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AN EXTENDED MECHANICAL THRESHOLD STRESS PLASTICITY MODEL:
MODELING 6061-T6 ALUMINUM ALLOY

BISWAJIT BANERJEE AND ANUP SATISH BHAWALKAR

The mechanical threshold stress plasticity model of Follansbee and Kocks was designed to predict the
flow stress of metals and alloys in the regime where thermally activated mechanisms are dominant and
high temperature diffusion effects are negligible. In this paper we present a model that extends the
original mechanical threshold stress to the high strain-rate regime (strain rates higher than 104 s−1) and
attempts to allow for high temperature effects. We use a phonon drag model for moderate strain rates
and an overdriven shock model for extremely high strain rates. A temperature dependent model for the
evolution of dislocation density is also presented. In addition, we present a thermodynamically-based
model for the evolution of temperature with plastic strain. Parameters for 6061-T6 aluminum alloy are
determined and compared with experimental data. The strain-rate dependence of the flow stress of 6061-
T6 aluminum is found to be in excellent agreement with experimental data. The amount of thermal
softening is underestimated at high temperatures (greater than 500 K) but still is an improvement over
the original model. We also find that the pressure dependence of the shear modulus does not completely
explain the pressure dependence of the flow stress of 6061-T6 aluminum alloy.

1. Introduction

With the advent of powerful computational machines and algorithms, it is now possible to simulate
processes such as the accidental impact of vehicles, high-speed machining, high- and hyper-velocity
impact and penetration, and explosive forming. These processes typically involve plastic deformations
at high strain rates (102 s−1 to 109 s−1) and often temperatures greater than 0.6 Tm (Tm is the melting
temperature of the material). Adiabatic shear banding often accompanies the process and provides zones
where fractures nucleate. A crucial component in the numerical modeling of plastic deformations under
these conditions is a model that describes the evolution of the flow stress under a large range of strain-
rates and temperatures.

The mechanical threshold stress (MTS) flow stress model [Follansbee and Kocks 1988; Goto et al.
2000; Kocks 2001] was originally developed with two assumptions:

(1) Thermally activated dislocation motion was dominant and viscous drag effects on dislocation motion
were small. This assumption essentially restricts the model to strain rates of 104 s−1 and less.

(2) High temperature diffusion effects (such as solute diffusion from inside the grains to grain bound-
aries) were absent. This assumption limits the range of applicability of the model to temperatures

Keywords: mechanical threshold stress model, 6061-T6 aluminum, high strain rate, high temperature, high pressure.
Funded by the U.S. Department of Energy through the Center for the Simulation of Accidental Fires and Explosions, under
grant W-7405-ENG-48.
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less than around 0.6 Tm (depending on the material). For 6061-T6 aluminum alloy this temperature
is approximately 450–500 K.

The aluminum alloy 6061 is composed of 97.5% aluminum, 1.0 % magnesium, 0.6 % silicon, 0.34 %
iron, 0.3 % copper, 0.2 % chromium, and around 0.04 % zinc and titanium by weight. The T6 hard-
ening treatment varies by manufacturer but usually involves a solution treatment at 810 K followed by
quenching in water and then aging for a few hours at around 450 K. The solution treatment leads to a
homogeneous supersaturated solid solution. The quenching step is performed to take the supersaturated
solution to a two-phase region of the phase diagram. In the aging step, the magnesium silicide (Mg2Si)
phase is precipitated in such a way that the precipitate is evenly distributed inside the grains. There is
also some precipitation of AlFeSi at the grain boundaries. The precipitates inside the grains impede dis-
location motion and make the alloy harder. The lightness, strength, weldability, and corrosion resistance
of the 6061-T6 alloy makes it ideal for heavy duty structures in marine applications (among other uses).
However, at about 550 K, the alloying Mg2Si precipitates start to diffuse toward the grain boundaries
and accumulate at the grain boundaries. As a result, 6061-T6 aluminum softens considerably at high
temperatures. More details about the processes involved can be found in [Epler 2002].

Simulations of high velocity sphere-cylinder impact experiments using a MTS model for an aluminum
alloy containing 1% magnesium [Puchi-Cabrera et al. 2001] showed that the model underestimated the
flow stress at strain rates greater than 105 s−1. Also, high temperature Taylor impact simulations using
the same model showed that the flow stress was significantly overestimated for temperatures greater than
450 K [Banerjee 2005b].

In this paper, we extend the MTS model so that it can be used for strain rates greater than 104 s−1 and
for temperatures greater than 450 K. To extend the model to the regime of high strain rates, we incorporate
a model for viscous drag controlled dislocation motion (which becomes dominant at strain rates greater
than 104 s−1). In addition, we incorporate a model for the overdriven shock regime (strain-rates greater
than 109 s−1). To account for the effect of thermally assisted diffusion of solutes, we incorporate an
empirical modification of the original model for thermally activated mechanisms.

The evolution of temperature with plastic strain can be quite important in some situations (such as
the development of adiabatic shear bands). We derive an expression for the Taylor–Quinney coefficient
from thermodynamic principles and postulate a temperature dependent model for the evolution of this
quantity.

The parameters of the extended MTS model are then fit using experimental stress-strain data for 6061-
T6 aluminum from the literature wherever available. The flow stress estimated from the model is then
compared with experimental data. Next, predictions of the model for a range of strain rates, temperatures,
and levels of plastic strain are discussed. Finally, some concluding remarks are given and potential areas
of future work are discussed.

2. The extended mechanical threshold stress model

The original mechanical threshold stress (MTS) model [Follansbee and Kocks 1988; Goto et al. 2000]
for the flow stress (σy) can be written as

σy(σe, ε̇, p, T )= [τa + τi (ε̇, T )+ τe(σe, ε̇, T )]
µ(p, T )

µ0
, (1)
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where σe is an evolving internal variable that has units of stress (also called the mechanical threshold
stress), ε̇ is the strain rate, p is the pressure, T is the temperature, τa is the athermal component of the flow
stress, τi is the intrinsic component of the flow stress due to barriers to thermally activated dislocation
motion, τe is the component of the flow stress due to structure evolution (that is, strain hardening), µ is
the shear modulus, and µ0 is a reference shear modulus at 0 K and ambient pressure.

2.1. Athermal component. The athermal component of the yield stress is a function of grain size, dis-
location density, distribution of solute atoms, and other long range barriers to dislocation motion. This
component may either be constant or may evolve with deformation. A simple model for this component
can be written as [Zerilli and Armstrong 1987; Banerjee 2007]:

τa = τ0 +
k

√
d
, (2)

where τ0 is the component due to far field dislocation interactions and the second term represents contri-
bution due to the Hall–Petch effect where k is a material constant and d is the grain size.

2.2. Intrinsic component. In the MTS model, the intrinsic component of the flow stress is assumed to
be dependent only on thermally activated mechanisms in the absence of solute diffusion. This component
can be expressed in the phenomenological Arrhenius form given below (see [Kocks et al. 1975, Section
44], for an explanation)

τi = Siσi , Si :=

1 −

(
kbT

g0i b3µ(p, T )
ln
ε̇0i

ε̇

)1/qi
1/pi

, (3)

where σi is the intrinsic component of the mechanical threshold stress (flow stress at 0 K), kb is the
Boltzmann constant, b is the magnitude of Burgers vector, g0i is a normalized activation energy, ε̇0i is a
constant reference strain rate, and pi , qi are constants. The constant pi can take values between 0 and 1,
while qi can take values between 1 and 2.

In order to fit the high temperature data for 6061-T6 aluminum better, we have found that a better
relation for τi has the form

τi = σi

1 −


(

kbT

g0i b3µ(p, T )
ln
ε̇0i

ε̇

)1/qi


2


1/pi

. (4)

This relation is equivalent to using values of qi between 0.5 and 1. If we use such a value in the original
MTS model, the value of τi tends to become constant as the strain rate is increased. Recall that the
original MTS model does not account for the effect of viscous drag at high strain rates, and the model
predicts only a small increase in the flow stress with strain rate if qi is between 1 and 2. The small
reduction in the flow stress at high strain rates due to a value of qi between 0.5 and 1 is easily offset by
incorporating a simple model for viscous drag into the MTS model.

2.3. Viscous drag component. To incorporate viscous drag effects due to phonon damping, forest dis-
locations, and solute atoms, we add a term to the equation for τi of the form [Kumar and Kumble 1969;
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Frost and Ashby 1971]

τv =
2

√
3

B

ρmb2ε̇, (5)

where B is the drag coefficient, ρm is the mobile dislocation density, and b is the magnitude of the
Burgers vector. We assume that a good estimate of the value of the drag coefficient can be obtained if we
consider only damping due to phonon scattering [Wolfer 1999]. However, at low temperatures (< 50 K),
electron damping can dominate and a model for that should be used in addition to phonon damping (for
more details see [Nadgornyi 1988] p. 251–260).

The viscous drag coefficient can be written as [Kanel et al. 2001]

B ≈ λp Bp =
λpkbTω2

D

π2c̄3 , (6)

where Bp is the phonon drag coefficient, λp ≥ 1 is a correction factor, ωD is the Debye frequency and c̄
is the average sound speed. The Debye frequency is given by

ωD =
2πkbθD

h
= 2π c̄

(
3ρ

4πM

)1/3

=

(
6π2ρ

M

)1/3

c̄, (7)

where θD is the Debye temperature, h is Planck’s constant, and M is the atomic mass. The average sound
speed is defined as

1
c̄3 =

1
3

(
2
c3

s
+

1

c3
l

)
, cs =

√
µ

ρ
, cl =

√
2µ(1 − ν)

ρ(1 − 2ν)
, (8)

where cs is the transverse sound speed, cl is the longitudinal sound speed, and ν is the Poisson’s ratio.
Assuming that the Poisson’s ratio is 1/3, we can get an approximation for c̄ in terms of the shear sound
speed as

c̄ ≈

(
24
17

)1/3

cs . (9)

Alternatively, we can use Liebfried’s model [Kumar and Kumble 1969; Brailsford 1970; Brailsford
1972; Wolfer 1999] for scattering of phonons by dislocations

B ≈ λp Bp =
λpq

10cs
〈E〉, (10)

where λp is a correction factor, q is the cross-section of the dislocation core per unit length and 〈E〉 is
the average internal energy density. From Debye theory, we have

〈E〉 =
3kbTρ

M
D3

(
θD

T

)
, θD =

hc̄

kb

(
3ρ

4πM

)1/3

, (11)

where the Debye function D3 is defined as

D3(x) :=
3
x3

∫ x

0

z3

exp(z)− 1
dz. (12)
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Note that the component of the flow stress due to viscous drag is both temperature and pressure dependent.
A closed form expression can be obtained for the Debye integral in terms of polylogarithms (see for
example [Truesdell 1945]). However, there is a singularity at z = 0 and analytic continuation methods
are needed to evaluate the polylogarithms for values of z > 0. Alternatively, expansions in terms of
Chebyshev polynomials [Ng et al. 1969; MacLeod 1996] may be used. For computational purposes, a
look-up table of values (for example [Stegun 1972]) is the most efficient.

The second variable that is needed to compute τv is the density of mobile dislocations (ρm). The
density of mobile dislocations depends on the prior strain history of a material and also on the strain, the
temperature, and the strain rate. A simple model for the evolution of mobile dislocations as a function
of plastic strain can be written as [Estrin and Kubin 1986; Barlat et al. 2002]

dρm

dεp
=

M1

b2

(
ρ f

ρm

)
− I2(ε̇, T )ρm −

I3

b
√
ρ f ,

dρ f

dεp
= I2(ε̇, T )ρm +

I3

b
√
ρ f − A4(ε̇, T )ρ f ,

(13)

where ρ f is the density of forest dislocations, b is the magnitude of the Burgers’ vector, M1 is a rate
of mobilization of dislocations, I2 is a rate of immobilization of mobile dislocations due to interactions
between mobile dislocations, I3 is another immobilization rate due to interactions with forest dislocations,
and A4 is the rate of annihilation of forest dislocations due to climb, cross-slip, or diffusion.

To solve the system of differential equations, Equation (13), we need initial values of ρm and ρ f . We
may also assume that the density of forest dislocations saturates at a value of ρ f s , that is, dρ f /dεp = 0
at ρ f = ρ f s . Since the density of forest dislocations is easier to measure than the rate of annihilation A4,
we use ρ f s to obtain the following expression for A4:

A4(ε̇, T )= I2(ε̇, T )
ρm

ρ f s
+

I3

b

1
√
ρ f s

. (14)

The rate I2 and the saturation value ρ f s are, in general, temperature and strain-rate dependent. We assume
that the strain rate dependence of these quantities is negligible for aluminum alloys and only consider
temperature dependence. Based on the experimental observation that the temperature dependence of the
flow stress of aluminum alloys follows a sigmoidal curve [Rosenberg et al. 1986], we assume that I2 and
ρ f s have the following temperature dependence:

I2(T )= I20

(
αI

1 + exp[−βI (1 − 2T̂ )]

)
, ρ f s(T )= ρ f s0

(
1 −

α f

1 + exp[β f (1 − 2T̂ )]

)
, (15)

where I20 is the value of I2 at 0 K, ρ f s0 is the value of ρ f s at 0 K, T̂ = T/Tm where Tm is the melting
temperature, αI , α f are scaling factors, and βI , β f are constants that have values greater than 3.

2.4. Structure evolution component. The evolution of dislocation density could be used to determine
the component of the flow stress that depends on the evolution of the structure of a material (see for
instance [Barlat et al. 2002]). However, Equations (13) form a stiff system of differential equations and
are not ideal for numerical simulations, particularly explicit calculations needed for high rate processes.
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Instead, we use the approach originally suggested by Follansbee and Kocks [1988] and describe the
component of the flow stress due to structure evolution by

τe(σe, ε̇, T )= Seσe, Se :=

1 −

(
kbT

g0eb3µ(p, T )
ln
ε̇0e

ε̇

)1/qe
1/pe

, (16)

where σe is an internal variable (the structure evolution component of the mechanical threshold stress)
that evolves with the deformation, g0e is a normalized activation energy, ε̇0e is a reference strain rate,
and pe, qe are constants.

The evolution of σe is assumed to be governed by the modified Voce rule

dσe

dεp
= θ0

1 −

(
σe

σes

)2
 , (17)

where θ0 is the initial hardening modulus and σes is the saturation value of σe. This equation can be
solved in closed form along a constant temperature and strain-rate path to get

σe(εp)= σes

[
Aσ exp(β)+ 1
Aσ exp(β)− 1

]
Aσ :=

σei + σes

σei − σes
, β :=

2θ0εp

σes
, (18)

where σei is the value of σe at zero plastic strain and can be nonzero depending on the prior strain history
of the material. For the special case where σei is zero, we have

σe(εp)= σes

[
exp(β)− 1
exp(β)+ 1

]
. (19)

The initial hardening modulus is assumed to be given by a relation of the form

θ0 = µ(p, T )

[
a0 + a1 ln

(
ε̇θ

ε̇

)
+ a2T̂ + a3T̂ ln

(
ε̇θ

ε̇

)]
, (20)

where a0, a1, a2, a3 are constants and ε̇θ is a reference strain rate, and T̂ = T/Tm where Tm is the melting
temperature. The value of θ0 is not allowed to be negative.

The saturation value of structure evolution stress is computed using an Arrhenius type relation of the
form

ln

(
σes

σ0es

)
=

(
kbT

g0esb3µ(ρ, T )

)
ln

(
ε̇

ε̇0es

)
, (21)

where σ0es is the saturation threshold stress for deformation at 0 K, g0es is a normalized activation energy,
and ε̇0es is a reference strain rate.

2.5. Overdriven shock regime. At strain-rates between 109 s−1 and 1012 s−1, the plastic wave overruns
the elastic precursor and produces a steeper shock front than is attainable due to adiabatic elastic com-
pression. Such a shock is called overdriven. In order to allow for overdriven shocks in our model, we
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follow the approach used in the Preston–Tonks–Wallace model [Preston et al. 2003]. The flow stress
under overdriven shock conditions (and assuming J2 plasticity) is given by

σys = σys0 + y1

(
ε̇

γ ξ̇

)y2

µ(p, T ), (22)

where σys0 is a lower limit on the flow stress, y1, y2 are material parameters, γ is a scaling factor, and ξ̇
is a reference strain rate. The reference strain rate is defined as

ξ̇ :=
1
2

(
4πρ
3M

)1/3

cs, (23)

where M is the atomic mass and cs is transverse sound speed. We assume that there is no hardening in
the overdriven shock regime.

2.6. Behavior after melting. After the temperature crosses the melting temperature (Tm), we have to
model the material as a liquid. Though, strictly speaking, the behavior of an aluminum alloy melt is
nonNewtonian, we use a Newtonian model of the following form to determine the deviatoric stress in
the material after it has melted:

σy = µv ε̇, (24)

where µv is the shear viscosity of the melt. The shear viscosity of aluminum alloys can be estimated
by first computing the viscosities of the constituent elements using the Andrade equation [da Andrade
1934; 1952] (alternative approaches can be found in [Kirkwood et al. 1949] and [Dinsdale and Quested
2004]). The viscosity of the alloy can then be calculated using the Moelwyn–Hughes model for binary
alloys [Moelwyn-Hughes 1961; Dinsdale and Quested 2004]. However, since we are not interested in the
details of the motion of the melt, we simplify our model by using a constant value of µv = 2.0×10−4Pa ·s
in our calculations.

2.7. The extended flow stress model. The final expression for the flow stress is

σy =

min

{[
τv + (τa + τi + τe)

µ

µ0

]
, σys

}
, for T < Tm,

µv ε̇, for T ≥ Tm .

(25)

2.8. Shear modulus, melting temperature, EOS, specific heat. To complete the model, we need an
expression for the shear modulus as a function of temperature and pressure. We have used a modified
form of the Nadal–LePoac model [Nadal and Le Poac 2003] in which the pressure dependence of the
shear modulus is determined by the generalized Guinan–Steinberg formula [Burakovsky and Preston
2005; Guinan and Steinberg 1975]:

µ(p, T )=
1

J(T̂ , ζ )

[{
µ0 + p

∂µ

∂p

(
a1

η1/3 +
a2

η2/3 +
a3

η

)}
(1 − T̂ )+

ρ

C M
kbT

]
, (26)

η :=
ρ

ρ0
, C :=

(6π2)2/3

3
f 2,
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where J is a scaling factor that allows for a smooth transition of the shear modulus to melt, T̂ := T/Tm ,
Tm is the melting temperature, ζ is a material parameter, µ0 is the shear modulus at 0 K and ambient
pressure, ∂µ/∂p is the slope of the shear modulus versus pressure curve at 0 K, a1, a2, a3 are material
constants, ρ0 is the mass density in the initial state, M is the atomic mass, f is the Lindemann constant,
and

J(T̂ , ζ ) := 1 + exp

[
−

1 + 1/ζ

1 + ζ/(1 − T̂ )

]
for T̂ ∈ [0, 1 + ζ ]. (27)

For situations where ρ/ρ0 < 0.95 (high hydrostatic tension), we set the shear modulus to the value
obtained for ρ/ρ0 = 0.95.

We use the Burakovsky–Greeff–Preston (BGP) model [Burakovsky et al. 2003] to determine the
melting temperature. This model improves upon the widely used Steinberg–Cochran–Guinan model
[Steinberg et al. 1980] which is also based on the Lindemann criterion. In the BGP model, the Grüneisen
gamma is modeled as

0(ρ)=
1
2

+
01

ρ1/3 +
02

ρq , (28)

where 01, 02, q are material constants and q > 1. This form of 0(ρ) leads to the following expression
for the melting temperature as a function of density:

Tm(ρ)= Tm0η
1/3 exp

{
601

(
1

ρ
1/3
0

−
1
ρ1/3

)
+

202

q

(
1

ρ
q
0

−
1
ρq

)}
, η :=

ρ

ρ0
, (29)

where Tm0 is the melt temperature when ρ = ρ0 .
The pressure is calculated using the Holzapfel equation of state [Holzapfel 1991a; 1991b; Burakovsky

and Preston 2005] which has the form

p(ρ)= 3B0
[
η5/3

− η4/3] exp
{

1.5(B
′

0 − 3)
[
1 − η−1/3]} , η :=

ρ

ρ0
, (30)

where B0 is the bulk modulus at p = 0 and B
′

0 is the slope of the pressure-density curve at p = 0.
We use an empirical temperature-dependent specific heat model and ignore the difference between

the values of specific heat at constant pressure and at constant volume. The specific heat model is of the
form [Bhawalkar 2006]

Cv =

{
A1 + B1T + C1T 2, for T < 273 K ,

A2 + B2T, for T ≥ 273 K ,
(31)

where A1, A2, B1, B2,C1 are constants.

3. Evolution of temperature due to plastic dissipation

To determine the increase in temperature due to plastic dissipation, we first assume that the deformation
gradient (F) can be split multiplicatively into elastic and plastic parts (F = Fe · F p). We also assume
that there is no volume change during the plastic part of the deformation.
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The elastic strain measure (Ee) (with respect to the intermediate configuration) and the plastic strain
rate (d p) are defined as (see [Wright 2002] for details)

Ee :=
1
2 [FT

e · Fe − 1], (32)

d p :=
1
2 [Fe · Ḟ p · F−1

p · F−1
e + F−T

e · F−T
p · ḞT

p · FT
e ]. (33)

The stress measure in the intermediate configuration (that is, work conjugate to Ee) is given by the
pull-back of the Cauchy stress by the elastic part of the deformation gradient:

S̃ =
ρ0

ρ
F−1

e · σ · F−T
e . (34)

Then the balance of energy can be expressed as

ρT η̇ = − ∇ · q + ρr + σ : d p −
ρ

ρ0

N∑
n=1

Qnq̇n, (35)

where η is the entropy density, ∇ · (•) denotes the divergence (with respect to the current configuration),
r is a internal heat source term, σ is the Cauchy stress, and qn is a set of internal variables. The quantities
Qn are work conjugate to the internal variables qn and are defined as

Qn := − ρ0
∂g

∂qn
, for n = 1 . . . N , (36)

where g(̃S, T, qn) is the specific Gibbs free energy (per unit mass) and ρ0 is the density in the intermediate
configuration (here assumed to be the same as that in the reference configuration).

The internal variable in the MTS model is σe, that is

q1 = σe, Q1 = − ρ0
∂g

∂σe
. (37)

Under adiabatic conditions which occur for high strain-rate deformations, the heat flux and internal
heat sources can be neglected. In that case, the energy equation takes the form

ρT η̇ = σ : d p + ρ
∂g

∂σe
σ̇e. (38)

Assuming that the entropy can be derived from the specific Gibbs free energy, it can be shown, after
some algebra, that [Wright 2002]

η̇ =
∂η

∂ S̃
:
˙̃S +

∂η

∂T
Ṫ +

∂η

∂σe
σ̇e =

1
ρ0

∂Ee

∂T
:
˙̃S +

Cv
T

Ṫ −
1
ρ0

∂ S̃
∂T

: Ėe +
∂

∂T

(
∂g

∂σe

)
σ̇e. (39)

Substitution into the energy equation yields

ρCv Ṫ = σ : d p + ρ

[
∂g

∂σe
− T

∂

∂T

(
∂g

∂σe

)]
σ̇e. (40)



400 BISWAJIT BANERJEE AND ANUP SATISH BHAWALKAR

It is conventional to use a factor χ (called the Taylor–Quinney coefficient) to relate the rate of change of
temperature to the plastic work Pp := σ : d p using the relation

Ṫ =
χσ : d p

ρCv
. (41)

Therefore, from Equation (40), we observe that

χ = 1 −

[
T
∂

∂T

(
∂g

∂σe

)
−
∂g

∂σe

](
ρσ̇e

σ : d p

)
. (42)

Clearly χ evolves with σe and T , and cannot be assumed to be around 0.9 as is usually the case. How-
ever, the functional form of the Gibbs free energy function is not obvious and we have to make certain
assumptions to obtain a function that matches experimental observations (see for instance [Hodowany
et al. 2000]).

If we make the assumption that σ : d p ≈ σy ε̇p, the expression in Equation (42) reduces to

χ = 1 −

[
T
∂

∂T

(
∂g

∂σe

)
−
∂g

∂σe

](
ρ

σy

)
dσe

dεp
.

Replacing the derivative of σe with Equation (17), we get

χ = 1 −

[
T
∂

∂T

(
∂g

∂σe

)
−
∂g

∂σe

](
ρθ0

σy

)1 −

(
σe

σes

)2
 . (43)

To model the specific Gibbs free energy g(̃S, T, σe), we follow the approach of Schreyer and Maudlin
[2005] in postulating the following form for the expression involving the derivatives of g (which can be
interpreted as a measure of the stored energy of cold work):

T
∂

∂T

(
∂g

∂σe

)
−
∂g

∂σe
= F1(T )F2(σe), (44)

where

F1(T )=
Aχ

1 + exp
[
−Bχ (1 − 2T̂ )

], F2(σe)=
1
ρ0

(
βχ +

σe

σes

)1/2

, (45)

where Aχ>1, Bχ>1 are constants, T̂ =T/Tm , where Tm is the melting temperature, and 0<βχ<1 is a
factor that determines the value of χ at zero plastic strain. We can now calculate the rise in temperature
due to plastic dissipation and use that to determine the amount of thermal softening due to plastic defor-
mation. Note that a closed form expression for g that can be evaluated analytically cannot be derived
from Equation (44) and further investigation into possible forms of g is needed.

4. Parameter estimation for 6061-T6 aluminum

Before the parameters of the extended MTS model for 6061-T6 aluminum can be estimated, we need
the parameters of the shear modulus model. We also need the parameters of the associated melting



EXTENDED MECHANICAL THRESHOLD STRESS MODEL FOR 6061-T6 AL 401

temperature model, the equation of state model, and the specific heat model. A detailed exploration of
various models, their parameters, and comparisons with experimental data can be found in [Bhawalkar
2006]. The parameters of the models described by Equations (26), (27), (29), (30), and (31) are given in
Appendix A, where we also show comparisons with experimental data of the predicted shear modulus,
melting temperature, and specific heat.

4.1. Athermal component. In the ASM Handbook on nonferrous alloys [ASM 2002] we find that, for
quasistatic tensile loading, at 644 K the yield strength of 6061-T6 aluminum is 12 MPa. The ratio µ/µ0

for this temperature is 0.65. Hence, the maximum possible value of τa at 644 K is 18 MPa. Since this
component is athermal, that value must be an upper bound on τa . It is possible that the upper bound on τa

is even lower since the melting temperature of aluminum at ambient pressure is around 933 K. Therefore,
it is reasonable to assume that τa ≈ 10 MPa for 6061-T6 aluminum.

4.2. Intrinsic component. To compute the intrinsic component of the flow stress (τi ), we have to deter-
mine the parameters σ0i and g0i for a particular choice of ε̇0i , pi , and qi (see Equation (4)). From (25)
we see that in the low to moderate strain rate regime, the flow stress at zero plastic strain can be written
as

σy = τv + (τa + τi )
µ

µ0
. (46)

To determine τi , we need the viscous drag component τv and the experimentally determined initial yield
stress σy . Recent studies [Ogawa 2001; Sakino 2006] show that for strain rates less than 104 s−1, the vis-
cous drag component τv for 6061-T6 aluminum is small compared to the thermally activated component
τi . Because the experimental stress-strain data to which have access are for strain rates ranging from
10−5 s−1 to 8.0×103 s−1, we neglect τv during the process of computation of σi and g0i .

Then, from Equations (4) and (46), we have(
σy

µ
−
τa

µ0

)pi

=

(
σi

µ0

)pi

−

(
σi

µ0

)pi
(

1
g0i

)2/qi
(

kbT

b3µ
ln
ε̇0i

ε̇

)2/qi

,

which is of the form y = A − Bx2. A Fisher plot of the experimental data and the model fit is shown in
Figure 1. Details of the procedure used to obtain the experimental data and the sources of the data can be
found in [Bhawalkar 2006]. The best fit to the experimental data is obtained for pi = 0.75, qi = 1.0, and
ε̇0i = 5.0×108 s−1. The Boltzmann constant was taken to be kb = 1.38×10−23 J/K and the magnitude of
the Burgers’ vector was assumed to be b = 2.86×10−10 m [Wang et al. 1998].

The fit shown in the figure has an R2 value of 0.6, an F-statistic of 60.7 and Student’s t-values of 6.0
and 35.3 for the two coefficients. There are 81 data points. Using a t-value of 1.663 (corresponding to
the 95% interval), we get the following range of values for σi and g0i :

σi (low) = 343.7 MPa, σi (fit) = 366.6 MPa, σi (high) = 389.8 MPa,

g0i (low) = 0.51, g0i (fit) = 0.59, g0i (high) = 0.71.

4.3. Viscous drag component. The viscous drag component of the flow stress is given by Equation (5).
Two quantities have to be determined before τv can be computed: the drag coefficient B and the mobile
dislocation density ρm .
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Figure 1. Fisher plot used to determine σi and g0i for 6061-T6 aluminum alloy. The
solid line shows the model fit to the data. The dotted lines show the range of the model
for a confidence level of 95. The symbols represent experimental data. The sources of
the experimental data are ◦ [Hoge 1966]; � [Green and Babcock 1966; Eleiche 1972];
O [Davidson 1973]; ? [Rosenberg et al. 1986]; 4 [Yadav et al. 1995]; � [Brown et al.
1996]; × [Lee et al. 2000]; ∗ [Ogawa 2001]; G [Cady and Gray III 2001; Fish et al.
2005]; + [Lesuer et al. 2001; Jia and Ramesh 2004].

The drag coefficient can be estimated using either (6) or (10). Figure 2 shows the phonon drag
coefficients predicted by the two models. The constants used for the models are:

kb = 1.38 × 10−23 J/K, b = 2.86 × 10−10 m,

M = 26.98 amu, ρ0 = 2700 kg/m3,

h = 6.62 × 10−34 kg · m2/s, q = 3b.

Values of the Debye function (D3) were calculated using an algorithm given in [MacLeod 1996]. As
the pressure increases there is a decrease in Bp. However, the change is small and does not significantly
affect the value of τv. At temperatures below 50 K, electron drag effects become dominant. Note that is
this not reflected by the model in Equation (10). However, since that model predicts a lower value of Bp

at high temperatures, we have used (10) in subsequent calculations.
The evolution of dislocation density is harder to quantify. We have chosen parameters for Equation

(13) in such a way that, at high strain rates, the viscous drag component of the flow stress approximates
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Figure 2. Phonon drag coefficient (Bp) as a function of temperature. The upper curve
shows the prediction of the model in Equation (6) and the lower curve shows the values
predicted by the model in (10).

experimentally determined yield stress at room temperature. The parameters used for the model are:

b = 2.86 m−2, M1 = 4.14 × 10−7, I20 = 5.53 × 103,

I3 = 3.81 × 10−2, αI = 1.0, βI = 8.0,
ρ f s0 = 1.0 × 1014 m−2, α f = 0.4, β f = 4.0.

Using initial values of ρm = 1.0×109 m−2 and ρ f = 1.0×1010 m−2, we get the evolution of the dislocation
densities shown in Figure 3. A constant density of 2700 kg-m−3 has been used in the computation.

The saturation value of ρm is approximately 2×1011 m−2 at room temperature, which is three orders
of magnitude lower than that suggested by Estrin and Kubin [1986]. However, higher values of ρm lead
to unreasonably low values of the viscous drag component of the flow stress. Also, similar low values
of ρm are suggested by Kumar and Kumble [1969]. Note that the value of ρ f is close to the accepted
value of total dislocation density in aluminum and its alloys, on the order of 1.0×1014 m−2. It can
also be observed that the density of forest dislocations decreases with temperature while that of mobile
dislocations increases with temperature. Also, our model indicates that the rate of annihilation of forest
dislocations is greater than the rate of generation of mobile dislocations as the temperature increases (see
Figure 3).

The viscous drag component (τv) of the flow stress can now be computed using (5). Figure 4 shows
the variation of τv with strain rate and temperature (for a plastic strain of 0.2). We have used a value
of λp = 1 in the calculations. From the figure it is clear that the viscous drag becomes significant only
beyond strain rates of 105 s−1. Also, drag effects appear to be negligible at low temperatures.
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4.4. Structure evolution component. To determine the structure evolution component (τe) of the flow
stress we need to compute the evolution of the internal variable σe using equation Equation (19). This
equation requires two variables: the saturation value σes of σe and the initial hardening rate θ0.

To compute σes using (21), we need the parameters σ0es , g0es , and ε̇0es . Given a set of true stress
versus true plastic strain curves, the first step in the process of determination of these parameters is to
compute the temperature at each point on the curve (for experimental data that are not given in isothermal
form). The temperature is computed using (41) with the value of χ being obtained using:

χ = min{[0.019 − 0.089 ln(εp)+ 9.23ε2
p], 0.9}, (47)

where εp is the true plastic strain. Equation (47) is a least squares fit to the experimental data for 2024-
T351 aluminum given in [Ravichandran et al. 2001]. The experimental σe versus true plastic strain curves
are then computed using the relation

σe =
1
Se

(
σy
µ0

µ
− τa − τi

)
.

Note that the quantity τi for each curve is the value used to compute the Fisher plot in Figure 1, unlike
the procedure used elsewhere [Goto et al. 2000; Banerjee 2007]. The parameters used to compute Se

(see (16)) are:

kb = 1.38 × 10−23 J · K−1, b = 2.86 × 10−10 m−2, ε̇0e = 109 s−1,

g0e = 3.0, pe = 0.75, qe = 1.0.

The density is assumed to have a constant value of 2700 kg·m−3 during deformation. Plots of σe versus
εp for all the stress-strain curves used in this work can be found in [Bhawalkar 2006].

After the σe versus εp curves have been computed, a quadratic polynomial is fit to each curve. The
saturation value of σe and the temperature at saturation are computed by determining the strain at which
the slope of the quadratic curve becomes zero. A Fisher plot can now be drawn to determine the values
of σ0es and g0es by writing Equation (21) in the form

ln(σes)= ln (σ0es)−
kbT

g0esb3µ
ln

(
ε̇0es

ε̇

)
.

To compute the Fisher plot we assume that ε̇0es = 108 s−1 and get the fit shown in Figure 5. The statistics
of the fit are: R2 = 0.41, F-statistic = 36.2, t-statistics = 6.0 and 157. There are 52 sample points.
Therefore, though the fit is poor, it is statistically significant. The range of values of σ0es and g0es from
the fit that are within the 95% confidence interval (corresponding to a t value of 1.675) are:

σ0es (low) = 122.3 MPa, σ0es (fit) = 149.5 MPa, σ0es (high) = 182.7 MPa,

g0es (low) = 0.235, g0es (fit) = 0.30, g0es (high) = 0.416.

To compute the initial hardening rate (θ0), we first compute the slopes (θ) of the σe versus εp curves
at each point on the curve. The slope θ is then plotted against 1 − (σe/σes)2 and a straight line with zero
intercept is fitted to the resulting curve. This model gives a better fit to the experimental data that the
more commonly used hyperbolic tangent hardening rule [Follansbee and Kocks 1988; Goto et al. 2000;
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Figure 5. Fisher plot used to determine σ0es and g0es for 6061-T6 aluminum alloy. The
solid line shows the model fit to the data. The dotted lines show the range of the model
for a confidence level of 95%. The symbols represent experimental data. The sources of
the experimental data are ◦ [Hoge 1966]; � [Green and Babcock 1966; Eleiche 1972];
O [Davidson 1973]; ? [Rosenberg et al. 1986]; 4 [Yadav et al. 1995]; � [Brown et al.
1996]; × [Lee et al. 2000]; ∗ [Ogawa 2001]; + [Cady and Gray III 2001]; G [Fish et al.
2005]; F [Lesuer et al. 2001; Jia and Ramesh 2004].

Banerjee 2007]. The slope of the straight line fit gives us the value of θ0 for each curve. A least squares
surface fit of θ0 as a function of strain rate and temperature (assuming that the parameter ε̇θ = 1010 s−1)
gives us the following parameters for Equation (20):

a0 = 0.147, a1 = − 2.4 × 10−3,

a2 = − 0.14, a3 = 3.3 × 10−3.

The spread of the data is quite large and the R2 value for the fit is 0.38. The F-statistic for the fit is 3.2
which implies that the fit may not be statistically significant. However, comparisons with experimental
data show that the predicted flow stresses are reasonable when we use the above parameters. For the
details of an alternative approach for modeling the hardening of 6061-T6 aluminum in the context of the
MTS model see [Bhawalkar 2006].

4.5. Overdriven shock regime. In the overdriven shock regime, we assume that the flow stress is given
by Equation (22) and that the material does not harden. The parameters of the model are determined
by fitting a curve to experimental data on 1100 aluminum and 2024 aluminum from [Tonks 1993]. We
assume that 6061-T6 aluminum also shows a similar behavior. The fit to the data is shown in Figure 6.
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Figure 6. Comparison of the yield stress predicted by the overdriven shock model, Equa-
tion (22), with experimental data. The solid line shows the predicted values. The circles
show experimental data for 1100 aluminum alloy while the squares show experimental
data for 2024 aluminum alloy.

The following parameters have been used in the calculation:

ρ0 = 2700 kg · m−3, ρ = 2710 kg · m−3, T = 298 K,
σys0 = 700 MPa, M = 26.98 amu, γ = 0.0001.

The parameters determined from the fit are: y1 = 3.54 × 10−3 and y2 = 0.5.

4.6. Taylor–Quinney coefficient. The Taylor–Quinney coefficient (χ ) can be computed using Equation
(43). To evaluate this equation we need the parameters Aχ , Bχ , and βχ in (45). We have determined these
parameters by comparing the predictions of our model with experimental data for 2024-T3 aluminum
from [Hodowany et al. 2000]. Figures 7 (left) and 7 (right) show the predicted values of χ for initial
temperatures of 300 K and 500 K, respectively. The parameters used for the plots are: Aχ = 0.2, Bχ = 12,
and βχ = 0.3. A constant mass density of 2700 kg m−3 was used for the calculations. Note that these
parameters will change if θ0 or σes are changed.

From Figure 7 (left) we observe that, at a temperature of 300 K, the values of χ are nearly the same for
strain rates between 0.001 s−1 to 3000 s−1. This is similar to the experimental observations in [Hodowany
et al. 2000]. However, the value of χ increases as the flow stress increases with increasing strain rate due
to viscous drag effects. This effect is similar to that observed in rate-dependent α-titanium in [Hodowany
et al. 2000]. Hence, our model behaves is a reasonable manner at room temperature. On the other hand,
the experimental data for 2024-T3 aluminum indicates that low values of χ (less than 0.5) are obtained
up to a plastic strain of around 0.3 while our model predicts such values only up to a plastic strain of
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Figure 7. Variation of the Taylor–Quinney coefficient (χ) with plastic strain and strain
rate: T= 300 K (left),T = 500 K (right). The circles show experimental data for 2024-T3
aluminum alloy from [Hodowany et al. 2000] for a strain rate of 3000 s−1 and at 300 K.
The solid lines represent predicted values for a strain rate of 0.001 s−1. The dashed lines
represent predicted values for a strain rate of 3000 s−1 and the dash-dot lines represent
predictions for a strain rate of 30,000 s−1.

0.05. The width of this zone depends on the initial hardening modulus (θ0) and on the saturation stress
(σes). The discrepancy between our model for 6061-T6 aluminum and the experimental data for 2024-T3
aluminum indicates that θ0 for 2024-T3 aluminum might be lower than that for 6064-T6 aluminum. It
is also possible that the saturation stress computed by our model is lower than should be expected.

At 500 K (see Figure 7 (right)), the value of χ is considerably higher than at 300 K. We do not have
any experimental data to verify that this behavior is reasonable. Experiments at high temperatures are
needed to arrive at the correct form of the function F1(T ) in Equation (44). As designed, our the model
predicts values of χ close to 1.0 at high temperatures. However, experiments are needed to verify that
this is indeed the case for metals and that the stored energy approaches zero at high temperatures.

5. Comparisons of model with experimental data

The verification of the extended MTS flow stress model presented in this paper can be pursued in a
number of ways. The strain rate dependence of the model can be verified by computing the flow stress
as a function of strain rate (at a constant temperature and plastic strain) and comparing the predicted
values with experimental data. A similar comparison of the flow stress as a function of temperature
(with the strain rate kept constant) can be used to verify the temperature dependence of the model.
Direct comparisons with uniaxial stress-strain curves can also be performed for various strain rates and
temperatures.
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Numerical simulation is necessary for a more comprehensive validation of the model. Examples
of such numerical validation tests have been provided in [Bhawalkar 2006]. Details of the numerical
algorithm and various validation tests will be discussed in a forthcoming publication.

5.1. Flow stress as a function of strain rate. Figure 8 shows a comparison of the flow stress predicted
by the extended MTS model with experimental data (as a function of strain rate). In the computations
performed, the evolution equations for dislocation density were not solved because of the excessive
computational cost involved. Rather, a constant value of ρm = 2.0×1011 m−2 and a scaling factor of λp

= 1.0 were used to compute the component of the flow stress due to viscous drag (τv). Adiabatic heating
is assumed for strain rates greater than 100 s−1.

Experimental data from [Yadav et al. 1995; Jia and Ramesh 2004; Sakino 2006] for 6061-T6 aluminum
alloy suggest that viscous drag effects are small for strain rates up to 3×104 s−1. This is in contrast with
data given in [Lesuer et al. 2001] which suggests that drag effects become important at strain rates of
104 s−1 or less. Sakino [2006] has shown quite convincingly that drag effects become important at lower
strain rates only in the annealed alloy 6061-O aluminum but not in the hardened 6061-T6 aluminum
alloy. Our model slightly overestimates the flow stress for strain rates less than 105 s−1 but matches quite
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Figure 8. The flow stress of 6061-T6 aluminum alloy as a function of strain rate (at
298 K and a plastic strain of 0.2). The solid line shows the prediction of the extended
MTS model. The dashed lines show the range of predicted flow stresses in the 95 %
confidence interval. The symbols represent experimental data. The sources of the exper-
imental data are ◦ [Hoge 1966]; � [Green and Babcock 1966; Eleiche 1972]; O [Tonks
1993]; 4 [Yadav et al. 1995]; × [Lee et al. 2000]; G [Cady and Gray III 2001]; + [Lesuer
et al. 2001; Jia and Ramesh 2004]; � [Sakino 2006].
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well with the available data for higher strain rates. The 95% confidence interval shown in the figure is
based on the low and high values of σi , g0i , σ0es , and g0es discussed earlier.

From Figure 8 we can also observe a change in slope of the flow stress-strain rate curve at a strain
rate of around 106 s−1. Experimental data are not available for the strain rate regime between 106 s−1

and 1010 s−1. The curves for the overdriven shock regime and the moderate strain rate regime can be
matched only if there is a change in slope as shown in the figure. A better model for the intermediate
strain rate regime can only be determined after experiments (or possibly numerical simulations) have
been performed for this regime. In the model that we have presented in this paper, we assume that
the viscous drag component of the flow stress saturates when σy reaches a value of 700 MPa and any
additional increase in the flow stress is due to shock effects as discussed in [Wallace 1981a; 1981b].

5.2. Flow stress as a function of temperature. Figure 9 shows comparisons between experimental data
and the flow stress predicted by our model as a function of temperature. At low strain rates (see Figure
9, left), the decrease in flow stress with temperature is predicted quite accurately by the model. Near the
melting temperature, the contributions of τi and τe are close to zero and the flow stress is determined by
the athermal component τa . Beyond the melting temperature, the stress is computed by the Newtonian
fluid model in Equation (24) and the stress is quite small at low strain rates. Adiabatic heat is assumed
for the high strain rate calculations.
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Figure 9. The flow stress of 6061-T6 aluminum alloy as a function of temperature. Left:
strain rate = 0.001 s−1 and plastic strain = 0.02. Right: strain rate = 1000 s−1 and plastic
strain = 0.1. The solid lines show the prediction of the extended MTS model. The
dashed lines show the range of values predicted if we use the low or high values of
the parameters σi , g0i , σ0es , and g0es . The symbols represent experimental data. The
sources of the experimental data are: ◦ [Hoge 1966]; � [Green and Babcock 1966;
Eleiche 1972]; � [Dike et al. 1997]; ? [Rosenberg et al. 1986]; 4 [Ogawa 2001].
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At a strain rate of 1000 s−1, our model predicts the flow stress quite well up to T/Tm = 0.6 (see
Figure 9, right). At higher temperatures, the flow stress is overestimated. The prediction of our model
is reasonable if we consider the full set of data used to arrive at the parameters. It is expected that
the predicted temperature dependence of our model can be improved at more experimental data at high
temperatures and high strain rates become available.

5.3. Flow stress as a function of pressure. Figure 10 shows the predicted pressure dependence of the
flow stress of 6061-T6 aluminum at a strain rate of 0.001 s−1. The increase in flow stress with increasing
pressure is underestimated by our model. Since the pressure dependence of the flow stress at low strain
rates is determined by the pressure dependence of the shear modulus, the figure shows that the pressure
dependence of the shear modulus is not enough to account for the pressure dependence of the flow stress.
We also observe that

∂σy

∂p
≈ 2

∂µ

∂p
.

This suggests that the pressure dependence of the flow stress in the Steinberg–Cochran–Guinan model
[Steinberg et al. 1980] (which is used widely for high strain rate calculations and assumes that ∂σy/∂p ≈

∂µ/∂p) is not correct. We have also observed a similar behavior for OFHC copper [Banerjee 2005a].
An explicit pressure dependence of the initial hardening modulus and the saturation stress is needed to
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Figure 10. The flow stress of 6061-T6 aluminum alloy as a function of pressure for a
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model the plastic behavior of metals under hydrostatic pressure. Such a dependence has to be based on
physical considerations and needs further research.

5.4. Uniaxial stress-strain curves. The predicted variation of the flow stress with plastic strain at a strain
rate of 0.001 s−1 is shown in Figure 11. The calculations were performed using a constant mass density
of 2700 kg·m3, and a constant mobile dislocation density of 2×1011 m−2. Isothermal conditions were
assumed.

Figure 11 (left) shows the predicted flow stress at ambient pressure. The flow stress predicted by our
model tends to saturate at a lower value than seen in the experimental data. Also the predicted initial
hardening modulus is lower than that suggested by the experiments at 367 K and 422 K and higher than
experiment at 589 K. However, the initial yield stress predicted by our model is remarkably close to
that seen in experiments considering the experimental variability that is observed (for further data on
experimental variability at a given temperature and strain rate see [Bhawalkar 2006]). The experimental
stress-strain curves show strain softening. A damage model that includes void nucleation and growth can
be used to predict that portion of the stress-strain curve. For the sake of simplicity, we do not discuss
damage models and their implications in this paper.

Figure 11 (right) shows the predicted flow stress at a pressure of 276 MPa. We notice that the initial
yield stress is predicted quite accurately by our model at this pressure for all the temperatures shown in the
figure. However, the hardening rate and the saturation stress are underestimated. The error decreases with
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Figure 11. The flow stress of 6061-T6 aluminum alloy as a function of true plastic strain
at a strain rate of 0.001 s−1. Left: Ambient pressure; right: pressure = 276 MPa. The
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increasing temperature. Similar plots at higher pressures show that the error increases with increasing
pressure at a particular temperature (see also Figure 10). As mentioned before, an explicit pressure
dependence of the initial hardening rate and the saturation stress is needed to improve our model.

Figure 12 shows the predicted stress-strain curves for strain rates greater than 1000 s−1. The change
in mass density due to large pressures that develop at such strain rates has been neglected in our com-
putations. To keep the computations efficient, we have not used the evolution equations for dislocation
density and have instead used a constant value of ρm = 2×1011 m−2. Adiabatic heating and the resulting
thermal softening has been assumed for all these computations.

From Figure 12 (left) we observe that the flow stress predicted by the extended MTS model matches
well with the experimental data for temperatures of 77 K and 298 K. At 473 K, the predicted flow stress
is higher than experiment and does not capture the strain softening due to accumulating damage in
the material. At 618 K, the predicted flow stress is considerably higher than experiments suggest. As
observed before, our model does not predict enough thermal softening of 6061-T6 aluminum at higher
temperatures– particularly at high strain rates. It is important to note here that 6061-T6 aluminum is a
precipitation hardened alloy containing magnesium and silicon as alloying elements. At about 550 K,
the solute molecules start to diffuse toward the grain boundaries and the alloy softens considerably.
Though the extended MTS model is an improvement over the original MTS model (see [Bhawalkar
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Figure 12. The flow stress of 6061-T6 aluminum alloy as a function of plastic strain
at moderately high strain rates. Left: strain rate = 1000–2000 s−1. Right: temperature
= 298 K. The solid lines show the prediction of the extended MTS model. The dashed
lines represent the experimental data. The sources of the experimental data are: strain
rate = 1000 s−1 from [Rosenberg et al. 1986], strain rate = 1500 s−1 from [Ogawa 2001],
strain rates = 2000 s−1 and 4000 s−1 from [Lee et al. 2000], strain rate = 29000 s−1 from
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2006] for similar results with the original MTS model), the amount of thermal softening continues to be
overestimated by the extended model.

Figure 12 (right) shows that the experimental data does not show any significant strain rate dependence
at room temperature (at least up to a strain rate of 29,000 s−1). Our model predicts a small increase in
flow stress with strain rate and some thermal softening at strains greater than 0.2. However, the overall
match with experiment is quite good. Also the initial rate of hardening appears to be lower than that
predicted. However, stress-strain data from split Hopkinson pressure bar experiments are suspect for
strains less than 0.1 and conclusions cannot be drawn about the accuracy of our hardening model from
this figure.

6. Model predictions

In this section we discuss the predictions of our flow stress model for a large range of conditions. The
mass density is assumed to be constant (2700 kg·m−3) in our calculations. Since the phonon drag coef-
ficient increases with temperature, assuming a constant mobile dislocation density for all temperatures
gives unrealistic flow stresses at strain rates greater than 104 s−1. On the other hand, using the evolution
equations to determine ρm is not computationally efficient. Hence we have used the following equation
to determine ρm for our calculations in this section:

ρm ≈ ρm0(1 + T̂ )m,

where ρm0 is the dislocation density at 0 K, T̂ = T/Tm where Tm is the melting temperature, and m is a
constant. The values of these parameters that we have used are: ρm0 = 1.3494×1011 m−2 and m = 1.4114.
Using these parameters gives us a value of ρm = 2×1011 m−2 at 300 K and ρm = 3.5×1011 m−2 at 900 K.
The value of ρm is not allowed to vary with plastic strain.

Figure 13 (left) shows the flow stress predicted by our model as a function of strain rate at a plastic
strain of 0.2 and for a range of temperatures. From the figure we observe that at low strain rates, the
flow stress is strongly dependent on temperature. As the strain rate reaches around 105 s−1, the model
predicts that the temperature dependence of the flow stress decreases until the temperature has hardly
any effect.

Figure 13 (right) shows the flow stress as a function of strain rate at a temperature of 400 K and
for various levels of strain. In this case we observe that the flow stress saturates rather rapidly (at a
plastic strain of around 0.2). This indicates that the material exhibits little strain hardening. However,
simulations of Taylor impact tests (see [Bhawalkar 2006]) indicate that we underestimate the amount
of hardening in our model. A value of the initial hardening modulus (θ0) that is around 0.3 of the
value that we have used gives a more realistic amount of hardening. However, such a value leads to an
underestimation of the flow stress at low strain rates. A better hardening model than the one used is
clearly needed if we are to predict the saturation strain more accurately.

Figure 14 (left) shows the flow stress predicted by our model as a function of temperature at a plastic
strain of 0.2 and for a range of strain rates. At low strain rates the flow stress decreases rapidly with
temperature until it reaches the athermal value. For a strain rate of 103 s−1 and higher the initial decrease
of the flow stress with temperature is small. However, as the temperature reaches the melting temperature,
the flow stress drops abruptly to a small value (determined by the constitutive relation for a Newtonian
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fluid). In the absence of experimental data, it is not obvious whether this behavior of our model accurately
represents reality.

Figure 14 (right) shows the flow stress as a function of temperature at a strain rate of 8000 s−1 and for
various levels of strain. Once again, we see that the flow stress saturates at a plastic strain of about 0.2.
At low temperatures, the material hardens significantly before saturation. However, as the temperature
increases, the amount of hardening decreases until at around 850 K there is essentially no hardening.
This is reasonable behavior considering the fact that thermally activated dislocation motion is dominant
at a strain rate of 8000 s−1, and enough thermal energy is available at high temperatures to allow slip to
occur more readily. The convex nature of the curves shown in the figure also indicate that we are able to
capture some of the effects of high temperature solute diffusion in our model.

In Figure 15 (left) we have plotted the predicted flow stress as a function of plastic strain. The strain
rate is 8000 s−1 and the initial temperatures range from 50 K to 900 K. Adiabatic heating is assumed,
and the temperature increases with increasing strain. All the curves show a small amount of thermal
softening. We also observe that the initial rate of hardening decreases with temperature. Saturation is
reached at higher strains as the temperature increases. If we compare the flow stress at 300 K with those
shown in Figure 12 (right), we observe that there is hardly any strain rate dependence at these strain rates.
We also observe that the flow stress at 900 K is around 70 MPa which is high considering the fact that
the material is close to its melting point.

Figure 15 (right) shows stress-strain plots at various strain rates. The initial temperature of the material
is 400 K in these plots. Isothermal conditions were assumed for strain rates lower than 1000 s−1 and
adiabatic conditions otherwise. Interestingly, the only curve that shows an appreciable amount of thermal
softening is the curve at 1000 s−1. At a strain rate of 105 s−1, the increase in the drag coefficient with
temperature offsets the amount of thermal softening that occurs. The temperature dependence of the flow
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stress at a strain rate of 107 s−1 is negligible and hence there is no appreciable thermal softening with
increasing strain. The amount of strain that can be achieved at high strain rates is not clear and failure
will probably occur before a plastic strain of 0.6 is achieved.

7. Concluding remarks

One of the main shortcomings of the original mechanical threshold stress model was that it was not
accurate at strain rates greater than about 104 s−1. In this paper we have presented an extended mechanical
threshold stress model that is valid for strain rates at which viscous drag effects become dominant. The
model has also been extended to the overdriven shock regime. The original model of Follansbee and
Kocks was also designed for use in the temperature regime where solute diffusion and other thermally
activated diffusion effects could be neglected (typically less than 0.6 of the melting temperature). In
the extended model, we allow for higher temperatures by using a modified form of the equation for the
intrinsic component of the flow stress. The strain rate dependence of the flow stress is predicted quite
accurately by our model. However, the predicted temperature dependence is less accurate and could
be improved. Since the density of obstacles inside a crystal decreases with increasing temperature, the
activation energy should be a function of the temperature. It is possible that a temperature-dependent
model for the activation energy will improve predictions of the flow stress of 6061-T6 aluminum at
high temperatures. More high temperature–high strain rate data of the type provided by Rosenberg et al.
[1986] are essential before such a model can be developed.

We have provided a detailed description of the procedure for calculating the drag stress. Two meth-
ods for computing the viscous drag coefficient have been compared in the paper. We have found that
Liebfried’s theory provides an estimate of the viscous drag coefficient that better matches experiment.
We have also added a temperature dependence to the dislocation evolution equations of Estrin and Kubin
and determined new parameters for these equations that fit experimental data. Estrin and Kubin have
estimated that the mobile dislocation density is around 1014 m−2 at saturation. Our results suggest that a
more accurate estimate of this quantity is 2×1011 m−2.

The evolution equations of the internal variable (mechanical threshold stress) have been simplified and
a nondimensional form for the initial hardening modulus has been proposed. The simplified equations
allow for an exact expression for the internal variable as a function of plastic strain which can be evaluated
efficiently in a computational code. Alternatively, we could have used the equations for the evolution
of the dislocation density with the dislocation density as an internal variable. However, the system of
equations involved is very stiff and computationally expensive to solve for high strain rate problems. The
parameters for 6061-T6 aluminum alloy (needed for the evolution of the internal variable) that we have
determined in this paper lead to an underestimation of the saturation stress and the amount of hardening.
This effect is particularly noticeable for high hydrostatic pressures. Also, the pressure dependence of
the flow stress is not reflected completely by the pressure dependence of the shear modulus (for which a
model is presented in the paper). Explicitly pressure–dependent models for the hardening modulus and
the saturation stress are clearly needed.

In addition, we have developed an equation for the evolution of temperature with plastic strain based
on thermodynamic principles. An expression has been presented for the Taylor–Quinney coefficient as
a function of the mechanical threshold stress internal variable. This expression requires a functional



418 BISWAJIT BANERJEE AND ANUP SATISH BHAWALKAR

0 250 500 750 1000
0

200

400

600

800

1000

1200

1400

 C
p
 (

J/
kg

−
K

) 

 T (K)

Model

Experiment
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are from [Desai 1987]. The solid line shows the prediction of the model in Equation
(31).

representation of the Gibbs free energy density. We have postulated a form of the derivatives of this
function that matches experimental data qualitatively. However, further research is needed to arrive at a
better form of the Gibbs free energy density function.

Important issues that have not been addressed in this paper are cyclic loading and kinematic hard-
ening models, deformation induced anisotropy in both the elastic and plastic behavior, the appropriate
form of the yield condition and the flow rule, and the modeling of void nucleation and growth and the
accompanying elastic and plastic damage. Also, in this paper, we have considered only one dimensional
analytical verification tests. Consideration of some of the above issues and detailed numerical validation
experiments using the material point method Sulsky et al. [1994; 1995] are in progress and will be the
subject of a subsequent paper.

Appendix A: specific heat, EOS, melting temperature, shear modulus

Experimental data indicate that the specific heat (at constant pressure) of aluminum increases by around
37% between room temperature and melting [Desai 1987]. A least squares curve fit to the experimental
data yields the following parameters for the model given in Equation (31):

A1 = − 11.73 J/kg-K, B1 = 6.28 J/kg-K2,

C1 = − 0.011 J/kg-K3, A2= 743.13 J/kg-K,
B2 = 0.51 J/kg-K2.

A plot of the fit is shown in Figure 16.
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from [Boehler and Ross 1997] and the circles show experimental data collected in [Bu-
rakovsky et al. 2000]. The solid line shows the prediction of the model in Equation
(29).

The shear modulus model given in Equation (26) requires a pressure. We use the equation of state
(EOS) in Equation (30) to compute the pressure for a given change in density. The parameters that
we have used for 6061-T6 aluminum are B0 = 76.3 GPa and B

′

0 = 4.29 [Burakovsky and Preston 2005].
Experimental data for 6061-T6 aluminum alloy [Vaidya and C. 1970], 2024-O aluminum alloy [McQueen
et al. 1970], and pure aluminum [Mitchell and Nellis 1981] are closely matched by the EOS model up
to a compression ratio (ρ/ρ0) of 1.4.

Though the alloying content can have a significant effect of the melting temperature of metals, we have
assumed in this paper that the melting temperature of 6061-T6 aluminum does not differ significantly
from that of pure aluminum. The parameters of the model of melting temperature given in Equation (29)
for 6061-T6 aluminum are taken to be

Tm0 = 933.6 K, q = 3.3,
01 = 0.84(gm/cc)1/3, 02 = 45.4 (gm/cc)q .

We also assume that for hydrostatic tensile states the melting temperature is equal to Tm0. The prediction
of the model of Equation (29) is compared with experimental data in Figure 17. An initial density of
2700 kg/m3 was used while computing the quantities in the figure. The model fits the data from [Boehler
and Ross 1997] quite well (triangles) but not the older data collected in [Burakovsky et al. 2000] (circles).
The accuracy of the Boehler and Ross data has been confirmed by more recent numerical experiments
by Vocadlo and Alfe [2002].
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Figure 18. Shear modulus of 6061-T6 aluminum alloy. Left: shear modulus vs. tem-
perature. Right: shear modulus vs. mass density at 0 K. At left, the triangles show
experimental data for pure aluminum from [Tallon and Wolfenden 1979] and the circles
show experimental data for 6061-T6 aluminum alloy from [Brown et al. 1996]. The
solid line shows the prediction of the model in Equation (26) at ambient pressure. The
dotted lines show predicted shear moduli under hydrostatic tension and compression. At
right, the circles show results from electronic structure calculations [Burakovsky et al.
2003] and the solid line shows the prediction of our model.

The shear modulus model in Equation (26) allows for a smooth transition to zero shear modulus
beyond melting. This feature is advantageous in numerical simulations for conditions where melting
might occur. The parameters of the shear modulus model for 6061-T6 aluminum are µ0 = 31.3 GPa,
∂µ/∂p = 1.8 [Guinan and Steinberg 1974], a1 = 0.53, a2 = 0.10, a3 = 0.37 [Burakovsky and Preston
2005], C = 0.049 [Nadal and Le Poac 2003], ζ = 0.1, and m = 26.98 amu. The predicted shear modulus
as a function of temperature is compared with experimental data in Figure 18 (left). An initial density
of 2700 kg/m3 was used for the calculations in the figure. Further details and comparisons with other
models can be found in [Bhawalkar 2006].

The density dependence of the shear modulus at 0 K is compared with computed results in Figure 18
(right). Since the pressure depends directly on the density in the equation of state, this plot may also
be considered to be a measure of the pressure dependence of the shear modulus. Our model predicts
the shear modulus quite accurately up to ρ/ρ0 = 2.2. Beyond this point the material undergoes a phase
transition to the bcc phase and our model overestimates the shear modulus with increasing pressure.
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THE EFFECT OF TAPER ON SECTION CONSTANTS FOR IN-PLANE
DEFORMATION OF AN ISOTROPIC STRIP

DEWEY H. HODGES, JIMMY C. HO AND WENBIN YU

The variational-asymptotic method is used to obtain an asymptotically-exact expression for the strain
energy of a tapered strip-beam. The strip is assumed to be sufficiently thin to warrant the use of two-
dimensional elasticity. The taper is represented by a nondimensional constant of the same order as
the ratio of the maximum cross-sectional width to the wavelength of the deformation along the beam,
and thus its cube is negligible compared to unity. The resulting asymptotically-exact section constants,
being functions of the taper parameter, are then used to find section constants for a generalized Timo-
shenko beam theory. These generalized Timoshenko section constants are then used in the associated
one-dimensional beam equations to obtain the solution for the deformation of a linearly tapered beam
subject to pure axial, pure bending, and transverse shear forces. These beam solutions are then compared
with plane stress elasticity solutions, developed for extension, bending, and flexure of a linearly tapered
isotropic strip. The agreement is excellent, and the results show that correction of the section constants
using the taper parameter is necessary in order for beam theory to yield accurate results for a tapered
beam.

1. Introduction

According to Euler–Bernoulli beam theory for pure bending of a uniform beam made of isotropic material
with Young’s modulus E , the strain energy per unit length is given by

U =
1
2 E Iκ2,

where κ is the curvature of the beam neutral axis (the locus of cross-sectional area centroids) and I is
the cross-sectional area moment of inertia. The bending stiffness according to Euler–Bernoulli theory is
E I . For nonuniform beams it is typical that the bending stiffness is regarded as E I (x), with x being the
beam axial coordinate. For example, for a beam with narrow rectangular cross-section of width 2b and
thickness t , E I is given by

E I =
Et (2b)3

12
=

2Etb3

3
.

Customarily, this expression remains the same regardless of whether or not the beam is uniform. For
example, when b = b(x), one just replaces b with b(x); the local taper of the beam b′(x)= − τ(x) does
not further influence the local bending stiffness. [Boley 1963] showed that the accuracy of predictions
by beam theory, performed in the described manner, worsened as τ increased.

Keywords: beam theory, asymptotic methods, dimensional reduction, tapered beam.
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Figure 1. Contrast between a prismatic (left) and a tapered (right) beam.

In reality, taper introduces three-dimensional effects that cannot be accounted for by merely changing
the sectional width in this formula. For example, stress at the boundaries of a solid continuum must
conform to the traction-stress relationships from Cauchy’s formula. Let us now introduce the y-axis as
perpendicular to x along with unit vectors, ax and ay , parallel to x and y respectively. In Figure 1 a
prismatic beam is shown beside a linearly tapered beam. Comparing the two cases, one can easily see
that neglecting the local taper parameter τ is equivalent to regarding the local upper and lower surface
outward-directed normal vectors as parallel to ay , which is only true for beams with no taper. Instead,
the true outward-directed normal vectors feature a component parallel to ax , omission of which means
that the surface boundary conditions are erroneous. Cross-sectional analysis (for instance, solutions
for the elastic constants used in a beam analysis) of tapered beams performed without consideration of
taper would then be incorrect and thereby degrade results from one-dimensional beam analysis. The
questions that must be answered are (a) how significant is this effect, and (b) is its inclusion tractable?
Krahula [1975] obtained an exact plane stress elasticity solution for a tapered strip-beam undergoing
flexure. This solution, along with others developed by Timoshenko and Goodier [1970] for pure extension
and bending deformations, all three of which are included herein, provides a means to assess the error
associated with omission of taper from the cross-sectional analysis of engineering beam theories for this
simple configuration. It will also provide a means to assess the accuracy of more general cross-sectional
analyses for spanwise nonuniform beams.

Andrade and Camotim [2005] considered this effect on the lateral-torsional buckling of I-beams. It
was reported therein that taper can affect the local cross-sectional stiffnesses, expressions of which,
if accurate, demonstrate that its effects are not, in general, negligible. For finite element analysis of
linearly tapered I-beams, Vu-Quoc and Léger [1992] derived a flexibility matrix showing a dependence
on τ ; however, the basis of their derivation is, at best, only an approximation, in that they assumed
that the bending stress equation for a prismatic beam, σxx = My/I , remains valid in the presence
of taper. For tapered monosymmetric I-beams, Kitipornchai and Trahair [1975] introduced additional
section constants to account for taper while leaving the traditional section constants unaltered. Ronagh
et al. [2000] also employed this approach for tapered beams of arbitrary cross-sectional geometries. A
drawback of introducing additional constants is that it inevitably adds complexity to the beam analysis.
There is relatively little other information in the literature regarding the effect of taper on the local
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stiffness properties. On the other hand, beam analyses with stiffness (or flexibility) matrices formulated
for numerical computations in [To 1981; Karabalis and Beskos 1983; Banerjee and Williams 1986;
Cleghorn and Tabarrok 1992; Rajasekaran 1994; Tena-Colunga 1996] are only selected examples of the
immense body of research performed on the analysis of tapered beams that does not consider the effect
of taper on the cross-sectional constants and stress recovery relations.

Here the effect is examined from the point of view of an analytical treatment. In order to facilitate such
a treatment, a tapered strip-beam is analyzed as a plane stress problem undergoing in-plane deformation.

The variational-asymptotic method (VAM) was developed by Berdichevsky and first used in construc-
tion of two-dimensional shell theory by dimensional reduction from three-dimensional elasticity theory
(see [Berdichevsky 1979]). The VAM finds an asymptotically-exact approximation of the solution, to
any desired order of accuracy, in terms of specified small parameters. The suitability of VAM for devel-
opment of one-dimensional beam theory was shown by Berdichevsky [1981]. [Hodges 2006] and many
references cited therein provide sample derivations for applying the VAM to the analysis of beams.

In this paper the VAM is used in Section 2 to analyze the in-plane deformation of a thin strip-beam and
obtain its strain energy per unit length. In Section 3, this strain energy is repackaged into a generalized
Timoshenko framework. In Section 4, the resulting generalized Timoshenko theory, with its modified
bending and shear stiffnesses, is used to analyze the classical pure extension, pure bending, and flexure
problems associated with the in-plane deformation of a linearly tapered beam. In Section 5, three elas-
ticity solutions are presented for the pure extension, pure bending, and flexure problems. In Section 6,
the elasticity results are compared with the beam solution. Finally, conclusions are drawn.

2. Beam strain energy per unit length

Beam theory requires an expression for the strain energy per unit length in terms of generalized strains
that depend only on the axial coordinate. The process of finding this expression, to be rigorous, must
begin with the strain energy for the accompanying elasticity problem on which dimensional reduction is
being performed. As discussed in [Hodges 2006], and many papers cited therein (for example, [Cesnik
and Hodges 1997; Yu et al. 2002]), dimensional reduction is based on the identification and exploitation
of various small parameters, and may be rigorously carried out by asymptotic methods. The VAM of
[Berdichevsky 1979] allows one to work directly in terms of energy functionals and still take advantage
of small parameters.

In this section we develop the strain energy per unit length for a linearly tapered strip-beam such as
the one shown on the right side of Figure 1. The undeformed state is described following the methods
of [Hodges 2006], where the position vector to an arbitrary point in the undeformed beam is taken to be

r̂ = xax + yay = r + yay,

where the x-axis is the reference line of the undeformed beam, taken for convenience as the locus of
cross-sectional centroids. The position vector to an arbitrary point in the deformed beam can be written
as

R̂ = R + yTy +wx(x, y)Tx +wy(x, y)Ty, (1)

where R = (x + u)ax + vay , Tx is a unit vector tangent to the deformed reference line, and Ty is normal
to Tx in the plane. If we only keep linear terms, then Tx = ax + v′ay and Ty = − v′ax + ay . The
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displacement field is thus described in terms of beam variables u(x), v(x) along with warping functions
wx(x, y) and wy(x, y). For the dimensional reduction, the warping functions are unknown at the outset
but are solved for in the procedure. Two constraints on the warping are needed to make the displacement
field unique. These constraints are not unique, so we choose to follow [Hodges 2006] in letting〈

R̂
〉
= 2bR, (2)

where

〈(•)〉 =

∫ b(x)

−b(x)
(•)dy.

Equation (2) implies that
〈wx 〉 =

〈
wy
〉
= 0. (3)

The beam is assumed to be homogeneous and isotropic, and the entire development is linear throughout.
Under assumption of plane stress, appropriate for a thin body such as this one, twice the strain energy
per unit length is given by

2U =
Et

1 − ν2

〈
02

xx +02
yy + 2ν0xx0yy +

(1 − ν)

2
02

xy

〉
, (4)

where ν is Poisson’s ratio. According to the displacement field spelled out in Equation (1), the two-
dimensional strain components are

0xx = ε− y κ +w′

x , 0yy = wy,y, 0xy = wx,y +w′

y, (5)

where ( )′ means the partial derivative with respect to x and ( ),y means the partial derivative with respect
to y. The one-dimensional generalized strains are ε and κ , both functions of x . Here κ = v′′(x) is the
usual curvature of the reference line of Euler–Bernoulli beam theory, and ε = u′(x) is the stretching
of the reference line. The one-dimensional generalized strains are taken as known in the dimensional
reduction procedure.

There are three small parameters that can be identified. First, the strain is small compared to unity.
It is straightforward to show that both ε and a κ are O(ε), where ε denotes the maximum strain, and
a = b(0) the maximum value taken on by y in the structure. The second small parameter is a/` where
` is the wavelength of deformation along the beam, such that ∂(•)/∂x = O(•/`). Finally, in this study
we select the nondimensional taper parameter τ as a small parameter. Because our problem is linear, the
strain will only enter the strain energy quadratically, so the smallness of strain has no real effect on the
formulation. For simplicity, we take a/` and τ to be of the same order, O(δ), and will ultimately ignore
δ3 compared to unity.

The VAM procedure is summarized as follows:

(i) Identify and remove all terms O(δ) and higher in the strain.

(ii) Use this resulting zeroth-order approximation of the strain to form the zeroth-order approximation
of the strain energy in terms of the warping.

(iii) Minimize the zeroth-order approximation of strain energy with respect to the warping to obtain the
zeroth-order approximation of the warping.
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(iv) Perturb the resulting zeroth-order warping by one order of δ and use the perturbed warping to
express the strain components to a sufficiently high order approximation so that the energy contains
all O(δ2) terms and all higher-order terms are dropped.

(v) Minimize this second-order approximation of the energy with respect to the warping function per-
turbations.

(vi) Substitute the result for the warping back into the original strain energy and discard all terms of
orders higher than O(δ2).

The result is the asymptotically-exact strain energy per unit length.
To begin we write twice the zeroth-order approximation of the energy, tantamount to ignoring δ alto-

gether, as

2U0 =

〈 Et
1 − ν2

[
( ε− y κ)2 + 2νwy,y ( ε− y κ)+

(1 − ν)w2
x,y

2
+w2

y,y

]
− 2λxwx − 2λywy

〉
,

where Lagrange multipliers λx and λy are used to enforce constraints on the warping. The warping field
that minimizes U0 can be found as

wx = 0, wy = − ν εy +
ν κ

2

(
y2

−
b2

3

)
.

Plugging this warping field back into the expression for 2U0, one obtains twice the zeroth-order energy
as

2U0 = 2Ebt ε2
+

2
3 Etb3 κ2, (6)

which is consistent with Euler–Bernoulli theory. Note that Equation (6) is derived without ad hoc as-
sumptions such as assuming the cross section to be rigid in its own plane or assuming that ν = 0. Such
assumptions are sometimes used to derive classical beam theory, but they are neither necessary nor
correct.

For the next approximation to the one-dimensional energy, we first perturb the above approximation
of warping to arrive at

wx = vx , wy = − νε̄y +
ν κ

2

(
y2

−
b2

3

)
+ vy,

where vx is the perturbation of wx , and vy is the perturbation of wy; vx and vy are of one order higher
in δ than wx and wy .

This new warping field is then substituted into the strain components from (5), at which point a new
expression for the two-dimensional strain energy arises from (4) by virtue of the new strain components.
Here one must be careful to retain all terms up through O(δ2) and drop all terms of higher order in the
energy, so now we find

2U2 =
Et

1 − ν2

{
1 − ν

2

〈[
ντb κ

3
− yν ε ′

+
ν
(
3y2

− b2
)
κ ′

6
+ vx,y

]2〉
+

〈
v2

y,y + 2v′

x(1 − ν2)( ε− y κ )
〉}
.

Expressions for the perturbation variables, vx and vy , that minimize U2 subject to the constraints
in (3) must be found; the constraints are again enforced by use of Lagrange multipliers, 3x and 3y ,
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respectively. The stationary point of U2 is found by setting its first variation equal to zero, which leads
to the two Euler–Lagrange equations

∂U2

∂vx
−

(
∂U2

∂v′
x

)′

−

(
∂U2

∂vx,y

)
,y

=3x ,
∂U2

∂vy
−

(
∂U2

∂vy,y

)
,y

=3y, (7)

along with corresponding natural boundary conditions

∂U2

∂vx,y

∣∣∣∣
y = ± b(x)

= 0,
∂U2

∂vy,y

∣∣∣∣
y = ± b(x)

= 0. (8)

According to Saint-Venant’s principle, boundary conditions, the warping at the beam ends (not shown)
does not affect the behavior of the warping inside the beam and is not used in the solution of Equations
(7) and (8).

Although both the Euler–Lagrange equations and boundary conditions for vx and vy look almost
identical, the actual equations obtained are not. The Euler–Lagrange equation for vy , the second equation
of (7), reduces simply to vy,yy = 0; from this and the second equation of (8), which requires vy,y to vanish
at y = ± b, one obtains by inspection that 3x = vy = 0. On the other hand, the resulting Euler–Lagrange
equation in vx , the first part of Equation (7), can be simplified to

Et
[
(2 + ν)( ε ′

− y κ ′)+ vx,yy
]
+ 2(1 + ν)3x = 0, (9)

and the natural boundary conditions simplify to

yτ ( ε− y κ)
b

+
2ν
(
τb κ − 3y ε ′

)
+ ν

(
3y2

− b2
)
κ ′

+ 6vx,y

12(1 + ν)

∣∣∣∣∣
y = ± b(x)

= 0. (10)

Solving Equations (9) and (10) simultaneously gives the Lagrange multiplier as

3x = Et
(
τ ε

b
− ε ′

)
,

and vx as

vx =
τ

3b

[
(1 + ν)

(
b2

− 3y2) ε+ y(5ν+ 6)b2 κ
]
+

1
6

{
ν
(
3y2

− b2) ε ′
+
[
y3(ν+ 2)− y(5ν+ 6)b2] κ ′

}
.

Note that the first term is O(τ ) and the second is O(a/`), so that the perturbation is indeed O(δ). It can
also be easily checked that the traction-free boundary conditions are satisfied asymptotically to the order
of the perturbation variables, O(δ).

With both perturbation variables now known, the second-order energy is also known. The strain energy
per unit length, asymptotically correct up to second order in δ, is then the sum of U0 and U2, and is equal
to

U = Etb
[

1 −
2
3
(ν+ 1)τ 2

]
ε2

+
2Etντb2

3
ε ε ′

+
Etb3

9

[
3 + 2(14ν+ 15)τ 2] κ2

−
4Etτ(8ν+ 9)b4

9
κ κ ′

+
4Et (1 + ν)b5

15
κ ′2

+
2Et (11ν+ 12)b5

45
κ κ ′′, (11)
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which is of the same form as the refined beam theory presented in [Hodges 2006], namely

2U = S ε2
+ 2G ε ε ′

+ A κ2
+ 2B κ κ ′

+ C κ ′2
+ 2D κ κ ′′, (12)

with A, B, C , D, S, and G being scalars identified from Equation (11); they are implicit functions of x
through the varying width b(x) and explicit functions of τ . It is easy to see that terms A and S without
τ correspond to those of Euler–Bernoulli theory. Terms with τ are the corrections from taper, and other
terms from which τ is absent (C and D) pertain to shear deformation of prismatic beams.

3. Transformation to generalized Timoshenko form

The strain energy function developed in the previous section is not suitable for use as an engineering
beam theory because of the presence of derivatives of ε and κ . It is known, however, that the form of
(11) can be transformed into a generalized Timoshenko theory, which is the main objective of this section.
Thus, the strain energy will be put into the form

2U∗
= Wκ2

+ 2Xκγ + Yγ 2
+ Zε2, (13)

where W , X , Y , and Z are scalars, and with W , X , and Z being functions of τ , while γ is the one-
dimensional beam engineering transverse shear measure. The shear strain measure γ turns out to be
one order higher in δ than the classical measures of strain; therefore the energy from (11), which is
second-order accurate, is sufficient to construct a generalized Timoshenko model. Note that after being
put in this form the energy will no longer be asymptotically correct, because information is lost in the
conversion process. Also, because γ is O(δ), Y will not have corrections from the taper parameter in
a second-order correct strain energy. By inspection of (12), extension ε is coupled only with its own
derivative, hence we expect it will not be coupled with any other strain measures in (13).

The major difference between classical and Timoshenko theories is that classical theory neglects trans-
verse shear strain while the generalized Timoshenko theory includes it, so the relationship between the
two theories is established here. (The term generalized is used to emphasize the fact that the theory is
not Timoshenko theory, nor is it based on any of the myriad assumptions of that theory. Moreover, the
present theory includes the bending-shear coupling effect embodied in X .) As depicted in Figure 2, Tx

x
T

y
T

y
B

x
B

g

Figure 2. Coordinate systems used for transverse shear formulation.
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and T y collectively represent the dyad associated with classical theory, whereas Bx and By represent the
dyad associated with generalized Timoshenko theory. T x and T y are aligned as parallel to and normal
to the beam reference axis respectively. Bx and By are then rotated clockwise by an angle from T x and
T y so that Bx is normal to the cross-sectional plane (which may be either defined as an average or at a
point), so that

Bx = T x − γ T y, By = γ T x + T y .

Following the procedure of [Hodges 2006], which assumes that the strain components are small, the
axial force strain measure is identical for the two theories so that ε = ε and the relationship of moment
strain between the two theories is given by

κ = κ + γ ′. (14)

Due to the presence of the derivatives in κ in Equation (12), we also mention that the derivatives are

κ ′
= κ ′

+ γ ′′, κ ′′
= κ ′′

+ γ ′′′, (15)

and that v′
= θ + γ , where θ is the total section rotation and κ = θ ′.

The derivatives of ε, κ , and γ must be written in terms of ε, κ , and γ , since the form of (13) contains
no derivatives. The approach for eliminating the derivatives adopted here is to make use of the equi-
librium equations. At each section the axial force (F), shear force (V ), and bending moment (M) are,
respectively,

F =
∂U∗

∂ε
= Zε, V =

∂U∗

∂γ
= Xκ + Yγ, M =

∂U∗

∂κ
= Wκ + Xγ.

In the absence of applied loading within the beam, the equilibrium equations are then

F ′
= Zε′

+ Z ′ε = 0,

V ′
= Yγ ′

+ Xκ ′
+ Y ′γ + X ′κ = 0,

M ′
+ V = Xγ ′

+ Wκ ′
+ (X ′

+ Y )γ + (W ′
+ X)κ = 0.

(16)

The above represents a system of equations which can be used to solve for ε′, γ ′, and κ ′ in terms of ε, γ ,
and κ . The higher derivatives can then be obtained, in terms of ε, γ , and κ , by directly taking derivatives
of (16). The resulting expressions are too lengthy to include here, but suffice it to say that the procedure
is not at all challenging for symbolic computational tools such as Mathematica.

The desired strain energy of the beam, in the form of (13), can now be obtained by substituting Equa-
tions (14) and (15), along with the described approach for eliminating derivatives, into (12). Comparing
the resultant second-order approximation to the strain energy with (13), one obtains the section constants
as

W =
2Etb3

3

[
1 +

(ν− 48)ν− 45
45(ν+ 1)

τ 2
]
, X =

Et (5ν+ 3)b2τ

9(ν+ 1)
,

Y =
5Etb

6(ν+ 1)
, Z = 2Etb

(
1 −

2τ 2

3

)
.

The terms involving τ = − b′(x) are the corrections from our having included taper. From these expres-
sions, we can observe that W is proportional to b3 and is a quadratic polynomial in τ , X is proportional
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to b2 and is linear in τ , Y is proportional to b and is independent of τ , and Z is proportional to b and is
a quadratic polynomial in τ 2.

According to Renton [1991] there is no consensus on the precise definition of shear stiffness; thus,
even though the expression for Y corresponds to results from [Washizu 1968; Young 1989; Renton 1991],
it may not match those of other definitions.

4. Beam analysis of classical elasticity problems

4.1. Pure extension. In pure extension, a beam of length l is loaded at each end by equal and opposite
axial tensile forces of magnitude T , depicted in Figure 3 for Q = 0. The potential of the applied loads
is thus

8= − T [u(l)− u(0)] = − T
∫ l

0
u′dx = − T

∫ l

0
ε dx .

According to the principle of virtual work, the system is in equilibrium if and only if the variation of its
total potential is zero. Upon setting the variation of the total potential equal to zero without imposing
any geometric boundary conditions, one obtains∫ l

0
(Wκδκ + Xγ δκ + Xκδγ + Yγ δγ + Zεδε− T δε) dx = 0.

The above equation requires the internal axial force, F , to be F = Zε = T . One can easily see that the
elongation strain is

ε =
T
Z
, (17)

knowledge of which allows us to then integrate the kinematical differential equation u′
= ε to obtain

u(x) for any given spanwise variation of the section constant Z . According to the model obtained from
the VAM, the displacement u(x) can be related directly to the elasticity solution in terms of the average
axial displacement over the section.

T

T

x

Q

Q

l

Figure 3. Schematic of beam loaded for either pure extension or pure bending.
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4.2. Pure bending. To solve the pure bending problem, we use the kinematical differential equation
κ = θ ′ and apply equal and opposite moments of magnitude Q on the ends of the beam. Figure 3, with
T = 0, illustrates this case. This yields a potential of the applied loads of the form

8= − Q[θ(l)− θ(0)] = − Q
∫ l

0
θ ′dx = − Q

∫ l

0
κ dx .

Equilibrium equations can then be found by minimizing the total potential subject to no geometric bound-
ary conditions. The result is∫ l

0
(Wκδκ + Xγ δκ + Xκδγ + Yγ δγ + Zεδε− Qδκ) dx = 0.

The resulting Euler–Lagrange equations require that the bending moment and shear force are, respec-
tively,

M = Wκ + Xγ = Q, V = Xκ + Yγ = 0.

Thus, eliminating γ = − Xκ/Y , one obtains(
W −

X2

Y

)
κ = Q.

The solution can then be written as

κ =
Q

W −
X2

Y

, (18)

which allows one to integrate the kinematical differential equation, θ ′
= κ , to obtain θ(x) for any given

spanwise variation of W , X , and Y . Unlike the prismatic case, even though Q is constant, κ is not.
Moreover, the transverse displacement v(x) can then be obtained by integration of another kinematical
differential equation, v′

= θ+γ = θ− Xκ/Y . It is clear that loading by pure bending produces transverse
shear deformation in a tapered beam.

4.3. Flexure. For the flexure problem, we load the beam with an equal and opposite transverse force P
at each end, and a moment Pl at the left end to counteract the moment of the force at the right end (see
Figure 4). For this loading the potential of the applied loads takes the form

8= − P [v(l)− v(0)] + Plθ(0)= − P
∫ l

0

[
(v′

− θ)+ (l − x)θ ′
]

dx = − P
∫ l

0
[γ + (l − x)κ] dx .

Equilibrium equations can then be found by minimizing the total potential subject to no geometric bound-
ary conditions. The result is∫ l

0
{Wκδκ + Xγ δκ + Xκδγ + Yγ δγ + Zεδε− P[δγ + (l − x)δκ]} dx = 0.

The resulting Euler–Lagrange equations and boundary conditions require that the bending moment and
shear force are, respectively,

M = Wκ + Xγ = P(l − x), V = Xκ + Yγ = P.
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Figure 4. Schematic of beam loaded for flexure.

Thus, one obtains

κ =
P

W Y − X2 [Y (l − x)− X ] , γ =
P

W Y − X2 [W − X (l − x)] , (19)

which allows one to integrate the same kinematical differential equations as in the pure bending case to
obtain the total section rotation θ(x) and the displacement of the neutral axis v(x) for any given spanwise
variation of W , X , and Y . Unlike the prismatic case, although the bending moment is linear, κ is not.
Also, although the shear force is constant, γ is not constant.

5. Solutions for classical elasticity problems

This section presents exact solutions for the purpose of comparing with the above beam solutions based
on a refined beam theory. These solutions are appropriately based on linear, plane stress elasticity theory
for a linearly tapered strip for problems of pure extension, pure bending, and flexure. For all three cases,
the components of the stress tensor are presented (σxx , σxy , and σyy). Components of the strain tensor
may then be obtained from the plane stress form of Hooke’s law. Lastly, the strains can be integrated to
obtain displacements, ux(x, y) and u y(x, y). In the formulae that ensue, the y-coordinate varies between
± b(x), where b = a − xτ , a is the half-width of the strip at x = 0, h = a − lτ > 0 is the half-width of
the strip at x = l, t is the thickness of the strip, l is its length (not to be confused with the wavelength `
that was previously used), and s = l − x .

We now set forth a way to extract information from the elasticity solutions so that the results can be
compared with those from the beam solutions. Let us denote the displacement fields from elasticity by
ux(x, y) and u y(x, y). These can be related to those from beam theory by making use of Equation (1),
yielding

ux = u − yv′
+wx , u y = v+wy, (20)

where we have earlier approximated the warping displacements. Integrating both sides of Equation (20)
over y and using the constraints on the warping, one obtains

u =
1

2b
〈ux 〉 , v =

1
2b

〈
u y
〉
. (21)
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Multiplying both sides of the first part of Equation (20) by y and integrating allows us to identify

θ =
3

2b3 〈−yux 〉 , γ = v′
− θ =

3
2b3 〈ywx 〉 . (22)

Finally, the stretching and bending strain measures, ε = u′ and κ = θ ′, along with the shear strain measure
γ , can now be compared directly with results from applying the beam theory to a specific problem such
as pure extension, pure bending or flexure.

5.1. Pure extension. The solution for the deformation of a wedge described by polar coordinates r and
φ, presented in [Timoshenko and Goodier 1970, p. 110], is quite simple. The stresses for this case are

σφ = σrφ = 0, σr =
T cosφ

r t (α+ cosα sinα)
,

where, referring back to Figure 3, Q = 0, T is nonzero, and

α = tan−1 τ, r =

√
y2 +

b2

τ 2 , φ = tan−1
( yτ

b

)
.

The stresses in the Cartesian system can be found as

σxx = σr cos2 φ− σrφ sin 2φ, σxy = − σrφ cos 2φ−
1
2 σr sin 2φ, σyy = σr sin2 φ+ σrφ cos 2φ.

In terms of the geometric parameters and loads, the stresses finally become

σxx =
T τb3

(
τ 2

+ 1
)

t
(
b2 + y2τ 2

)2 [
τ +

(
τ 2 + 1

)
tan−1(τ )

] , σxy = −
T yτ 2b2

(
τ 2

+ 1
)

t
(
b2 + y2τ 2

)2 [
τ +

(
τ 2 + 1

)
tan−1(τ )

] ,
σyy =

T y2τ 3b
(
τ 2

+ 1
)

t
(
b2 + y2τ 2

)2 [
τ +

(
τ 2 + 1

)
tan−1(τ )

] .
5.2. Pure bending. This case is also shown in Figure 3, here with T = 0 and Q nonzero. The stresses
in polar coordinates are given by Timoshenko and Goodier [1970, pp. 112–13], as σφ = 0 and

σr =
2Q sin 2φ

r2t (2α cos 2α− sin 2α)
, σrφ = −

Q(cos 2φ− cos 2α)
r2t (2α cos 2α− sin 2α)

.

Making the above transformation to Cartesian coordinates, one may obtain the stresses as

σxx = −
2bQyτ 3

[
b2
(
2τ 2

+ 1
)
− y2τ 2

]
t
(
b2 + y2τ 2

)3 [
τ +

(
τ 2 − 1

)
tan−1(τ )

] , σxy = −
Qτ 4

[
b4

− 3y2
(
τ 2

+ 1
)

b2
+ y4τ 2

]
t
(
b2 + y2τ 2

)3 [
τ +

(
τ 2 − 1

)
tan−1(τ )

] ,
σyy =

2bQyτ 5
[
b2

− y2
(
τ 2

+ 2
)]

t
(
b2 + y2τ 2

)3 [
τ +

(
τ 2 − 1

)
tan−1(τ )

] .
To visualize the deformed shape, finite element analysis was performed using ABAQUS. The deformed

shape of the structure is shown in Figure 5. To eliminate rigid body motion, the geometric boundary
conditions were set as ux = u y = 0 at the point (x = 0, y = 0) and u y = 0 at the point (x = l, y = 0).
Modeling in ABAQUS was done using its CPS8R elements, and its results were validated with the
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Figure 5. Deformed shape of the tapered strip under pure bending.

l (m) a (m) τ t (m) E (GPa) ν Q (N-m)

20 3 0.1 0.1875 200 0.3 1

Table 1. Dimensions, material properties, and loading for the tapered strip evaluated for
ABAQUS calculations.

elasticity solution. The specific dimensions, material properties, and loading chosen are given in Table 1.
It is clear that κ increases as the width of the structure decreases.

5.3. Flexure. The stresses of this case, shown in Figure 4, are given in polar coordinates by Krahula
[1975], with σφ = 0 and

σr =
2P
r2t

[
r sinφ

sin 2α− 2α
+
(l − a cotα) sin 2φ
2α cos 2α− sin 2α

]
, σrφ = −

P(cos 2φ− cos 2α) cotα(a − l tanα)
r2t (sin 2α− 2α cos 2α)

.

(It is noted that several small printing mistakes in the paper had to be corrected in order to obtain this
result.) Making the transformation to Cartesian coordinates, one finds the stresses to be

σxx =
bPyτ 2

t
(
b2 + y2τ 2

)3

{
2h
[
b2

+
(
2b2

− y2
)
τ 2
]

τ +
(
τ 2 − 1

)
tan−1(τ )

−
b
(
τ 2

+ 1
) (

b2
+ y2τ 2

)(
τ 2 + 1

)
tan−1(τ )− τ

}
,

σyy = −
Pyτ 4

t
(
b2 + y2τ 2

)3

{(
τ 2

+ 1
) (

b2
+ y2τ 2

)
y2(

τ 2 + 1
)

tan−1(τ )− τ
+

2bh
[
b2

− y2
(
τ 2

+ 2
)]

τ +
(
τ 2 − 1

)
tan−1(τ )

}
,

σxy = −
Pτ 4

[
b5

− sτb4
− 4y2

(
τ 2

+ 1
)

b3
+ 3sy2τ

(
τ 2

+ 1
)

b2
− y4τ 4b − sy4τ 3

]
t
(
b2 + y2τ 2

)3
{

2τ tan−1(τ )+
(
τ 4 − 1

) [
tan−1(τ )

]2
− τ 2

}
+

Pτ 3
(
τ 2

+ 1
) [

b5
− sτb4

− 2y2
(
τ 2

+ 2
)

b3
+ 3sy2τ

(
τ 2

+ 1
)

b2
+ y4τ 4b − sy4τ 3

]
tan−1(τ )

t
(
b2 + y2τ 2

)3
{

2τ tan−1(τ )+
(
τ 4 − 1

) [
tan−1(τ )

]2
− τ 2

} .



438 DEWEY H. HODGES, JIMMY C. HO AND WENBIN YU

6. Comparison

In this section we wish to compare the beam section constants obtained by the VAM with results for
the same quantities extracted from our elasticity solutions. To do so, the one-dimensional displacement
and rotation variables u, v, and θ are extracted from the elasticity solutions above by averaging two-
dimensional displacements over y in accordance with Equations (21) and (22). Then these quantities
are differentiated with respect to x , leading to the values of one-dimensional generalized strains ε, γ ,
and κ . Finally, effective stiffnesses are found by dividing appropriate applied loads by corresponding
one-dimensional generalized strains. These effective stiffnesses are then compared directly with values
of the section constants determined from the VAM.

6.1. Pure extension. For pure extension, it is appropriate to compare the quantity T/ε using the stiffness
constants obtained from the VAM with an expansion of the elasticity solution in τ . The beam solution,
from Equation (17), and the second-order asymptotic expansion of the elasticity solution both agree that
this quantity is

T
ε

= Z = 2Etb
(

1 −
2τ 2

3

)
.

The term involving τ 2 represents the correction to taper. The perfect agreement of these two solutions
reflects that the strain energy from the classical model is asymptotically exact for this problem, which is
expected because shearing deformations are not involved in pure extension. For a section with a linear
taper of τ = 0.1763, which corresponds to 10◦ taper, and is not uncommon as local taper on rotor blades,
the axial stiffness is overpredicted by 2.12% if the taper effect is neglected.

6.2. Pure bending. The quantity to be compared for this problem is Q/κ . The beam solution, from
Equation (18) is

Q
κ

= W −
X2

Y
=

2Etb3

3
−

4Etb3(4ν+ 9)τ 2

45
,

whereas the second-order asymptotic expansion of the elasticity solution yields

Q
κ

=
2Etb3

3
−

4Etb3(ν+ 3)τ 2

15
.

For a linear taper of α = 10◦ and ν = 0.3, the taper effect reduces the bending stiffness by 4.28%
and 4.42% from the elasticity and beam solutions respectively. The relative difference between the beam
solution and the elasticity solution is 2ντ 2/15, with the beam solution being softer. This small difference
between the asymptotic expansion of the exact solution versus the beam results can be attributed to our
having approximated the asymptotically-exact energy, Equation (11), by forcing it into the mold of the
generalized Timoshenko model, Equation (13). Obviously, the correction due to taper is itself much
larger than the difference between the elasticity and beam solutions.

6.3. Flexure. For the flexure problem we compare the quantities P/κ and P/γ at x = l. The beam
solution, Equation (19), yields

P
κ

= X −
W Y
X

= −
5Etb2

(3 + 5ν)τ
+ O(τ ),

P
γ

= Y −
X2

W
=

5Etb
6(1 + ν)

+ O(τ 2)=
5Gtb

3
+ O(τ 2).
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An order of magnitude analysis shows that we cannot trust either of the correction terms to these results,
because we do not have sufficient data to ensure that we have all the contributions to them. That is to say,
the VAM solution would have to be extended to include terms of higher order in τ than we needed to
construct the beam model; in particular corrections of third-order to X and second-order to Y would be
needed. As expected, the elasticity solution is in agreement with the above P/γ result since it does not
involve taper. It should be noted, however, that there is more than one possible result from this exercise.
The method of [Yu and Hodges 2004] was used here. The result for P/κ does involve taper and is given
by

P
κ

= −
10Etb2

3(2 + 3ν)τ
+ O(τ ).

The beam solution differs from the elasticity solution by less than 4% for practical values of ν. Note that
this term tends to infinity as taper decreases and the beam approaches being prismatic.

7. Conclusion

A beam model is constructed using the variational-asymptotic method that is capable of handling exten-
sion, in-plane bending, and in-plane shear for a homogeneous, isotropic strip-beam, the width of which is
linearly tapered along the span. The resulting beam model reveals that (a) section constants are influenced
by the local taper such that b′(x)= − τ appears explicitly, and (b) bending and shear deformation are
coupled by τ in the resulting model. To validate the theory, solutions for the corresponding plane stress
elasticity problems for pure extension, pure bending, and flexure are presented, and the corrections caused
by τ 6= 0 are found. Excellent agreement is demonstrated between the elasticity solutions and the beam
solutions based on the constructed model.

Examples of this influence include a decrease in both axial and bending stiffnesses, the latter being
large enough that its neglect cannot be justified for tapered beams. To avoid errors, the taper effect must
be accounted for in the cross-sectional analysis prior to performing the beam analysis. The present results
will be of practical use in validating general cross-sectional analyses when they are eventually extended
to include the influence of taper. In particular, additional work is needed to account for this effect
in the cross-sectional analysis of spanwise nonuniform composite beams with arbitrary cross-sectional
geometries and to determine asymptotically-exact strain/stress recovery relations.

References

[Andrade and Camotim 2005] A. Andrade and D. Camotim, “Lateral-torsional buckling of singly symmetric tapered beams:
theory and applications”, J. Eng. Mech. 131:6 (2005), 586–597.

[Banerjee and Williams 1986] J. Banerjee and F. Williams, “Exact Bernoulli-Euler static stiffness matrix for a range of tapered
beam columns”, Int. J. Numer. Meth. Eng. 23:9 (1986), 1615–1628.

[Berdichevsky 1979] V. L. Berdichevsky, “Variational-asymptotic method of constructing a theory of shells”, PMM 43:4
(1979), 664–687.

[Berdichevsky 1981] V. L. Berdichevsky, “On the energy of an elastic rod”, PMM 45 (1981), 518–529.

[Boley 1963] B. A. Boley, “On the accuracy of the Bernoulli-Euler theory for beams of variable section”, J. Appl. Mech. (Trans.
ASME) 30 (1963), 374–378.

[Cesnik and Hodges 1997] C. E. S. Cesnik and D. H. Hodges, “VABS: a new concept for composite rotor blade cross-sectional
modeling”, J. Am. Helicopter Soc. 42:1 (1997), 27–38.

http://dx.doi.org/10.1061/(ASCE)0733-9399(2005)131:6(586)
http://dx.doi.org/10.1061/(ASCE)0733-9399(2005)131:6(586)
http://dx.doi.org/10.1002/nme.1620230904
http://dx.doi.org/10.1002/nme.1620230904


440 DEWEY H. HODGES, JIMMY C. HO AND WENBIN YU

[Cleghorn and Tabarrok 1992] W. Cleghorn and B. Tabarrok, “Finite element formulation of a tapered Timoshenko beam for
free lateral vibration analysis”, J. Sound Vib. 152:3 (1992), 461–470.

[Hodges 2006] D. H. Hodges, Nonlinear composite beam theory, vol. 213, Progress in astronautics and aeronautics, American
Institute of Aeronautics and Astronautics, Reston, VA, 2006.

[Karabalis and Beskos 1983] D. Karabalis and D. Beskos, “Static, dynamic and stability analysis of structures composed of
tapered beams”, Comput. Struct. 16:6 (1983), 731–748.

[Kitipornchai and Trahair 1975] S. Kitipornchai and N. Trahair, “Elastic behaviour of tapered monosymmetric, I: beams”, J.
Struct. Div. ASCE 101 (1975), 1661–1678.

[Krahula 1975] J. L. Krahula, “Shear formula for beams of variable cross section”, AIAA J. 13:10 (1975), 1390–1391.

[Rajasekaran 1994] S. Rajasekaran, “Equations for tapered thin-walled beams of generic open section”, J. Eng. Mech. 120:8
(1994), 1607–1629.

[Renton 1991] J. D. Renton, “Generalized beam theory applied to shear stiffness”, Int. J. Solids Struct. 27:15 (1991), 1955–
1967.

[Ronagh et al. 2000] H. Ronagh, M. Bradford, and M. Attard, “Nonlinear analysis of thin-walled members of variable cross-
section, I: theory”, Comput. Struct. 77:3 (2000), 285–299.

[Tena-Colunga 1996] A. Tena-Colunga, “Stiffness formulation for nonprismatic beam elements”, J. Struct. Eng. 122:12 (1996),
1484–1489.

[Timoshenko and Goodier 1970] S. P. Timoshenko and J. N. Goodier, Theory of elasticity, 3rd ed., McGraw-Hill, New York,
1970.

[To 1981] C. To, “A linearly tapered beam finite element incorporating shear deformation and rotary inertia for vibration
analysis”, J. Sound Vib. 78:4 (1981), 475–484.

[Vu-Quoc and Léger 1992] L. Vu-Quoc and P. Léger, “Efficient evaluation of the flexibility of tapered I-beams accounting for
shear deformations”, Int. J. Numer. Meth. Eng. 33:3 (1992), 553–566.

[Washizu 1968] K. Washizu, Variational methods in elasticity and plasticity, Pergamon Press, Oxford, UK, 1968.

[Young 1989] W. C. Young, Roark’s formulas for stress and strain, 6th ed., McGraw-Hill, New York, 1989.

[Yu and Hodges 2004] W. Yu and D. H. Hodges, “Elasticity solutions versus asymptotic sectional analysis of homogeneous,
isotropic, prismatic beams”, J. Appl. Mech. (Trans. ASME) 71:1 (2004), 15–23.

[Yu et al. 2002] W. Yu, D. H. Hodges, V. V. Volovoi, and C. E. S. Cesnik, “On Timoshenko-like modeling of initially curved
and twisted composite beams”, Int. J. Solids Struct. 39:19 (2002), 5101–5121.

Received 6 Jul 2007. Revised 3 Oct 2007. Accepted 8 Oct 2007.

DEWEY H. HODGES: dhodges@gatech.edu
Daniel Guggenheim School of Aerospace Engineering, Georgia Institute of Technology, Atlanta, GA 30332-0150,
United States
http://www.ae.gatech.edu/~dhodges/

JIMMY C. HO: jho@gatech.edu
Daniel Guggenheim School of Aerospace Engineering, Georgia Institute of Technology, Atlanta, GA 30332-0150,
United States

WENBIN YU: wenbin.yu@usu.edu
Wenbin Yu, Mechanical & Aerospace Engineering Department, Utah State University, Logan, UT 84322-4130,
United States

http://dx.doi.org/10.1016/0022-460X(92)90481-C
http://dx.doi.org/10.1016/0022-460X(92)90481-C
http://dx.doi.org/10.1016/0045-7949(83)90064-0
http://dx.doi.org/10.1016/0045-7949(83)90064-0
http://pdf.aiaa.org/getfile.cfm?urlX=7%3CWI%277D%2FQKW%3E6B5%3AKF2Z%5CD%3A%2B82%2AT%2C%5DO%40%20%0A
http://dx.doi.org/10.1061/(ASCE)0733-9399(1994)120:8(1607)
http://dx.doi.org/10.1016/0020-7683(91)90188-L
http://dx.doi.org/10.1016/S0045-7949(99)00223-0
http://dx.doi.org/10.1016/S0045-7949(99)00223-0
http://dx.doi.org/10.1061/(ASCE)0733-9445(1996)122:12(1484)
http://dx.doi.org/10.1016/S0022-460X(81)80118-6
http://dx.doi.org/10.1016/S0022-460X(81)80118-6
http://dx.doi.org/10.1002/nme.1620330306
http://dx.doi.org/10.1002/nme.1620330306
http://dx.doi.org/10.1115/1.1640367
http://dx.doi.org/10.1115/1.1640367
http://dx.doi.org/10.1016/S0020-7683(02)00399-2
http://dx.doi.org/10.1016/S0020-7683(02)00399-2
mailto:dhodges@gatech.edu
http://www.ae.gatech.edu/~dhodges/
mailto:jho@gatech.edu
mailto:wenbin.yu@usu.edu


JOURNAL OF MECHANICS OF MATERIALS AND STRUCTURES
Vol. 3, No. 3, 2008

ON LARGE DEFORMATION GENERALIZED PLASTICITY

VASSILIS P. PANOSKALTSIS, LAZAROS C. POLYMENAKOS AND DIMITRIS SOLDATOS

Dedicated to the memory of Juan C. Simo for his seminal contributions to solid and computational mechanics

Large deformation generalized plasticity is presented in a covariant setting. For this purpose, the tensor
analysis on manifolds is utilized and the manifold structure of the body as well of the ambient and the
state space is postulated. On the basis of the multiplicative decomposition of the deformation gradient
into elastic and plastic parts and the use of hyperelastic stress-strain relations, a large deformation elasto-
plasticity model is proposed. Computational aspects and the predictions of the model under uniaxial and
biaxial straining are also presented.

1. Introduction

Since the time of its initial introduction in [Lubliner 1974], generalized plasticity theory has been elab-
orated further within the large deformation analysis regime in order to deal with materials with a van-
ishing elastic domain [Lubliner 1975], the maximum plastic dissipation postulate [Lubliner 1986], and
nonisothermal behavior [Lubliner 1987]. In these approaches the theory has been presented largely in an
abstract manner dealing with issues appearing primarily in a referential setting. Moreover, even though
constitutive models based on the generalized plasticity theory have been proposed and implemented
numerically, within the context of the infinitesimal theory [Lubliner et al. 1993; Auricchio and Taylor
1995; Panoskaltsis et al. 1997], a model within the context of the finite theory has not been proposed yet.

The objective of this study is threefold: first, to present the theory in a covariant setting. For this
purpose manifold structure is considered not only for the body of interest and the ambient space, but
also for the state space, that is, the set of all realizable states over a material point. Accordingly, the
motion of the body, which is considered as a time dependent mapping within the ambient space, is
extended to a local dynamical process by considering the state space as a fiber over the body particles.
In turn, the involvement of the standard pull-back/push-forward operations of the tensor analysis on
manifolds [Marsden and Hughes 1994, p. 67] leads to the introduction of the convected Lie derivative
[Simo and Marsden 1984], which eventually leads to a covariant formulation of the theory. It is noted
that the covariant formulation leads to constitutive equations which are invariant under arbitrary spatial
diffeomorphisms and the principle of objectivity — invariance under arbitrary spatial isometries — is
trivially satisfied. This point of view has been exploited by Simo [1988] within the context of classical
plasticity, and seems to have passed largely unnoticed within the literature. Unlike the presentation of

Keywords: large deformation plasticity, generalized plasticity, tensor analysis on manifolds, covariant formulation, Lie
derivative, internal variables, metric of the elastically relaxed space, loading-unloading conditions, time integration
algorithm, predictor-corrector algorithm.
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[Simo 1988], where the covariance principle is applied after the problem kinematics have been specified,
the present approach leaves the problem kinematics entirely unspecified.

Second, to propose a rather simple model on the basis of metal plasticity in order to make clear the
covariance principle within the generalized plasticity context, in its most simple setting. The proposed
model comprises the following components:

(i) decomposition of the total motion into a plastic motion in some relaxed space endowed with the
structure of a Riemannian manifold, followed by an elastic motion, as suggested by Le and Stumpf
[1993];

(ii) flow rule in terms of the Riemmanian metric of the relaxed space;

(iii) Von Mises loading surfaces with both isotropic and kinematic hardening;

(iv) hyperelastic constitutive equations for the characterization of the elastic response, as proposed in
the work of Simo and Ortiz [1985].

Third, to present the computational implementation of a generalized plasticity model in a covariant
formulation. Finally, we also present numerical simulations.

2. Constitutive theory

Following the erudite approach of Marsden and Hughes [1994] within the context of nonlinear elasticity,
we consider both the body of interest and the ambient space as three-dimensional Riemannian manifolds.
In particular, let B be the reference configuration of the body of interest, which is modeled as a three-
dimensional manifold with points labeled by (X1, X2, X3), and define a motion of B as a time dependent
mapping x : B → b, which is given by

x1
= x1(X1, X2, X3, t), x2

= x2(X1, X2, X3, t), x3
= x3(X1, X2, X3, t), (1)

and maps the points of the reference configuration B onto the points x = x(X, t) of the current config-
uration b. The mapping Equation (1) is assumed to be one to one and twice differentiable, that is, an
element of the Einstein group E [Dyson 1972]. The deformation gradient is defined as the tangent map
of Equation (1),

F(X, t)=
∂x
∂X

,

with determinant J = det F(X, t) > 0. Furthermore, let G and g be the covariant metrics of the reference
configuration and the ambient space, respectively. Next we introduce the right Cauchy–Green tensor,
defined as the pull-back of g,

C = x∗(g)= FT g F,

and the Finger deformation tensor, defined as the push-forward of G,

b−1
= x∗(G)= F−T G FT .

In general, the referential metric G is unknown, and several considerations must be made for its
determination, including experimental procedures [Valanis and Panoskaltsis 2005]. By means of the
adopted manifold structure and the consideration of the referential metric, several internal material struc-
tures, including directional densities, curved material structures, preformed materials, and prestressed
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reference configurations, can be accounted for by the proposed approach. For a dissipative material,
like the elastic-plastic continuum to be discussed here, the referential metric is a function of the history
of deformation [Valanis 1995]. The only case where the referential metric is constant in the course of
deformation is that of an elastic material, like the one discussed in the covariant approaches of Simo et al.
[1988] and Marsden and Hughes [1994].

Generalized plasticity is a local internal variable theory of rate independent behavior which is based pri-
marily on the assumption that plastic deformation takes place on loading but not on unloading [Lubliner
1974; 1975]. In the absence of thermal effects, the material state at the point X with coordinates
(X1, X2, X3) is assumed to be determined by the couple (S, Q), where S denotes the second Piola–
Kirchhoff stress tensor and Q denotes the internal variable vector. The latter is assumed to be covariant
in the sense that under the mapping Equation (1) it is transformed according to the general tensorial
transformation law, as it is given, for instance, in [Marsden and Hughes 1994, p. 67]. On the basis of
the previous discussion regarding the referential metric, it is concluded that the latter has to be included
in Q. The state space S is assumed to be attached to the point X so that the set X × S is a fiber of X ,
and since this set is an open subset of B × S, it is a local manifold. The dimension of this manifold is
6 + r , where r is the number of independent components of Q.

A local process 9 in S is defined as a curve in S, that is, as a mapping 9 : I ∈ R → S, with 9(t)=

(S(t), Q(t)), where t ∈ I. The direction and the speed of the process are determined by the tangent
vector 9̇ : S → TS, with 9̇ = (Ṡ, Q̇), where TS is the tangent space of S. Since Ṡ is always known
under stress control, the component Q̇ of 9̇ has to be determined. The latter is assumed to be given by
rate equations of the form

Q̇ = 5(S, C, Q, Ṡ), (2)

where 5 : S × TS → TS is a vector field in TS, which is considered as a tensorial function of the denoted
arguments. We note the dependence of the function 5 on the (convected) metric C in the reference
configuration, which needs to be included not only for a covariant setting of the theory [Simo et al.
1988], but also to account for effects such as pressure dependence of the plastic response [Simo and Ortiz
1985]. Rate independence implies that Equation (2) is invariant under a change of the parameter t by any
monotonically increasing, continuously differentiable function χ(t) (see, for instance, [Lubliner 1987;
Lucchesi and Podio-Guidugli 1992]). Then the necessary and sufficient condition for rate independence
is that 5 is homogeneous to the first degree [Lubliner 1986; 1987], that is

5(S,C, Q, c · Ṡ)= c · 5(S,C, Q, Ṡ), (3)

for any positive number c.
A local process is defined as elastic if it lies entirely in a six dimensional submanifold of S, the stress

space defined by Q = constant, otherwise it is defined as plastic. The elastic range of a state is defined
as a submanifold in stress space comprising the stresses that can be reached elastically from the current
stress point [Pipkin and Rivlin 1965; Lucchesi and Podio-Guidugli 1992]. It is assumed further that
the boundary of the elastic range is a five-dimensional manifold, the points of which have a coordinate
neighborhood on it, which is attached to the interior in much the same way as a face of a cube is attached
to the interior. The latter manifold may be defined as a loading surface [Eisenberg and Phillips 1971;
Lubliner 1987]. In turn, a state within its elastic range may be defined as plastic if it lies on a loading
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surface and as elastic otherwise. On the basis of axioms and results from set theory and topology, Lubliner
[1987] showed that the simplest function 5 obeying the homogeneity condition Equation (3) consistent
with the notion of the loading surface is

5(S,C, Q, Ṡ)= 3(S,C, Q)〈N : Ṡ〉, (4)

where N is the outward normal to the loading surface, assumed to be nonvanishing, and 〈·〉 stands for
the Macauley bracket, defined as

〈 x〉 =

{
x, if x ≥ 0,

0, if x < 0.

In view of Equations (2) and (4), the rate equations for the evolution of the internal variables can be
written as

Q̇ = 3(S,C, Q)〈N : Ṡ〉. (5)

The inner product N : Ṡ of the tangent vector Ṡ and the normal vector N (one form) is defined as
the loading rate. The loading rate determines the velocity and the direction of the process from a plastic
state, relative to its elastic range. If N : Ṡ< 0, then the elastic range remains invariant under the flow of
Ṡ (see [Abraham et al. 1988, p. 257]) and the process is elastic. If N : Ṡ> 0, then the elastic range in
not invariant anymore, and a new plastic state at a new value of Q is initiated. The limiting case, where
N : Ṡ = 0, results in an elastic process and is defined as neutral loading. It is noted that the present
formulation presupposes stability under stress control and is limited to work hardening materials. The
incorporation of work softening phenomena within the theory can be conducted along the lines presented
in this study in conjunction with some developments given in [Lubliner et al. 1993].

The manifold defined by the equation 3(S, C, Q) = 0, which comprises all elastic states, may be
called the elastic domain, and its boundary, which is assumed to be a submanifold, is called the yield
hypersurface. The projection of the elastic domain on the manifold Q = constant is called the elastic
domain at Q. In general, the elastic domain at Q is a submanifold of the elastic range [Lubliner 1987].
The particular case where the two manifolds coincide corresponds to classical plasticity. In this case,
the closure of the elastic domain C , which constitutes the whole state space S, is invariant under the
action of the plastic flow. More specifically, if the yield hypersurface, which now comprises the totality
of plastic states, is assumed to be given by the function g : C → R, with g(S,C, Q)= 0, then the state
space C is defined, for any regular value λ≤ 0 of g, as the manifold C = g−1(λ). Then the invariance of
the state space under the action of the plastic flow is equivalent to the invariance of C under the action of
the flow of the tangent vector to the process 9̇. The necessary and sufficient condition for the invariance
of C under the flow of 9̇ (see [Abraham et al. 1988, pp. 256–258]) is

9̇ : GRADg ≤ 0. (6)

The limiting case 9̇ : GRADg = 0 corresponds to a process tangent to the yield hypersurface and
constitutes the consistency condition of classical plasticity. This result can be generalized for the case
in which the yield hypersurface is not a submanifold, but rather a piecewise smooth surface (see, for
instance, [Hartman 1972]), and the multisurface plasticity formulation due to [Koiter 1953] is regained.
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Another case of interest arises when the function 3 is a nonvanishing function of its arguments. If
this is the case then there are no elastic states, and the elastic domain degenerates to a surface which may
be called a quasiyield surface [Lubliner 1975].

With the help of Equation (5) we now define the general (stress-space) loading-unloading conditions
explicitly as 

3(S,C, Q)= 0, elastic state,

3(S,C, Q) 6= 0, and


N : Ṡ< 0, elastic unloading,

N : Ṡ = 0, neutral loading,

N : Ṡ> 0, plastic loading.

(7)

The equivalent development of the theory in the current configuration can be performed by considering
the local vector bundle mapping (see [Abraham et al. 1988, p.167])

P : B × S → b × s with P(X, S, Q, t)= (x(X, t), x∗(S), x∗(Q)),

which, by keeping the point X fixed, may be identified as a (local) dynamical process. Accordingly,
the state space s at the point x with coordinates (x1, x2, x3) is composed by the Kirchhoff stress tensor
τ = FSFT , and the push-forward of the internal variable vector, denoted as q = x∗(Q).

Then, by the application of a push-forward operation to Equation (5) with the mapping Equation (1),
we have in an equivalent spatial setting

Lvq = λ(τ , g, q, F)〈n : Lvτ 〉, (8)

where Lv(·) stands for the Lie derivative, defined as the convected derivative relative to the current
configuration (for instance, see [Simo and Marsden 1984; Le and Stumpf 1993]), λ is a vector field
in Ts, and n is the outward normal to the loading surface in the current configuration. It is noted that
the (invariant) loading rate N : Ṡ is transformed in the current configuration to n : Lvτ [Miehe 1998].
We further note the presence of the deformation gradient F among the arguments of λ due to the push-
forward operation by which Equation (8) is derived from Equation (5). In view of Equation (8) we
formulate the spatial version of the loading-unloading conditions as

λ(τ , g, q, F)= 0, elastic state,

λ(τ , g, q, F) 6= 0, and


n : Lvτ < 0, elastic unloading,

n : Lvτ = 0, neutral loading,

n : Lvτ > 0, plastic loading.

(9)

Equation (5), along with the mathematical expression for the loading surfaces, which are assumed to
be given as a single parameter family of the form 8(S,C, Q)= K , constitute the simplest version of
generalized plasticity in the reference configuration. An equivalent spatial setting consists of Equation
(8) and an expression for the loading surfaces of the form ϕ(τ , g, q, F) = k. In order to develop a
generalized plasticity model, we have to specify:

(i) the kinematic assumptions regarding the geometry of deformation,

(ii) the stress-deformation relations,
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(iii) the kind and the number of the internal variables.

These are specified in the forthcoming section, where a rather simple model is proposed.

3. A model problem

Consistent with the covariant formulation employed, the basic kinematical assumption consists of a
decomposition of the motion into a plastic motion in some relaxed space Be, considered as a Riemannian
manifold, followed by an elastic motion [Le and Stumpf 1993]. In particular the plastic motion, which
will be termed as plastic flow, is defined as the time dependent mapping x p

: B → Be, which is given as

x p1
= x p1(X1, X2, X3, t), x p2

= x p2(X1, X2, X3, t), x p3
= x p3(X1, X2, X3, t).

Then the total motion Equation (1) can be decomposed as

x = xe
◦ x p, (10)

where the motion xe
: Be → b, with

x e1
= x e1(x p1, x p2, x p3, t), x e2

= x e2(x p1, x p2, x p3, t), x e3
= x e3(x p1, x p2, x p3, t),

constitutes the elastic deformation.
The decomposition Equation (10) of the motion leads to the multiplicative decomposition of the defor-

mation gradient into elastic and plastic parts, F = Fe F p. Such decomposition has been considered by
Lee [1969], Mandel [1972], Lubliner [1986], and Simo [1988], among others. Following Le and Stumpf
[1993], we introduce the model in the (elastically) relaxed space. A similar approach has been also
favored by Lee [1969], Mandel [1972], Dashner [1986], and Dafalias [1998], among others. Accordingly,
the state variables are assumed to be the (contravariant) stress tensor Se, defined as the push-forward of
the second Piola–Kirchhoff stress tensor by the plastic motion Se = F p SF pT , and the internal variable
vector, which is assumed to be composed of the Riemannian metric in Be, Ge and an additional internal
variable vector Qe. The selection of the metric of the (elastically) relaxed space as a primary state
variable is natural and relies on the fact that it is precisely the tensor Ge and the internal variables which
determine the continuously evolving geometry of the relaxed space under the action of the plastic flow.
This approach has its origins in the work of Le and Stumpf [1993], is consistent with the necessity of
the selection of a measure of plastic deformation as an independent variable according to Naghdi [1990],
and takes into account the fact that the referential metric varies in the course of plastic deformation,
according to Valanis [1995].

Motivated by classical metal plasticity we introduce a von Mises type of expression for the loading
surfaces with both isotropic and kinematic hardening,

8(Se,Ce, α, H e)=

√
(Sαβe − Hαβ

e )(Sγ δe − Hγ δ
e )CeαγCeβδ −

1
3
(Sαβe Ceαβ)2 −

√
2
3
(σy + Kα), (11)

where Ce is the (convected) metric for the relaxed space, defined as the pull-back of the spatial metric
by the elastic deformation Ce = FeT g Fe, where α is a scalar internal variable which controls the size of
the loading surfaces, H e is a deviatoric stress tensor (that is, tr(H eCe)= 0), usually termed back stress
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which controls the location of the loading surfaces, and σy and K are two model parameters designating
the uniaxial yield stress and the (isotropic) hardening modulus, respectively.

The evolution of the plastic flow (flow rule) is considered to be normal to the loading surfaces as per

LV P G−1
e = h N e〈N e : LV P Se〉, (12)

where LV P (·) is the (convected) Lie derivative along the velocity of the plastic flow; the velocity may be
defined as [Le and Stumpf 1993]

V p
= V̄ P

◦ x p−1, where V̄ Pα
=
∂x
∂t

pα
(X, t)|X=constant.

N e is the normal vector to the loading surfaces which, in view of Equation (11) [Simo and Ortiz 1985;
Simo 1988], is given as

Ne =
∂8

∂Se
=

(Se − He)−
1
3{(Se − He) : Ce}C−1

e

‖(Se − He)−
1
3{(Se − He) : Ce}C−1

e ‖
,

where ‖ · ‖ is the Euclidean norm and h is a scalar function of the state variables which enforces the
defining property of a plastic state. Accordingly, the value of h must be positive at any plastic state
and zero at any elastic one. It should be noted that in taking the derivative of the loading function with
respect to the stress tensor Se, the quantities Se and Ce are treated as independent variables. The relation
between the stress tensor Se and the metric Ce, as it is expressed in Equations (24) and (25), is an a
posteriori fact related to the choice of the constitutive equations (in this case hyperelastic).

It is emphasized that in the particular case in which the relaxed space is considered as flat, or almost
flat, and by noting that

LV P G−1
e = Ġ−1

e − L P G−1
e − G−1

e LT
P ,

where L p = Ḟ P F P−1 is the (true) plastic velocity gradient, the flow rule can be stated as

Sym
[
G−1

e L p
]
= −

1
2 h N e〈N e : LV P Se〉,

where Sym [·] stands for the symmetric part of its argument. For the particular case in which the relaxed
space is considered as Euclidean, that is, G−1

e = 1, a flow rule in terms of Sym
[
L p
]

is derived. If this
is the case, the adopted flow rule resembles the associative flow rule derived by Simo [1988], based on
the maximum plastic dissipation postulate, within the context of classical plasticity

Sym
[
L p
]
= γ̇Ce N e, (13)

where γ̇ is the consistency parameter, which can be determined by means of the consistency condition
(Equation (6)). It is noted that the flow rule adopted herein (12), differs from the associated flow rule
(13) by a factor equal to Ce and a multiplicative scalar.

In accordance with the classical theory we propose the following evolution equations for the remaining
internal variables [Simo and Hughes 1997, p. 90]:

α̇ =

√
2
3 h〈N e : LV P Se〉, (14)

LV P H e =
2
3 Hh N e〈N e : LV P Se〉, (15)
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where H is the (kinematic) hardening modulus.
The referential setting of the model can be determined by applying a pull-back operation to Equa-

tions (11), (12), (14), and (15) by the plastic flow as

8(S,C, α, H)=

√
(S I J − H I J )(SK L − H K L)C I K CJ L −

1
3
(SK LCK L)2 −

√
2
3
(σy + Kα), (16)

Ċ p−1
= h N〈N : Ṡ〉, (17)

α̇ =

√
2
3 h〈N : Ṡ〉, (18)

Ḣ =
2
3 Hh N〈N : Ṡ〉, (19)

where C P , H , and N are the pull-backs in the reference configuration of the tensors Ge, H e, and N e,
respectively, by the plastic flow. It is concluded that C P , besides being the primary measure of plastic
deformation (see Equation (17)), also plays the role of the aforementioned referential metric.

It is noted that unlike the theoretical presentation, which was developed primarily in the reference
configuration, the model is developed primarily in the relaxed space. Thus the relaxed space, as well as
any other configuration of the body, can also serve as a reference configuration. This point of view enables
us to visualize the deeper inside of the notion of spatial covariance, according to which all configurations
of the body are practically indistinguishable and the equation forming is a matter of observation. This
statement is an interpretation within the generalized plasticity context of the comment by Dyson [1972],
“Einstein based his theory on the principle that God did not attach any preferred labels to the points
of space-time.” As a result, once the equations describing the state of the body are known in some
configuration, they are known in any configuration by employing the covariant transformation laws. An
application the equivalent setting of the model in the current configuration can be derived by a push-
forward operation to Equations (16), (17), (18), and (19) by the total motion as

ϕ(τ , g, a, h)=

√
(τ i j − hi j )(τ kl − hkl)gik g jl −

1
3(τ

kl gkl)2 −

√
2
3(σy + K a), (20)

Lvbe
= hn〈n : Lvτ 〉, (21)

α̇ =

√
2
3 h〈n : Lvτ 〉, (22)

Lvh = h 2
3 H n〈n : Lvτ 〉, (23)

where be, h, and n are the push forwards into the current configuration of the referential tensors C p, H ,
and N , respectively.

To this end, it is emphasized that the presented covariant approach has been discussed, on the basis
of physical grounds, by Dafalias [1998] (see also [Dafalias 1993; 2001]). In particular, it is argued that
a rate equation for the evolution of a tensorial internal variable in terms of the convected Lie derivative
embodies only the evolutionary characteristics of this internal variable and not its (possible) orientational
characteristics related to the material substructure, which must be accounted by the constitutive model.
In order to accomplish this goal, Dafalias [1998] adopts a flow rule in the form (see also [Dafalias 1993])
Sym

[
L p
]

= γ̇ N e(T , a, H e), where T is a stress tensor defined in the relaxed space in terms of the
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Cauchy stress tensor σ as T = det(Fe)Fe−1σ Fe−T , while for the evolution of the back stress tensor
proposes an equation in terms of a corotational derivative as

Ĥ e = Ḣ e − ωH e + H eω = γ̇M(T , α, H e),

where ω is defined as the constitutive spin and is related to the aforementioned orientational character-
istics inherited to the back stress tensor due to the material substructure and M is a tensorial function,
which, due to invariance requirements, is considered as isotropic. The determination of ω lies crucially
on the fact that, in the absence of plastic deformation (γ̇ = 0), one has Ĥ e = 0, and H e just spins by ω.
By noting further that, in the absence of plastic deformation, the relaxed space spins by the antisymmetric
part of the plastic velocity gradient L p, ant

[
L p
]
, it is proposed that ω can be determined by an expression

of the form

ant
[
L p
]
= ω + W p

= ω + γ̇�(T , α, H e),

where W p is defined as the plastic spin and � is an isotropic function of the state variables. From the
authors’ point of view, noting that both the convected and the corotational mode of evolution for the
internal variables are different manifestations of the Lie derivative concept [Marsden and Hughes 1994,
p.100], the adequate form of evolution has to be decided on the basis of the experimentally observed
behavior. It should become clear that, unlike the Lie derivative concept, which is a purely kinematical
one, the constitutive and plastic spin concepts require the existence of a substructure whose kinematics
may be different from those of the continuum. These issues, together with a possible extension of
the proposed covariant formulation, in order to account for crystal plasticity and crystal defects, are a
subject of our ongoing research. Finally, the stress response is assumed to be hyperelastic, governed by
an isotropic strain energy function proposed within the context of nonlinear elasticity by Ciarlet [1988]
and utilized in a somewhat different format within the context of classical plasticity in [Simo and Hughes
1997, p. 258],

W = λ
Ie3 − 1

4
−

(λ
2

+µ
)

ln
√

Ie3 +
1
2µ(Ie1 − 3),

where Ie1 = tr(CeG−1
e ) and Ie3 = det(CeG−1

e ) are the first and third invariants of CeG−1
e , and λ and

µ are material parameters to be interpreted as Lamé constants. Then the stress response in the relaxed
space is determined by

Se = 2
∂W
∂Ce

, (24)

which yields

Se = λ
Ie3 − 1

2
C−1

e +µ(G−1
e − C−1

e ). (25)

By employing once more the standard pull-back and push-forward operations, Equation (25) may be
equivalently written in the forms

S = λ
I3 − 1

2
C−1

+µ(C p−1
− C−1), τ = λ

i3 − 1
2

g−1
+µ(be

− g−1), (26)

where I3 and i3 are the third invariants of the tensors CC p−1 and gbe, respectively.
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4. Computational aspects

The numerical implementation of a generalized plasticity based model relies crucially on the fact that,
unlike the classical elastoplastic case, the internal variables are no longer constrained to lie within the
closure of the elastic domain. Accordingly, unlike the classical elastoplastic case where the evolution
equations define a unilaterally constrained problem of evolution, in the case of generalized plasticity the
evolution equations form a differential system, which must obey the continuous form of the loading-
unloading conditions (see Equations (7) and (9)) [Panoskaltsis et al. 1997].

As a result it is concluded that, from a theoretical point of view, by means of the continuous form of
the loading-unloading conditions one has a complete characterization not only of the current state of the
material (elastic or plastic), but also, in the case the material state is plastic, of the type of the applied
loading process (elastic unloading, neutral loading, plastic loading). From a computational point of view,
the crucial requirement for the numerical implementation of an elastoplastic model, simply consists
of the unambiguous knowledge of whether plastic loading takes place. For the classical elastoplastic
case this requirement is provided by the introduction of the Kuhn–Tucker conditions of the theory of
optimization, which, as it is noted in [Simo and Hughes 1997, p.84], imply the generalization of the
loading-unloading criteria of the strain-space plasticity as they are given, for instance, in [Naghdi 1990].
Unlike this case, in our case the aforementioned requirement can be provided directly from the stress-
space loading-unloading conditions by means of the (algorithmic) parameters Z = 3〈N : Ṡ〉 and z =

λ〈n : Lvτ 〉. By use of these parameters, and in view of the basic evolution equations (see Equations (5)
and (8)), we state the algorithmic loading-unloading conditions as if Z = 0 then Q̇ = 0, if Z 6= 0 then
Q̇ 6= 0, or, equivalently, if z = 0, then Lvq = 0, if z 6= 0 then Lvq 6= 0.

From now on, our analysis will be focused on the rather simple model proposed in Section 3. The con-
cepts which will be presented on the basis of this model can be extended, with some computational cost,
in more sophisticated models encompassing nonconstant elasticities, nonnormality flow rules, multiple
hardening mechanisms, and damage.

The time integration procedure may in principle be formulated equivalently with respect to the ref-
erence or the current configurations. Since we deal with large scale plastic flow, the kinematics of the
problem, together with the principle of covariance, suggest that a numerical formulation in terms of
the Kirchhoff stress and its convected derivative (see Equations (20), (21), (22), (23), and (26)) is more
fundamental. Further, in the current configuration the spatial metric usually has a diagonal form, which
makes the computations simpler than those in the reference configuration, where the (convected) metric
C is fully populated [Miehe 1998]. The details of the implementation procedure follow.

Let I = [0, T ], the time interval of interest. It is assumed that at time tn ∈ I , the configuration
of the body of interest bn , defined as bn = {xn = xn(X) | X ∈ B}, along with the state variables
{xn, τ n, be

n, αn, hn}, are the known data at time tn .
Assume a time increment 1tn , which drives the time to tn+1 = tn +1tn , and the body configuration

to

bn+1 = {xn+1 = xn+1(X) | X ∈ B},

where

xn+1(X)= xn(X)+ U(X)= xn(X)+ u(xn(X)),
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and u is the incremental displacement field, which is assumed to be given. Then the algorithmic problem
at hand is to update the stress tensor and the internal variables to the time step tn+1 in a manner consistent
with the continuous Equations (20), (21), (22), (23), and (26). To this end the continuous equations will
be discretized by the backward Euler scheme which is first order accurate and unconditionally stable.
Because of the presence of Lie derivatives within the continuous equations, adequate approximations for
these objects are derived on the basis of their defining property and the general tensorial transformation
law. In particular, the defining relation for the Lie derivative of a tensor q of type

(r
s

)
in the bn+1

configuration is

Lvqn+1 = xn+1∗

(
∂

∂t
xn+1

∗(q)
)
. (27)

By performing a pull-back operation, Equation (27) can be written consecutively as

x∗Lvqn+1 =
∂

∂t
(x∗(qn+1))= Q̇n+1=̇

1
1t n

(Qn+1 − Qn),

which in turn may be written in component form on the basis of the general tensorial transformation law
as[
∂X I1

∂x i1
n+1

· · ·
∂X Ir

∂x ir
n+1

∂x j1
n+1

∂X J1
· · ·

∂x js
n+1

∂X Js

]
Lv(q i1···ir

j1··· js )n+1 =
1
1tn

[
(Q I1···Ir

J1···JS )n+1 − (Q I1···Ir
J1···JS )n

]
=

1
1t n

[
∂X I1

∂xk1
n+1

· · ·
∂X Ir

∂xkr
n+1

∂x l1
n+1

∂X J1
· · ·
∂x ls

n+1

∂X Js
(qk1···kr

l1···ls
)n+1−

∂X I1

∂xk1
n

· · ·
∂X Ir

∂xkr
n

∂x l1
n

∂X J1
· · ·

∂x ls
n

∂X Js
(qk1···kr

l1···ls
)n

]
,

from which Lv(q i1···ir
j1··· js )n+1 can be determined as

Lv(q i1···ir
j1··· js )n+1 =

1
1t n

[
(q i1···ir

j1··· js )n+1 −
∂x i1

n+1

∂xk1
n

· · ·
∂x ir

n+1

∂xkr
n

∂x l1
n

∂x j1
n+1

· · ·
∂x ls

n

∂x js
n+1

(qk1···kr
l1···ls

)n

]
, (28)

where the tensor, with components

( f i
j )n+1 =

∂x i
n+1

∂x j
n

=
∂x i

n+1

∂X I

∂X I

∂x j
n

= (F i
I )n+1((F−1)I

j )n,

is defined as the relative deformation gradient with respect to the configuration bn+1 [Simo and Hughes
1997, p. 279]. It is interesting to note that since any objective derivative of a tensorial quantity q differs
for its convected Lie derivative by terms depending on q and the Lie derivative of the spatial metric g
(see [Atluri 1984] and [Marsden and Hughes 1994, p. 100]), (28) can be used as a basis for the objective
approximation of other objective derivatives, which may be used in place of the convected derivative,
used herein.

By means of Equation (28) a (covariant) approximation for a contravariant
(0

2

)
tensor q, like the tensors

τ , be, and h, participating in the proposed model is derived as

Lv(q i j )n+1 =
1
1t n

[
(q i j )n+1 −

∂x i
n+1

∂xk
n

∂x j
n+1

∂x l
n
(qkl)n

]
,
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or equivalently

Lvqn+1 =
1
1t n

(
qn+1 − f n+1qn+1 f T

n+1
)
.

Accordingly, the time discrete counterparts of Equations (21), (22), (23) and (26) are

1
1t n

(be
n+1 − f n+1be

n f T
n+1)= hn+1nn+1ln+1, (29)

1
1t n

(αn+1 −αn)=

√
2
3

hn+1ln+1, (30)

1
1t n

(h − f n+1hn f T
n+1)=

2
3

Hhn+1nn+1ln+1, (31)

τ n+1 = λ
det(gn+1be

n+1)− 1
2

g−1
n+1 +µ(be

n+1 − g−1
n+1), (32)

where
gn+1 = g(xn+1),

hn+1 = h(gn+1, τ n+1, be
n+1hn+1),

ln+1 =

〈
n :

1
1t n

(τ n+1 − f n+1τ n f T
n+1)

〉
and

nn+1 =
(τ n+1 − hn+1)−

1
3{(τ n+1 − hn+1) : gn+1}g−1

n+1

‖(τ n+1 − hn+1)−
1
3{(τ n+1 − hn+1) : gn+1}g−1

n+1‖
,

are quantities expressed in terms of the basic variables, subjected to the time discrete counterpart of the
algorithmic loading-unloading conditions, which can be written as:

If zn+1 = 0, then


be

n+1 = f n+1be
n f T

n+1,

αn+1 = αn,

hn+1 = f n+1hn f T
n+1,

(33)

and

If zn+1 6= 0, then


be

n+1 6= f n+1be
n f T

n+1,

αn+1 6= αn,

hn+1 6= f n+1hn f T
n+1,

(34)

where zn+1 = hn+1ln+1. It is observed that Equations (29), (30), (31) and (32), subjected to the time
discrete algorithmic loading-unloading conditions of Equation (33), form a system of four equations
in four unknowns (be

n+1, αn+1, hn+1, and τ n+1). The solution of this system can be performed by a
predictor-corrector algorithm like the one presented by Panoskaltsis et al. [1997], in conjunction with
some developments proposed within the context of large deformation computational plasticity, by Simo
and Ortiz [1985] and Auricchio and Taylor [1999]. It is noted that, unlike the classical elastoplastic case,
the consistency condition and accordingly the consistency parameter are absent from the model governing
equations. Due to this absence the resulting system is simpler than in the classical elastoplastic case and
more computer power is preserved.
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5. Numerical simulations

The predictions of the model introduced in Section 3 will be illustrated by considering two problems
of large scale plastic flow, namely a simple shear test and the biaxial extension of a material block.
The model will be implemented numerically by following our development in Section 4. The model
parameters are λ= 330, µ= 150, σy = 20, K = 15, and H = 0.

The function h is set as

h =
〈8〉

β|8|
and

1
β

for 8= 0, where β is a model parameter.
In this case the elastic domain is the manifold defined by the set

D(C, S, α, H)= {(C, S, α, H)/8(C, S, α, H) < 0},

while the elastic range E is defined at any material state, by noting the one to one correspondence which
exists between the end point of a vector of constant origin and the vector itself, as

E(C∗, S∗)|(α,H)=constant

=

{
(C∗, S∗)\C∗

= C + Ċ, S∗
= S + Ṡ, if 8(C, S, α, H)|(α,H)=constant < 0 or N : Ṡ ≤ 0

}
.

The elastic domain at the state in question is defined as

D(C∗, S∗)|(α,H)=constant =
{
(C∗, S∗)\8(C∗, S∗, α, H)|(α,H)=constant < 0

}
,

which is clearly a submanifold of E(C∗, S∗)|(α,H)=constant.
The limit β → 0 corresponds to classical plasticity. In this case the initial loading surface defined by

8 = 0 coincides with the yield surface of classical plasticity [Eisenberg and Phillips 1971], while the
limit hβ→0 is determined by the consistency condition (6).

The particular case where h is considered as a positive function of the state variables (for example,
constant, exponential, hyperbolic) corresponds to a model with a quasiyield surface. In this model every
state is a plastic state, plastic loading appears from the initiation of loading, and every reloading process,
following (elastic) unloading, results in plastic response.

The simple shear problem [Gurtin 1981, p. 115] is defined by

x1
= X1

+ γ X2, x2
= X2, x3

= X3,

where γ is the shearing parameter. This problem has been used extensively as a testing problem (see, for
example, [Lee et al. 1983; Dafalias 1983; Haupt and Tsakmakis 1986; Atluri 1984]) within the context
of large deformation plasticity.

The predictions of the model for different values of the parameter β are shown in Figure 1. We
note that for large values of β the predicted response is identical to that of a perfectly plastic material.
Furthermore, the oscillating behavior, which is reported in [Atluri 1984] in finite shear, even in the case
of classical isotropic hardening plasticity, does not appear.
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Figure 1. Normal (left) and shear (right) stresses versus the shearing parameter.

The second problem is the biaxial extension of a material block. The straining occurs along the X1

and X2 axes while the block is assumed to be fixed along the X3 direction. This problem is defined as

x1
= (1 + λ)X1, x2

= (1 +ω)X2, x3
= X3,

where λ and ω are the straining parameters. The predictions for the normal stresses for different interre-
lations of the straining parameters are shown in Figure 2.
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Figure 2. Biaxial extension of a material block: normal stresses versus straining parameters.
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Figure 3. Biaxial extension of a material block: initial loading, unloading, and reloading.

A second loading history comprising loading, unloading from a plastic state, and reloading is given
for λ = ω in Figure 3. We note that, consistently with a generalized plasticity based model, during
reloading, after unloading from a plastic state, plastic behavior appears before attaining the state where
the unloading began.

6. Conclusions

One of the main contributions of this paper is the presentation of the (stress space) covariant formulation
of rate independent generalized plasticity. For this purpose, the manifold structure of the body, as well
as of the ambient and the state space, is postulated. In the course of the development of the theory, and
based on geometry of manifolds, the consistency condition of classical plasticity is derived. A rather
simple model is proposed in order to emphasize the covariant presentation of the generalized plasticity
concept in its most simple setting. The model is developed in the (elastically) relaxed space. By em-
ploying the pull-back and push-forward operations the model is also derived in the reference and current
configurations, respectively. A time integration algorithm, in the current configuration, is developed in
detail. Appropriate algorithmic approximations of the Lie derivatives of the tensorial quantities entering
the algorithm are derived. Also, algorithmic loading-unloading conditions are derived. The proposed
model is tested numerically in the solution of two problems of large scale plastic flow.

Further research directions comprise the derivation of more sophisticated models that include rate,
thermal, and anisotropic effects for the accurate description of solid behavior, as well as the development
of the additional necessary computational tools for the implementation of those models within the context
of the finite element method.
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ADVANCED POSTBUCKLING AND IMPERFECTION SENSITIVITY OF THE
ELASTIC-PLASTIC SHANLEY–HUTCHINSON MODEL COLUMN

CLAUS DENCKER CHRISTENSEN AND ESBEN BYSKOV

The postbuckling behavior and imperfection sensitivity of the Shanley–Hutchinson plastic model col-
umn introduced by Hutchinson in 1973 are examined. The study covers the initial, buckled state and
the advanced postbuckling regime of the geometrically perfect realization as well as its sensitivity to
geometric imperfections.

In Section 1, which is concerned with the perfect structure, a new, simple explicit upper bound for
all solutions to the problem is found when the tangent modulus at bifurcation vanishes compared to
the linear elastic (unloading) modulus. The difference between the upper bound and the solution to an
actual problem is determined by an asymptotic expansion involving hyperbolic trial functions (instead of
polynomials) which fulfill general boundary conditions at bifurcation and infinity. The method provides
an accurate estimate of the maximum load even if it occurs in an advanced postbuckling state. Finally, it
is shown that the maximum load is often considerably larger than the bifurcation load.

Section 2 presents a new asymptotic expansion which is utilized to study the imperfection sensitivity
of the Shanley–Hutchinson elastic-plastic model column. The method is mainly characterized by three
novel features. Firstly, unlike other expansions which are performed around one or maybe two points,
ours takes the total postbuckling path of the geometrically perfect structure as its basis, that is, the equilib-
rium of an imperfect path is written as the postbuckling path of the perfect structure plus an asymptotic
contribution. Secondly, the expansion parameter is chosen as the buckling mode amplitude minus its
value at initiation of elastic unloading. In this connection, the asymptotic expansion of initiating elastic
unloading to the lowest order given by Hutchinson serves as a kind of boundary value for the asymptotic
expression. Thirdly, a new and more suitable set of base functions is introduced to enhance the accuracy
of the asymptotic expansion for large imperfection levels without compromising the asymptotic behavior
for small imperfections. If an asymptotically exact postbuckling solution for the perfect structure around
the maximum load has been obtained by some method, be it numerical or asymptotic, then the prediction
of the imperfection sensitivity is asymptotically correct.

Introduction

Today, elastic-plastic stability of structures, including their imperfection sensitivity, may be examined
by means of numerical methods. Such procedures may, however, suffer some major disadvantages. A
complete analysis of the behavior of a perfect or a geometrically imperfect structure often becomes very
time consuming, and in the vicinity of singularities, for example bifurcation, the equilibrium equations
may become numerically unstable which might lead to divergence. This is one reason why analytical

Keywords: elastic-plastic stability, asymptotic expansion, imperfection sensitivity.
The present study was initiated when the first author was a graduate student and the second author was a member of the faculty
at the Technical University of Denmark, Department of Structural Engineering and Materials.
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investigation of stability problems is still important. Another, maybe even more important, ground for
the interest in analytic methods is the desire to better understand elastic-plastic stability and imperfection
sensitivity. It is therefore important to establish an analytic method for treatment of plastic stability.

For more than half a century, Koiter’s general asymptotic theory of initial postbuckling and imper-
fection sensitivity of elastic structures has been available [Koiter 1945]. Development of a similar and
as widely applicable theory of stability in the plastic range presents more difficulties, mainly due to the
fact that, contrary to the case of elastic structures, the maximum load of a geometrically perfect elastic-
plastic structure rarely occurs at bifurcation. To date, the most successful method has been established
by Hutchinson [1973b]. However, as pointed out by Hutchinson himself, the method has a rather limited
range of applicability for certain types of structures (see also [Hutchinson 1974]).

A short survey of plastic buckling. The history of analytical treatment of elastic-plastic stability is only
a little more than one hundred years old, beginning with the work of Engesser [1889], who proposed
a formula for the plastic bifurcation load, later known as the tangent modulus load, of a column. His
formula was subjected to criticism and Engesser derived another formula under the tacit assumption that
bifurcation occurs under constant load, the so-called reduced modulus load. It appears that over the next
60 years almost any professor of structural mechanics had his own formula for plastic column buckling.
In retrospect it seems clear that these formulas are just weighted averages of the two loads mentioned
above, and sometimes the Euler buckling load is also included in the weighting. Based on experiments on
aluminum columns and by analyzing the initial postbifurcation behavior of a simple model column, which
we refer to as the Shanley column, Shanley [1947] showed that the tangent modulus load was indeed the
most meaningful of the previously suggested plastic buckling loads and that at that load, bifurcation
takes place under increasing load. Soon after, Duberg and Wilder [1952] introduced imperfections in the
Shanley model column, and later Hill [1957] established the minimum energy criterion of stability for a
rigid plastic body.

While the works mentioned above were mainly concerned with determination of the correct plastic
bifurcation load and to some extent also with the initial postbifurcation behavior, analytic determination
of the maximum load-carrying capacity of geometrically perfect and imperfect structures received much
less attention. Not until the work by Hutchinson [1973b], and the survey article [Hutchinson 1974]
was an asymptotic method in the spirit of Koiter established. Hutchinson introduced terms of fractional
powers in the asymptotic expansion in order to handle elastic unloading. Hutchinson’s method and ideas
were further explored by, among others, Needleman and Tvergaard [1976] and van der Heijden [1979].

Hutchinson [1972; 1973a] and van der Heijden [1979] prescribe that elastic unloading initiates at
bifurcation for the perfect structure. The point of initiating elastic unloading of the imperfect structure
is determined by a simple one-term elastic asymptotic expansion. Hutchinson uses this point as basis for
an asymptotic expansion similar to the one he suggested for the perfect structure, while van der Heijden
also uses the point of initiating elastic unloading to construct solutions in the spirit of his perfect solution.
Both these solutions tend to be considerably more complicated than their perfect counterparts but suffer
the same shortcoming: relatively accurate estimates of the load-carrying capacity is only found when
the maximum load occurs very close to bifurcation. This is, however, rarely the case in plastic stability
problems. Note that neither of the solutions predicts asymptotically correct maximum loads for small
imperfections.
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Hutchinson and Budiansky [1976] discovered that when the critical load of an elastic-plastic structure
coincides with the reduced modulus load the maximum loads in the presence of imperfections sometimes
coincide with the maximum loads of the hypoelastic comparison structure, and a theory rather similar to
the simpler elastic asymptotic Koiter theory yields exact asymptotic estimates of these maximum loads.
Needleman and Tvergaard [1976] suggested that even when the maximum load of the imperfect structure
is found after initiating elastic unloading a hypoelastic theory may still yield sufficiently precise results.
They base their idea on the fact that the larger the imperfections the less significant elastic unloading be-
comes. Comparison with numerical results shows that when the equilibrium of the geometrically perfect
structure is not significantly influenced by plasticity this method estimates the imperfection sensitivity
extremely well, but when the added stiffness of the elastic unloading zone dominates postbuckling a
hypoelastic theory cannot be used for accurate estimates.

Thus, when plasticity is included the imperfection sensitivity analysis becomes even more complex,
partly because the maximum load of both the perfect and the imperfect structure may be far from bifur-
cation, and partly due to the fact that each equilibrium path of the imperfect structure has a singularity
where elastic unloading initiates. Probably for these reasons it seems that very few new approaches
to analytic treatment of plastic postbuckling and imperfection sensitivity have been proposed since the
above mentioned studies and none appears to have led to much improvement over the existing methods.
Thus, a simple and universally accurate method for handling imperfection sensitivity of plastic structures
has not yet been established. In this connection it may be worth mentioning that Ming and Wenda
[1990] postulated to have improved Hutchinson’s asymptotic method by choosing a different perturba-
tion parameter. However, a closer examination of their work reveals that they determine the asymptotic
coefficients correctly, but that their asymptotic plots do not match these coefficients at all. The correct
curves do not approximate the maximum load any better (or worse) than Hutchinson’s did. The article
by Scherzinger and Triantafyllidis [1998] is concerned with an asymptotic analysis of stability of elastic-
plastic structures, but their expansion parameter ε describes the slenderness of the beams investigated
rather than a displacement variable, as is the case in the present study.

Since the Sixties, great effort has been spent on nonlinear numerical investigations of more realistic
elastic-plastic structures. In spite of their own merits, numerical investigations rarely lead to a deeper
understanding of the phenomenon of elastic-plastic buckling, at least not unless a large number of com-
putations are carried out.

Main objectives. The maximum loads, denoted Pmax, of the analytical methods mentioned above are all
fairly well predicted when the maximum load occurs very close to the point of bifurcation, even though
the matching buckling amplitude is sometimes rather poorly determined. When Pmax lies far from the
point of bifurcation the accuracy deteriorates rapidly. The main reason for including elastic unloading is
the enhanced load-carrying capacity in postbuckling. Thus, an accurate determination of the postbuckling
load reserve is of great importance, in particular when the maximum load becomes considerably higher
than the bifurcation load.

In order to reduce the complexity of the problems as much as possible without loss of plastic character-
istics, Hutchinson [1974] used a slightly modified version of the Shanley column which only differs from
the original by being supported by a continuous row of springs and a nonlinear spring at the top in order
to introduce various kinematic nonlinearities; see Figure 1. In the present paper we investigate both
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Fig. II.1. The continuous Shanley-Hutchinson column.
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Figure 1. The continuous Shanley–Hutchinson column: (a) geometrically perfect; (b)
geometrically imperfect.

the geometrically perfect and the geometrically imperfect version of the Shanley–Hutchinson Column
and develop analytic methods which predicts the load-carrying capacity of the geometrically imperfect
Shanley–Hutchinson elastic-plastic model column (see Figure 1(b), and for the the maximum load of its
geometrically perfect counterpart, see Figure 1(a)) and concentrate on cases where Pmax does not occur
close to bifurcation.

The ultimate goal of the investigation of plastic stability is, of course, to allow plastic stability to be
included in maximum load calculations for more realistic structures, but that is not within the scope of
the present paper.

1. Geometrically perfect model column

1.1. Preliminary analysis. In order for a solution to the plastic postbuckling problem to be considered
satisfactory, we require that its prediction of the maximum load be accurate compared to the postbuckling
load reserve and that the results be stable in the sense that the solution should be valid for all relevant
cases. Furthermore, it is important that the solution be relatively simple and straightforward to apply to
real structures.

Before 1970 the models considered—for example, the original Shanley column—were so simple that
it was possible to give explicit solutions, but with the continuous Shanley–Hutchinson column and other
more realistic models the complexity of the solutions made this impossible. We emphasize that by an
explicit solution we do not necessarily mean the exact equilibrium, rather explicit is used in the sense of
an approximation which does not invoke incremental steps. By this definition Hutchinson’s and van der
Heijden’s solutions are also explicit. Such explicit solutions are subject to some limitations with regard
to generality which will also be present in this paper:
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• No other singularity can be present after the bifurcation singularity and before maximum load (for
example, mode interaction, extension of the unloading zone all the way through the cross-section,
Bauschinger effects, etc.).

• Unloading must start at bifurcation, which it will do in most relevant stability cases; see, for example,
[Hutchinson 1974], and certainly for the Shanley–Hutchinson column.

The first limitation can be overcome by splitting the solutions into parts between singularities. The
latter problem rarely occurs because unloading usually starts at bifurcation.

Before we proceed the search for a solution valid far from bifurcation, we discuss the merits of the
most important existing methods.

Hutchinson’s asymptotic expansion. The asymptotic expansion for initial postbuckling in the plastic
range due to Hutchinson [1974] is the foundation for later asymptotic approaches to plastic stability. It is
the natural, albeit not as obvious, extension of the elastic asymptotic theory by Koiter [1945] except for
the fact that fractional powers are present in the expansions. It accounts for elastic unloading and material
nonlinearities, but is still, like its elastic counterpart, fairly straightforward to apply to structural problems.
The disadvantage of the method and the reason that new analytic plastic methods are still interesting is
that it furnishes rather crude estimates of the maximum load and its associated displacements, unless
the maximum occurs very close to bifurcation. This fact was already pointed out by Hutchinson [1974].
Later, van der Heijden [1979] showed that expanding Hutchinson’s method further often produces less
accurate approximations of the maximum load due to the unpredictable range of convergence for ordinary
asymptotic methods.

The reduced modulus solution by van der Heijden. In his study, van der Heijden [1979] recognized that
it was not the behavior in the vicinity of bifurcation, but the behavior close to the maximum load that con-
trols the imperfection sensitivity. This led him to give an asymptotic estimate of the possible maximum
loads close to the reduced modulus load thereby gaining knowledge about the approximate asymptotic
behavior at maximum load. He then matched the asymptotic expansion established by Hutchinson with
his own and ended up with an approximate expression for the equilibrium from bifurcation to maximum
load. For maximum loads close to bifurcation this yields excellent predictions, but further away from
bifurcation the accuracy decreases considerably, yet slightly less than Hutchinson’s, as it appears from
van der Heijden’s comparison with numerical results [van der Heijden 1979]. The implementation of
van der Heijden’s method is lengthy in that three asymptotic expansions must be established, and the
matching procedure is not straightforward and therefore hard to extend to higher degrees of asymptotic
expansions as well as to generalize to other kinds of structures.

The hypoelastic imperfection sensitivity studies by Hutchinson and Budiansky and by Tvergaard and
Needleman. The hypoelastic approach used by Hutchinson and Budiansky [1976] and by Needleman
and Tvergaard [1976] suppresses the elastic unloading branch making it possible to analyze a nonlinear
comparison version of plastic structures asymptotically in the spirit of Koiter’s well-known linear elastic
approach [Koiter 1945]. However, the similarity between the plastic structure and its associated compar-
ison model in postbuckling strongly depends on the extent of the unloading zone and its added stiffness.
This approximation will therefore only be satisfactory when elastic unloading is of minor importance.
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Parameters of the solution. The postbuckling solution depends on the parameters of the material non-
linearity represented in the stress-strain relation and on the parameters of the kinematic nonlinearity
concentrated in the nonlinear spring at the top of the column; see Figure 1(a). To fully understand the
plastic behavior in postbuckling of the column, it is therefore crucial to investigate the influence the
parameters of the model on the location of the maximum load point.

As presupposed in Section 1.2 the column unloads linearly elastic with a constant Young’s modulus
E . The larger E , the more elastic unloading dominates and makes the maximum load move away from
bifurcation. The basic expressions (9) and (10) do not depend on the shape of the stress-strain relation
before bifurcation, only on the values of E and Et , where Et denotes the tangent modulus, which, in
general, depends on the strain.

As in most other buckling and postbuckling studies we assume that the tangent modulus Et decreases
with strain and approaches zero at infinite strain. The smaller the rate of decrease of Et , the further from
bifurcation the maximum load is.

The spring K (see Figure 1(a)) provides a destabilizing nonlinearity in order to make the structure
imperfection sensitive and ensure the existence of a maximum load after bifurcation. The smaller the
rate of increase of the kinematic nonlinearity the further from bifurcation the maximum load is going to
be.

The stress-strain relation is mainly important close to bifurcation because, as Et approaches zero, K
will totally dominate the equilibrium equations. Since it is known that existing methods work well close
to bifurcation it is particularly interesting to examine the behavior as the locus of maximum moves away
from the point of bifurcation. This means that an investigation where K as well as the rate of decrease in
Et is small, while E is large, is particularly relevant to perform. For the sake of studying plastic effects
on stability it is especially important that accurate results are obtained when Ec

t /E is small, where Ec
t

designates the value of Et at bifurcation.
We shall try not to exploit features that are particular to the Shanley–Hutchinson-model in our deriva-

tions in the hope that the method developed here is applicable to a broader variety of structures.

General idea. It is evident from the above that when examining plastic postbuckling behavior, one has to
include elastic unloading. To keep it simple and straightforward, we would like to avoid the complications
and limitations inherent in the reduced modulus approach, yet we would like to utilize the knowledge
about the equilibrium when far from bifurcation in order to determine maxima in the advanced postbuck-
ling regime. Hutchinson’s general, simple and excellent concept of a Koiter-like asymptotic expansion
[Hutchinson 1974] does not cover advanced postbuckling states due to the fact that the postbuckling fields
were expanded in (fractional) powers of the buckling mode amplitude. Therefore, focus was centered
on the immediate neighborhood of bifurcation. It is a well-known fact that the range over which an
asymptotic expansion yields sufficiently accurate results is hard to predict, in fact, the range can be
extremely small and may very well decrease with the number of terms in the asymptotic expansion, but
choosing a set of more suitable trial functions, if available, may improve convergence. Below, we show
that use of other trial functions that behave in a globally correct way may indeed extend the validity to
cover advanced postbuckling states.
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In order to improve the approximation of the correct equilibrium by the asymptotic expansion sug-
gested by Hutchinson [1973b; 1974] and thereby obtain reliable results even when the maximum sup-
ported load does not appear close to bifurcation, we shall first examine carefully the general behavior
of the Shanley–Hutchinson column in advanced postbuckling. Subsequently, we will use the acquired
knowledge to choose suitable trial functions and make an asymptotic match at bifurcation between the
new expansion and the original one by Hutchinson.

1.2. Basic equations. Throughout this paper a superscript c or a subscript c denotes a value taken at
bifurcation. Superscript o or subscript o refers to Hutchinson’s original values with dimensions, while
nondimensional quantities are left unmarked for convenience.

In order to isolate the kinematic nonlinearities in the top spring shown in Figure 1(a), Hutchinson used
the approximation sin(θ)≈ θ , and gave the top spring response as

Ko(θo)= kioθ
i+1
o , i ∈ {1, 2, 3, . . .} (1)

where we note that positive values of kio imply destabilizing. Since the lowest power of θo is 2, asymmet-
ric postbifurcation of the kind experienced by the so-called Roorda Frame is not covered; see [Roorda
1965] and [Koiter 1966] for the elastic version, and [Byskov 1982–83] for the elastic-plastic version.
In the purely elastic case, symmetric postbuckling like the one typical of many shell structures may be
modeled by letting k1o > 0. In the following examples we do not cover the case k2o 6= 0 because it is
rather trivial, but, as we shall see, for a special reason, address the one with k3o > 0.

Together, Figure 1(a) and Figure 2 define the geometry. Note that the quantity Eeff, which is intro-
duced below, designates the immediate effective tangent modulus, that is, it is Et for loading and E for
unloading, and that s is the stress. We keep as close to Hutchinson’s original notation as possible, but
introduce the following nondimensional quantities:

x =
xo

L
P =

Po

Pc
o

s =
so

2sc
o

θ =
L̃
L
θo u =

L̃

L2 uo ε =
L̃

L2 εo

Eeff =
3Eo

eff

2Ec
to

ki =
L i+2

Pc
o L̃ i kio θ̄ =

L̃
L
θ̄o (2)

u

x

θ

Postbifurcation

Prebifurcation

Fig. II.2. Definition of the kinematic variables u and θ.Figure 2. Definition of the kinematic variables u and θ .
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where θ̄ signifies a geometric imperfection; see Section 2.1, Figure 10.
The lowest bifurcation load is given by Hutchinson as

Pc
o =

2Ec
to L3

3L̃
,

which, by the way, is the same as the bifurcation load of the nonlinear elastic comparison model. The
following nondimensional quantities evaluated at bifurcation are used extensively in the following:

Pc = 1, sc =
1
2
, Ec

t =
3
2
. (3)

Utilize the nondimensional quantities introduced in Equation (2) to obtain the nondimensional equilib-
rium equations of the geometrically perfect realization of the model column:

P =

∫ 1

−1
sdx, P(θ)+ K (θ)=

∫ 1

−1
sxdx, (4)

where, in analogy with Equation (1), the nondimensional spring stiffness is

K (θ)= kiθ
i+1, i ∈ {1, 2, 3, . . .},

and the strain-displacement relation of the continuous spring support is

ε = u + θx . (5)

When linear-elastic unloading is included, the stress increment ṡ is given as

ṡ = Eeff ε̇, (6)

where

Eeff =

Et(ε), for
(
(s = smax)∧ (ṡ ≥ 0)

)
,

E, for
(
(s < smax)∨

(
(s = smax

)
∧ (ṡ < 0)

))
,

(7)

and where a dot indicates an increment, and s > 0 implies compression.
The incremental equilibrium equations are readily obtained by differentiation of Equation (4) and the

use of Equation (6).
The zone of elastic unloading spreads from the edge of the column support and extends to the point

d , where no sign reversal of the strain rate has occurred, that is, ∂ε/∂θ = ∂u/∂θ + d = 0, and thus

d = −
∂u
∂θ
. (8)

When d <−1, there is no elastic unloading. Elastic unloading always initiates at the lowest bifurcation
load of the perfect Shanley–Hutchinson column [Hutchinson 1974]. After introduction of the constitutive
equation (7) the incremental equilibrium equations of the geometrically perfect model column may be
written:

∂P
∂θ

=

∫ d

−1
E
(
∂u
∂θ

+ x
)

dx +

∫ 1

d
Et

(
∂u
∂θ

+ x
)

dx (9)
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and
∂P
∂θ

θ + P +
∂K
∂θ

=

∫ d

−1
E
(
∂u
∂θ

+ x
)

xdx +

∫ 1

d
Et

(
∂u
∂θ

+ x
)

xdx . (10)

1.3. General behavior of the equilibrium. Before the postbuckling equations (9) and (10) can be solved,
the constitutive relation, given by E and the expression for Et(ε) after buckling, as well as the kinematic
nonlinearity in terms of K (θ) must be chosen. The study of plastic postbuckling mainly differs from the
elastic in that, in the plastic case it is necessary to consider the effect of stiffening by unloading with the
modulus E . In order to examine the influence of the stiffening, we therefore keep the postbuckling up-
loading stress-strain relationship and the kinematic nonlinearities fixed only allowing the initial Young’s
modulus E to vary. An upper bound for the equilibrium is found when the unloading modulus approaches
infinity, that is, when Ec

t /E = 0. When the initial slope of the postbuckling equilibrium is negative, that
is, when (∂P/∂θ)c ≤ 0, a lower bound with Pc as the maximum is characterized by Ec

t /E = 1. After
the bounds have been established we are furnished with a firm frame for our further investigations: all
other solutions are limited to this area and are furthermore not allowed to cross each other.

Upper bound. When E → ∞ ⇒ Ec
t /E → 0 and it is assumed that |P|<∞ and |∂P/∂θ |<∞, Equations

(9) and (10) simplify substantially in that the introduction of Ec
t /E = 0 provides

0 =

∫ d

−1

(
∂u∞

∂θ
+ x

)
dx and 0 =

∫ d

−1

(
∂u∞

∂θ
+ x

)
xdx . (11)

Superscript ∞ or subscript ∞ denotes the upper bound. Insert d given by Equation (8) to solve (11). The
only possible solution is

∂u∞

∂θ
= 1 H⇒ u∞ = θ + uc, (12)

which means that the unloading zone does not progress into the cross-section, but is limited to one edge
of the support. Express E by P and u in Equation (9) as

E =

∂P
∂θ

−

∫ 1

d
Et

(
∂u
∂θ

+ x
)

dx∫ d

−1

(
∂u
∂θ

+ x
)

dx
,

and insert this expression and Equation (12) in Equation (10) to determine the load P∞(θ) associated
with the upper bound

(1 + θ)
∂P∞

∂θ
+ P∞

=

∫ 1

−1
Et(x + 1)2dx −

∂K
∂θ
,

identified as a first order linear differential equation, which, when the boundary condition P∞(0)= 1 is
applied, has the solution

P∞(θ)=
1

1 + θ

(
−K (θ)+

∫ 1

−1
shypo(x + 1)dx

)
. (13)
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Here, shypo is the nondimensional nonlinear hypoelastic postbuckling stress found independent of elastic
unloading. For some choices of constitutive relations the integral may be computed explicitly when the
stress-strain relationship is chosen.

The upper bound solution is particularly interesting because it covers the solutions where the maximum
load appears as far from bifurcation as possible. This provides an ideal basis for the selection and fitting
of asymptotic trial functions which provide reliable solutions far from bifurcation.

Lower bound. When Et , as supposed, is a decreasing function of ε, the plastic model is able to carry
higher loads than the related hypoelastic comparison model because of the stiffening of the elastically
unloaded region. Thus, the comparison model provides an absolute lower bound for the plastic solutions.
As mentioned above, in the plastic regime the maximum load usually does not occur at bifurcation. It
is the case under the usual conditions that the stress-strain relation is continuous and that E is larger
than Ec

t , otherwise the structure will not feel unloading as a stiffening. Furthermore, it is assumed that
bifurcation does not take place at a sharp bend in the stress-strain relation. If, as an experiment, we
choose Ec

t /E ≥ 1 in the buckling model the usual conditions mentioned above are violated and it may
be realized that the initial postbuckling stiffness will be smaller than that of the comparison model. The
value of ∂Pc/∂θ of the comparison model is always smaller than or equal to zero when no stabilizing
kinematic nonlinearities are present and therefore the plastic model with Ec

t /E = 1 has a maximum at
bifurcation. From this we deduce the important information that, as Ec

t /E decreases from 1 to 0, the
maximum load will move from the bifurcation point to the maximum of P∞ given by Equation (13).
Since s is monotonically increasing from x = − 1 to x = 1 for θ > 0, the right side of Equation (4)
will always be positive. This provides an absolute minimum for the solution of Equation (4) (right) and
therefore a lower bound for any plastic solution with Ec

t /E < 1:

P ≥
−K (θ)
θ

= Plower. (14)

1.4. Hyperbolic asymptotic method. It may be shown that, as θ approaches infinity and Et approaches
zero, the integral in the upper bound solution Equation (13) loses significance compared to K (θ) yielding
the far field solution

lim
θ→∞

P∞
→

0, K (θ)= 0,

−
K (θ)
1 + θ

, K (θ) 6= 0.

Compare the above equation to the absolute minimum solution Equation (14) and notice that they are
approximately parallel to each other with a limited distance less than 1 when θ is large. Furthermore,
we find that the solutions are asymptotically similar, that is, P∞

∼ Plower for θ → ∞. Any arbitrary
solution lies between the upper and lower bound and must therefore also behave asymptotically like the
upper bound at infinity with a distance less than 1. In order to use the knowledge of the upper bound and
the relative shape of other solutions it seems obvious to concentrate on an asymptotic expansion of the
difference 1P∞

≤ 0 between the upper bound P∞ and the solution P; see Figure 3.

1P∞
= P − P∞. (15)
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Fig. II.3. The hyperbolic asymptotic method and the admissible region.Figure 3. The hyperbolic asymptotic method and the admissible region.

This choice has the convenient feature that it predicts both the maximum load and its associated dis-
placement well when the solution lies close to the upper bound, even when the maximum load occurs
far from bifurcation. The usual polynomial asymptotic trial functions are, however, not suited for the
expansion of 1P∞ because they do not in general fulfill the above-mentioned conditions of parallelism
and negativity. Hyperbolic functions1 not only satisfy these conditions, but have the property that their
lowest order terms dominate the general behavior, that is, not only for small, but for all values of θ .
The basic idea is to establish an hyperbolic approximation H(θ) using the characteristics of 1P∞ and
matching these terms with the first few nonvanishing asymptotic terms of the series of Hutchinson [1974];
see Appendices A and B. Since 1P∞ in general only vanishes relative to P∞ at infinity, we choose the
leading power of the denominator to be only fractionally higher than that of the numerator. The lowest
order asymptotic term is then given by the numerator, while the next terms are used in the denominator
to restrain the growth of the expression. In practice, applying the first two terms of the denominator
proves to furnish a sufficiently accurate first approximation

1P∞
≈ H(θ)= a∞

1 H(θ)= a∞

1
θ

3
2

(1 + h1θ
1
2 + h2θ)2

.

Notice that H(θ) will always be negative because, according to Equation (B.3); see Appendix B, and
the above equation, a∞

1 = a12 < 0. If further exploration is desired, H(θ) provides a basic trial function
for a hyperbolic asymptotic method

1P∞
= a∞

1 H(θ)+ a∞

α H(θ)α + a∞

β H(θ)β + O(H(θ)γ ), 1< α < β < . . . < γ. (16)

When H(θ) is chosen to match the first three nonvanishing asymptotic terms, a∞
α and α may be deter-

mined from the fourth term and so forth. The general expansion Equation (16) still behaves globally
correct. It approaches zero at infinity and higher order asymptotic terms of H(θ) become increasingly
less significant compared to lower order terms for large values of θ .

1Here, we use the term hyperbolic in a somewhat generalized sense.
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Hyperbolic asymptotic expansion coefficients. In order to determine a∞

1 , h1, h2, a∞
α , α, etc., we match

the hyperbolic expansion Equation (16) with that of Hutchinson [1974]. An asymptotic expansion carried
to a higher degree in θ than Hutchinson’s is given in Appendix A; see Equations (A.1), (A.2), (A.6) and
(A.7). The extension of the method is straightforward, but rather lengthy. The polynomial expansion of
H(θ) is

H(θ)= θ
3
2 − 2h1θ

2
− (2h2 − 3h2

1)θ
5
2 + (6h1h2 − 4h3

1)θ
3
+ O(θ

7
2 ).

Insert the above equation into (16) and compare with Equation (B.2) to obtain expressions for the hyper-
bolic coefficients

a∞

1 = a12 , h1 =
a13

−2a12
, h2 =

a14
−2a12

+
3
2 h2

1,

where a1i are the polynomial asymptotic coefficients given in Equation (B.3). When a∞

1 , h1 and h2 are
determined from the three initial asymptotic terms, α must be equal to 2 for the θ3-term to match. Thus,

α = 2: a∞

α = a∞

2 = a15 − a12 (6h1h2 − 4h3
1).

Although we have found no case where it was necessary to determine the β-term of Equation (16), we
mention that the value of β is 7

3 . Carrying out the expansion to cover this is, however, so lengthy and
complicated that it may not be worth the while.

Finally, inserting Equation (16) into (15) provides the total solution for P .
The fact that we have chosen other trial functions than the usual polynomials does not change the

asymptotic behavior of the initial postbuckling path, that is, for small values of θ . The new asymptotic
expansion will therefore be no worse than the original one when Ec

t /E is increased and the maximum
load approaches bifurcation as shown in the lower bound solution. This indicates that the use of our
hyperbolic trial functions will produce accurate maximum loads for all 0 ≤ Ec

t /E ≤ 1. When P is
determined, the displacement u may be found after P has been inserted into Equations (9) and (10).

1.5. Constitutive relation. Traditionally, a Ramberg-Osgood type stress-strain relation has often been
employed in elastic-plastic buckling studies, such as the important ones by Hutchinson [1974] and by
van der Heijden [1979]. For our purpose, this constitutive model has the disadvantage of expressing the
strain in terms of the stresses instead of the other way around implying numerical integrations. As far
as possible, we prefer analytic manipulations and therefore propose another constitutive model, which
provides an explicit formula for the tangent modulus Et in terms of the added strain 1ε after bifurcation
and a shape parameter ρ:

Et =
Ec

t

1 + ρ1ε
=

3
2(1 + ρ1ε)

. (17)

When ρ and the ratio Ec
t /E are varied, this relation may cover a wide variety of constitutive behavior

and may be considered as versatile and valid as the Ramberg-Osgood type formula [Hutchinson 1974]:

ε

εy
=

s
sy

+ψ

(
s
sy

)n

, (18)

where εy and sy = Eεy are effective initial yield values, n is the hardening parameter, and ψ is a shape
parameter.
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In Example 1 below we wish to compare results obtained by our improved method with those found
by Hutchinson [1974] and by van der Heijden [1979]. Therefore, we need to examine the differences
between the two constitutive relations for a certain set of parameters. Both Hutchinson [1974] and van der
Heijden [1979] take (n, ψ)= (3, 0.2). Numerical experiments show that the tangent modulus decrease
rate ρ = 3.0 in Equation (17) produces a constitutive law very similar to the one used by Hutchinson and
van der Heijden; see Figure 4, where the relative difference between the values of the tangent modulus Et

found by the two constitutive relations is plotted over a very large interval of 1ε. It may be worthwhile
noticing that for n = 10 the proper value of ρ is about 25.

Stress-strain relation and the upper bound. In Equation (13) the postbuckling stress-strain relation is
represented by shypo. To avoid a numerical calculation of the integral, we therefore chose Et as an
explicit function of ε; see (17). Now, (17) may yield the following expression for shypo:

shypo =
Ec

t

ρ
ln(1 + ρ1ε)+

1
2

=
3

2ρ
ln(1 + ρ1ε)+

1
2
. (19)

At the upper bound, straightforward use of Equation (12) provides 1ε = (1 + x)θ. Introduce this ex-
pression into (19) and exploit this in Equation (13) to get an explicit nondimensional expression for the
upper bound:

P∞
= 1 +

1
1 + θ

[
−θ − K (θ)+

3
2ρ

(
1
ρθ

− 1 +

(
2 −

1
2(ρθ)2

)
ln(1 + 2ρθ)

)]
. (20)

Example 1: comparison with previous results. As a demonstration of the improved accuracy of our
new method, we compare the postbifurcation equilibrium with the asymptotic solution of Hutchinson
[1974] and with the approximate solution by van der Heijden [1979] and utilize numerical results to
judge the accuracy for a case which was found to be particularly demanding by Hutchinson [1974] and
van der Heijden [1979], namely the case where Ec

t /E = 0.459. Furthermore, the example covers cases
where the maximum load occurs close to bifurcation and where it lies close to the upper bound maximum.

∆ε

∆Et/Et

21.751.51.2510.750.50.250

0.015

0.01

0.005

0

-0.005

-0.01

-0.015

Fig. II.4. Relative difference between Et found by the Ramberg-Osgood
constitutive law (I.27) with (n, ψ) = (3, 0.2) and by (I.26) with
ρ = 3.

Figure 4. Relative difference between Et found by the Ramberg-Osgood constitutive
law Equation (18) with (n, ψ)= (3, 0.2) and by Equation (17) with ρ = 3.
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E
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E
= 0
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Fig. II.5. Postbuckling equilibria of the hyperbolic asymptotic method
compared with numerical results, (n, ψ) = (3, 0.2), ρ = 3.0,
ki = 0. Hutchinson’s and van der Heijden’s results are only
plotted for Ec

t/E = 0.459.

Figure 5. Postbuckling equilibria of the hyperbolic asymptotic method compared with
numerical results, (n, ψ)= (3, 0.2), ρ = 3.0, ki = 0. Hutchinson’s and van der Heijden’s
results are only plotted for Ec

t /E = 0.459. Here, the dotted line shows Hutchinson
1973, dot-dashed line, van der Heijden 1979, thin dashed line, 2 Hyperbolic terms, thick
dashed line, 1 Hyperbolic term and solid line, Numerical.

Figure 5 contains plots of the postbuckling path determined by our hyperbolic asymptotic solution with 1
and 2 terms and by numerical computations, respectively. For purpose of comparison, the upper bound
solution Ec

t /E = 0 is also indicated.
A good measure of the effect of some hyperbolic asymptotic term, cH(θ)k , on the solution is its

maximum value. In each example, define H̃ such that its maximum value is 1. Then, the hyperbolic
asymptotic expressions (15) and (16) yield:

Ec
t

E
= 0.1: P = P∞

− 0.16H̃ − 0.01H̃ 2, H̃ ≡
17.2θ

3
2

(1 + 0.13θ
1
2 + 3.01θ)2

,

Ec
t

E
= 0.459: P = P∞

− 0.33H̃ − 0.04H̃ 2, H̃ ≡
22.5θ

3
2

(1 + 0.35θ
1
2 + 3.39θ)2

,

Ec
t

E
= 0.8: P = P∞

− 0.36H̃ − 0.06H̃ 2, H̃ ≡
45.0θ

3
2

(1 + 0.75θ
1
2 + 5.00θ)2

.

(21)

Notice that the maximum (coefficient) value of the second asymptotic term is small compared to the
maximum of the first asymptotic term even when Ec

t /E is much greater than 0 and the solution lies
far from the upper bound. This indicates that the solution is relatively accurate even with only one
asymptotic term. Still, the ratio between the first and the second asymptotic coefficient does not drop
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significantly for increasing ratios of Ec
t /E , which indicates that more than one asymptotic term is needed

for satisfactory results when the solution lies far from the upper bound.
From Figure 5, it is clear that the one-term hyperbolic solution provides excellent agreement with

the numerical results when Ec
t /E is small. As Ec

t /E is increased and the solution moves away from
the upper bound, the accuracy becomes less good. Employment of a second hyperbolic term makes the
hyperbolic solution almost identical to the numerical one for θ / θ∞

max ≈ 0.46 both when Ec
t /E = 0.1

and Ec
t /E = 0.459. For Ec

t /E = 0.8 the maximum load and its neighborhood are determined accurately
because of their proximity to bifurcation, but the solution is so far from the upper bound that the general
hyperbolic asymptotic postbuckling path starts to deviate from the numerical one from θ ≈ 0.1. This is
in agreement with what was deduced from Equation (21).

As expected, the two-term hyperbolic solution is considerably closer to the general numerical equi-
librium than Hutchinson’s and van der Heijden’s solutions for Ec

t /E = 0.459 and the maximum load is
more precise. Both Hutchinson’s and van der Heijden’s methods are basically polynomial asymptotics
emanating from the ordinate axis, and therefore their solutions tend to deteriorate rapidly with increasing
θ . Of the solutions investigated by Hutchinson and by van der Heijden, the case with Ec

t /E = 0.459,
ki = 0 exhibits the greatest ratio between the maximum load and the critical load and the largest θ -value
at maximum load. From Figure 5 it is seen that other equilibria have maxima that occur significantly
further from the bifurcation point and it is for such cases the hyperbolic method has its real raison d’être.

Even though the maximum load is determined with excellent accuracy by a two-term hyperbolic
expansion, the value of θ at maximum may not be as precise.

Example 2: maximum loads. As stated earlier, our real interest lies in a precise determination of the
maximum load. Previously, we have discussed the impact of the different parameters of the model on the
location of maximum load relative to the critical load. The implementation of the postbuckling uploading
stress-strain relation Equation (19) reduces the number of independent parameters in the determination
of P∞(θ) to the kinematic nonlinearities, ki , the rate of decrease in tangent modulus ρ and the level of
plasticity Ec

t /E .
The parameters, ki , control the fundamental overall shape of the equilibrium. Three basically different

shapes may be distinguished:

(i) ki = 0: no destabilizing kinematic nonlinearity is present. The maximum load will be far from
bifurcation.

(ii) k1 6= 0: a rapid initial drop in load-carrying capacity will occur and the maximum load is close to
bifurcation.

(iii) ki 6= 0, i large: if i is sufficiently large the ki -term will not be felt at the present stage of Hutchinson’s
asymptotic expansion Equation (B.2). The third spring constant, k3, is the lowest level of kinematic
nonlinearity not to appear in the terms of the Hutchinson asymptotic expansion used to determine
the first 2 hyperbolic asymptotic terms. On the other hand, in the application of our method it enters
through the expression (20) for P∞. To have any noticeable influence on the maximum load, k3

must be relatively large. When θ = 0.5, the value k3 = 12 furnishes a kinematic nonlinearity equal
the nonlinearity associated with k1 = 3.
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ρ = 1.0

ρ = 0.3

ρ = 0.0
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Fig. II.6. Stress-strain relations for ρ-values used in the maximum load

plots. Unloading paths are not shown.
Figure 6. Stress-strain relations for ρ-values used in the maximum load plots. Unload-
ing paths are not shown.

Figures 7, 8 and 9 show the maximum load for each of these cases as a function of the level of plasticity
Ec

t /E for the tangent modulus decrease rate, ρ, varying between no decrease ρ = 0 and infinitely rapid
decrease ρ → ∞, as illustrated in Figure 6. As is clear from the figure, a wide spectrum of stress-strain
relations are covered by the constitutive equation Equation (17).

Because of the different nature of each of the plots in Figures 7–9, we shall first examine each plot
separately and then draw a more general conclusion. Note that, in order to make it possible to differentiate
between the curves found by the hyperbolic method and by numerical computations, the plots in Figures
7–9 are scaled differently.

Numerical
Asymptotic

(Ec
t /E)1/2

∆P̃
max

10.0

3.0

1.0

ρ = 0.3

10.8750.750.6250.50.3750.250.1250

1.25

1

0.75

0.5

0.25

0

Fig. II.7. Maximum loads approximated with 2 asymptotic terms, K(θ) =
0.

Figure 7. Maximum loads approximated with 2 asymptotic terms, K (θ)= 0.
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Numerical
Asymptotic
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0.5

0.4

0.3

0.2

0.1

0

Fig. II.8. Maximum loads approximated with 2 asymptotic terms, K(θ) =
3θ2.

Figure 8. Maximum loads approximated with 2 asymptotic terms, K (θ)= 3θ2.

• Figure 7, ki = 0: In this case, the kinematic nonlinearity is as weak as possible in that the only
kinematically nonlinear effect is the one which provides bifurcation. Therefore, the maximum load
curve for ρ = 0.0 does not exist for finite θ . This means that when ρ is close to 0, the 2-term
hyperbolic expansion does not provide a maximum because it is too far from both the upper bound
and bifurcation.

Apart from the above-mentioned exception, the added load-carrying capacity in postbuckling,
1Pmax , is found with only a small relative error of less than ≈ 10% everywhere.

The plot shows that 1Pmax is often significant compared to Pc as it for ρ ≤ 0.3 becomes as large
as 125% of Pc (recall that Pc = 1). For ρ → 0 the upper bound solution yields a 1Pmax of 400%
of Pc.

• Figure 8, k1 = 3: Here, the kinematic nonlinearity is strong and, as a consequence of this, all
maximum loads are extremely well approximated independently of the distance from the bifurcation
point. This hinges on the fact that every solution is close to both the upper bound and the bifurcation
point at maximum. Observe that, even when the first order kinematic nonlinearity, k1 = 3, is large,
the column has a considerable load-carrying reserve in postbuckling of up to ≈ 50% of Pc when ρ
and Ec

t /E are small.

• Figure 9, k3 = 12: As mentioned above, this is a case where ki only enters through the formula
for 1P∞. Therefore, the approximations by the hyperbolic expansion could be expected to be
inaccurate.

However, except for fairly large values of Ec
t /E and small values of ρ, the difference between

the predictions of the hyperbolic expansion and those obtained by numerical computations is small.
Though not as precise as in the above cases, the hyperbolic expansion curves still yield satisfactory
accuracy, generally under 15% relative error on the postbuckling load reserve, except very close to
linear elastic, kinematically linear behavior.
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Fig. II.9. Maximum loads approximated with 2 asymptotic terms, K(θ)=
12θ4.Figure 9. Maximum loads approximated with 2 asymptotic terms, K (θ)=12θ4.

In this case, the Hutchinson asymptotic expansion is here identical to the expansion for ki = 0.
For ρ large the maximum loads are almost not influenced by the kinematic nonlinearity and they
equal the loads for ki = 0 in Figure 7.

Our method has thus proved to be capable of handling effects that are not included in the Hutchin-
son asymptotic expansion, simply because of the influence from 1P∞.

We emphasize that the precision of the postbuckling load reserves determined by the hyperbolic as-
ymptotic method is generally satisfactory when 2 terms are used. Only very close to linear elasticity
combined with no dominating destabilizing kinematic nonlinearities (where the postbuckling load reserve
is insignificant) may a third term be necessary to ensure sufficient accuracy.

From our plots we conclude that the model column is often able to carry loads which are much larger
than the critical load, even without kinematically stabilizing effects in postbuckling. It is therefore impor-
tant to have an accurate method for advanced postbuckling calculations, and the hyperbolic asymptotic
method is found to fulfill this demand.

It may be argued that some of the large maximum loads are found at extreme values of the angle θ that
would never be allowed in a design situation. Yet those loads are interesting because the maximum load-
carrying capability will serve as an energy absorber of extreme unpredicted influences or imperfections
and thereby prevent sudden collapse of stability. Also, since we are not studying a real structure, but a
model column, the values of θ must not be taken too literally.

Conclusion. A hyperbolic asymptotic method for initial as well as advanced postbuckling analysis of
Hutchinson’s plastic model column is derived. The simple explicit solution for Ec

t /E = 0 (the upper
bound) is found and it is shown that any other solution must approach it asymptotically to lowest order
at infinity. The difference between the upper bound and the actual solution is estimated by an asymptotic
expansion with hyperbolic trial functions that vanish at infinity.
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It is shown that maximum loads are often obtained far from bifurcation, which creates the need for
a method which is precise also in the advanced postbuckling regime. Comprehensive comparison to
numerical results proves our method accurate both close to and far from bifurcation.

We are confident that the principle of the hyperbolic asymptotic method will prove applicable to a
wide range of structures. Though the upper bound may not always be as easily obtained, the correct
global behavior of the asymptotic trial functions can still be investigated and used through knowledge
of the postbuckling equilibrium between or close to bounds, for example, the upper bound, a simple
expansion of the lower bound close to bifurcation, the elastic solution, an expansion at infinity, etc.

2. Geometrically imperfect model column

2.1. General concept. When the amplitude of the imperfection approaches zero, the equilibrium path
of the imperfect structure approaches the postbuckling equilibrium path of the perfect one. Therefore,
if the postbuckling equilibrium of the perfect model column has been determined, the equilibrium path
of the imperfect structure may be found from an asymptotic expansion in a characteristic imperfection
amplitude, which for the Shanley–Hutchinson column is the initial rotation θ̄ mentioned in Section
1.2; see Figure 10. A closer investigation of Hutchinson’s asymptotic expansion at the onset of elastic
unloading may provide useful knowledge on which to base the expansion mentioned above.

2.1.1. Hutchinson’s asymptotic expansion at onset of elastic unloading. The equilibrium equations of
the imperfect model exhibit singular behavior when elastic unloading initiates, and solutions including
linear elastic unloading cannot be extended into the (hypo-)elastic zone. Asymptotic expressions for θ̂ ,
P̂ and û are given by Hutchinson [1973a]:

θ̂ = θ̂1θ̄
1
2 + O(θ̄) , P̂ = 1 + p̂1θ̄

1
2 + O(θ̄) , û = uc + û1θ̄

1
2 + O(θ̄) (22)

where

θ̂1 =

(
ω

apla
1 − aela

1

)1
2

, p̂1 =

(
2aela

1 − apla
1

)( ω

apla
1 − aela

1

)1
2

, û1 =
L

3L̃
pe

1.

u uu

x xx

θ̄ + θ̂

P̂

θ̄ + θ

Pθ̄

P = 0

ϕ

θ̂

Fig. II.10. Definition of the kinematic variables θ, θ̂, ϕ and u as well as
various values of the load. The hat (̂) indicates values at the
onset of elastic unloading.

Figure 10. Definition of the kinematic variables θ , θ̂ , ϕ and u as well as various values
of the load. The hat̂ indicates values at the onset of elastic unloading.
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Here, aela
1 and apla

1 are the initial slopes of the elastic and plastic equilibrium paths of the geometrically
perfect structure, respectively. The formula for ω is given by [Hutchinson 1974, Equation (2.52)]2

ω =

(
1 −

L Ec′

t

3Ec
t

L

L̃

)−1

, apla
1 =

3L̃
L
, aela

1 = −
3ωk1 L̃

2L
.

Note that Equation (22) gives the onset of elastic unloading for the imperfect column as the onset of elastic
unloading for the perfect column at bifurcation plus additional asymptotic terms in the imperfection θ̄ .

2.1.2. Asymptotic expansion for the imperfect column in the plastic domain. In order to utilize Hutchin-
son’s asymptotic expansion of the onset of unloading as a bound, or boundary state, of an asymptotic
expansion of the equilibrium of the imperfect column after unloading has initiated, our expansion must
match Hutchinson’s expansion at the onset of unloading. Therefore, the fundamental form of the asymp-
totic expansion for the geometrically imperfect structure is taken to be

θimp(θ̄)= θper +1θi = θper + θ1θ̄
1
2 + O(θ̄),

Pimp(θ̄)= Pper +1Pi = Pper + p1θ̄
1
2 + O(θ̄),

uimp(θ̄)= uper +1ui = uper + u1θ̄
1
2 + O(θ̄).

(23)

For brevity only the dependence on θ̄ is indicated. Subscripts per and imp refer to equilibrium of the
perfect and the imperfect structure, respectively.

When the perfect column starts unloading θ increases from 0, and boundary conditions for the asymp-
totic functions θ1, p1 and u1 given by Equation (22) yield

θ1

∣∣∣
θper=0

= θ̂1, p1

∣∣∣
θper=0

= p̂1, u1

∣∣∣
θper=0

= û1.

One of the functions, θ1, p1 or u1, in Equation (23) may be chosen independently as long as the boundary
conditions given above are fulfilled, and all equilibrium states of the imperfect structure states may be
reached. Since θper ∈ [0; ∞[ and θimp ∈ [θ̂1θ̄

1
2 + O(θ̄); ∞[ a valid, simple choice of independent variable

is
θimp(θ̄)= θper + θ̂1θ̄

1
2 + O(θ̄), (24)

which for a given imperfection is just a transformation of θ as demonstrated in Figure 11. Note that
when θper ≥ 0 the solutions for the perfect and the imperfect column both lie in the plastic domain.

This asymptotic approach to the plastic imperfection analysis has some advantages which are not
present in earlier expansions:

(i) it proves to be fairly simple;

(ii) the accuracy of the imperfection sensitivity analysis will be good even for large ϕ ≡ θ − θ̂ if the
solution for the geometrically perfect structure is accurate;

(iii) it allows utilization of either a numerical or an asymptotic solution to the geometrically perfect
column, which can be of great advantage since a numerical solution that is accurate even for large
values of θ may be obtained for most structures.

2Hutchinson [1974] uses ρ instead of ω, but for consistency with Section 1, where ρ is used for another purpose, we use ω.



THE SHANLEY–HUTCHINSON MODEL COLUMN 479

P̂

P
Pper

Pimp

θ̂

Plastic regime

θper

Pper

P

Pimp

∆Pi

θimp = θ̂

Plastic regime

1 1

θ

Elastic regimeElastic regime

P̂

Fig. II.11. The asymptotic method for the imperfect structure.Figure 11. The asymptotic method for the imperfect structure.

2.2. Asymptotic solution for the imperfect structure. Equilibrium for the geometrically imperfect model
column is controlled by Equations (9) and (10). These equations must be transformed in such a way that
they depend only on θper and θ̄ . Let a dot denote differentiation with respect to θper:

˙( )≡
∂( )

∂θper
.

Since, according to Equation (24), θ̇imp = 1 holds everywhere, by insertion of Equations (23) and (24),
Equations (9) and (10) are transformed into

Ṗimp =

∫ 1

−u̇imp

E imp
t (u̇imp + x)dx +

∫
−u̇imp

−1
E(u̇imp + x)dx (25)

and

Ṗimp(θper + θ̂1θ̄
1
2 + O(θ̄)) + Pimp + (i + 1) ki (θper + θ̂1θ̄

1
2 + O(θ̄))i

=

∫ 1

−u̇imp

E imp
t (u̇imp + x) xdx +

∫
−u̇imp

−1
E(u̇imp + x) xdx .

(26)

2.2.1. Expansion of the tangent modulus. In the vicinity of the solution for the geometrically perfect
column the tangent modulus Et can be given in terms of a Taylor expansion in the strain εimp. For a
given value of θper the expansion becomes:

E imp
t (θ̄ , θper, x)= Eper

t (θper, x)+
(
εimp − εper

)
Eper′

t (θper, x)+ O
(
(εimp − εper)

2).
where prime ( ′ ) denotes differentiation with respect to ε, and the dependence of εimp and εper on the
kinematic variables is not indicated. Insert ε as given by Equation (5) together with (23) and (24) and
get:

E imp
t (θ̄ , θper, x)= Eper

t (θper, x)+ θ̄
1
2
(
u1(θper)+ θ̂1x

)
Eper′

t (θper, x)+ O(θ̄). (27)
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Notice that Eper
t (θper, x) and Eper′

t (θper, x) are known from the solution to the problem for the geometri-
cally perfect structure alone.

2.2.2. The governing equations. Introduce E imp
t given by Equation (27) and Pimp and uimp given by

Equation (23) in the equilibrium equations (25) and (26) for the imperfect column and obtain the equa-
tions of the asymptotic expansion in θ̄

Ṗper + ṗ1θ̄
1
2 =

∫ 1

dper

(
Eper

t + θ̄
1
2 (u1 + θ̂1x)Eper′

t
)(

u̇per + u̇1θ̄
1
2 + x

)
dx +

∫ dper

−1
E(u̇per + u̇1θ̄

1
2 + x)dx

+

∫ dper

dper−u̇1θ̄
1
2

(
Eper

t + θ̄
1
2 (u1 + θ̂1x)Eper′

t
)
(u̇per + u̇1θ̄

1
2 + x)dx

+

∫ dper−u̇1θ̄
1
2

dper

E(u̇per + u̇1θ̄
1
2 + x)dx + O(θ̄) (28)

and

(
Ṗper + ṗ1θ̄

1
2
)(
θper + θ̂1θ̄

1
2
)
+ Pper + p1θ̄

1
2 + (i + 1)ki

(
θ i

per + iθ i−1
per θ̂1θ̄

1
2
)

=

∫ 1

dper

(
Eper

t + θ̄
1
2 (u1 + θ̂1x)Eper′

t
)(

u̇per + u̇1θ̄
1
2 + x

)
xdx

+

∫ dper

−1
E
(
u̇per + u̇1θ̄

1
2 + x

)
xdx

+

∫ dper

dper−u̇1θ̄
1
2

(
Eper

t + θ̄
1
2 (u1 + θ̂1x)Eper′

t
)(

u̇per + u̇1θ̄
1
2 + x

)
xdx

+

∫ dper−u̇1θ̄
1
2

dper

E
(
u̇per + u̇1θ̄

1
2 + x

)
xdx + O(θ̄). (29)

Eliminate the solution for the perfect structure, which is given by the terms of order zero in θ̄ , and utilize
that ∫ c+1

c
f (x)

(
(x − c)−1

)
dx = −

1
2

f (c)12
+ O(13),

which proves that the last two integrals of both Equation (28) and Equation (29) are of order O(θ̄). The
asymptotic equilibrium equations (28) and (29) therefore simplify to

θ̄
1
2 ṗ1 = θ̄

1
2
(
u̇1 f1 + u1 f2 + θ̂1 f3

)
+ O(θ̄),

θ̄
1
2 ( ṗ1θper + p1)= θ̄

1
2
(
u̇1 f4 + u1 f3 + θ̂1 f5

)
+ O(θ̄),

(30)
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where the functions f1, . . . , f5 are associated with the solution for the geometrically perfect column and
are:

f1(θper)= E(1 − u̇per(θper))+

∫ 1

dper

Eper
t (θper, x)dx,

f2(θper)=

∫ 1

dper

Eper′
t (θper, x)

(
u̇per(θper)+ x

)
dx,

f3(θper)=

∫ 1

dper

Eper′
t (θper, x)

(
u̇per(θper)+ x

)
xdx,

f4(θper)=
1
2

E(u̇2
per(θper)− 1)+

∫ 1

dper

Eper
t (θper, x)xdx,

f5(θper)=

∫ 1

dper

Eper′
t (θper, x)

(
u̇per(θper)+ x

)
x2dx −

(
Ṗper + (i + 1)ikiθ

i−1
per

)
.

(31)

In Appendix C, expressions for fi , (C.5), which do not contain integrals, are computed but fi may also
be computed directly by inserting the stress-strain relation and the solution for the geometrically perfect
structure.

2.2.3. The first order imperfection sensitivity problem. To establish the lowest order problem for the
imperfect column gather terms of order θ̄

1
2 in the perturbed problems Equation (30) to get

ṗ1 = u̇1 f1 + u1 f2 + θ̂1 f3, ṗ1θper + p1 = u̇1 f4 + u1 f3 + θ̂1 f5. (32)

The asymptotic procedure has reduced the problem of the equilibrium of the imperfect structure to be
linear in that Equation (32) consists of two linear first order differential equations, which are easily solved
by a numerical method using the boundary conditions at θper = 0. A solution to Equation (32) yields the
exact asymptotic equilibrium of the geometrically imperfect structure for all values of θper, including the
particularly interesting exact asymptotic maximum load of the imperfect structure.

2.3. Approximate determination of asymptotic functions. To simplify the solution for the first order
imperfection sensitivity problem Equation (32), we exploit the fact that p1 and u1 vary slowly with θ
after the onset of elastic unloading to construct an approximate solution required to provide accurate
estimates of the exact asymptotic maximum load. It was shown by van der Heijden [1979] that although
the second derivatives of u and P are infinite only at initiating elastic unloading for the perfect structure,
they become extremely large for small imperfections. This implies rapid variation of the derivatives of
u and P which makes them unfit for asymptotic expansion close to initiating elastic unloading.

It will be shown in Section 2.4 that the exact asymptotic maximum load of the geometrically imperfect
structure is found at θper=θ

m
per where the maximum load of the perfect structure occurs. Here, superscript

m indicates a quantity calculated at the maximum load. Expand p1 and u1 asymptotically around θper =

θm
per to determine the asymptotic behavior of the first order imperfection problem at maximum load of

the imperfect structure.
Because the asymptotic equation (32) consists of two first order differential equations two boundary

conditions are needed to fix our solution. The only directly accessible asymptotic boundary conditions
for p1 and u1 are found at initiating elastic unloading where p1 = p̂1 and u1 = û1.
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2.3.1. Asymptotic expansion of the first order imperfection problem around maximum load. Approximat-
ing polynomials for p1 and u1 around θm

per may be written as:

p1 = p1
1 + p2

11θ +
1
2

p3
1(1θ)

2
+ · · · ,

u1 = u1
1 + u2

11θ +
1
2

u3
1(1θ)

2
+ · · · ,

(33)

where 1θ = θper − θ
m
per, 1θ ∈

[
−θm

per; 0
]

and the total asymptotic solution for the imperfect structure is

Pimp = Pper + θ̄
1
2

(
p1

1 + p2
11θ +

1
2

p3
1(1θ)

2
+ · · ·

)
+ O(θ̄),

uimp = uper + θ̄
1
2

(
u1

1 + u2
11θ +

1
2

u3
1(1θ)

2
+ · · ·

)
+ O(θ̄).

The lowest order imperfection problem is linear in both p1 and u1 and their derivatives. Hence, it
follows that pi

1 and ui
1 may be given as linear functions of p1

1 and u1
1 when Equation (32) is expanded

asymptotically around θm
per

fi (1θ)= f m
i +1θ ḟ m

i + O(1θ2). (34)

The functions, fi and ḟi , are given in Appendices C and D, respectively. The functions f m
i and ḟ m

i
are then found by inserting θm

per in Equation (31). Assume that f m
i and ḟ m

i have been determined and
insert Equations (33) and (34) in Equation (32) to get the asymptotic equations at the maximum load by
gathering terms of the same order in 1θ .

Zeroth order in 1θ :
p2

1 = u2
1 f m

1 + u1
1 f m

2 + θ̂1 f m
3 ,

p2
1θ

m
per + p1

1 = u2
1 f m

4 + u1
1 f m

3 + θ̂1 f m
5 .

(35)

First order in 1θ :
p3

1 = u3
1 f m

1 + u2
1( f m

2 + ḟ m
1 )+ u1

1 ḟ m
2 + θ̂1 ḟ m

3 ,

p3
1θ

m
per + 2p2

1 = u3
1 f m

4 + u2
1( f m

3 + ḟ m
4 )+ u1

1 ḟ m
3 + θ̂1 ḟ m

5 .
(36)

This procedure may be extended to any order in1θ , but our experience shows that it is not necessary to go
beyond the order used here, see below. Because the first order imperfection sensitivity problem Equation
(32) is linear in p1 and u1, the above asymptotic equations of any order, Equations (35), (36), etc., are
linear in the asymptotic coefficients pi

1 and ui
1. As mentioned earlier the problem always entails two

unknowns more than the number of equations because the first order imperfection sensitivity problem
consists of two first order differential equations. To obtain the two additional equations required to
determine pi

1 and ui
1, assume that the asymptotic expansions of p1 and u1 around maximum furnish

accurate results at initiating elastic unloading. This provides two boundary conditions at 1θ = − θm
per,
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that is, θper = 0:

p̂1 = p1
1 + p2

1(−θ
m
per)+ · · · +

1
n

pn+1
1 (−θm

per)
n,

û1 = u1
1 + u2

1(−θ
m
per)+ · · · +

1
n

un+1
1 (−θm

per)
n.

The asymptotic equations of order 0 to n, Equations (35), (36), etc., plus the general boundary condi-
tions given above constitute 2(n + 1) linear equations with 2(n + 1) unknown asymptotic coefficients to
determine the approximate asymptotic polynomials of degree n.

In practice it turns out that linear approximations yield good results, while parabolic approximations
provide excellent accuracy for the maximum load because of the slow variation of p1 and u1. Thus,
the problem of investigating imperfection sensitivity is reduced to solving 4 (linear approximation) or 6
(parabolic approximation) linear equations with 4 or 6 unknowns, respectively.

2.4. The maximum load. Only if the solution p1(1θ) is found exactly are we able to determine the
maximum load asymptotically correct. On the other hand, if we have a good approximation of p1(1θ)

near the maximum load of the perfect column, a good estimate of the asymptotic maximum load may be
obtained. Close to the maximum load of the perfect structure, Pper may asymptotically be given as

Pper(1θ)= Pm
per +

1
2
1θ2 P̈m

per + O(1θ3),

because the first derivative Ṗm
per of the load equilibrium for the perfect structure vanishes.

Expand Pimp in Equation (23) as

Pimp(1θ)≈ Pm
per +

1
2
1θ2 P̈m

per + θ̄
1
2 (p1

1 + p2
11θ +

1
2

p3
11θ

2)+ O(θ̄ ,1θ3). (37)

When the first order imperfection sensitivity problem Equation (32) is solved approximately by (33) pi
1

in (37) coincides with pi
1 in (33). In order for Pimp to attain a maximum (or minimum)

1θm
imp = −

p2
1 θ̄

1
2

P̈m
per

+ O(θ̄),

which after insertion in Equation (37) furnishes the following approximate expression for the maximum
load of the imperfect column

Pm
imp = Pm

per + p1
1 θ̄

1
2 + O(θ̄).

Note that, like in the elastic case, the maximum load-carrying capacity of the elastic-plastic imperfect
structure compared to that of the perfect structure is controlled by only one parameter, namely p1

1, the
lowest order term in the approximation to p1.

2.5. Asymptotic results and comparison. In Figures 12 and 13 the applicability of the approximate as-
ymptotic method developed above is demonstrated by comparison with numerical results for two column
geometries and two constitutive relations which entailed the least accurate asymptotic predictions in the
studies by Hutchinson [1974] and by van der Heijden [1979] for the structures of Figures 13 and 12,
respectively. The results of these studies were obtained by use of a Ramberg-Osgood type constitutive
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Asymptotic
Imperfect, numerical

Perfect, numerical

θ̄ = 0.5

θ̄ = 0.1

θ̄ = 0.01

θ̄ = 0.001

θ
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0.75

0.5

0.25

0

Fig. II.12. Comparison between numerical results and the approximate
asymptotic method for (n, ψ, sc/sy) = (3, 0.2, 1.4), ρ = 3.0. No
kinematic nonlinearities, i.e. ki = 0.
The dash-dot straight line indicates lowest order asymptotic
prediction of initiation of linear elastic unloading.

Figure 12. Comparison between numerical results and the approximate asymptotic
method for (n, ψ, sc/sy) = (3, 0.2, 1.4), ρ = 3.0. No kinematic nonlinearities, that
is, ki = 0. The dash-dot straight line indicates lowest order asymptotic prediction of ini-
tiation of linear elastic unloading. Here, the thick solid line represents perfect numerical,
the thin solid line, imperfect numerical and the dashed line, asymptotic.

relation Equation (18). As shown in Section 1 the constitutive model Equation (17), which is better
suited for our derivations, may predict a constitutive behavior very close to that of Equation (18) for
the postbifurcation regime of the geometrically perfect column provided that the value of ρ is chosen
appropriately. Both plots support the idea that our approximate asymptotic expansion for the imperfect
column developed above does indeed approximate the exact solution very well in that our asymptotic
curve almost coincides with both the shape and the values of the numerical curve for small imperfection
amplitudes, that is, θ̄ . 0.001.

In Figure 12 the maximum load-carrying capacity of the imperfect structure is approximated well
even at the large imperfection θ̄ = 0.1. However, for larger imperfection amplitudes our asymptotic
expansion fails to predict the point of initial unloading accurately. For cases where the maximum load is
located very close to initial unloading the maximum load is therefore not as well approximated for larger
imperfections as it was in Figure 12. This is demonstrated by Figure 13 where for imperfections above
approximately θ̄ = 0.1 the numerical maximum load is obtained before the asymptotic method predicts
initial unloading. Thus, for large imperfection amplitudes and maximum load close to initial unloading,
our asymptotic method fails to predict the maximum load accurately because the point of initial unloading
is poorly predicted by the nonlinear elastic asymptotic imperfection theory of the comparison model, as
it was also pointed out by van der Heijden [1979].

In general, our asymptotic expansion to the lowest order of the equilibrium for the elastic-plastic
imperfect column provides better estimates of maximum loads than its elastic counterpart. This is due
to the fact that, in contrast to an elastic structure, a geometrically perfect plastic structure obtains its
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Asymptotic
Imperfect, numerical

Perfect, numerical
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Fig. II.13. Comparison between numerical results and the approximate
asymptotic method for (n, ψ, sc/sy) = (10, 0.2, 1.2), ρ = 25.
Kinematic nonlinearity given by k1/E = 1.
The dash-dot straight line indicates lowest order asymptotic
prediction of initiation of linear elastic unloading.

Figure 13. Comparison between numerical results and the approximate asymptotic
method for (n, ψ, sc/sy) = (10, 0.2, 1.2), ρ = 25. Kinematic nonlinearity given by
k1/E = 1. The dash-dot straight line indicates lowest order asymptotic prediction of ini-
tiation of linear elastic unloading. Here, the thick solid line represents Perfect numerical,
the thin solid line, Imperfect numerical and the dashed line, Asymptotic.

maximum load at some finite distance from its lowest bifurcation load, where the asymptotic method
provides better load estimates for an imperfect structure since it is further from the singular point of
bifurcation. However, in order to obtain more accurate maximum load predictions for large imperfection
amplitudes we need a better approximation by the nonlinear elastic asymptotic method of the point of
initial unloading.

2.6. Enhancement of the asymptotic solution. Christensen and Byskov [2007a] establish a new expres-
sion, which is valid for the kinematically nonlinear equilibrium of an elastic, geometrically imperfect
structure. It matches the traditional asymptotic expansion for an imperfect structure for buckling ampli-
tudes θ 6= 0, and for all imperfection amplitudes θ̄ it fulfills the boundary condition that θ = 0 when the
load P = 0. Christensen and Byskov [2007b] provide an example of the accuracy of this expression for
the Euler column.

By comparison with numerical results it may be shown that, for relatively small θ , the kinematically
nonlinear elastic equilibrium of an imperfect realization of the column shown in Figure 12 may be
approximated in the following way

P = 1 −
ρθ̄

θ + ρθ̄
,

∂P
∂θ

=
ρθ̄

(θ + ρθ̄)2
, (38)

where the value of ρ depends on the parameters constitutive relation.
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Because of extremely large derivatives of the elastic-plastic stress-strain relation relatively close to
the critical stress, the preunloading path of the elastic-plastic imperfect column of Figure 13 is only
approximated well when a higher order asymptotic expression for imperfection sensitivity is employed.
Such an expansion has been developed by Christensen and Byskov [2007a].

To construct a simple enhancement of the solution for the imperfect structure, adopt the assumption
that the nonlinear elastic path of the imperfect structure given by Equation (38) also describes the entire
path of the elastic-plastic imperfect column well up till the asymptotic straight line emanating from
the bifurcation point and separating the unloading and the nonunloading zone; see Figure 12. Let the
enhanced asymptotic solution, which is in no way asymptotically more exact than the original one, be
given as a higher order term of θ̄ added to the original solution

Pe
imp = Pper + p1(θper)θ̄

1
2 +1p(θ̄), θ e

imp = θper + θ̂1θ̄
1
2 +1θ(θ̄),

where superscript e indicates the enhanced asymptotic solution, and 1p(θ̄) and 1θ(θ̄) are additions to
the original asymptotic expansion which do not depend on θper and are both functions of order θ , leaving
this expression asymptotically equivalent to the original asymptotic expansion. Note that(

1p(θ̄),1θ(θ̄)
)
∼ O(θ̄).

To fully fix 1p and 1θ , use the boundary conditions such that

(i) the asymptotic solution passes through the point of initiating unloading as determined by the crossing
between the straight boundary and the enhanced preunloading expression (38);

(ii) at the asymptotic straight boundary between no unloading and unloading, the derivative of the load
P is continuous with respect to θ , as shown by van der Heijden [1979].

In Figure 14 the added precision of the enhanced approximate asymptotic method is demonstrated for
the column of Figure 12, for which the previous asymptotic methods failed to provide reliable results
for moderate and large imperfection levels. The asymptotic solution enhanced by better approximation
of preunloading and the use of slope boundary conditions at initial asymptotic unloading for the column
in question provides very close approximations to the numerical results both at maximum load and at
initial unloading even at the large imperfection of θ̄ = 0.5, which corresponds to an angle of 27◦.3

Also, comparison with the original asymptotic expansion shows that the equilibrium prediction has been
enhanced considerably, especially for the larger values of θ̄ .

Conclusion. An asymptotic expression for the equilibrium of the imperfect realization of the Shanley–
Hutchinson continuous model column is derived in the main body of this paper. The method hinges
on the fact that for decreasing imperfections the equilibrium path of the imperfect structure approaches
that of the perfect one, and that the expression for the path of the geometrically imperfect structure may
be written as the postbuckling path of the perfect structure plus a small contribution which is expanded
asymptotically to the lowest degree in the imperfection amplitude. The asymptotic coefficient associated
with the lowest order imperfection amplitude is given by a linear, second order differential equation,
which may be solved numerically. A simple polynomial approximation of the asymptotic coefficient
function is derived based on its slow variation.

3For a model structure, such as the present one, the concept of large or small rotations is somewhat uncertain.
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Fig. II.14. Comparison between numerical results, the approximate

asymptotic method, and the enhanced approximate method ap-

plied to the column of Fig. II.12.

The dash-dot straight line indicates lowest order asymptotic

prediction of initiation of linear elastic unloading.

Figure 14. Comparison between numerical results, the approximate asymptotic method,
and the enhanced approximate method applied to the column of Figure 12. The dash-dot
straight line indicates lowest order asymptotic prediction of initiation of linear elastic
unloading. The thick solid line represents the perfect, numerical, the thin solid line, im-
perfect, numerical, the dotted line, enhanced asymptotic and the dashed line, asymptotic
results.

For a numerically determined postbuckling path, the approximate asymptotic equilibrium is deter-
mined for the column which in the study by van der Heijden [1979] proved to yield the most inaccurate
estimates with his method. By our method, the approximation of the maximum load of the imperfect
model column is excellent for small imperfections, and an asymptotic expansion which utilizes an en-
hanced approximation of initial unloading, provides very precise estimates of the entire equilibrium of
the imperfect structure, even for large imperfections.

Appendix A: a study of Hutchinson’s asymptotic method

Hutchinson [1973b; 1974] showed that Pper(θ) and uper(θ) can be developed asymptotically in the spirit
of Koiter’s elastic theory [Koiter 1945] when extra terms containing fractional powers of θ are added.
Hutchinson determined the form of the perturbation expansion for the Shanley–Hutchinson column to
be

P = 1 +1P = 1 + a1θ + a2θ
3
2 + a3θ

2
+ a4θ

5
2 + a5θ

3
+ a6θ

7
2 + O(θ4), (A.1)

u = uc +1u = uc + b1θ + b2θ
3
2 + b3θ

2
+ b4θ

5
2 + b5θ

3
+ b6θ

7
2 + O(θ4), (A.2)

and calculated the first three constants of each expression. Here we determine two additional constants
for both P and u. Knowing that elastic unloading starts at bifurcation we get

−d(θ = 0)=
∂u
∂θ
(θ = 0)⇒ b1 = 1. (A.3)
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Expansion of the tangent modulus. In order to be able to carry out the integrations in Equation (9) and
Equation (10) we expand Et in Taylor series around x = 0. Use of ε given by Equation (5) provides
Et = Et(u)+ (θx)E

′

t(u)+
1
2(θx)2 E

′ ′

t (u)+ · · · where

( )′ ≡
∂( )

∂ε
.

Compute the integrals of the equilibrium equations (9) and (10) to transform them into ordinary differ-
ential equations:

∂P
∂θ

=

(
−

1
2

(
∂u
∂θ

)2

+
∂u
∂θ

−
1
2

)
E+

(
+

1
2

(
∂u
∂θ

)2

+
∂u
∂θ

+
1
2

)
Et(u)+

(
−

1
6

(
∂u
∂θ

)3

+
1
2
∂u
∂θ

+
1
3

)
θE

′

t(u)

+

(
+

1
12

(
∂u
∂θ

)4

+
1
3
∂u
∂θ

+
1
4

)
θ2

2
E

′ ′

t (u)+ O(θ3),

and

∂P
∂θ
θ + P +

∂K
∂θ

=

(
+

1
6

(
∂u
∂θ

)3

−
1
2
∂u
∂θ

+
1
3

)
E +

(
−

1
6

(
∂u
∂θ

)3

+
1
2
∂u
∂θ

+
1
3

)
Et(u)

+

(
+

1
12

(
∂u
∂θ

)4

+
1
3
∂u
∂θ

+
1
4

)
θE

′

t(u)

+

(
−

1
20

(
∂u
∂θ

)5

+
1
4
∂u
∂θ

+
1
5

)
θ2

2
E

′ ′

t (u)+ O(θ3),

where

E (i)t (u)= Ec(i)
t +1uEc(i+1)

t +
1u2

2
Ec(i+2)

t + O(θ3),

with (i), (i + 1) and (i + 2) indicate the order of differentiation.

A.0.1. The governing equations. Employ the perturbation series for P and u given by Equations (A.1)
and (A.2), respectively, and exploit the fact that b1 = 1 (see Equation (A.3)) in order to establish the
asymptotic equations:

0 = − a1 −
3
2a2θ

1
2 − 2a3θ

1
−

5
2a4θ

3
2 − 3a5θ

2
+ E

(
−

9
8 b2

2θ
1
− 3b2b3θ

3
2 − ( 15

4 b2b4 + 2b2
3)θ

2
)

+Ec
t

(
2 + 3b2θ

1
2 + ( 9

8 b2
2 + 4b3)θ

1
+ (3b2b3 + 5b4)θ

3
2 + (15

4 b2b4 + 2b2
3 + 6b5)θ

2
)

+

(
θEc′

t + θ
3
2 b2 Ec′

t + θ2(b3 Ec′

t +
1
2 Ec′ ′

t )

)(
2 + 3b2θ

1
2 + ( 9

8 b2
2 + 4b3)θ

1
)

+

(
θEc′

t + θ2 Ec′ ′

t

) (2
3 −

3
8 b2

2θ
1)

+ θ2 1
3 Ec′ ′

t + O(θ
5
2 ), (A.4)
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and

0 = +1 − 1 − 2a1θ −
5
2a2θ

3
2 − 3a3θ

2
−

7
2a4θ

5
2 − 2k1θ − 3k2θ

2

+
(
E − Ec

t
)(9

8 b2
2θ

1
+ (3b2b3 +

9
16 b3

2)θ
3
2 + ( 15

4 b2b4 +
9
4 b2

2b3 + 2b2
3)θ

2

+( 9
2 b2b5 + 5b3b4 +

45
16 b2

2b4 + 3b2b2
3)θ

5
2
)

+
(
θEc′

t + θ
3
2 b2 Ec′

t + θ2(b3 Ec′

t +
1
2 Ec′ ′

t )+ θ
5
2 (b4 Ec′

t + b2 Ec′ ′

t )
)

( 2
3 −

9
8 b2

2θ
1
− (3b2b3 +

9
16 b3

2)θ
3
2
)

+
(
θEc′

t + θ2 Ec′ ′

t + θ
5
2 b2 Ec′ ′

t
)(2

3 + b2θ
1
2 + ( 4

3 b3 +
9
8 b2

2)θ
1
+ ( 5

3 b4 +
9
8 b3

2 + 3b2b3)θ
3
2
)

+θ2 1
5 Ec′ ′

t + O(θ3). (A.5)

Gather terms containing θ of the same order in Equations (A.4) and (A.5) and introduce the assumption
that Equations (A.1) and (A.2) fulfill the equilibrium equations in a small area around θ = 0. The
polynomial identification theorem then gives us two sets of equations to determine the constants ai and
bi . The first 5 terms in Equations (A.4) and (A.5) furnish

θ0: a1 = 3,

θ
1
2 : a2 = 3b2,

θ1: a3 =
1

E − Ec
t

(
2 − k1 − Ec′

t

)
− 3 − k1 + 2Ec′

t ,

θ
3
2 : a4 = 3b4 −

6
5(E − Ec

t )b2b3 + 2Ec′

t b2,

θ2: a5 = 3b5 −
(
E − Ec

t )(
5
4 b2b4 +

2
3 b2

3
)
+ Ec′

t (2b3 + b2
2)+

2
3 Ec′ ′

t ,

(A.6)

and

θ0: 0 = 0,

θ
1
2 : 0 = 0,

θ1: b2
2 =

16
9(E − Ec

t )

(
3 + k1 −

2
3 Ec′

t

)
,

θ
3
2 : b3 =

1
3(E − Ec

t )

(
2 − k1 − Ec′

t

)
,

θ2: b4 =
4(a3 + k2)

5(E − Ec
t )b2

−
8b2

3

15b2
−

3
5 b2b3 −

8Ec′

t b3

15(E − Ec
t )b2

−
8Ec′ ′

t

25(E − Ec
t )b2

,

θ
5
2 : b5 =

7a4

9(E − Ec
t )b2

−
10b3b4

9b2
−

5
8 b2b4 −

2
3 b2

3 −
Ec′

t (−
1
8 b3

2 +
14
27 b4)

(E − Ec
t )b2

−
14Ec′ ′

t

27(E − Ec
t )
.

(A.7)

These equations give us a1 explicitly. The remaining constants ai and bi are found by alternately inserting
the known quantities into Equations (A.6) and (A.7).
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Appendix B: asymptotic expansion of 1P∞

In order to determine the coefficients for the new hyperbolic solution Equation (16), the ordinary poly-
nomial expansion of 1P∞ is needed. Subtracting the asymptotic polynomial of P∞ from that of the
enhanced Hutchinson solution Equation (A.1) provides the desired polynomial.

The regular expansion of P∞ (see Equation (20)) may be found as

P∞
= 1 + 3θ − (k1 + 3ρ+ 3)θ2

+
( 16

5 ρ
2
+ 3ρ+ k1 − k2 + 3

)
θ3

+ O(t4).

Recall Equation (3) and realize that from Equation (17) we may find ρ = −
Ec′

t

Ec
t
, ρ2

=
Ec′′

t

2Ec
t
, then

P∞
= 1 + 3θ − (3 + k1 − 2Ec′

t )θ
2
+

(
3 + k1 − k2 − 2Ec′

t +
16
15 Ec′′

t

)
θ3

+ O(t4). (B.1)

Introduce an asymptotic expansion of 1P∞:

1P∞
= a11 θ + a12 θ

3
2 + a13 θ

2
+ a14 θ

5
2 + a15 θ

3
+ O(θ

7
2 ). (B.2)

Recall the definition of 1P∞ (Equation (15)), the expansion for the total load P (see Equation (A.1)),
utilize the results for a j obtained in Equation (A.6), and compare the two ensuing expansions for 1P∞

to get the following expansions for a1j :

a11 = 0, a12 = a2,

a13 = a3 + 3 + k1 − 2Ec′

t , a14 = a4,

a15 = a5 − 3 − k1 + k2 + 2Ec′

t −
16
15 Ec′ ′

t . (B.3)

Appendix C: determination of fi

We exploit the fact that the integrals of f1 and f2 can be computed directly when the solution for the
geometrically perfect column is established∫ 1

dper

Eper
t dx =

1
θper

∫ x=1

x=dper

Eper
t dεper =

sper
∣∣
x=1 − sper

∣∣
x=d

θper
,

∫ 1

dper

Eper′
t (u̇per + x)dx =

1
θper

([
Eper

t (u̇per + x)
]1

dper
−

∫ 1

dper

Eper
t dx

)

=
Eper

t
∣∣
x=1 (u̇per + 1)

θper
−

sper
∣∣
x=1 − sper

∣∣
x=d

θ2
per

,

(C.1)

which by insertion in Equation (31) gives us f1 and f2. The remaining functions are given as functions
of f1 and f2 when we use the perfect equilibrium and its derivatives with respect to θper

Pper =

∫ dper

−1
E(u̇per + x)dx +

∫ 1

dper

Eper
t (u̇per + x)dx = u̇per f1 + f4 (C.2)
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and

P̈per =

∫ dper

−1
Eüperdx +

∫ 1

dper

(Eper
t üper + Eper′

t (u̇per + x)2)dx = üper f1 + u̇per f2 + f3 (C.3)

and

P̈perθper + 2Ṗper + (i + 1)ikiθ
i−1
per =

∫ dper

−1
Eüperxdx +

∫ 1

dper

(Eper
t üper + Eper′

t (u̇per + x)2)xdx

= üper f4 + u̇per f3 + f5 + Ṗper + (i + 1)ikiθ
i−1
per .

(C.4)

The expressions for fi can now be determined directly as functions of θper alone given by the solution
for the geometrically perfect column problem. From Equations (C.1)–(C.4) and Equation (31), we get:

f1 = E(L − u̇per)+
sper
∣∣
x=1 − sper

∣∣
x=d

θper
, f2 =

Eper
t
∣∣
x=1 (u̇per + 1)

θper
−

sper
∣∣
x=1 − sper

∣∣
x=d

θ2
per

,

f3 = P̈per − üper f1 − u̇per f2, f4 = Ṗper − u̇per f1,

f5 = P̈perθper + Ṗper − üper f4 − u̇per f3. (C.5)

Appendix D: determination of ḟi

While f3, f4 and f5 are straight forward to differentiate given Equation (C.5), the derivatives of fi with
respect to θper, that is, ḟ1 and ḟ2 are slightly more difficult to calculate:

ḟ1 = − üper(E − Eper
t
∣∣
x=d)+

∫ 1

dper

Eper′
t (u̇per + x)dx = − üper(E − Eper

t
∣∣
x=d)+ f2,

and

ḟ2 =

∫ 1

dper

(Eper′ ′
t (u̇per + x)2 + üper E

per′
t )dx

=
1
θper

([
Eper′

t (u̇per + x)2
]1

dper
− üper

(∫ 1

dper

Eper′
t 2(u̇per + x)dx + Eper

t
∣∣
x=d − Eper

t
∣∣
x=1

))
=

1
θper

(
üper

(
Eper

t
∣∣
x=1 − Eper

t
∣∣
x=d − 2 f2

)
+ Eper′

t

∣∣∣
x=1

(u̇per + 1)2
)
.

Finally, differentiation provides the remaining ḟi

ḟ3 =
...
Pper −

...
u per f1 − üper( ḟ1 + f2)− u̇per ḟ2,

ḟ4 = P̈per − üper f1 − u̇per ḟ1,

ḟ5 =
...
Pperθper + 2P̈per −

...
u per f4 − üper( ḟ4 + f3)− u̇per ḟ3.
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ROLLING CONTACT WITH SLIP ON A THERMOELASTIC HALF-SPACE:
COMPARISON WITH PERFECT ROLLING CONTACT

LOUIS MILTON BROCK

A rigid cylinder rolls at constant speed on a thermoelastic half-space under a compressive load. Heat
flow across the contact zone is neglected, and the zone has a central region of perfect contact and two
edge regions of frictionless slip. A robust asymptotic inversion of the exact transform solution to a
related unmixed boundary value problem allows the mixed-mixed problem of rolling contact to be solved
analytically. The solution is compared with that for perfect rolling contact. Both show variations in
contact zone size and temperature change with rolling speed and load. Distinctions exist however: slip
zones preclude oscillatory solution behavior and are much smaller than zones of oscillation. Moreover,
perfect rolling contact may exaggerate the difference between imposed and effective angular velocity
due to surface deformation.

Introduction

Models for rolling contact that involve elastic bodies have been developed within the framework of
contact mechanics [Muskhelishvili 1975; Gladwell 1980; Johnson 1987; Hills and Barber 1993; Hills
et al. 1993] and empirical observation [Bayer 1994; Blau 1996]. The more basic models are generally qua-
sistatic, assume Hertzian contact, and are isothermal. However, more recent studies consider, variously,
thermoelastic contact and inertial effects [Hills and Barber 1986; Georgiadis and Barber 1993; Pauk and
Yevtushenko 1997; Barber 1999; Jang 2000; Pauk and Zastrau 2002; Andersson et al. 2005; Jang 2005].
In addition, studies of the mathematically-similar problem of the interface crack [Hills and Barber 1993;
Hills et al. 1993] address issues that also arise in contact. Two key issues are the oscillatory solution
behavior that occurs when perfect contact is modeled and a Hertzian contact zone stress distribution is
not assumed, and the role of critical speed in contact zone formation.

In light of these issues, Brock [2004a; 2004b] considered a rigid cylinder of infinite length rolling
at constant speed over a thermoelastic half-space. A dynamic steady state of plane strain was assumed,
and robust asymptotic solutions to the mixed-mixed problem were obtained analytically. These exhibited
clear variations with rolling speed and increases in contact zone temperature. The increase was prominent
when the compressive force on the cylinder was large enough to produce contact zone compressive stress
that neared values critical for yield.

The solutions also exhibited the aforementioned oscillation near contact zone edges. This is, of course,
typical of mixed-mixed problems [Muskhelishvili 1975], but the behavior violates the assumption of
nontensile contact zone stress. On the other hand, violation is confined to edge zones that are orders

Keywords: rolling contact, slip zones, perfect contact, effective angular velocity, coupled thermoelasticity, mixed-mixed
problem.
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of magnitude smaller than the zone itself. These microzones can be interpreted to mean that slip must
occur at the contact zone edges.

For additional insight into their effects, this article imposes slip zones in the mixed-mixed problem
for rolling contact. For simplicity, friction is ignored, and the resultant force that keeps the cylinder in
contact with the surface acts through the cylinder axis. Jang [2000; 2005] has presented results for the
basic problem of transient thermoelastic contact. However, to allow comparison with [Brock 2004a],
coupled thermoelasticity governs here, but a dynamic steady state of plain strain is considered. Similarly,
while it will be seen that a thermoelastic Rayleigh speed produces critical solution behavior, rolling speed
is subcritical. Insight into behavior at supercritical speed can be found in work by Georgiadis and Barber
[1993] and Brock and Georgiadis [2000].

The study begins in the next section with the problem formulation. Subsequently, exact expressions
for the integral transform solution to a related unmixed problem are presented, and robust approximate
inversions extracted. An analytical result for coupled singular integral equations provides a candidate
solution. The solution itself follows by enforcing auxiliary conditions for rolling contact. Numerical
calculations of contact zone parameters are then compared with those presented in [Brock 2004a]. Al-
though similar, the two calculation sets illustrate distinctive behaviors. In particular, slip zones are orders
of magnitude smaller than zones of oscillation seen in the no-slip model.

Problem formulation

Consider a linear isotropic thermoelastic half-space defined by the Cartesian coordinates (x, y, z) as the
region y > 0. It is initially at rest at uniform (absolute) temperature T0 when a rigid cylinder of infinite
length and radius r is pressed into the surface with constant force (per unit of cylinder length) F and
rolled in the positive x-direction with constant subcritical speed v. It will be shown that this speed
corresponds to a thermoelastic Rayleigh speed. The process creates a zone of perfect contact between
the cylinder and the half-space that is bordered by two zones of slip (frictionless sliding contact). The
cylinder geometry is independent of coordinate z, so that the process is one of plane strain. Because
(r, F, v) are constant, it is also assumed that a dynamic steady state is achieved in which the perfect
contact and slip zones maintain constant widths.

It is convenient, then, to locate the Cartesian system origin below the cylinder axis (x = 0) and translate
it with the same speed v. The boundary conditions governing the half-space surface y = 0 can then be
written as [Brock 2004a]

∂yθ = 0 (all x), (σxy, σy)= 0 (x /∈ C), (1a)

σxy = 0, ∂x u y = −
x
r

(x ∈ C±), (1b)

∂x ux = −
U̇0

vr
−

x2

2r2 , ∂x u y = −
x
r

(x ∈ C0). (1c)

Here (ux , u y, θ) are the (x, y)-displacements and change in temperature from T0, and (σx , σy, σz, σxy)

are the tractions in plane strain. These quantities depend only on (x, y), and (∂x , ∂y) signify (x, y)-
differentiation. Constant U̇0 is the unknown tangential velocity of the contact zone directly below the
cylinder axis (x = 0). This is the point of maximum depression and has no normal velocity. Region C
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is the contact zone defined by L− < x < L+. Region C0, defined by l− < x < l+, is the zone of perfect
contact in C . Regions C± are slip zones defined by l+ < x < L+ and L− < x < l−. Lengths (L±, l±)
are unknown, but one can assume that

L− < l− < 0< l+ < L+, l < L � r, (2)

L = L+ − L−, l = l+ − l−. (3)

The first condition in Equation (1a) imposes an assumption that heat flux through C is negligible. For a
half-space that obeys the Fourier model of coupled thermoelasticity, governing equations for y > 0 can
be written as [Brock and Georgiadis 2000; Brock 2004a]

∂xσx + ∂yσyx = c2∂2
x ux , ∂xσxy + ∂yσy = c2∂2

x u y, (4a)

h∇
2θ + c∂x

( ε

αv
1+ θ

)
= 0, (4b)σx

σy

σz

= µ

m + 1 m − 1 1
m − 1 m + 1 1
m − 1 m − 1 1

 ∂x ux

∂yu y

−αvθ

 , (4c)

(σxy, σyx)= µ(∂yux + ∂x u y). (4d)

Equations (4b) and (4c) can be used to rewrite Equation (4a) in partly coupled form

(a∇
2
− c2∂2

x )1−αv∇
2θ = 0, (∇2

− c2∂2
x )$z = 0. (5)

Here (1,$z) is the dilatation and rotation. Constants (m, a, h, ε, c) are given by

m =
1

1 − 2ν
, a = m + 1, h =

k
cv

√
µρ
, ε =

µT0

ρcv
α2
v, (6a)

c =
v

vr
, vr =

√
µ

ρ
. (6b)

Quantities (h, ε, vr ) are the thermoelastic characteristic length, dimensionless coupling constant and
rotational wave speed; (µ, ρ, ν, k, αv, cv) are, respectively, shear modulus, mass density, Poisson’s ratio,
conductivity, volumetric thermal expansion coefficient, and specific heat at constant strain. Various
sources [Sokolnikoff 1956; Chadwick 1960; Achenbach 1973; Davis 1998; Brock 1999] indicate that
Equation (6a) gives

ε ≈ O(10−2), h ≈ O(10−8)m. (7)

In addition to satisfying Equations (1)–(7), field quantities (ux , u y,∇ux ,∇u y, θ) should be continuous
for y ≥ 0 and bounded above as

√
x2 + y2 → ∞. Smooth separation of the rolling cylinder and half-

space surface requires, in particular, that (∇ux ,∇u y) are finite at the zone edge x = (L±, l±). Contact
is also governed by the constraints

σy ≤ 0 (x ∈ C), (8a)∫
C
σydx = − F,

∫
C

xσydx = 0,
∫

C0

σxydx = 0. (8b)
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The unilateral constraint, Equation (8a), guarantees a nontensile contact zone stress. The first two condi-
tions in Equation (8b) specify that F is the resultant force on the cylinder and that its line of action
is through the cylinder axis. The last condition specifies that the cylinder axis does not accelerate.
The boundedness-continuity requirements, Equation (8a) and Equation (8b) give additional formulas
necessary to find the contact zone parameters (U ′

0, L±, l±).

Related problem: unmixed boundary conditions

The rolling contact problem is addressed by first considering the related problem of a half-space governed
by Equations –(7) and the same boundedness-continuity conditions. The constraint, Equation (8), is
relaxed, however, and Equation (1) for y = 0 is replaced by the unmixed conditions

∂yθ = 0, σy = σ(x), σxy = τ(x), (9a)

σ(x)≡ 0 (x /∈ C), τ (x)≡ 0 (x /∈ C0). (9b)

The traction σ is continuous for x ∈ C and vanishes at x = L±, while the traction τ is continuous for
x ∈ C0 and vanishes at x = l±. By following [Brock 2004a], an exact solution for the bilateral Laplace
transform in x for this related problem can be obtained, and analytical expressions for the inverse can be
derived that are valid for

√
x2 + y2 � h. In view of Equation (7), these expressions are robust and are

given for all y ≥ 0 by

∂x ux = −
Ay
πR

∫
C

σ

µ

[
T

(t − x)2 + A2 y2 +
2B2

(t − x)2 + B2 y2

]
dt

−
B
πR

∫
C0

τ

µ

[
2(t − x)

(t − x)2 + A2 y2 +
T (t − x)

(t − x)2 + B2 y2

]
dt,

∂x u y =
By
πR

∫
C0

τ

µ

[
2A2

(t − x)2 + A2 y2 +
T

(t − x)2 + B2 y2

]
dt

−
A
πR

∫
C

σ

µ

[
T (t − x)

(t − x)2 + A2 y2 +
2(t − x)

(t − x)2 + B2 y2

]
dt,

θ =
εc2

αvaε

1
πR

[
T
∫

C

σ

µ

Ay
(t − x)2 + A2 y2 dt + 2B

∫
C0

τ

µ

t − x
(t − x)2 + B2 y2 dt

]
.

(10)

In Equation (10), the quantities (A, B, T, R) are defined as

A =

√
1 −

c2

aε
, B =

√
1 − c2, T = c2

− 2, R = 4AB − T 2, (11a)

aε = a + ε. (11b)

The quantity R is a form of the classical [Achenbach 1973] Rayleigh function in the dimensionless
rolling speed c. It has roots c = ±cR (0< cR < 1) and these correspond to the Rayleigh speed vR = cRvr .
Equation (10) exhibits critical behavior as R → 0, so rolling speed in this study is restricted to

0< v < vR (0< c < cR). (12)
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The critical nature of the Rayleigh speed is well-established in isothermal elastodynamic contact [Craggs
and Roberts 1967; Robinson and Thompson 1974; Georgiadis and Barber 1993]. Results for thermoe-
lastic sliding contact with friction for any constant sliding speed are found in [Brock and Georgiadis
2000].

Candidate solution

In view of Equation (9), (σ, τ ) correspond to the contact zone traction, and Equation (1a) and the first
condition in Equation (1b) are automatically satisfied by Equation (10). Enforcing Equation (1c) and the
second condition in Equation (1b), and using Equation (10), give integral equations for (σ, τ ):

−
c2 A
πR

(vp)
∫

C

σ

µ

dt
t − x

= −
x
r

(x ∈ C±), (13a)

N
R
τ

µ
−

c2 A
πR

(vp)
∫

C

σ

µ

dt
t − x

= −
x
r

(x ∈ C0), N = T + 2AB, (13b)

−
N
R
σ

µ
−

c2 B
πR

(vp)
∫

C0

τ

µ

dt
t − x

= −
U̇0

vr
−

x2

2r2 (x ∈ C0). (13c)

Here, (vp) signifies the Cauchy principal value, and use is made of the Dirac relation [Carrier and Pearson
1988],

η

ξ 2 + η2 → πδ(ξ) (η→ 0+). (14)

To address Equation (13), we introduce the trial functions

σ

µ
= G± cosπυ± +

Q+

π
6± sinπ±, (x ∈ C±), (15a)

σ

µ
= G0 cosπυ0 +

Q0

π
60 sinπυ0, (x ∈ C0), (15b)

6± = S0 + S∓ + (vp)S±, (x ∈ C±), (15c)

60 = S− + S+ + (vp)S0, (x ∈ C0). (15d)

Here, (υ0, υ±) are real-valued constants of magnitude |υ0, υ±| < 1, (G0,G±) are unknown functions,
and

S− =

∫
C−

G−

Q−

dt
t − x

, Q− =

(
l− − x
x − L−

)υ−
(

l+ − x
l− − x

)υ0
(

L+ − x
l+ − x

)υ+

,

S0 =

∫
C0

G0

Q0

dt
t − x

, Q0 =

(
x − l−
x − L−

)υ−
(

l+ − x
x − l−

)υ0
(

L+ − x
l+ − x

)υ+

,

S+ =

∫
C+

G+

Q+

dt
t − x

, Q+ =

(
x − l−
x − L−

)υ−
(

x − l+
x − l−

)υ0
(

L+ − x
x − l+

)υ+

.

(16)
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The trial functions have the property that

1
π
(vp)

∫
C

σ

µ

dt
t − x

= − G± sinπυ± +
Q±

π
6± cosπυ± (x ∈ C±), (17a)

1
π
(vp)

∫
C

σ

µ

dt
t − x

= − G0 sinπ0 +
Q0

π
60 cosπυ0 (x ∈ C0). (17b)

Substitution of Equation (15a) and Equation (15c) into Equation (13a), in view of Equation (17a), leads
to the result

G± = ±
R

c2 A
x
r
, υ± = ∓

1
2

(x ∈ C±). (18)

In a similar manner, substitution of Equation (15b) into (13b) and (13c), in view of (17b), produces
coupled equations for (G0, τ ) that can be solved to give

τ

µ
=

R
c2 B

Q
π
(vp)

∫
C0

(
U ′

0 −
t2

2r2

)
dt

Q(t − x)
(x ∈ C0), (19a)

G0 = Q0
Q
π
(vp)

∫
C0

P0

Q
dt

t − x
, υ0 = 0 (x ∈ C0). (19b)

Equation (19) defines the quantities

Q =

√
l+ − x
x − l−

, P0 =
1

c2 AQ0

(
−R

x
r

−
N
2
τ

µ

)
+

1
π
(S+ + S−). (20)

Obtaining Equation (10) and Equations (18)–(20) completes construction of a candidate solution for the
rolling problem. The solution itself must be bounded and continuous for x ∈ C and satisfy auxiliary
condition (8).

Rolling contact solution

Equation (19a) is bounded at x = l−, and the last two conditions in (8b) are satisfied if

L± = ±
L
2
, l± = ±

l
2
, U̇0 = −

l2vr

16r2 . (21)

In view of Equations (18) and (19b), Equations (15a) and (15b) are bounded for all x ∈ C , and the first
condition in (8b) is satisfied when

π +
N

2c2 B
L
2r

[K (λ)− E(λ)] = 0, λ=
l
L
, (22a)

πR
c2 Ar2

[
Ll
2

+
5

32
(3L + l)(L − l)

]
=

F
µr
. (22b)

Here (K , E) are complete elliptic integrals of the first and second kind of modulus λ. The solution
to Equation (22) will give the contact zone length parameters (l, L), whereupon (L±, l±, Ú0) can be
obtained from Equation (21).
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Contact zone fields

Use of Equations (19b), (22), and a standard table [Gradshteyn and Ryzhik 1980] in Equations (15a),
(15b), and (19a), gives the contact zone traction

τ

µ
=

−R
4c2 B

x
r2

√
l2 − 4x2 (x ∈ C0), (23a)

σ

µ
=

RN
8πc4 AB

1
r2L

|4x2
− l2

|

√
L2 − 4x2

[
K (λ)−5

(
l2

4x2 , λ

)]
(x ∈ C). (23b)

In a similar manner, the temperature change θC in the contact zone is

θC =
ε

αvaε

[
1

8r2 (8x2
− l2)−

σ

µ

]
(x ∈ C0), (24a)

θC =
ε

αvaε

[
1

8r2 (2x −

√
4x2 − 1)2 +

c2T
R
σ

µ

]
(c ∈ C±). (24b)

Here 5 is the complete elliptic integral of the third kind of modulus λ and parameter l2/4x2. In light of
the property that N ≤ 0, T < 0, R ≥ 0 for Equation (12), Equation (23b) satisfies the unilateral constraint
Equation (8a), and Equation (24) gives positive values. It can be shown that the maximum (compressive)
normal traction σ ∗ occurs at x = 0 and is given by

σ ∗

µ
= −

R
c2 A

l2

2Lr
K (λ)

K (λ)− E(λ)
. (25)

A useful measure of the thermal response of the contact zone is the average temperature change θ̃C .
Integration of Equation (24) gives this quantity as

θ̃C =
ε

2αvaεr2

[
1
B

(
L2

3
−

l2

2

)
−
πT r
AL

(
Ll +

5
16
(3L + l)(L − l)

)]
. (26)

Calculations: comparison with no-slip rolling contact results

Insight into the solution behavior can be gained by providing calculations for key results and comparing
them with those for the model of rolling contact with no slip. Expressions that correspond to Equations
(21)–(26) for that model can be found in [Brock 2004a] and are presented in the Appendix. The symbols
are altered to match those employed here. The properties for what was referred to as 4340 steel were
used for calculations. Under the updated classification schemes [Davis 1998], the properties are close to
those for ASTM-A36 structural steel and, in any event, are also used here for purposes of comparison:

ν =
1
3 , ρ = 7834 kg/m3,

µ= 75 GPa, vr = 3094 m/s,

vR = 2887 m/s, k = 34.6 W/m ·
◦ K,

αv = 89.6(10−6)1/◦K, cv = 448 J/kg ·
◦ K.
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For rolling contact with no slip, infinitely rapid oscillations in contact zone traction occur in regions
at zone edges defined by Equation (A.6) in the Appendix. Their existence may imply [Johnson 1987]
that slip should in fact occur. Thus |x | defined by Equation (A.6) plays the role of l/2, and a parameter
corresponding to that in Equation (22a) can be obtained:

λ= tanh
π

4ω
. (27)

Calculations in [Brock 2004a] show that Equation (27) behaves as λ≈ 1−, and so λ in both Equation
(22a) and Equation (27) is written in terms of a dimensionless exponent χ :

λ= 1 − 10−χ . (28)

Thus χ and the dimensionless contact zone width, L/r , for the two models can be obtained from Equa-
tions (A.1), (A.6), and (22). These, in turn, give (l, L). Values of (χ, L/r) are given in Table 1 for the
dimensionless subcritical rolling speed c. Similarly, values for the tangential velocity U̇0 of the contact
zone at its maximum depression point, maximum normal stress σ ∗, and average change in contact zone
temperature θ̃C , are given in Table 2. The dimensionless normal force used in both tables is

F
µr

= 10−6.

Values of χ in Table 1 indicate that the ratio 1
2(1 − l/L) of oscillation zone to contact zone widths are

orders of magnitude smaller than unity, but that the ratio of slip zone to contact zone widths is orders of
magnitude smaller yet. In the latter case, Equation (2) and a computer algorithm [Abramowitz and Stegun
1972] for (K , E) allow Equations (22) to be treated essentially as polynomials in (χ, L/r). Table 1 also
shows that the ratios increase (χ decreases) markedly with dimensionless rolling speed c. Values of L/r

F
µr = 10−6

Rolling contact with slip Rolling contact (no slip)

c χ L/r χ L/r

0.1 63,444 0.000653 8.121 0.000128
0.2 61,784 0.00066 7.811 0.00013
0.3 58,557 0.0006732 7.442 0.000133
0.4 54,115 0.000694 6.926 0.000136
0.5 48,456 0.000725 6.246 0.000142
0.6 41,575 0.000774 5.408 0.000151
0.7 33,424 0.000857 4.407 0.000165
0.8 23,734 0.00103 3.203 0.000192
0.9 10,745 0.001793 1.594 0.000291

Table 1. Dimensionless exponent χ and contact zone width L/r .



ROLLING CONTACT WITH SLIP ON A THERMOELASTIC HALF-SPACE 501

for the two cases in Table 1 are more comparable in magnitude, but those for perfect contact with slip
are larger.

Table 2 indicates that the magnitude of σ ∗ for rolling contact (no slip) is greater than that for rolling
contact with slip. Similarly, U̇0 can be orders of magnitude larger when slip does not occur, and the
difference grows with increasing c. Both velocities are in the direction opposite to that of cylinder travel.
Both models exhibit nominal increases in θ̃C . The increase for rolling contact with no slip is greater at
low (c → 0) rolling speed; that for rolling contact with slip is greater as rolling speed becomes critical
(c → cR).

In ideal (rigid-rigid) rolling contact by a cylinder of radius r over a stationary plane surface, the
single contact point (line parallel to the cylinder axis) has no velocity, so that the angular velocity is
v/r , where again v is the translational speed of the cylinder axis. In this study, the corresponding point
translates parallel to the deformable surface with velocity U̇0. Thus, the effective angular velocity 2̇ and
its percentage difference δ2̇ with v/r are, respectively,

2̇=
1
r
(v− U̇0), δ2̇= −

U̇0

v
(100%). (29)

The percentage difference is given in Table 3 for the data used in Tables 1 and 2. The values are all
positive and small. However, it is well-known [Johnson 1987; Hills and Barber 1993; Hills et al. 1993]
that this effective angular velocity behavior produces measured travel distances for rolling bodies that
are less than the distance predicted from the number revolutions performed. Although both are small, the
percentage changes for rolling contact with perfect contact in Table 3 are orders of magnitude larger than
those for the slip case. That is, the more artificial no-slip rolling contact model may serve to exaggerate
the difference between imposed and effective angular velocity.

F
µr = 10−6

Rolling contact with slip Rolling contact (no slip)

c U̇0 (m/s) σ ∗ (GPa) θ̃C (◦K) U̇0 (m/s) σ ∗ (GPa) θ̃C (◦K)

0.1 −8.24-E4 −0.03657 0.284 −3.20-E3 −0.07460 1.0858
0.2 −8.42-E4 −0.03618 0.2837 −6.71-E3 −0.07374 1.0691
0.3 −8.76-E4 −0.03547 0.2839 −0.01068 −0.07274 1.0450
0.4 −9.31-E4 −0.03431 0.2844 −0.01537 −0.07040 1.0291
0.5 −1.017-E3 −0.03291 0.2861 −0.02164 −0.06790 0.9788
0.6 −1.159-E3 −0.03083 0.2904 −0.03067 −0.06441 0.9204
0.7 −1.421-E3 −0.02785 0.3014 −0.04519 −0.05483 0.8423
0.8 −2.050-E3 −0.02319 0.3333 −0.07482 −0.05157 0.7239
0.9 −6.220-E3 −0.01331 0.5209 −0.20368 −0.03694 0.4776

Table 2. Tangential speed U̇0, maximum normal traction σ ∗, average temperature
change θ̃C . Note: ±M − E N ≡ ±M(10−N ).
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F
µr = 10−6

Rolling contact with slip Rolling contact (no slip)

c U̇0 (m/s) δ2̇(%) U̇0(m/s) δ2̇(%)

0.1 −8.24-E4 0.000266 −3.20-E3 0.001035
0.2 −8.42-E4 0.000136 −6.71-E3 0.001084
0.3 −8.76-E4 0.000094 −0.01068 0.001151
0.4 −9.31-E4 0.000075 −0.01537 0.001242
0.5 −1.117-E3 0.000066 −0.02164 0.001399
0.6 −1.159-E3 0.000062 −0.03067 0.001652
0.7 −1.421-E3 0.000066 −0.4519 0.002087
0.8 −2.050-E3 0.000083 −0.07482 0.003023
0.9 −6.220-E3 0.000223 −0.20368 0.007315

Table 3. Tangential speed U̇0, difference δ2̇ between effective and imposed angular
velocity. Note: ±M − E N ≡ ±M(10−N ).

Calculations for rolling contact with slip

Tables 4 and 5 give values of (χ, L/r, U̇0, σ
∗, θ̃C) for rolling contact with slip when the dimensionless

applied normal forces are, respectively,

F
µr

= 10−5,
F
µr

= 5(10−5).

These values show that increasing F decreases χ but increases the magnitudes of contact zone parameters
(L/r, U̇0, σ

∗, θ̃C). The increase involving U̇0 is essentially linear, those involving (L/r, σ ∗, θ̃C) are less
than linear, and the decrease in χ is greater than linear. Tables 1, 2, 4 and 5 also indicate that parameters
(L/r, U̇0) increase in magnitude with increasing c while parameter χ decreases. Parameter θ̃C however,
decreases for small c, reaches a minimum and then increases with increasing c. The variation with c for
σ ∗ is itself sensitive to F : Tables 2 and 4 exhibit decreases in the magnitude with increasing c, but Table 5
shows that the magnitude of σ ∗ actually increases for small c, reaches a peak, and then decreases. That
is, for small c, (σ ∗, θ̃C) vary inversely with each other. It should be noted that the maximum magnitude
of σ ∗ displayed in Table 5 is close to that for plastic yield under uniaxial loading [Davis 1998], and that
changes in θ̃C exhibited in Table 5 are nominal but not trivial.

General comments

The observations above are based on a two-dimensional dynamic steady-state analysis of two idealized
models for rolling contact. The one presented here allows slip zones at a contact zone edge, the one
considered in [Brock 2004a] involved only perfect contact. In both models, the rolling cylinder is rigid,
the resultant force on it is purely compressive and is directed through the cylinder axis, and heat flow
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F
µr = 10−5

c χ L/r U̇0 (m/s) σ ∗ (GPa) θ̃C (◦K)

0.1 20,063 2.0644-E3 −8.24-E4 −0.11565 0.8980
0.2 19,538 2.0866-E3 −8.42-E4 −0.11442 0.8973
0.3 18,518 2.1286-E3 −8.76-E4 −0.11216 0.8976
0.4 17,113 2.1942-E3 −9.31-E4 −0.10881 0.8994
0.5 15,323 2.2938-E3 −1.017-E3 −0.10409 0.9047
0.6 13,147 2.4484-E3 −1.159-E3 −0.09751 0.9184
0.7 10,570 2.7104-E3 −1.421-E3 −0.08809 0.9530
0.8 7506 3.2560-E3 −2.050-E3 −0.07332 1.0536
0.9 3398 5.6712-E3 −6.219-E3 −0.04211 1.6472

Table 4. Dimensionless exponent χ and contact zone width L/r , tangential speed U̇0,
maximum normal traction σ ∗, average temperature change θ̃C . Note: ±M − E N ≡

±M(10−N ).

across the contact zone is neglected. In the model treated here, slip is frictionless and occurs only in two
edge zones.

Nevertheless, the observations are based on solutions that are generated from the mixed-mixed prob-
lems that arise in rolling contact. The solutions and calculations based on them exhibit four basic features.
The first is, of course, that solution oscillation does not occur when slip zones exist at the contact zone
edges. The second feature is that variation in size, average temperature change and maximum com-
pressive traction of the contact zone with parameters rolling speed and resultant compressive force is

F
µr = 5(10−5)

c χ L/r U̇0 (m/s) σ ∗ (GPa) θ̃C (◦K)

0.1 8973 4.616-E3 −4.120-E3 −0.23311 2.0079
0.2 8738 4.666-E3 −4.210-E3 −0.25588 2.0064
0.3 8282 4.760-E3 −4.381-E3 −0.25082 2.0072
0.4 7653 4.907-E3 −4.655-E3 −0.24332 2.0111
0.5 6853 5.129-E3 −5.087-E3 −0.23277 2.0230
0.6 5880 5.475-E3 −5.797-E3 −0.21807 2.0536
0.7 4727 6.061-E3 −7.103-E3 −0.19700 2.1310
0.8 3357 7.281-E3 −0.01026 −0.16401 2.3558
0.9 1520 0.012681 −0.03110 −0.09421 3.6833

Table 5. Dimensionless exponent χ and contact zone width L/r , tangential speed U̇0,
maximum normal traction σ ∗, average temperature change θ̃C . Note: ±M − E N ≡

±M(10−N ).
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important for both models. The third feature is that slip zones form essentially where the separation
of the cylinder and elastic body occurs. Their widths are orders of magnitude smaller even than the
extremely small slip zone widths implied by the oscillation zones in rolling contact without slip. This
phenomenon may well arise from the continuity of traction required everywhere in the contact zone. As
seen in Equation (23), this requirement enforces zero traction at points |x | = L/2 of the cylinder/half-
space separation but also gives zero traction at points |x | = l/2 of the perfect contact-slip transition.
Finally, the perfect rolling contact model may overstate the increase in effective angular velocity of
rolling above the rigid-rigid limit.

It is hoped that the results of this article, while limited in various aspects in comparison to the newer
contact analyses listed at the outset, does allow insight into aspects of rapid contact behavior. These
results are now forming the basis of dynamic studies that include thermal relaxation effects, heat con-
duction across a contact zone, and both dry and viscous friction.

Appendix

For the case of perfect contact over all C [Brock 2004a], the contact zone parameters (L , L±, U̇0) are
given by

L± = ±
L
2
, U̇0 =

L
4

[√
B
A
ω+ (4ω2

− 1)
L

16r

]
vr ,( L

κr

)3
+ 3

( L
κr

)2
− 4

F
F0

= 0,
F0

µr
=
πB R
6c2 A2

(
4 +

1
ω2

)
.

(A.1)

The contact zone traction is

τ

µ
= −

P(x)
4Br2

√
L2 − 4x2 sin

(
φ−ω ln

L − 2x
L + 2x

)
(x ∈ C), (A.2a)

σ

µ
= −

P(x)

4
√

ABr2

√
L2 − 4x2 cos

(
φ−ω ln

L − 2x
L + 2x

)
(x ∈ C). (A.2b)

In Equations (A.1) and (A.2), the terms (P, φ, ω, κ) are given by

P(x)=

√
R

1 − AB

√
(2Br +ωAL)2 + 4ABx2, tanφ =

2
√

ABx
2Br +ωAL

,

ω =
1

2π
ln

c2
√

AB + N

c2
√

AB − N
, κ =

√
B

ω
√

A
.

Here, (R, N , A, B) are defined by Equations (11a) and (13b), and for the parameter ω > 0 in Equation
(12). The contact zone temperature change θC can be extracted from [Brock 2004a] as

θC =
ε

αvaε

[
x2

r2 +ω

√
B
A

L
2r

−
1
8
(1 − 4ω2)

L2

r2 −
σ

µ

]
(x ∈ C). (A.3)
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The maximum value of (A.2b) occurs at x = 0 and is given by

σ ∗

µ
= −

√
R

1 − AB

(√
B
A

+
ωL
2r

)
L
2r
. (A.4)

The average of (A.3) is obtained as

θ̃C =
ε

αvaε

[
F
µL

+ 2
ω

√
B

√
A

L
r

+
1
24
(12ω2

− 1)
L2

r2

]
. (A.5)

The oscillatory behavior exhibited by (A.2) as |x | → 0 implies that the condition of nontensile contact
stress does not hold everywhere in regions at the edges of C defined by

tanh
π

4ω
<

∣∣∣2x
L

∣∣∣< 1. (A.6)
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A VARIATIONAL DEDUCTION OF SECOND GRADIENT POROELASTICITY
PART I: GENERAL THEORY

GIULIO SCIARRA, FRANCESCO DELL’ISOLA, NICOLETTA IANIRO AND ANGELA MADEO

Second gradient theories have to be used to capture how local micro heterogeneities macroscopically
affect the behavior of a continuum. In this paper a configurational space for a solid matrix filled by an
unknown amount of fluid is introduced. The Euler–Lagrange equations valid for second gradient porome-
chanics, generalizing those due to Biot, are deduced by means of a Lagrangian variational formulation.
Starting from a generalized Clausius–Duhem inequality, valid in the framework of second gradient the-
ories, the existence of a macroscopic solid skeleton Lagrangian deformation energy, depending on the
solid strain and the Lagrangian fluid mass density as well as on their Lagrangian gradients, is proven.

1. Introduction

Poroelasticity stems from Biot’s pioneering contributions on consolidating fluid saturated porous mate-
rials [Biot 1941] and now spans a lot of different interrelated topics, from geo- to biomechanics, wave
propagation, transport, unsaturated media, etc. Many of these topics are related to modeling coupled
phenomena (for example, chemomechanical swelling of shales [Dormieux et al. 2003; Coussy 2004], or
biomechanical models of cartilaginous tissues), and nonstandard constitutive features (for instance, in
freezing materials [Coussy 2005]). In all these cases, complexity generally remains in rendering how
heterogeneities affect the macroscopic mechanical behavior of the overall material.

It is well known from the literature how microscopically heterogeneous materials can be described in
the framework of statistically homogeneous media [Torquato 2002] considering suitable generalizations
of the dilute approximation due to Eshelby [Nemat-Nasser and Hori 1993; Dormieux et al. 2006]; how-
ever, some lack in the general description of the homogenization procedure arises when dealing with
heterogeneous materials, the characteristic length of which can be compared with the thickness of the
region where high deformation gradients occur. This could be due, for example, to external periodic
loading, the wavelength of which is comparable with the characteristic length of the material, or to phase
transition, etc.

From the macroscopic point of view the quoted modeling difficulties, arising when high gradients
occur, are discussed in the framework of so called high gradient theories [Germain 1973], where the
assumption of locality in the characterization of the material response is relaxed. In these theories,
the momentum balance equation reads in a more complex way than the classical one used for Cauchy
continua. As a matter of fact, it is the divergence of the difference between the stress tensor and the
divergence of so-called hyperstresses that balance the external bulk forces. Stress and hyperstress are
introduced by a straightforward application of the principle of virtual power, as those quantities working
on the gradient of velocity and the second gradient of velocity, respectively [Casal 1972; Casal and
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Gouin 1988]. Even the classical Cauchy theorem is, in this context, revised by introducing dependence
of tractions not only on the outward normal unit vector but also on the local curvature of the boundary
[dell’Isola and Seppecher 1997]; moreover symmetric and skew-symmetric couples (the actions called
“double-forces” by Germain) must be prescribed on the boundary in terms of the hyperstress tensor
together with contact edge forces along the lines where discontinuities of the normal vector occur.

Following the early papers on fluid capillarity [Casal 1972; Casal and Gouin 1988], the second gradient
model can indeed be introduced by means of a variational formulation where the considered Helmholtz
free energy depends both on the strain and the strain gradient tensors.

In the case of fluids, second gradient theories are typically applied for modeling phase transition
phenomena [de Gennes 1985] or for modeling wetting phenomena [de Gennes 1985], when a character-
istic length, say the thickness of a liquid film on a wall, becomes comparable with the thickness of the
liquid/vapor interface [Seppecher 1993], annihilation (nucleation) of spherical droplets, when the radius
of curvature is of the same order of the thickness of the interface [dell’Isola et al. 1996], or topological
transition [Lowengrub and Truskinovsky 1998].

In the case of solids, second gradient theories are applied, for instance, when modeling the failure
process associated with strain localization [Elhers 1992; Vardoulakis and Aifantis 1995; Chambon et al.
2004]. To the best of our knowledge, second gradient theories are very seldom applied in the mechanics
of porous materials [dell’Isola et al. 2003] and no second gradient poromechanical model, consistent
with the classical Biot theory, is available except the one presented in [Sciarra et al. 2007]. As gradient
fluid models, second gradient poromechanics will be capable of providing significant corrections to
the classical Biot model when considering porous media with characteristic length comparable to the
thickness of the region where high fluid density (deformation) gradients occur. We refer, for instance, to
crack/pore opening phenomena triggered by strain gradients or fluid percolation, the characteristic length
being in this case the average length of the space between grains (pores).

Several authors have focused their attention on the development of homogenization procedures capable
of rendering the heterogeneous response of the material at the microlevel by means of a second gradi-
ent macroscopic constitutive relation [Pideri and Seppecher 1997; Camar-Eddine and Seppecher 2003];
however, very few contributions seem to address this problem in the framework of averaging techniques
[Drugan and Willis 1996; Gologanu and Leblond 1997; Koutzetzova et al. 2002]. The present work does
not investigate the microscopic interpretation of second gradient poromechanics, but directly discusses
its macroscopic formulation. It is divided into two papers: in the first paper the basics of kinematics,
Section 2; the physical principles, Section 3; the thermodynamical restrictions, Section 4; and in Section
5 the variational deduction of the governing equations for a second gradient fluid filled porous material
are presented.

In particular, in Section 2 a purely macroscopic Lagrangian description of motion is addressed by
introducing two placement maps in χs and φ f (Equation (1)). We do not explicitly distinguish which
part of the current configuration of the fluid filled porous material is occupied at any time t by the solid
and fluid constituents, this information being partially included by the solid and fluid apparent density
fields, which provide the density of solid/fluid mass with respect to the volume of the porous system
(Equation (5)).
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The deformation power, or stress working (Equation (12)), following Truesdell [1977] is deduced in
Section 3 starting from the second gradient expression of power of external forces (Equation (9)) Cauchy
theorem (Equation (10)) and balance of global momentum (see (11)).

In the spirit of Coussy et al. [1998] and Coussy [2004] thermodynamical restrictions on admissible
constitutive relations are stated in Section 4, finding out a suitable overall potential, defined on the
reference configuration of the solid skeleton. This last depends on the skeleton strain tensor and the
fluid mass content, measured in the reference configuration of the solid, as well as on their Lagrangian
gradients, in Equation (18).

Finally a deduction of the governing equations is presented in Section 5, based on the principle of
virtual works, by requiring the variation of the internal energy to be equal to the virtual work of external
and dissipative forces (see (19)). A second gradient extension of the two classical Biot equations of
motion [Coussy 2004; Sciarra et al. 2007], endowed with the corresponding transversality conditions on
the boundary, is therefore formulated (see Equations (30)–(33)). Generalizing the treatment developed,
for example, by Baek and Srinivasa [2004] for first gradient theories, one of the equations of motion
found by means of a variational principle is interpreted as the balance law for total momentum, when
suitable definitions of the global stress and hyperstress tensors are introduced (see (34)).

In a subsequent paper (Part II, to be published in a forthcoming issue of this journal), an application of
the second gradient model to the classical consolidation problem will be discussed. Our aim is to show
how the present model enriches the description of a well-known phenomenon, typical of geomechanics,
curing some of the weaknesses of the classical Terzaghi equation [von Terzaghi 1943]. In particular
we will figure out the behavior of the fluid pressure during the consolidation process when varying the
initial pressures of the solid skeleton and/or the saturating fluid. From the mathematical point of view,
the initial boundary value problem will be discussed according with the theory of linear pencils.

2. Kinematics of fluid filled porous media and mass balances

The behavior of a fluid filled porous material is described, in the framework of a macroscopic model,
adopting a Lagrangian description of motion with respect to the reference configuration of the solid
skeleton. At any current time t the configuration of the system is determined by the maps χs and φ f ,
defined as

χs : Bs × I → E, φ f : Bs × I → B f , (1)

where Bα (α = s, f ) is the reference configuration of the α-th constituent, while E is the Euclidean place
manifold, and I indicates a time interval. The map χs ( · , t) prescribes the current (time t) placement
x of the skeleton material particle Xs in Bs . The map φ f ( · , t), on the other hand, identifies the fluid
material particle X f in B f which, at time t , occupies the same current place x as the solid particle Xs .
Therefore the set of fluid material particles filling the solid skeleton is unknown, to be determined by
means of evolution equations. Both these maps are assumed to be at least diffeomorphisms on E. The
current configuration Bt of the porous material is the image of Bs under χs ( · , t). In accordance with
the properties of χs and φ f it is straightforward to introduce the fluid placement map as

χ f : B f × I → E, such that χ f ( · , t)= χs ( · , t) ◦φ f ( · , t)−1 ,
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Figure 1. Lagrangian variations of the placement maps χs , φ f , and χ f .

where χ f ( · , t) is still a diffeomorphism on E. Figure 1 shows how the introduced maps operate on the
skeleton particle Xs ∈ Bs ; admissible variations of the two maps χs ( · , t) and φ f ( · , t) are also depicted,
in Section 5. In this way the space of configurations we will use has been introduced.

Independently of t ∈ I, the Lagrangian gradients of χs and φ f are introduced as

Fs ( · , t) : Bs → Lin (V E) , 8 f ( · , t) : Bs → Lin (V E) ,

Xs 7→ ∇sχs (Xs, t) , Xs 7→ ∇sφ f (Xs, t) ,
(2)

with V E being the space of translations associated to the Euclidean place manifold. In Equation (2) ∇s

indicates the Lagrangian gradient in the reference configuration of the solid skeleton; analogously, the
gradient of χ f is given by Ff

(
X f , t

)
= Fs (Xs, t) .8 f (Xs, t)−1, where X f = φ f (Xs, t). 1

In the following the fluid Lagrangian gradient of χ f will be indicated both by Ff or ∇ f χ f when
confusion can arise. Moreover, the time derivatives of χs and χ f , say the Lagrangian velocities of the
solid skeleton and the fluid, can be introduced as

for all Xα ∈ Bα, Vα (Xα, · ) : I → V E, t 7→
dχα
dt

∣∣∣∣
(Xα,t)

.

We also introduce the Eulerian velocities vα as the push-forward of Vα into the current domain

vα ( · , t)= Vα ( · , t) ◦χα ( · , t)−1 .

In the following we do not explicitly distinguish the map χs from its section χs ( · , t) if no ambiguity can
arise. Moreover we will distinguish between the Lagrangian gradient (∇s) in the reference configuration
of the solid skeleton and the Eulerian gradient (∇) with respect to the current position x. Analogously,
the solid Lagrangian and the Eulerian divergence operations will be noted by divs and div, respectively.
All the classical transport formulas can be derived both for the solid and the fluid quantities; in particular,

1From now on we will indicate single, double and triple contraction between two tensors with . , : , and
... respectively.
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those ones for an image volume and oriented surface element turn to be

dBt = JαdBα, nd St = JαF−T
α .nαd Sα,

where dBt and d St represent the current elementary volume and elementary oriented surface corre-
sponding to dBα and d Sα, respectively, where Jα = det Fα, and where n and nα are the outward unit
normal vectors to d St and d Sα . As far as only the solid constituent is concerned, we can understand that
deformation induces changes in both the lengths of the material vectors and the angles between them.
As it is well known, the Green–Lagrange strain tensor ε measures these changes, and is defined as

ε :=
1
2

(
FT

s .Fs − I
)
, (3)

where I clearly represents the second order identity tensor.
The balance of mass both for the solid and the fluid constituent are introduced as

Mα =

∫
Bt

ρα dBt = const =

∫
Bα

ρ0
α dBα, (α = s, f ) , (4)

where Mα is the total mass of the α-th constituent, ρα is the current apparent density of mass of the α-th
constituent per unit volume of the porous material, while ρ0

α is the corresponding density in the reference
configuration of the α-th constituent. When localizing, Equation (4) reads

ρα Jα = ρ0
α, (α = s, f ) ,

or, in differential form,
dαρα

dt
+ ρα div (vα)= 0, (α = s, f ) , (5)

where dαρα/dt represents the material time derivative relative to the motion of the α-th constituent. In
other words,

dα

dt
:=

d
dt

∣∣∣∣
Xα=const

.

The macroscopic conservation laws could also be deduced in the framework of micromechanics
[Dormieux and Ulm 2005; Dormieux et al. 2006] starting from a refined model, where the solid and
the fluid material particles occupy two disjoint subsets of the current configuration, and considering an
average of the solid and fluid microscopic mass balances. The macroscopic laws do involve the so called
apparent density of the constituents and suitable macroscopic velocity fields. For a detailed description
of the procedure which leads to averaged conservation laws we refer to the literature [Coussy 2004].

2.1. Pull back of continuity equations. It is clear that Equation (5) consists of Eulerian equations, mean-
ing that they are defined on the current configuration of the porous medium. Following Wilmanski [1996]
and Coussy [2004] we want to write both these equations in the reference configuration of the solid
skeleton. With this purpose in mind let us define the relative fluid mass flow w as w := ρ f

(
v f − vs

)
.

The use of this definition allows us to rearrange the fluid continuity (5) in the form

dsρ f

dt
+ ρ f div vs + div w = 0. (6)
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We want now to rewrite the continuity equation for the fluid constituent in the reference configuration of
the solid skeleton. The Lagrangian approach to the fluid mass balance can be carried out by introducing
the current Lagrangian fluid mass content m f , defined as

m f := Js
(
ρ f ◦χs

)
. (7)

Furthermore, let M be the Lagrangian vector referred to the reference configuration of the solid and
related to the flow w through the relations

M := Js F−1
s . (w ◦χs) , Js (div w ◦χs)= (divs M) . (8)

By using the definitions from Equations (7) and (8) in (6) the fluid Lagrangian mass balance takes the
form

dm f

dt
+ divs M = 0.

3. Power of external forces

In this section, starting from the statement of the power of external forces for a second gradient solid-
fluid mixture, we deduce its corresponding reduced form, accounting for the extended Cauchy theorem
valid for second gradient continua [Casal 1972; Germain 1973; dell’Isola and Seppecher 1997], and the
balance of global momentum. The external power Pext

(
vs, v f

)
for a second gradient porous medium

can be defined as a continuous linear functional of the velocity fields vα; in particular

Pext (vs, v f
)
:=

∫
Bt

(
bs .vs + b f .v f

)
dBt +

∫
∂Bt

(
ts .vs + t f .v f

)
dSt

+

∫
∂Bt

(
τ s .
∂vs

∂n
+ τ f .

∂v f

∂n

)
dSt +

m∑
k=1

∫
Ek

(
f k

s .vs + f k
f .v f

)
dl, (9)

where Bt is the current volume occupied by the porous medium, ∂Bt its boundary, and m is the number
of edges Ek (if any) of the boundary. In addition, bα, tα, τα, and f k

α represent the body force density,
the generalized traction force (Cauchy stress vector), the double force vector, and the force per unit line
acting on the k-th edge of the boundary, respectively.

The physical meaning of the double force τα can be described in a way similar to that used in different
contexts in [Germain 1973] and [dell’Isola and Seppecher 1997]. It can be regarded as the sum of two
different contributions, the first of which works on the rate of dilatancy along the outward unit normal n
(∇vα : (n ⊗ n)), and the second being a tangential couple working on the vorticity; this nomenclature is
due to Germain [1973].

Let σ α and Cα be the apparent Cauchy stress and hyperstress tensors per unit volume of the porous
material relative to the α-th constituent [Germain 1973; dell’Isola and Seppecher 1997]. The Cauchy
theorem can be extended for a second gradient continuum, and in particular for a second gradient porous
continuum, in order to specify how the generalized external tractions appearing in (9) can be balanced
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by the internal forces when considering any subdomain of the current volume. In particular we have2

tα = (σ α − div Cα).n − divS (Cα.n) , τα = (Cα.n).n, f k
α = [] (Cα.n).ν[]k, (10)

where ν is the binormal unit vector which form a left-handed frame with the unit normal n and the
unit vector being tangent to the k-th edge. We note that, since n is not continuous through the edge k,
the vector ν is also discontinuous when passing from one side of the edge k to the other. It is for this
reason that the edge force f k

α is balanced by the jump of the internal force (Cα.n).ν through the edge
k. Extending classical poromechanics [Biot 1941; Coussy 2004] we now define the overall stress and
hyperstress tensors as σ := σ f + σ s and C := C f + Cs, so that the momentum balance for the porous
medium as a whole reads

div (σ − div C)+ b = 0, (11)

where b = bs +b f is the overall body force. Bearing in mind both the extended Cauchy theorem, Equation
(10), and the overall balance of momentum, (11), together with the principle of virtual powers (Pext

=

Pdef.), (9) leads to the expression for the deformation power

Pdef.(v,ω)=

∫
Bt

[
σ : ∇v + div

(
σ T

f .ω
)

+ C
... ∇∇v + C f

... ∇∇ω − div
(
div C f

)
.ω

]
dBt . (12)

Here and later on v := vs and ω := v f − vs . Moreover, it must be remarked that (12) is obtained under
the hypothesis of absence of volume forces (bα = 0) so that no inertia is taken into account in our model.
We refer to [Coussy 2004] for the complete form of the deformation power in the case of first gradient
porous continua. From now on, we also assume that the structure of the hyperstress tensors Cα (α = f, s)
takes the particular form

Cα = I ⊗ cα, α = f, s, (13)

where I is the second order identity tensor and cα is a kind of hyperstress vector related to the α-th
constituent. The use of this assumption restricts second gradient external forces just to vector fields
τα, which only work on the stretching velocity of the α-th constituent; in other words, no contribution
to the vorticity on the boundary of Bt comes from τα. The aforementioned hypotheses indeed restrict
the second gradient model; however, solid microdilatancies and capillarity effects can be still described
by this second gradient model. According to (13) the external power due to second gradient effects,
Equations (9) and (10), reduces to

τα.
∂vα

∂n
= {[(I ⊗ cα) .n] .n} .

∂vα

∂n
= (cα.n) n.

∂vα

∂n
= (cα.n) [∇vα : (n ⊗ n)] .

3.1. Pull-back operations. Let us now consider the solid reference configuration pull-back of the defor-
mation power; in order to do so, we will introduce the Piola–Kirchhoff like stress and hyperstress tensors
for the overall body and for the fluid constituent. Thus, Piola–Kirchhoff stress (S) and hyperstress (γ )
are defined so that

Jsσ : ∇v =: S :
dε

dt
H⇒ S = Js F−1

s .σ .F−T
s , (14)

2Fixed a basis (e1, e2, e3), where e1 and e2 span the plane tangent to the surface ∂Bt at x, and the surface divergence of a
second order tensor field A is defined as divS A :=

∑2
α=1 (∂A/∂xα) eα .
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JsC
... ∇∇v =: γ .

[(
∇s

dε

dt

)T

: C−1
− (∇s C)T :

(
C−1.

dε

dt
.C−1

)]
H⇒ γ = Js F−1

s .c,

where C = FT
s .Fs is the Cauchy–Green strain tensor and c is the total hyperstress vector defined by

c = cs + c f . Moreover, the fluid ones are Sf =: Js F−1
s .σ f .F−T

s , and γ f =: Js F−1
s .c f . The deformation

power Pdef. can be finally written in the Lagrangian form

PL
def.

=

∫
Bs

P̂L
def. dBs,

where

P̂L
def.

=

{[
S − C−1. ((∇s C).γ ) .C−1]

:
dε

dt
+
(
C−1

⊗ γ
) ... (∇s

dε

dt

)
+ divs

(
1

m f
ST

f .M
)

+ ∇s

[
divs

(
M
m f

)]
.γ f −

M
m f
.∇s

(
divs γ f

)
+ divs

[(
J−1

s
M
m f
.∇s Js

)
γ f

]}
.

4. Thermodynamics: deduction of a macroscopic second gradient strain energy potential

In this section, starting from the first and second principles of thermodynamics, we will prove that a
suitable macroscopic strain potential can be identified depending both on the solid strain and on the fluid
mass density as well as on their Lagrangian gradients. Let eα be the Eulerian density of internal energy
relative to the α-th constituent, and the corresponding energy density of the porous medium is defined
as e := ρses + ρ f e f . The first principle of thermodynamics can be written as [Coussy 2004]

ds

dt

∫
Bt

ρses dBt +
d f

dt

∫
Bt

ρ f e f dBt = Pext
+ Q̊,

where Q̊ := −
∫

Bt
q.ndBt is the rate of heat externally supplied, and where q is the heat flow vector. In

the Lagrangian form the first principle reads

d
dt

∫
Bs

E dBs = PL
def.

−

∫
Bs

divs
(
e f M + Q

)
dBs . (15)

where we recall that d/dt is the material time derivative associated with the motion of the solid, E := Jse
represents the Lagrangian density of internal energy, and Q is the Lagrangian heat flux defined by
Q := Js F−1

s .q. Starting from Equation (15), the local Lagrangian form of the first principle is naturally
given by

d E
dt

= P̂L
def.

− divs
(
e f M + Q

)
.

Let us now consider the second principle of thermodynamics and introduce the overall Eulerian density
of entropy s as s := ρsss + ρ f s f . The corresponding Lagrangian entropy is S := Jss, and the Lagrangian
form of the second principle can be written as [Coussy 2004]

d
dt

∫
Bs

S dBs ≥ −

∫
Bs

divs

(
s f M +

Q
T

)
dBs . (16)
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If we now introduce the Helmholtz free energy 9 as 9 := E − T S, Equation (16) can be rewritten in
the local form as

d E
dt

− S
dT
dt

−
d9
dt

≥ −T divs

(
s f M +

Q
T

)
.

Merging the local form of the first and the second principles, the extended Clausius–Duhem inequality
(dissipation inequality) can be deduced. In particular, following Sciarra et al. [2007], we will distinguish
different contributions to the dissipation function due to the solid and fluid motion and to thermal effects,
respectively (8s , 8 f , and 8th).

We now constitutively restrict [Coleman and Noll 1963] the admissible processes only to those ones
which guarantee the dissipation inequality to be satisfied, because 8s , 8 f and 8th are separately non-
negative. In particular, the solid dissipation 8s reads

8s =

{
S − C−1. [(∇s C).γ ] .C−1

−
[
Js C−1.∇s

(
J−1

s m f
)]

⊗
γ f

m f

}
:

dε

dt
+
(
C−1

⊗ γ
) ... d

dt
(∇sε)

+

[
g f −

(
1 +

1
tr I

)
γ f .∇s

(
1

m f

)
−

J−1
s

tr I
γ f

m f
.∇s Js

]
.
dm f

dt
−

γ f

m f
.

d
dt

(
∇sm f

)
− S

dT
dt

−
d9
dt
. (17)

Assuming nondissipative processes occurring in the solid skeleton (8s = 0), Equation (17) allows for
regarding the internal energy 9 as a state function

9 =9
(
ε,m f ,∇sε,∇sm f , T

)
. (18)

From now on we will treat an isothermal problem and therefore assume the energy 9 does not depend
on the temperature field T .

5. Variational deduction of second gradient poroelastic equations

5.1. Basic concepts and first variation of the internal energy. In this section we deduce the governing
equations for a second gradient poroelastic continuum by means of a variational procedure. Variational
approaches to first gradient mixture models are available in the literature [Bedford and Drumheller 1978;
Gavrilyuk et al. 1998; Gouin and Ruggeri 2003].

In our case, we introduce the varied placement maps χ∗
s and φ∗

f for all Xs ∈ Bs as

χ∗

s (Xs, t)= χs (Xs, t)+ δχs (Xs, t) , φ∗

f (Xs, t)= φ f (Xs, t)+ δφ f (Xs, t) ,

where δχs and δφ f represent arbitrary variations of the functions χs and φ f , respectively. The physical
meaning of the variation δχs is well known in continuum mechanics, and stands for the virtual displace-
ment (deformation) of the solid skeleton. The variation δφ f , instead, accounts for the virtual relative
displacement of a fluid material particle with respect to a solid one (see Figure 1). Since these variations
keep fixed Xs ∈ Bs we label them Lagrangian variations and we note that the symbol δ commutes with
the integral over Bs and with the Lagrangian gradient operator ∇s .

Following the statements of classical mechanics [Gantmacher 1970; Arnold 1989], the principle of
virtual works reads

δA = δLext
+ δLdiss, (19)
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where δA represents the Lagrangian variation of the internal energy of the porous material, defined as

A :=

∫
Bs

9 dBs,

while δLext and δLdiss are the virtual works due to the external and dissipative forces acting on the
porous system. Because of the aforementioned properties of the Lagrangian variations we can write

δA = δ

∫
Bs

9 dBs =

∫
Bs

δ9 dBs . (20)

Recalling now Equation (18), (20) implies

δA =

∫
Bs

(
∂9

∂ε
: δε +

∂9

∂m f
δm f +

∂9

∂ (∇sε)

... δ (∇sε)+
∂9

∂
(
∇sm f

) .δ (∇sm f
))

dBs . (21)

The variations δε, δm f , δ (∇sε), and δ
(
∇sm f

)
must now be rewritten in terms of the variations of the

primitive kinematical fields χs and φ f , bearing in mind that the Lagrangian variation commutes with the
operator ∇s . We show here directly the results obtained in Appendix A, to which we refer for detailed
calculations,

δε =
1
2

{
(∇s (δχs))

T .Fs + FT
s .∇s (δχs)

}
, (22)

and
δm f = m f

(
∇sφ f

)−T
: ∇s

(
δφ f

)
. (23)

Substituting (22) and (23) into (21), integration by parts (see Appendix B for details), allows us to
write the variation of the second gradient potential A as

δA =

∫
Bs

AdBs +

∫
∂Bs

a dSs +

m∑
k=1

∫
Ek

αdl, (24)

where m is the number of edges Ek of the body in the reference configuration of the solid and

A := − divs

[
Fs .

(
∂9

∂ε
− divs

(
∂9

∂(∇sε)

))]
.δχs+

{(
∇sφ f

)−T
.

[
−m f ∇s

(
∂9

∂m f
− divs

(
∂9

∂
(
∇sm f

)))]}.δφ f ,

a :=

{[
Fs .

(
∂9

∂ε
− divs

(
∂9

∂(∇sε)

))]
.ns − divS

s

[
Fs .

(
∂9

∂(∇sε)
.ns

)]}
.δχs

+

{[
Fs .

(
∂9

∂(∇sε)
.ns

)]
.ns

}
.
∂(δχs)

∂ns

+

{(
∇sφ f

)−T
.

[
m f

(
∂9

∂m f
− divs

(
∂9

∂
(
∇sm f

))) ns − m f ∇
S
s

(
∂9

∂
(
∇sm f

) .ns

)]}
.δφ f

+

[(
∇sφ f

)−T
.

(
m f

∂9

∂
(
∇sm f

) .ns

)
ns

]
.
∂
(
δφ f

)
∂ns

,

α :=

{[
Fs .

(
∂9

∂ (∇sε)
.ns

)]
.ν

}
.δχs,+

[(
∇sφ f

)−T
.

(
m f

∂9

∂
(
∇sm f

) .ns

)
ν

]
.δφ f .
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5.2. Dissipative governing equations. In order to obtain the equations of motion for a second gradient
poroelastic continuum, the form of the external and dissipation virtual works, δLext and δLdiss, formally
introduced in Equation (19), must be stated. The virtual dissipation δLdiss will account for the classi-
cal Darcy effects and for the so called Brinkman-like contributions [Brinkman 1947]. We define the
dissipation δLdiss in the Eulerian configuration as

δLdiss
:= −

∫
Bt

{
D
(
v f − vs

)
.
[(
δχ f ◦φ f − δχs

)
◦χ−1

s
]}

dBt

−

∫
Bt

{[
A.∇

(
v f − vs

)]
: ∇

[(
δχ f ◦φ f − δχs

)
◦χ−1

s
]}

dBt , (25)

where D is the symmetric, definite positive Darcy tensor and A is a suitably defined symmetric, definite
positive second gradient Darcy-like tensor.

Moreover, from now on, we assume the following Eulerian expression for the external work δLext,

δLext
:= −

∫
∂Bt

{
t .
(
δχs ◦χ−1

s
)
+ t f .

[(
δχ f ◦φ f − δχs

)
◦χ−1

s
]}

dSt . (26)

We restrict our attention to t and t f , defined as

t := pext n, t f := ρ fµ
ext n, (27)

where pext is the overall external pressure applied on ∂Bt , and µext is the chemical potential of the fluid
outside the porous system. By comparison of Equation (26) with (9), we are assuming vanishing double
forces and edge forces on the external boundary, as well as vanishing bulk actions. Equation (26), the
expression for the external work, states that the external force t works only on the displacement of the
solid skeleton (δχs), while µext works on the fluid mass virtual relative displacement ρ f

(
δχ f − δχs

)
.

We note that if µext is spatially constant then∫
∂Bt

ρ fµ
ext [(δχ f ◦φ f − δχs

)
◦χ−1

s
]

dSt =

∫
∂Bs

(
µext

◦χs
)
δm f dSs,

that is, µext works on the fluid mass which leaves (or enters) the solid skeleton (see Appendix C for
details). Equation (26) for δLext can be rewritten (see Appendix C) on the reference configuration of the
solid as

δLext
=

∫
∂Bs

{
−
(

pext Js F−T
s .ns

)
.δχs +

[
µextm f

(
∇sφ f

)−T
.ns

]
.δφ f

}
dSs . (28)

Finally, (25) for δLdiss (see Appendix C) assumes the Lagrangian form

δLdiss
=

∫
Bs

{[(
∇sφ f

)−T
.
(
Js D FT

s .
(
V f ◦φ f − Vs

))]
.δφ f

}
dBs

−

∫
Bs

{(
∇sφ f

)−T
.
[
FT

s . divs
(
JsA.∇s

(
V f ◦φ f − Vs

)
.(FT

s .Fs)
−1)]} .δφ f dBs

+

∫
∂Bs

{[(
∇sφ f

)−T
.
(
Js FT

s .A.∇s
(
V f ◦φ f − Vs

)
.(FT

s .Fs)
−1)] .ns

}
.δφ f dSs . (29)
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Starting from the principle of virtual works, (19), and using (24), (29), and (28) for δA, δLdiss, and
δLext, respectively, we can write the local equations of motion on Bs as

− divs

[
Fs .

(
∂9

∂ε
− divs

(
∂9

∂ (∇sε)

))]
= 0, (30)

and

(
∇sφ f

)−T
.

[
−m f ∇s

(
∂9

∂m f
− divs

(
∂9

∂
(
∇sm f

)))− Js D FT
s .
(
V f ◦φ f − Vs

)]
+
(
∇sφ f

)−T
.
[
FT

s . divs
(
JsA.∇s

(
V f ◦φ f − Vs

)
.(FT

s .Fs)
−1)]

= 0. (31)

Analogously the boundary conditions on ∂Bs read[
Fs .

(
∂9

∂ε
− divs

(
∂9

∂ (∇sε)

))]
.ns − divS

s

[
Fs .

(
∂9

∂ (∇sε)
.ns

)]
= − Js pext F−T

s .ns

(
∇sφ f

)−T
.

[
m f

(
∂9

∂m f
− divs

(
∂9

∂
(
∇sm f

)))ns − m f ∇
S
s

(
∂9

∂
(
∇sm f

) .ns

)]
+

−
(
∇sφ f

)−T
.
{[

JsFT
s .A.∇s

(
V f ◦φ f − Vs

)
.(FT

s .Fs)
−1] .ns

}
=
(
∇sφ f

)−T
.
(
m fµ

ext ns
)
, (32)

[
Fs .

(
∂9

∂ (∇sε)
.ns

)]
.ns = 0,

(
∇sφ f

)−T
.

[(
m f

∂9

∂
(
∇sm f

) .ns

)
ns

]
= 0.

Finally, on the edges Ek of the boundary (if any) the following conditions hold true:[
Fs .

(
∂9

∂ (∇sε)
.ns

)]
.ν = 0,

(
∇sφ f

)−T
.

[(
m f

∂9

∂
(
∇sm f

) .ns

)
ν

]
= 0. (33)

The Darcy and Brinkman dissipations appearing in Equations (31) and (32) can be rewritten in terms
of the Lagrangian vector M, previously defined as M = m f F−1

s .
(
v f − vs

)
. In fact, after some straight-

forward calculations, it can be proven that

∇
(
v f − vs

)
=

1
m f

{[
(∇s Fs)

T .M
]T

+ Fs .∇s M
}

+ Fs .

[
M ⊗ ∇s

(
1

m f

)]
.

We now show that (30) is in agreement with the classical second gradient balance law for the total
momentum [Germain 1973; dell’Isola and Seppecher 1997]. In order to do so, considering assumption
(13), it can be proven that the constitutive relations for S and γ (see Equations (14))

∂9

∂ε
= S − C−1. ((∇s C).γ ).C−1,

∂9

∂ (∇sε)
= C−1

⊗ γ , (34)
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imply that (30) can be regarded as the solid-Lagrangian pull-back of (11). In other words,

Js div (σ − div C)= divs
{

Fs .
[
S − C−1. ((∇s C).γ ).C−1

− Fs . divs
(
C−1

⊗ γ
)]}

= 0.

6. Concluding remarks

In this paper a purely macroscopic second gradient theory of poromechanics is presented, extending
classical Biot poromechanics [Biot 1941; Coussy 2004]. Following a standard procedure, sketched in
[Coussy et al. 1998], we determine a suitable representation formula of the deformation power, (12), for
a second gradient porous medium, assuming the forces acting on solid skeleton to be balanced (using
the generalized second gradient balance of momentum in the current domain and the generalized second
gradient Cauchy theorem on its boundary) and the power of external forces to be that of two super-
posed second gradient continua [Germain 1973]. The principles of thermodynamics, together with the
aforementioned representation of the deformation power, allow for deducing the existence of a suitable
overall strain energy potential 9 depending on the solid strain tensor ε and the solid Lagrangian fluid
mass density m f , as well as on their Lagrangian gradients.

The Euler–Lagrange equations associated with the energy density 9 are the governing equations of
the problem. In particular, Lagrangian variations of the placement maps χs and φ f are considered. It
is worth noting that the governing equations associated with the solid Lagrangian displacement δχs

(when δφ f = 0) represents the balance of total momentum and therefore allows for the constitutive char-
acterization of the overall stress and hyperstress tensors. This is a characteristic feature of the classical
Biot model [Baek and Srinivasa 2004], which is completely recovered in this more general framework.
On the other hand, the governing equation associated with the fluid placement map δφ f represents the
balance of momentum relative to the pure fluid, which, in this case, is a generalization of the classical
Darcy law.

In part II, an application to the classical consolidation problem will show how the present model
improve the classical ones. It is well known that second gradient theories are capable to detect boundary
layer effects in the vicinity of interfaces; this is indeed what we will observe in the case of consolidation.
In particular, a kind of fluid mass density increment in the neighborhood of the impermeable wall will
be observed for the first time in a one dimensional problem [Mandel 1953; Cryer 1963].

Appendix A: Basic variations

We show here how to derive the variations δε and δm f in terms of the kinematical variations δχs and
δφ f . Equation (3) for the Green–Lagrange strain tensor implies

δε =
1
2

[(
δs FT

s
)
.Fs + FT

s .δs Fs
]
,

where by definition Fs := ∇sχs ; the expression (22) for δε is easily derived. As far as the variation δm f

is concerned, recalling definition (7) for m f we can write

m f = Js J−1
f ρ0

f , (A.1)

where ρ0
f is the fluid density in the reference configuration of the fluid. Since by definition

J f := det(∇ f χ f ) and φ f := χ−1
f ◦χs,
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we have

J f = det
[
∇ f

(
χs ◦φ−1

f

)]
= det

(
∇sχs .∇ f φ

−1
f

)
= Js det

(
∇sφ f

)−1
,

where for the sake of simplicity we neglect the dependence of the considered fields on the reference
places. Equation (A.1) thus reads

m f = ρ0
f det

(
∇sφ f

)
. (A.2)

By derivation rule of the determinant and assuming ρ0
f = constant, we get

δm f = ρ0
f δ
[
det

(
∇sφ f

)]
= ρ0

f det
(
∇sφ f

)
tr
[(

∇sφ f
)−1

.δ
(
∇sφ f

)]
= m f

[(
∇sφ f

)−T
: ∇s

(
δφ f

)]
.

Appendix B: Variation of the internal energy

The procedure to calculate the variation δA of the internal energy will be here shown in detail.
According to Equations (21)–(23) and recalling that ∂9/∂ε is a symmetric second order tensor, while

∂9/∂(∇sε) is a third order tensor symmetric with respect to its first two indices, we can write

δA =

∫
Bs

(
A1

+ A2
s + A2

f

)
dBs, (B.1)

where

A1
:=
∂9

∂ε
:
(
FT

s .∇s (δχs)
)
+ m f

∂9

∂m f

(
∇sφ f

)−T
: ∇s

(
δφ f

)
,

A2
s :=

∂9

∂ (∇sε)

... ∇s
(
FT

s .∇s (δχs)
)
,

A2
f :=

∂9

∂
(
∇sm f

) .∇s

(
m f

(
∇sφ f

)−T
: ∇s

(
δφ f

))
,

account for the first gradient contribution to δA and for the solid and fluid second gradient contributions
respectively.

The following identities are recalled in order to perform integrations by parts in (B.1); let λ, a, A,
and A be scalar, first, second, and third order tensor fields respectively. (Here ∇

S a indicates the surface
gradient operator of a vector field a defined — analogously to divS

s — as ∇
S a = ∂a/∂xα ⊗ eα, α = 1, 2,

where eα belong to the tangent plane.) Then,

div
(

AT .a
)
= A :∇a + a. div A, div (λA)= A.∇λ+ λ div A, div (λa)= a.∇λ+ λ div a,

div
(
AT

: A
)
= A : div A+ (∇ A)

... A, ∇a = ∇
S a +

∂a
∂n

⊗ n,

where transposition for third order tensors is defined so as AT
:= ai jk ek ⊗ ei ⊗ e j if A = ai jk ei ⊗ e j ⊗ ek .

Moreover, given second order tensors A, B, C, third and first order tensors A and a the following
identities are satisfied:

A : (B.C)=
(
BT.A

)
: C =

(
A.CT )

: B,
(
AT

: A
)
.a = A : (A.a) .
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Finally, if ϕ = χs or ϕ = φ f , the identity holds true that

0 = divs
[
det (∇sϕ) (∇sϕ)

−T ]
= det (∇sϕ) divs

[
(∇sϕ)

−T ]
+ (∇sϕ)

−T .∇s [det (∇sϕ)] . (B.2)

We underline that this equality holds unchanged for the surface divergence operator divS
s . For the sake

of simplicity, we will perform integration by parts for the first and second gradient terms appearing in
(B.1) separately. Integration by parts of the first gradient term, recalling Equation (A.2) for m f and using
Equation (B.2) for φ f , leads to

∫ 1

Bs
A1 dBs = −

∫
Bs

divs

(
Fs .

∂9

∂ε

)
. δχs dBs +

∫
∂Bs

[(
Fs .

∂9

∂ε

)
.ns

]
. δχs dSs

−

∫
Bs

{(
∇sφ f

)−T
.

[
m f ∇s

(
∂9

∂m f

)]}
. δφ f dBs +

∫
∂Bs

[(
∇sφ f

)−T
.

(
m f

∂9

∂m f
ns

)]
. δφ f dSs . (B.3)

Integrating by parts the solid second gradient term we get

∫ 2

Bs
A2

s dBs = −

∫
Bs

∇s (δχs) :

[
Fs . divs

(
∂9

∂ (∇sε)

)]
dBs +

∫
∂Bs

∇s (δχs) :

[
Fs .

(
∂9

∂ (∇sε)
.ns

)]
dSs

= −

∫
∂Bs

[(
Fs . divs

(
∂9

∂ (∇sε)

))
.ns

]
. δχs dSs +

∫
Bs

divs

[
Fs . divs

(
∂9

∂ (∇sε)

)]
. δχs dBs

+

∫
∂Bs

(
∇

S
s (δχs)+

∂ (δχs)

∂ns
⊗ ns

)
:

[
Fs .

(
∂9

∂ (∇sε)
.ns

)]
dSs .

Performing a further surface integration by parts we finally get

∫
Bs

A2
s dBs = −

∫
∂Bs

[(
Fs . divs

(
∂9

∂ (∇sε)

))
.ns

]
.δχs dSs +

∫
Bs

divs

[
Fs . divs

(
∂9

∂ (∇sε)

)]
.δχs dBs

−

∫
∂Bs

divS
s

(
Fs .

(
∂9

∂ (∇sε)
.ns

))
.δχs dSs +

∫
∂Bs

[(
Fs .

(
∂9

∂ (∇sε)
.ns

))
.ns

]
.
∂ (δχs)

∂ns
dSs

+

n∑
k=1

∫
Ek

[(
Fs .

(
∂9

∂ (∇sε)
.ns

))
.ν

]
. δχs dl. (B.4)

We finally rewrite the fluid second gradient term as

∫ 2

Bs
A2

f dBs =

∫
Bs

∂9

∂
(
∇sm f

) .∇s

[
m f divs

((
∇sφ f

)−1
.δφ f

)]
dBs

−

∫
Bs

∂9

∂
(
∇sm f

) .∇s

[
m f divs

((
∇sφ f

)−T
)
.δφ f

]
dBs;
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recalling Equation (A.2) for m f , using Equation (B.2) for φ f and rearranging, we have

∫
Bs

A2
f dBs =

∫
Bs

∂9

∂
(
∇sm f

) .∇s

[
m f divs

((
∇sφ f

)−1
.δφ f

)]
dBs

+

∫
Bs

∂9

∂
(
∇sm f

) .∇s

[((
∇sφ f

)−1
.δφ f

)
.∇sm f

]
dBs =

∫
Bs

∂9

∂
(
∇sm f

) .∇s

[
divs

(
m f

(
∇sφ f

)−1
.δφ f

)]
dBs .

Integrating by parts we get

∫
Bs
A2

f dBs =

∫
∂Bs

divs

(
m f
(
∇sφ f

)−1
.δφ f

) ∂9

∂
(
∇sm f

) .ns dSs −

∫
Bs
divs

(
m f
(
∇sφ f

)−1
.δφ f

)
divs

(
∂9

∂
(
∇sm f

))dBs,

and, integrating again,

∫
Bs

A2
f dBs =

∫
∂Bs

m f divs

((
∇sφ f

)−1
.δφ f

)( ∂9

∂
(
∇sm f

) .ns

)
dSs

+

∫
∂Bs

(
∇sm f .

((
∇sφ f

)−1
.δφ f

))( ∂9

∂
(
∇sm f

) .ns

)
dSs −

∫
∂Bs

[
m f divs

(
∂9

∂
(
∇sm f

))(∇sφ f
)−T

.ns

]
.δφ f dSs

+

∫
Bs

m f

[(
∇sφ f

)−T
.∇s

(
divs

(
∂9

∂
(
∇sm f

)))] . δφ f dBs .

Recalling again Equation (A.2) for m f , using (B.2) for φ f and rearranging we get

∫
Bs

A2
f dBs =

∫
∂Bs

∇s
(
δφ f

)
:

[
m f

(
∂9

∂
(
∇sm f

) .ns

) (
∇sφ f

)−T

]
dSs

−

∫
∂Bs

[
m f divs

(
∂9

∂
(
∇sm f

)) (∇sφ f
)−T

. ns

]
.δφ f dSs

+

∫
Bs

m f

[(
∇sφ f

)−T
.∇s

(
divs

(
∂9

∂
(
∇sm f

)))] .δφ f dBs .
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Decomposing ∇s
(
δφ f

)
as ∇s

(
δφ f

)
= ∇

S
s
(
δφ f

)
+
(
∂
(
δφ f

)
/∂ns

)
⊗ ns , performing a last surface inte-

gration by parts and using (B.2) for the surface divergence operator we finally get

∫
Bs

A2
f dBs =

∫
∂Bs

{(
∇sφ f

)−T
.

[
m f

(
∂9

∂
(
∇sm f

) .ns

)
ns

]}
.
∂
(
δφ f

)
∂ns

dSs+

−

∫
∂Bs

{(
∇sφ f

)−T
.

[
m f ∇

S
s

(
∂9

∂
(
∇sm f

) .ns

)]}
.δφ f dSs+

n∑
k=1

∫
Ek

{(
∇sφ f

)−T
.

[
m f

(
∂9

∂
(
∇sm f

) .ns

)
ν

]}
.δφ f dl

−

∫
∂Bs

{(
∇sφ f

)−T
.

[
m f divs

(
∂9

∂
(
∇sm f

)) ns

]}
. δφ f dSs

+

∫
Bs

{(
∇sφ f

)−T
.

[
m f ∇s

(
divs

(
∂9

∂
(
∇sm f

)))]} . δφ f dBs . (B.5)

Substituting (B.3), (B.4), and (B.5) into (B.1), the variation of the internal energy given in (24) has been
recovered.

Appendix C: External and dissipation works

The dissipation and external works have been defined in (25) and (26) on the Eulerian configuration of
the system in terms of δχs and δχ f ◦φ f . These works must then be rewritten in terms of the independent
variations δχs and δφ f . In order to do so, the relationship between (δχ f ◦ φ f − δχs) and δφ f must
be established. We know by definition that χ f ◦ φ f = χs, so that δ

(
χ f ◦φ f

)
= δχs . Moreover, by

differentiation rule for composite functions we have δχs = δ
(
χ f ◦φ f

)
= δχ f ◦φ f +

[(
∇ f χ f

)
◦φ f

]
.δφ f .

But since χ f = χs ◦φ−1
f , we get

∇ f χ f ◦φ f = ∇sχs .
[
∇ f

(
φ−1

f

)
◦φ f

]
= ∇sχs .

(
∇sφ f

)−1
,

so that δχs = δχ f ◦φ f + ∇sχs .
(
∇sφ f

)−1
. δφ f , or,

δχ f ◦φ f − δχs = − Fs .
(
∇sφ f

)−1
. δφ f . (C.1)

We now prove that the external work due to the force t f appearing in Equation (26) and prescribed
by (27) represents the external work L f

ext done to change the fluid mass inside the porous system when
the external chemical potential µext is assumed to be constant. We define this work as

L f
ext

=

∫
Bs

(
µext

◦χs
)
δm f dBs;

according to (23) and neglecting composition operations we can write

L f
ext

=

∫
Bs

µextm f
(
∇sφ f

)−T
: ∇s

(
δφ f

)
dBs,
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which, integrating by parts, recalling (A.2) for m f , and assuming µext constant, gives

L f
ext

=

∫
∂Bs

{[
µextm f

(
∇sφ f

)−T
. ns

]
.δφ f

}
dSs −

∫
Bs

µextρ0
f divs

[
det

(
∇sφ f

) (
∇sφ f

)−T
]

dBs .

It is known from (B.2) that the divergence appearing in the second integral is vanishing, so that L f
ext

can be rewritten on the Eulerian configuration as

L f
ext

=

∫
∂Bt

{[
µextρ f

((
∇sφ f

)−T
. FT

s

)
.n
]
.δφ f

}
◦χ−1

s dSt ,

or, using (C.1),

L f
ext

= −

∫
∂Bt

[
ρ fµ

extn .
(
δχ f ◦φ f − δχs

)]
◦χ−1

s dSt ,

which is the expression of the fluid external work used in (26).
The final expressions for δLdiss and δLext can now be determined. We first consider the solid

Lagrangian pull-back of (25), which, recalling that ∇vα = ∇sVα.F−1
s , reads

δLdiss
:= −

∫
Bs

{
Js D

(
V f ◦φ f − Vs

)
.
[(
δχ f ◦φ f − δχs

)]}
dBs

−

∫
Bs

{
Js
[
A .∇s

(
V f ◦φ f − Vs

)
.F−1

s
]
: ∇

[(
δχ f ◦φ f − δχs

)]}
dBs .

Recalling Equation (C.1), the dissipation work can be rewritten as

δLdiss
=

∫
Bs

[(
∇sφ f

)−T
.
(
Js D FT

s .
(
V f ◦φ f − Vs

))]
. δφ f dBs

+

∫
Bs

{
Js
[
A .∇s

(
V f ◦φ f − Vs

)
.F−1

s .F−T
s
]
: ∇s

[
Fs .

(
∇sφ f

)−1
. δφ f

]}
dBs;

integrating the second term by parts, Equation (29) for the dissipation work is easily recovered.
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ESTIMATION OF PARAMETERS OF A THREE-LAYERED SANDWICH BEAM

NILSON BARBIERI, RENATO BARBIERI, LUIZ CARLOS WINIKES AND LUIS FERNANDO ORESTEN

In this work the physical parameters of a sandwich beam made with the association of hot rolled steel,
polyurethane rigid foam, and high impact polystyrene, used for the assembly of household refrigera-
tors and food freezers, are estimated using measured and numeric frequency response functions. The
mathematical models are obtained using the finite element method and the Timoshenko beam theory.
The physical parameters are estimated using the amplitude correlation coefficient and genetic algorithm
methods. Initially, the experimental procedure to determine the material’s mechanical properties, Young
and shear moduli, and the density of the components of the sandwich beam is described. The elastic
properties were obtained through tension and torsion tests. The shear modulus Gc of the polyurethane
rigid foam core was determined using a rectangular specimen and the Young’s moduli of the steel and
high impact polystyrene were determined using a conventional tension test. To estimate the dynamical
values of the parameters in the frequency range from 10 to 400 Hz, separated dynamic sweeping tests
were conducted using cantilevered beams of polyurethane rigid foam and high impact polystyrene. The
experimental data from a three layered sandwich beam were obtained using an impact hammer and four
accelerometers, displaced along the cantilevered beam sample. The parameters estimated are the Shear
modulus and the loss factor of the polyurethane rigid foam, and the Young’s modulus and the loss factor
of the high impact polystyrene.

1. Introduction

Modern engineering requires the use of sophisticated and optimized structural designs. One way to
achieve this goal is to use materials in a way that will optimize their inherent properties. An engi-
neering application known as sandwich structure is very suitable for this purpose. Sandwich materials
are frequently used wherever high strength and low weight are important criteria. The most important
applications are found in the transport industry — such as in the aerospace, automobile, railroad, and
marine industries — where high stiffness/weight and strength/weight ratios provide increased payload
capacity, improved performance, and lower energy consumption. These applications are often subjected
to vibrations. It is therefore important to know the particular dynamic and vibroacoustic properties, such
as the natural frequencies, of these constructions for design purposes [Tavallaey 2001].

For household refrigerators and food freezers, one of the main complaints to customer care centers
is related to noise generation, related most of the time to vibration of the cabinet, which radiates sound
from internal components like shelves and containers, leaking to the outside of the unit.

The modeling of sandwich structures has been studied extensively, but less attention has been paid
to their material identification [Shi et al. 2006]. Material parameter identification by inverse methods

Keywords: sandwich beam, genetic algorithm, amplitude correlation coefficient, parameter updating.
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using measured resonance frequencies is a recent type of nondestructive evaluation method. The prin-
ciple of inverse methods for material identification is to update iteratively the engineering constants in
a finite element model of the test specimens in such a way that the computed frequencies match the
measured frequencies. The engineering constants that minimize an output residual are considered as the
solution of the procedure. The minimization of the output residual is realized by optimization methods,
which minimize a scalar value called the objective function. A typical objective function is the sum of
the squared residual components. The underlying idea of inverse methods based on measurement of
resonance frequencies originates from the observation that all constructions made with elastic materials
have a characteristic set of resonance frequencies. The values of these frequencies are determined by the
geometry, boundary conditions, the elastic moduli, and the density of the materials.

Caracciolo et al. [2004] presented an experimental technique for completely characterizing a viscoelas-
tic material, by determining the Poisson’s ratio and the complex dynamic Young’s modulus of a small
beam-like specimen subject to seismic excitation, together with the theoretical background. The same
experimental device is used basically for both kinds of tests; the specimen is instrumented, placed into a
temperature controlled chamber and excited by means of an electrodynamic shaker. The longitudinal and
the transversal deformations are measured by strain gauges to get the Poisson’s ratio, whereas the vertical
displacement of the specimen and the acceleration of the support are measured to get Young’s modulus of
the tested material. The experimental curves of the Poisson’s ratio and of the Young’s modulus, obtained
at different temperatures, are then gathered into a unique master curve by using the reduced variables
method. The two master curves, respectively, represent the Poisson’s ratio and Young’s modulus for the
tested material in a very broad frequency range.

Park [2005] used experimental methods to measure frequency-dependant dynamic properties of com-
plex structures. Flexural wave propagations are analyzed using the Timoshenko beam, the classical beam,
and the shear beam theories. Wave speeds, bending, and shear stiffnesses of the structures are measured
through the transfer function method, requiring small number of vibration measurements. Sensitivity
analysis is performed to investigate the effects of experimental variables on the measured properties and
to study optimal sensor locations of the vibration measurements. Using the developed methods, the
complex bending and shear stiffnesses of sandwich beams of different core materials and a polymer
beam are measured. Continuous variations of the measured bending and shear stiffnesses and their loss
factors with frequency were obtained. To further illustrate the measurements of frequency-dependent
variation of dynamic properties of complex structures, the damping of structural vibration using porous
and granular materials is investigated.

Kim and Kreider [2006] studied the parameter identification in nonlinear elastic and viscoelastic plates
by solving an inverse problem numerically. The material properties of the plate, which appear in the
constitutive relations, are recovered by optimizing an objective function constructed from reference strain
data. The resulting inverse algorithm consists of an optimization algorithm coupled with a corresponding
direct algorithm that computes the strain fields given a set of material properties. Numerical results are
presented for a variety of constitutive models; they indicate that the methodology works well, even with
noisy data.

Pintelon et al. [2004] analyzed the stress-strain relationship of linear viscoelastic materials charac-
terized by a complex valued, frequency-dependent elastic modulus (Young’s modulus). Using system
identification techniques it is shown the elastic modulus can be measured accurately in a broad frequency
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band from forced flexural (transverse) and longitudinal vibration experiments on a beam under free-free
boundary conditions. The approach is illustrated on brass, copper, plexiglass, and PVC beams.

Yang et al. [2005] analyzed the vibration and dynamic stability of a traveling sandwich beam using the
finite element method. The damping layer is assumed to be linear viscoelastic and almost incompressible.
The extensional and shear moduli of the viscoelastic material are characterized by complex quantities.
Complex eigenvalue problems are solved by the state-space method, and the natural frequencies and
modal loss factors of the composite beam are extracted. The effects of stiffness and thickness ratios of
the viscoelastic and constrained layers on natural frequencies and modal loss factors are reported. Tension
fluctuations are the dominant source of excitation in a traveling sandwich material, and the regions of
dynamic instability are determined by a modified Bolotin’s method. Numerical results show that the
constrained damping layer stabilizes the traveling sandwich beam.

Singh et al. [2003] formulated a system identification procedure for estimation of parameters asso-
ciated with a dynamic model of a single degree of freedom foam-mass system. Ohkami and Swoboda
[1999] presented two parameter identification procedures for linear viscoelastic materials. Chang [2006]
used the genetic algorithm for parameter estimation of nonlinear systems.

Backström and Nilsson [2007] indicate the need for simple methods describing the dynamics of these
complex structures. By implementing frequency dependent parameters, the vibration of sandwich com-
posite beams can be approximated using simple fourth order beam theory. A higher order sandwich beam
model is utilized in order to obtain estimates of the frequency-dependent bending stiffness and shear mod-
ulus of the equivalent Euler–Bernoulli and Timoshenko models. The resulting predicted eigenfrequencies
and transfer accelerance functions are compared to the data obtained from the higher order model and
from measurements. It can be noticed that for lower order wavenumbers the ordinary Timoshenko theory
and the higher order theory show satisfactory agreement.

In this work the physical parameters of a sandwich beam made with the association of hot rolled
steel, polyurethane rigid foam, and high impact polystyrene, used for the assembly of household re-
frigerators and food freezers, are estimated using measured and numeric frequency response functions
(FRFs). The mathematical models are obtained using the finite element method (FEM) and Timoshenko
beam theory. The physical parameters are estimated using the amplitude correlation coefficient [Grafe
1998] and genetic algorithm (GA) [Chang 2006] methods. The experimental data are obtained using an
impact hammer and four accelerometers displaced along the cantilevered beam sample. The parameters
estimated are the shear modulus and the loss factor of the polyurethane rigid foam and the Young’s
modulus and the loss factor of the high impact polystyrene. The frequency range is chosen for the test in
which the FRF curve presents a good signal to noise ratio. To estimate the initial values of the parameters,
separated static and dynamic tests were conducted using cantilevered beams of polyurethane rigid foam
and high impact polystyrene. The static values are used as the initial reference values for the dynamic
estimation.

2. Mathematical model

A lot of research has been done on finite element models of cantilever beams based on Euler–Bernoulli
beam theory. In Euler–Bernoulli beam theory the assumption is made that the plane cross section before
bending remains plane and normal to the neutral axis after bending. This assumption is valid if the
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length to thickness ratio is large, and for small deflection of beam. However if the length to thickness
ratio is small, plane deflection before bending will not remain normal to the neutral axis after bending.
In practical situations a large number of modes of vibrations contribute to the structure’s performance.
Euler–Bernoulli beam theory gives inaccurate results for higher modes of vibration. Timoshenko beam
theory corrects the simplifying assumptions made in Euler–Bernoulli beam theory. In this theory cross
sections remain plane and rotate about the same neutral axis as the Euler–Bernoulli model, but do not
remain normal to the deformed longitudinal axis. The deviation from normality is produced by a trans-
verse shear that is assumed to be constant over the cross section. Thus the Timoshenko beam model is
superior to the Euler–Bernoulli model in precisely predicting the beam response [Backström and Nilsson
2007] for a lower number of vibration modes.

The equation of motion for the vibration of a sandwich beam according to the Timoshenko beam
theory [Zenkert 1997] is

D
∂4w

∂x4 + ρ∗
∂2w

∂t2 −
ρ∗

S

(
D

∂4w

∂x2∂t2 − <
∂4w

∂t4

)
− <

∂4w

∂x2∂t2 = f (x)eiωt , (1)

where w(x, t) is the transverse displacement, D is the bending stiffness, ρ∗ is the mass per unit of surface,
S is the shear stiffness, < is the rotational inertia, x is the coordinate along the beam axis, t is the time,
f (x) is the amplitude of the external force applied along the beam span, ω is the excitation frequency,
and i =

√
−1.

The dimensions and parameters of the sandwich beam shown in Figure 1 are as follows: E1, E2, and
Ec are the Young’s moduli, ρ1, ρ2, and ρc are the densities, Gc is the shear modulus, t1, t2, and tc are
the thicknesses, e is the position of the neutral line, d is the distance between the center line of the steel
and the high impact polystyrene beam, and z is the position of the reference axis.

According to Figure 1 and the theory of sandwich beams [Zenkert 1997]

e =
E1t1

( t1
2 + tc +

t2
2

)
+ Ectc

( tc
2 +

t2
2

)
E1t1 + Ectc + E2t2

, d = tc +
t1
2

+
t2
2
,

D =
E1t3

1

12
+

E2t3
2

12
+

Ect3
c

12
+ E1t1(d − e)2 + E2t2e2

+ Ectc

(
tc + t2

2
− e

)2

, ρ∗
= ρ1t1 + ρ2t2 + ρctc,

< =
ρ1t3

1

12
+
ρ2t3

2

12
+
ρct3

c

12
+ ρ1t1(d − e)2 + ρ2t2e2

+ ρctc

(
tc + t2

2
− e

)2

, S =
Gcd2

tc
.

Making w = w(x, t) a harmonic function, it is possible to admit that w(x, t)= W (x) eiωt . Substituting
this w(x, t) into Equation (1) we obtain

D
∂4W
∂x4 − ρ∗ω2W (x)−

ρ∗

S

(
−Dω2 ∂

2W
∂x2 − <ω4W (x)

)
+ <ω2 ∂

2W
∂x2 = f (x). (2)

The exact solution W (x) needs to satisfy Equation (2) at every point x , and in general is unknown. To
overcome this problem the approximate solution W̃ (x) is used. This approximate solution is interpolated
over a finite element, see Figure 1, with 2 nodes, according to the expression W (x)∼= W̃ (x)= [φ] {q},

where [φ(x)] is the shape function matrix (1 × 4) and the four φ j (x) are the well known Hermitian inter-
polation functions [Cook et al. 1989] with C1 continuity. The vector {q} is the generalized displacement
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Figure 1. Sandwich beam geometric parameters (left) and finite element degrees of
freedom (right).

vector, {q} = {w1, θ1, w2, θ2}
t where wi denotes the nodal displacement and θi is the rotation at element

node i .
Substituting the approximate solution into Equation (2) introduces an residual error, E(x, ω), which

is minimized using the Galerkin weighted residual method. In mathematical terms, the residual error is
made orthogonal to the weight functions∫ L

0
[φ]t

(
D
∂4W̃
∂x4 − ρ∗ω2W̃ (x)−

ρ∗

S

(
−Dω2 ∂

2W̃
∂x2 − <ω4W̃ (x)

)
+ <ω2 ∂

2W̃
∂x2 − f (x)

)
dx = 0, (3)

where L is the element length.
Substituting the shape functions into Equation (3) obtains the standard finite element equation

[Ke(ω)] {q} = {F},

where

[Ke(ω)] = D [K ] +ω2
[
−ρ∗ [M] +

(
ρ∗D

S
+ <

)
[Kσ ]

]
+ω4ρ

∗
<

S
[M] ,

[K ] =
1
L3


12 6L −12 6L
6L 4L2

−6L 2L2

−12 −6L 12 −6L
6L 2L2

−6L 4L2

 , [Kσ ] =
1

30L


36 3L −36 3L
3L 4L2

−3L −L2

−36 −3L 36 −3L
3L −L2

−3L 4L2

 ,

[M] =
l

420


156 22L 54 −13L
22L 4L2 13L −3L
54 13L 156 −22L

−13L −3L −22L 4L2

 , {F} =

∫ L

0
[φ]T f (x)dx .

3. Numerical estimation methods

To approximate the experimental and numeric FRF data, the predictor-corrector updating technique
[Grafe 1998] based on two correlation coefficients (shape and amplitude) and their sensitivities can
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be used. In this work, only the amplitude correlation coefficient is used. This coefficient is defined as

χa(ωk)=
2|{HX (ωk)}

T
{HA(ωk)}|

({HX (ωk)}T {HX (ωk)})+ ({HA(ωk)}T {HA(ωk)})
,

where HX (ωk) and HA(ωk) are the measured and predicted response vectors at matching excitation-
response locations.

The corresponding sensitivity is

∂χa(ωk)

∂ϕ
= 2

∂|{Hx}
T
{HA}|

∂ϕ

({HX }
T
{HX }+{HA}

T
{HA})

({HX }T {HX }+{HA}T {HA})2

− 2
∂({HA}

T
{HA})

∂ϕ

|{Hx}
T
{HA}|

({HX }T {HX }+{HA}T {HA})2
.

It is therefore proposed to make use of χa(ωk) and its sensitivity in a combined manner to improve the
overall level of correlation. Based on a truncated Taylor series expansion, one can therefore write one
equation for frequency point ωk as

{1 −χa(ωk)} =

[
∂χa(ωk)

∂ϕ1

∂χa(ωk)

∂ϕ2
· · ·

∂χa(ωk)

∂ϕNϕ

]
1×Nϕ

{1ϕ}, (4)

where Nϕ is the number of updating parameters {ϕ1, ϕ2, . . . , ϕN } and Equation (4) is recognized to be in
the standard form of sensitivity based model updating formulations {ε} = [S] {1ϕ}, where {1ϕ} is the
change in design parameters of the finite element model.

An extended weighted least square approach is proposed which minimizes

J ({ϕ})= {ε}T [W f
]
{ε} + {1ϕ}

T [Wϕ

]
{1ϕ}, (5)

where
[
W f

]
and

[
Wϕ

]
are diagonal weighting matrices for the frequency points and updating parameters

respectively (see [Grafe 1998] for more details).
Another update method used in this work is the GA method. This method is widely used and is based

on the evolutionary biological process [Chang 2006]; the GA parameters used in this application are:
mutation rate = 0.02, population size = 50, and number of generations = 5000. The objective function
is defined by

f =

np∑
i=1

|FRFexp − FRFFEM|, (6)

where FRFexp is the experimental FRF obtained with laser transducer or accelerometer, FRFFEM is the
numeric FRF and np is the number of experimental points (np varies according the system and frequency
range). Equation (6) is used as a fitness function. The impulsive data were collected using a frequency
range varying from 0 to 400 Hz and a frequency increment 1ω = 0.25 Hz.

The numeric FRF is obtained using frequency sweeping in the range of interest with the same incre-
ment as the measurements. The final finite elements system of equations is solved for each frequency,
and two procedures are used to specify the boundary condition and the force vector:
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(a) When the FRF is obtained using the impact hammer, the force vector is calculated using unitary
force applied in the excitation node, and the clamped boundary condition is prescribed for the fixed
base node.

(b) When the FRF is obtained using base excitation (a shaker) and the measurements are made with a
laser transducer, the force vector is null and the boundary conditions for the fixed base node are the
measured displacement with null rotation.

4. Static characterization

This section shows the experimental procedure used to determine the material’s mechanical properties,
Young and shear moduli, and the density of the components of the sandwich beam. The elastic properties
were obtained through tension and torsion tests. The shear modulus Gc of the polyurethane rigid foam
core was determined with a torsion test using a prismatic specimen with a rectangular section, and the
Young’s moduli of the steel and high impact polystyrene were determined using conventional tension
tests.

4.1. Polyurethane rigid foam core. Due to the difficulty of adapting the specimen for use in the conven-
tional testing machines (for torsion and/or tension tests) a special pure torsion device test was projected
to evaluate the shear modulus G of the core.

For pure torsion the relative angle of twist for a prismatic bar is

θ =
T L
G J

,

where T is the torque, L is the length (as a relative position) and J is the polar area moment of inertia.
For a rectangular section with dimensions d and t with d ≥ t the polar area moment of inertia J is

given by [Boresi and Chong 1999]

J = K1
d × t3

3
,

Figure 2. Special device for torsion test of the polyurethane rigid foam core (left) and
the sample inserted in fixed extremity (right).
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where

K1 = 1 −
192
π5

t
d

∑
n=0,1,2,...

1
(2n + 1)5

tanh
(

2n + 1
2

d
t
π

)
.

For d = t , using 10 terms in the series, K1 ∼= 0.422 and the expression for the angle of twist reduces to

θ =
T × L

G × d × t3 × 0.14066
.

The specimen with dimensions of 30 mm × 30 mm × 250 mm is inserted with low interference at the
fixed extremity (see Figure 2), and the external torque is applied on the other extremity (which is free to
rotate) using a pulley and dead weight (see Figure 3).

A cursor was inserted as shown in Figures 2 and 3 to measure the twist angle using a calibrated disc
in steps with 0.5 degree resolution. The external torque is applied using calibrated weights (see Figure
3) and the test is carried out varying the torque and making direct measurement of the twist angle.

The polyurethane rigid foam samples were extracted from the same cabinet to avoid variations due to
different production conditions. The samples were obtained from the lateral refrigerator wall (a straight
region, with less foaming faults and voids) and it was classified according to the quantity of superficial
faults (see Figure 4). The goal of this classification was to evaluate the variation of the G value obtained
with perfect samples and with superficial faults.

The tests were performed on 12 samples with torque increments of 0.02375 Nm in such a manner to
produce an adequate twist angle variation. Table 1 shows the values of G, as well the average value
and the variance. The average values of the shear modulus G of samples with superficial faults are
greater than that of samples without faults. Usually the stiffness will be reduced if there are defects in
the specimen. However, the variance is also greater for the samples with faults.

Figure 3. Free rotating end with calibrated disc (left) and torque application through
calibrated weights (right).
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Figure 4. A sample with superficial faults.

Figure 5 shows a typical curve of the torque as a function of twist angle; it can be noticed that this
relation is linear, with lower residue, as found in [Branner 1995]. Apparently the curve presents linear
behavior. In the torsion test used to obtain the shear modulus G of the polyurethane rigid foam core, the
twist angle can reach nearly 30 degrees. For such large rotation, the nonlinear effect may be dominant.
The nonlinearity reduces the stiffness and lower G may be obtained.

Branner [1995] shows the dependence of the shear modulus G, as well as the elastic modulus E ,
on the specific material density. A precision weighing balance Scientech model SA210 was used, with
resolution of 0.001 g. Table 2 shows the density values obtained for 12 samples (6 with and 6 without
superficial faults).

4.2. Steel beam. The Young’s modulus of the steel beam was determined using the procedures described
in the technical norm [ASTM 2004].

Sample G (MPa) Sample G (MPa)
(without superficial faults) (with superficial faults)

1 1.977 1 2.423
2 2.015 2 1.896
3 2.215 3 1.935
4 2.045 4 2.205
5 2.091 5 2.496
6 2.054 6 2.152

Average value = 2.066 MPa Average value = 2.184 MPa
Variance = 0.082 MPa Variance = 0.245 MPa

Table 1. Experimental shear modulus.
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Figure 5. Twist angle versus applied torque.

As a result of the stress-strain test of the steel sample, a correlation between applied force and resultant
deformations was obtained. The Young’s modulus can be obtained from

E =
P
εA
,

where P is the applied load (in N), A is the transversal section area (in m2), and ε is the longitudinal
deformation (nondimensional).

The value of the Young’s modulus obtained was 209.6 GPa, and Figure 6 shows the variation of the
applied force and the strain.

4.3. High impact polystyrene. The characterization of the high impact polystyrene is performed using
the procedures described in the technical norm [ASTM 2003] for plastics tensile testing.

Sample Density (kg/m3) Sample Density(kg/m3)

(without superficial faults) (with superficial faults)

1 28.400 1 29.111
2 28.876 2 28.573
3 28.769 3 28.262
4 28.751 4 29.280
5 28.369 5 29.111
6 28.329 6 29.671

Average value 28.582 kg/m3 Average value 29.002 kg/m3

Variance 0.242 kg/m3 Variance 0.506 kg/m3

Table 2. Polyurethane rigid foam core density.
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Figure 6. Strain versus applied force.

Five tests were carried out using a universal tensile testing machine EMIC with load cell capacity of
2000 N and test speed of 5 mm/min. The Young’s modulus was obtained through the angular coefficient
of the linear range of the stress-strain curve (see Figure 7).

Table 3 shows the Young’s modulus values obtained from the five samples, the average value, and the
variance.

The technical norm [ASTM 2000] describes the standard test methods for density and specific gravity
(or relative density) of plastics by displacement. The body mass is first measured in the atmosphere. After
this step the body is immersed in a liquid and the apparent mass is measured. After few manipulations
the plastic density is obtained. Six samples were tested and the results are shown in Table 4.
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Figure 7. Specific strain versus stress (left) and adjusted curve of specific strain versus
stress (right).
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Sample Young’s modulus (GPa)

1 1.392
2 1.388
3 1.439
4 1.399
5 1.409

Average value 1.405 GPa
Variance 0.018 GPa

Table 3. Young’s modulus of the PSAI.

5. Dynamic characterization

The experimental sample of the sandwich beam made with the association of hot rolled steel, polyurethane
rigid foam, and high impact polystyrene is shown in Figure 8. The thicknesses of the steel, polyurethane,
and polystyrene are 0.6 mm, 38.25 mm, and 1.25 mm, respectively, and the beam width is 39.18 mm.

The experimental data are obtained using the impact hammer and the four accelerometers displaced
along the sample (A1, A2, A3, and A4). Figure 9 shows the FRF curves of the four accelerometers. The
impact force was applied in the position of the accelerometer A2 on the steel side.

The rational fraction polynomial [Maia et al. 1997] method was used to estimate the damping ratio,
ξ , and the natural frequencies, ω, of the first three mode shapes. The fourth mode was not considered
due to poor signal to noise ratio.

Table 5 shows the values of these parameters for the four accelerometers. The position of the ac-
celerometer A3 is near the nodal point of the second mode shape. This justifies the results suppressed in
Table 5.

To validate the mathematical model of the sandwich beam it was attempted to estimate separately some
physical parameters of the system, namely the shear modulus and the loss factor of the polyurethane rigid
foam, and the Young’s modulus and the loss factor of the high impact polystyrene.

Sample Density (kg/m3)

1 1059.6
2 1069.1
3 1060.1
4 1059.1
5 1060.3
6 1062.8

Average value 1061.9 kg/m3

Variance 3.8 kg/m3

Table 4. Density of the PSAI.
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Figure 8. Sandwich beam.
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Figure 9. FRF curves of the four accelerometers.
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Figure 10. Experimental specimen of cantilever beam with position sensor.
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Accelerometers
A1 A2 A3 A4

Mode shape ω (Hz) ξ ω (Hz) ξ ω (Hz) ξ ω (Hz) ξ

1 25.42 0.050 25.39 0.050 25.33 0.052 25.32 0.053
2 109.41 0.0171 109.45 0.0165 − − 109.39 0.0167
3 223.97 0.0154 224.00 0.0152 224.05 0.0159 224.18 0.0157

Table 5. Experimental damping ratio and natural frequencies.

The loss factor η was estimated considering the complex Young’s modulus E∗
= E(1 + jη). To obtain

initial values of these parameters separate studies were conducted on the polyurethane rigid foam and
the high impact polystyrene. The first approximation of the loss factor was η = ξ ∼= 0.05 (the damping
ratio of the first mode according Table 5).

Figure 10 shows the experimental specimen for the high impact polystyrene and polyurethane rigid
foam cantilever beam. The high impact polystyrene beam dimensions and material property are length,
L = 0.145 m, width = 0.02 m, thickness = 0.0018 m, and density ρ = 1060 kg/m3. The mini shaker
(B&K model 4810) was used in the sweep sine test with the frequency range varied from 10 to 400 Hz
with an increment of 2.5 Hz (157 points). One accelerometer (PCB model 353B18) and one laser velocity
transducer (B&K model 3544) were used to collect the vibration data. The accelerometer was placed at
the base excitation point (the shaker) and the laser sensor at the position d = 0.135 m. Figure 11 shows
the experimental and estimated curves of the velocity/acceleration ratio PVA (velocity/base acceleration).
The parameters were estimated using the genetic algorithm, and the objective function was defined using
the difference between the values of the experimental and numeric PVA. The parameters updated are
the Young’s modulus and the loss factor of the high impact polystyrene. The optimal values found are
shown in Table 6.
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Figure 11. PVA curves of the high impact polystyrene cantilever beam (left) and the
polyurethane rigid foam cantilever beam right.



ESTIMATION OF PARAMETERS OF A THREE-LAYERED SANDWICH BEAM 541

Frequency range (Hz) E (GPa) η

10.0 – 57.5 1.3350 0.0385
57.5 – 177.5 1.3725 0.0450
177.5 – 400.0 1.4150 0.0805

Table 6. Optimal parameters.

Frequency range (Hz) G (MPa) η

10.0 – 150.0 2.6497 0.0575
150.0 – 400.0 2.5498 0.0625

Table 7. Optimal parameters.

The polyurethane rigid foam cantilever beam dimensions and material property are length, L =

0.225 m, width = 0.03 m, thickness = 0.03 m, and density ρ = 29 kg/m3. The laser sensor position
is d = 0.1125 m. The mini shaker was used in the sweep sine test, with the frequency range varying
from 10 to 400 Hz with an increment of 2.5 Hz (157 points). Figure 11 shows the experimental and the
estimated curves of the velocity/acceleration ratio PVA. The parameters updated are the shear modulus
and the loss factor of the polyurethane rigid foam. The optimal values found for these parameters are
shown in Table 7. As mentioned by Backström [2006], the elasticity modulus of the core does not have
significant influence on the dynamics of typical beams, and is assumed to be related to the core shear
modulus by the isotropic relation Ec = 2(1+ν)Gc, where ν is Poisson’s ratio. Since the eigenfrequencies
of the beam are not sensitive the value of ν, and as Gc is known directly, ν is set to a default value of
ν = 0.3. Thus, by defining an error function describing the proximity of the calculated curve of PVA to
the measured, the optimal values of Gc are found by minimization.

Figure 11 shows good agreement between the estimated and experimental curves, even near the reso-
nances.

The physical parameters of the cantilevered sandwich beam shown in Figure 8 were estimated using
the amplitude correlation coefficient (ACC) and GA. The frequency range was varied from 10 to 250 Hz
(961 points, 1ω = 0.25 Hz), chosen for the good signal to noise ratio. Figure 12 shows the experimental
and numeric (estimated) FRF curves for the sandwich beam. The curves obtained using ACC and GA
methods are practically superposed, and the optimal parameter values found with these methods are
shown in Table 8.

High impact polystyrene Polyurethane rigid foam
Method Frequency range (Hz) E (GPa) η G (MPa) η

GA 10 – 250 1.5830 0.0446 3.2874 0.0645
ACC 10 – 250 1.5800 0.0471 3.2917 0.0635

Table 8. Optimal parameters.
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Figure 12. Experimental and estimated FRF curves.

6. Conclusions

Two methods, the genetic algorithm and the amplitude correlation coefficient methods, were used to
update the values of physical parameters of mathematical models of a sandwich beam made with the
association of hot rolled steel, polyurethane rigid foam, and high impact polystyrene as used for the
assembly of household refrigerators and food freezers.

The physical parameters estimated were the shear modulus and the loss factor of the polyurethane
rigid foam, and the Young’s modulus and loss factor of the high impact polystyrene.

Both methods, the genetic algorithm and the amplitude correlation coefficient, presented good results
when it compared to the estimated and the experimental FRF curves.

The genetic algorithm method does not use derivatives, thus it is a good estimated method even for
the resonance region.

The amplitude correlation coefficient method uses derivatives, but even so it was possible to obtain
good estimation of the parameters near the resonance region.

It was verified that the parameters are frequency dependent. The values found with a conventional,
static, test are good approximations for the initial updated methods’ starting point.

The static and dynamic tests yielded about the same, 1.4 GPa, for the elastic modulus of the high
impact polystyrene. There is some discrepancy for the polyurethane rigid foam; the static test value is
about 2.1 MPa, while the dynamic test value is about 2.5 MPa. Pritz [2004] demonstrated mathematically
and verified experimentally that the modulus of elasticity of polyurethane rigid foam increases with the
increase of the frequency. Therefore the results of this work are in accordance with the data of the
literature.

The estimated parameters for the sandwich beam components are greater than the values estimated and
measured for the individual (separated) samples. For sandwich beam samples the estimated Young’s mod-
ulus of the high impact polystyrene was 1.58 GPa, and the estimated shear modulus of the polyurethane
rigid foam was 3.29 MPa. The loss factor of the materials varied from 0.04 to 0.06. Some reasons for
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the variations of the values between the static and dynamic tests can be associated with the compacting
pressure, the glue between the layers, and imperfections in the foam core layer.
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EXTENDED DISPLACEMENT DISCONTINUITY METHOD FOR CRACK
ANALYSIS IN THREE-DIMENSIONAL TWO-PHASE TRANSVERSELY

ISOTROPIC MAGNETOELECTROELASTIC MEDIA

MINGHAO ZHAO, NA LI, CUIYING FAN AND TONG LIU

Green’s functions for extended displacement discontinuity in a three-dimensional two-phase transversely
isotropic magnetoelectroelastic medium are obtained by using the integral equation method. Based on
the obtained Green’s functions, an extended displacement discontinuity method is developed for analy-
sis of planar cracks of arbitrary shape in three-dimensional two-phase magnetoelectroelastic media. A
rectangular interior crack parallel to the interface under the electrically and magnetically impermeable
boundary condition is analyzed, and the extended intensity factors are calculated by the proposed method.
The magnetoelectroelastic medium is made with BaTiO3 as the inclusion and CoFe2O4 as the matrix.
The influences of the interface and the material properties on the extended intensity factors are studied.
Numerical results show that the three normalized extended intensity factors, that is, the stress intensity
factor, the electric displacement intensity factor, and the magnetic induction intensity factor, are different
both from each other and from the case of a crack in a homogeneous medium.

1. Introduction

Because of the coupling effect among the mechanical, electrical and magnetic properties, magnetoelec-
troelastic materials are finding more and more applications in many areas such as electronics, lasers,
supersonics, infrared, and microwave sources. Laminated composite structures of these materials are
often used to enhance the coupling effects. The integrity and reliability of the structures depend greatly
on the defects, such as inclusion, void, crack, etc., in the materials and structures. So the study of cracks
in magnetoelectroelastic materials and structures has been attracting more and more efforts [Huang and
Kuo 1997; Wang and Shen 2003; Wang and Mai 2003; Gao and Noda 2004; Zhou et al. 2004; Tian and
Rajapakse 2005; Zhao et al. 2006a; Zhao et al. 2006b].

It is difficult to find the analytical solution of a problem in a general case. Numerical approaches have
to be used such as the finite element method (FEM) and the boundary element method (BEM). BEM is
one of the preferred techniques for dealing with field concentration and singularity problems in fracture
mechanics. In this method, the Green’s function or a fundamental solution plays an important role. A
lot of work has been done in this field. In two-dimensional problems, for example, Chung and Ting
[1995] gave the two-dimensional Green’s functions for anisotropic magnetoelectroelastic media with an

Keywords: Green’s functions, two-phase, three-dimensional, magnetoelectroelastic medium, displacement discontinuity
method, crack, intensity factor.
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elliptic hole or rigid inclusion. Based on the Stroh formalism, Jiang and Pan [2004] obtained the two-
dimensional Green’s functions in an exact closed form for general inclusion problems of anisotropic and
fully coupled magnetoelectroelastic full, half, and bimaterial planes. Liu and Liu [2001] derived the
Green’s functions for an infinite two-dimensional anisotropic magnetoelectroelastic medium including
an elliptical cavity by use of the technique of conformal mapping and the Laurent series expansions. Qin
[2004] derived the Green’s function for magnetoelectroelastic solids with an arbitrarily oriented half-
plane or bimaterial interface. Ding et al. [2005] obtained the Green’s functions for two-phase transversely
isotropic magnetoelectroelastic media, including the two-dimensional Green’s functions of an infinite
plane and an infinite half-plane as well as the three-dimensional counterparts.

In three-dimensional problems, Pan [2002] obtained the three-dimensional Green’s functions in aniso-
tropic infinite, semiinfinite, and two-phase magnetoelectroelastic media based on extended Stroh formal-
ism. Hou et al. [2005] presented the three-dimensional Green’s functions of infinite, two-phase, and
semiinfinite transversely isotropic magnetoelectroelastic media under point forces, point charge, and
magnetic monopole in terms of elementary functions for all cases of distinct eigenvalues and multiple
eigenvalues. Wang and Shen [2002] gave the general solutions and the fundamental solutions or Green’s
functions for magnetoelectroelastic media through five potential functions.

Parallel to the Green’s functions for point force, the displacement discontinuity fundamental solutions
[Crouch 1976] are other important kinds of Green’s functions, which are of special use in displacement
discontinuity boundary integral equation methods in fracture mechanics. This method is commonly
called displacement discontinuity method (DDM). It has been proved to be one of the most powerful
methods in fracture mechanics of purely elastic media [Wen 1996; Pan and Amadei 1996; Zhao et al.
1998], poroelastic media [Pan 1991], as well as for piezoelectric media [Zhao et al. 1997a; Zhao et al.
1997b; Zhao et al. 2004]. In the present paper, the Green’s functions for the extended displacement
discontinuity in three-dimensional two-phase transversely isotropic magnetoelectroelastic media will
be derived. Based on the obtained Green’s function, the extended Crouch fundamental solutions for
uniformly distributed extended displacement discontinuity on a rectangular segment are obtained and
the extended displacement discontinuity method is proposed. A rectangular crack is analyzed by the
proposed method as an application.

2. Basic equation

In the absence of body force, electric charge, and electric current, the basic equations for a three-
dimensional two-phase transversely isotropic magnetoelectroelastic medium with the poling direction
being along the z-direction in the oxyz Cartesian coordinate system are given by

σi j, j = 0, Di,i = 0, Bi,i = 0, (1a)

σi j = ci jkl(uk,l + ul,k)/2 + eki jϕ,k + fki jψ,k,

Di = eikl(uk,l + ul,k)/2 − εikϕ,k − gikψ,k,

Bi = fikl(uk,l + ul,k)/2 − gikϕ,k −µikψ,k,

(1b)

where i, j = 1, 2, 3(x, y, z), and σi j , Di , and Bi are the stress, electric displacement, and magnetic
induction components, respectively. ui is the displacement component, and ϕ and ψ are respectively
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Figure 1. An arbitrarily shaped planar crack S in )0( ! hhz  plane in a 
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Figure 1. An arbitrarily shaped planar crack S in the z = h(h > 0) plane in a magneto-
electroelastic bimaterial.

the electric potential and magnetic potential. ci j , eki j , fki j , εi j , gi j and µi j are the elastic constant, piezo-
electric constant, piezomagnetic constant, dielectric permittivity, electromagnetic constant, and magnetic
permeability, respectively. A subscript comma denotes the partial differentiation with respect to the
coordinate.

3. Boundary integral expressions of extended displacement discontinuity

Consider a three-dimensional two-phase transversely isotropic magnetoelectroelastic medium with the
interface being parallel to the plane of isotropy. A Cartesian coordinate system is set up such that the
xoy-plane lies in the interface. A planar crack S of arbitrary shape lies in the plane z = h(h > 0) as
shown in Figure 1. The upper and lower surfaces of S are denoted by S+ and S−, respectively. The outer
normal vectors of S+ and S− are respectively given by

{ni }
+

= {0, 0,−1}, {ni }
−

= {0, 0, 1}. (2)

The prescribed tractions, the electric displacement boundary value, and the magnetic induction bound-
ary value on the crack faces are denoted respectively by pi (i = 1, 2, 3, or x, y, z), ω, and γ , which
hereafter are called extended tractions. By using the extended point force fundamental solutions given
in Appendix A and the Somigliana identity for magnetoelectroelastic media, the displacements ui , the
electric potential ϕ, and the magnetic potential ψ at any internal point (x, y, z) can be expressed in the
following forms

ui (x, y, z)= −

∫
S+

[P F
i j u j +�F

i ϕ+0F
i ψ]d S −

∫
S−

[P F
i j u j +�F

i ϕ+0F
i ψ]d S

+

∫
S+

[p jU F
i j +ω8F

i + γ9F
i ]d S +

∫
S−

[p jU F
i j +ω8F

i + γ9F
i ]d S, (3)
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−ϕ(x, y, z)= −

∫
S+

[P D
j u j +�Dϕ+0Dψ]d S −

∫
S−

[P D
j u j +�Dϕ+0Dψ]d S

+

∫
S+

[p jU D
j +ω8D

+ γ9D
]d S +

∫
S−

[p jU D
j +ω8D

+ γ9D
]d S, (4)

−ψ(x, y, z)= −

∫
S+

[P B
j u j +�Bϕ+0Bψ]d S −

∫
S−

[P B
j u j +�Bϕ+0Bψ]d S

+

∫
S+

[p jU B
j +ω8B

+ γ9B
]d S +

∫
S−

[p jU B
j +ω8B

+ γ9B
]d S, (5)

where P F
i j , �F

i , 0F
i , U F

i j , 8F
i , and 9F

i are the tractions, the electric displacement boundary value, the
magnetic induction boundary value, the displacements, the electric potential, and the magnetic potential
of the fundamental solutions corresponding to the unit point force in the i th direction, respectively, P D

j ,
�D, 0D, U D

j , 8D, and 9D corresponding to the unit point electric charge and P B
j , �B , 0B , U B

j , 8B ,
and 9B corresponding to the unit point electric current

P F
i j = σ F

i jknk, �F
i = DF

iknk, 0F
i = B F

iknk,

P D
j = σ D

jknk, �D
= DD

k nk, 0D
= B D

k nk,

P B
j = σ B

jknk, �B
= DB

k nk, 0B
= B B

k nk,

(6)

where the upper index F , D, and B refer to the variables corresponding to point forces, point electric
charge, and point electric current, respectively. Based on the fundamental solutions, we easily obtain the
following relationship on the crack faces

P F
i j |S+ = − P F

i j |S−, U F
i j |S+ = U F

i j |S−, �F
i |S+ = −�F

i |S−,

8F
i |S+ =8F

i |S−, 0F
i |S+ = −0F

i |S−, 9F
i |S+ =9F

i |S−

P D
j |S+ = − P D

j |S−, U D
j |S+ = U D

j |S−, �D
|S+ = −�D

|S−,

8D
|S+ =8D

|S−, 0D
|S+ = −0D

|S−, 9D
|S+ =9D

|S−,

P B
j |S+ = − P B

j |S−, U B
j |S+ = U B

j |S−, �B
|S+ = −�B

|S−,

8B
|S+ =8B

|S−, 0B
|S+ = −0B

|S−, 9B
|S+ =9B

|S− .

On assuming that the extended tractions on the upper and lower crack faces satisfy the conditions

pi |S+ = − pi |S−, ω|S+ = −ω|S−, γ |S+ = − γ |S−, (7)

and considering Equations (2) and (6)–(7), Equations (3)–(5) are reduced to

ui (x, y, z)= −

∫
S+

[P F
i j ‖u j‖ +�F

i ‖ϕ‖ +0F
i ‖ψ‖]d S(ξ, η),

−ϕ(x, y, z)= −

∫
S+

[P D
j ‖u j‖ +�D

‖ϕ‖ +0D
‖ψ‖]d S(ξ, η),

−ψ(x, y, z)= −

∫
S+

[P B
j ‖u j‖ +�B

‖ϕ‖ +0B
‖ψ‖]d S(ξ, η).

(8)



EXTENDED DISPLACEMENT DISCONTINUITY METHOD FOR CRACK ANALYSIS 549

 

 

 

 

2a 

h 

o 

x 

y 

2b 

z 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. A rectangular crack in plane )0( ! hhz in a magnetoelectroelastic 

bimaterial. 
 

Figure 2. A rectangular crack in the plane z = h(h > 0) in a magnetoelectroelastic bimaterial.

In Equation (8), ‖ui‖, ‖ϕ‖, and ‖ψ‖ are respectively the displacement discontinuities, the electric
potential discontinuity, and the magnetic potential discontinuity across the crack faces, which are called
the extended displacement discontinuities and given by:

‖ui (ξ, η)‖ = ui (ξ, η, h+)− ui (ξ, η, h−), ‖ϕ(ξ, η)‖ = ϕ(ξ, η, h+)−ϕ(ξ, η, h−),

‖ψ(ξ, η)‖ = ψ(ξ, η, h+)−ψ(ξ, η, h−).

In the following derivations, the displacement components are also denoted by u = ux , v = u y , w = uz ,
and the following symbols will be used

zi = si z, ζi = si h, zi j = hi + z j ,

Ri j =

√
(ξ − x)2 + (η− y)2 + z2

i j , z̄i j = hi − z j ,

R̄i j =

√
(ξ − x)2 + (η− y)2 + z̄2

i j , R̃i j = Ri j + zi j ,

R̂i j = R̄i j − z̄i j , (i, j = 1, 2, 3, 4, and i = j = 5),

where si are material constants, which are given in Appendix A.

4. Green’s functions for unit extended point displacement discontinuities

Assume that the planar crack S is a rectangle of length 2a = 2b with the center being at point (0, 0, h),
as shown in Figure 2.
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The fundamental solutions corresponding to extended displacement discontinuities should satisfy the
governing equations of magnetoelectroelastic media subject, respectively, to the following conditions:

lim
a→0

∫
S
{‖u‖, ‖v‖, ‖w‖, ‖ϕ‖, ‖ψ‖}d S = {1, 0, 0, 0, 0}, (9a)

lim
a→0

∫
S
{‖u‖, ‖v‖, ‖w‖, ‖ϕ‖, ‖ψ‖}d S = {0, 1, 0, 0, 0}, (9b)

lim
a→0

∫
S
{‖u‖, ‖v‖, ‖w‖, ‖ϕ‖, ‖ψ‖}d S = {0, 0, 1, 0, 0}, (9c)

lim
a→0

∫
S
{‖u‖, ‖v‖, ‖w‖, ‖ϕ‖, ‖ψ‖}d S = {0, 0, 0, 1, 0}, (9d)

lim
a→0

∫
S
{‖u‖, ‖v‖, ‖w‖, ‖ϕ‖, ‖ψ‖}d S = {0, 0, 0, 0, 1}. (9e)

4.1. Green’s function satisfying Equation (9a). On the plane z = h(h > 0), the discontinuity boundary
condition in the x-axis direction is indeed the Dirac δ-function

‖u(ξ, η)‖ = δ(ξ, η). (10)

Inserting Equations (9a) and (10) and the fundamental solutions for extended point force in Appendix A
into Equation (8) yields

u = −ω51

[
D5

(
1

R̄55 R̂55
−

y2

R̄3
55 R̂55

−
y2

R̄2
55 R̂2

55

)
− D55

(
1

R55 R̃55
−

y2

R3
55 R̃55

−
y2

R2
55 R̃2

55

)]

+

4∑
i=1

ωi1

[
Di

(
1

R̄i i R̂i i
−

x2

R̄3
i i R̂i i

−
x2

R̄2
i i R̂2

i i

)
−

4∑
j=1

Di j

(
1

Ri j R̃i j
−

x2

R3
i j R̃i j

−
x2

R2
i j R̃2

i j

)]
, (11)

v = −xyω51

[
D5

(
1

R̄3
55 R̂55

+
1

R̄2
55 R̂2

55

)
− D55

(
1

R3
55 R̃55

+
1

R2
55 R̃2

55

)]

− xy
4∑

i=1

ωi1

[
Di

(
1

R̄3
i i R̂i i

+
1

R̄2
i i R̂2

i i

)
−

4∑
j=1

Di j

(
1

R3
i j R̃i j

+
1

R2
i j R̃2

i j

)]
, (12)

w = − x
4∑

i=1

ωi1

(
Ai

R̄3
i i

−

4∑
j=1

Ai j

R3
i j

)
, ϕ = x

4∑
i=1

ωi1

(
Bi

R̄3
i i

−

4∑
j=1

Bi j

R3
i j

)
, (13)

ψ = x
4∑

i=1

ωi1

(
Ci

R̄3
i i

−

4∑
j=1

Ci j

R3
i j

)
. (14)
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Substituting Equations (11)–(14) into the constitutive Equation (1b) yields the stress, electric displace-
ment, and magnetic induction

σyz = 3xy

{
c44ω51

(
D5

s5

R̄5
55

− D55
s5

R5
55

)
+ c44

4∑
i=1

ωi1

(
Di

si

R̄5
i i

−

4∑
j=1

Di j
s j

R5
i j

)

+

4∑
i=1

ωi1

[
(c44 Ai − e15 Bi − f15Ci )

1
R̄5

i i

−

4∑
j=1

(c44 Ai j − e15 Bi j − f15Ci j )
1

R5
i j

]}
, (15)

σxz = c44

{
ω51s5

[
D5

(
1

R̄3
55

− y2 3
R̄5

55

)
− D55

(
1

R3
55

− y2 3
R5

55

)]

+

4∑
i=1

ωi1

[
−Di si

(
1

R̄3
i i

− x2 3
R̄5

i i

)
+

4∑
j=1

Di j s j

(
1

R3
i j

− x2 3
R5

i j

)]}

−

4∑
i=1

ωi1

[
(c44 Ai − e15 Bi − f15Ci )

(
1

R̄3
i i

−
3x2

R̄5
i i

)
−

4∑
j=1

(c44 Ai j − e15 Bi j − f15Ci j )

(
1

R3
i j

−
3x2

R5
i j

)]
, (16)

σzz = −4c13x
4∑

i=1

ωi1

[
Di

(
1

R̄3
i i R̂i i

+
1

R̄2
i i R̂2

i i

)
−

4∑
j=1

Di j

(
1

R3
i j R̃i j

+
1

R2
i j R̃2

i j

)]

+ (x2
+ y2)xc13

4∑
i=1

ωi1

[
Di

(
3

R̄5
i i R̂i i

+
3

R̄4
i i R̂2

i i

+
2

R̄3
i i R̂3

i i

)
−

4∑
j=1

Di j

(
3

R5
i j R̃i j

+
3

R4
i j R̃2

i j

+
2

R3
i j R̃3

i j

)]

− x
4∑

i=1

3ωi1

[
si zi i

R̄5
i i

(c33 Ai − e33 Bi − f33Ci )+

4∑
j=1

s j zi j

R5
i j

(c33 Ai j − e33 Bi j − f33Ci j )

]
, (17)

Dz = −4e31x
4∑

i=1

ωi1

[
Di

(
1

R̄3
i i R̂i i

+
1

R̄2
i i R̂2

i i

)
−

4∑
j=1

Di j

(
1

R3
i j R̃i j

+
1

R2
i j R̃2

i j

)]

+ (x2
+ y2)xe31

4∑
i=1

ωi1

[
Di

(
3

R̄5
i i R̂i i

+
3

R̄4
i i R̂2

i i

+
2

R̄3
i i R̂3

i i

)
−

4∑
j=1

Di j

(
3

R5
i j R̃i j

+
3

R4
i j R̃2

i j

+
2

R3
i j R̃3

i j

)]

− x
4∑

i=1

3ωi1

[
si zi i

R̄5
i i

(e33 Ai + ε33 Bi + g33Ci )+

4∑
j=1

s j zi j

R5
i j

(e33 Ai j + ε33 Bi j + g33Ci j )

]
, (18)
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Bz = −4 f31x
4∑

i=1

ωi1

[
Di

(
1

R̄3
i i R̂i i

+
1

R̄2
i i R̂2

i i

)
−

4∑
j=i

Di j

(
1

R3
i j R̃i j

+
1

R2
i j R̃2

i j

)]

+ (x2
+ y2)x f31

4∑
i=1

ωi1

[
Di

(
3

R̄5
i i R̂i i

+
3

R̄4
i i R̂2

i i

+
2

R̄3
i i R̂3

i i

)
−

4∑
j=1

Di j

(
3

R5
i j R̃i j

+
3

R4
i j R̃2

i j

+
2

R3
i j R̃3

i j

)]

− x
4∑

i=1

3ωi1

[
zi i si

R̄5
i i

(
f33 Ai + g33 Bi +µ33Ci

)
+

4∑
j=1

zi j s j

R5
i j

(
f33 Ai j + g33 Bi j +µ33Ci j

)]
. (19)

From above solutions, the Green’s function corresponding to Equation (9b) can be easily obtained by
coordinate transformation.

4.2. Green’s function satisfying Equation (9c). On the crack face, the displacement discontinuity con-
dition in the z-axis direction is

‖w(ξ, η)‖ = δ(ξ, η). (20)

Inserting Equations (9c) and (20) and the fundamental solutions for extended point force in Appendix A
into Equation (8) yields the extended displacements

u = −x
4∑

i=1

ϑi1

[
Di

R̄3
i i

+

4∑
j=1

Di j

R3
i j

]
,

v = −y
4∑

i=1

ϑi1

[
Di

R̄3
i i

+

4∑
j=1

Di j

R3
i j

]
,

w =

4∑
i=1

ϑi1

[
Ai (hi − zi )

R̄3
i i

−

4∑
j=1

Ai j (hi + z j )

R3
i j

]
,

ϕ = −

4∑
i=1

ϑi1

[
Bi (hi − zi )

R̄3
i i

−

4∑
j=1

Bi j (hi + z j )

R3
i j

]
,

ψ = −

4∑
i=1

ϑi1

[
Ci (hi − zi )

R̄3
i i

−

4∑
j=1

Ci j (hi + z j )

R3
i j

]
.

(21)

Similarly, the corresponding stress, electric displacement and magnetic induction are derived

σyz = 3y

{
c44

4∑
i=1

ϑi1

(
−Di

si zi i

R̄5
i i

+

4∑
j=1

Di j
s j zi j

R5
i j

)
−

4∑
i=1

ϑi1

[
(c44 Ai − e15 Bi − f15Ci )

(hi − zi )

R̄5
i i

−

4∑
j=1

(c44 Ai j − e15 Bi j − f15Ci j )
(h j + z j )

R5
i j

]}
, (22)
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σxz = 3x

{
c44

4∑
i=1

ϑi1

(
−Di

si zi i

R̄5
i i

+

4∑
j=1

Di j
s j zi j

R5
i j

)
−

4∑
i=1

ϑi1

[(
c44 Ai − e15 Bi − f15Ci

)(hi − zi )

R̄5
i i

−

4∑
j=1

(
c44 Ai j − e15 Bi j − f15Ci j

)(h j + z j )

R5
i j

]}
, (23)

σzz =

4∑
i=1

ϑi1

{
c13

[
Di

(
−

2
R̄3

i i

+
3(x2

+ y2)

R̄5
i i

)
+

4∑
j=1

Di j

(
−

2
R3

i j

+
3(x2

+ y2)

R5
i j

)]

− si
(
c33 Ai − e33 Bi − f33Ci

)( 1
R̄3

i i

−
3zi (hi − zi )

R̄5
i i

)

−

4∑
j=1

Di j s j
(
c33 Ai j − e33 Bi j − f33Ci j

)( 1
R3

i j

−
3z j (hi + z j )

R5
i j

)}
, (24)

Dz =

4∑
i=1

ϑi1

{
e31

[
Di

(
−

2
R̄3

i i

+
3(x2

+ y2)

R̄5
i i

)
+

4∑
j=1

Di j

(
−

2
R3

i j

+
3(x2

+ y2)

R5
i j

)]

− si
(
e33 Ai + ε33 Bi + g33Ci

)( 1
R̄3

i i

−
3zi (hi − zi )

R̄5
i i

)

−

4∑
j=1

Di j s j
(
e33 Ai j + ε33 Bi j + g33Ci j

)( 1
R3

i j

−
3z j (hi + z j )

R5
i j

)}
, (25)

Bz =

4∑
i=1

ϑi1

{
f31

[
Di

(
−

2
R̄3

i i

+
3(x2

+ y2)

R̄5
i i

)
+

4∑
j=1

Di j

(
−

2
R3

i j

+
3(x2

+ y2)

R5
i j

)]

− si
(

f33 Ai + g33 Bi +µ33Ci
)( 1

R̄3
i i

−
3zi (hi − zi )

R̄5
i i

)

−

4∑
j=1

Di j s j
(

f33 Ai j + g33 Bi j +µ33Ci j
)( 1

R3
i j

−
3z j (hi + z j )

R5
i j

)}
. (26)

The fundamental solutions corresponding to Equation (9d) and Equation (9e) can be obtained by taking
ϑi2 and ϑi3 instead of ϑi1, respectively.

5. Extended crouch fundamental solution

In this section, the extended Crouch fundamental solutions are derived for a three-dimensional two-phase
magnetoelectroelastic medium.
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Consider a rectangular crack of length 2a and width 2b in the plane z = h. Uniformly distributed
extended displacement discontinuities ‖ue

‖, ‖ve
‖, ‖we

‖, ‖ϕe
‖, and ‖ψe

‖ are applied on the crack faces.
Integrating the extended displacement discontinuity Green’s functions derived in last section on the rect-
angular crack with lengthy manipulations yields the extended stress fields

σ e
xz =

(
L X1Ḡ(1)

55 − L X2G(1)
55

)
‖ue

‖ −
(
L X1Ḡ(3)

55 − L X2G(3)
55

)
‖ve

‖

+

4∑
i=1

[(
−L i

11Ḡ(2)
i i +

4∑
j=1

L i j
12G(2)

i j

)
‖ue

‖ −

(
L i

11Ḡ(3)
i i −

4∑
j=1

L i j
12G(3)

i j

)
‖ve

‖

− Ḡ(4)
i i

(
L i

211‖w
e
‖ + L i

212‖ϕ
e
‖ + L i

213‖ψ
e
‖
)

+

4∑
j=1

G(4)
i j

(
L i j

221‖w
e
‖ + L i j

222‖ϕ
e
‖ + L i j

223‖ψ
e
‖
)]
, (27)

σ e
yz =

(
L X1Ḡ(3)

55 − L X2G(3)
55

)
‖ue

‖ −
(
L X1Ḡ(2)

55 − L X2G(2)
55

)
‖ve

‖

+

4∑
i=1

[(
L i

11Ḡ(3)
i i −

4∑
j=1

L i j
12G(3)

i j

)
‖ue

‖ +

(
L i

11Ḡ(1)
i i −

4∑
j=1

L i j
12G(1)

i j

)
‖ve

‖

− Ḡ(5)
i i

(
L i

211‖w
e
‖ + L i

212‖ϕ
e
‖ + L i

213‖ψ
e
‖
)

+

4∑
j=1

G(5)
i j

(
L i j

221‖w
e
‖ + L i j

222‖ϕ
e
‖ + L i j

223‖ψ
e
‖
)]
, (28)

σ e
zz =

4∑
i=1

[(
−L i

Z1Ḡ(4)
i i +

4∑
j=1

L i j
Z2G(4)

i j

)
‖ue

‖ +

(
L i

Z1Ḡ(5)
i i +

4∑
j=1

L i j
Z2G(5)

i j

)
‖ve

‖

+ Ḡ(6)
i i

(
L i

Z11‖w
e
‖ + L i

Z12‖ϕ
e
‖ + L i

Z13‖ψ
e
‖
)

+

4∑
j=1

G(6)
i j

(
L i j

Z21‖w
e
‖ + L i j

Z22‖ϕ
e
‖ + L i j

Z23‖ψ
e
‖

)]
, (29)

De
z =

4∑
i=1

[(
−L i

D1Ḡ(4)
i i +

4∑
j=1

L i j
D2G(4)

i j

)
‖ue

‖ +

(
L i

D1Ḡ(5)
i i +

4∑
j=1

L i j
D2G(5)

i j

)
‖ve

‖

+ Ḡ(6)
i i

(
L i

D11‖w
e
‖ + L i

D12‖ϕ
e
‖ + L i

D13‖ψ
e
‖
)

+

4∑
j=1

G(6)
i j

(
L i j

D21‖w
e
‖ + L i j

D22‖ϕ
e
‖ + L i j

D23‖ψ
e
‖

)]
, (30)
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Figure 3. Boundary element mesh for a rectangular crack. 
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Figure 3. Boundary element mesh for a rectangular crack.

Be
z =

4∑
i=1

[(
−L i

B1Ḡ(4)
i i +

4∑
j=1

L i j
B2G(4)

i j

)
‖ue

‖ +

(
L i

B1Ḡ(5)
i i +

4∑
j=1

L i j
B2G(5)

i j

)
‖ve

‖

+ Ḡ(6)
i i

(
L i

B11‖w
e
‖ + L i

B12‖ϕ
e
‖ + L i

B13‖ψ
e
‖
)

+

4∑
j=1

G(6)
i j

(
L i j

B21‖w
e
‖ + L i j

B22‖ϕ
e
‖ + L i j

B23‖ψ
e
‖

)]
, (31)

where the material related constants Ls and the functions Gs and Ḡs with different superscripts and
subscripts are given in Appendix B. These solutions are called extended Crouch fundamental solutions.

Equations (27)–(31) can be written in a compact form

σ e
i =

5∑
j=1

Fe
i j‖ue

j‖, i, j = 1, 2, 3, 4, 5, (32)

where σ e
1 = σ e

xz , σ e
2 = σ e

yz , σ e
3 = σ e

zz , σ e
4 = De

z , σ e
5 = Be

z , ‖ue
1‖ = ‖ue

‖, ‖ue
2‖ = ‖ve

‖, ‖ue
3‖ = ‖we

‖,
‖ue

4‖ = ‖ϕe
‖, ‖ue

5‖ = ‖ψe
‖, and Fe

i j are called the influence functions of the rectangular element.

6. Extended displacement discontinuity method

If the domain of a crack is divided into N rectangular elements as shown in Figure 3 by using the
extended Crouch fundamental solutions, the extended stress at the centroid of element q can be obtained
by superposing the contribution of all the elements. Then, introducing the boundary conditions on the
crack faces, one has

N∑
e=1

5∑
j=1

Fe
i j (xq − xe, yq − ye, zq − ze)‖ue

i ‖ = σ 0
i (q), q = 1, 2, 3, . . . , N , (33)
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where σ 0
i is related to the applied extended loading on the crack faces

px(x, y)= − σ 0
1 (x, y), py(x, y)= − σ 0

2 (x, y),

pz(x, y)= − σ 0
3 (x, y), ω(x, y)= − σ 0

4 (x, y),

γ (x, y)= − σ 0
5 (x, y). (34)

Solving Equation (33), one obtains the extended displacement discontinuities on the crack faces. Fur-
thermore, the extended stresses at any point in the crack plane can be calculated by

σi (x, y, h)=

N∑
e=1

5∑
j=1

Fe
i j (x − xe, y − ye, 0)‖ue

j‖. (35)

Finally, the extended stress intensity factors are calculated in [Zhao et al. 1997b; Zhao et al. 1998]:

K F
I = lim

ρ→0

√
2πρσzz, K D

I = lim
ρ→0

√
2πρDz, K B

I = lim
ρ→0

√
2πρBz, (36)

where ρ is the distance from the crack tip.

7. Numerical examples and discussions

Consider a rectangular crack of sides 2A × 2B at plane z = h centered at point (0, 0, h), with the sides
parallel to the x- or y-axis. The magnetoelectroelastic medium is made of BaTiO3 as the inclusion with
CoFe2O4 as the matrix. The piezoelectric volume fraction of the inclusion is denoted by Vi . The material
constants are given as follows [Huang et al. 1998]:

BaTiO3 :

c11 = 166GPa, c33 = 162 GPa,

c44 = 43 GPa, c12 = 77 GPa,

c13 = 78 GPa, e31 = − 4.4 C/m2,

e33 = 18.6 C/m2, e15 = 11.6 C/m2,

ε11 = 11.2 × 10−9 C2/(Nm2), ε33 = 12.6 × 10−9 C2/(Nm2),

µ11 = 5.0 × 10−6 Ns2/C2, µ33 = 10.0 × 10−6 Ns2/C2.

(37)

CoFe2O4 :

c11 = 286 GPa, c33 = 269.5 GPa,

c44 = 45.3 GPa, c12 = 173.0 GPa,

c13 = 170.5 GPa, f31 = 580.3 N/(Am),

f33 = 699.7 N/(Am), f15 = 550.N/(Am),

ε11 = 0.08 × 10−9 C2/(Nm2), ε33 = 0.093 × 10−9 C2/(Nm2),

µ11 = 590 × 10−6 Ns2/C2, µ33 = 157 × 10−6 Ns2/C2.

(38)



EXTENDED DISPLACEMENT DISCONTINUITY METHOD FOR CRACK ANALYSIS 557

The following mixture rule is used to determine the composite material constants corresponding to
the inclusion and matrix [Song and Sih 2003]

3c
=3i Vi +3m(1 − Vi ), (39)

where the superscripts “c”, “i”, and “m” represent the composite, inclusion, and matrix respectively. The
two-phase transversely isotropic magnetoelectroelastic medium is obtained by assigning two different
values of Vi in the upper and lower half-space, which are denoted by V +

i and V −

i , respectively.
It should be pointed out that the value of µ11 used in [Huang et al. 1998] was negative. However, the

negative value is questionable because it causes a negative internal energy and the Stroh formalism cannot
be applied [Pan 2002]. The handbook, [Neelakanta 1995], indicates that the magnetic permeability of
ferromagnetic materials, such as CoFe2O4, should be positive. Therefore, positive values were used in
recent research [Sih et al. 2003]. Recently, this issue was discussed by [Chue and Liu 2005]. For these
reasons, a positive value is also assigned to µ11 in the numerical calculations in the present paper.

Under the electrically and magnetically impermeable boundary condition, the uniformly distributed
extended loadings on the crack faces are

px = 0, py = 0, pz = 100 MPa, ω = 0.1 C/m2, γ = 10/Am. (40)

The extended displacement discontinuity method is used to analyze the problem. The rectangular crack
is divided into N rectangular elements of the same size. In order to decide the appropriate value of the
element number N , we first consider a square crack far away from the interface, that is, the crack is in a
homogeneous medium. The numerical calculations demonstrate that the maximum normalized intensity
factors are the same and equal to 0.8072 when the element number N = 81. When N = 225 and N = 625,
the values of maximum normalized intensity factors are 0.7928 and 0.7914, respectively. The normalized
extended intensity factors F are given by

FF = K F
I /(

√
πBσ 0

z ), FD = K D
I /(

√
πB D0

z ), FB = K F
I /(

√
πB B0

z ). (41)

Though the convergence is not very fast, the difference of the maximum normalized intensity factors is
less than 4% compared with that of purely elastic material in [Murkami 1992]. So the value N = 225 is
used in the present paper for numerical analysis.

Figure 4 shows the normalized intensity factors along the crack front {0< x < A, y = 0, z = h} for
different ratio of A/B. The larger the ratio of A/B is, the larger the normalized intensity factors are. The
numerical results show that the extended intensity factors take the maximum value at the middle point
(A, 0, h). The most important finding is that the three normalized intensity factors become different due
to the interface, which is unlike the case of a crack in a homogeneous medium [Zhao et al. 2006b].

Plotted in Figure 5 are the maximum normalized intensity factors versus h/(2A) for different ratios
of A/B. The three normalized intensity factors increase with the increase of A/B. When the ratio of
h/(2A) is larger than 1.0, the three maximum normalized extended stress intensity factors approach the
same value for a given ratio of A/B. It shows the influence of the interface can be neglected and the
crack can be considered in a homogeneous medium.

Figure 6 displays the normalized intensity factors versus x/A for different volume fractions V −

i and
A/B = 1. It can be seen that the stress and the magnetic induction intensity factors increase as x/A and
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Figure 4. Normalized intensity factor F versus x/A with A/B for V +
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i = 0.3
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h/(2A)
.10 .25 .40 .55 .70 .85 1.00

No
rm

al
ize

d 
in

te
ns

ity
 fa

ct
or

s 
F F

,F
D,

F B

.65

.75

.85

.95

1.05

FDfor A/B=4/3

FDfor A/B=2

FBfor A/B=4/3

FFfor A/B=1
FBfor A/B=1

FFfor A/B=4/3

FBfor A/B=2

FFfor A/B=2

FDfor A/B=1

 

 

 

 

 

 

 

 

 

 

 

Figure 5. The maximum normalized intensity factor  versus h/(2A) for 

 and different value of A/B. 

F

3.0,5.0   
��

ii VV
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Figure 7. The maximum normalized intensity factors F versus V +

i for h/(2A) = 0.2,
V −

i = 0.5 and A/B = 1.

V −

i increase, but the electric displacement intensity factors decrease as V −

i increase. The normalized
intensity factors take the maximum value at the middle point (A, 0, h) independent of the volume fraction.

The maximum normalized intensity factors versus V +

i are depicted in Figure 7. It shows that the maxi-
mum stress and magnetic induction intensity factors decrease, while the maximum electric displacement
intensity factors increase with the volume fraction V +

i increasing. The opposite trends are shown in
Figure 8 for variation of V −

i . It is interesting to note that the three maximum normalized intensity
factors are the same when V +

i is equal to V −

i , in which case the medium becomes homogeneous.

8. Concluding remarks

The displacement discontinuity method proposed by Crouch is extended to analyze cracks in three-
dimensional two-phase transversely isotropic magnetoelectroelastic media. The numerical results of
rectangular cracks show that the extended method is very efficient.
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Figure 8. The maximum normalized intensity factors F versus V −

i for h/(2A) = 0.2,
V +

i = 0.5 and A/B = 1.
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The three normalized intensity factors are equal for a crack in a homogeneous medium under the
electrically and magnetically impermeable crack condition. For a crack in a two-phase medium, however,
the three normalized intensity factors are unequal and greatly influenced by the size and the location of
the crack and the material properties. This demonstrates that the crack behavior in an inhomogeneous
magnetoelectroelastic material is very complicated under combined mechanical-electrical-magnetic load-
ings.

Although various models, such as the strip polarization saturation model, charge-free zone model,
etc., were proposed [Zhang et al. 2002], a linear analysis is the first and most fundamental step toward
understanding the fracture behaviors of piezoelectric materials, and the intensity factors are the fun-
damental parameters in these nonlinear models. Until now, the problem hasn’t been solved completely.
The fracture behavior of magnetoelectroelastic materials under combined mechanical-electrical-magnetic
loading is more complicated than that of piezoelectric materials under combined mechanical-electrical
loading. There is a long way yet to go to completely solve this problem.

Appendix A: Fundamental solutions

With regard to the problem of a point force, point charge, and point electric current applied at the point
(0, 0, h) in the interior of a two-phase transversely isotropic magnetoelectroelastic media with the in-
terface being parallel to the plane of isotropy, a Cartesian coordinate system is chosen such that the
xoy-plane lies in the interface.

The following material related constants will be used in the fundamental solutions:

αim = kmi si , i = 1, 2, 3, 4, m = 1, 2, 3,

ξi = (c13αi1 + e31αi2 + f31αi3)si − c12,

ω51 = c44s5,

ω52 = e15s5,

ω53 = f15s5,

ϑi1 = (c33αi1 + e33αi2 + f33αi3)si − c13,

ϑi2 = (e33αi1 − ε33αi2 − g33αi3)si − e31,

ϑi3 = ( f33αi1 − g33αi2 −µ33αi3)si − f31,

ωi1 = c44(si +αi1)+ e15αi2 + f15αi3,

ωi2 = e15(si +αi1)− ε11αi2 − g11αi3,

ωi3 = f15(si +αi1)− g11αi2 −µ11αi3,

(A.1)

where si are the roots of the material characteristic equation and kmi are the material related constants
given in [Zhao et al. 2006b].

A.1. Fundamental solutions corresponding to unit point force P3 in the z-direction. Using the deriva-
tion procedures of [Ding et al. 2005], the fundamental solutions are obtained.
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When z ≥ 0, we have

τxm = P3x
4∑

i=1

ωim

(
Ai

R̄3
i i

−

4∑
j=1

Ai j

R3
i j

)
, τym = P3 y

4∑
i=1

ωim

(
Ai

R̄3
i i

−

4∑
j=1

Ai j

R3
i j

)
,

σm = P3

4∑
i=1

ϑim

(
Ai z̄i i

R̄3
i i

−

4∑
j=1

Ai j zi j

R3
i j

)
, (A.2)

and when z ≤ 0,

τ ′

xm = P3x
4∑

i=1

4∑
j=1

ω′

im

A′

i j

R ′3
i j

, τ ′

ym = P3 y
4∑

i=1

4∑
j=1

ω′

im

A′

i j

R ′3
i j

, σ ′

m = P3

4∑
i=1

4∑
j=1

ϑ ′

im

A′

i j z
′

i j

R ′3
i j

, (A.3)

where variables with a prime refer to the half-space z ≤ 0 and those without a prime correspond to the
half-space z ≥ 0. The related coefficients are determined by

4∑
i=1

Ai = 0, 4π
4∑

i=1

ϑi1 Ai = −1,

4π
4∑

i=1

ϑi2 Ai = 0, 4π
4∑

i=1

ϑi3 Ai = 0,

Ai +

4∑
j=1

A j i =

4∑
j=1

A′

j i , Aiαim −

4∑
j=1

A j iα jm =

4∑
j=1

A′

j iα
′

jm,

Aiϑim +

4∑
j=1

A j iϑ jm =

4∑
j=1

A′

j iϑ
′

jm, Aiωi1 −

4∑
j=1

A j iω j1 =

4∑
j=1

A′

j iω
′

j1.

(A.4)

Solutions corresponding to the unit point charge P4 and point current P5 are in the same form as
Equations (A.2)–(A.4), but P3 and Ai should be replaced respectively by P4 and Bi and P5 and Ci . The
coefficients Bi and Ci are determined by

4∑
i=1

Bi = 0, 4π
4∑

i=1

ϑi1 Bi = 0,

4π
4∑

i=1

ϑi2 Bi = 1, 4π
4∑

i=1

ϑi3 Bi = 0,

Bi +

4∑
j=1

B j i =

4∑
j=1

B ′

j i , Biαim −

4∑
j=1

B j iα jm =

4∑
j=1

B ′

j iα
′

jm,

Biϑim +

4∑
j=1

B j iϑ jm =

4∑
j=1

B ′

j iϑ
′

jm, Biωi1 −

4∑
j=1

B j iω j1 =

4∑
j=1

B ′

j iω
′

j1,

(A.5)
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4∑
i=1

Ci = 0, 4π
4∑

i=1

ϑi1Ci = 0,

4π
4∑

i=1

ϑi2Ci = 0, 4π
4∑

i=1

ϑi3Ci = 1, (A.6)

Ci +

4∑
j=1

C j i =

4∑
j=1

C ′

j i , Ciαim −

4∑
j=1

C j iα jm =

4∑
j=1

C ′

j iα
′

jm,

Ciϑim +

4∑
j=1

C j iϑ jm =

4∑
j=1

C ′

j iϑ
′

jm, Ciωi1 −

4∑
j=1

C j iω j1 =

4∑
j=1

C ′

j iω
′

j1.

A.2. Fundamental solutions corresponding to unit point force P1 in the x-direction. When z ≥ 0, the
fundamental solutions are given by

τxm = − P1ω5m

[
D5

(
1

R̄55(R̄55 − z̄55)
−

y2

R̄3
55(R̄55 − z̄55)

−
y2

R̄2
55(R̄55 − z̄55)2

)

−D55

(
1

R55(R55 + z55)
−

y2

R3
55(R55 + z55)

−
y2

R2
55(R55 + z55)2

)]

+P1

4∑
i=1

ωim

[
Di

(
1

R̄i i (R̄i i − z̄i i )
−

x2

R̄3
i i (R̄i i − z̄i i )

−
x2

R̄2
i i (R̄i i − z̄i i )2

)

−

4∑
j=1

Di j

(
1

Ri j (Ri j + zi j )
−

x2

R3
i j (Ri j + zi j )

−
x2

R2
i j (Ri j + zi j )2

)]
,

τym = −ω5m P1xy

[
D5

(
1

R̄3
55(R̄55 − z̄55)

+
1

R̄2
55(R̄55 − z̄55)2

)

−

4∑
j=1

D55

(
1

R3
55(R55 + z55)

+
1

R2
55(R55 + z55)2

)]

−P1xy
4∑

i=1

ωim

[
Di

(
1

R̄3
i i (R̄i i − z̄i i )

+
1

R̄2
i i (R̄i i − z̄i i )2

)

−

4∑
j=1

Di j

(
1

R3
i j (Ri j + zi j )

+ +
1

R2
i j (Ri j + zi j )2

)]
,

σm = P1x
4∑

i=1

ϑim

[
Di

R̄3
i i

+

4∑
i=1

Di j

R3
i j

]
,
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and when z ≤ 0

τ ′

xm = − P1ω
′

5m D′

55

[
1

R′

55(R
′

55 − z′

55)
−

y2

R ′3
55(R

′

55 − z′

55)
−

y2

R ′2
55(R

′

55 − z′

55)
2

]

+P1

4∑
i=1

4∑
j=1

D′

i jω
′

im

[
1

R′

i j (R
′

i j − z′

i j )
−

x2

R ′3
i j (R

′

i j − z′

i j )
−

x2

R ′2
i j (R

′

i j − z′

i j )
2

]
,

τ ′

ym = − P1ω
′

5m D′

55xy
[

1
R ′3

55(R
′

55 − z′

55)
+

1
R ′2

55(R
′

55 − z′

55)
2

]

−P1

4∑
i=1

4∑
j=1

D′

i jω
′

im xy
[

1
R ′3

i j (R
′

i j − z′

i j )
+

1
R ′2

i j (R
′

i j − z′

i j )
2

]
,

σ ′

m = P1x
4∑

i=1

4∑
j=1

ϑ ′

im

D′

i j

R ′3
i j

,

where the coefficients Di , Di j , D′

i j are given by

4∑
i=1

αim Di = 0, s5 D5 +

4∑
i=1

si Di = 0,

2πc44s5 D5 − 2π
4∑

i=1

ωi1 Di = − 1, D5 + D55 = D′

55,

αim Di −

4∑
j=1

α jm D j i =

4∑
j=1

α′

jm D′

j i , Di +

4∑
j=1

D j i =

4∑
j=1

D′

j i ,

ω51(D55 − D5)= −ω′

51 D′

55, ωi1 Di −

4∑
j=1

ω j1 D j i =

4∑
j=1

ω′

j1 D′

j i ,

ϑim Di +

4∑
j=1

ϑ jm D j i =

4∑
j=1

ϑ ′

jm D′

jm .

By simple coordinate transformation, solutions to the problem of unit point force P2 in the y-direction
can be easily obtained from the above solutions.

Appendix B: The constants Ls and the functions Gs and Ḡs

The coefficients in Equations (27)–(31) are given by

Q1
i = Di si c44 + c44 Ai − e15 Bi − f15Ci , Q2

i = c13 Di − si (c33 Ai − e33 Bi − f33Ci ), (B.1)

Q3
i = e31 Di − si (e33 Ai + ε33 Bi + g33Ci ), Q4

i = f31 Di − si ( f33 Ai + g33 Bi +µ33Ci ),
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L X1 = c44ω51s5 D5, L X2 = c44ω51s5 D55,

L i
11 = ωi1 Q1

i , L i
21k = ϑik Q1

i ,

L i
Z1 = ωi1 Q2

i , L i
Z1k = ϑik Q2

i , (B.2)

L i
D1 = ωi1 Q3

i , L i
D1k = ϑik Q3

i ,

L i
B1 = ωi1 Q4

i , L i
B1k = ϑik Q4

i , k = 1, 2, 3.

The coefficients
L i j

12, L i j
22k, L i j

Z2, L i j
Z2k, L i j

D2, L i j
D2k, L i j

B2, and L i j
B2k

can be obtained correspondingly by taking

s j , Ai j , Bi j ,Ci j , and Di j

instead of si , Ai , Bi , Ci , and Di in the above equations, respectively.
And the functions Ḡs with different superscripts and subscripts are given by

Ḡ(1)
i i =

b − y
(b − y)2 + z̄2

i i

(
a − x√

(a − x)2 + (b − y)2 + z̄2
i i

+
a + x√

(x + a)2 + (b − y)2 + z̄2
i i

)

+
b + y

(b + y)2 + z̄2
i i

(
a − x√

(a − x)2 + (b + y)2 + z̄2
i i

+
a + x√

(x + a)2 + (b + y)2 + z̄2
i i

)
,

Ḡ(3)
i i =

1√
(a − x)2 + (b − y)2 + z̄2

i i

−
1√

(a + x)2 + (b − y)2 + z̄2
i i

−
1√

(a − x)2 + (b + y)2 + z̄2
i i

+
1√

(a + x)2 + (b + y)2 + z̄2
i i

,

Ḡ(4)
i i =

1
(a − x)2 + z̄2

i i

(
b − y√

(a − x)2 + (b − y)2 + z̄2
i i

+
b + y√

(a − x)2 + (b + y)2 + z̄2
i i

)

−
1

(a + x)2 + z̄2
i i

(
b − y√

(a + x)2 + (b − y)2 + z̄2
i i

+
b + y√

(a + x)2 + (b + y)2 + z̄2
i i

)
,

Ḡ(6)
i i =

(y − b)(a − x)√
(a − x)2 + (b − y)2 + z̄2

i i

(
1

(b − y)2 + z̄2
i i

+
1

(a − x)2 + z̄2
i i

)

+
(y − b)(a + x)√

(a + x)2 + (b − y)2 + z̄2
i i

(
1

(b − y)2 + z̄2
i i

+
1

(a + x)2 + z̄2
i i

)
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−
(y + b)(a − x)√

(a − x)2 + (b + y)2 + z̄2
i i

(
1

(b + y)2 + z̄2
i i

+
1

(a − x)2 + z̄2
i i

)

−
(y + b)(a + x)√

(a + x)2 + (b + y)2 + z̄2
i i

(
1

(b + y)2 + z̄2
i i

+
1

(a + x)2 + z̄2
i i

)
.

The functions Ḡ(2)
i i and Ḡ(5)

i i can be obtained respectively from Ḡ(1)
i i and Ḡ(4)

i i by taking a, b, x , and y
instead of b, a, y, and x , respectively. The functions Gs can be obtained by taking zi j instead of z̄i i in
Ḡs.
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INFLUENCE OF VEHICULAR POSITIONS AND THERMAL EFFECTS ON
STRUCTURAL BEHAVIOUR OF CONCRETE PAVEMENT

MOSTAFA YOUSEFI DARESTANI, DAVID P. THAMBIRATNAM,
ANDREAS NATAATMADJA AND DAKSH BAWEJA

Structural response of concrete pavements is influenced by the position of the axle loads and if critical
load positions are not considered in concrete pavement analysis, the design may be inadequate and lead
to early failure of the pavement. Whilst there has been a great deal of research conducted on concrete
pavement performance and deterioration under vehicular loads and environmental forces, there is a lack
of adequate information on effects of vehicular load positions on pavement responses.

Critical positions of different axle groups in uncurled and curled jointed concrete pavement with dif-
ferent configurations were determined in the current study. Results indicate that structural performance
of concrete pavements is significantly affected by boundary conditions between concrete slab and base.
Corner loading was found to be critical in bonded concrete pavement. Corner loading is also critical
when a separation occurs between unbonded concrete slab and base. Furthermore, the benefits offered by
unbonded boundary condition cease at a certain differential temperature. Hence, a particular care needs
to be considered in projects constructed in extremes of heat or cold. In presence of high differential
temperature together with axle loading, joint faulting in unreinforced concrete pavements is affected by
concrete slab thickness.

1. Introduction

Although there has been a great deal of research conducted on concrete pavement performance and
deterioration under vehicular loads and environmental forces, there is a lack of adequate information
on effects of vehicular load positions on pavement responses. If the load positions which give the
maximum response parameters are not considered in the analysis, the design may be inadequate and
lead to early failure of concrete pavements. Structural response of concrete pavements is affected by
vehicular load configurations, magnitude of applied loads and position of axle groups on the pavement
as well as environmental effects. This paper treats the influence of vehicular load positions on pavement
responses in terms of induced tensile stresses. Effects of configuration and magnitude of vehicular loads
on concrete pavement responses have also been investigated and the findings will appear in another paper.

In concrete pavements, applied loads are generally transferred to base and subgrade layers by the
bending action of concrete slab which results in a tensile stress at the top or the bottom surface layers of
the concrete slab. The applied loads can be vehicular and/or environmentally related. Research conducted
in the past for determination of the critical position of vehicular loads upon the concrete pavements can

Keywords: concrete pavement, concrete, tensile stress, thermal analysis, critical position, axle group loads, crack.
The original work of this study was sponsored by the Queensland University of Technology (QUT), Australia, and Readymix
Holdings Pty Limited, under R & D project RD835.
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be divided into two categories, with and without consideration of differential temperature effects. The
most significant one in the absence of differential temperature is the work of Packard and Tayabji [1985].

A single traffic lane confined at one longitudinal edge by shoulder, subjected to single axle, tandem
axle and triple axle loads was considered in Packard and Tayabji’s research [Packard and Tayabji 1985]
to determine the critical position of the above mentioned axle groups on uncurled concrete pavements.
Although many jointed concrete pavements suffered from corner and longitudinal cracking Packard and
Tayabji [1985], and Heath et al. [2003], found that the maximum vehicular induced tensile stress occurs
when axle group loads are applied at the middle of the longitudinal joints between transverse joints.
This leads to bottom-up mid-edge transverse cracking. Vehicular induced tensile stress in the absence
of differential temperature gradients occurs at the deepest surface layer of the concrete slab, particularly
when the load is applied at longitudinal joints [Ongel and Harvey 2004]. Recommendation of American
Association of States and Highway Officials [AASHTO 2003] for analysis of jointed concrete pavements
is the use of a single lane with at least three concrete slab panels in the longitudinal direction. This is
compatible with what Packard and Tayabji [1985] considered.

In addition to the traditional bottom-up mid-edge transverse fatigue cracking, environmental effects
together with built-in temperature curling result in other failure modes [Hiller and Roesler 2005]. Tem-
perature fluctuation has different effects on concrete pavements. Nonuniform temperature distribution
within concrete slab depth results in upward (nighttime) or downward (daytime) curling. Curling induced
tensile stress occurs at the top surface layer of the concrete slab during nighttime and at the bottom surface
layer of the concrete slab during daytime [Ongel and Harvey 2004].

Traditional methods of thermal analysis were based on a linear temperature distribution in pavement
depth [Westergaard 1926; Bradbury 1938]. However, Choubane and Tia [1995] showed that tempera-
ture distribution in pavement depth is nonlinear. Mohamed and Hansen [1997] developed an analytical
method to estimate the induced tensile stress in concrete pavements subjected to a nonlinear temperature
gradients. The concept of equivalent temperature distributions was then employed in concrete pavement
analysis based on the plate theory [Ioannides and Khazanovich 1998]. In their study, a plate consisting
one or more layers (plate layers with no separation and compressible layers with possible separation
using Totsky model [Totsky 1981] resting on an elastic foundation was investigated. Consequently,
mathematical formulations for analysis of a typical concrete pavement subjected to a linear function, a
quadratic function or multilinear function of differential temperature together with arbitrary wheel load
were developed.

Results of Mohamed and Hansen [1997] and also Heath and Roesler [1999] indicated that nonlinear
temperature distribution through the depth of concrete slab results in tensile stress that is lower than that of
linear temperature distribution when concrete pavement is subjected to a positive temperature gradient
(daytime) and produces tensile stress that is greater than that of linear temperature distribution when
concrete pavements are subjected to negative temperature gradients (nighttime). Liang and Niu [1998]
showed that concrete pavement responses are significantly affected by environmental forces. Kuo [1998]
indicated curling induced stress is affected by temperature differential, self-weight of concrete pavement
and support under concrete slab. Furthermore, Kuo [1998] recommended that (i) mid-slab loading in
daytime curling and (ii) joint loading in nighttime curling should be considered in pavement analysis.

Byrum and Hansen [1994] contributed the influence function lines in analysis of jointed concrete
pavement under environmental effects and wheel load. The wheel load was applied in a distance of
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838 mm away from longitudinal joint. Their results indicated that (i) maximum stress occurs at some
distance away from the joint when the load passes across the joint (ii) thermal, moisture and shrinkage
gradients have a significant effect on the residual stresses of the concrete slab (iii) highway slabs are
predominantly in the upward curled condition.

Several field tests were carried out in the past to determine the range of temperature gradient in
depth of concrete slab. Richardson and Armaghani [1990] and Shoukry et al. [2002] reported that the
differential temperature is about 10◦ C in a concrete slab with 225 mm thickness. Byrum and Hansen
[1994] based on other research in this field used a temperature gradient between 0.087 and 0.109◦ C/mm
during daytime and between 0.044 and 0.065◦ C/mm during nighttime. Darter et al. [1995] provided a
range between 0.0219 and 0.656◦ C/mm whereas Ongel and Harvey [2004] reported monthly values of
temperature gradient in concrete pavement for a period of 5 years with an average of 0.125◦ C/mm. As
temperature gradient is strongly affected by air temperature, ratio of the top surface area of the concrete
slab to its depth, duration and density of solar radiation, rain fall, thermal conductivity of concrete and
wind speed, it is obvious that differential temperature changes from one location to other locations.

Since the top surface layer of concrete slab is exposed to solar radiation and wind, it dries and cures
faster than other layers within the concrete slab depth and consequently results in nonuniform shrinkage
which is the reason for concrete slab warping and top-down cracking [Ongel and Harvey 2004]. The
effect of drying shrinkage on concrete pavement is similar to nighttime differential temperature effects.
Hence, Reddy et al. [1963] recommended the use of equivalent nighttime temperature gradients between
0.065 and 0.13◦ C/mm in concrete pavement analysis to represent the effects of drying shrinkage in
concrete pavement responses.

Results of Yu et al. [1998] on concrete pavement response to temperature and wheel loads suggested
that corner loading may results in greater stress than mid-edge loading. Effect of single axle dual tyre
(SADT), tandem axle dual tyre (TADT) and triple axle dual tyre (TRDT) on pavement response were then
taken into account by Hiller and Roesler [2002] to develop a method for predicting concrete pavement
deterioration. Since the assumptions considered by Hiller and Roesler [2002] are not compatible with
concrete pavement construction in Australia, results of the current research may or may not agree with
what they found. Reasons behind this can be absence of base layer, consideration of shoulder with
3000 mm width, concrete slab interaction, the use of 200 mm thickness for concrete slab and long distance
between transverse joints (5800 mm) in their study.

In 2005, Hiller and Roesler [2005] used the influence stress lines to determine the critical location of
fatigue damage under certain truck loads in a typical California concrete pavement having permanent
built-in curling. They found that the critical damage location in the absence of environmental effects
was at the bottom surface layer of the mid-slab edge for a load transfer efficiency of 70%. However,
top-down transverse cracking near the mid-slab edge was the critical failure mode in the presence of a
nighttime differential temperature of −16.5◦ C.

Buch et al. [2004] parametrically investigated the structural response of jointed concrete pavement
under single axle (SA), tandem axle (TA), triple axle (TR), quad axle (QA), multi axles, together with
differential temperature using influence stress line approaches. In addition, diverse truck loads (combi-
nation of different axle group loads) were also studied. Their results indicated that mid-edge loading
results in bottom-up cracking and corner loading results in top-down cracking for SA, TA, TR and QA.
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They also found that an increase in the subgrade reaction and thickness of the concrete slab increases
and decreases the induced tensile stresses respectively.

Structural behaviour of curled concrete pavements depends on provision of debonding layer between
concrete slab and base. If a full bonded condition between concrete slab and base is considered, a tensile
stress will be produced at the interface of concrete slab and base during the first 28 days of concrete
placement due to plastic and drying shrinkage. This subsequently results in early age cracking. Because
of this, a debonding layer is placed between concrete slab and base to eliminate the early age cracking.
The concept of frictional stress in concrete pavement analysis was introduced by Wimsatt et al. [1987]
and Wesevich et al. [1987]. It was also adopted in most finite element softwares developed for analysing
concrete pavements. The frictional stress is a shear stress induced at each square metre of concrete slab
and base interface. This parameter is highly independent of concrete slab thickness and bearing stress.

Different boundary conditions including bonded, unbonded and partially bonded may be created be-
tween concrete slab and base depending on types of debonding layer. While bonded boundary condition
keeps concrete slab and subbase together with no vertical separation, fully unbonded boundary condition
lets them to be separated under tensile force without inducing any shear force between these layers.
Partially bonded boundary condition, on the other hand, keeps concrete slab and base together for a
certain shear force. Beyond this shear force, a vertical separation will occur between these layers. Note
that information on effects of debonding layer on concrete pavement behaviour does not lead to a specific
conclusion as Tarr et al. [1999] indicated that unbonded condition could only be achieved by using a
double layer of polyethylene sheets and Yu et al. [1998] stated that friction between concrete slab and
base is sufficient to produce bonded behaviour even if polyethylene sheets are placed between them.

Whilst most research on concrete pavements is based on either fully bonded or fully unbonded bound-
ary condition between concrete slab and base [Heath and Roesler 1999], effects of different boundary
conditions on concrete pavement responses are not clearly understood. Since configuration and mag-
nitude of vehicular loads have a significant effect on induced tensile stress in concrete pavements [Yu
et al. 1998; Hiller and Roesler 2002] and a variety of axle group configurations is employed in heavy
vehicle industries, further study shall be carried out for other axle group types. Moreover, there is no
inclusive information on critical positions of each individual axle group on curled and uncurled concrete
pavement.

This study seeks to establish the critical positions of axle groups on jointed concrete pavement based on
Austroads [2004] recommendations. Loads from different axle groups are separately applied at various
locations on a number of pavement configurations — unconfined and confined by adjacent lanes and
shoulders — to evaluate the critical design parameters of maximum tensile stress. Fully bonded and
unbonded boundary conditions between concrete slab and base are considered. Different axle groups
based on Austroads [2004] consisting of (i) Single Axle Single Tyre (SAST), (ii) Single Axle Dual Tyre
(SADT), (iii) Tandem Axle Single Tyre (TAST), (iv) Tandem Axle Dual Tyre (TADT), (v) Triple Axle
Dual tyre (TRDT) and (vi) Quad Axle Dual Tyre (QADT) are positioned at different locations of the
pavement.

Curling and warping of concrete pavement were also taken into account. Effects of axle group loadings
and differential temperature gradients on both bonded and unbonded concrete pavement will be separately
studied. A sensitivity analysis on structural behaviour of unbonded and bonded concrete pavements
subjected to diverse differential temperatures will be done to estimate the accuracy of superposition
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Figure 1. PCP configurations considered in this research. Top left: single lane; top right:
a lane confined at one longitudinal edge by shoulder (confined lane); bottom left: a lane
confined at both longitudinal edges by shoulders (double confined lane); and bottom
right: a lane confined by adjacent traffic lanes (full pavement).

of load and curling stresses. A full configuration of concrete pavement subjected to a combination
of SADT and differential temperatures will then be studied. Effects of modulus of subgrade reaction
and thickness of concrete slab on induced stress will subsequently be discussed. Results for different
pavement configuration, namely, a single lane, a lane confined at one longitudinal edge by shoulder,
a single lane confined at both longitudinal edges by shoulders and a single lane confined by adjacent
traffic lanes called respectively in this paper a single lane, a confined lane, a double confined lane and
full pavement (Figure 1) are evaluated and compared with those from existing research.

Results from the current study are also able to examine whether the findings of Packard and Tayabji
[1985] and AASHTO [2003] can be extended when other axle groups, pavement configurations, curling
and warping of concrete pavement and bonded or unbonded boundary conditions between concrete slab
and base are considered.

2. Methodology

Diverse jointed plain concrete pavement (JPCP) configurations consisting of a single lane (top left in
Figure 1), confined lane (top right), double confined lane (bottom left) and full pavement (bottom right)
were analysed to determine the critical positions of the applied vehicular axle group loads on the pave-
ment together with temperature curling effects. EverFE2.23 [Davids and Mahoney 1999] finite element
program was employed in this study.

EverFE2.23 is a three dimensional finite element analysis software jointly developed by the universities
of Maine and Washington to simulate the behaviour of jointed plain concrete pavements under axle group
loads and environmental effects. This programme employs 20-noded quadratic solid elements, beam
elements, shear spring and 8-noded dense liquid shell elements to simulate behaviour of concrete slab
and base, dowels and tie bars, aggregate interlock and subgrade layers under applied loads respectively.
This program is also able to simulate a tensionless property in the subgrade. This lets a separation occur
between base and subgrade if the base curls.
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Figure 2. Schematic interface element behaviour and interface constitutive relationship
[Davids and Wang 2003].

EverFE employs 16-noded zero thickness quadratic interface element for simulating the debonding
layer between concrete slab and base. The element is capable to transfer the shear force between the
concrete slab and the base. It is meshed in accordance with size of the mesh used in the concrete slab and
the base. A bilinear constitutive relationship [Wimsatt et al. 1987; Wesevich et al. 1987] was considered
to define the characteristics of the element under the applied load. Hence, the debonding layer can be
defined by introducing initial distributed stiffness and slip displacement. Note that a free separation under
tension occurs between the concrete slab and the base when unbonded boundary condition is selected.
Figure 2 shows a schematic behaviour of the interface element used in the EverFE finite element program
as well as the required information for its definition. Further information on this matter can be found
elsewhere [Davids and Wang 2003].

In this study, distance between transverse joints and distance between longitudinal joints were consid-
ered to be 4600 mm and 3600 mm respectively. Tied shoulders with 1500 mm width [Austroads 2004]
were considered. The slab thickness was considered to be 250 mm with modulus of elasticity and Pois-
son’s ratio of 28000 MPa and 0.2 respectively. A cement stabilized base of 150 mm thickness, 5000 MPa
modulus of elasticity, and 0.2 Poisson’s ratio was considered beneath the slab and upon a subgrade
with modulus of subgrade reaction of 0.03 MPa/mm (CBR ≈ 3.5). Transverse joints were doweled by
eleven evenly spaced cylindrical bars having 32 mm diameter, 450 mm length and 1000 MPa dowel-slab
support modulus. Tie bars with 13 mm diameter and 1000 mm length spaced at 1000 mm centre to
centre were considered at longitudinal joints. The above mentioned values of the parameters are within
the range recommended by [Austroads 2004]. These secure load transfer efficiency (LTE) of 95% in
both transverse and longitudinal joints for bonded boundary condition and LTE of not less than 85% in
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Figure 3. Axle groups type considered in this study based on [Austroads 2004].
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transverse joint and 70% in longitudinal joints for unbonded boundary condition. Since information on
behaviour of debonding layer provided in the literature did not lead to a specific conclusion, fully bonded
and unbonded boundary conditions between concrete slab and base are taken into consideration in the
current study to determine how provision of this layer as either bonded or unbonded affects concrete
pavement responses.

In regards with effects of modulus of subgrade reaction and thickness of concrete slab on induced
tensile stress of a curled pavement [Kuo 1998], different base thicknesses of 200, 250 and 300 mm
and different modulus of subgrade reactions of 0.03, 0.05 and 0.07 MPa/mm were considered in a full
pavement configuration.

SAST, SADT, TAST, TADT, TRDT, and QADT with average gross loads of 53 kN, 80 kN, 90 kN,
135 kN, 181 kN, and 221 kN (Figure 3) based on [Austroads 2004] were respectively applied as the
vehicular loads at the centre, middle of the longitudinal edge and corner of the centre slab as shown
in Figure 4. These load locations are respectively called a centre, mid-edge and corner loadings in this
paper. A rectangular shaped tyre-pavement contact area based on the findings of Gillespie et al. [1992]
was considered in the current study. Other assumptions for load configuration were as follows:

• Tyre inflation pressure: 750 kPa,

• Width-to-length ratio of tyre contact area: 0.7,

• Space between centre of dual tyres: 300 mm,

• Axle width: 1800 mm,

• Distance between axles in a given axle group 1250 mm.

 1 

 
 

 

Figure 4. The position of applied loads for different axle groups on the centre concrete slab.
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It should be noted that for those projects where valid statistical information on axle configuration
are not available, research on critical axle group configurations Darestani et al. [2005] showed that the
critical width-to-length ratio of tyre contact area is between 0.6 and 0.8 with average of 0.7, the critical
distance between axles in a given axle group is between 1050 mm and 1150 mm with average of 1100 mm
for all axle groups. In addition for TAST and TADT groups this value can also be between 1350 mm to
1450 mm with an average of 1400 mm. However, a value of 0.7 for width to length ratio of tyre contact
area and 1250 mm distance between axles in a given axle group, as assumed by Packard and Tayabji
[1985], have been chosen in the present study in order to compare present results with their results.

As high differential temperature (more than 25◦ C) would result in severe damage of unreinforced
concrete slab of a normal thickness, linear differential temperature of −25◦ C (nighttime temperature) to
25◦ C (daytime temperature) were therefore considered between the top and the bottom surface layers of
concrete slab. The concrete coefficient of thermal expansion was considered to be 1 × 10−5 mm/mm/◦ C.

3. Results and discussion

3.1. Axle group loadings. In the absence of differential temperature gradients, results of current study
indicate that vehicular induced tensile stresses in unbonded concrete pavement due to mid-edge loading
are greater than those from centre and corner loading for all pavement configurations when SAST, SADT,
TAST and TADT are studied (Figure 5). In contrast, corner loading of QADT results in greater tensile
stress than mid-edge loading for all pavement configurations. Corner loading of TRDT shows similar
results for double confined lane. Furthermore, centre loading of QADT in double confined lane and full
pavement configurations result in higher tensile stress than mid-edge loading.

Consideration of bonded boundary condition between concrete slab and base always results in lower
tensile stress due to centre loading than other loading types (Figure 6). But, corner loading results in
greater induced tensile stress than mid-edge loading for all axle groups except for SADT and SAST. This
becomes predominant when traffic lane is confined by shoulders or adjacent traffic lanes.

Results of the current study reveal that the AASHTO recommendation [AASHTO 2003] is valid for
fully unbonded boundary condition between concrete slab and base though this was not true for corner
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Figure 5. Vehicular induced stress in different pavement configurations for unbonded
boundary condition.
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Figure 6. Vehicular induced stress in different pavement configurations for bonded
boundary condition.

loading of SADT. While the bonded boundary condition is considered in the analysis, the AASHTO
recommendation [AASHTO 2003] is not able to capture maximum vehicular induced tensile stress as
induced tensile stresses in full pavement are greater than those tensile stresses produced in confined lane
when vehicular loads are applied at the corner of the pavement (Figure 6).

As mentioned earlier, mid-edge loading was the critical loading case in research conducted by Packard
and Tayabji [1985]. Results of the current study show that mid-edge loading, in the absence of differential
temperature is the key factor for fatigue cracking of unbonded concrete pavements though this is not true
for QADT. Corner loading results in greater vehicular induced tensile stress when fully bonded boundary
condition is considered and TAST, TADT, TRDT and QADT are studied.

A comparison between vehicular induced stresses in bonded and unbonded boundary conditions be-
tween concrete slab and base shows that an unbonded boundary condition produces greater vehicular
induced tensile stress in concrete pavement. This is due to loss of support in those locations of the
concrete slab that were lifted-off. The minimum increase in the value of tensile stress is 30 per cent for
corner loading of TRDT and the maximum increase is about 133 per cent for mid-edge loading of TAST.
These results show that vehicular induced tensile stress is highly affected by the boundary condition
between concrete slab and base.

3.2. Thermal induced stress. As mentioned earlier in this paper, the main reason for placing a fric-
tion reducer layer between concrete slab and base is to reduce the early age cracking in concrete slabs.
Nevertheless, it plays a significant role in structural behaviour of concrete pavements during pavement
life. As differential temperature and drying shrinkage tend to curl and warp concrete pavement, the
location of neutral axis changes from its original location toward the top or the bottom surface layer of
the concrete slab depending on the concrete slab curvature. Hence, the critical position of axle groups
may be affected by consideration of environmental forces. For that purpose, daytime and nighttime
differential temperature of 10◦ C and 25◦ C were considered in the current study.

Ongel and Harvey [2004] found that nighttime curling and warping are two reasons behind longitu-
dinal cracking. Results of the current study show that the thermal tensile stress is at maximum along
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Figure 7. Curling induced stress in bonded concrete slab with full pavement configuration.

the longitudinal centreline of each traffic lane and decreases toward the edges of the traffic lane as
expected. Furthermore, high daytime differential temperature results in bottom-up longitudinal cracking
and consequently shall also be considered a reason for longitudinal cracking.

Figure 7 shows induced thermal stress at longitudinal joint along the wheel path for the centre panel
of a full pavement configuration with the fully bonded boundary conditions between concrete slab and
base. Figure 8 presents similar results for fully unbonded condition. In these Figures, Daytime and
Nighttime represent daytime differential temperature and nighttime differential temperature, respectively.
The number after Daytime or Nighttime indicates the absolute temperature difference between the top
and the bottom surface layers of the concrete slab. For instance, Daytime 10 indicates a differential
temperature between the top and the bottom surface layer of 10◦ C.

Results of the current study indicate nighttime temperature gradients produce greater tensile stress at
the top surface layer of the concrete slab whereas daytime temperature gradients result in greater tensile
stress at the bottom surface layer of the concrete slab as expected. When the top or the bottom surface
layer of the pavement are individually studied, results indicate that daytime differential temperature may
result in top-down cracking in the corner of the concrete slabs and bottom-up cracking at mid-edge of
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Figure 8. Curling induced stress in unbonded concrete slab with full pavement configuration.
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the slab. Nighttime differential temperature, on the other hand, may produce bottom-up cracking in the
corner of the slab and top-down cracking at the mid-edge of the slab.

In terms of absolute induced tensile stress, the critical location is mid-edge of the longitudinal joints
for fully bonded boundary condition between concrete slab and base (Figure 7). In unbonded concrete
pavement, however, the critical location depends on the magnitude of differential temperature. While
concrete pavement is subjected to a low differential temperature, that is, 10◦ C, the middle of longitudinal
joint is the critical location where the maximum thermal stress is produced. On the other hand, corner of
the slab experiences greater tensile stress than mid-edge location when a higher differential temperature,
i.e. 25◦ C, is considered (Figure 8).

When a single concrete slab is freely curled due to a differential temperature gradient and in the
absence of the restraining factors such as subgrade and base resistant, vehicular loads and friction force
at the interface of the concrete slab and base, a bending stress (flexural stress) is induced at the top
or bottom surface layer of it due to its residual stiffness [Mohamed and Hansen 1997]. In this case,
maximum induced tensile stress occurs at the centre of the slab and at the top surface layer during the
day and at the bottom surface layer during the night. On the other hand, in the presence of the restraining
factors another tensile stress will occur in the opposite sides of the residual tensile stress. In this condition,
curling induced tensile stress occurs at the top surface layer of the concrete slab during nighttime and at
the bottom surface layer of the concrete slab during daytime [Ongel and Harvey 2004].

Combination of these stresses together with the location of neutral axis in the concrete slab and provi-
sion of load transfer devices (dowels and tie bars) dictate a specific stress distribution in the slab depth.
As it can be observed in Figure 8, the top surface layer of the concrete slab is subjected to tensile
stress during nighttime and its bottom surface layer experiences greater tensile stress during daytime as
expected. However, these statements are not valid in the area close to the transverse joints for unbonded
concrete pavement subjected to high differential temperature. Provision of dowels in transverse joints
tends to reverse concrete slab curvature in the area close to transverse joints. This consequently changes
stress distribution regime in this area. For instance, the top surface layer of concrete slab is subjected to
tensile stress if pavement is subjected to a nighttime differential temperature of 25◦ C. However, pavement
curvature has to change in the area close to transverse joints due to availability of dowels. Hence, the
top surface layer is subjected to compression stress. As a result, the magnitude of tensile stress at the
top surface layer starts to decrease while the magnitude of tensile stress at the bottom layer increases.
Consequently, the top and the bottom surface layers of the concrete slab are subjected to tensile stress at
this area and finally form a transverse crack close to the transverse joints.

For the base dimensions selected, the critical location of thermal stress is at distance of about 400 mm
from the transverse joints. Since this distance is a function of pavement length, varying the length by
±2 metres may shift the location by ±50 mm. This finding explains the reason behind the formation
of transverse cracks commonly found near transverse joints. In addition to the finding by Ongel and
Harvey [2004] (corner loading associated with nighttime curling and warping results in corner cracking),
high daytime and nighttime differential temperature can also crack the concrete slab in the area close to
transverse joints.

A comparison between thermal stresses in bonded pavement with those from unbonded pavement
shows that unbonded boundary condition decreases the induced tensile stress when lower differential
temperature is considered. In other words, the benefits offered by a consideration of the unbonded
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Figure 9. Comparison between thermal induced stresses for bonded and unbonded
boundary conditions in single lane configuration.

boundary condition ceases at a certain value of differential temperature. Figure 9 shows an example
of this finding in a single lane configuration. In this figure, negative values of differential temperature
gradients represent nighttime differential temperatures and positive values represent daytime differential
temperatures.

This finding suggests that with an increase in differential temperature, shear stress between slab and
base increases until a full separation between concrete slab and base occurs. In this condition, the
contact area between concrete slab and base rapidly decreases and consequently a significant bending
stress is produced at the edge of the contact area. As a result, top-down corner cracking in upward
curling or warping and bottom-up mid-slab transverse cracking in downward curling can be addressed
by consideration of thermal induced stresses.

With regards to the significant effect of the boundary condition between concrete slab and base on
induced thermal stress, Kuo’s findings [Kuo 1998] will be modified as curling induced stress is affected by
temperature differential, self-weight of concrete pavement, supported under concrete slab and boundary
condition between concrete slab and base.

3.3. Combination of vehicular and thermal induced stresses. Information provided in Figure 9 indi-
cates that the stress distribution in the concrete slab linearly changes with variations in differential
temperatures in the presence of a fully bonded boundary condition between the concrete slab and the
base. Similar results can be obtained in fully unbonded pavements subjected to a differential temperature
greater than 16.5◦ C during daytime or lower than −14.5◦ C during nighttime. This suggests that accurate
results can be expected when thermal induced stress at a certain location superimposed to vehicular
induced stress at the same location. In the presence of fully unbonded boundary condition between the
concrete slab and the base, however, the above mentioned consideration leads to inaccurate results when
differential temperature during daytime and nighttime is lower than 16.5◦ C and greater than −14.5◦ C
respectively, as the stress distribution in the above mentioned ranges seems to be nonlinear.

Figure 10 presents results of the current study for the bonded boundary condition between the concrete
slab and the base when a full pavement configuration is subjected to temperature gradients of 10◦ C and
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Figure 10. Vehicular and thermal induced tensile stresses in bonded concrete slab with
full pavement configuration.

25◦ C. Vehicular induced tensile stresses for mid-edge and corner loadings have also been represented in
this figure.

Results indicate that corner loading in the presence of thermal curling produces greater induced tensile
stress than mid-edge loading if the bonded boundary condition is considered. In the unbonded boundary
condition, higher differential temperatures change the critical location of axle groups toward an area
close to the corner of the pavement (Figure 11). However, mid-edge loading results in greater induced
tensile stress if pavement experiences lower differential temperatures.

Hiller and Roesler [2002] captured similar results when pavement was subjected to a nighttime dif-
ferential temperature of 8.3◦ C which is very much lower than the differential temperature considered
in the current study and moved the critical axle position from mid-edge toward corner of the concrete
slab. This difference may be explained by taking into account the length of the pavement as 4.6 m in the
current study and 5.8 m in the work of Hiller and Roesler [2002]. An increase in the pavement length
increases the magnitude of shear stress between concrete slab and base or subgrade (in the absence of
base) and consequently increases thermal induced stress. Consequently, the possibility of separation
between layers in lower differential temperature increases. Hence, the aforementioned finding can be
revised as corner loading will result in greater tensile stress than mid-edge loading if a separation due to
environmental force occurs between concrete slab and base.
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Figure 11. Vehicular and thermal induced tensile stresses in unbonded concrete slab
with full pavement configuration.
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Figure 12. Combination of vehicular and thermal induced tensile stresses in a full pave-
ment configuration subjected to SADT.

Since superposition law is not accurate enough when an unbonded pavement is subjected to small
variation of temperature gradients, a full pavement configuration was examined for corner and mid-edge
loadings together with differential temperature for better understanding of pavement behaviour under
vehicular load and low or moderate differential temperature. SADT was considered in the analysis.
Figure 12 compares thermal and vehicular induced tensile stresses due to mid-edge loading with the
corresponding stresses of corner loading for bonded and unbonded pavements.

Results indicate that corner loading during nighttime produces greater tensile stresses than mid-edge
loading in bonded concrete slab. By contrast, mid-edge loading during daytime results in greater tensile
stress than corner loading. Nevertheless, corner loading is the critical loading condition when differential
temperature exceeds 15◦ C. In fully unbonded pavement, on the other hand, mid-edge loading result in
greater tensile stress than corner loading when a differential temperature greater than −5◦ C is considered.
Further decrease in differential temperature results in greater tensile stresses in corner loading than mid-
edge loading.

These can be explained by taking the pavement curvature into consideration. During daytime, thermal
induced tensile stress similar to vehicular induced stress occurs at bottom surface layer of the slab with
a maximum at mid-edge. As a result, mid-edge loading produces greater tensile stresses than corner
loading regardless of boundary condition between concrete slab and base. However, further increase in
differential temperature tends to lift-off the centre of the slab. As a result, a greater tensile stress at the
bottom surface layer of the slab occurs due to corner loading than mid-edge loading. Note that provision

 
1 

      

Figure 13. Information on location of fatigue cracking (see also Table 1).
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of dowels at transverse joints together with slab weight results in a bending stress in the same direction
of induced stress due to corner loading in daytime curling.

While nighttime differential temperature tend to lift-off transverse edges of the concrete slab, corner
loading presses down the slab edge to return it to its original location. Consequently, tensile stress occurs
at a location close to transverse joint and at the top surface layer of the slab due to cantilever action of
the slab.

Crack location within the concrete slab is affected by vehicular loading conditions (corner, centre and
mid-edge) and differential temperatures. To efficiently determine crack locations in concrete slab, the
centre slab was divided into six areas (Figure 13). Table 1 presents the critical locations of concrete slab
for fatigue cracking in a full pavement configuration subjected to combination of SADT and differential
temperatures.

Interestingly, high differential temperatures result in joint faulting irrespective of the vehicular loading
conditions and boundary conditions between the concrete slab and the base. This indicates that the
finding of Ongel and Harvey [2004] – daytime and nighttime differential temperatures result in bottom-
up and top-down cracking, respectively – is correct for a differential temperature lower than 15◦ C during
daytime and greater than −15◦ C during nighttime. Furthermore, corner, centre and mid-edge loadings
can result in different types of fatigue failure of the concrete slab depending on differential temperature.

These can be summarised as follows:

• While an unbonded pavement experiences a daytime differential temperature lower than 15◦ C, the
maximum stress always occurs at the bottom surface layer of the slab where the vehicular load is
applied.

• While an unbonded pavement experiences a nighttime differential temperature greater than −15◦ C,

– centre loading results in top-down cracking at the corner or an area between corner and mid-edge
areas,

– mid-edge loading results in top-down cracking at the location between corner and mid-edge
areas,

– corner loading results in top-down longitudinal cracking passing along the centre area of the
slab.

• While a bonded pavement experiences daytime differential temperature lower than 10◦ C, the maxi-
mum stress always occurs at the bottom surface layer of the slab where the vehicular load is applied.

• While a bonded pavement experiences nighttime differential temperature greater than −15◦ C,

– centre loading results in longitudinal top-down cracking of the slab,
– mid-edge loading results in mid-edge bottom-up transverse cracking,
– corner loading results in top-down transverse cracking at a location between corner and mid-

edge areas.

As mentioned earlier, Hiller and Roesler [2005] indicated that the nighttime differential temperature
results in mid-edge top-down cracking. Results of the current study, however, indicate that this is not
true when pavement experiences nighttime differential temperature lower than −20◦ C as joint faulting
becomes the critical damage of concrete pavements in this case. Buch et al. [2004] mentioned that mid-
edge and corner loadings result in bottom-up and top-down cracking respectively. Nevertheless, results
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Slab thickness = 250 mm
Modulus of subgrade reaction

= 0.03 MPa/mm
Axle group load = SADT Temperature (◦C) Centre Loading Mid-edge Loading Corner Loading

Unbonded

Daytime

25 C E at M D C E at M D C O at M D
20 C E at M D C E at M D C O at M D
15 U W at B M E at B C O at B
10 U W at B M E at B C O at B
5 U W at B M E at B C O at B

0 U W at B M E at B C O at B

Nighttime

−5 C O at T 1/4 E at T C at T
−10 1/4 E at T 1/4 E at T C at T
−15 1/4 E at T 1/4 E at T C at T
−20 C O at M D C O at M D C O at M D
−25 C O at M D C O at M D C O at M D

Bonded

Daytime

25 C O at M D C O at M D C E at M D
20 C E at M D C O at M D C O at M D
15 C E at M D M E at B C E at B
10 U W at B M E at B C O at B
5 U W at B M E at B C O at B

0 U W at B M E at B C E at B

Nighttime

−5 U W at B M E at B 1/4 E at T
−10 C at T M E at B 1/4 E at T
−15 C at T M E at B 1/4 E at T
−20 C O at M D C O at M D C O at M D
−25 C O at M D C O at M D C O at M D

Table 1. Critical location of fatigue cracking in full pavement model due to different
differential temperatures and SADT. Here, U W : under wheel; B: bottom surface layer;
T : top surface layer; C E : centre area of transverse edge; M D: mid-depth Layer; C O:
corner; C : centre area of the slab; M E : middle of the longitudinal edge; and 1/4E : area
at longitudinal edge between mid-edge and corner. See also Figure 13.

of the current study show that mid-edge loading results in bottom-up cracking in the absence of nighttime
differential temperatures or in the presence of daytime differential temperature lower than 15◦ C. In the
presence of nighttime differential temperature, mid-edge loading can results in top-down cracking at
the slab edge or joint faulting (Table 1). Furthermore, corner loading results in top-down cracking in
the absence of daytime differential temperature or in the presence of nighttime differential temperature
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Figure 14. Position of the critical location in thick unreinforced concrete pavement.

lower than −20◦ C. In the presence of daytime differential temperature, corner loading results in bottom-
up cracking at the corner. It should be noted that reasons behind joint faulting are presented later in this
paper when effect of concrete slab thickness on pavement response is discussed.

Since [Austroads 2004] restricts the maximum distance between transverse joints in unreinforced
concrete slab to 4600 mm, a separation between concrete slab and base in the absence of vehicular loads
occurs when a differential temperature close to what presented in Figure 8 is considered. Vehicular loads
can increase or decrease the critical value of differential temperature depending on position of vehicular
loads and nature of differential temperature (daytime or nighttime).

Results of Hiller and Roesler [2002] were developed for unbonded boundary condition between con-
crete slab and base. Kuo’s recommendation [Kuo 1998] is also valid for a certain range of differential
temperatures and only unbonded boundary condition as mid-edge loading results in greater tensile stress
than corner loading when lower nighttime differential temperature is considered or no separation occurs
between concrete slab and base.

A comparison between induced tensile stresses in bonded and unbonded boundary conditions reveals
that the unbonded boundary condition between concrete slab and base requires careful consideration
when pavement is constructed in hot or cold weather where high differential temperature gradients may
be produced in the concrete depth.

3.4. Effects of slab thickness on induced tensile stress. To find how slab thickness affects the results of
the current study, a full pavement configuration subjected to different daytime and nighttime differential
temperature gradients together with corner and mid-edge loadings was considered. Both bonded and
unbonded boundary conditions were taken into account. Table 2 shows results of the current study for
maximum induced tensile stress when modulus of subgrade reaction was held constant and SADT was
applied on the centre concrete slab panel as either corner loading or mid-edge loading.

Results indicate that an increase in thickness of concrete slab decreases the magnitude of induced
tensile stress regardless of boundary condition between concrete slab and base as mentioned by Buch
et al. [2004]. However, the use of thicker concrete slab (300 mm thickness) associated with higher
differential temperature (15◦ C) rapidly increases the value of induced tensile stress at mid-depth of the
concrete slab for a node in unloaded transverse joint and close to the corner of the concrete slab (Figure
14). This can be explained by taking into account the concrete slab curvature together with location of
axle group upon pavement.
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Modulus of Subgrade Reaction
= 0.03 MPa/mm

Slab Thickness (mm)

Axle group load = SADT Temperature (◦C) 200 250 300

Unbonded

Corner loading

Daytime
5 1.627 1.213 0.876
10 1.944 1.544 1.32
15 2.172 1.52 4.52

Nighttime
5 1.02 0.846 0.685
10 1.6 1.282 1.009
15 2.038 1.56 3.623

Mid-edge loading

Daytime
5 2.296 1.744 1.333
10 2.938 2.257 1.724
15 3.514 2.758 2.044

Nighttime
5 1.351 1.028 0.803
10 1.328 0.945 0.704
15 1.351 0.881 3.381

Bonded

Corner loading

Daytime
5 1.206 1.028 0.897
10 2.025 1.745 1.524
15 2.845 2.46 2.14

Nighttime
5 0.922 0.825 0.722
10 1.659 1.489 1.305
15 2.404 2.16 1.9

Mid-edge loading

Daytime
5 1.4 1.211 1.027
10 2.12 1.837 1.557
15 2.841 2.465 2.086

Nighttime
5 0.839 0.703 0.623
10 1.566 1.332 1.13
15 2.298 1.965 1.674

Table 2. Effect of concrete slab thickness on maximum induced stress (MPa) due to
different differential temperatures and SADT. Highlighted values occur very close to the
corner of loaded concrete slab and at the middle of the concrete slab depth.

A downward curvature is produced during daytime temperature gradients. Corner loading associated
with thermal curvature results in an increase in the area of separation between concrete slab and base
toward the unloaded corners of the base. It ultimately induces a lifting-off at unloaded corners of the
concrete slab. While thinner concrete slab is considered, the unloaded transverse edge of the concrete
slab lifts off. In this case, induced bending stresses for transferring the weight of adjacent concrete panel
are divided equally between all dowels located in unloaded transverse joint. Consequently, induced stress
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at interface of dowel and concrete remains in the normal range. On the other hand, thicker concrete slab
results in nonuniform lift-off of unloaded corners which ultimately induce higher bending stress in that
dowel located close to lifted-off corner. Mid-edge loading, on the other hand, alleviates the severity of
the problem.

Nighttime temperature results in upward curvature. Both corner and mid-edge loadings together with
nighttime temperature enhanced the magnitude of induced stress in thick concrete pavement as describes
above. This finding suggests a particular dowel arrangement at corner of the concrete slab or a maximum
slab thickness that shall be considered in the design of unreinforced concrete pavement.

Hiller and Roesler [2002] showed that a change in the thickness of the concrete slab changes the mag-
nitude of induced stresses due to corner and mid-edge loadings uniformly. However, results of the current
study indicate a nonuniform change between corner loading and mid-edge loading induced stresses. For
instance, the proportion of induced tensile stress due to corner loading to induced tensile stress due to
mid-edge loading, when unbonded pavement is subjected to a nighttime differential temperature of 10◦ C,
is 1.205, 1.357 and 1.433 for slab thickness of 200 mm, 250 mm and 300 mm respectively.

3.5. Effects of modulus of subgrade reaction on induced tensile stress. To determine effects of modu-
lus of subgrade reaction on the results of the current study, a full pavement configuration was subjected
to different daytime and nighttime differential temperature gradients together with corner and mid-edge
loadings. Both bonded and unbonded boundary conditions were taken into account. Table 3 shows
results of the current study for maximum induced tensile stress when concrete slab thickness was held
constant and SADT was applied on the centre concrete slab panel as either corner loading or mid-edge
loading.

Results shows that modulus of subgrade reaction has different effects on the pavement response when
daytime or nighttime differential temperature, corner or mid-edge loading, and unbonded or bonded
boundary condition between concrete slab and base are considered.

An increase in modulus of subgrade reaction in the presence of nighttime temperature increases the
magnitude of induced tensile stresses in most case studies. This is compatible with the statement of
Buch et al. [2004]. In contrast, induced tensile stresses in the bonded pavement and in the presence of
daytime differential temperatures decrease when modulus of subgrade reaction is increased and SADT
is applied at the corner of the concrete slab. An increase in modulus of subgrade reaction associate with
higher daytime differential temperatures and mid-edge loading increases the magnitude of induced tensile
stress regardless of boundary condition between concrete slab and base. In some cases such as when
the unbonded pavement is subjected to daytime differential temperature and mid-edge loading, modulus
of subgrade reaction has no effect on maximum induced tensile stress as axle load induced stress is in
negative direction of thermal induced tensile stress.

Hiller and Roesler [2002] showed that an increase in modulus of subgrade reaction in the presence
of nighttime differential temperature of 8.3◦C increases the proportion of corner loading induced stress
to mid-edge loading induced stress. Results of the current study for unbonded pavement subjected to
nighttime differential temperature of 10◦ C shows similar result.
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Modulus of Subgrade

Slab thickness = 250 mm
Reaction (MPa/mm)

Axle group load = SADT Temperature (◦C) 0.03 0.05 0.07

Unbonded

Corner loading

Daytime
5 1.213 1.18 1.2

10 1.544 1.413 1.458
15 1.52 1.58 1.649

Nighttime
5 0.846 1.18 0.924

10 1.282 1.377 1.434
15 1.56 1.58 1.757

Mid-edge loading

Daytime
5 1.744 1.686 1.632

10 2.257 2.31 2.329
15 2.758 2.781 2.853

Nighttime
5 1.028 0.847 0.751

10 0.945 0.791 0.826
15 0.881 0.895 1.007

Bonded

Corner loading

Daytime
5 1.028 0.967 0.946

10 1.745 1.651 1.581
15 2.46 2.234 2.248

Nighttime
5 0.825 0.848 0.864

10 1.489 1.543 1.586
15 2.16 2.248 2.315

Mid-edge loading

Daytime
5 1.211 1.198 1.197

10 1.837 1.859 1.885
15 2.465 2.519 2.573

Nighttime
5 0.703 0.705 0.709

10 1.332 1.345 1.372
15 1.965 2.015 2.075

Table 3. Effect of modulus of subgrade reaction on maximum induced stress (MPa) due
to different differential temperatures and SADT.

4. Conclusions

Critical positions of different axle groups in uncurled and curled jointed concrete pavement with differ-
ent configurations were studied. Results of the current study indicate that AASHTO recommendation
[AASHTO 2003] -except for SADT-and results of Packard and Tayabji [1985] –except for QADT- are
valid for the fully unbonded boundary condition between concrete slab and base and uncurled pavement.
Results of the current study also show that pavement performance under combinations of vehicular loads
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and differential temperatures is significantly affected by boundary condition between concrete slab and
base.

The reasons behind longitudinal, transverse and corner cracking were addressed. The significant find-
ings in this area were (i) corner loading is critical when there is a bonded boundary condition between
concrete slab and base (ii) corner loading is also critical when a separation due to environmental forces
occurs between the unbonded concrete slab and base. Furthermore, the benefits offered by considera-
tion of the unbonded boundary condition cease at a certain value of differential temperature. Hence, a
particular care needs to be given to those pavement projects constructed in hot or cold weather where
high differential temperature gradients may be produced in concrete depth. Moreover, corner, centre
and mid-edge loadings can result in different types of fatigue failure of the concrete slab depending on
differential temperature.

There is an inverse relationship between induced tensile stress and thickness of concrete slab so that
an increase in thickness of concrete slab decreases the magnitude of induced tensile stress. However, a
maximum slab thickness or dowel arrangement at corners of the slab shall be considered in unreinforced
concrete pavement as thicker slabs are sensitive to high differential temperature together with axle load-
ing. An increase in modulus of subgrade reaction can increase or decrease the magnitude of tensile
stress depending on boundary condition between concrete slab and base, corner or mid-edge loading and
daytime or nighttime differential temperature.
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