[
σ1 j , D1

]T
= B〈pα〉F(z)+ B〈pα〉F(z), (3)

respectively, where a comma denotes partial differentiation and F(z)= d f (z)/dz. when calculating the
field variables, z should be replaced by zα for the αth component function.

The matrices A and B, when properly normalized, satisfy the orthogonality relation:BT AT

B̄T ĀT


A Ā

B B̄

=

I 0

0 I

 , (4)

where I is a 4 × 4 identity matrix. The three matrices S, H , and L are defined by

H = i2AAT , L = i2B BT , S = i(ABT
− I),

respectively. In addition, Hermitian matrix M, which appears in the analysis, is defined by

M = −i B A−1
= H−1

+ i H−1 S.

For convenience, a Hermitian matrix Y involving bimaterial properties is defined as

Y = M1 + M̄2,

where the subscripts 1 and 2 attached to matrices and vectors distinguish the two materials. The elements
of Y are represented by Yi j . We introduce a 3 × 3 bimaterial matrix Ŷ with the elements Ŷi j given by

Ŷi j = Yi j −
1

Y44
Yi4Y4 j . (5)

It is easily shown from Equation (5) that

Ŷ −1
i j = Y −1

i j , i, j = 1, 2, 3, (6)

where Ŷ −1
i j and Y −1

i j denotes the elements of matrices Ŷ
−1

and Y−1, respectively. It can be shown that
Ŷ is a positive definite Hermitian matrix by using the properties of Y .

3. Statement of the problem

Consider a piezoelectric dislocation with Burgers vector b =
[
b1, b2, b3, bϕ

]T located at zd = x1d + i x2d

in the upper half-infinite plane s1, as shown in Figure 1. The dislocation core is subjected to a line load
f =

[
−p1,−p2,−p3, q

]T . Suppose there are collinear rigid lines lk (k = 1, 2, . . . , n) with end points ak

and bk at the interface of s1 and the lower half-infinite plane s2, with the plane subjected to the uniform
loading at infinity. Let L l and Lb denote the unions of rigid lines and perfectly bonded parts along the
x1 axis, respectively.
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Figure 1. A piezoelectric dislocation near collinear rigid line inclusions at the interface
of two dissimilar piezoelectric media.

The mechanical boundary and equilibrium conditions of interfacial rigid lines are

u+

j,1(x1)= u−

j,1(x1)= δ j2ωk, j = 1, 2, 3, k = 1, 2, . . . , n, on L l, (7)∫
Ll

(σ+

2 j (x1)− σ
−

2 j (x1))dx1 = 0, j = 1, 2, 3, on L l, (8)

∫
Ll

(σ+

22(x1)− σ
−

22(x1))x1dx1 = 0, on L l, (9)

where ωk are unknown constants which represent the rotation of the kth rigid line, and the superscripts
+ and – refer to the boundary values from s1 and s2, respectively.

Assuming zero thickness of rigid lines, the electric boundary conditions are described as

E+

1 (x1)= E−

1 (x1)= 0, on L l, (10)∫
Ll

(D+

2 (x1)− D−

2 (x1))dx1 = 0, on L l, (11)

for the conducting case, and

E+

1 (x1)= E−

1 (x1), on L l, (12)

D+

2 (x1)= D−

2 (x1), on L l (13)

for the dielectric case.
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The boundary conditions along perfectly bonded parts are

u+

j (x1)= u−

j (x1), j = 1, 2, 3, 4, on Lb, (14)

σ+

2 j (x1)= σ−

2 j (x1), D+

2 (x1)= D−

2 (x1), j = 1, 2, 3, on Lb. (15)

4. Formulation and solution

Let F1(z) and F2(z) be the complex potentials in s1 and s2, respectively. Based on the superposition
principle, we can express

Fk(z)= F∞

k + Fka(z)+ Fkb(z), k = 1, 2, (16)

where constant vectors F∞

k are determined by the uniform loading at infinity in the absence of rigid
lines, Fka(z) are the complex potentials due to the interaction of a dislocation with a perfectly bonded
interface. The complex potentials Fkb(z) correspond to the perturbed field due to collinear interfacial
rigid lines. Fka(z) and Fkb(z) vanish at infinity.

We begin with the perfectly bonded interface problem in the absence of rigid lines. Such loadings
8∞

,1 =
[
σ∞

21 , σ
∞

22 , σ
∞

23 , D∞

2

]T and u∞

,1 =
[
ε∞

11, ε
∞

12 +ω∞, 2ε∞

13,−E∞

1

]T are applied that the continuous
conditions on tractions and displacements at the interface are satisfied. Thus, from Equation (1) and (2),
we have

Ak F∞

k + Āk F̄∞

k = u∞

,1 , Bk F∞

k + B̄k F̄∞

k = 8∞

,1 , k = 1, 2, −∞< x1 <∞. (17)

In view of Equation (4) and (17), one has

F∞

k = AT
k 8∞

,1 + BT
k u∞

,1 , k = 1, 2.

Tractions and displacements are continuous along the entire x1 axis, so that

u+

a,1(x1)= u−

a,1(x1), 8+

a,1(x1)= 8−

a,1(x1), −∞< x1 <∞, (18)

where ua,1 and 8a,1 denote the generalized strains and stresses due to the dislocation at zd , respectively.
For this subproblem, the solution can be given by

Fa(z)=

{
F1d(z)+ F10(z), z ∈ s1,

F20(z), z ∈ s2,
(19)

where F1d(z) is the solution for a dislocation at zd in an infinite plane given by

F1d(z)=
1

2π i

〈
1

z − zdα

〉(
BT

1 b + AT
1 f
)
. (20)

The above bracket 〈 〉 denotes a diagonal matrix. With the arguments of [Suo et al. 1992], one finds

F10(z)= A−1
1 Y−1(M̄1 − M̄2) Ā1 F̄1d(z), (21)

F20(z)= 2A−1
2 Ȳ−1 H−1

1 A1 F1d(z). (22)

The substitution of the above equations into Equation (19) gives the complete solution.
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Consider the rigid lines disturbed subproblem. From Equations (7), (10) or (12), and (14), the dis-
placement continuities along the x1 axis, along with Equations (1), (16), (17) and (18), give

A1 F+

1b(x1)+ Ā1 F̄−

1b(x1)= A2 F−

2b(x1)+ Ā2 F̄+

2b(x1), −∞< x1 <∞. (23)

By the analytic continuity argument, it follows that{
A1 F1b(z)= Ā2 F̄2b(z), z ∈ s1,

A2 F2b(z)= Ā1 F̄1b(z), z ∈ s2.
(24)

With such representations, the generalized stress jumps across rigid lines are obtained as

18,1(x1)= iY
[
I+(x1)− I−(x1)

]
, (25)

where

I(z)=

{
A1 F1b(z), z ∈ s1,

Y−1Ȳ A2 F2b(z), z ∈ s2.
(26)

Since 18,1(x1)= 0 on Lb from Equation (15), (25) shows that

I(z)=
[
I1(z), I2(z), I3(z), I4(z)

]T

is analytic in the entire plane except at the rigid lines.
Substituting Equation (16) into (1) with (17) gives

u,1(x1)= u∞

,1 + ua,1(x1)+ I+(x1)+ Ȳ−1Y I−(x1), (27)

where

ua,1(x1)=
2
π

Im
[

N
〈

1
x − zdα

〉
d
]
. (28)

In the above equation, N = Ȳ−1 H−1
1 A1 and d = BT

1 b + AT
1 f , which are defined for simplicity. The

elements of matrix N and vector d are represented by Ni j (i, j = 1, 2, 3, 4) and di (i = 1, 2, 3, 4),
respectively. Once I(z) is found, so is the full field.

The solution is simple if Y is real. When the collinear rigid lines are in a homogeneous material, Y is
indeed real. Y can be real for bimaterials having sufficient symmetry. In the following, real Y is assumed
in Sections 4.1 and 4.2, and the case that Y is complex is examined in Sections 4.3 and 4.4.

4.1. Rigid conducting lines: the fields of a square root singularity. With real Y , from Equations (7),
(10) and (27), one has

I+(x1)+ I−(x1)= � − u∞

,1 − ua,1(x1), on L l, (29)

where

� =


[
0, ω1, 0, 0

]T
, on l1,

· · · · · ·[
0, ωn, 0, 0

]T
, on ln.

(30)
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The general solution can be obtained from the method of [Muskhelishvili 1975] as

I(z)=
1
2

X (z)

{∮
η

�

X (ξ)(ξ − z)
dξ − u∞

,1

[
1

X (z)
− x(∞)

]

−
1
π i

N
〈

1
(zα − zdα)X (zα)

− 1 −
1

(zα − zdα)X (zdα)

〉
d

+
1
π i

N̄
〈

1
(zα − z̄dα)X (zα)

−
1

(zα − z̄dα)X (z̄dα)
− 1

〉
d̄ + Pa(z)

}
, (31)

where

Pa(z)= ca
n−1zn−1

+ · · · + ca
0, (32)

X (z)=

n∏
j=1

(z − a j )
−1/2(z − b j )

−1/2, (33)

x(∞)=

n∏
j=1

[
z − (a j + b j )/2

]
, (34)

in which η is the union of the n contours η1, . . . , ηn , surrounding the rigid lines L1, . . . , Ln in clockwise
direction.

From Equations (8), (11) and (25), we can obtain the closed path integral∮
η j

I(z)dz = 0, j = 1, 2, . . . , n. (35)

One has from Equations (9) and (25) the closed path integral

Y (2)
∮
η j

I(z)dz = 0, j = 1, 2, . . . , n. (36)

The n vectors ca
j−1 and n constants ω j ( j = 1, 2, . . . , n) can be obtained by substituting Equation (31)

into Equations (35) and (36) with Equations (32)–(34). Fkb(z) can be found by using Equation (26).

4.2. Rigid dielectric lines: the fields of a square root singularity. The condition, Equation (13), along
the rigid dielectric lines leads to

Y (4) I(z)= 0. (37)

One has from Equation (37) that

I4(z)= −
Y4 j

Y44
I j (z), j = 1, 2, 3. (38)

Thus we have
I(z)= ( Î − E) Î(z), (39)
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where Î(z) =
[
I1(z), I2(z), I3(z)

]T , Î is obtained by deleting the fourth column from a 4 × 4 identity
matrix, and E =

[
E1, E2, E3

]
with Ei =

[
0, 0, 0, Y4i/Y44

]T . The relations in Equations (37)–(39) are
valid for real and complex Y .

With real Y , Equations (5), (6), (7), (27) and (39) lead to

Î
+

(x1)+ Î
−

(x1)= �̂ − û∞

,1 − ûa,1(x1), (40)

where

�̂ =


[
0, ω1, 0

]T
, on l1,

· · · · · ·[
0, ωn, 0

]T
, on ln,

(41)

û∞

,1 =
[
u∞

1,1, u∞

2,1, u∞

3,1
]T
, ûa,1 =

[
ua

1,1, ua
2,1, ua

3,1
]T
.

The general solution to Equation (40) is given by

Î(z)=
1
2

X (z)

{∮
η

�̂

X (ξ)(ξ − z)
dξ − û∞

,1

[
1

X (z)
− x(∞)

]

−
1
π i

N̂
〈

1
(zα − zdα)X (zα)

− 1 −
1

(zα − zdα)X (zdα)

〉
d

+
1
π i

¯̂N
〈

1
(zα − z̄dα)X (zα)

−
1

(zα − z̄dα)X (z̄dα)
− 1

〉
d̄ + Pb(z)

}
, (42)

where N̂ is a 3 × 4 matrix obtained by deleting the fourth row of matrix N and

Pb(z)= cb
n−1zn−1

+ · · · + cb
0. (43)

Using Equations (8), (25) and (39), we can obtain the closed path integral∮
η j

Î(z)dz = 0, j = 1, 2, . . . , n. (44)

From Equations (5), (9), (25), and (39), one has the closed path integral

Ŷ
(2)
∮
η j

Î(z)zdz = 0, j = 1, 2, . . . , n, (45)

where Ŷ
(2)

=
[
Ŷ21, Ŷ22, Ŷ23

]
. Substituting Equation (42) into Equations (44) and (45), with Equations

(33), (34), and (43), we have the n vectors cb
j−1 and the n constants ω j ( j = 1, 2, . . . , n). Then, we can

find Fkb(z) by using Equation (26).
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For both conducting and dielectric cases, we can evaluate the generalized strain and stress intensity
factors at the right tip of the j th rigid line as

k =
[
k1, k2, k3, k4

]T
= lim

x→b j

√
2π(x − b j )(I(x)+ Ī(x)), (46)

K =
[
K I I , K I , K I I I , K D

]T
= lim

x→b j

√
2π(x − b j )[i M1 I(x)− i M̄1 Ī(x)], (47)

respectively. For the dielectric case, Equation (46), in view of (39), can be rewritten as

k = ( Î − E)k̂, (48)

where
k̂ =

[
k1, k2, k3

]T
= lim

x→b j

√
2π(x − b j )[ Î(x)+ ¯̂I(x)]. (49)

Thus, the generalized strains at the interface a distance r ahead of the tip, and the generalized stress
jumps a distance r behind the tip, of the j th rigid line, are given by

u(r)= (2r/π)1/2k, (50)

18,1(r)= (1/2πr)1/2Y k, (51)

respectively. For the dielectric case, Equation (51) can be further rewritten as[
1σ21(r),1σ22(r),1σ23(r)

]T
= (1/2πr)1/2Ŷ k̂, 1D2(r)= 0. (52)

In view of Equation (47), the generalized stresses at the interface a distance r ahead of the j th rigid line
tip are given by [

σ2 j (r), D2(r)
]T

= (2πr)−1/2 K . (53)

It is interesting to note that Equation (50) has the same structure as the expression of the generalized
stresses ahead of an impermeable crack tip and (51) has the same structure as that of the generalized
displacement jumps behind the crack tip [Suo et al. 1992].

Furthermore, the rigid line extension force can be calculated by the closure integral

G = lim
δ→0

−
1
2δ

δ∫
0

18T
,1(r)u(δ− r)dr . (54)

Substituting Equations (50) and (51) into (54) leads to

G = −
1
4

kT Y k. (55)

For the dielectric case, Equation (55) can be further rewritten as

G = −
1
4

k̂
T

Ŷ k̂. (56)

It should be pointed out that all the results in Section 4.1 and Section 4.2 are applied to the correspond-
ing problems of collinear rigid conducting and dielectric lines in a homogeneous piezoelectric material,
where M1 = M2 and Y = 2H−1

1 .
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4.3. Rigid conducting lines: the fields of square root, nonsquare root and oscillatory singularities.
For complex Y , Equations (7), (10), and (27) lead to

I+(x1)+ Ȳ−1YI−(x1)= � − u∞

,1 − ua,1(x1), on L l . (57)

Assuming that the eigenvalues of Ȳ−1Y take the form −e2π iδα with δα = −1/2 + iεα, we have

ε1,2 = ±ε, ε3,4 = ∓iκ, (58)

where

ε = tanh−1(β1)/π, κ = tan−1(−iβ2)/π,

β1 =
[
(b2

− c)1/2 − b
]1/2

, β2 = i[(b2
− c)1/2 + b]

1/2,

b = tr [(D−1U)2]/4, c = ||D−1U ||,

D = Re [Y ], U = Im [Y ].

Let 3α be the eigenvector of Ȳ−1Y corresponding to the eigenvalue −e2π iδα . Suo et al. [1992] assumed
that both values of ε and κ are nonzero and four linearly independent eigenvectors would be obtained
for impermeable cracks in a piezoelectric bimaterial system. Here, three combinations of ε and κ are
considered:

case 1: ε 6= 0 (b 6= 0), κ 6= 0 (c 6= 0),

case 2: ε 6= 0 (b < 0), κ = 0 (c = 0),

case 3: ε = 0 (b > 0), κ 6= 0 (c = 0).

It can be identified that the eigenvectors 31 and 32 are complex conjugates, that is, 32 = 3̄1, and 33

and 34 are real for cases 1 and 2, and all of them are real for case 3 [Deng and Meguid 1998]. Ou and
Wu [2003] confirmed that cases 2 and 3 apply to the problem of an impermeable interfacial crack in
a transversely isotropic piezoelectric bimaterial system. Four linearly independent eigenvectors can be
obtained for the three cases. For simplicity, we define

3A =
[
31,32,33,34

]
, 3B =


[3̄1,31,34,33], for case 1,

[3̄1,31,33,34], for case 2,

[31,32,34,33], for case 3,

(59)

which satisfy

3T
B D3A = 〈v1, v2, v3, v4〉,


v1 = v2, v3 = v4, for case 1,

v1 = v2, for case 2,

v3 = v4, for case 3.

(60)

In the above three cases, the general solution to Equation (57) can be given as

I(z)=

4∑
α=1

λα(z)3α, (61)
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with

λα(x1)=
e−πεαk ′

αXα(x1)

2
√

2π cos(iπεα)
. (62)

In the above equation, for cases 1 and 2, the factors k ′

1 and k ′

2 are complex conjugates (that is, k ′

2 = k̄ ′

1),
and k ′

3 and k ′

4 are real For case 3, k ′

1, k ′

2, k ′

3, and k ′

4 are real. Xα(z) is given by

Xα(z)=

n∏
j=1

(z − a j )
−1/2+iεα (z − b j )

−1/2−iεα . (63)

The arrangement of k ′

i ensures that the strain and electric field are real (see Equation (69) below). Mul-
tiplying the two sides of (57) by W = 3T

B D with the elements Wα j , with the aid of (61), we obtain:

[λα(x1)]
+

+ e2πεα [λα(x1)]
−

= Wα I0(x1)/vα, α = 1, 2, 3, 4, (64)

where
I0(x1)= � − u∞

,1 − ua,1(x1), (65)

and Wα
=
[
Wα1,Wα2,Wα3,Wα4

]
. The solution to Equation (64) is given as

λα(z)=
Xα(z)

(1 + e2πεα )vα

{∮
η

Wα�

Xα(ξ)(ξ − z)
dξ − Wαu∞

,1

[
1

Xα(z)
− xα(∞)

]

−
1

iπ

4∑
j=1

Wα j

4∑
k=1

N jkdk

[
1

(z − zdk)Xα(z)
−

1
(z − zdk)Xα(zdk)

− 1
]

+
1

iπ

4∑
j=1

Wα j

4∑
k=1

N̄ jk d̄k

[
1

(z − z̄dk)Xα(z)
−

1
(z − z̄dk)Xα(z̄dk)

− 1
]

+ Pc
α (z)

}
, (66)

where

Pc
α (z)= cc

αn−1zn−1
+ · · · + cc

α0, (67)

xα(∞)=

n∏
j=1

[z − (a j + b j )/2 − iεα(b j − a j )]. (68)

The 4n constants cc
αk (α = 1, 2, 3, 4, k = 0, 1, . . . , n − 1) and n constants ω j ( j = 1, 2, . . . , n) are

obtained by substituting Equation (61) into Equations (35) and (36) with Equations (63) and (66)–(68).
As a result, Fkb(z) can be found by using (26).

The generalized strains along the interface can be written as

u,1(x1)=
1

√
2π

[
k ′

1 X1(x1)31 + k ′

2 X2(x1)32 + k ′

3 X3(x1)33 + k ′

4 X4(x1)34
]
. (69)

The components k ′

1 X1(x1) and k ′

2 X2(x1) present the singularities of r−1/2∓iεα , and k ′

3 X3(x1) and k ′

4 X4(x1)

exhibit the singularities of r−1/2±κ , at the interface a distance r ahead of the rigid conducting line tip. In
cases 1 and 2, k ′

1 X1(x1) and k ′

2 X2(x1) are in the plane spanned by Re [31] and Im [31], and k ′

3 X3(x1)
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and k ′

4 X4(x1) are along the 33 and 34 directions, respectively. In case 3, k ′

i X i (x1) (i = 1, 2, 3, 4) are
along the 3i directions. In case 1, the components are analogous to the corresponding tractions and
charge for an impermeable interfacial crack in piezoelectric media, where ε 6= 0 and κ 6= 0 are assumed
[Suo et al. 1992].

At the interface, the generalized stresses disturbed by rigid conducting lines are given by

[
σ2 j (x1), D2(x1)

]T
= 2 Re

[
4∑
α=1

λα(x1)B1 A−1
1 3α

]
. (70)

At the tips of rigid conducting lines, the generalized stresses present oscillatory and nonsquare root
singularities in case 1, oscillatory and square root singularities in case 2, and square root and nonsquare
root singularities in case 3.

The generalized strain intensity factors at the right tip of the j th rigid conducting line are defined as

k̃α = lim
x1→b j

k ′

α

n∏
i=1

(x1 − ai )
−1/2+iεα

n∏
i=1,i 6= j

(x1 − bi )
−1/2−iεα

= lim
x1→b j

2
√

2π cos(iπεα)eπεα (x1 − b j )
1/2+iεαλα(x1),

(71)

where k̃1 and k̃2 are complex conjugates, and k̃3 and k̃4 are real for cases 1 and 2. All k̃i are real for case
3.

At the interface a distance r ahead of the j th rigid conducting line tip, the generalized displacements
are

u(r)=

√
r

2π

4∑
α=1

2
1 − i2εα

k̃αr−iεα3α. (72)

The generalized stress jumps at the interface a distance r behind the j th rigid conducting line tip are

18,1(r)= D
√

1
2πr

4∑
α=1

1
cos(iπεα)

k̃αr−iεα3α. (73)

It is worth noting that the structure of the generalized displacements in Equation (72) is the same as that
of the generalized stresses ahead of an impermeable crack tip, and the structure of the generalized stress
jumps in Equation (73) is the same as that of the generalized displacement jumps behind the crack tip
[Suo et al. 1992].

By substituting Equations (72) and (73) into (54), the j th rigid line extension force is obtained as

G =



−
v1

2 cosh2 πε
|k̃1|

2
−

v3

2 cos2 πκ
k̃3k̃4, for case 1,

−
v1

2 cosh2 πε
|k̃1|

2
−
v3

4
k̃2

3 −
v4

4
k̃2

4, for case 2,

−
v1

4
k̃2

1 −
v2

4
k̃2

2 −
v3

2 cos2 πκ
k̃3k̃4, for case 3.

(74)
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4.4. Rigid dielectric lines: the fields of oscillatory and square root singularities. For complex Y , Equa-
tions (5), (6), (7), (27), and (39) lead to

Î
+

(x1)+
¯̂
3−1Ŷ Î

−

(x1)= �̂ − û∞

,1 − ûa,1(x1). (75)

Similarly, the eigenvalues of ¯̂
3−1Ŷ are assumed to be the form e2πεα . One has

ε1,2 = ±ε, ε3 = 0, (76)

where

ε =
1

2π
ln

1 + η

1 − η
, η =

√
−

1
2

tr[( D̂
−1

Û)2], D̂ = Re [Ŷ ], Û = Im [Ŷ ]. (77)

The associated eigenvectors 31 and 32 are complex conjugates, that is, 32 = 3̄1, and 33 is real. We
define

3A =
[
31, 3̄1,33

]
, 3B =

[
3̄1,31,33

]
, (78)

which satisfy

3T
B D̂3A = 〈v1, v2, v3〉, v1 = v2. (79)

The general solution of Equation (75) can be given as

Î(z)=

3∑
α=1

λα(z)3α, (80)

where λα(z) is evaluated by Equation (62), with the factors k ′

1 and k ′

2 being complex conjugates, and k ′

3
being real. A similar procedure to that adopted in the preceding section permits us to obtain

λα(z)=
Xα(z)

(1 + e2πεα )vα

{∮
η

Ŵ
α
�̂

Xα(ξ)(ξ − z)
dξ − Ŵ

α
û∞

,1

[
1

Xα(z)
− xα(∞)

]

−
1

iπ

3∑
j=1

Ŵα j

4∑
k=1

N jkdk

[
1

(z − zdk)Xα(z)
−

1
(z − zdk)Xα(zdk)

− 1
]

+
1

iπ

3∑
j=1

Ŵα j

4∑
k=1

N̄ jk d̄k

[
1

(z − z̄dk)Xα(z)
−

1
(z − z̄dk)Xα(z̄dk)

− 1
]

+ Pd
α (z)

}
, (81)

where Ŵ
α

denotes the first (α) row of the matrix Ŵ = 3̂
T
B D̂ with the elements Ŵi j , and

Pd
α (z)= cd

αn−1zn−1
+ · · · + cd

α0. (82)

Substituting Equation (80) into (44) and (45), with Equations (63), (68), (81), and (82), we find the 3n
constants cd

αk (α = 1, 2, 3, k = 0, 1, . . . , n − 1) and the n constants ω j ( j = 1, 2, . . . , n). The functions
Fkb(z) are obtained through (26).
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The strains along the interface can be written as

û,1(x1)=
1

√
2π

[
k ′

1 X1(x1)31 + k̄ ′

1 X̄1(x1)3̄1 + k ′

3 X3(x1)33
]
. (83)

It is noted that the strains can be decomposed into two components: one is in the plane spanned by
Re [31] and Im [31], and the other is along the 33 direction, in analogy to the tractions for a crack in
anisotropic elastic media [Suo 1990]. At the j th rigid dielectric line tip, the strains present oscillatory
and square root singularities. The strain intensity factors k̃α (α = 1, 2, 3) defined in Equation (71) for
the conducting case are used here to characterize these singularities together with (81). The electric field
at the bonded interface is given by

E1(x1)= 2 Re [eT Î(x)], (84)

where e =
[
−Y41/Y44,−Y42/Y44,−Y43/Y44

]T . Equation (84) implies that the tip electric field also ex-
hibits oscillatory and square root singularities.

Along the interface, the generalized stresses disturbed by the rigid dielectric lines are obtained as

[
σ2 j (x1), D2(x1)

]T
= 2 Re

[
B1 A−1

1 ( Î − E)
3∑
α=1

λα(x1)3α

]
. (85)

It should be noted that the near-tip stress and electric displacement fields present oscillatory and square
root singularities, similar to the fields near the tips of a permeable interfacial crack in piezoelectric media
[Beom 2003].

At a distance r ahead of the j th rigid dielectric line tip, the displacements are

û(r)=

√
r

2π

3∑
α=1

2
1 − i2εα

k̃αr−iεα3α. (86)

The stress jumps at a distance r behind the j th rigid dielectric line tip are

[
1σ21(r),1σ22(r),1σ23(r)

]T
= D̂

√
1

2πr

3∑
α=1

1
cos(iπεα)

k̃αr−iεα3α. (87)

By substituting Equations (86) and (87) into Equation (54), the j th rigid line extension force is obtained
as

G = −
v1

2 cosh2 πε
|k̃1|

2
−
v3

4
k̃2

3 . (88)

5. Near tip fields around a single rigid line with a real Y

In this section we consider a single interfacial rigid line of length 2a centered along the x1 axis for the
case that Y is real. The rotation of the rigid line is assumed to be ω. One has

� =
[
0, ω, 0, 0

]T
, (89)

�̂ =
[
0, ω, 0

]T
, (90)
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X (z)= (z + a)−1/2(z − a)−1/2, x(∞)= z.

5.1. A single rigid conducting line: the fields of a square root singularity. In this case, Equation (31)
becomes

I(z)=
1
2
(� − u∞

,1 )

[
1 −

z
√

z2 − a2

]
−

1
2π i

N

〈
1

zα − zdα

(
1 −

√
z2

dα − a2

z2
α − a2

)
−

1√
z2
α − a2

〉
d

+
1

2π i
N̄

〈
1

zα − zdα

(
1 −

√
z2

dα − a2

z2
α − a2

)
−

1√
z2
α − a2

〉
d̄ +

z

2
√

z2 − a2
ca

0(z)

}
. (91)

Substituting Equation (91) into (35) and (36), and applying the residue theorem, we have

ca
0 = 0, (92)

ω =
1

Y22

{
Y (2)u∞

,1 +
4
πa2 Im

[
Y (2)N

〈√
z2

dα − a2 − zdα

〉
d
]}
. (93)

Substituting Equation (91) into (26) with Equations (92) and (93), using Equations (19)–(22), and
neglecting constants, one has

F1(z)=
1

2π i
A−1

1

{
A1

〈
1

zα − zdα

〉
d − N

〈
1

zα − zdα

[
1 −

√
z2

dα − a2

z2
α − a2

]
−

1√
z2
α − a2

〉
d

+ Ā1

〈
1

zα − z̄dα

〉
d̄ − N̄

〈
1

zα − z̄dα

[
1 +

√
z̄2

dα − a2

z2
α − a2

]
+

1√
z2
α − a2

〉
d̄ + (u∞

,1 − �)
iπ z

√
z2 − a2

}
, (94)

F2(z)=
1

2π i
A−1

2

{
N

〈
1

zα − zdα

[
1 +

√
z2

dα − a2

z2
α − a2

]
+

1√
z2
α − a2

〉
d

+ N̄

〈
1

zα − z̄dα

[
1 −

√
z̄2

dα − a2

z2
α − a2

]
−

1√
z2
α − a2

〉
d̄ + (u∞

,1 − �)
iπ z

√
z2 − a2

}
. (95)

Substitution of Equations (94) and (95) into (2) yields the complete stress and electric displacement field
solutions in s1 and s2, respectively.

By substituting Equation (91) into Equations (46) with (93), the generalized strain intensity factors at
the right tip of the rigid conducting line are obtained as

k =
√
πa(u∞

,1 − �)+
2

√
πa

Im

[
N
〈
1 −

√
zdα + a
zdα − a

〉
d

]
. (96)

Substituting Equation (91) into (47), one has the generalized stress intensity factors at the right tip of the
rigid conducting line K = ST

1 H−1
1 k = ST

2 H−1
2 k, where ST

1 H−1
1 = ST

2 H−1
2 for real Y .
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Substituting Equation (96) into (55) yields

G = −
πa
4
(u∞

,1 − �)T Y(� − u∞

,1 )− (u
∞

,1 − �)T Y Im

[
N
〈
1 −

√
zdα + a
zdα − a

〉
d

]

−
1
πa

Im

[
dT
〈
1 −

√
zdα + a
zdα − a

〉
NT

]
Y Im

[
N
〈
1 −

√
zdα + a
zdα − a

〉
d

]
. (97)

5.2. A single rigid dielectric line: the fields of a square root singularity. In this case, Equation (42)
reads

Î(z)= (�̂ − û∞

,1 )

[
1
2

−
z

2
√

z2 − a2

]
−

1
2π i

N̂

〈
1

zα − zdα

[
1 −

√
z2

dα − a2

z2
α − a2

]
−

1√
z2
α − a2

〉
d

+
1

2π i
¯̂N

〈
1

zα − z̄dα

[
1 −

√
z̄2

dα − a2

z2
α − a2

]
−

1√
z2
α − a2

〉
d̄ +

z

2
√

z2 − a2
cb

0. (98)

Substituting Equation (98) into Equations (44) and (45), and applying the residue theorem, we obtain

cb
0 = 0, (99)

ω =
1

Ŷ2 j

{
3∑

j=1

Ŷ2 j u∞

j,1 +
4
πa2 Im

[
Ŷ N̂

〈√
z2

dα − a2 − zdα

〉
d
]}
. (100)

Substituting Equation (98) into (39), using Equations (19)–(22), and (26), and neglecting constants,
we have

F1(z)= A−1
1

{
1

2π i
A1

〈
1

zα − zdα

〉
d −

1
2π i

(2N̄ − Ā1)

〈
1

zα − z̄dα

〉
d̄

}

−
1

2π i
A−1

1 ( Î − E)

{
N̂

〈
1

zα − zdα

[
1 −

√
z2

dα − a2

z2
α − a2

]
−

1√
z2
α − a2

〉
d

−
¯̂N

〈
1

zα − z̄dα

[
1 −

√
z̄2

dα − a2

z2
α − a2

]
−

1√
z2
α − a2

〉
d̄ + (�̂ − û∞

,1 )
iπ z

√
z2 − a2

}
,

(101)

F2(z)= A−1
2

{
1

2π i
N
〈

2
zα − zdα

〉
d

+ ( Î − E)

[
−

1
2π i

N̂

〈
1

zα − zdα

[
1 −

√
z2

dα − a2

z2
α − a2

]
−

1√
z2
α − a2

〉
d

+
1

2π i
¯̂N

〈
1

zα − z̄dα

[
1 −

√
z̄2

dα − a2

z2
α − a2

]
−

1√
z2
α − a2

〉
d̄ − (�̂ − û∞

,1 )
z

2
√

z2 − a2

}
.

(102)
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Substituting Equations (101) and (102) into (2) leads to the complete stress and electric displacement
field solutions in s1 and s2, respectively.

Substituting Equation (98) into (49) with (100), and using Equation (48), we obtain the generalized
strain intensity factors at the right tip of the rigid dielectric line as

k =
√
πa( Î − E)(û∞

,1 − �̂)+
2

√
πa
( Î − E) Im

[
N̂
〈
1 −

√
zdα + a
zdα − a

〉
d
]
. (103)

Substituting Equation (98) into (47) with (100), one finds the generalized stress intensity factors at the
right tip of the rigid dielectric line as

K = ST
1 H−1

1 k = ST
2 H−1

2 k. (104)

Substituting Equation (103) into (56) leads to

G = −
πa
4
(û∞

,1 − �̂)T Ŷ(û∞

,1 − �̂)− (û∞

,1 − �̂)T Ŷ Im

[
N̂
〈
1 −

√
zdα + a
zdα − a

〉
d

]

−
1
πa

Im

[
dT
〈
1 −

√
zdα + a
zdα − a

〉
N̂

T
]

Ŷ Im

[
N̂
〈
1 −

√
zdα + a
zdα − a

〉
d

]
. (105)

It is observed that the electric field applied at infinity cannot induce the rotation of the interfacial rigid
dielectric line, and makes no contribution to the singularities of the stress and electric displacement fields
at the tips of the interfacial rigid dielectric line in the two half-infinite planes.

6. Near-tip fields around a single rigid line with a complex Y

In this section, let us consider a rigid line of length 2a centered along the x1 axis, when Y is complex.
The rotation of the rigid line is assumed to be ω. Equations (30) and (41) become Equations (89) and
(90), respectively. Equations (63) and (68) become

Xα(z)= (z + a)−1/2+iεα (z − a)−1/2−iεα , (106)

xα(∞)= z − i2aεα, (107)

respectively. For convenience, we define

q1(z, α)=
z − i2aεα
√

z2 − a2

[ z + a
z − a

]iεα
, (108)

q2(z, zdβ, α)=
1

z − zdβ

{
1 −

√
z2

dβ − a2

z2 − a2

[ z + a
z − a

]iεα
[

zdβ − a
zdβ + a

]iεα
}

−
1

√
z2 − a2

[ z + a
z − a

]iεα
. (109)

6.1. A single rigid conducting line: the fields of square root, nonsquare root and oscillatory singular-
ities. Substituting Equation (66) into Equations (35), and (36), with Equations (67) (n = 1), (89), (106),
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and (107), and applying the residue theorem, we have

λα(z)= (Wαu∞

,1 − Wα2ω)q1(z, α)

−
1

iπ

4∑
j=1

Wα j

[
4∑

β=1

N jβdβq2(z, zdβ, α)−

4∑
k=1

N̄ jβ d̄βq2(z, z̄dβ, α)

]
, (110)

ω = ρ1

4∑
k=1

υk

{
4∑

j=1

1
iπa2 Wk j

{
4∑

r=1

N jr dr
[
i2aεk − zdr + (zdr + a)1/2−iεk (zdr − a)1/2+iεk

]
−

4∑
r=1

N̄ jr d̄r
[
i2aεk − z̄dr + (z̄dr + a)1/2−iεk (z̄dr − a)1/2+iεk

]}
+ W k u∞

j,1(1/2 + 2ε2
k )

}
, (111)

where

ρ1 = 1
/ 4∑

k=1

υk Wk2(1/2 + 2ε2
k ), υk =

4k

(1 + e2πεk )vk
, (112)

with 4k being the elements of the 1 × 4 matrix 4 = Y (2)3A.
Substituting Equation (110) into (61) with (111), and using Equations (19)–(22), and (26), we find

F1(z)=
1

2π i

[〈
1

zα − zdα

〉
d − A−1

1 (2N̄ − Ā1)

〈
1

zα − z̄dα

〉
d̄
]

+ A−1
1

4∑
α=1

λα3α

(1 + e2πεα )vα
, (113)

F2(z)=
1
π i

A−1
2 N

〈
1

zα − zdα

〉
d + A−1

2 Ȳ−1Y
4∑
α=1

λα3α

(1 + e2πεα )vα
. (114)

Substitution of the above equations into Equation (2) yields the complete stress and electric displacement
field solutions in s1 and s2.

By substituting Equation (110) into (71), the generalized strain intensity factors at the right tip of the
rigid conducting line are obtained as

k̃α =
(2a)iεα

vα

{
1

i
√
πa

4∑
j=1

Wα j

{
4∑

k=1

N jkdk

[
1 −

√
zdk + a
zdk − a

(
zdk − a
zdk + a

)iεα]

−

4∑
k=1

N̄ jk d̄k

[
1 −

√
z̄dk + a
z̄dk − a

(
z̄dk − a
z̄dk + a

)iεα]}
+

√
πaWα(u∞

,1 − �)(1 − i2εα)

}
. (115)

The rigid line extension force can be obtained by substituting Equation (115) into (74). This solution
procedure is not given in detail here.

6.2. A single rigid dielectric line: the fields of square root and oscillatory singularities. Substituting
Equation (80) into (44), and (45) with Equations (81) (n = 1), (90), (106), and (107), and applying the
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residue theorem, we have

λα(z)= (Ŵ
α

û∞

,1 − Ŵα2ω)q1(z, α)

−
1

iπ

3∑
j=1

Ŵα j

[
4∑

β=1

N jβdβq2(z, zdβ, α)−

4∑
k=1

N̄ jβ d̄βq2(z, z̄dβ, α)

]
, (116)

ω = ρ2

3∑
k=1

ϑk

{
1

iπa2

3∑
j=1

Ŵk j

{
4∑

r=1

N jr dr
[
i2aεk − zdr + (zdr + a)1/2−iεk (zdr − a)1/2+iεk

]
−

4∑
r=1

N̄ jr d̄r
[
i2aεk − z̄dr + (z̄dr + a)1/2−iεk (z̄dr − a)1/2+iεk

]}
+

3∑
j=1

Ŵk j û∞

j,1(1/2 + 2ε2
k )

}
, (117)

where

ρ2 =
1

3∑
k=1

ϑk Ŵk2(1/2 + 2ε2
k )

, ϑk =
Qk

(1 + e2πεk )vk
, (118)

with Qk being the elements of the 1 × 3 matrix Q = Ŷ
(2)

3A.
Substituting Equation (116) into (80) with (117), and using Equations (19)–(22), (26), and (39), we

find

F1(z)=
1

2π i

[〈
1

zα − zdα

〉
d − A−1

1 (2N̄ − Ā1)

〈
1

zα − z̄dα

〉
d̄
]

+ A−1
1 ( Î − E)

3∑
α=1

λα3α

(1 + e2πεα )vα
, (119)

F2(z)=
1
π i

A−1
2 N

〈
1

zα − zdα

〉
d + A−1

2 Ȳ−1Y( Î − E)
3∑
α=1

λα3α

(1 + e2πεα )vα
. (120)

Substitution of the above equations into Equation (2) yields the complete stress and electric displacement
field solution in s1 and s2.

By substituting Equation (116) into (71), the strain intensity factors at the right tip of the rigid dielectric
line are obtained as

k̃α =
(2a)iεα

vα

{
1

i
√
πa

3∑
j=1

Ŵα j

{
4∑

k=1

N jkdk

[
1 −

√
zdk + a
zdk − a

(
zdk − a
zdk + a

)iεα]

−

4∑
k=1

N̄ jk d̄k

[
1 −

√
z̄dk + a
z̄dk − a

(
z̄dk − a
z̄dk + a

)iεα]
+

√
πaŴ

α
(û∞

,1 − �̂)(1 − i2εα)

}
, (121)

for α = 1, 2, 3. The rigid line extension force can be obtained by substituting Equation (121) into (88).
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Similar to the case in which Y is real, the electric field applied at infinity does not affect either the
rotation of the single interfacial rigid dielectric line, or the stress and electric displacement fields in the
two half-infinite planes with the single interfacial rigid dielectric line.

7. Image force on the piezoelectric dislocation

The image forces in the x and y directions on the piezoelectric dislocation are obtained from the gener-
alized Peach–Koehler formula [Pak 1990b] as

Fx = σ d
i2bi = bT 8d

,1, Fy = − σ d
i1bi = bT 8d

,2,

where σ d
i2 (or 8d

,1) and σ d
i1 (or −8d

,2) are the generalized stresses obtained by subtracting the fields
generated by the piezoelectric dislocation with z → zd . Here we consider the case of a single rigid line
of length 2a centered along the interface of two piezoelectric media in the absence of far-field loads.

7.1. A single rigid conducting line. For the case in which Y is real, we obtain, from Equations (2), (3),
and (94):

8d
,1 =

1
π

Im
[

B1 A−1
1 Ā1〈g1(zdα)〉 B̄T

1 b − B1 A−1
1 N〈g2(zdα)〉 BT

1 b

− B1 A−1
1 N̄〈g3(zdα)〉 B̄T

1 b
]
− Re [B1 A−1

1 �g4(zd)],

8d
,2 =

1
π

Im
[

B1 A−1
1 Ā1〈pαg1(zdα)〉 B̄T

1 b − B1 A−1
1 N〈pαg2(zdα)〉 BT

1 b

− B1 A−1
1 N̄〈pαg3(zdα)〉 B̄T

1 b
]
− Re [B1〈pα〉 A−1

1 �g4(zd)],

where

g1(zdα)=
1

zdα − z̄dα
, g2(zdα)=

zdα −

√
z2

dα − a2

z2
dα − a2

,

g3(zdα)=

zdα − z̄dα +

√
z2

dα − a2 +

√
z̄2

dα − a2

(zdα − z̄dα)

√
z2

dα − a2
, g4(zd)=

zd√
z2

d − a2
,

and the nonzero component ω of � is obtained from Equation (93) by deleting the first term due to the
remote loads.

For the case in which Y is complex, from Equations (2), (3), and (113), one has

8d
,1 =

1
π

Im
[
B1 A−1

1 ( Ā1 − 2N̄)〈g1(zdα)〉B̄T
1 b
]
+ 2 Re

[
B1 A−1

1

4∑
α=1

λd
α(zd)3α

(1 + e2πεα )vα

]
,

8d
,2 =

1
π

Im
[
B1 A−1

1 ( Ā1 − 2N̄)〈pαg1(zdα)〉B̄T
1 b
]
+ 2 Re

[
B1〈pα〉A−1

1

4∑
α=1

λd
α(zd)3α

(1 + e2πεα )vα

]
,

where the nonzero component ω of � is obtained from Equation (111) by deleting the last term due to
the remote loads and λd

α(zd) can be found from (110) by letting z → zd .
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7.2. A single rigid dielectric line. For the case in which Y is real, from Equations (2), (3), and (101),
one has

8d
,1 =

1
π

Im
[

B1 A−1
1 ( Ā1 − 2N̄)〈g1(zdα)〉B̄T

1 b − B1 A−1
1 ( Î − E)N̂〈g2(zdα)〉BT

1 b

+ B1 A−1
1 ( Î − E) ¯̂N〈g5(zdα)〉B̄T

1 b
]
− Re [B1 A−1

1 ( Î − E)�̂g4(zd)],

8d
,2 =

1
π

Im
[

B A−1
1 ( Ā1 − 2N̄)〈pαg1(zdα)〉B̄T

1 b − B A−1
1 ( Î − E)N̂〈pαg2(zdα)〉BT

1 b

+ B A−1
1 ( Î − E) ¯̂N〈pαg5(zdα)〉B̄T

1 b
]
− Re [B〈pα〉A−1

1 ( Î − E)�̂g4(zd)],

where

g5(zdα)=

zdα + z̄dα −

√
z2

dα − a2 −

√
z̄2

dα − a2(√
z2

dα − a2 +

√
z̄2

dα − a2
)√

z2
dα − a2

,

and the nonzero component ω of �̂ is obtained from Equation (100) by deleting the first term due to the
remote loads.

For the case in which Y is complex, we have from Equations (2), (3), and (119)

8d
,1 =

1
π

Im
[
B1 A−1

1 ( Ā1 − 2N̄)〈g1(zdα)〉B̄T
1 b
]
+ 2 Re

[
B1 A−1

1 ( Î − E)
3∑
α=1

λd
α(zd)3α

(1 + e2πεα )vα

]
,

8d
,2 =

1
π

Im
[
B1 A−1

1 ( Ā1 − 2N̄)〈pαg1(zdα)〉B̄T
1 b
]
+ 2 Re

[
B1〈pα〉A−1

1 ( Î − E)
3∑
α=1

λd
α(zd)3α

(1 + e2πεα )vα

]
,

where the nonzero component ω of �̂ is obtained from Equation (117) by deleting the last term due to
the remote loads, and λd

α(zd) can be found from (116) by let z → zd .

8. Numerical examples and discussions

In this section, numerical examples are performed to show a) the singularity types of the near-tip stress
and electric displacement field, as well as b) to examine the effects of such parameters as the position of
the mixed dislocation, and the Burgers vector components b1, b2, bϕ, on the image force. As an example,
BaTiO3 is considered for s1 and PZT-6B for s2, with material properties listed in Table 1 [Ou and Wu
2003]. Poling directions of the two materials are assumed to be along the x2 axis. Based on the material
constants given, we obtain

ε = 0, κ = 0.03528, (122)

3A =


0 0 3.506 × 10−10

−3.506 × 10−10

0 −1.6807 × 10−9
−2.245 × 10−10

−2.245 × 10−10

1 0 0 0

0 0.9999 0.9999 0.9999
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PZT-6B BaTiO3

c11 GPa 168 150
c12 GPa 60 66
c13 GPa 60 66
c33 GPa 163 146
c44 GPa 27.1 44
e31 C/m2 -0.90 -4.35
e33 C/m2 7.10 17.5
e15 C/m2 4.60 11.4
ε11 10−10 C/Vm 36.0 98.7
ε13 10−10 C/Vm 34.0 112

Table 1. Material Properties for BaTiO3 and PZT-6B. The poling direction is along the
x3 axis.

for the conducting case, and

ε = 0.02439, (123)

3A =


0.7315 0.7315 0

0.6818i −0.6818i 0

0 0 1


for the dielectric case.

For BaTiO3/PZT-6B bimaterial, it is found from Equations (58), (63), and (122) that the stress and
electric displacement fields at the rigid conducting line tips present square root and nonsquare root sin-
gularities. It is also observed from Equations (76) and (123) that the stress and electric displacement
fields at the rigid dielectric line tips have square root and oscillatory singularities, for BaTiO3/PZT-6B
and other piezoelectric materials.

Here, the tangential and radial components of the image force are analyzed, given by

Ft = − Fx sin[θd ] + Fy cos[θd ], Fr = Fx cos[θd ] + Fy sin[θd ].

The normalizing factors are taken as

F0(bi )=
1

4πa
bT L1b, i = 1, 2, 4,

for nonzero bi . Thus the normalized tangential and radial components of the image force are given by

F∗

t (bi )= Ft(bi )/F0(bi ), F∗

r (bi )= Fr (bi )/F0(bi ), i = 1, 2, 4,

where a positive term contributes to the repulsive force and a negative term to the attractive force.
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Figure 2. Normalized tangential force F∗
t (b1) versus rd/a for θd = π/8.

Normalized forces F∗
t (b1), F∗

r (b1), F∗
t (b2), F∗

r (b2), F∗
t (bϕ) and F∗

r (bϕ) versus rd/a are depicted in
Figures 2–7, respectively, for θd = π/8. Normalized forces F∗

t (b1), F∗
r (b1), F∗

t (b2), F∗
r (b2), F∗

t (bϕ) and
F∗

r (bϕ) versus θd , for rd = 1.5a, are plotted in Figures 8–13, respectively. The symbols C and D in the
figures stand for the conducting and dielectric cases, respectively.

In the tangential direction, it is seen from Figure 2 that the interface and the rigid dielectric lines attract
the dislocation with b1 at a point (rd , θd) when rd/a < r̂∗

1 , and repel the dislocation with b1 at a point
(rd , θd) when rd/a > r̂∗

1 . The same phenomenon can be observed if r̂∗

1 is replaced by r̂∗

2 (r̂
∗

2 > r̂∗

1 ) for
the conducting case. It is also found that the attractive force is stronger and the repulsive force is weaker
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Figure 3. Normalized radial force F∗
r (b1) versus rd/a for θd = π/8.



358 ZHONGMIN XIAO, HONGXIA ZHANG AND BINGJIN CHEN

1 2 3 4 5

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

�

�

��
�

�� �

�
��

�

Figure 4. Normalized tangential force F∗
t (b2) versus rd/a for θd = π/8.

for the conducting case than for the dielectric case. The opposite phenomenon is observed from Figure
3 in the radial direction, where r̂∗

1 and r̂∗

2 are replaced by r̂∗

3 and r̂∗

4 (r̂
∗

4 > r̂∗

3 ), respectively.
As shown in Figure 4, in the tangential direction, the interface and the rigid conducting line always

attract the dislocation with b2. However, the interface and the rigid dielectric line repel the dislocation
with b2 at a point (rd , θd) when rd/a < r̂∗

5 or rd/a > r̂∗

6 (r̂
∗

6 > r̂∗

5 ), and attract the dislocation with b2 at
a point (rd , θd) when r̂∗

5 < rd/a < r̂∗

6 , in the tangential direction. Moreover from Figure 4, it should be
noted that the attractive force on a dislocation with b2 is stronger for the conducting case than for the
dielectric case along the tangential direction. We can observe from Figure 5 that the interface and the
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Figure 5. Normalized radial force F∗
r (b2) versus rd/a for θd = π/8.
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Figure 6. Normalized tangential force F∗
t (bϕ) versus rd/a for θd = π/8.

rigid dielectric line always repel the dislocation with b2, in the radial direction. However, the interface
and the rigid conducting line repel the dislocation with b2 at a point (rd , θd) when rd/a < r̂∗

7 , and attract
the dislocation with b2 at a point (rd , θd) when rd/a > r̂∗

7 , in the radial direction. Also it can be observed
that the rigid dielectric line repels the dislocation with b2 more strongly than the rigid conducting line
does.

In the tangential direction, it is clear from Figure 6 that the rigid conducting line induces a stronger
attractive force on the dislocation with bϕ than does the rigid dielectric line. In the radial direction, it is
observed from Figure 7 that the interface and the rigid dielectric line always attract the dislocation with

1 2 3 4 5

-0.3

-0.2

-0.1

0

�

�

��
�

���
ϕ
��

�

Figure 7. Normalized radial force F∗
r (bϕ) versus rd/a for θd = π/8.
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Figure 8. Normalized tangential force F∗
t (b1) versus θd for rd = 1.5a.

bϕ . However, the interface and the rigid conducting line repel the dislocation with bϕ at a point (rd , θd)

when rd/a < r̂∗

8 and attract the dislocation with bϕ at a point (rd , θd) when rd/a > r̂∗

8 . Further, we
observe from Figure 7 that the rigid dielectric line always attracts the dislocation with bϕ more strongly
than does the rigid conducting line in the radial direction.

It is seen from Figure 8 that the value of the tangential force on a dislocation with b1 away from the
interface is always larger for the dielectric case than for the conducting case. This means that the effects
on the forces due to the rigid dielectric line (the repulsive force is stronger and the attractive force is
weaker) are stronger than the effects on the forces due to the rigid conducting line. From Figure 9, it
can be observed that the value of the radial force on a dislocation with b1 at a point (rd , θd), in which
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Figure 9. Normalized radial force F∗
r (b1) versus θd for rd = 1.5a.
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Figure 10. Normalized tangential force F∗
t (b2) versus θd for rd = 1.5a.

θd < 90◦, is always larger for the conducting case than for the dielectric case. However, the opposite
phenomenon is observed when 90◦ < θd < 180◦.

The force on a dislocation with b2, which repels the dislocation away from the interface (as is seen
from Figure 10), is stronger due to a rigid dielectric line than the force due to a rigid conducting line
in the tangential direction. The same phenomenon is observed from Figure 11 for the case θd < 90◦

in the radial direction. It is also observed that the value of the radial force increases with increasing
θd (θd < 90◦ or θd > 90◦).

It can be observed from Figure 12 that the attractive force on a dislocation with bϕ , at a point (rd , θd)

when θd < 90◦, is always stronger for the rigid conducting line case than for the rigid dielectric line, in
the tangential direction. Figure 12 also shows that the rigid dielectric line repels a dislocation with bϕ
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Figure 11. Normalized radial force F∗
r (b2) versus θd for rd = 1.5a.
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Figure 12. Normalized tangential force F∗
t (bϕ) versus θd for rd = 1.5a.

at a point (rd , θd) more strongly than does the rigid conducting line, when 90◦ < θd < θ
∗

d . The opposite
phenomenon can be observed at a point (rd , θd), when θ∗

d < θd < 180◦. It is worth noting that the value
of the tangential force increases with an increase in θd . Figure 13 clearly shows that the interface and
the rigid dielectric line always attract a dislocation with bϕ in the radial direction, and the value of the
radial force is always larger for the conducting case than for the dielectric case.

It is worth noting from Figures 2–7 that the image forces on the dislocation, which move it away from
the interface along the radial direction, approach the same value gradually, and become zero ultimately
for the two cases. This is due to the fact that the remarkable distance between the dislocation and the
interface weakens the interaction between the dislocation and the rigid lines. It can be observed from
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Figure 13. Normalized radial force F∗
r (bϕ) versus θd for rd = 1.5a.
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Figures 8, 10, and 12 that the tangential forces on the dislocation near the interface approach the same
value for the two cases, which indicates that the interaction between the dislocation and the interface is
dominant. From Figures 11 and 13, a large change of the radial force acting on a dislocation near the point
z∗(1.5a, 90◦) is observed due to the electroelastic interaction. The dislocation with b1 at z∗(1.5a, 90◦)

for the dielectric and conducting cases in equilibrium is also observed in the examples.

9. Conclusion

The Stroh formalism was employed to analyze the interaction between a piezoelectric dislocation and the
collinear rigid lines, which are either conducting or dielectric, at the interface of two piezoelectric media.
The general solutions for the field variables were obtained. A square root singularity was identified for
the stress and electric displacement fields at the tips of interfacial rigid conducting/dielectric lines when
the two piezoelectric media have sufficient symmetry so that the matrix Y is real. It was further found
that the stress and electric displacement fields at the tips of interfacial rigid conducting lines present
either a combination of square root and oscillatory singularities or a combination of square root and
nonsquare root singularities in transversely isotropic piezoelectric media where the matrix Y is complex,
or a combination of oscillatory and nonsquare root singularities in piezoelectric media whose material
properties do not match suitably, so that the real numbers ε 6= 0 and κ 6= 0. The fields at the tips of rigid
dielectric lines have square root and oscillatory singularities at the interface of a piezoelectric bimaterial
system where the matrix Y is complex. The strain and electric field intensity factors were introduced to
characterize the near-tip field singularity. The expressions of the rigid line extension forces, based on
the energy release rate and the mechanical energy release rate, were derived. The exact field solutions
for the case of a single interfacial rigid line were presented. The effects of the Burgers vector and the
dislocation position on the image force were analyzed in detail.
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EXACT SOLUTION OF DOUBLE FILLED HOLE OF AN INFINITE PLATE

NAT KASAYAPANAND

The plane stress linear elastic solution to the problem of a circular disk embedded in a ring fitted into
a uniaxially loaded infinite plate is solved using Airy stress functions. This exact solution is validated
by reduction to the benchmark solutions: plate without hole, plate with a circular hole, plate with a
circular inclusion, and plate with a ring inclusion. Numerical results of stress distribution are presented
for changing material properties.

1. Introduction

It is well known that for a uniaxially loaded infinite plate with a hole a stress concentration of three
occurs at the point where the load direction is tangent to the hole boundary [Love 1944; Sokolnikoff
1956; Timoshenko and Goodier 1970; Little 1973; Ugural and Fenster 1994]. Savin [1961] extensively
examined the problem of stress concentrations in plates including those related to disk and ring inclusions.
The analytical solution for tension applied in one direction in an orthotropic plate with circular filled
center is conducted by Lekhnitskii [1968]. Recently, the current researches dealing with the elastic
inclusions problem are obtained numerically by Parhi and Das [1972], Greengard and Helsing [1998],
Liu et al. [2000], Fanzhong et al. [2002], and Wang et al. [2005]. However, there is no previous literature
relating to the exact stress in the double filled hole of an infinite plate (that is, a circular elastic inclusion
embedded into a reinforced hole in an elastic plane, and a reinforced ring is used) by different materials
to reduce the stress concentration around the hole of plate. This configuration is useful for designing of
the filled hole of plate systems in many engineering applications.

In this plane stress study, a linearly elastic disk embedded in an elastic ring is fitted into a hole of an
infinite plate, all with the same thickness. All surfaces are seamlessly bonded between three materials that
may be different. A proposed general solution without body forces is considered in terms of Airy stress
functions so that stresses, strains, and displacements may be calculated. For convenience, rectangular
Cartesian coordinates together with polar coordinates are used interchangeably.

Nomenclature

a constant
A constant
b constant
c constant
d constant

Keywords: stress function, stress concentration, plane stress, circular hole, inclusion.
The author gratefully acknowledges the support provided by the Thailand Research Fund and Commission on Higher Education
for carrying out this study.
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D domain
E modulus of elasticity, N/m2

r radius coordinate, m
s uniform uniaxial stress tension, N/m2

u component of displacement in radius direction, m
v component of displacement in tangential direction, m
x x-coordinate, m
y y-coordinate, m

Greek symbols

ε component of strain
8 stress function, N
ν Poisson’s ratio
θ angle, degree
σ component of stress, N/m2

2. Theoretical formulation

Figure 1 shows the plane stress problem of an infinite plate subjected to the uniform uniaxial tension s. A
disk (material 1) and a ring (material 2) having radius R1 and R2, respectively, are seamlessly embedded
into an infinite plate (material 3), all with the same thickness, and are assumed linear elastic, isotropic,
and homogeneous.

Let u and v be components of displacements in the radial, r , and tangential, θ , directions. If the
disk, ring, and plate, are labeled as 1, 2, and 3, respectively, then the regions in space occupied by them
denoted by Di ; i = 1, 2, and 3 are

D1 = ((r, θ) : 0 ≤ r ≤ R1, 0 ≤ θ ≤ 2π), D2 = ((r, θ) : R1 ≤ r ≤ R2, 0 ≤ θ ≤ 2π),

D3 = ((r, θ) : r ≥ R2, 0 ≤ θ ≤ 2π). (1)

Figure 1. Boundary conditions of the double filled hole of plate.
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The conditions at the interface of the disk, ring, and plate are

r = R1; u1 = u2, v1 = v2, σrr1 = σrr2, σrθ1 = σrθ2,

r = R2; u2 = u3, v2 = v3, σrr2 = σrr3, σrθ2 = σrθ3.
(2)

The two-dimensional Cartesian ton polar stress transform equations are

σrr = σxx cos2 θ+σyy sin2 θ+2σxy sin θ cos θ, σθθ = σxx sin2 θ+σyy cos2 θ−2σxy sin θ cos θ,

σrθ = − (σxx − σyy) sin θ cos θ + σxy(cos2 θ − sin2 θ). (3)

With corresponding equations of equilibrium in polar coordinates

∂σrr

∂r
+
σrr − σθθ

r
+

1
r
∂σrθ

∂θ
+ Fr = 0,

∂σrθ

∂r
+

2σrθ

r
+

1
r
∂σθθ

∂θ
+ Fθ = 0. (4)

The plane stress stress-strain relations are

εrr =
1
E
(σrr − νσθθ ), εθθ =

1
E
(σθθ − νσrr ), εrθ =

σrθ

E
(1 + ν), (5)

where the linear strain-displacement relations are given by

εrr =
∂u
∂r
, εθθ =

u
r

+
1
r
∂v

∂θ
, εrθ =

1
2

(
1
r
∂u
∂θ

+
∂v

∂r
−
v

r

)
. (6)

By following an Airy stress function (8) approach in which one assumes the body forces are negligible,
the governing equations reduce to

(
∂2

∂r2 +
1
r
∂

∂r
+

1
r2

∂2

∂θ2

)(
∂28

∂r2 +
1
r
∂8

∂r
+

1
r2

∂28

∂θ2

)
= 0, (7)

where the stress components are defined by

σrr =
1
r
∂8

∂r
+

1
r2

∂28

∂θ2 , σθθ =
∂28

∂r2 , σrθ = −
∂

∂r

(1
r
∂8

∂θ

)
. (8)

Consider the Airy’s stress function in polar coordinates, written as

8i = a0i + b0i ln r + c0ir2
+ d0ir2 ln r +

(
a2ir2

+ b2ir4
+ c2ir−2

+ d2i
)

cos(2θ). (9)
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From Equations (5)–(9), the general expressions for stresses and displacements can be obtained as fol-
lows:

σrri = 2c0i + d0i + b0ir−2
+ 2d0i ln r − (6c2ir−4

+ 4d2ir−2
+ 2a2i ) cos(2θ),

σθθ i = 2c0i + 3d0i − b0ir−2
+ 2d0i ln r + (6c2ir−4

+ 2a2i + 12b2ir2) cos(2θ),

σrθ i = (−6c2ir−4
− 2d2ir−2

+ 2a2i + 6b2ir2) sin(2θ),

ui =
1
Ei

((
−(1 + νi )b0ir−1

+ 2(1 − νi )c0ir − (1 + νi )d0ir + 2(1 − νi )d0ir ln r
)

+

(
2(1 + νi )c2ir−3

+ 4d2ir−1
− 2(1 + νi )a2ir − 4νi b2ir3

)
cos(2θ)

)
−A0i sin(θ)+ A1i cos(θ),

vi =
1
Ei

(
4d0irθ +

(
2(1 + νi )c2ir−3

− 2(1 − νi )d2ir−1
+ 2(1 + νi )a2ir + 2(3 + νi )b2ir3

)
sin(2θ)

)
+A0i cos(θ)+ A1i sin(θ)+ r A2i . (10)

The constants a0i , b0i , c0i , d0i , a2i , b2i , c2i , and d2i ; i = 1, 2, 3 and A0i , A1i , A2i ; i = 1, 2, 3 are determined
using the interface, boundary, and mathematical conditions in Equation (2).

3. Mathematical implementation

The constants in the Airy stress function are obtained by the following considerations: substitution
of Equation (10) into Equation (6) reveals that all strain components are free from A0i , A1i , and A2i ,
meaning that these constants are related to rigid body motion. It is assumed that the translation and
rotational rigid body motions are zero, and that the origin of xy-coordinates is the reference point for
zero displacements, so that A0i , A1i , and A2i = 0. For the disk, the displacement at r = 0 must be finite,
so we must set b01, c21, and d21 = 0. Because polar coordinates are used, it is a requirement that at any
r stresses and displacements must be equal if θ is replaced by θ + 360◦. Thus, d01, d02, and d03 = 0.
Finally, the eighteen remaining constants: a01, c01, a21, b21, a02, b02, c02, a22, b22, c22, d22, a03, b03, c03,
a23, b23, c23, and d23 are determined by using the interface, boundary, and mathematical conditions.

The boundary conditions of the plate in polar coordinates are

σrr3 =
s
2
(1 + cos(2θ)), σθθ3 =

s
2
(1 − cos(2θ)),

σrθ = −
s
2

sin(2θ). (11)

At the plate, taking the limit r → ∞, the results are expressed as c03 =
s
4 , a23 = −

s
4 , b23 = 0.
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Therefore, at this stage, the stress and displacement components are reduced to

σrr1 = 2c01 − 2a21 cos(2θ), σrθ1 = (2a21 + 6b21r2) sin(2θ),

σrr1 = 2c01 − 2a21 cos(2θ), u1 =
1
E1

(
2(1 − ν1)c01r −

(
2(1 + ν1)a21r + 4ν1b21r3) cos(2θ)

)
,

v1 =
1
E1

(
2(1 + ν1)a21r + 2(3 + ν1)b21r3) sin(2θ),

σrr2 = 2c02 + b02r−2
− (6c22r−4

+ 4d22r−2
+ 2a22) cos(2θ),

σrθ2 =
(
−6c22r−4

− 2d22r−2
+ 2a22 + 6b22r2) sin(2θ),

u2 =
1
E2

((
−(1 + ν2)b02r−1

+ 2(1 − ν2)c02r
)

+
(
2(1 + ν2)c22r−3

+ 4d22r−1
− 2(1 + ν2)a22r − 4ν2b22r3) cos(2θ)

)
,

v2 =
1
E2

(
2(1 + ν2)c22r−3

− 2(1 − ν2)d22r−1
+ 2(1 + ν2)a22r + 2(3 + ν2)b22r3

)
sin(2θ),

σrr3 =
s
2

+ b03r−2
+

( s
2

− 6c23r−4
− 4d23r−2

)
cos(2θ),

σrθ3 =

(
−6c23r−4

− 2d23r−2
−

s
2

)
sin(2θ),

u3 =
1
E3

((
−(1 + ν3)b03r−1

+(1 − ν3)
s
2

r
)

+

(
2(1 + ν3)c23r−3

+ 4d23r−1
+ (1 + ν3)

s
2

r
)

cos(2θ)
)
,

v3 =
1
E3

(
2(1 + ν3)c23r−3

− 2(1 − ν3)d23r−1
− (1 + ν3)

s
2

r
)

sin(2θ).

(12)

Substitution of Equation (12) into the interface conditions (Equation (2)) yields

2c01 = 2c02 + b02 R−2
1 ,

2a21 = 6c22 R−4
1 + 4d22 R−2

1 + 2a22,

2a21 + 6b21 R2
1 = − 6c22 R−4

1 − 2d22 R−2
1 + 2a22 + 6b22 R2

1,

1
E1
(2(1 − ν1)c01 R1)=

1
E2

(
−(1 + ν2)b02 R−1

1 + 2(1 − ν2)c02 R1
)
,

1
E1

(
2(1 + ν1)a21 R1 + 4ν1b21 R3

1
)
=

1
E2

(
2(1 + ν2)c22 R−3

1 + 4d22 R−1
1

−2(1 + ν2)a22 R1 − 4ν2b22 R3
1

)
,
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Figure 2. Stress concentration distribution for various modulus of elasticity ratios.

1
E1

(
2(1 + ν1)a21 R1 + 2(3 + ν1)b21 R3

1
)
=

1
E2

(
2(1 + ν2)c22 R−3

1 − 2(1 − ν2)d22 R−1
1

+2(1 + ν2)a22 R1 + 2(3 + ν2)b2i R3
1

)
,

2c02 + b02 R−2
2 =

s
2

+ b03 R−2
2 ,

−6c22 R−4
2 − 4d22 R−2

2 − 2a22 =
s
2

− 6c23 R−4
2 − 4d23 R−2

2 ,

−6c22 R−4
2 − 2d22 R−2

2 + 2a22 + 6b22 R2
2 = − 6c23 R−4

2 − 2d23 R−2
2 −

s
2
,

1
E2

(
−(1 + ν2)b02 R−1

2 + 2(1 − ν2)c02 R2
)
=

1
E3

(
−(1 + ν3)b03 R−1

2 + (1 − ν3)
s
2

R2

)
,

1
E2

(
2(1 + ν2)c22 R−3

2 + 4d22 R−1
2 − 2(1 + ν2)a22 R2 − 4ν2b22 R3

2

)
=

1
E3

(
2(1 + ν3)c23 R−3

2 + 4d23 R−1
2 + (1 + ν3)

s
2

R2

)
,

1
E2
(2(1 + ν2)c22 R−3

2 − 2(1 − ν2)d22 R−1
2 + 2(1 + ν2)a22 R2 + 2(3 + ν2)b2i R3

2)

=
1
E3

(
2(1 + ν3)c23 R−3

2 − 2(1 − ν3)d23 R−1
2 − (1 + ν3)

s
2

R2

)
.

There are three constants a01, a02, and a03 left undetermined. It is fortunate that these constants are
not used in the expressions of stresses and displacements. Hence, the problem is solved mathematically.
The appendix (available as an online supplement to this paper) details the values of all constants, and the
stress equations in polar coordinates for all materials.

4. Validations

To confirm that the obtained stress functions are acceptable, benchmark solutions are examined.
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Figure 3. Circumferential stress at a hole in the function of radius ratio.

4.1. Plate without hole. For the case of a plate without a hole, the material properties of the disk, ring,
and plate are set to the same values. For a uniaxial load in the x-direction the stress components are:

σrr1 = σrr2 = σrr3 =
s
2
(1 + cos(2θ)), σθθ1 = σθθ2 = σθθ3 =

s
2
(1 − cos(2θ)),

σrθ1 = σrθ2 = σrθ3 = −
s
2

sin(2θ). (13)

They are exactly the same expressions as those for a linear elastic, homogeneous, isotropic plate loaded
by a uniform normal traction in the x-direction.

4.2. Plate with a hole. To investigate the case of plate with a hole, the material properties of the disk
and ring are set to zero. The problem becomes that of a plate with a hole of radius R2 subjected to a
uniform normal load in the x-direction. The stresses reduce to:

σrr3 =
s
2

(
1 −

( R2

r

)2
+

(
1 − 4

( R2

r

)2
+ 3

( R2

r

)4
)

cos(2θ)
)
,

σθθ3 =
s
2

(
1 +

( R2

r

)2
−

(
1 + 3

( R2

r

)4
)

cos(2θ)
)
,

σrθ3 =
s
2

(
−1 − 2

( R2

r

)2
+ 3

( R2

r

)4
)

sin(2θ),

σrr1 = σθθ1 = σrθ1 = 0, σrr2 = σθθ2 = σrθ2 = 0. (14)

Again reproducing known results of a plate with a hole.

4.3. Plate with a circular inclusion. Considering a circular inclusion in an infinite plate, this result of
doubly embedded elastic materials is reduced into the simple embedded composite material in a hole of an
infinite plate by assuming that the material properties of the disk and ring are the same, but different from
that of an infinite plate. Figure 2 shows the stress concentration factor distribution for various moduli of
elasticity ratios of inclusion and matrix materials. The stress concentration factor decreases quickly with
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Figure 4. Left: effect of Poisson’s ratio on the circumferential stress of plate at the
interface (θ = 90◦, R2 = 2R1, E1 = E2 = E3 = 100 GPa). Right: effect of modulus
of elasticity on the circumferential stress of plate at the interface (θ = 90◦, R2 = 2R1,
ν1 = ν2 = ν3 = 0.3).

an increase in the inclusion-matrix modulus ratio when the inclusion is softer than the matrix. When the
inclusion is harder than the matrix, the stress concentration factor increases again slowly. These results
coincide with those published previously [Lekhnitskii 1968; Fanzhong et al. 2002; Wang et al. 2005].

4.4. Plate with a ring inclusion. Figure 3 shows the results for the case of plate with a ring inclusion.
The circumferential stress at θ = 90◦ is found to decrease slowly. This tendency compares well with the
results by Savin [1961] (except that Savin examined a plate in plain strain), and a numerical study by
Parhi and Das [1972].

5. Results and discussion

Some numerical results of the circumferential stress distributions in the plate (see Equation (A15) of
the online supplement) at the interface r = R2 due to different combinations of material properties are
presented in Figure 4 for various values of E and ν, and for different materials. The results reveal that
the stresses σθθ3 are very sensitive to the material properties of E1, E2, E3, ν1, ν2, and ν3. For example,
to reduce of stress concentrations in bimaterial or trimaterial plates a compromise needs to be found
between the material properties of the disk, ring, and plate. Moreover, the ratio between R1 and R2

should also be considered because the maximum circumferential stress is significantly depended on the
radius ratio when the material properties are fixed.

6. Conclusion

The exact elastic solution of a circular disk embedded in a ring fitted in an infinite plate by different
materials is conducted in this study. The plane stress problem in elasticity is considered for a plate
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subjected to uniaxial uniform load. Boundary, interface, and mathematical conditions are analyzed to
determine the solution of stress, strain, and displacement components. Thus, the Airy’s stress functions
are investigated for a disk, ring, and plate. Expressions in the solution are limited to the assumptions
that the three materials are linearly elastic, isotropic, and homogeneous, and the problem is solved by
the theory of infinitesimal linear elasticity.

References

[Fanzhong et al. 2002] K. Fanzhong, Y. Zhenhans, and Z. Xiaoping, “BEM for simulation of a 2D elastic body with randomly
distributed circular inclusions”, Acta Mech. Solida Sin. 15 (2002), 81–88.

[Greengard and Helsing 1998] L. Greengard and J. Helsing, “On the numerical evaluation of elastostatic fields in locally
isotropic two-dimensional composites”, J. Mech. Phys. Solids 46 (1998), 1441–1462.

[Lekhnitskii 1968] S. G. Lekhnitskii, Anisotropic plates, Gordon and Breach, New York, 1968.

[Little 1973] R. W. Little, Elasticity, Prentice-Hall, Englewood Cliffs New Jersey, 1973.

[Liu et al. 2000] Y. J. Liu, N. Xu, and J. F. Luo, “Modeling of interphases in fiber-reinforced composites under transverse
loading using the boundary element method”, J. Appl. Mech. (Trans. ASME) 67 (2000), 143–150.

[Love 1944] A. E. H. Love, A treatise on the mathematical theory of elasticity, Dover Publications, New York, 1944.

[Parhi and Das 1972] K. K. Parhi and A. K. Das, “The effect of couple-stresses on stress concentration of a ring inclusion”,
Acta Mech. 14 (1972), 219–228.

[Savin 1961] G. N. Savin, Stress concentration around holes, Pergamon Press, New York, 1961.

[Sokolnikoff 1956] I. S. Sokolnikoff, Mathematical theory of elasticity, McGraw-Hill, New York, 1956.

[Timoshenko and Goodier 1970] S. P. Timoshenko and J. N. Goodier, Theory of elasticity, McGraw-Hill, New York, 1970.

[Ugural and Fenster 1994] A. C. Ugural and S. K. Fenster, Advanced strength and applied elasticity, Prentice Hall, Englewood
Cliffs New Jersey, 1994.

[Wang et al. 2005] J. Wang, S. G. Mogilevskaya, and S. L. Crouch, “An embedding method for modeling micromechanical
behavior and macroscopic properties of composite materials”, Int. J. Solids Struct. 42 (2005), 4588–4612.

Received 17 Apr 2007. Revised 18 Jul 2007. Accepted 23 Jul 2007.

NAT KASAYAPANAND: nat.kas@kmutt.ac.th
School of Energy, Environment, and Materials, King Mongkut’s University of Technology Thonburi, 126 Pracha U-thit Rd.,
Bangmod, Thung-khru, Bangkok 10140, Thailand



JOURNAL OF MECHANICS OF MATERIALS AND STRUCTURES
Vol. 3, No. 2, 2008

TRANSIENT RESPONSE OF MAGNETO-ELECTRO-ELASTIC SIMPLY
SUPPORTED CYLINDER USING FINITE ELEMENT

ATUL DAGA, NATRAJAN GANESAN AND KRISHNAPILLAI SHANKAR

The transient response of a simply supported layered cylinder made of a three-phase magneto-elecro-
elastic (MEE) composite, consisting of an elastic matrix reinforced with piezoelectric and piezomagnetic
fiber has been studied by developing a semianalytical finite element method employing fourth-order
Runge–Kutta method. Numerical results are presented for different volume fractions of piezomagnetic
fiber in a three-phase MEE material with simply supported boundary conditions. A study of the transient
responses of (PZT)-epoxy mixed component (PECP), (Terfenol-D)-epoxy mixed components (MSCP),
barium titanate (BaTiO3) and a two phase magneto-electro-elastic layered cylinder, under simply sup-
ported boundary conditions has also been presented. A comparison between the elastic and the coupled
responses of the MEE cylinder is presented as well. Ansys 8.1 is used to validate the present code for
the response of cylinder made of PECP and MSCP materials.

1. Introduction

The term magneto-electro-elastic solid has been used to refer to a class of materials exhibiting the
coupling between mechanical, electric and magnetic fields. Composites made with piezoelectric and
piezomagnetic phases not only have the original piezoelectric and piezomagnetic properties but also
exhibit magneto-electric coupling effects which are not present in the constituents. Due to the ability of
converting one form of energy to another, these materials have a number of applications such as sensors
and actuators, in medical ultrasonic imaging, etc. A composite made of piezoelectric and piezomag-
netic phases would be susceptible to brittle fracture because these materials are usually brittle ceramics.
A three-phase magneto-electro-elastic composite consisting of piezoelectric and piezomagnetic phases
separated by a polymer matrix would have greater ductility and formability [Jaesang et al. 2005]. One
example of such a material is an elastic matrix made of epoxy reinforced with piezoelectric (BaTiO3)
and piezomagnetic fiber (CoFe2O4) fibers.

Due to the simple geometry and wide application, layered cylinder made of magneto-electro-elastic
material has been of interest to various researchers. [Pan and Heyliger 2002] obtained the exact solution
for three dimensional, linear, anisotropic magneto-electro-elastic and multilayered rectangular plates un-
der simply supported edge conditions. Wang and Zhong [2003] studied the finitely long magneto-electro-
elastic circular cylindrical shell under pressure and temperature changes using power series expansion
method together with the Fourier series expansion method. Free vibrations studies of the magneto-
electro-elastic cylindrical shell have been carried out by various authors [Buchanan 2003; Bhangale and
Ganesan 2005; Annigeri et al. 2006]. The transient responses of the inelastic shells of revolution using
finite difference solution techniques in time and space has been presented by Philip [1972]. Bhimaraddi

Keywords: magneto-electro-elastic, transient, finite element, Runge–Kutta.
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[1987] studied the static and transient responses of composite cylindrical shell based on shear deformation
theory using Newmark time integration method. Hou and Leung [2004] studied the transient response
of a special nonhomogenous magneto-electro-elastic hollow cylinder using separation of variables and
orthogonal expansion method. The plane strain problem is reduced to Volterra integrals, which are solved
by means of interpolation method.

In this paper, the transient responses for different volume fractions of the piezomagnetic fiber in a three-
phase magneto-electro-elastic layered cylinder under constant internal pressure with simply supported
boundary conditions have been studied by developing the semianalytical finite element method using the
constitutive equations of the piezomagnetic medium. The fourth-order Runge–Kutta method is employed
to obtain the responses. The transient response for (PZT)-epoxy mixed component (PECP), (Terfenol-
D)-epoxy mixed components (MSCP), barium titanate (BaTiO3) and two phase magneto-electro-elastic
(MEE) materials is also presented. A comparative study of the elastic and coupled responses of the
three-phase MEE layered cylinder has also been done.

2. Constitutive equations

The constitutive equations for the magneto-electro-elastic medium relating stress σ j , electric displace-
ment D j and magnetic induction B j to strain Sk , electric field Ek and magnetic field Hk , exhibiting linear
coupling between magnetic, electric and elastic field can be written as [Buchanan 2003]:

σ j = C jk Sk − ek j Ek − qk j Hk, (1)

D j = e jk Sk + ε jk Ek + m jk Hk, (2)

B j = q jk Sk + m jk Ek +µ jk Hk, (3)

where, C jk , ε jk and µ jk are elastic, dielectric and magnetic permeability coefficients respectively and
ek j , q jk and m jk are the piezoelectric, piezomagnetic and magneto-electric material coefficients. The
strain displacement, electric field-electric potential and magnetic field-magnetic potential used in finite
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Figure 1. Cylinder discretization with four noded rectangular elements.
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element method for the axisymmetric layered cylinder can be written as

Srr = S1 =
∂u
∂r
, Sθθ = S2 =

1
r

(∂v
∂θ

+ u
)
,

Szz = S3 =
∂w

∂z
, Sr z = S5 =

∂w

∂r
+
∂u
∂z
,

(4)

where u, v and w are the mechanical displacements in the r, θ and z directions. The electric field vector
Ei is related to electric potential φ as

Er = E1 = −
∂φ

∂r
, Ez = E3 = −

∂φ

∂z
. (5)

Similarly the magnetic field Hi is related to the magnetic potential ψ as

Hr = H1 = −
∂ψ

∂r
, Hz = H3 = −

∂ψ

∂z
. (6)

3. Finite element formulation

The finite element formulation for the axisymmetric layered cylinder with five degrees of freedom per
node, ur , uz, uθ , φ and ψ , is shown in Figure 1. Since the geometry and material properties of the
layered cylinder do not vary along the circumferential θ direction, a simplified solution can be assumed
by considering a function in the circumferential direction. The displacement, electric potential and
magnetic potential can be written as trigonometric functions in the circumferential direction using the
semianalytical finite element as

ur =

∑
un

r cos nθ, uθ =

∑
un
θ cos nθ,

uz =

∑
un

z cos nθ, φ =

∑
φn cos nθ,

ψ =

∑
ψn cos nθ,

(7)

where n = 0 for axisymmetric case. Due to the orthogonal property of the trigonometric function, the
solution becomes decoupled, a fact which leads to substantial saving in computational time. A four-noded
rectangular element is used to model the layered cylinder structure.

The mechanical displacements, electrical, and magnetic potential can be expressed as u = [Ni ]{u},
φ = [Ni ]{φ}, ψ = [Ni ]{ψ}, with i = 1, 2, 3, 4. The formulation for coupled field can be written in terms
of the following stiffness matrices [Buchanan 2003]:

[[Kuu] −ω2
[M]]{U } + [Kuφ]{φ} + [Kuψ ]{ψ} = F(t), [Kuφ]

T
{U } − [Kφφ]{φ} − [Kφψ ]{ψ} = 0,

[Kuψ ]
T
{U } − [Kφψ ]

T
{φ} − [Kψψ ]{ψ} = 0, (8)
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where F(t) is the constant pressure force as a function of time and

[Kuu] =

∫
v

[Bu]
T
[C][Bu] dV, [Kuφ] =

∫
v

[Bu]
T
[e][Bφ] dV,

[Kuψ ] =

∫
v

[Bu]
T
[q][Bψ ] dV, [Kφφ] =

∫
v

[Bφ]T
[ε][Bφ] dV,

[Kψψ ] =

∫
v

[Bψ ]
T
[µ][Bψ ] dV, [Kφψ ]=

∫
v

[Bφ]T
[m][Bψ ] dV,

[M] =

∫
v

[N ]
T
[ρ][N ] dV .

(9)

[Bu], [Bφ] and [Bψ ] are shape function derivative matrices for strain displacement, electric field-electric
potential and magnetic field-magnetic potential, respectively. Here dV = 2πrdrdz. Electric potential
and magnetic potential can be removed from Equations (9) by condensation techniques resulting in

[M]{Ü } + [Keq ]{U } = F(t), (10)

where
[Keq ] = [Kuu] + [Kuφ][K I I ]

−1
[K I ] + [Kuψ ][KV ]

−1
[K I V ]. (11)

[Keq ] is the equivalent stiffness matrix for magneto-electro-elastic material properties. The component
matrices of Equation (11) are

[K I ] = [Kuφ]
T

− [Kφψ ][Kψψ ]
−1

[Kuψ ], [K I I ] = [Kφφ] − [Kφψ ][Kψψ ]
−1

[Kφψ ]
T ,

[K I V ] = [Kuψ ]
T

− [Kφψ ]
T
[Kφφ]

−1
[Kuφ]

T , [KV ] = [Kψψ ] − [Kφψ ]
T
[Kφφ]

−1
[Kφψ ]. (12)

The eigen vectors corresponding to φ and ψ are given by

φ = [K I I ]
−1

[K I ]{U }, (13)

ψ = [KV ]
−1

[K I V ]{U }. (14)

To study the pure piezoelectric effect, the stiffness matrix can be derived as

[Kφφ eq ] = [Kuu] + [Kuφ][Kφφ]
−1

[Kuφ]
T , (15)

and to study the pure magnetic effect, the stiffness matrix can be derived as

[Kψψ eq ] = [Kuu] + [Kuψ ][Kψψ ]
−1

[Kuψ ]
T . (16)

[Kφφ eq ], [Kψψ eq ] are the equivalent stiffness matrix considered for studying pure piezoelectric and
piezomagnetic cylinder.

4. Results and discussions

4.1. Validation. Ansys 8.1 (wwww.ansys.com) has been used to validate the code developed for finding
the transient response of a magneto-electro-elastic layered cylinder. Ansys cannot directly handle the
magneto-electro-elastic material; hence the code has been validated with Ansys 8.1 for the response of
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Materials PECP MSCP MEE BaTiO3

C11 79.7 31.1 166 166
C12 35.8 15.2 77 77
C13 35.8 15.2 78 78
C33 66.8 35.6 162 162
C44 17.2 13.6 43 43
e15 10.5 0 11.6 11.6
e31 −5.9 0 −4.4 −4.4
e33 15.2 0 18.6 18.6
ε11 15.92 0 11.2 11.2
ε33 15.92 0 12.6 12.6
µ11 0 0.054 0.05 0.05
µ33 0 0.054 0.1 0.1
q15 0 −60.9 550 0
q31 0 156.8 580.3 0
q33 0 108.3 699.7 0
m11 0 0 5 0
m33 0 0 3 0

Table 1. Material properties for (PZT)-epoxy mixed component (PECP), (Terfenol-D)-
epoxy mixed components (MSCP) barium titanate and two phase MEE material. Here
Ci j is expressed in 109 N/m2; ei j in C/m2; εi j in 10−9C/V m; qi j in N/Am; µi j in
10−4 Ns2/C2 and mi j in 10−12 Ns/V C .
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Figure 2. Comparison of Ur for PECP material.
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Figure 3. Comparison of φ for PECP material.

cylinder made of (PZT)-epoxy mixed component (PECP) and (Terfenol-D)-epoxy mixed components
(MSCP) under simply supported boundary condition.

Ansys can directly solve the piezoelectric materials but the behavior of MSCP could not be computed
directly with it. However, MSCP can be substituted by PECP; we note that the constitutive equations of
both the materials are identical. The properties of the above material have been taken from [Liu et al.
2003]; see Table 1. The dimensions of the layered cylinder, length = 4 m, inner radius = 0.7 m and
thickness = 0.6 m, are taken from [Wang and Zhong 2003]. The structure has been discretised with
6 elements in the radial direction and 40 elements in the axial direction. A constant internal pressure of
1 N/m2 is applied. As is clear from Figures 2–5, the code results agree well with the Ansys results. The
undulations in the curves of φ and ψ may be due to the presence of higher harmonics.
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Figure 4. Comparison of Ur for MSCP Material.
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Figure 5. Comparison of ψ for MSCP Material.

Materials Vm − 0.1 Vm − 0.2 Vm − 0.3 Vm − 0.4 Vm − 0.5
Ve − 0.5 Ve − 0.4 Ve − 0.3 Ve − 0.2 Ve − 0.1

C11 17.0 16.1 16.5 17.0 17.5
C12 8.57 9.1 9.3 9.4 9.97
C13 8.57 9.1 9.3 9.4 9.97
C33 77.0 80.0 83.9 87.2 91.7
C44 5.46 6.0 5.71 6.28 6.41
C66 4.4 5.86 6.61 6.04 4.41
e15 1.84 1.9 1.9 1.9 1.84
e31 1.52 1.65 1.71 1.71 1.77
e33 11.0 9.1 7.35 5.45 3.61
ε11 0.394 0.294 0.264 0.235 0.205
ε33 6.46 5.23 3.96 2.74 1.44
µ11 2.92 3.15 2.92 3.14 3.37
µ33 0.214 0.356 0.502 0.65 0.79
q15 0.721 0.721 0.721 0.721 0.721
q31 5.23 7.93 11.5 15.1 17.8
q33 29.5 59.3 87.2 118.0 147.0
m11(×1014) 0.171 0.254 0.265 0.218 0.126
m33(×10−10) 0.658 1.03 1.18 1.03 0.652

Table 2. Material properties of the three-phase MEE materials for different volume frac-
tions of the three-phase MEE material. Note that for all the materials the piezoelectric
volume fraction (vf) is 0.4. Here Vm represents the piezomagnetic volume fraction and
Ve represents the elastic matrix volume fraction. Also, Ci j is expressed in 109 N/m2; ei j

in C/m2; εi j in 10−9C/V m; qi j in N/Am; µi j in 10−4 Ns2/C2 and mi j in Ns/V C .
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Figure 6. Comparison of Ur for different vf of MEE Material.

4.2. Response of the three-phase magneto-electro-elastic cylinder. The present computer code has
been used to determine the response of three-phase magneto-electro-elastic layered cylinder under a
constant internal pressure of 1 N/m2. The dimensions of the layered cylinder, length = 4 m, inner radius
= 0.7 m and thickness = 0.6 m, are taken from [Wang and Zhong 2003]. The response has been studied
at the middle node of the layered cylinder. The material properties are taken from [Jaesang et al. 2005]
which are given in Table 2. In the MEE composite, the volume fraction of the fibrous piezoelectric
phase is kept as constant 0.4 and the volume fraction of the piezomagnetic phase varies from 0.1–0.5;
the remaining volume fraction is for the elastic material. The coupled response of the layered cylinder
made of three phase magneto-electro-elastic material with a simply supported boundary condition has
been plotted in Figures 10–13. The response has been plotted for a time period of 0.015 sec. In Figures
10–13, Vm represents the piezoelectric volume fraction.
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Figure 7. Comparison of φ for different vf of MEE material.
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Figure 8. Comparison of ψ for different vf of MEE material.

Figure 6 shows the variation of radial displacement with respect to time. The variation of displacement
for all the volume fraction more or less follows the same pattern. The peak value of the radial displace-
ment occurs for the 0.2 volume fraction of the piezomagnetic fiber. The peak value of the displacement
decreases with the increase in volume fraction of piezomagnetic phase in the MEE commposite. This can
be attributed to the fact that the stiffness of the cylinder increases with the increase in volume fraction
of piezomagnetic phase as evident from the material properties given in Table 2.
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Figure 9. Comparison of σr for different vf of MEE material.
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Figure 10. Comparison of σz for different vf of MEE material.

Figure 7 shows the magnified view of the variation of electric potential (φ) for different volume
fractions for a time period of 0.001 sec. The distribution of φ shows the presence of higher harmonics.
The value of φ reaches a maximum for the 0.5 volume fraction of the piezomagnetic fiber and it decreases
with the decrease in volume fraction. The distribution of φ follows similar trend for all the materials.

Figure 8 shows the magnified view of the distribution of magnetic potential (ψ) for the different
volume fractions of the piezomagnetic fiber for a time period of 0.001 sec. It is maximum for 0.1 volume
fraction of the piezomagnetic fiber and goes on decreasing with the increase in volume fraction.
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Figure 11. Comparison of σθ for different vf of MEE material.
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Figure 12. Comparison of Dr for different vf of MEE material.

Figures 9–11 show the distribution of stresses at the middle element of the layered cylinder. Figure 9
shows the magnified view of the distribution of radial stress (σr ) for 0.2 and 0.4 volume fractions of the
piezomagnetic fiber for a time period of 0.002 sec. The presence of higher harmonics can be seen from
the stress distribution plots. The distribution of stress follows the same pattern for all volume fractions.
The peak values of stresses are higher for σθ and σz compared to the other two, while σθ acts as a primary
stress and its value is at a maximum for the 0.5 volume fraction of the piezomagnetic fiber.

Figure 12 shows the distribution of radial (Dr ) electric displacement. The distribution pattern is
similar for all the volume fractions of the MEE material. The value of the radial electric displacement
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Figure 13. Comparison of Br for different vf of MEE material.
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Figure 14. Comparison of Ur for simply supported layered cylinder.

is larger than that of the axial displacement. The peak value of Dr is for the 0.1 volume fraction of the
piezomagnetic fiber and goes on decreasing with the increase in volume fraction. Figure 13 shows the
magnified view of the distribution of radial magnetic induction (Br ) for the 0.4 and 0.5 volume fractions
of the piezomagnetic fiber for a time period of 0.003 sec. The distribution pattern is similar for all the
volume fractions of the piezomagnetic fiber in the MEE material. The value of the radial magnetic
induction is larger than that of the axial magnetic induction. The peak value of Br is for the 0.5 volume
fraction of the piezomagnetic fiber and goes on decreasing with the decrease in volume fraction.
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Figure 15. Comparison of φ for simply supported layered cylinder.
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Figure 16. Comparison of ψ for simply supported layered cylinder.

4.3. Comparative studies of the responses of (PZT)-epoxy mixed component (PECP), (Terfenol-D)-
epoxy mixed components (MSCP), barium titanate and a two phase MEE simply supported layered
cylinder. The coupled response of the layered cylinder for different material with simply supported
boundary conditions has been plotted in the Figures 14–16. The material properties for PECP and MSCP
are taken from [Liu et al. 2003], barium titanate from [Aboudi 2001] and two phase MEE from [Jiang
and Pan 2004]. The response at the middle node, that is, at the center of the layered cylinder, has been
studied for a time lapse of 0.005 sec. Figure 14 shows that the peak value of the radial displacement Ur

is maximum for the MSCP material and low for MEE material. This is due to the stiffening effect of the
piezoelectric and piezomagnetic terms which increases the stiffness of the structure resulting from the
generation of induced electric and magnetic fields in the MEE structures. It is clear from the displacement
plot that the frequency is lowest for MSCP material and highest for MEE and BaTiO3.

Figure 15 shows the variation of electric potential (φ) for the materials exhibiting piezoelectric char-
acteristics. The value of electric potential (phi) is highest for PECP material and low for MEE material,
which can be attributed to Equation (13) that the value of φ is directly proportional to displacement,
which is also high for PECP material. The distribution of φ for all the materials follows the same pattern.
Figure 16 shows the distribution of ψ for the materials exhibiting piezomagnetic characteristics. The
value of ψ is larger for MEE material, and is due to the presence of high piezomagnetic coefficients
compared to MSCP material given in Table 1.

The distribution of stresses at the middle element of the layered cylinder for all the materials is studied
using the Equation (1). The peak values of σθ are high compared to other stresses. The value of stresses
is maximum for MEE material. The stress distribution also reveals the presence of higher harmonics
in the response. The distribution of the radial (Dr) and axial (Dz) electric displacement at the middle
element of the layered cylinder for all the materials is studied using the Equation (2). The value of
electric displacement in the radial direction is greater than that in the axial direction. The magnitude of



388 ATUL DAGA, NATRAJAN GANESAN AND KRISHNAPILLAI SHANKAR

 

 

 

 

 

 

 

 

 

-0 .0 0 2 0 .0 0 0 0 .0 0 2 0 .0 0 4 0 .0 0 6 0 .0 0 8 0 .0 1 0 0 .0 1 2 0 .0 1 4 0 .0 1 6

0 .0 0 E + 0 0 0

5 .0 0 E -0 1 1

1 .0 0 E -0 1 0

1 .5 0 E -0 1 0

2 .0 0 E -0 1 0

 

 
Ur

 (m
)

t im e (s e c )

 e la s tic
 c o u p le d

 

Fig 14. Comparison of rU for elastic and coupled response for MEE material 

 

id3875843 pdfMachine by Broadgun Software  - a great PDF writer!  - a great PDF creator! - http://www.pdfmachine.com  http://www.broadgun.com 

Figure 17. Comparison of Ur for elastic and coupled response for MEE material.

electric displacement is at its maximum for a cylinder made of PECP material, and is at a minimum for
a cylinder made of MEE material—a fact which can be due to the presence of piezomagnetic coupling
terms present in the MEE material. The distribution of radial (Br) and axial (Bz) magnetic induction
at the middle element of the layered cylinder for all the materials is studied using the Equation (3). The
value of magnetic induction in the radial direction is larger than that in the axial direction and is a
maximum for MEE structures.

4.4. Comparison between the elastic and coupled responses of three phase magneto-elecro-elastic
simply supported layered cylinder. A comparison between the elastic and the coupled responses for the
three phase magneto-electro-elastic simply supported layered cylinder has been plotted in Figure 17. The
comparison of response is done for 0.3 vf of the piezomagnetic phase in the MEE composite. From the
figure it is clear that the piezoelectric and piezomagnetic coupling terms do not play a part in the response
of three phase magneto-electro-elastic structures. The contribution of coupling coefficients is negligible
in the stiffness matrix of the structure. Hence the distribution of coupled φ and ψ is similar to that of
uncoupled (elastic) φ and ψ .

5. Conclusion

The finite element method has been used to find the transient response of the three-phase magneto-
electro-elastic simply supported layered cylinder under constant internal pressure. Numerical results
have been presented for different volume fractions of the piezomagnetic phase in the composite. The
responses of purely piezoelectric and piezomagnetic phases can also be calculated as special cases. A
comparative study of the response of PECP, MSCP, barium titanate and two phase magneto-electro-
elastic materials has been presented. A comparison between the coupled and the elastic responses of
the 0.3 volume fraction of the three phase magneto-electro-elastic structure is also presented. It can
be concluded from this study that (i) the magnitude of displacement is high for the three-phase MEE
materials as compared with the other materials; (ii) the transient responses of the three-phase materials
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show more complex characteristics compared with the other materials presented in the paper; (iii) the
piezoelectric and piezomagnetic coupling terms do not play a role in the transient response of three-phase
magneto-electro-elastic structures; and (iv) the magnitudes of electric potential and magnetic potential
are low for the three-phase materials compared with the other materials which can be attributed to the
low values of piezoelectric and piezomagnetic coefficients in the three-phase material.

References

[Aboudi 2001] J. Aboudi, “Micromechanical analysis of fully coupled electro-magneto-thermo-elastic multiphase composites”,
Smart Mater. Struct. 10 (2001), 867–877.

[Annigeri et al. 2006] A. R. Annigeri, N. Ganesan, and S. Swarnamani, “Free vibration of clamped clamped magneto-electro-
elastic cylinder shell”, J. Sound Vib. 292 (2006), 300–314.

[Bhangale and Ganesan 2005] R. K. Bhangale and N. Ganesan, “Free vibration studies of simply supported non-homogeneous
functionally graded magneto-electro-elastic finite cylindrical shells”, J. Sound Vib. 288 (2005), 412–422.

[Bhimaraddi 1987] A. Bhimaraddi, “Static and transient response of cylindrical shells”, Thin Walled Structures 5 (1987), 157–
179.

[Buchanan 2003] G. R. Buchanan, “Free vibration of an infinite magneto-electro-elastic cylinder”, J. Sound Vib. 268 (2003),
413–426.

[Hou and Leung 2004] P. F. Hou and A. Y. T. Leung, “The transient responses of magneto-electro-elastic hollow cylinders”,
Smart Mater. Struct. 13 (2004), 762–776.

[Jaesang et al. 2005] L. Jaesang, G. James, I. V. Boyd, and C. L. Dimitris, “Effective properties of three-phase electro-magneto-
elastic composites”, Int. J. Eng. Sci. 43 (2005), 790–825.

[Jiang and Pan 2004] X. Jiang and E. Pan, “Exact solution of the 2D polynomoal inclusion problem in anisotropic magneto-
electroelastic full-, half-, and bilateral-planes”, Int. J. Solids Struct. 41:16–17 (2004), 4361–4382.

[Liu et al. 2003] Y. X. Liu, J. G. Wan, J. M. Liu, and C. W. Nan, “Effect of magnetic bias field on magnetoelectric coupling in
magnetoelectric composites”, J. Appl. Phys. 94 (2003), 5118–5122.

[Pan and Heyliger 2002] E. Pan and P. R. Heyliger, “Free vibrations of simply supported and multilayered magneto-electro-
elastic plates”, J. Sound Vib. 252 (2002), 429–442.

[Philip 1972] U. Philip, “Transient response of inelastic shells of revolution”, Comput. Struct. 2 (1972), 975–989.

[Wang and Zhong 2003] X. Wang and Z. Zhong, “A finitely long circular cylindrical shell of piezoelectric/piezomagnetic
composite under pressuring and temperature change”, Int. J. Eng. Sci. 41 (2003), 2429–2445.

Received 8 May 2007. Accepted 1 Aug 2007.

ATUL DAGA: atul daga@rediffmail.com
Machine Design Section, Indian Institute of Technology Madras, Chennai 600 036, India

NATRAJAN GANESAN: nganesan@iitm.ac.in
Department of Mechanical Engineering, Indian Institute of Technology Madras, Chennai 600 036, India

KRISHNAPILLAI SHANKAR: skris@iitm.ac.in
Department of Mechanical Engineering, Indian Institute of Technology Madras, Chennai 600 036, India



SUBMISSION GUIDELINES

ORIGINALITY
Authors may submit manuscripts in PDF format on-line. Submission of a manuscript acknowledges that the manuscript is
original and has neither previously, nor simultaneously, in whole or in part, been submitted elsewhere. Information regarding
the preparation of manuscripts is provided below. Correspondence by email is requested for convenience and speed. For further
information, write to:

Marie-Louise Steele
Division of Mechanics and Computation

Durand Building, Room 262
Stanford University
Stanford CA 94305

LANGUAGE
Manuscripts must be in English. A brief abstract of about 150 words or less must be included. The abstract should be self-
contained and not make any reference to the bibliography. Also required are keywords and subject classification for the article,
and, for each author, postal address, affiliation (if appropriate), and email address if available. A home-page URL is optional.

FORMAT
Authors are encouraged to use LATEX and the standard article class, but submissions in other varieties of TEX, and, exceptionally
in other formats, are acceptable. Electronic submissions are strongly encouraged in PDF format only; after the refereeing
process we will ask you to submit all source material.

REFERENCES
Bibliographical references should be listed alphabetically at the end of the paper and include the title of the article. All references
in the bibliography should be cited in the text. The use of BIBTEX is preferred but not required. Tags will be converted to the
house format (see a current issue for examples), however, in the manuscript, the citation should be by first author’s last name
and year of publication, e.g. “as shown by Kramer, et al. (1994)”. Links will be provided to all literature with known web
locations and authors are encoraged to provide their own links on top of the ones provided by the editorial process.

FIGURES
Figures prepared electronically should be submitted in Encapsulated PostScript (EPS) or in a form that can be converted to EPS,
such as GnuPlot, Maple, or Mathematica. Many drawing tools such as Adobe Illustrator and Aldus FreeHand can produce EPS
output. Figures containing bitmaps should be generated at the highest possible resolution. If there is doubt whether a particular
figure is in an acceptable format, the authors should check with production by sending an email to:

production@mathscipub.org

Each figure should be captioned and numbered so that it can float. Small figures occupying no more than three lines of vertical
space can be kept in the text (“the curve looks like this:”). It is acceptable to submit a manuscript with all figures at the end, if
their placement is specified in the text by means of comments such as “Place Figure 1 here”. The same considerations apply to
tables.

WHITE SPACE
Forced line breaks or page breaks should not be inserted in the document. There is no point in your trying to optimize line and
page breaks in the original manuscript. The manuscript will be reformatted to use the journal’s preferred fonts and layout.

PROOFS
Page proofs will be made available to authors (or to the designated corresponding author) at a web site in PDF format. Failure to
acknowledge the receipt of proofs or to return corrections within the requested deadline may cause publication to be postponed.



Journal of Mechanics of Materials and Structures

Volume 3, Nº 2 February 2008

Elastic constants and thermal expansion averages of a nontextured polycrystal
ROLAND DEWIT 195

Robustness analysis of structures based on plastic limit analysis with uncertain loads
YU MATSUDA AND YOSHIHIRO KANNO 213

Eulerian conjugate stress and strain ANDREW N. NORRIS 243
Out-of-plane stress and displacement for through-the-thickness cracks in plates of finite

thickness JOHN CODRINGTON, ANDREI KOTOUSOV AND SOOK YING HO 261
Investigation of mode II crack growth following a very high speed impact

WEI MA AND ZHUPING DUAN 271
Anisotropic stress state around internally pressurized microchannels YONG XUE GAN 291
Dynamic rigid-plastic deformation of arbitrarily shaped plates

TATIANA PAVLOVNA ROMANOVA AND YURI VLADIMIROVICH NEMIROVSKY 313
Interaction of a dislocation with collinear rigid lines at the interface of piezoelectric media

ZHONGMIN XIAO, HONGXIA ZHANG AND BINGJIN CHEN 335
Exact solution of double filled hole of an infinite plate NAT KASAYAPANAND 365
Transient response of magneto-electro-elastic simply supported cylinder using finite element

ATUL DAGA, NATRAJAN GANESAN AND KRISHNAPILLAI SHANKAR 375

1559-3959(200802)3:2;1-B

JournalofM
echanics

ofM
aterials

and
S

tructures
2008

Vol.3,N
º

2

Journal of

Mechanics of
Materials and Structures

Volume 3, Nº 2 February 2008

mathematical sciences publishers


	Journal of Mechanics of Materials and Structures Vol 3 Issue 2, February 2008
	Copyright and Masthead
	Elastic constants and thermal expansion averages of a nontextured polycrystal
	page 2
	page 3
	page 4
	page 5
	page 6
	page 7
	page 8
	page 9
	page 10
	page 11
	page 12
	page 13
	page 14
	page 15
	page 16
	page 17
	page 18

	Robustness analysis of structures based on plastic limit analysis with uncertain loads
	page 2
	page 3
	page 4
	page 5
	page 6
	page 7
	page 8
	page 9
	page 10
	page 11
	page 12
	page 13
	page 14
	page 15
	page 16
	page 17
	page 18
	page 19
	page 20
	page 21
	page 22
	page 23
	page 24
	page 25
	page 26
	page 27
	page 28
	page 29

	Eulerian conjugate stress and strain
	page 2
	page 3
	page 4
	page 5
	page 6
	page 7
	page 8
	page 9
	page 10
	page 11
	page 12
	page 13
	page 14
	page 15
	page 16
	page 17
	page 18

	Out-of-plane stress and displacement for through-the-thickness cracks in plates of finite thickness
	page 2
	page 3
	page 4
	page 5
	page 6
	page 7
	page 8
	page 9
	page 10

	Investigation of mode II crack growth following a very high speed impact
	page 2
	page 3
	page 4
	page 5
	page 6
	page 7
	page 8
	page 9
	page 10
	page 11
	page 12
	page 13
	page 14
	page 15
	page 16
	page 17
	page 18
	page 19
	page 20

	Anisotropic stress state around internally pressurized microchannels
	page 2
	page 3
	page 4
	page 5
	page 6
	page 7
	page 8
	page 9
	page 10
	page 11
	page 12
	page 13
	page 14
	page 15
	page 16
	page 17
	page 18
	page 19
	page 20
	page 21
	page 22

	Dynamic rigid-plastic deformation of arbitrarily shaped plates
	page 2
	page 3
	page 4
	page 5
	page 6
	page 7
	page 8
	page 9
	page 10
	page 11
	page 12
	page 13
	page 14
	page 15
	page 16
	page 17
	page 18
	page 19
	page 20
	page 21
	page 22

	Interaction of a dislocation with collinear rigid lines at the interface of piezoelectric media
	page 2
	page 3
	page 4
	page 5
	page 6
	page 7
	page 8
	page 9
	page 10
	page 11
	page 12
	page 13
	page 14
	page 15
	page 16
	page 17
	page 18
	page 19
	page 20
	page 21
	page 22
	page 23
	page 24
	page 25
	page 26
	page 27
	page 28
	page 29
	page 30

	Exact solution of double filled hole of an infinite plate
	page 2
	page 3
	page 4
	page 5
	page 6
	page 7
	page 8
	page 9

	Transient response of magneto-electro-elastic simply supported cylinder using finite element
	page 2
	page 3
	page 4
	page 5
	page 6
	page 7
	page 8
	page 9
	page 10
	page 11
	page 12
	page 13
	page 14
	page 15

	Guidelines for Authors
	Table of Contents

