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In this work the physical parameters of a sandwich beam made with the association of hot rolled steel,
polyurethane rigid foam, and high impact polystyrene, used for the assembly of household refrigera-
tors and food freezers, are estimated using measured and numeric frequency response functions. The
mathematical models are obtained using the finite element method and the Timoshenko beam theory.
The physical parameters are estimated using the amplitude correlation coefficient and genetic algorithm
methods. Initially, the experimental procedure to determine the material’s mechanical properties, Young
and shear moduli, and the density of the components of the sandwich beam is described. The elastic
properties were obtained through tension and torsion tests. The shear modulus Gc of the polyurethane
rigid foam core was determined using a rectangular specimen and the Young’s moduli of the steel and
high impact polystyrene were determined using a conventional tension test. To estimate the dynamical
values of the parameters in the frequency range from 10 to 400 Hz, separated dynamic sweeping tests
were conducted using cantilevered beams of polyurethane rigid foam and high impact polystyrene. The
experimental data from a three layered sandwich beam were obtained using an impact hammer and four
accelerometers, displaced along the cantilevered beam sample. The parameters estimated are the Shear
modulus and the loss factor of the polyurethane rigid foam, and the Young’s modulus and the loss factor
of the high impact polystyrene.

1. Introduction

Modern engineering requires the use of sophisticated and optimized structural designs. One way to
achieve this goal is to use materials in a way that will optimize their inherent properties. An engi-
neering application known as sandwich structure is very suitable for this purpose. Sandwich materials
are frequently used wherever high strength and low weight are important criteria. The most important
applications are found in the transport industry — such as in the aerospace, automobile, railroad, and
marine industries — where high stiffness/weight and strength/weight ratios provide increased payload
capacity, improved performance, and lower energy consumption. These applications are often subjected
to vibrations. It is therefore important to know the particular dynamic and vibroacoustic properties, such
as the natural frequencies, of these constructions for design purposes [Tavallaey 2001].

For household refrigerators and food freezers, one of the main complaints to customer care centers
is related to noise generation, related most of the time to vibration of the cabinet, which radiates sound
from internal components like shelves and containers, leaking to the outside of the unit.

The modeling of sandwich structures has been studied extensively, but less attention has been paid
to their material identification [Shi et al. 2006]. Material parameter identification by inverse methods
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using measured resonance frequencies is a recent type of nondestructive evaluation method. The prin-
ciple of inverse methods for material identification is to update iteratively the engineering constants in
a finite element model of the test specimens in such a way that the computed frequencies match the
measured frequencies. The engineering constants that minimize an output residual are considered as the
solution of the procedure. The minimization of the output residual is realized by optimization methods,
which minimize a scalar value called the objective function. A typical objective function is the sum of
the squared residual components. The underlying idea of inverse methods based on measurement of
resonance frequencies originates from the observation that all constructions made with elastic materials
have a characteristic set of resonance frequencies. The values of these frequencies are determined by the
geometry, boundary conditions, the elastic moduli, and the density of the materials.

Caracciolo et al. [2004] presented an experimental technique for completely characterizing a viscoelas-
tic material, by determining the Poisson’s ratio and the complex dynamic Young’s modulus of a small
beam-like specimen subject to seismic excitation, together with the theoretical background. The same
experimental device is used basically for both kinds of tests; the specimen is instrumented, placed into a
temperature controlled chamber and excited by means of an electrodynamic shaker. The longitudinal and
the transversal deformations are measured by strain gauges to get the Poisson’s ratio, whereas the vertical
displacement of the specimen and the acceleration of the support are measured to get Young’s modulus of
the tested material. The experimental curves of the Poisson’s ratio and of the Young’s modulus, obtained
at different temperatures, are then gathered into a unique master curve by using the reduced variables
method. The two master curves, respectively, represent the Poisson’s ratio and Young’s modulus for the
tested material in a very broad frequency range.

Park [2005] used experimental methods to measure frequency-dependant dynamic properties of com-
plex structures. Flexural wave propagations are analyzed using the Timoshenko beam, the classical beam,
and the shear beam theories. Wave speeds, bending, and shear stiffnesses of the structures are measured
through the transfer function method, requiring small number of vibration measurements. Sensitivity
analysis is performed to investigate the effects of experimental variables on the measured properties and
to study optimal sensor locations of the vibration measurements. Using the developed methods, the
complex bending and shear stiffnesses of sandwich beams of different core materials and a polymer
beam are measured. Continuous variations of the measured bending and shear stiffnesses and their loss
factors with frequency were obtained. To further illustrate the measurements of frequency-dependent
variation of dynamic properties of complex structures, the damping of structural vibration using porous
and granular materials is investigated.

Kim and Kreider [2006] studied the parameter identification in nonlinear elastic and viscoelastic plates
by solving an inverse problem numerically. The material properties of the plate, which appear in the
constitutive relations, are recovered by optimizing an objective function constructed from reference strain
data. The resulting inverse algorithm consists of an optimization algorithm coupled with a corresponding
direct algorithm that computes the strain fields given a set of material properties. Numerical results are
presented for a variety of constitutive models; they indicate that the methodology works well, even with
noisy data.

Pintelon et al. [2004] analyzed the stress-strain relationship of linear viscoelastic materials charac-
terized by a complex valued, frequency-dependent elastic modulus (Young’s modulus). Using system
identification techniques it is shown the elastic modulus can be measured accurately in a broad frequency
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band from forced flexural (transverse) and longitudinal vibration experiments on a beam under free-free
boundary conditions. The approach is illustrated on brass, copper, plexiglass, and PVC beams.

Yang et al. [2005] analyzed the vibration and dynamic stability of a traveling sandwich beam using the
finite element method. The damping layer is assumed to be linear viscoelastic and almost incompressible.
The extensional and shear moduli of the viscoelastic material are characterized by complex quantities.
Complex eigenvalue problems are solved by the state-space method, and the natural frequencies and
modal loss factors of the composite beam are extracted. The effects of stiffness and thickness ratios of
the viscoelastic and constrained layers on natural frequencies and modal loss factors are reported. Tension
fluctuations are the dominant source of excitation in a traveling sandwich material, and the regions of
dynamic instability are determined by a modified Bolotin’s method. Numerical results show that the
constrained damping layer stabilizes the traveling sandwich beam.

Singh et al. [2003] formulated a system identification procedure for estimation of parameters asso-
ciated with a dynamic model of a single degree of freedom foam-mass system. Ohkami and Swoboda
[1999] presented two parameter identification procedures for linear viscoelastic materials. Chang [2006]
used the genetic algorithm for parameter estimation of nonlinear systems.

Backström and Nilsson [2007] indicate the need for simple methods describing the dynamics of these
complex structures. By implementing frequency dependent parameters, the vibration of sandwich com-
posite beams can be approximated using simple fourth order beam theory. A higher order sandwich beam
model is utilized in order to obtain estimates of the frequency-dependent bending stiffness and shear mod-
ulus of the equivalent Euler–Bernoulli and Timoshenko models. The resulting predicted eigenfrequencies
and transfer accelerance functions are compared to the data obtained from the higher order model and
from measurements. It can be noticed that for lower order wavenumbers the ordinary Timoshenko theory
and the higher order theory show satisfactory agreement.

In this work the physical parameters of a sandwich beam made with the association of hot rolled
steel, polyurethane rigid foam, and high impact polystyrene, used for the assembly of household re-
frigerators and food freezers, are estimated using measured and numeric frequency response functions
(FRFs). The mathematical models are obtained using the finite element method (FEM) and Timoshenko
beam theory. The physical parameters are estimated using the amplitude correlation coefficient [Grafe
1998] and genetic algorithm (GA) [Chang 2006] methods. The experimental data are obtained using an
impact hammer and four accelerometers displaced along the cantilevered beam sample. The parameters
estimated are the shear modulus and the loss factor of the polyurethane rigid foam and the Young’s
modulus and the loss factor of the high impact polystyrene. The frequency range is chosen for the test in
which the FRF curve presents a good signal to noise ratio. To estimate the initial values of the parameters,
separated static and dynamic tests were conducted using cantilevered beams of polyurethane rigid foam
and high impact polystyrene. The static values are used as the initial reference values for the dynamic
estimation.

2. Mathematical model

A lot of research has been done on finite element models of cantilever beams based on Euler–Bernoulli
beam theory. In Euler–Bernoulli beam theory the assumption is made that the plane cross section before
bending remains plane and normal to the neutral axis after bending. This assumption is valid if the
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length to thickness ratio is large, and for small deflection of beam. However if the length to thickness
ratio is small, plane deflection before bending will not remain normal to the neutral axis after bending.
In practical situations a large number of modes of vibrations contribute to the structure’s performance.
Euler–Bernoulli beam theory gives inaccurate results for higher modes of vibration. Timoshenko beam
theory corrects the simplifying assumptions made in Euler–Bernoulli beam theory. In this theory cross
sections remain plane and rotate about the same neutral axis as the Euler–Bernoulli model, but do not
remain normal to the deformed longitudinal axis. The deviation from normality is produced by a trans-
verse shear that is assumed to be constant over the cross section. Thus the Timoshenko beam model is
superior to the Euler–Bernoulli model in precisely predicting the beam response [Backström and Nilsson
2007] for a lower number of vibration modes.

The equation of motion for the vibration of a sandwich beam according to the Timoshenko beam
theory [Zenkert 1997] is

D
∂4w

∂x4 + ρ∗
∂2w

∂t2 −
ρ∗

S

(
D

∂4w

∂x2∂t2 − <
∂4w

∂t4

)
− <

∂4w

∂x2∂t2 = f (x)eiωt , (1)

where w(x, t) is the transverse displacement, D is the bending stiffness, ρ∗ is the mass per unit of surface,
S is the shear stiffness, < is the rotational inertia, x is the coordinate along the beam axis, t is the time,
f (x) is the amplitude of the external force applied along the beam span, ω is the excitation frequency,
and i =

√
−1.

The dimensions and parameters of the sandwich beam shown in Figure 1 are as follows: E1, E2, and
Ec are the Young’s moduli, ρ1, ρ2, and ρc are the densities, Gc is the shear modulus, t1, t2, and tc are
the thicknesses, e is the position of the neutral line, d is the distance between the center line of the steel
and the high impact polystyrene beam, and z is the position of the reference axis.

According to Figure 1 and the theory of sandwich beams [Zenkert 1997]
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Making w = w(x, t) a harmonic function, it is possible to admit that w(x, t) = W (x) eiωt . Substituting
this w(x, t) into Equation (1) we obtain

D
∂4W
∂x4 − ρ∗ω2W (x) −

ρ∗

S

(
−Dω2 ∂2W

∂x2 − <ω4W (x)

)
+ <ω2 ∂2W

∂x2 = f (x). (2)

The exact solution W (x) needs to satisfy Equation (2) at every point x , and in general is unknown. To
overcome this problem the approximate solution W̃ (x) is used. This approximate solution is interpolated
over a finite element, see Figure 1, with 2 nodes, according to the expression W (x) ∼= W̃ (x) = [φ] {q},

where [φ(x)] is the shape function matrix (1 × 4) and the four φ j (x) are the well known Hermitian inter-
polation functions [Cook et al. 1989] with C1 continuity. The vector {q} is the generalized displacement
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Figure 1. Sandwich beam geometric parameters (left) and finite element degrees of
freedom (right).

vector, {q} = {w1, θ1, w2, θ2}
t where wi denotes the nodal displacement and θi is the rotation at element

node i .
Substituting the approximate solution into Equation (2) introduces an residual error, E(x, ω), which

is minimized using the Galerkin weighted residual method. In mathematical terms, the residual error is
made orthogonal to the weight functions∫ L

0
[φ]t

(
D

∂4W̃
∂x4 − ρ∗ω2W̃ (x) −

ρ∗

S

(
−Dω2 ∂2W̃

∂x2 − <ω4W̃ (x)

)
+ <ω2 ∂2W̃

∂x2 − f (x)

)
dx = 0, (3)

where L is the element length.
Substituting the shape functions into Equation (3) obtains the standard finite element equation

[Ke(ω)] {q} = {F},

where
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∫ L

0
[φ]T f (x)dx .

3. Numerical estimation methods

To approximate the experimental and numeric FRF data, the predictor-corrector updating technique
[Grafe 1998] based on two correlation coefficients (shape and amplitude) and their sensitivities can
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be used. In this work, only the amplitude correlation coefficient is used. This coefficient is defined as

χa(ωk) =
2|{HX (ωk)}

T
{HA(ωk)}|

({HX (ωk)}T {HX (ωk)}) + ({HA(ωk)}T {HA(ωk)})
,

where HX (ωk) and HA(ωk) are the measured and predicted response vectors at matching excitation-
response locations.

The corresponding sensitivity is

∂χa(ωk)

∂ϕ
= 2

∂|{Hx}
T
{HA}|

∂ϕ

({HX }
T
{HX }+{HA}

T
{HA})

({HX }T {HX }+{HA}T {HA})2

− 2
∂({HA}

T
{HA})

∂ϕ

|{Hx}
T
{HA}|

({HX }T {HX }+{HA}T {HA})2 .

It is therefore proposed to make use of χa(ωk) and its sensitivity in a combined manner to improve the
overall level of correlation. Based on a truncated Taylor series expansion, one can therefore write one
equation for frequency point ωk as

{1 − χa(ωk)} =

[
∂χa(ωk)

∂ϕ1

∂χa(ωk)

∂ϕ2
· · ·

∂χa(ωk)

∂ϕNϕ

]
1×Nϕ

{1ϕ}, (4)

where Nϕ is the number of updating parameters {ϕ1, ϕ2, . . . , ϕN } and Equation (4) is recognized to be in
the standard form of sensitivity based model updating formulations {ε} = [S] {1ϕ}, where {1ϕ} is the
change in design parameters of the finite element model.

An extended weighted least square approach is proposed which minimizes

J ({ϕ}) = {ε}T [W f
]
{ε} + {1ϕ}

T [Wϕ

]
{1ϕ}, (5)

where
[
W f

]
and

[
Wϕ

]
are diagonal weighting matrices for the frequency points and updating parameters

respectively (see [Grafe 1998] for more details).
Another update method used in this work is the GA method. This method is widely used and is based

on the evolutionary biological process [Chang 2006]; the GA parameters used in this application are:
mutation rate = 0.02, population size = 50, and number of generations = 5000. The objective function
is defined by

f =

np∑
i=1

|FRFexp − FRFFEM|, (6)

where FRFexp is the experimental FRF obtained with laser transducer or accelerometer, FRFFEM is the
numeric FRF and np is the number of experimental points (np varies according the system and frequency
range). Equation (6) is used as a fitness function. The impulsive data were collected using a frequency
range varying from 0 to 400 Hz and a frequency increment 1ω = 0.25 Hz.

The numeric FRF is obtained using frequency sweeping in the range of interest with the same incre-
ment as the measurements. The final finite elements system of equations is solved for each frequency,
and two procedures are used to specify the boundary condition and the force vector:
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(a) When the FRF is obtained using the impact hammer, the force vector is calculated using unitary
force applied in the excitation node, and the clamped boundary condition is prescribed for the fixed
base node.

(b) When the FRF is obtained using base excitation (a shaker) and the measurements are made with a
laser transducer, the force vector is null and the boundary conditions for the fixed base node are the
measured displacement with null rotation.

4. Static characterization

This section shows the experimental procedure used to determine the material’s mechanical properties,
Young and shear moduli, and the density of the components of the sandwich beam. The elastic properties
were obtained through tension and torsion tests. The shear modulus Gc of the polyurethane rigid foam
core was determined with a torsion test using a prismatic specimen with a rectangular section, and the
Young’s moduli of the steel and high impact polystyrene were determined using conventional tension
tests.

4.1. Polyurethane rigid foam core. Due to the difficulty of adapting the specimen for use in the conven-
tional testing machines (for torsion and/or tension tests) a special pure torsion device test was projected
to evaluate the shear modulus G of the core.

For pure torsion the relative angle of twist for a prismatic bar is

θ =
T L
G J

,

where T is the torque, L is the length (as a relative position) and J is the polar area moment of inertia.
For a rectangular section with dimensions d and t with d ≥ t the polar area moment of inertia J is

given by [Boresi and Chong 1999]

J = K1
d × t3

3
,

Figure 2. Special device for torsion test of the polyurethane rigid foam core (left) and
the sample inserted in fixed extremity (right).
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where

K1 = 1 −
192
π5

t
d

∑
n=0,1,2,...

1
(2n + 1)5 tanh

(
2n + 1

2
d
t
π

)
.

For d = t , using 10 terms in the series, K1 ∼= 0.422 and the expression for the angle of twist reduces to

θ =
T × L

G × d × t3 × 0.14066
.

The specimen with dimensions of 30 mm × 30 mm × 250 mm is inserted with low interference at the
fixed extremity (see Figure 2), and the external torque is applied on the other extremity (which is free to
rotate) using a pulley and dead weight (see Figure 3).

A cursor was inserted as shown in Figures 2 and 3 to measure the twist angle using a calibrated disc
in steps with 0.5 degree resolution. The external torque is applied using calibrated weights (see Figure
3) and the test is carried out varying the torque and making direct measurement of the twist angle.

The polyurethane rigid foam samples were extracted from the same cabinet to avoid variations due to
different production conditions. The samples were obtained from the lateral refrigerator wall (a straight
region, with less foaming faults and voids) and it was classified according to the quantity of superficial
faults (see Figure 4). The goal of this classification was to evaluate the variation of the G value obtained
with perfect samples and with superficial faults.

The tests were performed on 12 samples with torque increments of 0.02375 Nm in such a manner to
produce an adequate twist angle variation. Table 1 shows the values of G, as well the average value
and the variance. The average values of the shear modulus G of samples with superficial faults are
greater than that of samples without faults. Usually the stiffness will be reduced if there are defects in
the specimen. However, the variance is also greater for the samples with faults.

Figure 3. Free rotating end with calibrated disc (left) and torque application through
calibrated weights (right).



ESTIMATION OF PARAMETERS OF A THREE-LAYERED SANDWICH BEAM 535

Figure 4. A sample with superficial faults.

Figure 5 shows a typical curve of the torque as a function of twist angle; it can be noticed that this
relation is linear, with lower residue, as found in [Branner 1995]. Apparently the curve presents linear
behavior. In the torsion test used to obtain the shear modulus G of the polyurethane rigid foam core, the
twist angle can reach nearly 30 degrees. For such large rotation, the nonlinear effect may be dominant.
The nonlinearity reduces the stiffness and lower G may be obtained.

Branner [1995] shows the dependence of the shear modulus G, as well as the elastic modulus E ,
on the specific material density. A precision weighing balance Scientech model SA210 was used, with
resolution of 0.001 g. Table 2 shows the density values obtained for 12 samples (6 with and 6 without
superficial faults).

4.2. Steel beam. The Young’s modulus of the steel beam was determined using the procedures described
in the technical norm [ASTM 2004].

Sample G (MPa) Sample G (MPa)
(without superficial faults) (with superficial faults)

1 1.977 1 2.423
2 2.015 2 1.896
3 2.215 3 1.935
4 2.045 4 2.205
5 2.091 5 2.496
6 2.054 6 2.152

Average value = 2.066 MPa Average value = 2.184 MPa
Variance = 0.082 MPa Variance = 0.245 MPa

Table 1. Experimental shear modulus.



536 NILSON BARBIERI, RENATO BARBIERI, LUIZ CARLOS WINIKES AND LUIS FERNANDO ORESTEN

0 5 10 15 20 25 30
0

0.1

0.2

0.3

0.4

0.5

T
o
r
q
u
e
 
(
N
m
)

Twist angle (degree)

Figure 5. Twist angle versus applied torque.

As a result of the stress-strain test of the steel sample, a correlation between applied force and resultant
deformations was obtained. The Young’s modulus can be obtained from

E =
P
εA

,

where P is the applied load (in N), A is the transversal section area (in m2), and ε is the longitudinal
deformation (nondimensional).

The value of the Young’s modulus obtained was 209.6 GPa, and Figure 6 shows the variation of the
applied force and the strain.

4.3. High impact polystyrene. The characterization of the high impact polystyrene is performed using
the procedures described in the technical norm [ASTM 2003] for plastics tensile testing.

Sample Density (kg/m3) Sample Density(kg/m3)

(without superficial faults) (with superficial faults)

1 28.400 1 29.111
2 28.876 2 28.573
3 28.769 3 28.262
4 28.751 4 29.280
5 28.369 5 29.111
6 28.329 6 29.671

Average value 28.582 kg/m3 Average value 29.002 kg/m3

Variance 0.242 kg/m3 Variance 0.506 kg/m3

Table 2. Polyurethane rigid foam core density.
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Figure 6. Strain versus applied force.

Five tests were carried out using a universal tensile testing machine EMIC with load cell capacity of
2000 N and test speed of 5 mm/min. The Young’s modulus was obtained through the angular coefficient
of the linear range of the stress-strain curve (see Figure 7).

Table 3 shows the Young’s modulus values obtained from the five samples, the average value, and the
variance.

The technical norm [ASTM 2000] describes the standard test methods for density and specific gravity
(or relative density) of plastics by displacement. The body mass is first measured in the atmosphere. After
this step the body is immersed in a liquid and the apparent mass is measured. After few manipulations
the plastic density is obtained. Six samples were tested and the results are shown in Table 4.
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Figure 7. Specific strain versus stress (left) and adjusted curve of specific strain versus
stress (right).
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Sample Young’s modulus (GPa)

1 1.392
2 1.388
3 1.439
4 1.399
5 1.409

Average value 1.405 GPa
Variance 0.018 GPa

Table 3. Young’s modulus of the PSAI.

5. Dynamic characterization

The experimental sample of the sandwich beam made with the association of hot rolled steel, polyurethane
rigid foam, and high impact polystyrene is shown in Figure 8. The thicknesses of the steel, polyurethane,
and polystyrene are 0.6 mm, 38.25 mm, and 1.25 mm, respectively, and the beam width is 39.18 mm.

The experimental data are obtained using the impact hammer and the four accelerometers displaced
along the sample (A1, A2, A3, and A4). Figure 9 shows the FRF curves of the four accelerometers. The
impact force was applied in the position of the accelerometer A2 on the steel side.

The rational fraction polynomial [Maia et al. 1997] method was used to estimate the damping ratio,
ξ , and the natural frequencies, ω, of the first three mode shapes. The fourth mode was not considered
due to poor signal to noise ratio.

Table 5 shows the values of these parameters for the four accelerometers. The position of the ac-
celerometer A3 is near the nodal point of the second mode shape. This justifies the results suppressed in
Table 5.

To validate the mathematical model of the sandwich beam it was attempted to estimate separately some
physical parameters of the system, namely the shear modulus and the loss factor of the polyurethane rigid
foam, and the Young’s modulus and the loss factor of the high impact polystyrene.

Sample Density (kg/m3)

1 1059.6
2 1069.1
3 1060.1
4 1059.1
5 1060.3
6 1062.8

Average value 1061.9 kg/m3

Variance 3.8 kg/m3

Table 4. Density of the PSAI.
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Figure 8. Sandwich beam.
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Figure 9. FRF curves of the four accelerometers.
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Figure 10. Experimental specimen of cantilever beam with position sensor.
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Accelerometers
A1 A2 A3 A4

Mode shape ω (Hz) ξ ω (Hz) ξ ω (Hz) ξ ω (Hz) ξ

1 25.42 0.050 25.39 0.050 25.33 0.052 25.32 0.053
2 109.41 0.0171 109.45 0.0165 − − 109.39 0.0167
3 223.97 0.0154 224.00 0.0152 224.05 0.0159 224.18 0.0157

Table 5. Experimental damping ratio and natural frequencies.

The loss factor η was estimated considering the complex Young’s modulus E∗
= E(1 + jη). To obtain

initial values of these parameters separate studies were conducted on the polyurethane rigid foam and
the high impact polystyrene. The first approximation of the loss factor was η = ξ ∼= 0.05 (the damping
ratio of the first mode according Table 5).

Figure 10 shows the experimental specimen for the high impact polystyrene and polyurethane rigid
foam cantilever beam. The high impact polystyrene beam dimensions and material property are length,
L = 0.145 m, width = 0.02 m, thickness = 0.0018 m, and density ρ = 1060 kg/m3. The mini shaker
(B&K model 4810) was used in the sweep sine test with the frequency range varied from 10 to 400 Hz
with an increment of 2.5 Hz (157 points). One accelerometer (PCB model 353B18) and one laser velocity
transducer (B&K model 3544) were used to collect the vibration data. The accelerometer was placed at
the base excitation point (the shaker) and the laser sensor at the position d = 0.135 m. Figure 11 shows
the experimental and estimated curves of the velocity/acceleration ratio PVA (velocity/base acceleration).
The parameters were estimated using the genetic algorithm, and the objective function was defined using
the difference between the values of the experimental and numeric PVA. The parameters updated are
the Young’s modulus and the loss factor of the high impact polystyrene. The optimal values found are
shown in Table 6.
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Figure 11. PVA curves of the high impact polystyrene cantilever beam (left) and the
polyurethane rigid foam cantilever beam right.
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Frequency range (Hz) E (GPa) η

10.0 – 57.5 1.3350 0.0385
57.5 – 177.5 1.3725 0.0450
177.5 – 400.0 1.4150 0.0805

Table 6. Optimal parameters.

Frequency range (Hz) G (MPa) η

10.0 – 150.0 2.6497 0.0575
150.0 – 400.0 2.5498 0.0625

Table 7. Optimal parameters.

The polyurethane rigid foam cantilever beam dimensions and material property are length, L =

0.225 m, width = 0.03 m, thickness = 0.03 m, and density ρ = 29 kg/m3. The laser sensor position
is d = 0.1125 m. The mini shaker was used in the sweep sine test, with the frequency range varying
from 10 to 400 Hz with an increment of 2.5 Hz (157 points). Figure 11 shows the experimental and the
estimated curves of the velocity/acceleration ratio PVA. The parameters updated are the shear modulus
and the loss factor of the polyurethane rigid foam. The optimal values found for these parameters are
shown in Table 7. As mentioned by Backström [2006], the elasticity modulus of the core does not have
significant influence on the dynamics of typical beams, and is assumed to be related to the core shear
modulus by the isotropic relation Ec = 2(1+ν)Gc, where ν is Poisson’s ratio. Since the eigenfrequencies
of the beam are not sensitive the value of ν, and as Gc is known directly, ν is set to a default value of
ν = 0.3. Thus, by defining an error function describing the proximity of the calculated curve of PVA to
the measured, the optimal values of Gc are found by minimization.

Figure 11 shows good agreement between the estimated and experimental curves, even near the reso-
nances.

The physical parameters of the cantilevered sandwich beam shown in Figure 8 were estimated using
the amplitude correlation coefficient (ACC) and GA. The frequency range was varied from 10 to 250 Hz
(961 points, 1ω = 0.25 Hz), chosen for the good signal to noise ratio. Figure 12 shows the experimental
and numeric (estimated) FRF curves for the sandwich beam. The curves obtained using ACC and GA
methods are practically superposed, and the optimal parameter values found with these methods are
shown in Table 8.

High impact polystyrene Polyurethane rigid foam
Method Frequency range (Hz) E (GPa) η G (MPa) η

GA 10 – 250 1.5830 0.0446 3.2874 0.0645
ACC 10 – 250 1.5800 0.0471 3.2917 0.0635

Table 8. Optimal parameters.
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Figure 12. Experimental and estimated FRF curves.

6. Conclusions

Two methods, the genetic algorithm and the amplitude correlation coefficient methods, were used to
update the values of physical parameters of mathematical models of a sandwich beam made with the
association of hot rolled steel, polyurethane rigid foam, and high impact polystyrene as used for the
assembly of household refrigerators and food freezers.

The physical parameters estimated were the shear modulus and the loss factor of the polyurethane
rigid foam, and the Young’s modulus and loss factor of the high impact polystyrene.

Both methods, the genetic algorithm and the amplitude correlation coefficient, presented good results
when it compared to the estimated and the experimental FRF curves.

The genetic algorithm method does not use derivatives, thus it is a good estimated method even for
the resonance region.

The amplitude correlation coefficient method uses derivatives, but even so it was possible to obtain
good estimation of the parameters near the resonance region.

It was verified that the parameters are frequency dependent. The values found with a conventional,
static, test are good approximations for the initial updated methods’ starting point.

The static and dynamic tests yielded about the same, 1.4 GPa, for the elastic modulus of the high
impact polystyrene. There is some discrepancy for the polyurethane rigid foam; the static test value is
about 2.1 MPa, while the dynamic test value is about 2.5 MPa. Pritz [2004] demonstrated mathematically
and verified experimentally that the modulus of elasticity of polyurethane rigid foam increases with the
increase of the frequency. Therefore the results of this work are in accordance with the data of the
literature.

The estimated parameters for the sandwich beam components are greater than the values estimated and
measured for the individual (separated) samples. For sandwich beam samples the estimated Young’s mod-
ulus of the high impact polystyrene was 1.58 GPa, and the estimated shear modulus of the polyurethane
rigid foam was 3.29 MPa. The loss factor of the materials varied from 0.04 to 0.06. Some reasons for
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the variations of the values between the static and dynamic tests can be associated with the compacting
pressure, the glue between the layers, and imperfections in the foam core layer.
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