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This paper presents a method for computing an info-gap robustness function of structures, which is
regarded as one measure of structural robustness, under uncertainties associated with the limit load factor.
We assume that the external load in the plastic limit analysis is uncertain around its nominal value.
Various uncertainties are considered for the live, dead, and reference disturbance loads based on the
nonstochastic info-gap uncertainty model. Although the robustness function is originally defined by
using the optimization problem with infinitely many constraints, we show that the robustness function
is obtained as an optimal value of a linear programming (LP) problem. Hence, we can easily compute
the info-gap robustness function associated with the limit load factor by solving an LP problem. As the
second contribution, we show that the robust structural optimization problems of trusses and frames can
also be reduced to LP problems. In numerical examples, the robustness functions, as well as the robust
optimal designs, are computed for trusses and framed structures by solving LP problems.

1. Introduction

In designing civil, mechanical and aerospace structures, plastic limit analysis has been used widely for
decades as a means of estimating the ultimate strength of structures. On the other hand, structural analysis
considering the uncertainties have received fast-growing interest, because structures that are actually
built will always have various uncertainties caused by manufacturing errors, limitation of knowledge of
input disturbances, observation errors, simplification for modeling, etc. This paper discusses a solution
technique for computing the measure of robustness of structures, where the applied loads are supposed
to be uncertain. We assume that the dead, live, and/or the reference disturbance loads in limit analysis
are uncertain around their nominal values. It should be emphasized that arbitrarily large uncertainty of
these loads can be dealt with in our framework.

The limit analysis still receives much attention by numerous researchers from the viewpoint of solution
techniques [Muralidhar and Jagannatha Rao 1997; Andersen et al. 1998; Cocchetti and Maier 2003;
Krabbenhoft and Damkilde 2003]. Based on the probabilistic uncertainty models of structural systems,
various approaches to stochastic limit analysis have also been proposed [Llyoyd Smith et al. 1990; Rocho
and Sonnenberg 2003; Staat and Heitzer 2003; Marti and Stoeckel 2004]. Recently, based on the non-
probabilistic uncertainty model, Kanno and Takewaki [2007] has proposed a global optimization method
for computing the smallest limit load factor of truss structures, in which the applied dead load is assumed
to be uncertain but bounded.

Reliability-based structural design methods have been investigated extensively based on the frame-
work of probabilistic uncertainty models [Kharmanda et al. 2004; Zang et al. 2005]. Nonprobabilistic
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uncertainty models have also been developed for uncertain structural analysis. In such a nonprobabilistic
uncertainty model, a mechanical system contains some unknown parameters which are assumed to be
bounded. Ben-Haim and Elishakoff [1990] developed the well-known convex model approach, which
has been applied to a robust truss optimization by Ganzerli and Pantelides [1999]. The interval linear
algebra has been well developed for the so-called uncertain linear equations [Alefeld and Mayer 2000],
which were employed in structural analysis considering various uncertainties [Qiu and Elishakoff 1998;
Muhanna and Mullen 2001; Chen et al. 2002].

Recently, the info-gap decision theory has been proposed as a nonprobabilistic decision theory under
uncertainties [Ben-Haim 2006], and has been applied to wide fields. In the info-gap decision theory, the
robustness function plays a key role as a measure of robustness of systems having uncertainties [Ben-
Haim 2006]. In structural engineering, the info-gap robustness function represents the greatest level of
uncertainty at which any constraint on mechanical performance cannot be violated. The constraints on
mechanical performance can be violated only at the large level of uncertainty in a structure with a large
robustness function, while they can possibly be violated at a small level of uncertainty in a structure with
a small robustness function. Thus, we can compare robustness of structures quantitatively in terms of
the robustness function.

Unfortunately, in many practical situations it is difficult to compute the exact value of the robustness
function of a structure. This is because the robustness function is defined as the optimal value of an
optimization problem with infinitely many constraints. Kanno and Takewaki [2006a] proposed a method
for computing a lower bound of the robustness function for trusses associated with stress and/or dis-
placement constraints. Takewaki and Ben-Haim [2005] computed the robustness function of damped
structures considering the dynamic response constraints. In the case of Takewaki and Ben-Haim [2005],
the worst case of the uncertain parameters can be obtained analytically, which enables us to compute the
exact value of the robustness function.

In this paper, we investigate the info-gap robustness function of structures associated with the lower
bound constraint on the limit load factor. In the plastic limit analysis, we consider the uncertainties of
the dead, live, and/or the reference disturbance loads, which obey the info-gap uncertainty models. As a
main contribution, we show that the robustness function considering the limit load factor constraint can be
obtained as an optimal value of a linear programming (LP) problem, which implies that the exact value of
the robustness function can be computed easily. This is rather amazing, because it is not straightforward
to find the worst case of the limit load factor under the uncertainty of dead load. Indeed, we have to
find the global optimal solution of a nonlinear optimization problem in order to detect the worst-case
limit load factor [Kanno and Takewaki 2007]. Thus, the results of this paper imply that computing the
robustness function is much easier than finding the worst-case limit load factor. Consequently, there
exists a class of constraints such that the robustness function can be computed easily while it is very
difficult to find the worst case.

As the second contribution, we formulate the robust counterpart to the structural optimization associ-
ated with the limit load factor and present its tractable reformulation. For convex optimization problems,
the notion and methodology of robust counterpart problem were developed by Ben-Tal and Nemirovski
[2002], and were applied to robust compliance minimization of trusses [Ben-Tal and Nemirovski 1997].
As an alternative approach, robust optimization problems were formulated for structures based on the
convex model analysis [Elishakoff et al. 1994; Ganzerli and Pantelides 1999], provided that the variations
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of uncertain parameters are sufficiently small. The maximization problem of the robustness function of
trusses associated with stress constraints was studied in [Kanno and Takewaki 2006b]. For a comprehen-
sive survey on the robust structural design, the readers may refer to the review papers [Zang et al. 2005;
Beyer and Sendhoff 2007].

For the limit load factor constraint, we formulate the minimization problem of the structural volume
under the constraint such that the lower bound constraint on the limit load factor is always satisfied for
the given level of uncertainty. In this problem, the major difficulty arises where the constraint includes
the sublevel optimization problem even in the nominal case, because the limit load factor is defined as
an optimal value of an optimization problem. It is shown that this robust optimization problem can be
reformulated as an LP problem for trusses as well as frames with sandwich cross-sections.

This paper is organized as follows. In Section 2 we prepare the LP problem for the conventional limit
analysis and introduce the definition of robustness function as well as the info-gap uncertainty model for
structural analysis. For trusses, the robustness function associated with the lower bound constraint on
the limit load factor is defined in Section 3 for various uncertainty models of external load, and for each
model an LP problem is formulated which provides the robustness function. In Section 4, we show that
the robustness function for a framed structure can be computed by solving an LP problem. Numerical
experiments are presented in Section 5 for a truss and frames. The robust optimization problems associ-
ated with the limit load factor are formulated for trusses and frames in Sections 6.1 and 6.2, respectively,
and they are reformulated into LP problems. Numerical experiments are presented in Section 6.3 for
robust structural optimization, while conclusions are drawn in Section 7.

2. Preliminaries

2.1. Notation. The `p-norm of the vector x = (xi ) ∈ <
n for 1 ≤ p < ∞ is defined as

‖x‖p =

(
n∑

i=1

|xi |
p

)1/p

.

In particular, the `1- and `2-norms are written as

‖ p‖1 =

n∑
i=1

|pi |, ‖ p‖2 = ( p> p)1/2.

The `∞-norm is defined as ‖ p‖∞ = maxi∈{1,...,n} |pi |. For p satisfying 1 < p < ∞, p∗ is defined by

1
p

+
1
p∗

= 1.

For p = 1 and p = ∞, we simply set p∗
= ∞ and p∗

= 1, respectively.
For column vectors p = (pi ) ∈ <

m and q = (qi ) ∈ <
n , the (m + n)-dimensional column vector

( p>, q>)> is often written simply as ( p, q). We write p ≥ 0 if pi ≥ 0 (i = 1, . . . , m). Define <
n
+

and
<

n
++

by

<
n
+

= {x ∈ <
n
| x ≥ 0},

<
n
++

= {x = (xi ) ∈ <
n
| xi > 0 (i = 1, . . . , n)}.
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The two sets A ⊆ <
m and B ⊆ <

n have Cartesian products defined by

A × B = {(a>, b>)> ∈ <
m+n

| a ∈ A, b ∈ B}.

In particular, we write <
m+n

= <
m

× <
n . The empty set is denoted by ∅.

2.2. Robustness function associated with limit load factor. The robustness function was proposed as
a measure of robustness for a general uncertain system, whose uncertainty is described by an info-gap
uncertainty model [Ben-Haim 2006]. In this section, we formulate the robustness function of engineer-
ing structures for a particular case in which the limit load factor is chosen as a measure of structural
performance.

Consider a finitely discretized structure. Small rotations and small strains are assumed. Let f ∈

<
nd

denote the vector of the external forces, where nd denotes the number of degrees of freedom of
displacements. Suppose that f consists of the constant part f D and proportionally increasing part λ f R
as

f = λ f R + f D. (1)

Notice here that λ f R is defined by the monotonically increasing load parameter λ ∈ <+ and the constant
reference load f R ∈ <

nd
\ {0}. In civil engineering, f D consists of the dead load, live load, etc., while

λ f R is referred to as the live or disturbance load which may be a static approximation of dynamical loads
caused by earthquakes, winds, etc. In this paper, f D is simply called the dead load and f R is called the
reference disturbance load for simplicity of presentation.

For the given f R and f D, let λ∗( f R, f D) denote the limit load factor. Throughout the paper, we
assume λ∗(0, f D) > 0, that is, the plastic collapse does not occur with the dead load f D only. Let
λ denote the lower bound of the limit load factor, which is the performance requirement imposed by
engineers. For the given λ ∈ <++, the conventional constraint on the limit load factor is written as

λ∗( f R, f D) ≥ λ. (2)

We next suppose that f R and f D are known imprecisely. Let f̃ R ∈ <
nd

and f̃ D ∈ <
nd

denote the
nominal values (or the best estimates) of f R and f D, respectively. For the given α ∈ <+, f̃ R, and f̃ D, let
Rp(α, f̃ R) ⊂ <

nd
and Dp(α, f̃ D) ⊂ <

nd
be bounded sets. The rigorous and concrete definitions of Rp

and Dp will be given in Section 3. The subscript p of Rp and Dp implies that the sets Rp and Dp are
defined by using the `p-norm (1 ≤ p ≤ +∞) as shown below. The parameter α represents the magnitude
of the uncertainty, and hence α is referred to as the uncertainty parameter [Ben-Haim 2006].

The uncertainties of f R and f D are modeled as follows. For any f R and f D, assume that there exists
an α ∈ <+ such that the conditions

f R ∈ Rp(α, f̃ R), f D ∈ Dp(α, f̃ R), (3)

are satisfied. We call Rp and Dp the uncertainty sets of f R and f D, respectively. We further assume
that Rp and Dp satisfy the two basic axioms of the info-gap model [Ben-Haim 2006]:

(i) Nesting: 0 ≤ α1 < α2 implies Rp(α1, f̃ R) × Dp(α1, f̃ D) ⊂ Rp(α2, f̃ R) × Dp(α2, f̃ D),

(ii) Contraction: Rp(0, f̃ R) = { f̃ R} and Dp(0, f̃ D) = { f̃ D}.
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From the nesting axiom we see that the uncertainty sets Rp(α, f̃ R) and Dp(α, f̃ D) become more
inclusive as α becomes larger. The greater the value of α, the greater the ranges of possible variations
of f R and f D. The contraction axiom guarantees that the estimates f̃ R and f̃ D are exact at α = 0. Note
that the value of α is usually unknown in actual structures. Throughout the following robustness analysis
we do not use any knowledge of the actual range of uncertainty of loads, which is regarded as one of the
advantages of using the info-gap theory.

For the fixed α ∈ <+, the robust counterpart of the constraint (2), is written as

λ∗( f R, f D) ≥ λ, for all f R ∈ Rp(α, f̃ R), for all f D ∈ Dp(α, f̃ D). (4)

Throughout the paper, we assume λ∗( f̃ R, f̃ D) ≥ λ, that is, the robust constraint, Equation (4), is satisfied
at the nominal situation. The robustness function represents the largest value of α with which the robust
constraint, (4), is satisfied. More precisely, the robustness function α̂ : <+ → [0, +∞] associated with
the constraint of the limit load factor is defined as

α̂(λ) = max
{
α

∣∣∣ λ∗( f R, f D) ≥ λ
(

for all ( f R, f D) ∈ Rp(α, f̃ R) × Dp(α, f̃ D)
)}

. (5)

Thus, α̂ is the function of the performance requirement λ, as well as of the design variables of the structure.
For the fixed λ, the constraint, Equation (4), can be violated only at a large level of uncertainty if the
structure has a large value of α̂(λ). On the other hand, (4) can be violated at a small level of uncertainty if
the structure has a small value of α̂(λ). In this way, we can compare robustness of structures quantitatively
in terms of the robustness function.

The problem (5), is classified to the semiinfinite programming, which means an optimization problem
having a finite number of variables and infinitely many inequality constraints. Unfortunately, it is difficult
to solve (5) directly, which motivates us to investigate a tractable reformulation in the following sections.

3. Robustness analysis of trusses

We investigate a tractable reformulation of the info-gap robustness function of trusses under various
uncertainty models of external loads.

3.1. Basic problem of limit analysis of trusses. In this section, in order to make the paper self-contained,
we prepare an LP problem for the conventional limit analysis of trusses. Consider an elastic/perfectly-
plastic truss in the two- or three-dimensional space. Let nm denote the number of members. We denote
by q = (qi ) ∈ <

nm
the vector of member axial forces. The system of equilibrium equations between q

and the external load f are written in the form of

H q = f , (6)

where H ∈ <
nd

×nm
is a constant matrix. Recall that f is divided into two parts as Equation (1).

Let σ̄i > 0 and −σ̄i denote the yield stresses of the i th member in tension and compression, respectively.
Here, we assume for simplicity that the yield stresses in tension and compression share a common
absolute value. The member cross-sectional area is denoted by ai > 0. Define q̄i by

q̄i = σ̄i ai , (7)
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which is the absolute value of the admissible axial force. The admissible set Q ⊂ <
nm

of the axial forces
is written as

Q =

{
q ∈ <

nm
∣∣∣ q̄i ≥ |qi | (i = 1, . . . , nm)

}
. (8)

From the static (or lower bound) principle [Hodge 1959], and by using Equation (1), (6), and (8), the
limit load factor λ∗ is obtained by solving the following LP problem:

λ∗( f R, f D) = max
λ,q

{
λ
∣∣ H q = λ f R + f D, q ∈ Q

}
, (9)

where the variables are λ and q. Note that the limit load factor λ∗ is regarded as a function of f R and
f D. Then the robustness function of the truss is defined as Equation (5). In the following discussion, we
consider various models of the uncertainty sets Rp(α, f̃ R) and Dp(α, f̃ D), and discuss how to compute
the robustness function α̂(λ).

3.2. Uncertainty of dead load. In this section, we suppose that the dead load f D possesses uncertainty,
while the reference disturbance load f R is assumed to be certain. Let ζ ∈ <

nz
denote the vector of param-

eters that are considered to be unknown, or uncertain, where nz denotes the number of such parameters.
We describe the uncertainty of f D in terms of the unknown ζ . Suppose that f D depend on ζ affinely so
that the uncertainty set in Equation (3) is defined as

Dp(α, f̃ D) =

{
f D ∈ <

nd
∣∣∣ f D = f̃ D + F0ζ , α ≥ ‖ζ‖p

}
, (10)

where 1 ≤ p ≤ +∞. Note that Equation (10) is the unified description of uncertainty models defined
by using various norms, that is, the choice of p provides us with a variety of uncertainty models. In the
uncertainty set, Equation (10), the constant matrix F0 ∈ <

nd
×nz

represents the relative magnitude of the
uncertainty of fD j and the correlation of the uncertainties among fD1, . . . , fDnd . Each component of F0

has the unit of force. Hence, neither ζ nor α has no physical unit. It is easy to verify that the uncertainty
set Dp defined by Equation (10) satisfies the axioms of the info-gap model introduced in Section 2.2.

An example of a truss is illustrated in Figure 1. To impose a nominal dead load f̃ D, we suppose that
external forces are applied at the nodes (f) and (g). The nominal reference disturbance load f̃ R is defined
such that the proportionally increasing forces are applied at the nodes (c) and (d). In order to guarantee
that f R is certain, F0 is assumed to satisfy the condition that the components of F0 ζ corresponding to
the external forces applied to the nodes (c) and (d) vanish for any ζ ∈ <

nz
.

According to Equation (5), the robustness function α̂:<+ → [0, +∞] with the uncertainty model
f D ∈ Dp(α, f̃ D) is defined as

α̂(λ) = max
α

{
α

∣∣∣ λ∗( f̃ R, f D) ≥ λ
(

for all f D ∈ Dp(α, f̃ D)
)}

. (11)

For simplicity, we write f R = f̃ R in the remainder of this section.
For r ∈ <+, we define the set Bp(r) ⊂ <

nz
by

Bp(r) =

{
ζ ∈ <

nz
∣∣∣ r ≥ ‖ζ‖p

}
.
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Figure 1. 3 × 3 truss.

The following proposition prepares the reformulation of the semiinfinite optimization problem (11) by
eliminating λ∗.

Proposition 3.1. Define r̂ by

r̂ = max
r,q

{
r
∣∣∣ H q = λ f R + f̃ D + F0ζ , q ∈ Q (for all ζ ∈ Bp(r))

}
. (12)

Then the robustness function α̂(λ) defined by Equation (10) and (11) satisfies α̂(λ) = r̂ .

Proof. The constraint of (12) implies that the condition

∃ q ′
∈ <

nm
: H q ′

= λ f R + f̃ D + F0ζ , q ′
∈ Q (13)

is satisfied for any ζ satisfying r̂ > ‖ζ‖p. For a fixed λ ∈ <+, define the set V(λ) ⊂ <
nm

as

V(λ) =

{
q ∈ <

nm
∣∣∣ H q = λ f R + F̃D, q ∈ Q

}
.

Note that q ∈ V(λ) if and only if (λ, q) is a feasible solution of the problem, Equation (9). Since (13)
holds for ζ = 0, we see that q ′

∈ V(λ) is satisfied. From this observation and (9), we obtain

λ∗( f R, f D(ζ )) ≥ λ, (14)

where f D(ζ ) = f̃ D + F0ζ . Since we can show that Equation (14) holds for any ζ satisfying r̂ > ‖ζ‖p,
the definition (11) of α̂ implies

α̂(λ) ≥ r̂ . (15)
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On the other hand, choose ζ ′ satisfying α̂ > ζ ′. It follows from Equation (11) that V(λ∗( f R, f D(ζ ′))) 6=∅
and V(0) 6= ∅. Moreover, the set {(λ, q) ∈ <×<

nm
| q ∈ V(λ)} is convex, from which it follows that for

any λ satisfying 0 ≤ λ ≤ λ∗( f R, f D(ζ ′)), V(λ) 6= ∅ is satisfied, that is, Equation (13) is satisfied. Since
this observation holds for any ζ ′ satisfying α̂ > ‖ζ ′

‖p, the definition (12) of r̂ implies

α̂(λ) ≤ r̂ . (16)

Consequently, from Equation (15) and (16) we obtain α̂(λ) = r̂ , which concludes the proof. �

It is still difficult to solve Equation (12) because it requires that the constraints hold for infinitely many
ζ satisfying ζ ∈ Bp(r).

Let H †
∈ <

nm
×nd

denote the pseudoinverse of H . A basis for the null space of H is denoted by
H⊥

∈ <
nm

×nξ

, where nξ
= nm

− rank(H). Let h†
i and h⊥

i the i th row vectors of H † and H⊥, respectively,
that is,

H †
=

 h†
1
...

h†
nm

 , H⊥
=

 h⊥

1
...

h⊥

nm

 .

Proposition 3.2. r̂ defined by Equation (12) is equal to the optimal value of the LP problem

r̂ = max
r,ξ

{
r
∣∣∣ h†

i (λ f R + f̃ D) + r‖h†
i F0‖p∗ + h⊥

i ξ ≤ q̄i , i = 1, . . . , nm,

−h†
i (λ f R + f̃ D) + r‖h†

i F0‖p∗ − h⊥

i ξ ≤ q̄i , i = 1, . . . , nm
}

(17)

in the variables r ∈ < and ξ ∈ <
nξ

.

Proof. Observe that any q ∈ <
nm

satisfying the equilibrium equations

H q = λ f R + f̃ D + F0ζ ,

can be represented as

q = H †(λ f R + f̃ D + F0ζ ) + H⊥ξ , ξ ∈ <
nξ

. (18)

In Equation (18), we may regard qi as a function of ζ , that is,

qi (ζ ): = h†
i (λ f R + f̃ D) + h†

i F0ζ + h⊥

i ξ , i = 1, . . . , nm. (19)

From the definition Equation (8) of Q it follows that the constraints of (12) are equivalently rewritten as

qi (ζ ) ≤ q̄i (for all ζ ∈ Bp(r)), i = 1, . . . , nm, (20)

−qi (ζ ) ≤ q̄i (for all ζ ∈ Bp(r)), i = 1, . . . , nm. (21)

Moreover, Equation (20) and (21) are equivalent to

max
ζ

{
qi (ζ )

∣∣ r ≥ ‖ζ‖p
}

≤ q̄i , i = 1, . . . , nm,

max
ζ

{
−qi (ζ )

∣∣ r ≥ ‖ζ‖p
}

≤ q̄i , i = 1, . . . , nm.
(22)
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By using Equation (19) and the Hölder inequality [Michael Sttele 2004], we see that

max
ζ

{
h†

i F0ζ

∣∣∣ r ≥ ‖ζ‖p

}
= r‖h†

i F0‖p∗, (23)

from which it follows that (22) is equivalently rewritten as

h†
i (λ f R + f̃ D) + r‖h†

i F0‖p∗ + h⊥

i ξ ≤ q̄i , i = 1, . . . , nm,

−h†
i (λ f R + f̃ D) + r‖h†

i F0‖p∗ − h⊥

i ξ ≤ q̄i , i = 1, . . . , nm.
(24)

Consequently, the constraints of Equation (12) are equivalent to (24), which concludes the proof. �

Proposition 3.2, together with Proposition 3.1, implies that the robustness function α̂(λ) can be ob-
tained easily by solving an LP problem (17), contradicting the fact that it is very difficult to solve the
semiinfinite optimization problem (11).

3.3. Uncertainty of reference disturbance load. In this section, we investigate the uncertainty model of
the reference disturbance load f R in Equation (1), while the dead load f D is assumed to be certain. For
the given nominal value f̃ R and fixed α ∈ <+, let Rp(α, f̃ R) denote the uncertainty set of f R, which
shall be rigorously defined below. According to Equation (5), the robustness function α̂ : <+ → [0, +∞]

in this case is defined as

α̂(λ) = max
α

{
α

∣∣∣ λ∗( f R, f̃ D) ≥ λ
(

for all f R ∈ Rp(α, f̃ R)
)}

. (25)

For simplicity, we write f D = f̃ D in the remainder of this section .

3.3.1. Uncertainty of load distribution. Consider the uncertainty (or variations) of the distribution of the
reference disturbance load.

Recall the example of a truss illustrated in Figure 1, which has been studied for the uncertainty model
Dp in Equation (10). At the nodes of the left side, the external forces are applied as the reference
disturbance load. The nominal forces applied at the nodes (c) and (d) are illustrated in Figure 2 as f (c)

R
and f (d)

R . Suppose that the directions of these forces do not change, while the distribution is unknown as
shown in Figure 2 as f (c)

R and f (d)
R . The additional force may possibly be applied at the node (e), which

is illustrated as f (e)
R in Figure 2. Such an uncertainty model can be written as f R ∈ Rp(α, f̃ R) with

Rp(α, f̃ R) =

{
f R ∈ <

nd

∣∣∣∣∣ f R = f̃ R + F0ζ , α ≥ ‖ζ‖p,

nz∑
i=1

ζi = 0

}
. (26)

Here, F0 is assumed to satisfy the condition that the components of the vector F0 ζ corresponding to the
directions of f̃ R only are possibly not equal to zeros for any ζ ∈ <

nz
as shown in Figure 2. Note that

nz
= 3 and rank(F0) = 3 in the example of Figure 2. The condition

∑nz

i=1 ζi = 0 in (26) is added in order
to normalize the magnitude of f R. We can easily see that the uncertainty set Dp defined by Equation
(26) satisfies the nesting and contraction axioms of the info-gap uncertainty model introduced in Section
2.2.

Let p = 2 in the uncertainty model (26). Then the following proposition implies that the robustness
function defined by (25) is obtained as the optimal value of an LP problem.
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f
∼

R
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(c)

x

x

Figure 2. Uncertainty of distribution of the reference disturbance load f R.

Proposition 3.3. Define n ∈ <
nz

by

n =
1

√
nz

(1, 1, . . . , 1)>. (27)

Then the robustness function, α̂(λ) defined by (25) and (26) with p = 2, is obtained as the optimal value
of the LP problem

α̂(λ) = max
r,ξ

{
r
∣∣∣ h†

i (λ f̃ R + f D) + r
√

‖h†
i F0‖

2
2 − (h†

i F0n)2 + h⊥

i ξ ≤ q̄i , i = 1, . . . , nm,

−h†
i (λ f̃ R + f D) + r

√
‖h†

i F0‖
2
2 − (h†

i F0n)2 − h⊥

i ξ ≤ q̄i , i = 1, . . . , nm
}

(28)

in the variables r ∈ < and ξ ∈ <
nξ

.

Proof. In a manner similar to Proposition 3.1, we can show that

α̂(λ) = max
r,q,ζ

{
r
∣∣∣ H q = λ f̃ R + f D + λF0ζ , q ∈ Q (for all ζ ∈ Bp(r))

}
(29)

holds, because we may replace F0 ζ with λF0 ζ in the proof of Proposition 3.1. In a manner similar to
Equation (22), we see that the constraints of the problem (29) are equivalently rewritten as

h†
i (λ f̃ R + f D) + h⊥

i ξ + qmax
i ≤ q̄i , i = 1, . . . , nm, (30)

h†
i (λ f̃ R + f D) + h⊥

i ξ + qmin
i ≤ q̄i , i = 1, . . . , nm, (31)

where

qmax
i : = max

ζ

{
h†

i F0ζ

∣∣∣∣∣ r ≥ ‖ζ‖2,

nz∑
i=1

ζi = 0

}
, (32)

qmin
i : = min

ζ

{
h†

i F0ζ

∣∣∣∣∣ r ≥ ‖ζ‖2,

nz∑
i=1

ζi = 0

}
= −qmax

i . (33)
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Analogous to the key equation, (23), in the proof of Proposition 3.2, we next evaluate qmax
i defined by

(32) analytically. Note that n defined in Proposition 3.3 corresponds to the unit normal vector of the
hyperplane

π =

{
ζ ∈ <

nz

∣∣∣∣∣
nz∑

i=1

ζi = 0

}
.

Define bi ∈ <
nz

by bi = (h†
i F0)

> for simplicity. Let wi ∈ <
nz

denote the projection of the vector bi onto
π , which is written as

wi = bi − (b>

i n)n

= (h†
i F0)

>
− (h†

i F0n)n. (34)

Since ‖n‖2 = 1, we obtain

‖wi‖
2
2 = ‖bi‖

2
2 − (b>

i n)2. (35)

Then qmax
i in Equation (32) is written as

qmax
i = max

ζ

{
b>

i ζ

∣∣∣∣∣ r ≥ ‖ζ‖2,

nz∑
i=1

ζi = 0

}
= max

ζ

{
w>

i ζ | r ≥ ‖ζ‖2, ζ ∈ π
}
.

Since both wi and ζ i are on the hyperplane π , we obtain

qmax
i = max

ζ
{‖wi‖2‖ζ‖2 | r ≥ ‖ζ‖2 } = r‖wi‖2. (36)

By using Equation (35), we see that (36) is rewritten as

qmax
i = r

√
‖bi‖

2
2 − (b>

i n)2. (37)

By substituting Equation (37) into (30) and (31), and by using (29), we obtain (28). �

The following proposition provides an LP problem to compute the robustness function (25) in the case
of p = ∞ in Equation (26).

Proposition 3.4. Let li be

li = max
j∈{1,...,nz}

|wi j |, i = 1, . . . , nm,

where the vector wi = (wi j ) ∈ <
nz

is defined by Equation (34). Then the robustness function α̂(λ) defined
by (25) and (26) with p = ∞ is obtained as the optimal value of the LP problem

α̂(λ) = max
r,ξ

{
r
∣∣∣ h†

i (λ f̃ R + f D) + r
[
‖h†

i F0‖
2
2 − (h†

i F0n)2
]
/ li + h⊥

i ξ ≤ q̄i , i = 1, . . . , nm,

−h†
i (λ f̃ R + f D) + r

[
‖h†

i F0‖
2
2 − (h†

i F0n)2
]
/ li − h⊥

i ξ ≤ q̄i , i = 1, . . . , nm
} (38)

in the variables r ∈ < and ξ ∈ <
nξ

.
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Figure 3. Uncertainty of direction of the reference disturbance load f R.

Proof. The assertion can be shown in a manner similar to Proposition 3.3. Particularly, we should
evaluate

qmax,∞
i : = max

ζ

{
h†

i F0ζ

∣∣∣∣∣ r ≥ ‖ζ‖∞,

nz∑
i=1

ζi = 0

}
(39)

instead of Equation (32). Observe that

max
ζ ,β

{‖ζ‖2 | r ≥ ‖ζ‖∞, ζ = βwi } =
1
li

‖wi‖2,

from which we see that Equation (39) is reduced to

qmax,∞
i = max

ζ

{
b>

i ζ

∣∣∣∣∣ r ≥ ‖ζ‖∞,

nz∑
i=1

ζi = 0

}

= max
ζ

{
w>

i ζ | r ≥ ‖ζ‖∞, ζ ∈ π
}

= max
ζ ,β

{‖wi‖2‖ζ‖2 | r ≥ ‖ζ‖∞, ζ = βwi }

=
r
li

‖wi‖
2
2. (40)

By substituting (34) and (40) into (30) and (31), we obtain the constraints of the problem (38), which
concludes the proof. �

3.3.2. Uncertainty of load direction. Recall the example of a truss illustrated in Figure 1. To apply the
reference disturbance load f R, external forces are applied at the nodes (c) and (d), which are denoted
by f (c)

R and f (d)
R , respectively. Suppose that the directions of f (c)

R and f (d)
R are uncertain as illustrated in

Figure 3. Such an uncertainty model can be realized as f R ∈ Rp(α, f̃ R) with

Rp(α, f̃ R) =

{
f R ∈ <

nd
∣∣∣ f R = f̃ R + F0ζ , α ≥ ‖ζ‖p

}
. (41)

Here, F0 is assumed to satisfy the condition that the components of F0 ζ corresponding only to the
directions orthogonal to the f̃ R are possibly not equal to zeros as illustrated in Figure 3. Note that nz

= 2
and rank(F0) = 2 in the case of Figure 3.
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In this section, we assume that the magnitude of uncertainty α in the uncertainty model (41) of f R
is sufficiently small. This is because the magnitude of the reference load f R varies in (41). Obviously,
formulations presented below are valid for arbitrary large value of α. However, from the engineering
view point, we restrict ourselves to the case in which the variation of the magnitude of f R does not
cause the ambiguity of the definition of the limit load factor when f R is running through Rp(α, f̃ R)

defined by (41). Under this assumption, the definition (25) of the robustness function is guaranteed to be
a proper measure of robustness. On the other hand, if this assumption is not satisfied, then the constraint
λ( f R, f̃ D) ≥ λ does not have a proper meaning. To date, it is not clear whether the robustness function
can be reformulated into a tractable form or not when we add the condition of normalization to the
magnitude of f R in Equation (41). Instead, we can show that the robustness function is computed easily
without a normalization condition, which is the contribution of this section. Note again that all results
other than those in this section are valid for arbitrary large magnitude α of uncertainties. Particularly,
in Section 3.3.1, it should be emphasized that we have considered the normalization condition of f R in
(26).

The following proposition is obtained easily in a manner similar to Proposition 3.2.

Proposition 3.5. The robustness function α̂(λ) defined by (25) and (41) is obtained as the optimal value
of the LP problem

α̂(λ) = max
r,ξ

{
r
∣∣∣ h†

i (λ f̃ R + f D) + rλ‖h†
i F0‖p∗ + h⊥

i ξ ≤ q̄i , i = 1, . . . , nm,

−h†
i (λ f̃ R + f D) + rλ‖h†

i F0‖p∗ − h⊥

i ξ ≤ q̄i , i = 1, . . . , nm
}

(42)

in the variables r ∈ < and ξ ∈ <
nξ

.

4. Robustness analysis of framed structures

4.1. Basic problem of limit analysis of frames. Consider a framed structure in the two-dimensional
space that consists of a finite number of the conventional Euler–Bernoulli beam elements. The number
of elements is denoted by nm. Let qi denote the axial force of the i th member. The moments acting on
two endpoints are denoted by m1

i and m2
i . The shear force at the endpoint of the i th member is denoted

by τi .
The equilibrium equations between the external force (λ f R + f D) and the internal forces q, m1, m2,

and τ can be written in the form of

Hq q + H m
1 m1

+ H m
2 m2

+ H ττ = λ f R + f D, (43)

where q = (qi ) ∈ <
nm

, m1
= (m1

i ) ∈ <
nm

, m2
= (m2

i ) ∈ <
nm

, and τ = (τi ) ∈ <
nm

. The matrices Hq ,
H m

1 , H m
2 , and H τ

∈ <
nd

×nm
are constant matrices, where nd denotes the number of degrees of freedom

of displacements of the frame. The moment equilibria of internal forces are written as

liτi + m1
i + m2

i = 0, i = 1, . . . , nm. (44)
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By letting y = (q, m1, m2, τ ) ∈ <
nm

× <
nm

× <
nm

× <
nm

for simplicity, the equilibrium equations (43)
and (44) can be condensed in the form of

H y = λ f 0
R + f 0

D, (45)

where H is a constant matrix. Here, the constant vector f 0
R consists of the components of f R and 0,

while f 0
D consists of the components of f D and 0.

We next introduce the yielding condition of a beam element. Suppose that the members experience
plastic deformations only at their two ends. Provided that the dependence of the yield condition on the
shear force is negligible, the admissible set of internal forces is given as

Y =

{
y = (q, m1, m2, τ )

∣∣∣∣∣ |qi + qp
i |

q̄i
+

|m j
i |

m̄i
≤ 1 (for all i ∈ {1, . . . , nm

}, for all j ∈ {1, 2})

}
, (46)

where the set Y is illustrated in Figure 4. Here, q̄i , m̄i , and qp
i are given constants.

From (45) and (46), the limit load factor for the fixed f R and f D is obtained by solving the following
LP problem:

λ∗( f R, f D) = max
λ, y

{
λ
∣∣ H y = λ f 0

R + f 0
D, y ∈ Y

}
. (47)

4.2. Robustness function under uncertain dead load. In a manner similar to a truss investigated in
Section 3, we can formulate LP problems providing the robustness function under various uncertainty
models of the dead load f D and the reference disturbance load f R. For simplicity of the presentation,
we pay attention only to the uncertainty model (10) of f D. It is straightforward to extend the result below
to the other uncertainty models investigated in Section 3.3. The remainder of this section is devoted to
reformulating the problem (11) for framed structures into a numerically tractable problem.

m−m

q−q
p

−q
p

−q−q
p

q

m

Figure 4. Yielding surface of the beam element.
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Analogous to (18) in the proof of Proposition 3.2, any y that solves the system of linear equations
(45) can be written as

y = H †(λ f 0
R + f̃ 0

D) + (H † F0)ζ + H⊥ξ , ξ ∈ <
nξ

. (48)

For simplicity, we write Equation (48) component-wise as

qi =
1
q̄i

[
hq

i (λ f 0
R + f̃ 0

D) + (hq
i F0)ζ + h̄q

i ξ
]
, i = 1, . . . , nm, (49)

m1
i =

1
m̄i

[
hm

i,1(λ f 0
R + f̃ 0

D) + (hm
i,1 F0)ζ + h̄m

i,1ξ
]
, i = 1, . . . , nm, (50)

m2
i =

1
m̄i

[
hm

i,2(λ f 0
R + f̃ 0

D) + (hm
i,2 F0)ζ + h̄m

i,2ξ
]
, i = 1, . . . , nm, (51)

where hq
i /q̄i , hm

i,1/m̄i , and hm
i,2/m̄i denote appropriate row vectors of H †. Similarly, h̄q

i /q̄i , h̄m
i,1/m̄i , and

h̄m
i,2/m̄i correspond to appropriate row vectors of H⊥.

Proposition 4.1. For a framed structure with the yield condition (46), the robustness function α̂(λ)

defined by (10) and (11) is obtained as the optimal value of the LP problem

α̂(λ) = max
r,ξ

{
r
∣∣∣ [(−1)µhq

i /q̄i + (−1)ν hm
i, j/m̄i

]
(λ f 0

R + f̃ 0
D) + (−1)µqp

i /q̄i

+ r
∥∥∥[(−1)µhq

i /q̄i + (−1)ν hm
i, j/m̄i

]
F0

∥∥∥
p∗

+

[
(−1)µh̄q

i /q̄i + (−1)ν h̄m
i, j/m̄i

]
ξ ≤ 1,

i = 1, . . . , nm, ( j, µ, ν) ∈ {1, 2}
3
}

(52)

in the variables r ∈ < and ξ ∈ <
nξ

.

Proof. In a manner similar to Proposition 3.1, we can show that α̂(λ) is obtained as

α̂(λ) = max
r, y

{
r
∣∣∣ H y = λ f 0

R + f̃ 0
D + F0ζ , y ∈ Y (for all ζ ∈ Bp(r))

}
. (53)

Analogous to the proof of Proposition 3.2, we investigate the constraints of the problem (53). Since qi ,
m1

i , and m2
i in (49)–(51) are regarded as linear functions of ζ , we write qi (ζ ), m1

i (ζ ), and m2
i (ζ ) for
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simplicity. By using the definition (46) of Y, the constraints of (53) can be rewritten as

max
ζ

{
qi (ζ ) − qp

i

q̄i
+

m j
i (ζ )

m̄i

∣∣∣∣∣ ζ ∈ Bp(r)

}
≤ 1,

max
ζ

{
qi (ζ ) − qp

i

q̄i
−

m j
i (ζ )

m̄i

∣∣∣∣∣ ζ ∈ Bp(r)

}
≤ 1,

max
ζ

{
−

qi (ζ ) − qp
i

q̄i
+

m j
i (ζ )

m̄i

∣∣∣∣∣ ζ ∈ Bp(r)

}
≤ 1,

max
ζ

{
−

qi (ζ ) − qp
i

q̄i
−

m j
i (ζ )

m̄i

∣∣∣∣∣ ζ ∈ Bp(r)

}
≤ 1, for all i ∈ {1, . . . , nm

}, j ∈ {1, 2},

which are simply written as

max
ζ

{
(−1)µ

qi (ζ ) − qp
i

q̄i
+ (−1)ν

m j
i (ζ )

m̄i

∣∣∣∣∣ r ≥ ‖ζ‖p

}
≤ 1, (54)

for all i ∈ {1, . . . , nm
}, j ∈ {1, 2}, µ ∈ {1, 2}, ν ∈ {1, 2}. (55)

From the Hölder inequality [Michael Sttele 2004], the equation

max
ζ

{
b>ζ

∣∣ r ≥ ‖ζ‖p
}

= r‖b‖p∗

holds for any constant b ∈ <
k , from which it follows that Equation (55) is equivalent to[

(−1)µhq
i /q̄i + (−1)ν hm

i, j/m̄i

]
(λ f 0

R + f̃ 0
D) + (−1)µqp

i /q̄i

+ r
∥∥∥[(−1)µhq

i /q̄i + (−1)ν hm
i, j/m̄i

]
F0

∥∥∥
p∗

+

[
(−1)µh̄q

i /q̄i + (−1)ν h̄m
i, j/m̄i

]
ξ ≤ 1, for all i ∈ {1, . . . , nm

}, j ∈ {1, 2}, µ ∈ {1, 2}, ν ∈ {1, 2}. (56)

Substitution of Equation (56) into (53) results in (52), which concludes the proof. �

Proposition 4.1 is important, because it implies that the robustness function of a framed structure can
be obtained easily by solving the LP problem (52). Similarly, it can be shown that the robustness function
with respect to the uncertain reference disturbance load f R is also obtained as the optimal value of an
LP problem, provided that f R obeys the uncertainty model introduced in Section 3.3.

5. Numerical experiments

In the following examples, computation was carried out on a Pentium M (1.7 GHz with 512 MB memory)
with MATLAB V. 7.3 [MatLab 2006]. We solve an LP problem by using the MATLAB built-in function
linprog. In the following examples, we mainly consider the uncertainty (10) of the dead load f D with
p = 2 in order to avoid the redundancy of presentation. However, it should be emphasized that our major



ROBUSTNESS ANALYSIS BASED ON PLASTIC LIMIT ANALYSIS WITH UNCERTAIN LOADS 229

contribution of this paper is to present the LP reformulation of the info-gap robustness function under
various uncertainty models of f D and f R.

5.1. 3×3 truss. Consider a plane truss illustrated in Figure 1, where W = 70.0 cm, H = 50.0 cm, nd
= 28,

and nm
= 42. The nodes (a) and (b) are pin-supported.

As the nominal dead load f̃ D, we apply the external forces (0, −300.0) kN at the nodes (f) and (g)
as shown in Figure 1. Note again that f D represents the sum of conventional live load and dead load
in civil engineering. The nominal reference disturbance load f̃ R is defined such that (100.0, 0) kN and
(50.0, 0) kN, respectively, are applied at the nodes (c) and (d). For each member, the yield stress is
σ

y
i = 400 MPa and cross-sectional area is ai = 25.0 cm2 in Equation (7). Note that this example is

similar to the example investigated in [Kanno and Takewaki 2007] for computing the worst-case limit
load factor under the uncertainty of dead load.

The limit load factor under the nominal load is computed as λ∗( f̃ R, f̃ D) = 24.18 by employing the
usual limit analysis, that is, by solving the LP problem (9). The collapse mode corresponds to the sway-
type with horizontal displacements of the joints as shown in Figure 5.

Firstly, suppose that the dead load f D obeys the uncertainty model (10), while f R is assumed to be
certain. Consider the following two cases:

Case 1: p = 2 in Equation (10);

Case 2: p = ∞ in Equation (10).

The uncertain dead load F0 ζ is assumed to exist possibly at all free nodes except for the nodes (c) and (d).
At the nodes (f) and (g), the uncertain load is supposed to exist in the directions orthogonal to f̃ D. Hence,
the reference disturbance load is guaranteed to be unchanged as discussed in Section 3.2, where nz

= 22
in Equation (10). The coefficient matrix F0 is defined so that the uncertainties of components of the
vector F0 ζ have no correlation, and each nonzero component of F0 is equal to 100.0 kN. Accordingly,
in Case 2, the uncertain load F0 ζ runs through the squares and arrows depicted with the dotted lines in
Figure 1. We set λ = 23.0 in Equation (11). By solving the LP problem (17), we obtain α̂(λ) = 0.4170
in Case 1 and α̂(λ) = 0.1000 in Case 2.

Figure 5. Collapse mode of 3 × 3 truss with the nominal external load.



230 YU MATSUDA AND YOSHIHIRO KANNO

sample number
200 400 600 800 1000

23.0

23.5

24.0

24.5

25.0

25.5

22.5

λ

Figure 6. Limit load factor of the 3 × 3 truss in Case 1 for the uncertain f D correspond-
ing to randomly generated ζ (— nominal limit load factor λ∗( f̃ R, f̃ D); – – performance
requirement λ.

For Case 1, we randomly generate a number of ζ satisfying ‖ζ‖2 = α̂ = 0.4170, and perform the
limit analysis. The limit load factors λ∗( f̃ R, f D(ζ )) obtained are shown in Figure 6 as many points.
It is observed from Figure 6 that all generated limit load factors are larger than the lower bound λ,
which supports the assertion that the constraint λ∗( f̃ R, f D) ≥ λ is guaranteed to be satisfied for any
f D ∈ D2(α̂, f̃ D). Note that the actual worst-case dead load cannot be exactly predicted, in general, by
taking a rather small number of random samples of ζ . Hence, in Figure 6 we cannot find the case in
which the limit load factor coincides with λ.

Figure 7 depicts the variation of the robustness function α̂ with respect to the performance requirement
λ. It is observed from Figure 7 that α̂ = 0 corresponds to λ = λ∗( f̃ R, f̃ D), that is, the robustness function
vanishes if λ is equal to the nominal limit load factor. The variation of α̂ possesses an angular point.
This is because the worst-case dead load as well as the collapse mode in the worst case depends on the
magnitude of uncertainty as observed in [Kanno and Takewaki 2007, section 6.1].

We next investigate robustness of the truss against the uncertain reference disturbance load f R as
discussed in Section 3.3. The dead load f D is supposed to be certain. Consider the following three
cases:

Case 3: p = 2 in Equation (26);

Case 4: p = ∞ in Equation (26);

Case 5: p = 2 in Equation (41).

Note that nz
= 3 in Case 3 and Case 4 as illustrated in Figure 2, while nz

= 2 in Case 5 as illustrated in
Figure 3. Each nonzero component of F0 is equal to 100.0 kN. We set λ = 23.0 in Equation (25). The
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Figure 7. Variation of the robustness function α̂ of the 3 × 3 truss in Case 1 with respect
to the performance requirement λ.
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Figure 8. Limit load factor of the 3 × 3 truss in Case 4 for the uncertain f R correspond-
ing to randomly generated ζ (— nominal limit load factor λ∗( f̃ R, f̃ D); – – performance
requirement λ.
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Figure 9. 68-member frame.

robustness functions are computed by solving the LP problems (28), (38), and (42) as α̂(λ) = 0.1739,
0.1424, and 0.1207, respectively, in Case 3, Case 4, and Case 5. For Case 4, we randomly generate a
number of ζ satisfying ‖ζ‖∞ = α̂ = 0.1424. The corresponding limit load factors λ∗( f R(ζ ), f̃ D) are
depicted in Figure 8. It is observed from Figure 8 that all generated limit load factors are not smaller than
the performance requirement λ. Moreover, there exists the case in which the limit load factor coincides
with λ.

5.2. 68-member frame. Consider a plane frame illustrated in Figure 9, where W = 200.0 cm and H =

200.0 cm. The intersecting pair of diagonals is not connected at their center. All lowest nodes are the
fixed supports, that is, nd

= 60 and nm
= 68.

As the nominal dead load f̃ D, we apply the external forces (0, −300.0) kN at the nodes (d)–(f) as
shown in Figure 9. The nominal reference disturbance load f̃ R is defined such that (100.0, 0) kN,
(70.0, 0) kN, and (40.0, 0) kN are applied at the nodes (a)–(c), respectively.

For each member, the yield criterion is defined by (46) with q̄i = 1000.0 kN, M̄i = 1000.0 kN · m, and
N p

i = 250.0 kN. The limit load factor under the nominal dead load is computed as λ∗( f̃ R, f̃ D) = 28.58
by employing the usual limit analysis, that is, by solving the LP problem (47).

Suppose that the dead load f D has uncertainty and runs though the uncertainty set, Equation (10),
while the reference disturbance load f R is assumed to be certain. The uncertain dead load F0 ζ is
assumed to exist possibly at all free nodes except for the nodes (a)–(c). At the nodes (d)–(f), the uncertain
dead load is supposed to exist in the direction of the x-axis. Note that the uncertain external moment
is not considered, and hence nz

= 31 in Equation (10). The coefficient matrix F0 is defined so that the
uncertainties of components of F0 ζ have no correlation, and each nonzero component of F0 is equal to
100.0 kN.
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Figure 10. Variation of the robustness function α̂ of the 68-member frame with respect
to the performance requirement λ.

For a fixed λ and p = 2, the robustness function α̂(λ) is computed by solving the LP problem (52).
Figure 10 depicts the variation of the robustness function α̂ with respect to the performance requirement
λ. It is observed from Figure 10 that α̂ is a nonlinear function of λ, since the collapse mode in the worst
case depends on the magnitude of uncertainty of the dead load.

5.3. 36-member frame. Consider a plane frame illustrated in Figure 11, where

W = 200.0 cm, H = 200.0 cm,

nd
= 60, nm

= 36.

As the nominal dead load f̃ D, we apply the external forces (0, −300.0) kN at the nodes (d)–(h) as shown
in Figure 11. The nominal reference disturbance load f̃ R is defined such that (100.0, 0) kN, (30.0, 0) kN,
and (20.0, 0) kN, respectively, are applied at the nodes (a), (c), and (d), respectively. The nominal limit
load factor is computed as λ∗( f̃ R, f̃ D) = 15.00.

Suppose that the dead load f D has uncertainty such that f D ∈ D2(α, f̃ D), while the reference distur-
bance load f R is assumed to be certain. The uncertain dead load F0 ζ is assumed to exist possibly at all
free nodes except for the nodes (a)–(d). At the nodes (e)–(h), the uncertain dead forces are supposed to
exist in the direction of the x-axis. Note that the uncertain external moment is not considered, and hence
nz

= 28 in Equation (10). The coefficient matrix F0 is defined so that the uncertainties of components
of F0 ζ have no correlation, and each nonzero component of F0 is equal to 100.0 kN. Figure 12 depicts
the variation of the robustness function α̂ with respect to the performance requirement λ. It is observed
from Figure 12 that α̂ is a nonlinear function of λ.
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Figure 11. 36-member frame.
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6. Robust optimization and level of uncertainty

The robust optimization problem is investigated under the limit load factor constraint with the uncertain
dead load. The level α of the uncertainty is fixed throughout this section.

6.1. Robust optimization of trusses. In this section, we formulate the robust optimization problem of
trusses associated with the limit load factor by utilizing the theoretical results in Section 3. The notation
introduced in Section 3 are used in this section again.

Let li denote the length of the i th member. The vector of member cross-sectional areas is denoted by
a = (ai ) ∈ <

nm
, which is regarded as a design variable vector. Without uncertainty of the external load,

we first consider the minimization problem of the structural volume over the lower bound constraint of
the limit load factor, which is formulated as

min
a

l>a such that

{
λ∗( f R, f D) ≥ λ,

a ≥ 0,
(57)

Note that the limit load factor λ∗( f R, f D) depends on a implicitly in (57), because the absolute value of
admissible axial force q̄i in (8) depends on ai as (7). We can regard (57) as the nominal (or conventional)
structural optimization problem associated with the limit load factor.

Suppose that f D is uncertain obeying the uncertainty model (10) for the fixed α ∈ <++, while f R is
assumed to be certain. For simplicity, we write f R = f̃ R in the remainder of this section. The robust
counterpart problem [Ben-Tal and Nemirovski 2002] of (57) is formulated as

min
a

l>a such that

{
λ∗( f R, f D) ≥ λ (for all f D ∈ Dp(α, f̃ D)),

a ≥ 0.
(58)

Note again that α is fixed in Equation (58), while α has been regarded as a variable in (11). Observe that
the constraint

λ∗( f R, f D) ≥ λ (for all f D ∈ Dp(α, f̃ D)) (59)

becomes active at an optimal solution of (58). Hence, the robustness function of the optimal solution of
(58) is given by

α̂(λ) = α. (60)

It follows from the result of Proposition 3.2 that the robust constraint (59) of (58) is equivalently
rewritten as

h†
i (λ f R + f̃ D) + α‖h†

i F0‖p∗ + h⊥

i ξ ≤ q̄i , i = 1, . . . , nm,

−h†
i (λ f R + f̃ D) + α‖h†

i Fi‖p∗ − h⊥

i ξ ≤ q̄i , i = 1, . . . , nm.
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Consequently, by using Equation (7), the problem (58) is equivalent to the following LP problem in the
variables a and ξ :

min
a,ξ

l>a such that


h†

i (λ f R + f̃ D) + α‖h†
i F0‖p∗ + h⊥

i ξ ≤ σ̄i ai , i = 1, . . . , nm,

−h†
i (λ f R + f̃ D) + α‖h†

i Fi‖p∗ − h⊥

i ξ ≤ σ̄i ai , i = 1, . . . , nm,

a ≥ 0.

(61)

It is rather amazing that the robust optimization problem (58) can be reformulated into the LP problem
(61).

Similarly, it can be shown that the robust optimization problem under the uncertain reference distur-
bance load f R is also reformulated into an LP problem, if f R obeys the uncertainty model introduced
in Section 3.3.

6.2. Robust optimization of framed structures. In this section, we show that a robust optimization prob-
lem of frames associated with the limit load factor can be reformulated as an LP problem. The notation
introduced in Section 4 are used in this section again.

Let li and ai denote the length and cross-sectional area of the i th member, respectively. Consider the
sandwich cross-section with the radius di , the moment of inertia of which is written as ti = d2

i ai . Then
q̄i and m̄i in (46) are written as

q̄i = σ̄i ai , m̄i = σ̄i di ai . (62)

Provided that di is fixed, we can assume that only a is the design variables vector. Hence, the nominal
optimization problem of frames can be formulated in the form of (57).

Suppose that f D is uncertain and obeys the uncertainty model (10) for the fixed α ∈ <++. The
robust counterpart of the optimization problem is formulated in the form of (58). In a manner similar
to Section 6.1, it follows from the result of Proposition 4.1 that the robust constraint (59) for frames is
equivalently rewritten into the constraints of (52). Consequently, by using (62), the problem (58) for
frames is equivalent to the following LP problem in the variables a and ξ :

min
a,ξ

l>a such that[
(−1)µhq

i + (−1)ν hm
i, j/di

]
(λ f 0

R + f̃ 0
D) + (−1)µqp

i + α

∥∥∥[(−1)µhq
i + (−1)ν hm

i, j/di

]
F0

∥∥∥
p∗

+

[
(−1)µh̄q

i + (−1)ν h̄m
i, j/di

]
ξ ≤ σ̄i ai , i = 1, . . . , nm, ( j, µ, ν) ∈ {1, 2}

3, a ≥ 0. (63)

6.3. Level of uncertainty and optimal structural volume. By using the LP formulations (61) and (62),
we investigate the relation between the level of uncertainty α and the structural volume l>a at the optimal
design of the robust optimization problem.

6.3.1. Truss example. Recall the 3 × 3 truss illustrated in Figure 1, the loading condition of which has
been defined in Section 5.1. Consider the robust optimization problem (58) with λ = 23.0 and α = 0.4.
The robust optimal design found by solving (61) is shown in Figure 13, where the width of each member
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Figure 13. Robust optimal design of the 3 × 3 truss at (α̂, λ) = (0.4, 23.0) and the
collapse mode with the nominal external load.

is proportional to its cross-sectional area. The limit load factor of this design under the nominal dead
load is λ∗( f̃ R, f̃ D) = 23.57. The corresponding collapse mode is also illustrated in Figure 13.

Figure 14 depicts the relation between the structural volume and the robustness function at the optimal
design. Note again that (60) holds at an optimal solution of (61). Moreover, the optimal solution of (61)
at α = 0 coincides with the optimal solution of the nominal optimization problem (57). It is of interest
to note that, from the definition of the robustness function, any truss design satisfying the constraint (59)
with λ = 24.0 is plotted in (or on the boundary of) the domain F in Figure 14. Thus, engineers may be
able to make decisions incorporating the tradeoff between the robustness and the structural volume by
using Figure 14. Note that the optimal value of the problem (61) depends linearly on α if the active set
of constraints does not change when α increases. Hence, the optimal structural volume is a piecewise
linear function of α in this example.

6.3.2. Frame example. Recall the 68-member frame illustrated in Figure 9, the loading condition of
which has been defined in Section 5.2. The cross-section of each member is assumed to be sandwich,
where di = 1.0 for simplicity. Supposing that f D is uncertain, consider the robust optimization problem
(58), where λ = 27.0 and α = 0.5.

The robust optimal design found by solving Equation (62) is shown in Figure 15, where the width of
each member is proportional to its cross-sectional area. The limit load factor of this design under the
nominal dead load is λ∗( f̃ R, f̃ D) = 28.47. Figure 16 depicts the relation between the optimal structural
volume and the robustness function for various values of λ.

7. Conclusions

In this paper, we have proposed tractable numerical methods for robustness analysis of structures asso-
ciated with the limit load factor under the load uncertainties. Particularly, it has been shown that the
info-gap robustness function can be obtained by solving a linear programming (LP) problem. The effec-
tive method for computing the robustness function may permit us to apply the info-gap decision theory
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Figure 14. Relation between the robustness function α̂ and the optimal structural vol-
ume of the 3 × 3 truss (— λ = 22.0; – – λ = 23.0; – · – λ = 24.0).

[Ben-Haim 2006] to designing structures which never encounter violation of mechanical performance
constraints under the uncertainty considered.

A main contribution of this paper is to show that the robustness function associated with the constraint
on the limit load factor can be obtained as the optimal value of an LP problem. It is rather amazing that the
robustness function can be computed easily by solving an LP problem, because the robustness function
is originally defined in terms of the optimization problem over the infinitely many constraints. Moreover,
for the given magnitude of uncertainty, detecting the worst-case limit load factor corresponds to finding a

Figure 15. Robust optimal solution of the 68-member frame at (α̂, λ) = (0.5, 27.0).



ROBUSTNESS ANALYSIS BASED ON PLASTIC LIMIT ANALYSIS WITH UNCERTAIN LOADS 239

5.0 5.5 6.0 6.5 7.0 7.5 8.0
0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

volume (cm3)

α̂

x 10
4

Figure 16. Relation between the robustness function α̂ and the optimal structural vol-
ume of the 68-member frame (— λ = 26.0; – – λ = 27.0; – · – λ = 28.0).

global optimal solution of a nonlinear optimization problem as discussed in [Kanno and Takewaki 2007],
that is, the results of this paper imply that computation of the robustness function is much easier than
finding the worst case. Thus, we have shown that the constraint on the limit load factor is regarded as a
tractable class of problems for computing the robustness function, although it is very difficult to compute
the exact value of the robustness function in general.

We can compare the robustness of structures quantitatively by using the robustness function. In the nu-
merical examples, the robustness function has been computed for uncertain trusses and framed structures
by solving LP problems. The nonlinear relation between the robustness function and the performance
requirement has been observed. It should be emphasized that most convex model approaches for ro-
bustness and/or uncertainty analysis have been developed based on first-order perturbation, while the
proposed method does not use any approximation. Hence, the method presented is valid even for a large
magnitude of uncertainty.

As a second contribution, the robust structural optimization associated with the limit load factor has
been formulated for a given magnitude of uncertainty. It has been shown that this robust optimization
problem can be reformulated as an LP problem for trusses as well as frames with sandwich cross-sections.
In the numerical examples, robust optimal designs of a truss and frame are computed by solving LP
problems. The relation between the robustness function and the optimal structural volume has been
investigated by solving the robust optimization problems for various magnitudes of uncertainty.
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