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INTERFACIAL CRACK KINKING SUBJECTED TO CONTACT EFFECTS

BAOXIANG X. SHAN, ASSIMINA A. PELEGRI AND YI PAN

We investigate the problem of a kinking crack at a bimaterial interface when the two surfaces are in
contact near the crack tip. Using a potential function and the dislocation technique, we relate, by a
singular integral equation, the stress intensity factors (SIF) at the kinking crack tip to the SIF before crack
kinking. We use Gauss–Chebyshev integration formulas to solve this integral equation numerically. We
evaluate the kinking angles from a bimaterial interface under conditions of contact using the maximum
energy release rate criterion and compare these angles with our experiments and those in the literature.
The interfacial crack is demonstrated by simulation and experiments to kink into the more compliant
material at an angle of about 80◦.

1. Introduction

Interfacial fracture mechanics has been studied for several decades, and treatments have steadily grown
more effective as applications have increased [Sih 1977; Muskhelishvili 1977; Sanford 1997a; 1997b;
Hutchinson and Suo 1992]. Using continuum fracture mechanics, there are three candidate criteria for
predicting the growth direction for an interfacial crack: maximum loop stress [Wang 1994; Li et al.
2004], maximum energy release rate [Mulville et al. 1978; Sun and Jih 1987], and zero mode II intensity
stress factor (K I I = 0) [Sih 1977; Hutchinson and Suo 1992; Sanford 1997b; Banks-Sills and Ashkenazi
2000]. The maximum loop stress criterion was demonstrated to be ineffective and inaccurate [Xie et al.
2005]. The criteria of maximum energy release rate and zero mode II intensity stress factor were shown
to predict the same crack propagation direction in most loading conditions [Hutchinson and Suo 1992].
It is thus reasonable to use the maximum energy release rate criterion to predict the direction the crack
propagates. Because this rate can be completely expressed in terms of local stress intensity factors [Rice
1988], it is important, in bimaterial systems with complex geometry, to find how the local SIF relates to
the loading SIF.

Some have tried using finite element methods (FEM) to predict the kinking angles out of an interface
[Leblond and Frelat 2001; Leblond and Frelat 2004]. However, calculating the energy release rate for all
possible kinking angles is very tedious and may be inaccurate due to the singular characteristics of stress
and strain at a crack tip. With help of a complex variable representation, the dislocation method provides
a powerful tool for solving crack problems in both homogeneous solids and nonhomogeneous layered
materials [Atkinson 1966; Lo 1978; Hayashi and Nemat-Nasser 1981; Hills et al. 1996]. Therefore, we
adopt the dislocation technique here to find the relation between the SIF before and after kinking, under
general loading conditions. We then apply the solution to find how cracks kink from a interface between
two materials in contact.

Keywords: complex variables, composites, contact effect, interfacial crack, kinking crack, singular integration.
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Figure 1. Geometry of kinked crack.

When the surfaces near an interfacial crack tip are in contact, the conditions around the tip locally
become pure mode II, at least before the crack kinks [Comninou 1977; Comninou and Dundurs 1979a;
1979b; Fan et al. 1998; Gautesen and Dundurs 1988]. Equivalently, the effect of contact can be included
by applying a pure shear loading at infinity or by setting the loading phase angle to 90◦ [Leblond and
Frelat 2001; 2004].

2. Problem formulations

Consider a two-dimensional infinite bimaterial system, with a semiinfinite edge crack on the interface
and a significantly smaller kinked crack in the more compliant material labeled 2; see Figure 1. Global
loading of this geometry causes a primary semiinfinite interfacial crack to propagate into material 2. As
the linear fracture solution may cause the crack to exhibit an inadmissible flank penetration into the
bimaterial interface, the primary semiinfinite interfacial crack before kinking is represented by a contact
model [Comninou 1977; Comninou and Dundurs 1979a; 1979b] in which a small contact zone exists
around the crack tip; see Figure 2.

In either the linear fracture model or the contact model, the stress intensity factors for the interfacial
crack can be expressed in a complex variable [Rice 1988; Hutchinson and Suo 1992]

K = K I + i K I I = |K |eiψ0, (1)

where i =
√

−1, and where K I and K I I are the mode I and II SIF initially applied at infinity. |K | and
ψ0 are the magnitude and phase angle of the SIF.

When a contact zone occurs around the crack tip, the complex SIF is determined by K I I with a
diminished K I [Whitcomb 1981; Sun and Jih 1987]. Due to the contact between the flanks of the
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Figure 2. Contact model of primary semiinfinite interfacial crack.

interfacial crack, the mode I SIF disappears, that is, K I = 0 or ψ0 = 90◦ [Comninou 1977; Leblond and
Frelat 2001; Leblond and Frelat 2004].

After the primary interfacial crack kinks into one side, the stress intensity factor after kinking K ′ can
be similarly expressed in a complex variable

K ′
= K1 + i K2,

where K1 and K2 are the postkinking mode I and II SIF.
Because the crack tip is confined to a one side after kinking — that is, in a single homogeneous and

isotropic medium — the kinked crack problem can be solved by superposition using the basic linear
fracture solution for an edge dislocation in material 2 interacting with an initial semiinfinite interfacial
crack. As illustrated in Figure 3, the actual kinked crack tip is represented by a virtual dislocation along
the crack tip.

The stresses at point z = te−iω caused by a discrete edge dislocation at z0 = ηe−iω can be expressed
in complex form [Lo 1978; Hayashi and Nemat-Nasser 1981; Wang 1994] as

σθθ (t)+ iσrθ (t)= 2Be−iω(t − η)−1
+ B H1(t, η)+ B H2(t, η),

where
B =

µ2

iπ(κ2 + 1)
eiθ (ur + ivθ ) (2)

is the Burgers vector. The functions H1 and H2 are specified in Appendix A.
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Figure 3. Modeling a kinked crack by dislocation. From left: without kinking; after
kinking, in the traditional representation with a crack; after kinking, in the dislocation
representation without a crack.

After the kinked crack is represented by a distributed dislocation B(η), where η is the distance of a
discrete dislocation from the initial crack tip, the crack-dislocation relation becomes an integral equation
specifying that the net traction is zero on the kinking line (see Figure 3):

2e−iω

1∫
0

B(η)(t − η)−1dη+

1∫
0

B(η)H1(t, η)dη+

1∫
0

B(η)H2(t, η)dη = −(σθθ (t)+ iσrθ (t)). (3)

Because s = 2η− 1 and s0 = 2t − 1, Equation (3) can be equivalently transformed into

2e−iω

1∫
−1

B(s)(s0 − s)−1ds +

1∫
−1

B(s)
H1(s0, s)

2
ds +

1∫
−1

B(s)
H2(s0, s)

2
ds = −(σθθ (s0)+ iσrθ (s0)), (4)

where s is new integration variable, s0 is the point along the kinking crack from the initial crack tip to
the propagated crack tip, and B(s) is the distributed dislocation along the kinking crack.

This integral equation can be solved numerically using a method developed by [Erdogan and Gupta
1972; Sih 1977]. First, the unknown equivalent dislocation function B(s) is factored into a singularity
term and a bounded term P(s) [He and Hutchinson 1989]:

B(s)= (1 − s2)−1/2 P(s).

Then Equation (4) becomes a set of linear equations

n∑
i=1

1
n

P(si )

[
2πe−i$

s0k − si
+
π

2
H2(s0k, si )

]
+

n∑
i=1

1
n

P(si )

[
π

2
H1(s0k, si )

]
= −(σθθ (s0k)+ iσrθ (s0k)), (5)
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where n is the number of sampling point and the highest of order for numerical approximation,

si = cos
(2i −1

2n
π
)

for i = 1, 2, . . . , n, and s0k = cos
(k

n
π
)

for k = 1, 2, . . . , n − 1,

The function P(s) can be expended in Chebyshev polynomials T j (s) of the first kind as

P(s)=

n∑
j=1

C j T j−1(s).

Consequently, Equation (5) becomes the set of linear equations
n∑

j=1

{
C j E j (s0k)+ C j F j (s0k)

}
= −(σθθ (s0k)+ iσrθ (s0k)),

where E j (s0k) and F j (s0k) are the integrated functions that describe the distributed dislocation of stress
at the point s0k . They can be written as

E j (s0k)=

1∫
−1

B(s)
H1(s0k, s)

2
ds,

F j (s0k)= 2e−iω

1∫
−1

B(s)(s0k − s)−1ds +

1∫
−1

B(s)
H2(s0k, s)

2
ds.

Because there are n unknowns but only n − 1 equations in Equation (5), an additional equation needs
be introduced. He and Hutchinson [1989] chose

P(−1)=

n∑
j=1

C j T j−1(−1)= 0.

After the dislocation function is numerically determined from the linear equations, the stress intensity
factor after kinking can be calculated, according to [Lo 1978; He and Hutchinson 1989], from

K ′
= K1 + i K2 = (2π)3/2e−i$ lim

η→0
{(1 − η)1/2 B(η)} = (2π)3/2e−i$ P(1).

This equation relates the SIF after kinking to that before, because as P(1) is connected to the initially
applied SIF K through Equation (5).

In plane strain, the initial energy release rate G of the interfacial crack is related to the initial SIF K
as [He and Hutchinson 1989]

G0 =

(
1 − ν1

µ1
+

1 − ν2

µ2

)(
K K̄

4 cosh2 πε

)
,

where µ1 and ν1 are the shear modulus and Poisson’s ratio of material 1, and µ2 and ν2 are the shear
modulus and Poisson’s ratio of material 2. The material mismatch index ε is defined as

ε =
1

2π
ln
(1 −β

1 +β

)
.
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α and β are Dundur’s material parameters, defined in plane strain as

α =
µ1(1 − ν2)−µ2(1 − ν1)

µ1(1 − ν2)+µ2(1 − ν1)
and β =

1
2
µ1(1 − 2ν2)−µ2(1 − 2ν1)

µ1(1 − ν2)+µ2(1 − ν1)
. (6)

As the crack propagates in a homogeneous medium after kinking, the energy release rate G is given
by [He and Hutchinson 1989]

G =
1 − ν2

2µ2
(K 2

1 + K 2
2 ),

where µ2 and ν2 are the shear modulus and Poisson’s ratio of material 2 and where K1 and K2 are the
postkinking SIFs of mode I and II.

We will next evaluate, for different material combinations, the relative energy release rate G/G0, and
we will predict the kinking angle by the criterion of maximum energy release rate.

3. Numerical solution and results

3.1. Validation of program. The numerical simulation is in MATLAB. Before implementing the numer-
ical analysis, we validate the program by comparing our results with [He and Hutchinson 1989, Table 1]
for α = 0, β = 0 and α = 0.56, β = 0.12. In both cases, the kinking angle is set to 45◦ and the initial
SIF K is set to 1; see the results in Table 1.

Comparing our results with those of [He and Hutchinson 1989], we find that the real parts of P(1)
agree very well. The imaginary parts of P(1) are close in value, but ours takes a negative sign. Our
calculation is further validated by Cotterell and Rice’s equation [1980].

From Table 1, we also see that the values of P(1) differ by less than 0.1 percent in going from N = 40
to N = 100. Thus, for the rest of this paper, we will use N = 40.

3.2. Numerical simulation results. Figure 4 plots how relative energy release rate varies with angle, for
different material combinations. In the simulation, the Poisson’s ratios of both materials are assumed to
be same, and the ratio of material Young’s moduli E1/E2 are chosen as 1, 2, 5, 10 and 100. The figure
demonstrates that in each case the relative release energy rate reaches its maximum at some angle.

α = β = 0
N PR(1) Pm(1)

4 0.04923 −0.02096
8 0.04976 −0.02108
12 0.04989 −0.02107
16 0.04994 −0.02106
20 0.04997 −0.02105
40 0.05001 −0.02102

α = 0.56, β = 0.12
N PR(1) Pm(1)

4 0.04149 −0.01805
8 0.04183 −0.01871
12 0.04193 −0.01879
20 0.04199 −0.01883
40 0.04201 −0.01885
100 0.04202 −0.01885

Table 1. Calculation of P(1) for ω = 45◦ and K = 1.
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Figure 4. Energy release rate versus kinking angle.

Adopting the criterion of maximum energy release rate, we can find the kinking angle for each case.
See the results in Table 2, which also lists, for comparison, the kinking angle evaluated from the criterion
K I I = 0.

4. Comparison with experiments and discussion

For the homogeneous limit (α = β = 0), here, E1/E2 = 1, we compute the kinking angle at 77.1◦ using
the criterion K I I = 0; see Table 2. This result agrees well with the 77.3◦ obtained by correlating of
initial and local SIF by quadratures [Bilby and Cardew 1975] and the 77.8◦ obtained by FEM analysis
[Leblond and Frelat 2001; 2004], both of which use the criterion K I I = 0.

Pelegri and Chen [2000] performed experiments on cross-ply laminated composites (IM7/5260) using
a Mixed Mode Bending (MMB) test facility. The kinking angles were found at different loading ratios.
The experimental results show that the kinking angle is 80◦ when the loading ratio of shear to tension is
4:1. From the fractographic images [Gilchrist and Svensson 1995; Partridge and Singh 1995; Gilchrist
et al. 1996] of loading ratio experiments similar to those of Pelegri, the interfacial cracks show contact
between the crack flanks at a loading ratio of 4:1. Here, the program is implemented to compute the
kinking angle for those experiments. Considering the contact effect in our simulation, we predict the
kinking angle of 80.4◦ when the loading ratio of 4:1, which matches well the experimental result.

E1/E2 1 2 5 10 20 50 100
Kinking angle by maximum G/G0 75.7◦ 77.9◦ 79.3◦ 79.8◦ 80.0◦ 80.2◦ 80.2◦

Kinking angle by K2 = 0 77.1◦ 81.1◦ 84.3◦ 85.5◦ 86.1◦ 86.5◦ 86.7◦

Table 2. Kinking angles in the presence of contact, assuming ν1 = ν2.
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Figure 5. At left, the kinking angle for the cantilever bending experiment and, at right,
for the microscopic three-point experiment.

We experiment with cantilever bending and microscopic three-point bending on cross-ply laminated
composite (IM7/G8548) [Shan and Pelegri 2003]. Figure 5 shows images of the kinking crack in these
two cases. In the cantilever bending experiment, the cantilever beam can withstand the shear resultant
force and moment after its local buckling, so that the inner delamination tip is in local compressive and
mode II dominant conditions, and the two surfaces are in contact near the tip. The dominance of mode
II and the presence of contact are also verified by finite element analysis [Shan and Pelegri 2003], which
Figure 6 shows as a large ratio of K I I /K I . This paper’s program computes the kinking angle to be 80.4◦

for the mode II dominant condition, which fits well with the experimental result of 81.2◦; see Figure
5 at left. Figure 5, at right, illustrates a microscopic experiment by three-point bending; the results are
also dominated by mode II and the presence of contact. The kinking angle of 80.8◦ agrees well with our
numerics.

Inner end

Figure 6. Ratio of stress intensity factors in mode II to mode I by FEM.
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5. Conclusions

We determined the kinking angle for an interfacial crack under the effects of contact by a numerical
analysis using a complex SIF, a dislocation technique, and singular integration. The contact effects
are important for evaluating the competition between the interlayer and intralayered cracks in laminate
materials and composites.

When contact is present, our numerical analysis finds the kinking angle out of the interface into the
more compliant material to be 75.7◦ for homogeneous layered materials and around 80.2◦ for a wide
range of nonhomogeneous material combinations. According to the analytical, FEM, and experimental
results, this angle is independent of the structural geometry, the loading type (be it static, fatigue, or
dynamic), and loading history and has little relation to material elastic constants. Furthermore, the
progressive crack tends to get trapped on the interface regardless of the loading and architectural config-
uration for the laminate composites. This it because the crack is eventually forced against interface and
accordingly meet more resistance to its further propagation.

Our future work will focus on the crack growth law under effects of contact and friction and on how
the crack progresses from pure mode I opening to mixed mode to pure mode II shearing. The size and
pattern of heckles formed during as the crack propagates may serve to measure this phenomenon.
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Appendix A. Derivation of the functions H1 and H2 in the dislocation method

In terms of the Muskhelishvili [1977] potentials, the stresses and displacements in two-dimensional
infinite bimaterial system may be expressed as

(σyy − iσxy) j =8 j (z)+8 j (z)+ z8′

j (z)+9 j (z), (A.1)

(σyy + σxx) j = 2 (8 j (z)+8 j (z)), (A.2)

2µ j

(∂u
∂x

− i
∂v

∂x

)
j
= κ j8 j (z)− (8 j (z)+ z8′

j (z)+9 j (z)), (A.3)

where the subscript j = 1, 2 means “in the region j” and where 8 j and 9 j are the potentials. Also, the
complex z is x + iy, the prime takes derivatives in z, the overbar denotes complex conjugation, κ = 3−4ν
for plane strain, κ = (3 − ν)/(1 + ν) for plane stress, and ν is Poisson’s ratio.

Mukai et al. [1990] introduced two additional jump potentials �S and �D to solve the branching of
interfacial crack of finite length within an infinite large body. Similarly to Mukai’s method, Suo [1989]
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obtained the Muskhelishvili potentials for an infinite large body with a semiinfinite interfacial crack from

�S =

{
81(z)− [8̄2(z)+ z8̄′2(z)+ 9̄2(z)], z ∈ S1,

82(z)− [8̄1(z)+ z8̄′1(z)+ 9̄1(z)], z ∈ S2,
(A.4)

�D =


κ1

2µ1
81(z)+

1
2µ2

[8̄2(z)+ z8̄′2(z)+ 9̄2(z)], z ∈ S1,

κ2

2µ2
82(z)+

1
2µ1

[8̄1(z)+ z8̄′1(z)+ 9̄1(z)], z ∈ S2,

(A.5)

81(z)= Q1

[
1

2µ2
�s1(z)+�D1(z)

]
, (A.6)

91(z)= Q2

[
−κ2

2µ2
�̄S2 + �̄D2

]
−81(z)− z8′

1(z), (A.7)

82(z)= Q2

[
1

2µ1
�S2(z)+�D2(z)

]
, (A.8)

92(z)= Q1

[
−κ1

2µ1
�̄S1 + �̄D1

]
−82(z)− z8′

2(z), (A.9)

where

Q1 =
2µ1µ2

µ1 + κ1µ2
, Q2 =

2µ1µ2

µ2 + κ2µ1
,

and f (z)≡ f (z). If f (z) is analytic for z in region S, then f (z) is analytic for z in region S.
The interaction between an interface crack and a dislocation may be solved by superposing the solu-

tions for (i) a dislocation in S2 near an interface and (ii) an interface crack loaded with the negative of the
stresses produced by (i). By simply replacing α with −α, β with −β and by switching the subscripts
1 and 2 of 8D and 9D from Mukai’s results [1990], we get the potentials

8D
1,singular =9D

1,singular = 0, (A.10)

8D
2,singular =

B
z − s0

, (A.11)

9D
2,singular = B

1
z − s0

+ B
s̄0

(z − s0)2
, (A.12)

8D
1,continuation = B

(
(1 −α)

(1 +β)(z − s0)

)
, (A.13)

9D
1,continuation = A

(
(1 −α)(s̄0 − s0)

(1 −β)(z − s0)2

)
+ Ā

(
(1 −α)

(1 −β)(z − s0)

)
−8D

1,continuation − z8D′

1,continuation, (A.14)

8D
2,continuation = B

(
(β −α)

(1 −β)(z − s̄0)

)
+ B

(
(β −α)(s0 − s̄0)

(1 −β)(z − s̄0)2

)
, (A.15)

9D
2,continuation = Ā

(
−(α+β)

(1 +β)(z − s̄0)

)
−8D

2,continuation − z8D′

2,continuation, (A.16)
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where B is the Burgers vector of Equation (2) and α and β are Dundur’s constants defined in Equation
(6).

When the main crack is introduced, the stresses due to the dislocation near an interface will be removed
from the crack faces by the two potentials 8C and 9C . Many investigators [Suo 1989; Mukai et al. 1990;
Rice et al. 1990] have presented the solutions for crack problems. For a semiinfinite crack on an interface,
the interface boundary conditions at y = 0 are

(σyy − iσxy)1 − (σyy − iσxy)2 = 0 for |x |<∞,(∂u
∂x

− i
∂v

∂x

)
1
−

(∂u
∂x

− i
∂v

∂x

)
2
= 0 for x > 0,

(σyy − iσxy)= f (x) for x < 0.

In terms of the jump potentials the first boundary condition is simply

�S1(x)−�S2(x)= 0 for |x |<∞.

Since �S is analytic everywhere and bounded, by Liouville’s theorem it must be constant. Moreover,
for zero stress at infinity, �C

S = 0.
The second boundary condition in terms of the jump potentials is

�D1(x)−�D2(x)= 0 for x > 0.

The third boundary conditions in terms of the jump potentials is

Q1�D1(x+)+ Q2�D2(x−)= f (x+)= f (x) for x < 0,

Q2�D2(x−)+ Q1�D1(x+)= f (x−)= f (x) for x < 0.

or,

�+

D + m�−

D(x)=
1

Q1
f (x) for x < 0, where m =

Q2

Q1
=

1 +β

1 −β
.

These two last boundary conditions define a Hilbert problem with the solution

�D(z)=
χ(z)
2π i

0∫
−∞

1
Q1

f (x)
χ+(x)(x − z)

dx +χ(z)P(z) (A.17)

in which χ(z)= zγ−1 is the solution of the homogeneous Hilbert problem defined above,

γ =
1
2

−
i

2π
log |m| =

1
2

+ iε, where ε =
1

2π
log
∣∣∣ 1
m

∣∣∣,
and P(z) is equal to zero [Suo 1989; Mukai et al. 1990]. After �D is obtained, the jump potentials can
be inverted back to standard potentials using Equations (A.6)–(A.9). To remove the stresses on the crack
caused by the dislocation solution, the integration in Equation (A.17) is carried out with f (x) opposite
to the tractions due to a dislocation near the interface. These tractions are obtained by substituting the
Equations (A.11), (A.12), (A.15) and (A.16) into Equation (A.1):

(σyy − iσxy)c = B
(

(1 −α)

(1 +β)(x − s0)
+

(1 −α)

(1 −β)(x − s̄0)

)
+ B

(
(1 −α)(s0 − s̄0)

(1 −β)(x − s̄0)2

)
.



602 BAOXIANG X. SHAN, ASSIMINA A. PELEGRI AND YI PAN

So the jump potential is

�D(z)= −
χ(z)

2π i Q1

0∫
−∞

(σyy − iσxy)c

χ+(x)(x − z)
dx,

and it can be obtained by following Suo’s procedure [1989], giving

�C
D(z)= −B

(1 −α)(1 −β)

Q1

(
F(z, s0)

1 +β
+

F(z, s̄0)

1 −β

)
− B

(1 −α)(1 −β)

Q1

(
(s0 − s̄0)G(z, s̄0)

1 −β

)
,

where

F(z, a)=
1

2(z − a)

(
1 −

χ(z)
χ(a)

)
and G(z, a)=

∂F(z, a)
∂a

. (A.18)

Inverting these to standard potentials gives

8C
1 (z)= −B(1 −α)(1 −β)

[
F(z, s0)

1 +β
+

F(z, s̄0)

1 −β

]
− B(1 −α)(1 −β)

[
(s0 − s̄0)G(z, s̄0)

1 −β

]
8C

2 (z)= −B(1 −α)(1 +β)

[
F(z, s0)

1 +β
+

F(z, s̄0)

1 −β

]
− B(1 −α)(1 +β)

[
(s0 − s̄0)G(z, s̄0)

1 −β

]
9C

1 (z)=−B(1−α)(1+β)

[
(s̄0 − s0)Ḡ(z, s̄0)

1 −β

]
−B(1−α)(1+β)

[
F̄(z, s0)

1 +β
+

F̄(z, s̄0)

1 −β

]
−8C

1 (z)−z8C ′

1 (z)

9C
2 (z)=−B(1−α)(1−β)

[
(s̄0 − s0)Ḡ(z, s̄0)

1 −β

]
−B(1−α)(1−β)

[
F̄(z, s0)

1 +β
+

F̄(z, s̄0)

1 −β

]
−8C

2 (z)−z8C ′

2 (z)

The final potentials that solve the interaction between a discrete dislocation and an interface crack are

8=8D
+8C

=8D
singular +8

D
continuation +8C

9 =9D
+9C

=9D
singular +9

D
continuation +9C ,

where the dislocation (D) potentials and the crack (C) potentials are all defined above. Thus, the traction
at z on θ = −ω can be written as

σθθ (t)+ iσrθ (t)= 2Be−iω(t − η)−1
+ B H1(t, η)+ B H2(t, η),

where

H1(t, η)= H10(t, η)+ H11(t, η),

H2(t, η)= H20(t, η)+ H21(t, η),
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and

H10 = −δ

[
1

z − s̄0
+
(s̄0 − s0)

(z − s0)2
+ e−2iω (s̄0 − s0)

(z − s̄0)2

]
,

H20 = −δ

[
1

z − s0
+
(s0 − s̄0)

(z − s̄0)2
+ e−2iω (s0 − s̄0)(z + s̄0 − 2z)

(z − s̄0)3

]
−

λ

z − s̄0
e−2iω,

H11 = −(1 −α)(1 +β)L
[

F(z, s0)

1 +β
+

F(z, s̄0)

1 −β
,
(s0 − s̄0)G(z, s̄0)

1 −β

]
,

H21 = −(1 −α)(1 +β)L
[
(s0 − s̄0)G(z, s̄0)

1 −β
,

F(z, s0)

1 +β
+

F(z, s̄0)

1 −β

]
,

where

L(φ(z), ϕ(z))= φ(z)+ϕ(z)+ e−2iω
[
(z − z)φ′(z)+

1 +β

1 −β
ϕ̄(z)−φ(z)

]
and

δ =
α−β

1 −β
,

λ=
α+β

1 +β
.

The functions H10 and H20 represent the effects of a dislocation below the interface where the material
does not crack. The functions H11 and H21 are additional terms needed to satisfy the traction-free
condition on the semiinfinite crack.

The traction expression is very similar to what had been reported by Hutchinson and Suo [1992]. Our
expressions for H10 and H20 are the same as theirs, but our H11 and H21 are different, in that theirs are
missing all terms related to (s0 − s̄0)G(z, s̄0)/(1 −β).

Appendix B. Formula for asymptotic stresses of an interfacial crack

When a crack branches into material 2, one can formulate σ 0
θθ (t)+ iσ 0

rθ (t) in terms of potential functions
[Rice 1988; He and Hutchinson 1989] as

σ 0
θθ (t)+ iσ 0

rθ (t)= φ′

0(z)+ φ̄
′

0(z)+ e−2iω (zφ′′

0 (z)+χ
′

0(z)
)
,

where

φ′

0(z)=
1

2
√

2π cosh(πε)
eεπ K̄ z−(1/2+iε),

χ ′

0(z)=
1

2
√

2π cosh(πε)

(
e−επK z−1/2+iε

− eεπ
(1

2
− iε

)
K̄ z−(1/2+iε)

)
.

Sun and Qian [1996] demonstrated that this expression of the asymptotic stresses around an interfacial
crack tip is appropriate for calculating the stress field in either the traditional linear fracture model or the
contact model.
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A VARIATIONAL DEDUCTION OF SECOND GRADIENT POROELASTICITY II:
AN APPLICATION TO THE CONSOLIDATION PROBLEM

ANGELA MADEO, FRANCESCO DELL’ISOLA, NICOLETTA IANIRO AND GIULIO SCIARRA

The second gradient model of poromechanics, introduced in Part I, is here linearized in the neighborhood
of a prestressed reference configuration to be applied to the one-dimensional consolidation problem orig-
inally considered by Terzaghi and Biot. Second gradient models allow for the description of boundary
layer effects both in the vicinity of the external surface and the impermeable wall.

The formulated differential problem involves linear pencils of ordinary differential operators on a
finite interval, with boundary conditions depending on the spectral parameter. Taking into account the
dependence of the differential problem on initial stresses a linear stability analysis is carried out. Finally,
numerical solutions are compared with the corresponding classical Terzaghi solutions.

1. Introduction

This paper addresses a geotechnical application of the macroscopic second gradient poroelasticity the-
ory presented in the first part; in particular we aim to treat the well known soil consolidation problem
[Terzaghi 1943]. The consolidation of a soil layer of depth L can be schematically described as follows:
when an external load pext. is applied on the surface of the layer, the fluid starts moving from the layer
towards the surface, and it finally leaves the system. While the fluid keeps flowing, the external load is
gradually distributed to the solid skeleton, which starts to deform.

Different theories which model consolidation have been developed in the literature [Biot 1941; Terza-
ghi 1943; Heinrich and Desoyer 1961], however the two due to Terzaghi and Biot are surely the most
widespread ones. Actually, as it was noted also by de Boer [1996], the derivation of the Terzaghi
differential equation [Terzaghi 1923] is obscure and essentially driven by the comparison between the
phenomenon of soil consolidation and that of heat propagation, rather than from the statement of suitable
mechanical principles. On the other hand Biot’s theory seems to be well grounded from the mechanical
point of view, even if directly restricted to the case of linear elasticity, in its earliest presentation [Biot
1941]. The two models collapse one into the other when considering one-dimensional problems; how-
ever, this is not the case when modeling, for instance, the behavior of a saturated porous slab [Mandel
1953] or a saturated porous sphere [Cryer 1963]. In both circumstances Biot’s three-dimensional model
provides time increasing values of the water pressure (and fluid mass density) at the center of the slab (or
sphere) if the Lamé constant µ of the skeleton is different from zero; on the other hand the solution for
µ= 0 coincides with the one derived from Terzaghi’s three dimensional model. This localized pore-fluid
segregation is known in the literature as the Mandel–Cryer effect.

Keywords: poromechanics, second gradient materials, consolidation.
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The occurrence of compaction localization phenomena has recently been discovered by Mollema and
Antonellini [1996], who presented evidence of so called “compaction bands” in outcrops of the Jurassic
Navajo sandstone in the Kaibab monocline, in Utah. These bands are characterized by volume loss due
to microfracturing, but essentially no grain crushing or comminution. Later on, laboratory experiments
have been developed [Olsson and Holcomb 2000; 2003] using triaxial compression tests to reproduce
the formation of these bands. These tests proved that increasing axial stress σ11 initially determines only
homogeneous axial strain ε11, however, when a suitable stress threshold has been overwhelmed, tabular
zones associated with nonhomogeneous strain can be detected close to the axial borders of the specimen.
Nonuniform compaction also affects fluid flow in the porous material, being detrimental if permeability
of the compacted material is much reduced with respect to the uncompacted zone.

The second gradient poromechanical model presented in Part I [Sciarra et al. 2008] is capable of
describing fluid mass density boundary segregation even in the one dimensional model. Both in the
vicinity of the external consolidating surface and the impermeable wall, suitable boundary layer effects
can be predicted by the second gradient model. Formation of segregation bands enhances high gradients
of density of the fluid entrapped in the pores of the solid skeleton. This can be explained by means of
nonvanishing hyperstresses at the boundary (see [Sciarra et al. 2008, Equations (32)2–(32)3]); these last
cause the pore pressure to differ from its reference initial value in a transient period, when dissipation
does not yet dominate the evolution process.

Having in mind the classical Terzaghi’s consolidation problem, whose space-time evolution is gov-
erned by the same equation as that of heat conduction, replacing temperature with pore-pressure, we
claim that the second gradient model, presented in [Sciarra et al. 2008], is capable of regularizing the
behavior of the Darcy flow inside the porous medium. Because of second gradient effects, the fluid mass
density diffusion is smoothed. It is self evident that Terzaghi’s theory does not model those phenomena
occurring at the boundaries which oppose the fluid flow, for example, pore closure, solid-fluid capillarity,
etc. The present model tries to macroscopically account for some of them and aims to establish the
preliminary theoretical framework necessary for conceiving and designing any kind of experimental
activity. In this paper it is shown that the overpressure occurring at the impermeable boundary actually
depends on second gradient coefficients; therefore a more detailed analysis of these effects is recognized
to be necessary.

Pore fluid segregation is probably the triggering effect for vertical drain or sand volcano formation,
observed after liquefaction [Kolymbas 1998]; these last can indeed be interpreted as bifurcation modes
of consolidation, which, in the case of the second gradient model should correspond to the boundary
layer detected close to the impermeable wall becoming larger and larger. As it is not possible to identify
this bifurcation mode in the case of linearized (small strain) theory, only the limit condition describing
the stability/instability limit is detected. Further developments will be devoted to study of the one-
dimensional nonlinear problem.

From the mathematical point of view the present model, in which both second gradient conservative
(relative to the behavior of the porous solid skeleton) and dissipative (relative to the flow of the saturating
fluid) contributions are taken into account, implies that the newly formulated initial boundary value
problem of consolidation fits in the framework of the theory of linear pencils of ordinary differential
operators on a finite interval with boundary conditions depending on the spectral parameter. We refer
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to the general results presented, for example, in [Shkalikov 1986; Shkalikov and Tretter 1996; Marletta
et al. 2003] for more details on this topic.

2. Linearization of the one-dimensional differential problem

We study here the aforementioned consolidation problem referring to the equations of motion for a
second gradient porous medium as obtained in [Sciarra et al. 2008, Equations (30) and (31)], restricting
our attention to the one-dimensional case. This will allow us to compare our results with the classical ones
due to Terzaghi [1923]. Of course, Equations (30)–(31) can also be applied to treat three-dimensional
problems, so extending classical Biot’s equations.

Clearly, because of the one-dimensional hypothesis, all the gradient and divergence operations appear-
ing in Equations (30) and (31) become simple derivatives with respect to the space variable x , and the
deformation tensor ε simply reduces to its only nonzero component εxx along the x axis. In the following
we will indicate the component εxx simply by ε.

From now on we assume the hypothesis of small deformations in the neighborhood of a suitable solid
skeleton reference configuration. For the sake of simplicity we will therefore use the same notation as
used in [Sciarra et al. 2008] for ε and mf to indicate the corresponding incremental quantities with respect
to the considered small deformation parameter.

In accordance with the aforementioned assumptions and the introduced nomenclature, the quadratic
expression for the Hemholtz free energy density 9, in terms of the state parameters (ε,mf , ε

I ,m I
f ) is

adopted as,

9 = − pext.
0 ε+µext.

0 mf +
1
2

(
λ+ 2µ+ b2 M

)
ε2

+
1
2

M
(mf

m 0
f

)2

− bMε
mf

m 0
f

+
1
2

(
Kss + MK 2

s f

)
(ε I )2 + MKs f

m I
f

m 0
f

ε I
+

1
2

M
(m I

f

m 0
f

)2
, (1)

where ε I and m I
f indicate the first spatial derivatives of ε and mf , respectively.

The constant coefficients pext.
0 , µext.

0 , and m 0
f account for the state of stress of the solid skeleton, the

chemical potential of the fluid, and the initial apparent density of the fluid before any external perturbation
is applied to the porous system. Moreover, λ and µ are the classical Lamé coefficients, b and M the Biot
parameters, and M, Kss , and Ks f are the second gradient constitutive parameters.

The nonstandard energetic contributions associated with (ε I )2, (m I
f )

2, and ε I m I
f are those responsible

for the presence of hyperstresses in the balance equations of the overall material and the pure fluid. They
allow for describing the compaction/dilatancy localization effects arising in the fluid-filled porous mate-
rial when the fluid remains entrapped in the solid skeleton. In particular Kss and M provide nonvanishing
hyperstress on the solid skeleton and the pure fluid if second gradient coupling is negligible. Following
the interpretation of double forces given in [Sciarra et al. 2008, Section 2], these two constitutive pa-
rameters allow for describing internal actions working on the rate of dilatancy along the outward unit
normal. The coupling coefficient Ks f is labeled as the cocapillarity coefficient in analogy to standard
second gradient theories for capillarity models [Seppecher 1987]. It describes second gradient solid-fluid
interactions and can be assumed as vanishing in contrast with Kss and M, which will be proved to be
positive when positiveness of strain energy density is required (see Equation (2)).



610 ANGELA MADEO, FRANCESCO DELL’ISOLA, NICOLETTA IANIRO AND GIULIO SCIARRA

Values of the Lamé and Biot moduli can easily be recovered from the literature [Coussy 2004]; on the
other hand no identification for the second gradient moduli is available up to now. It is not the purpose of
this paper to set up a constitutive identification based on experiments or mathematical homogenization;
conversely, our aim is that of exhibiting the capability of the model presented in [Sciarra et al. 2008] to
catch compaction/dilatancy effects. Second gradient parameters therefore will be tuned so as to permit
the one-dimensional model to show boundary layer effects for the solid strain and the fluid mass density
in the vicinity of the external surfaces.

Requiring definite positiveness of the energy density 9 defined in Equation (1), the following condi-
tions on the parameters must hold:

λ+ 2µ > 0, M > 0, and Kss > 0, M> 0. (2)

The first two conditions are well known in the framework of the classical Biot poromechanics; the second
ones restrict the constitutive assumptions on the second gradient parameters.

2.1. Equations of motion. We will now deduce the linearized form of the equations of motion for the
second gradient consolidation problem. In order to do so, it is worthwhile to recall that in the one-
dimensional, linearized problem the following chains of equalities hold:

Fs ' I + ∇su = (1 + ε) I, (3)

u being the infinitesimal solid displacement field,

F−1
s ' (1 − ε) I, (4)

and
Js ' det Fs = 1 + tr(∇0u)= 1 + ε, (5)

where we recall that all the considered fields in the right hand side of (3)–(5) have to be regarded as
incremental quantities with respect to the small deformation parameter. Taking into account (1) for the
strain energy 9 and the one-dimensional form of (3) and (5) , the linearized governing equations given
in [Sciarra et al. 2008, Equations (30) and (31)], reduce to[(

−pext.
0 + λ+ 2µ+ b2 M

)
ε− bM

mf

m 0
f

−

(
Kss + MK 2

s f

)
ε I I

− MKs f
m I I

f

m 0
f

]I
= 0, (6)

and

−m 0
f

[
M

m I
f(

m 0
f

)2 −
bM
m 0

f

ε I
−

MKs f

m0
f

ε I I I
−

M(
m0

f

)2 m I I I
f

]
− D

(
vf − vs

)
+

[
α
(
vf − vs

) I
]I

= 0, (7)

for the solid skeleton and the pure fluid, respectively. We have denoted by D and α the only nonzero
component of the Darcy and Darcy-like tensors D and A, respectively (see [Sciarra et al. 2008, Equation
(25)]), and by vf − vs the vertical component of the relative velocity. In the absence of inertia forces the
solid momentum conservation law, Equation (6), can be integrated in the form

(
λ+ 2µ+ b2 M − pext.

0
)
ε− bM

mf

m 0
f

−

(
Kss + MK 2

s f

)
ε I I

− MKs f
m I I

f

m 0
f

= const. := c0. (8)
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Moreover, considering that vf − vs is related to the apparent fluid density mf by means of the linearized
continuity equation ṁf + m 0

f (vf − vs)
I
= 0, (7) can be rewritten, performing a derivative with respect to

the space variable x , as

−m 0
f

M
m I I

f(
m 0

f

)2 −
bM
m 0

f

ε I I
−

MKs f

m 0
f

ε I V
−

M(
m 0

f

)2 m I V
f

+
D

m 0
f

ṁf −
α

m 0
f

ṁ I I
f = 0, (9)

where we have indicated by ṁf the time derivative of mf .
In order to write the linearized governing equations in a dimensionless form, the following quantities

are introduced:

ξ =
x
L
, m̃f =

mf

m 0
f

, t̃ =
t
τ
, with τ =

DL2

M
,

where L is the depth of the solid layer.
According to these definitions, (8) and (9) can be rewritten in their dimensionless form as

(λ+ 2µ+ b2 M − pext.
0 )

λ+ 2µ
ε−

bM
λ+ 2µ

m̃f −
(Kss + MK 2

s f )

(λ+ 2µ)L2 ε I I
−

MKs f

(λ+ 2µ) L2 m̃ I I
f =

c0

λ+ 2µ
, (10)

and
M

M L2 m̃ I V
f +

M

M L2 Ks f ε
I V

− m̃ I I
f + bε I I

−
α

DL2
˙̃m

I I
f + ˙̃mf = 0, (11)

which represent the linearized equations of motion for the consolidation problem. For the sake of sim-
plicity, we will no longer distinguish between mf and m̃f , and, if not specified, mf will indicate the
dimensionless quantity. Moreover, the dimensionless variables ξ and t̃ will be also indicated by x and t
if no confusion can arise.

2.2. Boundary conditions. The constant c0 is deduced from the boundary condition (BC) in x = 0 given
in [Sciarra et al. 2008, Equation (32)1] which, in the linearized form, reads(

λ+ 2µ+ b2 M − pext.
0

)
λ+ 2µ

ε−
bM
λ+ 2µ

mf −

(
Kss + MK 2

s f

)
(λ+ 2µ)L2 ε I I

−
MKs f

(λ+ 2µ)L2 m I I
f = −

1pext.

(λ+ 2µ)
;

here 1pext. represents the incremental external pressure acting on the system, deriving from the lineariza-
tion process (pext.

= pext.
0 +1pext.). In other words, 1pext. is the perturbation in the external load applied

on the surface of the soil layer. Comparing this BC with (10) it is easy to recognize that c0 = −1pext..
Equations (10) and (11) represent a differential system of the sixth order in the space variable x and of

the first order in time, the integration of which requires therefore six boundary conditions and one initial
condition. In classical poromechanics the Terzaghi consolidation problem does not take into account
second gradient effects, and indeed it can be obtained from (10) and (11) when the second gradient
parameters M, Kss , Ks f , and α are vanishing. Clearly, the problem reduces in this case to a second order
system with respect to the space variable x .

The boundary conditions for the consolidation problem are derived from the general ones deduced in
[Sciarra et al. 2008, Equation (32)]. In particular, since the given problem is one-dimensional, surface
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divergence and surface gradient operations do not contribute to the BCs; moreover no edge Ek of the
boundary exists. Extending the classical BCs stated in the Terzaghi consolidation problem we assume:

• Zero fluid traction in x = 0. This BC states that the surface of the solid layer is kept drained,
meaning that the fluid reaching the surface is continuously removed from the surface itself. This
BC corresponds to the one given in [Sciarra et al. 2008, Equation (32)1] which, in its linearized,
dimensionless form, reduces to

mf − bε−
MKs f

M L2 ε
I I

−
M

M L2 m I I
f +

α

DL2 ṁf =
m 0

f 1µ
ext.

M
= 0, (12)

where 1µext. represents the incremental chemical potential. In other words we have assumed the
linearization µext.

= µext.
0 +1µext.. Assuming that the fluid is continuously removed from the

surface of the layer, this implies a restriction to the case 1µext.
= 0.

• Impermeable soil in x = L . With this BC we assume that the relative velocity is equal to zero in
x = L , implying vf − vs = 0. Using Equation (7), which holds everywhere in the interval [0, L], the
impermeability of the layer x = L can be rewritten in its dimensionless form as

−m I
f + bε I

+
MKs f

M L2 ε
I I I

+
M

M L2 m I I I
f −

α

DL2 ṁ I
f = 0. (13)

• Zero double force for the overall system in x = 0 and x = L . These BCs are those ones given in
[Sciarra et al. 2008, Equation (32)2], and can be rewritten in their linearized dimensionless form as

m I
f +

(Kss + MK 2
s f )

MKs f
ε I

= 0.

We remind that the overall double forces are the contact forces introduced in the second gradient
model, which work on the rate of pore opening/pore shrinkage. With the assumption of vanishing
double forces on the boundary of the porous material, we claim that no external source of double
force exists; internal double forces, on the contrary, allow for capturing the effects of pressure
gradient concentration in the neighborhood of the external and impermeable surfaces [Holcomb
and Olsson 2003].

• Zero fluid double force in x = 0 and in x = L . These BCs are those ones given in [Sciarra et al.
2008, Equation (32)3]. They can be rewritten in their linearized dimensionless form as

m I
f + Ks f ε

I
= 0. (14)

The assumption on fluid double forces can be interpreted similarly to that considered for the overall
double forces. In this case no external double forces are exerted on the fluid boundary, but internal dou-
ble forces, associated with pressure gradient concentration, account for internal capillarity and wetting
phenomena.
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3. Initial boundary value problem

The differential Equations (10) and (11) can be reduced to a unique differential equation introducing an
auxiliary function V (x, t) which satisfies the relationships

ε =
Ks f M

(λ+ 2µ) L2 V I I
+

bM
(λ+ 2µ)

V, (15)

and

mf =

(
λ+ 2µ+ b2 M − pext.

0

)
(λ+ 2µ)

V −
Kss + MK 2

s f

(λ+ 2µ) L2 V I I
+
1pext.

bM
. (16)

In such a way, Equation (10) is identically satisfied, while (11) can be rewritten, after some straightfor-
ward calculations, as

C1V V I
− C2

(
pext.

0
)

V I V
− C3V̇ I V

+ C4
(

pext.
0
)

V I I
+ C5

(
pext.

0
)

V̇ I I
− C6

(
pext.

0
)

V̇ = 0; (17)

on the other hand, the boundary conditions given in (12)–(14) read

C1V I V
− C2

(
pext.

0
)

V I I
− C3V̇ I I

+ C4
(

pext.
0
)

V + C5
(

pext.
0
)

V̇ + C6 = 0 at x = 0, (18)

V I
= 0 at x = 0, L , V I I I

= 0 at x = 0, L , V V
= 0 at x = L . (19)

Finally, the initial condition (corresponding to the instant in which the external load is applied) is
deduced assuming that the apparent Lagrangian fluid density is vanishing for t = 0+. For instance,
mf
(
x, t = 0+

)
= 0; this initial condition states, similarly to in classical consolidation, that, at the instant

in which the external load is applied there is no instantaneous variation of the fluid density mf inside the
soil layer. In terms of the auxiliary function V the initial datum reads as

V (x, 0+) := Vin = −
1pext.

bM
1

C4 (π0)+ k6
, (20)

where (16) with mf = 0 has been solved using BCs given in (19).
All the coefficients appearing in the governing equation, (17), as well as in the initial and boundary

conditions, (20) and (19), depend on the constitutive parameters, the solid initial stress pext.
0 , and the

increment of the external force 1pext.; their expressions are listed in Appendix A.
It must be remarked that the expression for the energy density 9 assumed in (1) would not allow

the linearized differential problem to explicitly depend on the initial solid stress pext.
0 and on the initial

chemical potential µext.
0 . In fact, considering (1) we can write, in dimensionless form,

∂9

∂ε
=

1
λ+ 2µ

pext.
0 + (1 + k6)ε− bk5m f ,

∂9

∂mf
=

m 0
f

λ+ 2µ
µext.

0 + k5mf − bk5ε, (21)

so that there are no linear terms (in ε and mf ) involving pext.
0 and µext.

0 coming from ∂9/∂ε and ∂9/∂mf .
On the other hand the dependence of the differential system (17)–(19) on pext.

0 is due to so called geomet-
rical nonlinearities; as matter of fact it is the presence of Fs in the balance of the total momentum (see
[Sciarra et al. 2008]) which even in linearized problems implies a nontrivial dependence of the governing
equations on pext.

0 (see the term εpext.
0 in (10)).
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Considering the linearity of the differential problem and the nonhomogeneity appearing in the BC,
given in Equation (18), we will look for a solution V (x, t) in the form

V (x, t)= V̄ (x)+ W (x, t), (22)

where V̄ (x) is the solution of the stationary problem

C1V̄ V I
− C2V̄ I V

+ C4V̄ I I
= 0, (23)

with nonhomogeneous BCs

C1V̄ I V
− C2V̄ I I

+ C4V̄ = − C6 at x = 0, (24)

V̄ I
= 0 at x = 0, L , V̄ I I I

= 0 at x = 0, L , V̄ V
= 0 at x = L , (25)

while the deviation W (x, t) is the solution of the initial boundary value problem (IBVP)

C1W V I
− C2W I V

− C3Ẇ I V
+ C4W I I

+ C5Ẇ I I
− C6Ẇ = 0, (26)

with homogeneous BCs

C1W I V
− C2W I I

− C3Ẇ I I
+ C4W + C5Ẇ = 0 at x = 0, (27)

W I
= 0 at x = 0, L , W I I I

= 0 at x = 0, L , W V
= 0 at x = L , (28)

and nontrivial initial condition

W (x, 0+) := Win = Vin − V̄ (x) . (29)

For the sake of simplicity we will no longer specify the dependence of the coefficients Ci and Ci on the
prestress parameter pext.

0 .
It is easy to prove that the solution of the stationary problem given by (23)–(25) when C4 6= 0 is given

by

V̄ (x)= −
C6

C4
, C4 6= 0, (30)

while if C4 = 0 the stationary solution V̄ (x) exists if and only if C6 = 0; in this case a family of constant
solutions of the stationary problem arises, so that we can write V̄ (x)= K , and C4 = C6 = 0, where K
is an undetermined constant. On the basis of the preliminary study of the stationary solution V̄ (x) we
can state that, according to the assumption (22), a solution of the given problem for the variable V exists
if and only if C4 6= 0 or C4 = C6 = 0. We will now restrict our attention to the case C4 6= 0 and will
analyze the case C4 = 0 later.

4. Fourier series solution

The initial boundary value problem given by (26)–(29) is solved using the method of separation of
variables; in other words we assume that W (x, t)= X (x)T (t). A straightforward calculation yields to
the definition of the real eigenparameter λ as λ= Ṫ /T, which leads to T (t)= T0 eλt . Consequently, the
function X (x) must satisfy the eigenvalue problem

C1 X V I
− C2 X I V

+ C4 X I I
= λ

(
C3 X I V

− C5 X I I
+ C6 X

)
, (31)
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endowed with the BCs

C1 X I V
− C2 X I I

+ C4 X = λ
(
C3 X I I

− C5 X
)
, at x = 0, (32)

X I
= 0 at x = 0, L , X I I I

= 0 at x = 0, L , X V
= 0 at x = L . (33)

This is a nonclassical spectral problem since the BCs also depend on the spectral parameter λ; in the
literature this kind of spectral problem is referred to as a linear pencil L(X) = λA(X). Many authors
investigate the spectral properties of the differential operators L and A in suitable function spaces in
order to guarantee completeness and orthonormality for the eigenfunction system and discreteness of the
spectrum [Shkalikov 1986; Shkalikov and Tretter 1996; Marletta et al. 2003]. Here we rely on these
general results and numerically determine a subset of the eigenfunction space so as to approach the
requirements of the Parseval equality [Kolmogorov and Fomin 1975].

According to the aforementioned properties of the eigensystem, the solution of the considered IBVP
can be given in Fourier series form as

W (x, t)=

+∞∑
k=0

pk Xk(x)eλk t , (34)

where pk denotes the k-th Fourier coefficient, and, in particular, p0 the Fourier coefficient relative to the
null eigenvalue λ= 0 (if any). It is easy to prove that if C4 6= 0 the eigenfunction X0 relative to the null
eigenvalue is the trivial one X0 = 0, so that in Equation (34) k runs now from one to infinity.

The eigenfunctions (Xk)k∈N are orthogonal with respect to the following bilinear form defined, in the
Hilbert space H 3 ([0, L])× H 3 ([0, L]), as

〈Xk, Xh〉 := α0

∫ L

0
Xk Xhdx +α1

∫ L

0
X I

k X I
hdx +α2

∫ L

0
X I I

k X I I
h dx +α3

∫ L

0
X I I I

k X I I I
h dx, (35)

where the coefficients αi are defined as

α0 = C4C6, α1 = C4C5 − C4C5 + C2C6,

α2 = C4C3 − C3C4 + C2C5 − C2C5 + C1C6, α3 = C2C3 − C2C3 + C1C5 − C1C5.

It must be noted that expression (35) is indeed an inner product over the aforementioned function space
if and only if all the coefficients αi are positive definite.

We notice that when the initial stress pext.
0 is vanishing the αi coefficients are all positive (assuming

positiveness of the energy 9, see (2)), so that (35) always represents an inner product. On the other hand,
it is easy to verify that in the presence of prestress the positiveness of the aforementioned coefficients αi

is guaranteed if and only if pext.
0 < λ+ 2µ (⇔ C4 > 0).

The explicit form of the Fourier coefficients pk is determined by projecting the initial datum (29) on
the k-th element of the Fourier series according to the inner product (35); in particular we can find

〈Win, Xk〉 = α0Win

∫ L

0
Xk dx, (36)

〈Win, Xk〉 =

〈
+∞∑
h=1

ph Xh, Xk

〉
=

+∞∑
h=1

ph 〈Xh, Xk〉 = pk ‖Xk‖
2 , (37)
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where we have noted by ‖ · ‖ = 〈 · , · 〉
1/2 the norm induced by the inner product 〈 · , · 〉. Comparing

Equation (36) with (37) it is easy to recognize that

pk =
α0Win

∫ L
0 Xk dx

‖Xk‖
2 ,

so that, recalling (34), the final form of the solution is

W (x, t)= α0Win

+∞∑
k=1

[
1

‖Xk‖
2

∫ L

0
Xk(ξ)dξ

]
Xk(x)eλk t ,

and, according to (22) and (30), the solution for the variable V (x, t) is finally given by

V (x, t)= −
C6

C4
+α0Win

+∞∑
k=1

[
1

‖Xk‖
2

∫ L

0
Xk(ξ)dξ

]
Xk(x)eλk t . (38)

Finally, the fields ε and mf can be evaluated using (38) with (15) and (16) respectively.

4.1. The limit case C4 = 0. We have already mentioned that when C4 = 0 (pext.
0 = λ+2µ) the stationary

solution V̄ (x) exists if and only if C6 = 0 (⇔1pext.
= 0), and it is an undetermined constant K . This

means that, corresponding to a critical value of the prestress pext.
0 , no solution can be found if perturbing

the porous system with an external load 1pext.. The only possible solution is relative to the unloaded
configuration of the porous system (1pext.

= 0). In this case the solution for V (x, t) is found by solving
the differential problem given by (17), (19), and (20) when C4 = C6 = 0. Separating the variables,
V (x, t)= X (x)T (t), the solution can be found in Fourier series form as

V (x, t)=

+∞∑
k=0

pk Xk(x)eλk t . (39)

It must be noticed that when C4 = 0 the inner product (35) reduces to

〈Xk, Xh〉C4=0 := α1

∫ L

0
X I

k X I
h dx +α2

∫ L

0
X I I

k X I I
h dx +α3

∫ L

0
X I I I

k X I I I
h dx,

and it is still well defined over the quotient space of the H 3 ([0, L]) functions, differing at most by a
constant. It follows that the Fourier coefficients pk are now determined on the basis of the reduced form
〈 · , · 〉C4=0 of the inner product, according to the identities involving the initial condition Vin = constant,

0 = 〈Vin, X0〉C4=0 =

〈
p0 X0 +

+∞∑
k=1

pk Xk(x), X0

〉
C4=0

= p0 〈X0, X0〉C4=0 , (40)

0 = 〈Vin, Xk〉C4=0 =

〈
p0 X0 +

+∞∑
k=1

ph Xh(x), Xk

〉
C4=0

= pk ‖Xk‖
2
C4=0 , for all k ∈ N, (41)

where we have noted by ‖ · ‖C4=0 = 〈 · , · 〉
1/2
C4=0 the norm induced by the inner product 〈 · , · 〉C4=0. Notice

that p0 and X0 = V̄ = K are the Fourier coefficient and the constant eigenfunction corresponding to the
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null eigenvalue λ0 = 0, respectively, while (Xk)k∈N are the remaining eigenfunctions. Since X0 =

constant, Equation (40) reads p0 0 = 0 H⇒ p0 undetermined, moreover, (41) gives pk ‖Xk‖
2
C4=0 =

0 H⇒ pk = 0, ∀k ∈ N. According to (39), the solution for V (x, t) is an undetermined constant, so
V (x, t)= p0 X0 := p0 K = constant.

We want to remark that all the Fourier coefficients pk corresponding to nonvanishing eigenvalues turn
to be zero only because the initial condition Vin has been assumed to be constant; if it was not the case,
(41) would have stated the expression for the coefficients pk , and the solution for V (x, t) would have
been known except for a constant K . The fact that a family of constant solutions for V (x, t) arises can be
seen as a sort of bifurcation phenomenon which is triggered when pext.

0 reaches the critical value λ+ 2µ.
Finally, we underline that the null eigenvalue λ0 = 0 belongs to the spectrum of the differential problem

only when C4 = 0; in the following section we will show that when C4 > 0 only negative eigenvalues
exist, while if C4 < 0 some positive eigenvalues appear.

5. Numerical results

In this section we will show the numerical solution of the differential problem, given by (17)–(20), for a
particular set of values of the constitutive parameters, which are listed in Table 1. The first gradient pa-
rameters are those relative to a water saturated clay, while the values of the second gradient dimensionless
numbers are chosen in order to let boundary layer effects arise.

Fixing suitable values for the initial external pressure (pext.
0 = 4.9 GPa) and for the increment of this

latter (1pext.
= 1 MPa), so as to guarantee C4 > 0 and C6 6= 0, we look for a numerical solution V (x, t)

given by (38). In particular, we look for a numerical solution X (x) of the differential problem, given by
(31)–(33), in the form

X (x)=

6∑
i=1

Ki eβi (λ)x , (42)

where Ki are the integration constants and βi (λ) are the solutions of the characteristic polynomial asso-
ciated with the differential equation, (31). Consequently, BCs given by (32)–(33) yield

A(λ)v = 0, (43)

where A(λ) is a suitably defined 6 × 6 matrix and v := (K1, ..., K6). We notice that the matrix A(λ)
depends on the eigenparameter λ both because it appears in the differential equation, (31), and in the
boundary condition, (32). It follows that the resulting eigenvalue problem cannot be classified as a
standard eigenvalue problem. The system of algebraic equations, (43), has a nontrivial solution if and
only if det [A(λ)] = 0, which leads to the calculation of the eigenvalues λk (discrete spectrum). For

M(G Pa) λ(G Pa) µ(G Pa) k1 k2 k3 k4

5 2.3 1.5 10−2 10−2 10−2 10−2

Table 1. The values of first gradient elasticity parameters relative to a normally consol-
idated water saturated clay, together with trial values of second gradient dimensionless
parameters.
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Figure 1. Behavior of the fluid mass density mf versus depth x in the vicinity of the
time t = 0+. A segregation of the fluid arises close to the impermeable wall at x = 1.

each eigenvalue λk an eigenfunction Xk(x) is deduced in the form of Equation (42) so that a numerical
solution for V (x, t) can be found according to (38).

The numerical solution for V (x, t) involves a finite number of eigenfunctions N , where the choice of
N is made so as to approach the condition stated by the Parseval equality [Kolmogorov and Fomin 1975].
Once the numerical solution for V (x, t) has been found, we can deduce the corresponding solutions for
the fields ε and mf simply be referring to (15) and (16).

We now show the behavior of the fields ε and mf corresponding to the aforementioned values of the
constitutive parameters, and initial and incremental pressures. In Figure 1 the fluid apparent density mf

versus x is depicted for times in the very close neighborhood of t = 0+. It can be noticed that a critical
depth xcr ' 0.8 exists such that the density mf decreases for 0 ≤ x < xcr , while it increases for xcr < x ≤ 1.
This means that the fluid of the upper regions actually leaves the layer, while the fluid contained in the
deeper regions remains entrapped in the pores whose deformation consequently increases the apparent
density mf . When increasing time (see Figure 2), the apparent density mf decreases along the whole
depth of the layer, and finally approaches a constant value. This means that the fluid starts flowing out
also from the deeper regions until the system reaches a new equilibrium and no fluid leaves the layer
anymore. This effect is evidently related to viscosity, which dominates the evolution of the fluid density
as time becomes larger and larger.

As far as the vertical deformation ε is concerned, the same qualitative behavior as that of mf is detected
(see Figure 3 and Figure 4). For times close to t = 0+ (see Figure 3) the upper regions of the layer undergo
to a vertical compression, which is connected to the fact that less fluid is present in the pores, while the
deeper regions experience a sort of dilatancy which is connected to an over pressurization of the saturating
fluid.

For increasing times (see Figure 4) a general further compression is detected along the whole depth
of the layer (this is due to the fact that the fluid is uniformly flowing along the layer) until the layer does
not deform anymore (equilibrium).
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We remark that the chosen values of the prestress pext.
0 are such that C4 > 0 so that the inner product

Equation (35) is well defined. Consequently the solution for V (x, t) (and thus for ε and mf ) can be
numerically evaluated.

It is interesting to notice that when the initial stress pext.
0 is such that pext.

0 < λ+ 2µ (C4 > 0) only
negative eigenvalues λk < 0 have been found, while in the region where C4 < 0 a finite number of positive
eigenvalues arise. In Figure 5 the behavior of the first eigenvalue λ1 is shown when varying pext.

0 through
the threshold pext.

0 = λ+ 2µ . It is worth noticing that when λ1 passes from negative to positive values,
the solution V (x, t) given in the form of Equation (38) blows up due to the presence of positive time
exponentials; the solution thus experiences an unstable behavior related to the fact that pext.

0 reaches a
critical value. This kind of instability is known as geometrical instability since the presence of pext.

0 in
the differential problem is due to the geometry of the problem (see Equation (21)).
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Figure 2. Profile of mf for further times. Notice that mf tends to assume a constant
value for t → +∞, approaching equilibrium.
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Figure 3. Profile of the vertical solid strain ε versus x for times close to t = 0+. A
dilatancy of the solid skeleton is detected in the neighborhood of x = 1.
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The linearity of the present model does not allow us to capture solutions associated with unstable
conditions; this is evident when considering that the bilinear form given in (35) is no longer a well
defined inner product.

In order to show the influence of the solid prestress on the behavior of ε and mf we have found solutions
for different values of pext.

0 and noticed changes in the solution when approaching the threshold C4 = 0.
Figure 6 shows the behavior of mf when pext.

0 progressively approaches the critical value pext.
0 = λ+ 2µ.

When increasing the value of pext.
0 the fluid density decreases in the superficial regions of the layer, while

increasing in the deeper ones. This means that the initial stress increases the capability of the fluid to
flow out from the skeleton matrix close to the external surface, while pumping it in the deeper layers.

Let us now consider the second gradient constitutive parameters and the initial stresses to be vanish-
ing. The resulting differential problem reduces to the classical Terzaghi consolidation problem. More
particularly, Equation (10) reduces to

ε =
bM

λ+ 2µ+ b2 M
mf −

1pext.

λ+ 2µ+ b2 M
,

which, substituted in (11), gives

ṁf = am I I
f , a =

(λ+ 2µ)
λ+ 2µ+ b2 M

. (44)

The Terzaghi consolidation problem thus reduces to the differential equation, Equation (44), together
with the initial datum mf

(
x, 0+

)
= 0 and the BCs, (12) and (13), which simplify into

mf =
λ+ 2µ+ b2 M

λ+ 2µ

(
b
1pext.

λ+ 2µ

)
:= c at x = 0. (45)

and m I
f = 0 at x = L , respectively.

It is easy to notice that the BC, (45), and the initial datum, mf
(
x, 0+

)
= 0, are not consistent, so the

Terzaghi solution for mf exhibits the well known behavior of the classical unidimensional heat equation.
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Figure 4. Behavior of ε for further times. Notice that the system tends to reach a state
of equilibrium for t → +∞.
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Figure 6. mf profile versus depth for t = 0.2 and for different values of the prestress
pext.

0 in the neighborhhod of pext.
0 = λ+ 2µ.

As it will be shown in the following, this discontinuity between the initial datum and the BC is cured by
the second gradient model. The Terzaghi solution given in terms of the fluid mass density mf reads

mf (x, t)= c +

+∞∑
k=1

√
2a sin

[(π
2

+ kπ
)

x
]

eλk t , λk = a
(π

2
+ kπ

)2
.

In Figure 7 we show the comparison between the Terzaghi and the second gradient solutions for mf and
ε, respectively (in absence of prestresses), corresponding to the initial condition. The Terzaghi solution
(blue line) tends to a step function due to the discontinuity between the initial datum and the BC; on
the other hand this discontinuity is not present in the second gradient solution (red line). Moreover, we
underline that the second gradient Fourier series solution converges more quickly to its limit compared
with the Terzaghi one.

Figure 8 shows the comparison between the Terzaghi and second gradient solutions for increasing time.
It must be noted that, due to the continuity between the initial datum and the BC, the second gradient
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solution smoothly decreases with respect to the initial datum, while the Terzaghi solution is not able
to describe the behavior of mf close to the external surface. The second gradient allows for describing
compaction of the solid in the vicinity of the external surface, which contrasts instantaneous escape of
the fluid out of the porous skeleton. This effect has been indeed recognized both in experiments and in
situ measurements [Mollema and Antonellini 1996; Holcomb and Olsson 2003; 2000].

6. Concluding remarks

In this paper an application of the second gradient theory of poromechanics to the consolidation problem
is discussed. In particular, we present some results within the hypothesis of small deformations around a
prestressed reference configuration of the solid skeleton. Even in the framework of the linearized theory,
the considered second gradient model gives rise to several interesting questions, concerning both the
mathematical formulation of the problem and the mechanical interpretation of the results.

From the mathematical point of view the problem could be studied within the framework of linear
pencils of ordinary differential operators on a finite interval, with boundary conditions depending on the
spectral parameter. Several applications of this theory to physics and mechanics can be found in the
literature [Tretter 2000; Marletta et al. 2003]; it is our purpose to investigate in the future how the very
special problem we are dealing with can fit within the general theory.

From the mechanical point of view, the results presented also look quite interesting, in particular
concerning the capability of the model to describe fluid segregation. It has to be remarked that second
gradient models, in general, regularize the solutions of evolutionary or equilibrium equations (see, for
example, Figure 8). In the case of their application to phase transition phenomena they allow for the
coexistence of different phases at equilibrium, in the case of strain concentration phenomena for the
description of shear and compaction bands, and in the case of wetting for the description of drop/film
stability. In the first and third instances, the second gradient is necessary to describe capillarity, and in

0.0 0.2 0.4 0.6 0.8 1.0

-0.00004

-0.00002

0

0.00002

0.00004

x

m f

Second Gradient
Terzaghi

Figure 7. Comparison between the classical Terzaghi solution and the second gradient
solution for t = 0+.
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Figure 8. Comparison between the Terzaghi and the second gradient solutions for t = 0.1.

the second plasticity. In the present instance we propose to use second gradient models to describe those
phenomena occurring close to the drained boundary which contrasts fluid flow.

A linear stability analysis provides the limit value of the initial stress, which forces the first eigenvalues
to become at least nonnegative. The goal in the future will be that of identifying which are the buckling
modes, and in particular to corroborate the idea that bifurcated modes of consolidation can interpret
liquefaction phenomena and occurrence of sand boils [Kolymbas 1998].

Appendix A: Coefficients of the differential problem

The constant coefficients Ci and Ci appearing in the differential problem given by Equations (17) and
(19) are defined as

C1 = k1k3, C2
(

pext.
0
)
= k1 + k3 k5 (k2 + b)2 + k3C4

(
pext.

0
)
,

C3 = k4
(
k1 + k3 k5 k2

2
)
, C4

(
pext.

0
)
= 1 −

pext.
0

λ+ 2µ
,

C5
(

pext.
0
)
= k4

[
C4
(

pext.
0
)
+ k6

]
+ k1 + k3 k5 k2

2, C6
(

pext.
0
)
= C4

(
pext.

0
)
+ k6,

with

k1 =
Kss

(λ+ 2µ) L2 , k2 = Ks f , k3 =
M

M L2 ,

k4 =
α

DL2 , k5 =
M

λ+ 2µ
, k6 = b2k5.

Moreover, the coefficients appearing in the BC, Equation (18), are defined as

C1 = C1, C2
(

pext.
0
)
= C2

(
pext.

0
)
, C3 = C3

C4
(

pext.
0
)
= C4

(
pext.

0
)
, C5 (π0)= C5 −

(
k1 + k3 k5 k2

2
)
, C6

(
π 0

f

)
=
1pext.

bM
.
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It must be noticed that the constants k1, . . . , k4 are introduced by the second gradient model, while k5

and k6 are related to the first gradient parameters M , λ, and µ, which represent the Biot bulk modulus
and the Lamé coefficients of the considered material, respectively.
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EFFECTS OF LAYER STACKING ORDER ON THE V50 VELOCITY OF A
TWO-LAYERED HYBRID ARMOR SYSTEM

PANKAJ KUMAR PORWAL AND STUART LEIGH PHOENIX

We develop a theoretical and computational model to investigate the ballistic response of a hybrid two-
layered flexible armor system. In particular, we study the effects of stacking order of the two fibrous
layers, which have distinctly different mechanical properties, on the V50 limit velocity. A system con-
sisting of Kevlar and Spectra fabrics is studied in detail. For this system, previous experimental results
of Cunniff show nearly a factor of two difference in the V50 velocities for the two possible stacking
orders. The new model presented here extends our previous multilayer model by directly addressing
interference effects between the two layers, treated here using length and tension compatibility along the
radial direction away from the projectile. The primary task is to calculate strains in the individual layers
in the presence of constraining interference that forces the nested layers to have a common impact cone
shape different from what would be generated by the impact if the layers were allowed to deform freely.
We show that this interference, together with relative areal densities of the layers, have a significant effect
on the strain evolution in the layers, particularly near the edge of the projectile where failure initiates. As
observed experimentally by Cunniff, our model predicts a large decrease in the V50 velocity of the hybrid
armor system when Spectra is the strike layer. However, to achieve this reduction it is necessary to use a
lowered normalization velocity in multilayered Spectra systems than the theoretical value obtained from
basic fiber properties. Besides matching the experimental results of Cunniff, the model reveals many
subtle transitions in the onset and effects of interference between the layers. Somewhat surprising and
contrary to conventional wisdom is the observation that layer interference can sometimes be beneficial
depending on the relative mechanical properties and areal densities of the two layers.

1. Introduction

The ballistic performance of a body armor system is usually measured in terms of the V50 velocity, the
residual velocity when impacted above the V50 velocity, and the maximum deflection of the projectile
in the armor system perpendicular to the plane of armor panel. There are two main focus areas in the
development of low weight and high performance body armor systems: (a) development of materials with
superior mechanical properties, and (b) design optimization of integrated system to efficiently translate
these superior properties into ballistic performance. Fibrous body armors are constructed by stacking
the woven or nonwoven layers of high performance fibers like aramid (Kevlar®), high molecular weight
polyethylene (Spectra®), and until recently PBO (Zylon®). Others are still in development such as
DuPont PIPD (M5®) and carbon nanotube based yarns. Modeling efforts to optimize the performance

Keywords: multilayered hybrid armor systems, stacking order, thermal effects, layer interference, V50 velocity, impact
velocity versus residual velocity.
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of armor systems have not kept pace with developments in new materials. Trial and error experimental
investigation is very expensive and often ineffective due to a fundamental lack of understanding of the
physics of the impact event and the mechanisms of yarn and layer failure, especially subtle interactions.

In this paper we analyze the two possible stacking orders of a hybrid two-layered system where, in one
stacking order, the layers interfere with each other in the cone wave region. This interference results when
the underlying layer attempts to form an incompatible cone shape with the top layer, when both layers
are driven by a projectile velocity history during deformation. In the model, the momentum exchange
between the interfering layers over time occurs primarily around the ring formed by the coincident cone
wavefronts in the layers. The strain evolution in the layers is determined using length compatibility in
the conical and in-plane deformation zones extending from the projectile edge to the tension wavefronts
in the layers and tension compatibility from dynamic effects analogous to those seen in a belt traveling
over a pulley at modest wrap angles. The case of a noninterfering arrangement of layers was treated
in a previous work by the authors [Porwal and Phoenix 2005] and those results are also used in the
comparison of the two stacking orders.

2. Literature survey

Earlier efforts to model the performance of a multilayered fibrous soft body armor system focused on
either extrapolating results from a single layer system or assuming sequential failure through widely
spaced layers where only one layer at a time engages the projectile, that is, a decoupled system [Roylance
et al. 1973; Hearle et al. 1981; 1984; Taylor Jr. and Vinson 1989; Parga-Landa and Hernandez-Olivers
1995; Chocron-Benloulo et al. 1997; Cunniff 1999a; 1999b; 1999c; Billon and Robinson 2001; Zohdi
2002; Zohdi and Powell 2006]. Recently the authors have developed analytical models in which layers
respond to the impact of a projectile in a coupled and synergistic manner, as they do in reality, but the
layers are arranged in such a way that they form nested cones but without interference in the cone wave
region or elsewhere [Phoenix and Porwal 2003; Porwal and Phoenix 2005].

It has been shown experimentally as well as by computer simulation models [Roylance et al. 1995] that
constraining the transverse deflection of fabric layers, especially near the cone wavefront, significantly
alters the strain distribution and hence the ballistic performance of the system. In a hybrid multilayered
armor, the stacking order of the layers becomes critically important because it dictates the extent of inter-
ference between the layers in the cone of transverse deflection. Perhaps the best known demonstration of
this effect is due to Cunniff [1992] who stacked Kevlar and Spectra layers in two possible arrangements
and showed that the V50 velocity could be altered by about a factor of two.

3. Theoretical background for multilayered system behavior

The model developed here is based on the results from previous works by Phoenix and Porwal [2003]
and Porwal and Phoenix [2005]. In those works, membranes with in-plane isotropic elastic properties are
impacted normally by a flat-faced, right circular cylindrical (RCC) projectile with radius rp and traveling
at velocity Vp before the impact. Some of the results in those works will be the basis for the work here
so we quote them without derivation. We note that all the results quoted below are not exact but are very
accurate approximations, and should be understood as such.
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We let 00i be the areal density ratio of the i th layer relative to that of the projectile, that is,

00i =
Ad,i

Ad,p
=

mpi

Mp
, (1)

where Ad,i and Ad,p are the areal densities of the i th layer and the projectile, mpi = Ad,i Ap is the mass
of the plug of the membrane material directly contacted by the projectile or right under it in the i th
layer, and Mp = Ad,p Ap is the mass of the projectile. Here Ap is the projected area of the projectile
onto the membrane plane, which is the same as the cross-sectional area of the RCC projectile impacting
longitudinally. For a two-layered armor, the system areal density is

0̃0 =

2∑
i=1

00i . (2)

Upon impact of the projectile, there is a virtually instantaneous momentum transfer to the circular patches
of the layers right under the projectile. Thus, the velocity of the projectile just after impact is

V0 =
Vp

1 + 0̃0
. (3)

Note that both layers respond instantaneously to the impact because there are negligible gaps between
the layers. For the i th layer, the critical layer tensile strain just after impact occurs near the projectile
edge, that is, at the projectile radius rp. This strain is given by

εp0i =

[
V0

√
2a0i

]4/3

, (4)

where a0i is the tension wave velocity in the i th layer (approximately
√

Ei/2ρi ), and Ei and ρi are
the Young’s modulus and density of the constituent yarns, respectively. The factor of 2 in the denom-
inator comes from the added mass of crossing yarns that support no load in the direction of the wave
propagation.

Two types of waves are formed just after the sudden local momentum transfer at time t = 0. The first
type consists of radially growing tensile waves, and these are followed by much slower transverse waves
in the form of growing cones with the projectile at their apexes. The projectile is decelerated by the
membrane forces generated as the waves propagate in the layers. The velocity profile of the projectile is
given by

V =
Vp

1 + 0̃0
exp

[
−

∑2
i=1 ϕi00iψ

2
i +

∑2
i=1(1 −ϕi )00iψ

2
i,fi − 0̃0

1 + 0̃0

]
, (5)

where ψi = rci/rp is the normalized cone wavefront position in the i th layer (where rci is the radius of
the base of the conical deflection in that layer), ψi,fi is the normalized position of the cone wavefront in
the i th layer when it fails, and

ϕi =

{
0, for a failed layer,
1, for an intact layer.

(6)



630 PANKAJ KUMAR PORWAL AND STUART LEIGH PHOENIX

As the cone waves propagate, the changing strains in the layers at the projectile edge can be obtained by
solving

εpi =

(
V

a0i
√

2

)4/3

ψi
1/3

( √
ψi/εpi (ψi − 1)

ln(1 +
√
ψi/εpi (ψi − 1))

)2/3

. (7)

The material behind the tension wavefront flows toward the impact region. At the cone wavefront, the
magnitude of this inflow velocity at time t is

u̇ci =
a0iεcirci

rp + a0i t

{
ln
(

rci

rp + a0i t

)
− 1

}
, (8)

which happens to be different for the two layers. Here εci = εpi/ψi is the strain in the membrane at the
cone wavefront. The cone wave generated by the transverse deformation of the membrane propagates
into this inflowing material with velocity ci in the material coordinate system, which in terms of the
instantaneous projectile velocity V is given as

ci = rp
dψi

dt
= const × a0i

(
V

a0i
√

2

)2/3

= const × a0i
1/3
(

V
√

2

)2/3

. (9)

The constant ’const’ is typically a number slightly larger than 1 depending on the impact velocity, but in
the subsequent calculations it suffices to take const = 1 (see [Phoenix and Porwal 2003]). The velocity
of the cone wave in the ground coordinate system is c̃i = ci + u̇ci , which is somewhat less than ci because
u̇ci is negative though much smaller. The tangential strain distribution in the membrane in terms of the
strain in the membrane at the cone wavefront, εci , can be written as

εi ≈
εci rci

r
, rp ≤ r ≤ a0i t + rp. (10)

This can be integrated to estimate the change in length of the membrane material, 1l, in the radial
direction due to the strain induced by the impact

1l = εcirci ln
(

a0i t + rp

rp

)
. (11)

4. Model for interfering two-layered system

Let us consider a two-layered system deforming under a given projectile velocity history where both
layers are in contact with each other under the projectile. Interference occurs when the transverse de-
flection of the top layer is hindered from forming its natural cone shape (when alone) by the underlying
layer trying to form an incompatible cone shape. This is typically the case when the underlying layer has
a lower Young’s modulus and a higher material density and thus a lower tensile wave speed — though
other factors are at play as well.

Figure 1 illustrates the situation in terms of the two nested layers. In particular, Figure 1(b) shows the
case where the lower Kevlar layer exerts forces on the upper Spectra layer, causing the cone angle of
Spectra to be larger than it would be if the layers were stacked in reverse order, as shown in Figure 1(a).
Subscripts k and s denote the Kevlar and Spectra layers, respectively. An overbar is used for quantities
corresponding to the interfering arrangement of the layers. In Figure 1, a0 is the velocity of the tensile
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less than ci because u̇ci is negative though much smaller. The tangential strain distribution in the
membrane in terms of the strain in the membrane at the cone wavefront, εci , can be written as

εi ≈
εci rci

r
rp ≤ r ≤ a0it + rp. (10)

This can be integrated to estimate the change in length of the membrane material, ∆l, in the radial
direction due to the strain induced by the impact

∆l = εcirci ln

(

a0it + rp

rp

)

. (11)

4. Model for interfering two-layered system

Let us consider a two-layered system deforming under a given projectile velocity history where
both the layers are in contact with each other under the projectile. Interference occurs when the
transverse deflection of the top layer is hindered from forming its natural cone shape (when alone)
by the underlying layer trying to form an incompatible cone shape. This is typically the case when
the underlying layer has a lower Young’s modulus and a higher material density and thus a lower
tensile wave speed - though other factors are at play as well.

Figure 1 illustrates the situation in terms of the two nested layers. In particular, Figure 1(b)
shows the case where the layer beneath (Kevlar R©) is exerting forces on the layer above (Spectra R©)
causing the cone angle of Spectra R© to be larger than it would be otherwise if the layers were reversed
in order, as shown in Figure 1(a). We use subscript k for Kevlar R© layer and s for Spectra R© layer.
Also, an overbar is used for quantities corresponding to the interfering arrangement of the layers.
In the figure a0 is the velocity of the tensile wave, c̃ is the velocity of the cone wavefront in the
ground coordinate system, γ is the cone angle of transverse deflection with respect to ground, and
V is the instantaneous velocity of the projectile. Also, u̇ is the material flow velocity, which turns
out to be negative indicating that the material is flowing towards the impact region.
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Figure 1. Effect of layer stacking order on the system response (a) noninterfering
arrangement (Kevlar R©-Spectra R©), versus (b) interfering arrangement (Spectra R©-
Kevlar R©).

Figure 1. Effect of layer stacking order on the system response: (a) noninterfering ar-
rangement (Kevlar–Spectra), versus (b) interfering arrangement (Spectra–Kevlar).

wave, c̃ is the velocity of the cone wavefront in the ground coordinate system, γ is the cone angle of
transverse deflection with respect to ground, V is the instantaneous velocity of the projectile, and u̇ is
the material flow velocity, which turns out to be negative indicating that the material is flowing towards
the impact region.

In the two-dimensional membrane model with constant projectile velocity, the portion of membrane
that is right under the projectile moves with the projectile at the same velocity as the projectile, and
with no velocity transverse to the projectile motion (that is, there is negligible slipping at the projectile
edge). The material from the projectile edge to the cone wavefront forms a very mild curve [Phoenix
and Porwal 2003] and can be approximated by a straight line to calculate its length. In the tensile wave
region beyond the cone there is no significant interaction between the layers since there is no stitching
or bonding. In the region of conical deformation, the material velocity is equal to that of the projectile.
Thus, we can realistically assume that interaction forces between the layers only occur in the vicinity of
the cone wavefront, that is, at the junction of the cone wave and tension wave (apart from the interaction
between the plugs of layer material directly under the projectile).

For the interfering arrangement of the two layers, the basic assumption is that the cone wavefronts of
both layers have the same velocity with respect to the ground coordinate system, and in fact the cone
shapes are identical (Figure 1(b)). This, however, does not imply that the local strains along the cones and
in the tension wave regions beyond the cones are the same in each layer; in fact, the tension wavefronts
will be at different locations. In addition, each layer will be in tension out to its tensile wavefront, that
is, there is no slack in either layer.
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Based on compatibility of length implied by the identical cone shapes of the deformed layers, two
equations can be written, which are√

δ2 + x̄2 + (xs − x̄)−
√
δ2 + x2

s = (ε̄csr̄cs − εcsrcs) ln
(

rp + a0s t
rp

)
, (12)

√
δ2 + xk2 + (x̄ − xk)−

√
δ2 + x̄2 = (εckrck − ε̄ckr̄ck) ln

(
rp + a0k t

rp

)
, (13)

where δ
∫ t

0 V (t)dt is the displacement of the projectile in the layers perpendicular to the plane of the
armor panel. In the above equations xs = ċst , xk = ċkt , and x̄ = ˜̄ct are the bases of the approximately
triangular shapes formed by the transverse deflection in the ground coordinate system, as shown in Figure
1. The radii of the bases of the cone wavefronts in the material coordinate system are

r̄cs = rp + ( ˜̄c − ˙̄ucs)t and r̄ck = rp + ( ˜̄c − ˙̄uck)t, (14)

for the Spectra and the Kevlar layers, respectively. These, however, are calculated incrementally because
the velocities are not constant during the impact process. The left hand side of Equation (12), for the
Spectra layer, is the extra length of material required to change its natural shape (as in Figure 1(a)) into
the one that it is forced to form due to the interfering Kevlar back layer (as in Figure 1(b)). The right
hand side of this equation represents the extra length of material generated by the increased strain in the
layer, which is estimated using Equation (11). A similar interpretation can be applied to both sides of
Equation (13). In Equation (14), the radially inward material flow velocities at the cone wavefronts of
each layer are obtained by modifying Equation (8) as

˙̄ucs =
a0sε̄csr̄cs

rp + a0s t

{
ln
(

r̄cs

rp + a0s t

)
− 1

}
, (15)

˙̄uck =
a0kε̄ckr̄ck

rp + a0k t

{
ln
(

r̄ck

rp + a0k t

)
− 1

}
. (16)

A very helpful analogy for understanding the interaction forces between the two interfering cones is
that of a pair of tensioned belts, one on top of the other and both running together over a pulley at modest
wrap angle, as shown in Figure 2. We assume that the upper belt has a higher ratio of tension to linear
density than the lower belt, which is in contact with the pulley. At a sufficiently high speed for the two
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Figure 2. Belt-over-pulley analogy.

of two interfering cones the frame of reference is changed such that the pulley is traveling at the
speed of the cone wavefront and the belts are stationary with respect to ground (see Appendix A
for more details on the belt-over-pulley analogy). Also, the individual tensions in the belts at the
lift off threshold are not arbitrary but must be consistent with the length compatibility condition
described earlier.

The combined tension in the two layers is

T = Ts + Tk = AsEs ε̄cs + AkEk ε̄ck, (17)

where As = 2π(x̄ + rp)hs and Ak = 2π(x̄ + rp)hk, and where hs and hk are the thicknesses of the
Spectra R© and the Kevlar R© layers. From the belt-over-pulley analogy the tension in Equation (17)
should also satisfy

T = ρ̄Ā˜̄c2, (18)

where ρ̄ = (Asρs +Akρk)/Ā and Ā = As +Ak. Equations (17) and (18) can be combined to give

ρ̄Ā˜̄c2 = AsEs ε̄cs + AkEk ε̄ck. (19)

For a given impact velocity we can solve Equations (12), (13), (15), (16), and (19) for the unknowns
˜̄c, ˙̄ucs, ˙̄uck, ε̄cs, and ε̄ck. If the impact velocity is high enough then the critical strain in one of the
layers will reach its failure value. In this case we continue the analysis further depending on which
layer fails first.

Case 1: Strike layer fails first. If the Spectra R© strike layer fails first, at an instantaneous projectile
velocity Vf,s and when the cone wavefront in the back layer is at ψk,fs. Then tension in the Spectra R©

layer is relaxed and it is left behind, and only back layer can actively decelerate the projectile. To
determine whether the second layer is subsequently penetrated we revert to single layer behavior
for the back layer. We must then calculate a hypothetical initial impact velocity, for a single layer
system consisting of only the single Kevlar R© layer, that will give Vf,s as the projectile velocity when
the normalized position of the cone wave in it is ψk,fs, which is

Vp,fs = Vf,k(1 + Γ0) exp

{

Γ0

1 + Γ0

(ψ2
k,fs − 1)

}

. (20)

The Kevlar R© layer of the hybrid system is assumed to be penetrated if Vp,fs is higher than its
ballistic limit when impacted alone; otherwise the projectile is stopped.

Case 2: Back layer fails first. If the Kevlar R© back layer fails first, that is, a plug of material in
front of the projectile is severed and a hole is formed, then this penetrated layer will still be pushed
along by the Spectra R© layer. The Kevlar R© layer will tend to recover its tension some distance
away from the projectile edge because of the hoop stresses in the cone wave region of the punctured
layer. However, the tension originally supported by the Kevlar R© back layer in the vicinity of the

Figure 2. Belt-over-pulley analogy.
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belts, yet maintaining the same total tension, the centrifugal forces of the belts around the pulley will
become large enough for the lower belt to loose contact with the pulley despite the contact forces between
the upper belt and lower belt. To connect this analogy to the problem of two interfering cones, the frame
of reference is changed such that the pulley is traveling at the speed of the cone wavefront and the belts
are stationary with respect to ground (see Appendix A for more details on the belt-over-pulley analogy).
It should be noted that the individual tensions in the belts at the lift off threshold are not arbitrary but
must be consistent with the length compatibility condition described earlier.

The combined tension in the two layers is

T = Ts + Tk = As Es ε̄cs + Ak Ek ε̄ck, (17)

where As = 2π(x̄ + rp)hs, Ak = 2π(x̄ + rp)hk, and hs and hk are the thicknesses of the Spectra and the
Kevlar layers, respectively. From the belt-over-pulley analogy the tension in Equation (17) should also
satisfy

T = ρ̄ Ā ˜̄c2, (18)

where ρ̄ = (Asρs + Akρk)/ Ā and Ā = As + Ak. Equations (17) and (18) can be combined to give

ρ̄ Ā ˜̄c2
= As Es ε̄cs + Ak Ek ε̄ck. (19)

For a given impact velocity we can solve Equations (12), (13), (15), (16), and (19) for the unknowns ˜̄c,
˙̄ucs, ˙̄uck, ε̄cs, and ε̄ck. If the impact velocity is high enough then the critical strain in one of the layers will
reach its failure value. In this case we continue the analysis further depending on which layer fails first.

Case 1: Strike layer fails first. If the Spectra strike layer fails first, at an instantaneous projectile velocity
Vf,s and when the cone wavefront in the back layer is at ψk,fs, then tension in the Spectra layer is relaxed,
it is left behind, and only the back layer can actively decelerate the projectile. To determine whether the
second layer is subsequently penetrated we revert to single layer behavior for the back layer. We must
calculate a hypothetical initial impact velocity for a single layer system consisting of only the Kevlar
layer, that will give the projectile velocity Vf,s with normalized position of the cone wave ψk,fs:

Vp,fs = Vf,k(1 +00) exp
{

00

1 +00
(ψ2

k,fs − 1)
}
. (20)

The Kevlar layer of the hybrid system is assumed to be penetrated if Vp,fs is higher than its ballistic limit
when impacted alone; otherwise the projectile is stopped.

Case 2: Back layer fails first. If the Kevlar back layer fails first, that is, a plug of material in front of
the projectile is severed and a hole is formed, then this penetrated layer will still be pushed along by the
Spectra layer. The Kevlar layer will tend to recover its tension some distance away from the projectile
edge due to the hoop stresses in the cone wave region of the punctured layer. However, the tension
originally supported by the Kevlar back layer in the vicinity of the projectile edge must now be carried
by the Spectra layer, thus locally increasing its strain. This strain can be calculated as

ε̄ps,fk =
As Esε̄ps + Ak Ekε̄pk

As Es
, (21)

and if it is higher than the failure strain of the Spectra layer then this layer is also penetrated and the
armor is defeated.
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The smallest impact velocity at which both layers eventually fail, irrespective of which one fails first,
is called the V50 velocity of the system.

5. Results and discussion

The physical and mechanical properties used for calculations are representative of the Kevlar and Spectra
fibers as given in Table 1. Note that for these calculations the areal densities 00i are replaced by θ200i

to account for the uncertainty in the impact area. Here θ = 1.3 is used (this value was found applicable
to a wide range of data and material types in [Phoenix and Porwal 2003]) to reflect an increase in the
effective contact area relative to the radius of the RCC projectile nose. We also show some results from
[Porwal and Phoenix 2005] for a noninterfering stacking of the layers. Readers are referred to this paper
for more details.

Figure 3 plots the strain evolution in the two layers of the hybrid system for both interfering and
noninterfering arrangements of the layers, at impact velocity Vp = 140 m/s. The strains in each of the
layers near the projectile edge first increase up to a maximum and then decrease as the cone wavefronts
in both the layers propagate. This is similar to the case of a single layer or noninterfering arrangement
of layers. Interference between the layers as well as their relative areal densities significantly alters the
strains in both the Kevlar and Spectra layers. Interference decreases the strain in the Kevlar layer, in
general, because of the widening cone base relative to its natural noninterfering shape. Conversely, the
strain in the Spectra layer increases because of the smaller cone base radius formed in the interfering
arrangement. In the case of an armor system consisting of predominantly Spectra, for example, Ad,k =

0.01 kg/m2 and Ad,s = 0.46 kg/m2, the strain in the Kevlar at the projectile edge drops significantly
without affecting the strain in the Spectra layer because Spectra can easily push the thin layer of Kevlar
to widen its cone shape. On the other hand, for the system consisting of predominantly Kevlar , the
Kevlar strain remains unchanged and the strain in Spectra increases significantly. However, when Ad,k =

0.29 kg/m2 and Ad,s = 0.18 kg/m2 then strains in the Spectra and Kevlar are both altered significantly.
Figure 4 shows the effect of stacking order of the layers on the V50 limit velocity as well as on residual

velocity when impacted above the V50 velocity for the specific combination of Kevlar areal density,
Ad,k = 0.29 kg/m2, and Spectra areal density, Ad,s = 0.18 kg/m2. For the interfering arrangement
of layers, the combined effects of strength loss due to thermal softening and an increase in the strain
due to interference for the Spectra layer reduces the V50 velocity from 216 m/s (with εs,fail = 0.035),
for the noninterfering arrangement, to 156 m/s (with εs,fail = 0.021 due to thermal softening). Our
theory confirms the experimental observation of Cunniff [1992], however, his results exhibited a greater

Projectile Fibers
Property Spectra Kevlar

Radius 2.76 mm Stiffness, E 120 GPa 73 GPa
Weight 16 grain Density, ρ 970 kg/m3 1440 kg/m3

Table 1. Right circular cylindrical (RCC) projectile, with length to diameter ratio 1, and
fiber properties used for calculations.
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Figure 3. Strains in the layers around the projectile tip versus normalized cone
wavefront for both interfering and noninterfering arrangements under impact ve-
locity Vp = 140 m/s. The x-axis coordinate, ψk, is the wavefront position of the
Kevlar R© layer when in the noninterfering arrangement. In the first figure the strains
for interfering and noninterfering arrangement coincide for Spectra R© layer.

in the strain due to interference for Spectra R© layer reduces the V50 velocity from 216 m/s (with
εs,fail = 0.035), for the noninterfering arrangement, to 156 m/s (with εs,fail = 0.021 due to thermal
softening). Our theory confirms the experimental observation of Cunniff [1992], however, his results
exhibited a greater difference in V50 performance for the two possible arrangements, that is, 269
m/s versus 114 m/s. Note that if softening does not occur then the difference in performance for the
two possible arrangements is only slight. Thus, while we can create a scenario to match the results
of Cunniff [1992] it can only be done by invoking severe thermal softening of the thin Spectra R©

layer.
We have also investigated the V50 velocity for other areal density combinations of Spectra R©

and Kevlar R© layers as shown in Figure 5, which plots the V50 velocity versus the areal density
of Kevlar R© layer. In the comparison the total areal density of the system is kept constant, that
is, Ad = Ad,k + Ad,s = 0.47 Kg/m2. The family of curves corresponds to different failure strains
for the Spectra R©. Also shown are plots for the individual Kevlar R© and Spectra R© layers when
impacted alone for the failure strains as shown in the figure. Obviously, the effects of interference
are modest unless one also invokes thermal softening effects in terms of reduced failure strain of the
Spectra R© when it is the strike layer. When the failure strain is held fixed for both arrangements

Figure 3. Strains in the layers around the projectile tip versus normalized cone wave-
front for both interfering and noninterfering arrangements under impact velocity Vp =

140 m/s. The x-axis coordinate, ψk , is the wavefront position of the Kevlar layer when
in the noninterfering arrangement. In the first figure the strains for interfering and non-
interfering arrangement coincide for Spectra layer.

difference in V50 performance for the two possible arrangements, that is, 269 m/s versus 114 m/s. Note
that if softening does not occur then the difference in performance for the two possible arrangements is
only slight. Thus, while we can create a scenario to match the results of [Cunniff 1992] it can only be
done by invoking severe thermal softening of the thin Spectra layer.

We have also investigated the V50 velocity for other areal density combinations of Spectra and Kevlar
layers as shown in Figure 5, which plots the V50 velocity versus the areal density of Kevlar layer. In
the comparison, the total areal density of the system is kept constant, that is, Ad = Ad,k + Ad,s = 0.47
kg/m2. The family of curves corresponds to different failure strains for the Spectra . Also shown are
plots for the individual Kevlar and Spectra layers, when impacted alone, for the failure strains shown in
the figure. Obviously, the effects of interference are modest unless one also invokes thermal softening
effects in terms of reduced failure strain of the Spectra when it is the strike layer. When the failure strain
is held fixed for both arrangements, the largest effect of interference compared to no interference is seen
at Ad,k ≈ 0.16 for εs,fail = 0.045 and εk,fail = 0.036. In this case the V50 velocities for the interfering and
noninterfering arrangement of the layers are 224 versus 289 m/s. Also, for a fixed Ad,k (Ad,k = 0.20, for
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Figure 4. Vr versus Vp curves for a two-layered hybrid system consisting of Kevlar R©

(Ad,k = 0.29 Kg/m2) and Spectra R© (Ad,s = 0.18 Kg/m2) layers. The failure strain
of the Kevlar R© is εk,fail = 0.036 for all cases. In legends I and N correspond to
interfering and noninterfering arrangements of the layers, respectively.

the largest effect of interference compared to no interference is seen at Ad,k ≈ 0.16 for εs,fail =
0.045 and εk,fail = 0.036. In this case the the V50 velocities for the interfering and noninterfering
arrangements of the layers are 244 versus 289 m/s. Also, if one looks at the V50 velocities for
various failure strains cases corresponding to Ad,k = 0.20, or any other Kevlar R© areal density,
then one notes transitions between the situations where interference degrades performance versus
enhances performance, though only modestly. The locations of these transitions depend on the
relative failure strains of the layers because these determine the ability of a layer to withstand the
load without penetration and decelerate the projectile when the other layer fails. Often associated
with these transitions is a switch in which layer fails first, Kevlar R© or Spectra R©.

6. Conclusions

This paper is third in the series of papers we have written to model the performance of multi-
layered fibrous soft body armor systems analytically. Here, we make an attempt to explain the
experimental results of Cunniff [1992] using typical mechanical properties for the Kevlar R© and
Spectra R© layers. The only fitting parameter used in the calculations is θ = 1.3 to reflect an
expanded plug of fabric in the initial momentum exchange.
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Appendix A: Belt-over-pulley analogy

Figure A-1 shows a tensioned belt traveling over a pulley at a speed c. In the case of a membrane
this would be a section of the membrane traveling over a ring in the plane of the membrane. Let
us consider a small element BO′B′ of this belt that subtends an angle dφ, such that sin dφ ≈ dφ,
at the center of the pulley. This element experiences three different forces. The first is the tensile

Figure 4. Vr versus Vp curves for a two-layered hybrid system consisting of Kevlar
(Ad,k = 0.29 kg/m2) and Spectra (Ad,k = 0.18 kg/m2) layers. The failure strain of the
Kevlar is εk,fail = 0.036 for all cases. In legends I and N correspond to interfering and
noninterfering arrangements of the layers, respectively.

example) and different failure strains, there are transitions between the situations in which interference
degrades performance versus enhances performance, though only modestly. At these transitions, the
sequential order in which the layers fail often reverses. The locations of these transitions depend on the
relative failure strains of the layers. This is so because the ability a layer to withstand the load without
penetration, for a given projectile impact velocity, depends not only on its own failure strain but also on
contribution of other layers in decelerating the projectile before they are penetrated.

6. Conclusions

This paper is the third in the series of papers we have written to model the performance of multilayered
fibrous soft body armor systems analytically. Here, we make an attempt to explain the experimental
results of Cunniff [1992] using typical mechanical properties for the Kevlar and Spectra layers. The only
fitting parameter used in the calculations is θ = 1.3 to reflect an expanded plug of fabric in the initial
momentum exchange.

Appendix A: Belt-over-pulley analogy

Figure 6 shows a tensioned belt traveling over a pulley at a speed c. In the case of a membrane this
would be a section of the membrane traveling over a ring in the plane of the membrane. Let us consider
a small element BO′B′ of this belt that subtends an angle dφ such that sin dφ ≈ dφ at the center of the
pulley. This element experiences three different forces. The first is the tensile force from the belt, which
is approximately the same at each end of the element. The resultant of these two tensile forces acts in
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Figure 5. V50 velocity of the hybrid (Kevlar R© and Spectra R©) armor system versus
areal density of the Kevlar R© layer, Ad,k, for various failure strain combinations
for the constituent layers. The total system areal density is Ad = Ad,k + Ad,s =
0.47 Kg/m2. The solid and hollow circular markers correspond to interfering and
noninterfering arrangements of the layers, respectively. The solid lines correspond
to the V50 velocity of the individual Kevlar R© and Spectra R© layers.

force from the belt, which is approximately the same at each end of the element. The resultant of
these two tensile forces acts in the O′O direction, which bisects the angle subtended by the element,
and has a magnitude

TO′O = 2T sin dφ/2 ≈ Tdφ = AEfεcdφ, (A-1)

where A is the cross-sectional area of the belt, Ef is the Young’s modulus of the belt, and εc is the
longitudinal tensile strain in the belt at the point of contact with the pulley, that is, point O′. The
second force is the centrifugal force that the element experiences because of its motion on a circular
path at speed c. The centrifugal force acts in the OO′ direction and its magnitude is given by

Fc = ρAc2dφ, (A-2)

where ρ is the density of the belt material. A contact force between the belt element and the pulley
is the third force that acts on the element. For the purpose of our problem we can assume the
contact between the belt and the pulley to be frictionless, as explained later. Under this assumption
the contact force will act normal to the surface of the pulley at the contact point, that is, along
OO′ direction. The magnitude of the normal contact force, N , can be obtained by considering the
linear momentum balance for the element in the OO′ direction, which gives

N = AEfεcdφ− ρAc2dφ, (A-3)

Figure 5. V50 velocity of the hybrid (Kevlar and Spectra) armor system versus areal den-
sity of the Kevlar layer, Ad,k, for various failure strain combinations for the constituent
layers. The total system areal density is Ad = Ad,k + Ad,s = 0.47 kg/m2. The solid and
hollow circular markers correspond to interfering and noninterfering arrangements of
the layers, respectively. The solid lines correspond to the V50 velocity of the individual
Kevlar and Spectra layers.
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Figure A-1. Illustration of the belt-over-pulley analogy.

The component of the tensile force along O′O direction is independent of the speed c, whereas
the centrifugal force is proportional to the square of this speed. Thus, the magnitude of the normal
contact force decreases with c. There exist a speed at which the normal contact force becomes zero.
At this speed the presence of the pulley is immaterial and the situation is equivalent to the cone
wavefront in the ballistic impact problem. Further, at this instance of zero normal contact force
the frictional forces will be zero for both the frictional and frictionless contact between the pulley
and the belt.

Thus form Equation A-3, with N = 0, we have

AEfεc = ρAc2, (A-4)

or

εc =
c2ρ

Ef

=

(

c

a0

)2

= α2, (A-5)

where a0 =
√

Ef/ρ is the tensile wave velocity in the belt and α = c/a0. Equation A-5 gives the
relationship between the strain in the belt at the cone wavefront, the cone wave velocity, and the
tension wave velocity in the impact problem as obtained by Phoenix and Porwal [2003]. One thing
to note is that in the impact problem the velocity c is not known exactly and hence the strain
calculated from this will be an approximation to the actual strain.

Of interest to the two-layered hybrid armor system is the case of two stacked belts passing over
the pulley. In this case the top belt can press the bottom belt against the pulley even when the
bottom belt has insufficient tension to maintain contact when by itself. This is the situation that
arises in the case of interference. In this case, when the speed is high enough for the contact force
between the bottom belt and pulley to vanish, Equation A-4 can be modified to give

AsEsε̄cs + AkEkε̄ck = ρ̄Ā˜̄c2 (A-6)

where the left hand side is the component of tensile forces in the pair of stacked belt elements
along O′O direction and the right hand side is the centrifugal force experienced by the same. The
symbols have the usual meanings.
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the O′O direction, which bisects the angle subtended by the element, and has a magnitude

TO′O = 2T sin dφ/2 ≈ T dφ = AEfεcdφ, (A.1)

where A is the cross-sectional area of the belt, Ef is the Young’s modulus of the belt, and εc is the
longitudinal tensile strain in the belt at the point of contact with the pulley, that is, point O′. The second
force is the centrifugal force that the element experiences because of its motion on a circular path at
speed c. The centrifugal force acts in the OO′ direction, and its magnitude is given by Fc = ρAc2dφ,
where ρ is the density of the belt material. A contact force between the belt element and the pulley is the
third force that acts on the element. For the purpose of our problem we can assume the contact between
the belt and the pulley to be frictionless, as explained later. Under this assumption the contact force will
act in a direction normal to the surface of the pulley at the contact point, that is, along OO′ direction. The
magnitude of the normal contact force, N , can be obtained by considering the linear momentum balance
for the element in the OO′ direction, which gives

N = AEfεcdφ− ρAc2dφ. (A.2)

The component of the tensile force along O′O direction is independent of the speed c, whereas the
centrifugal force is proportional to the square of this speed. Thus, the magnitude of the normal contact
force decreases with c. There exists a speed at which the normal contact force becomes zero. At this
speed the presence of the pulley is immaterial and the situation is equivalent to the cone wavefront in the
ballistic impact problem. Furthermore, at this instance of zero normal contact force, the frictional forces
will be zero for both the frictional and frictionless contact between the pulley and the belt.

Thus from Equation (A.2), with N = 0, we have

AEfεc = ρAc2, (A.3)

or

εc =
c2ρ

E f
=

(
c
a0

)2

= α2, (A.4)

where a0 =
√

Ef/ρ is the tensile wave velocity in the belt and α = c/a0. Equation (A.4) gives the
relationship between the strain in the belt at the cone wavefront, the cone wave velocity, and the tension
wave velocity in the impact problem as obtained by Phoenix and Porwal [2003]. One thing to note is that
in the impact problem, the velocity c is not known exactly and hence the strain calculated using Equation
(A.4) will be an approximation to the actual strain.

Of interest to the two-layered hybrid armor system is the case of two stacked belts passing over the
pulley. In this case the top belt can press the bottom belt against the pulley even when the bottom belt
has insufficient tension to maintain contact when by itself. This is the situation that arises in the case of
interference. In this case, when the speed is high enough for the contact force between the bottom belt
and pulley to vanish, Equation (A.3) can be modified to give

As Esε̄cs + Ak Ekε̄ck = ρ̄ Ā ˜̄c2, (A.5)

where the left hand side is the component of tensile forces in the pair of stacked belt elements along the
O′O direction, and the right hand side is the centrifugal force experienced by the same. The symbols
have the usual meanings.
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A FINITE ELEMENT FOR DYNAMIC ANALYSIS OF A CYLINDRICAL
ISOTROPIC HELICAL SPRING

MOHAMED TAKTAK, FAKHREDDINE DAMMAK, SAID ABID AND MOHAMED HADDAR

This paper presents a finite element for the dynamic analysis of the cylindrical isotropic helical spring.
The hybrid-mixed formulation is used to compute the stiffness matrix. A simple approach is used to
calculate the mass matrix. These matrices are used for solving the dynamic equation of the spring to
calculate natural frequencies and the dynamic response of a simple or an assembled spring for different
types of cross-section.

1. Introduction

The helical spring is one of fundamental mechanical elements used in various industrial applications such
as balances, brakes, clutch, and valves. The investigation of its vibratory behavior in order to find its
natural resonant frequencies permits a better conception of different dynamic conditions. The analysis of
this type of element is complex due to the presence of bending, stretching, coupling, the effects of shear
strain and the rotatory inertia, as well as the shape complexity of its structure. Neglecting one of these
parameters to simplify the solution gives wrong results and erroneous frequencies. Since investigations
in this area began in the 19th century with Michell [1890], researchers have predominantly investigated
two aspects of springs.

The first field is the vibratory behavior of charged springs with purely axial compression or under
compression and torsion [Haringx 1949; Pearson 1982; Becker and Cleghorn; 1992; 1993; 1994; Chas-
sie et al. 1997; 2002]. Other investigations in this field are concentrated on the stability of this kind
of structure after calculation of resonant frequencies. Mottershead [1982] and Pearson [1982] obtain
governing equations by summing forces and moments on an element of the spring. Tabarrok and Xiong
[1989; 1992] and Xiong and Tabarrok [1992] developed a finite element for the vibration and buckling
of curved and twisted rods under loads, giving results which agree well with those given by Chassie et al.
[1997].

The second field of research is the study of unloaded springs. In this study, many techniques are used
to analyze the problem. The experimental method is used to determinate natural frequencies of the spring
as in [Lin and Pisano 1987] and [Mottershead 1980], but these studies show the difficulty of finding these
frequencies because they are close each to other, especially for higher modes. Other techniques are used
to solve this problem, such as the analytical method. Wahl [1963] determined axial and torsional modes
of cylindrical helical springs, but that approach is valid only for circular cross-sections with a small
helix angle, and does not give realistic results, particularly for high frequencies. Pietra and Valle [1982]
improve the last model by taking into account the effect of helix angle. Their model gives acceptable

Keywords: helical spring, hybrid mixed formulation, natural frequencies, dynamic response.
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results. Other work also uses the analytical method [Kagawa 1968; Philips and Castello 1972; Castello
1975; Pietra 1976; Guido et al. 1978]. Recent research is now based on the transfer matrix and stiffness
matrix methods to solve the free vibration problem [Haktanir 1994; Yildirim; 1995; 1996; 1997; 1999a;
1999b; Lee and Thompson 2001]. These methods take into account the axial and shear strain and rotary
inertia and give good results with less error than other approaches.

The research presented above is limited to academic applicactions; results can not be used directly by
engineers in the phase of spring design. In fact, in practical problems the spring is not alone, but is in
assembly with other types of mechanisms. To get reasonably good results for those problems, a large
number of terms will have to be used and getting them may not always be easy; thus analytical methods
are restored for the study of the simple spring behavior. To solve this problem, the finite element method
is often used [Mottershead 1982; 1980; Sawanbori and Fukushima 1983; 1983; Pearson and Wittrick
1986]. This method is an approximate technique and obtains a solution for specific problems and is
characterized by its versatility and capacity to solve practical problems found in engineering. It can
easily model the behavior of a spring in a complex mechanism with minimum of calculation. Examples
of springs in different boundary cases (such as fixed-fixed and fixed-free) and for various numbers of
parameters (such as number of coils and helix angle) are studied. Results given by this model are close
to those determined by analytical and experimental methods. After treating a static study of the spring
[Taktak et al. 2005b] and a stress analysis [Dammak et al. 2005], in which we presented the method of
determination of the stiffness matrix of the structure, we present in this paper a method for computing the
mass matrix and solve the dynamic equation. These methods were presented in previous communications
[Abid et al. 2005; Taktak et al. 2005a] in the case of a single spring, the first of which presented the
dynamic behavior of a single helical spring and the second was a parametric study of geometrical and
mechanical proprieties effects on the natural frequencies of the helical spring. The aim of this paper is
to present a finite element which permits the reduction of the number of elements needed to study the
structure that can be used with other finite elements in cases where the spring is assembled with others
structures. To validate the developed element, natural frequencies and the dynamic response of single
and assembled springs calculated by this element are presented in comparison with results given by a
three-dimensional elastic beam finite element.

2. Nomenclature

[MT ] Total mass matrix δet Virtual membrane strain
[KT ] Total stiffness matrix δγtn,tb Virtual shear strain
[MG] Element global mass matrix δχt,n,b Virtual strains
[KG] Element global stiffness matrix 〈δε〉 Generalized virtual strains vector
{X} Global displacements vector N Normal force
{U } Eigen vector Tn, Tb Shearing forces
ω Eigen pulsation Mt Torsional moment
t Time Mn,Mb Bending moments
[CT ] Damping matrix 〈R〉 Resulting forces vector
[FT ] External forces vector σt,tb,tn Stress tensor components
[8] Modal matrix E Young’s module
n Number of eigen modes G Shearing’s module
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{a(t)} Generalized displacements vector A Section area
[Mm] Generalized mass matrix J Inertia of torsion
[Km] Generalized stiffness matrix Iy, Iz Central quadratic moments
[Cm] Generalized damping matrix ky, kz Shears correction factors
{Fm} Generalized forces vector [H ] Elastic behavior Matrix
ωi Eigen pulsation 5 Mixed functional of energy
ξi Reduced damping coefficient 5e

ext External energy element functional
X, Y, Z Global coordinate system 5e

int internal energy element functional
EI , EJ , EK Global basis W e

int Internal work
s, y, z Local coordinate system e Numbers of elements
Et, En, Eb Local basis { f } Distributed forces Vector
s Curvilinear axis 〈u〉 Displacements vector
p Point belonging to the axis ”s” {F} Concentrated forces vector
u, v, w Local displacements 〈un〉 Element degrees of freedom vector
θt , θn, θb Local rotations [P] Approximation matrix
U, V,W Global displacements {αn} Discontinuous parameters vector
2t ,2n,2b Global rotations [A] Binodal approximation matrix
EX p Position vector [k] Local stiffness matrix
r Helix radius W e

inertial Element inertial work
P Helix Pitch ρ0 Mass per unit volume
θ Polar angle L Curvilinear length
Ns Number of spires [m] Local mass matrix
R Radius of curvature ξ Parametric variable
T Radius of torsion 1θ Difference of nodal angles
q Point belonging to the beam [KG] Global stiffness matrix
δu, δv, δw Virtual displacements [MG] Global mass matrix
δθt,n,b Virtual rotations [T ] Transfer matrix
δεt Axial virtual strain [Qi ] Rotation matrix
δγn, b Virtual transverse shear strains

3. Dynamic analysis

3.1. Modal analysis. The calculation of natural frequencies and modes is made by the resolution of the
matrix system

[MT ]
{

Ẍ
}
+ [KT ] {X} = {0} , (3–1)

where [MT ] is the total mass matrix, [KT ] is the total stiffness matrix. These matrices are obtained by
an assembly of element matrices in the global coordinate system. [MG] and [KG] are defined in the
following sections. {X} is the global nodal displacements vector. For a harmonic solution having the
expression

{X} = {U } exp (iω t) , (3–2)

{U } is the eigenvector and ω is the eigen pulsation (rad s−1). Equation (3–1) is reduced to the general
eigenvalue problem (

[KT ] −ω2 [MT ]
)
{U } = {0} . (3–3)
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This eigen problem can be solved with one of many methods which exist in the literature, such as subspace
iteration.

3.2. Dynamic response: method of modal superposition. The equation of movement of the system is
written as

[MT ]
{
Ü
}
+ [CT ]

{
U̇
}
+ [KT ] {U } = {FT } , (3–4)

where [CT ] is the damping matrix and {FT } is the vector of external forces. The description of the
movement of a system with several degrees of freedom can be made by its spatial coordinates or by its
modal coordinates. The movement’s equation of the structure without a second member admits a linear
base of orthogonal real modes of the nondamped system. These eigen modes are characterized by the
eigen pulsations ω and also by their eigenvectors {Ui }. We define the modal matrix [8] by

[8] = [{U1} , {U2} , {U3} , ...., {Un}] , (3–5)

where n is the number of considered eigen modes to describe the movement of the system. The projection
of the movement’s equation on the modal basis leads to a system of n equations coupled only by the
damping matrix. The equation of the movement according to the generalized parameters is written as

[Mm] {ä(t)} + [Cm] {ȧ(t)} + [Km] {a(t)} = {Fm} , (3–6)

where a(t) is the generalized displacements vector defined as {U (t)}= [8] {a(t)}, [Mm] is the generalized
mass matrix [Mm] = [8]t [MT ] [8] = diag (mi ), and [Km] is the generalized stiffness matrix [Km] =

[8]t [KT ] [8] = diag (miω
2
i ). ωi are the eigen pulsations of each mode. The actions of damping are

small. The matrix [Cm] is obtained by adopting a reduced modal damping coefficient on each eigen
mode [Dahtt and Touzout 1984], as in [Cm] = diag (2miωiξi ), where ξi is the reduced modal damping
coefficient. [Fm] is the vector of the generalized forces

{Fm} = [8]t
{FT } =



f1
...

fi
...

fn


. (3–7)

The matrices [Km], [Mm] and [Cm] are diagonal, so we obtain a system of uncoupled n oscillators with
one degree of freedom for each. The equation of movement of each oscillator is written as

mi äi + 2miξiωi ȧi + miω
2
i ai = fi , i = 1, 2, . . . , n. (3–8)

The advantage of this modal description is that it simplifies the resolution of the movement’s equations,
reducing them to a linear system of n completely uncoupled equations.

4. Finite element formulation

4.1. Geometric presentation. A spring’s beam is a three-dimensional curved beam defined in the global
coordinate system (O, X, Y, Z ) of the basis ( EI , EJ , EK ). This beam is generated by a succession of plane
domains which are orthogonal to the middle fiber of the structure s. The dimensions of those domains
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are small in comparison to the beam’s length. Two geometric hypotheses are taken. The first is that the
orthogonal sections are identical along the curvilinear axis. The second is that studied beams have a full
section. The position vector of any point p belonging to the middle fiber of the spring’s beam is defined
in the global coordinate system by

EX p =


r cos θ
r sin θ

P
2π

θ

(
EI , EJ , EK

) , (4–1)

where r and P are respectively the radius and pitch of the helix and θ is the polar angle. This angle is
defined as

θ = 2πNs, (4–2)

where Ns is the number of spires of the spring. The curvilinear coordinate s is related to this angle by
the relation

ds = ρ dθ ρ =

√
r2 +

(
P

2π

)2

. (4–3)

Vectors of the local coordinate system, which are related to the point p, are defined as the tangential Et ,
the normal En and the binormal Eb. The corresponding expression of each vector is

Et =
1
ρ


−r sin θ
r cos θ

P
2π

(
EI , EJ , EK

) , En =


− cos θ
− sin θ

0

(
EI , EJ , EK

) , Eb =
1
ρ


P

2π
sin θ

−
P

2π
cos θ

r

(
EI , EJ , EK

)
,

where the radius of curvature R of this helical beam defined as R =
ρ2

r and the radius of torsion T is
T = ρ2 2π

P . Figure 1 shows different parameters presented thus far.

Figure 1. Geometric description of the helical spring and its two bases.
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4.2. Kinematic presentation. To determine the displacement’s field, two hypotheses are used. First,
Timoshenko’s hypothesis that the shear effect is not neglected and the strain of the helical beam takes
place such that cross section remains planar. Second, the St. Venant hypothesis that the torsion is uniform
along the beam and all sections undergo the same warping. Then the axial stress resultants and distortions
due to the moment of torsion are null. The position vector of a point q, different from p in the section
of the wire, is defined in local coordinate system as

EXq = EX p + Eh, Eh =


0
y
z


(Et,En,Eb)

. (4–4)

For the point p, the vector of the virtual displacements in the local coordinate system is expressed as

δEu p =


δu
δv

δw


(Et,En,Eb)

, (4–5)

where δu, δv, and δw are the displacements parallel to the Et , En and Eb axes. The vector of the virtual
displacements of the point q is given by the expression

δEuq = δEu p +


δθt

δθn

δθb


(Et,En,Eb)

∧ Eh, (4–6)

where δθt , δθn , and δθb are respectively the rotations of the point p around the Et , En and Eb axes. The
expression of the vector of virtual displacements of the point q in the local coordinate system (Et , En, Eb) is
expressed as

δEuq =


δu + zδθn − yδθb

δv− zδθt

δw+ yδθt


(Et,En,Eb)

. (4–7)

The virtual displacement field in Equation (4–6) generates three components of virtual strain in any point
of the beam, written as

δεt = δεt t =

(
1 −

y
R

)−1
(δet − yδχb + zδχn),

δγn = 2δεnt =

(
1 −

y
R

)−1
(δγtn − zδχt),

δγb = 2δεbt =

(
1 −

y
R

)−1
(δγtb + yδχt),

(4–8)

where δεt is the axial virtual strain and δγn and δγb are the virtual transverse shear strains.

δet =
d(δu)

ds
−
δv

R
, δγtn =

d(δv)
ds

+
δu
R

−
δw

T
− δθb, δγtb =

d(δw)
ds

−
δv

T
+ δθn,

δχt =
d(δθt)

ds
−
δθn

R
, δχn =

d(δθn)

ds
+
δθt

R
−
δθb

T
, δχb =

d(θb)

ds
−
δθn

R
.
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δet is the virtual membrane strain, δγtn and δγtb are the virtual shear strains, δχt is the virtual strain due
to the effect of torsion, and δχn and δχb are respectively the virtual curvatures in the planes (s, z) and
(y, s). These strains constitute the components of the generalized virtual strains vector

〈δε〉 =
〈
δet δγtn δγtb δχt δχn δχb

〉
. (4–9)

The system of equilibrium equations for the helical beam is written [Batoz and Dhatt 1993] in the local
coordinate system as

d N
dθ − aTn = 0,
dTn
dθ + aN + bTb = 0,
dTb
dθ − bTn = 0,


d Mt
dθ − aMn = 0,

d Mn
dθ + aMt + bMbv − ρTb = 0,

d Mb
dθ − bMn + ρTn = 0,

(4–10)

where a =
r
ρ

and b = −
P

2πρ . N is the normal force, Tn and Tb the normal and binormal shearing forces,
Mt the torsional moment, and Mn and Mb the bending moments around the normal and binormal axis.
These resulting forces are defined as

N =

∫
A
σt d A, Tn =

∫
A
σtn d A, Tb =

∫
A
σtb d A

Mn =

∫
A

zσt d A, Mb =

∫
A

−yσt d A, Mt =

∫
A
(yσtb − zσtn) d A,

with d A = dydz. They constitute the components of the vector of generalized forces which correspond
to the resulting forces

〈R〉 =
〈

N Tn Tb Mt Mn Mb
〉
. (4–11)

4.3. Constitutive relation. The spring has an isotropic material behavior, in which stresses are linearly
related to the strains by the constitutive relations

σt = Eεt , σtn = Gγn, σtb = Gγb, (4–12)

where E is the Young’s modulus and G is the shear modulus of the material. The principal axes of
inertia are assumed to be coincident with the local coordinate system. So, the resulting force vector {R}

is written {R} = [H ] {ε}, with

〈ε〉 =
〈
et γtn γtb χt χn χb

〉
, [H ] = diag (Hm, Hcn, Hcb, Ht , H f n, H f b),

where [H ] is the matrix of the elastic comportment. Its components are given by

Hm ' E A, Ht ' G J, H f n ' E Iy,

H f b ' E Iz, Hcn ' kyG A, Hcb ' kzG A, (4–13)

where A is the area of the section, J the inertia of torsion, Iy and Iz the central quadratic moments
regarding (p, y) and (p, z) axes, and ky and kz are the shear correction factors for y and z axis.
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4.4. The mixed formulation. The mixed functional of energy associated to the equilibrium equations is
expressed by Batoz and Dhatt [1993] as

5=

∑
e

(5e
int −5

e
ext), (4–14)

where

5e
int =

∫ L

0
(−

1
2

〈R〉 [H ]−1
{R} + 〈ε〉 {R})ds), 5e

ext =

∫ L

0
〈u〉 { f } ds + (〈u〉 {F})S. (4–15)

5e
int is the element functional energy of internal forces, and 5e

ext is the same for the external forces. e
is the number of elements, 〈u〉 is the vector of the displacements in the local coordinate system, { f } the
vector of distributed forces, {F} is the vector of concentrated forces, and S is the boundary of the wire.

4.5. Element stiffness matrix in the local coordinate system. The development of the element stiffness
matrix in the local coordinate system was presented in [Taktak et al. 2005b]. In the case where an
approximation of the generalized forces 〈R〉 verifies the equilibrium equations, the expression (4–15)
becomes

5e
int =

∫ L

0
−

1
2

〈R〉 [H ]−1
{R} ds + 〈un〉 {Rn} , (4–16)

where 〈un〉 and 〈Rn〉 represent respectively the vector of the degrees of freedom for the element and the
vector of the nodal resulting forces

〈un〉 = 〈u1 v1 w1 θt1 θn1 θb1 u2 v2 w2 θt2 θn2 θb2〉 ,

〈Rn〉 =
〈
−N1 − Tn1 − Tb1 − Mt1 − Mn1 − Mb1 N2 Tn2 Tb2 Mt2 Mn2 Mb2

〉
.

(4–17)

The expression of internal virtual work is then written

W e
int =

∫ L

0
−< δRn > [H ]−1

{Rn} ds+< δun > {Rn} +< δRn > {un}. (4–18)

The element stiffness matrix in the local coordinate system is determined using a mixed formulation
where the equilibrium equations are enforced in the variational (4–18). The resolution of the equilib-
rium equations (4–10) permits choice for the resulting forces vector the approximation {R} = [P] {αn} ,

where [P] is the approximation matrix of the resulting forces and {αn} is the vector of the independent
parameters, defined as

{αn}
T

= 〈α1 α2 α3 α4 α5 α6〉 . (4–19)

The matrix [P] is obtained by resolving the equilibrium equations while expressing the resulting forces
in any point p of the beam, according to the forces exerted on one of extremities expressed by {αn}. This
matrix is given by

[P] =



P1,1 P1,2 P1,3 0 0 0
−P1,2 P2,2 P2,3 0 0 0
−P1,3 P2,3 P3,3 0 0 0
P4,1 P4,2 P4,3 −P1,1 −P1,2 −P1,3

−P4,2 P5,2 P5,3 P1,2 −P2,2 −P2,3

−P4,3 P5,3 P6,3 P1,3 −P3,2 −P3,3


, (4–20)



A FINITE ELEMENT FOR DYNAMIC ANALYSIS OF A CYLINDRICAL ISOTROPIC HELICAL SPRING 649

P1,1 = a2C + b, P1,2 = aS,

P1,3 = ab(1 − C), P2,2 = C,

P2,3 = bS, P3,3 = −b2C − a2,

P4,1 = −2ρa2b(1 − C)+ a2bρθ S,

P4,2 = −ab(ρθC − ρS),

P4,3 = −ab2ρθ S − r(a2
+ b2)(1 − C),

P5,2 = bρθ S,

P5,3 = −b2ρθC − raS,

P6,3 = −b3ρθ S − 2ρba2(1 − C),

(4–21)

where C = cos θ and S = sin θ . We define the matrix [A] joining the nodal resulting forces to the
independent parameters αn 〈Rn〉 = 〈αn〉 [A], expressed by [A] = [− [P1]T [P2]T

], where [P1] and [P2]
are the approximation matrices of the resulting forces at nodes 1 and 2 of the element. We also define
the matrix [B] as

[B] =

∫ L

0
[P]T [H ]−1 [P] ds. (4–22)

We express Equation (4–18) as

W e
int = −< δαn > [B] {αn} +< δun > [A]T {αn

}
+< δαn > [A] {un} (4–23)

This leads to
[A] {un} − [B] {αn} = 0, (4–24)

which permits expression of the independent variables as

{αn} = [B]−1 [A] {un} (4–25)

and the virtual internal work’s expression becomes

W e
int =< δun > [k] {un} , (4–26)

with the element stiffness matrix [k] defined in the local coordinate system by

[k] = [A]T [B]−1 [A] . (4–27)

4.6. The element mass matrix in the local coordinate system. The term of element inertial work is
written as

W e
inertial =

∫
V
ρ0 < δuq >

{
üq
}

dV , (4–28)

where ρ0 is the mass per unit volume of the spring’s material, 〈δuq〉 is the vector of virtual displacement
in a point q of the section, {üq} is the vector of acceleration at this point, and V is the volume of the
corresponding portion of the spring modelled by the element.
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By taking account of the field of displacement (4–7), the expression (4–28) becomes

W e
inertial =

∫
V

 (δu + zδθn − yδθb) ρ0 (ü + zθ̈n − yθ̈b)

+(δv− zδθt) ρ0 (v̈− zθ̈t)

+(δw+ yδθt) ρ0 (ẅ+ yθ̈t)

 dV . (4–29)

We define the homogenized inertias as
ρm =

∫
A ρ0(1 −

y
R )d A,

ρ1 =
∫

A ρ0z(1 −
y
R )d A,

ρ2 =
∫

A ρ0 y(1 −
y
R )d A,


ρ3 =

∫
A ρ0z2(1 −

y
R )d A,

ρ4 =
∫

A ρ0 y2(1 −
y
R )d A,

ρ5 =
∫

A ρ0 yz(1 −
y
R )d A,

(4–30)

and the expression of W e
inertial becomes

W e
inertial =

∫
s
(δu(ρm ü + ρ1θ̈n − ρ2θ̈b)+ δv(ρm v̈− ρ1θ̈t)+ δw(ρmẅ+ ρ2θ̈t)

+ δθt(−ρ1v̈+ ρ3θ̈t + ρ2ẅ+ ρ4θ̈t)+ δθn(ρ1ü + ρ3θ̈n − ρ5θ̈b)

+ δθb(−ρ2ü − ρ5θ̈n + ρ4θ̈b)) ds. (4–31)

The element mass matrix in the local coordinate system is obtained by discretization of the expression
(4–31). We choose a linear interpolation for virtual displacements (δu, δv, δw, δθt , δθn and δθb) and
accelerations(ü, v̈, ẅ, θ̈t , θ̈n and θ̈b) and we follow the geometry of the spring during the integration.
The expression (4–28) in the discretized form is written as

W e
inertial =< δun > [m] {ün}

< δun >=< δu1 δv1 δw1 δθt1 δθn1 δθb1 δu2 δv2 δw2 δθt2 δθn2 δθb2 >

< ün >=< ü1 v̈1 ẅ1 θ̈t1 θ̈n1 θ̈b1 ü2 v̈2 ẅ2 θ̈t2 θ̈n2 θ̈b2 >

(4–32)

where [m] is the element mass matrix in the local coordinate system.
The choice of the linear interpolation for the nodal variables is expressed as

δu = δu1 N1 + δu2 N2,

δv = δv1 N1 + δv2 N2,

δw = δw1 N1 + δw2 N2,

δθt = δθt1 N1 + δθt2 N2,

δθn = δθn1 N1 + δθn2 N2,

δθb = δθb1 N1 + δθb2 N2,



ü = ü1 N1 + ü2 N2,

v̈ = v̈1 N1 + v̈2 N2,

ẅ = ẅ1 N1 + ẅ2 N2,

θ̈t = θ̈t1 N1 + θ̈t2 N2,

θ̈n = θ̈n1 N1 + θ̈n2 N2,

θ̈b = θ̈b1 N1 + θ̈b2 N2,

(4–33)

where N1 =
1−ξ

2 and N2 =
1+ξ

2 are the interpolation functions.
The transformation from the curvilinear variable s to the parametric variable ξ is done by analogy

between the reference element and the real element. We suppose that ξ follows a linear law according
to θ , as in

ξ =
2
1θ

θ − 1, (4–34)
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where 1θ is the difference between the corresponding angles of each node, defined as

1θ = θ2 − θ1. (4–35)

The expression of element inertial work becomes

W e
inertial =

∫ L

0
< δun > [N ] {ün} ds =

ρ1θ

2

∫ 1

−1
< δun > [N ] {ün} dξ, (4–36)

where L is the curvilinear length of the corresponding portion of the spring modelled by the element.

[N ] =

[
[N11] [N12]
[N12] [N22]

]
, (4–37)

[N11] =



N 2
1ρm 0 0 0 N 2

1ρ1 −N 2
1ρ2

N 2
1ρm 0 −N 2

1ρ1 0 0
N 2

1ρm N 2
1ρ2 0 0

N 2
1 (ρ3 + ρ4) 0 0

N 2
1ρ3 −N 2

1ρ5

Sym N 2
1ρ4


, (4–38)

[N22] =



N 2
2ρm 0 0 0 N 2

2ρ1 −N 2
2ρ2

N 2
2ρm 0 −N 2

2ρ1 0 0
N 2

2ρm N 2
2ρ2 0 0

N 2
2 (ρ3 + ρ4) 0 0

N 2
2ρ3 −N 2

2ρ5

Sym N 2
2ρ4


, (4–39)

[N21] = [N12] =



N1 N2ρm 0 0 0 N1 N2ρ1 −N1 N2ρ2

N1 N2ρm 0 −N1 N2ρ1 0 0
N1 N2ρm N1 N2ρ2 0 0

N1 N2(ρ3 + ρ4) 0 0
N1 N2ρ3 −N1 N2ρ5

Sym N1 N2ρ4


, (4–40)

The analogy between expressions (4–32) and (4–36) defines the element mass matrix in the local coor-
dinate system as

[m] =
ρ1θ

2

∫ 1

−1
[N ] dξ . (4–41)

Then the element stiffness matrix [KG] and mass matrix [MG] in the global coordinate system are defined
by

[KG] = [T ]T [k] [T ] (4–42)

go to line
[MG] = [T ]T [m] [T ] , (4–43)
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Figure 2. Local and global coordinate systems.

where [T ] is the transfer matrix from the local coordinate system to the global coordinate system, pre-
sented in Figure 2 and defined as

[T ]T
= [T ]−1

=


[Q1] 0 0 0

0 [Q1] 0 0
0 0 [Q2] 0
0 0 0 [Q2]

 . (4–44)

[Q1] and [Q2] are the rotation matrixes defined by the leading cosines of local axes x , y and z in each
of the elements

[Qi ] =


−

r
ρ

sin(θi ) − cos(θi )
P

2πρ sin(θi )

r
ρ

cos(θi ) − sin(θi ) −
P

2πρ cos(θi )

P
2πρ 0 r

ρ

 . (4–45)

5. Numerical examples

5.1. Natural frequencies of clamped-free spring. To verify the developed model, the natural frequen-
cies are determined for three types of clamped-free springs (S1, S2, and S3) that differ in the nature of their
cross-sections. The common proprieties of these springs are the follows: number of coils Ns = 10 coils;
mean diameter of the spring D= 113 mm; pitch P = 26 mm; Young’s modulus E = 2.12481011 N/m2;
Poisson ratio ν = 0.28 and mass per unit volume of wire ρ0 = 8000 Kg/m3. The specific properties of
each spring are:

spring S1: Circular cross-section with a wire diameter d = 15 mm and a shear correction ratio
k = 0.886 [Batoz and Dhatt 1993];

spring S2: Square cross-section with a thickness h = 15 mm and a shear correction ratio k = 0.833
[Batoz and Dhatt 1993];
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Frequency Three-dimensional beam element Presented element
e = 60 e = 240 e = 600 e = 2 e = 5 e = 10

1 8.059 8.071 9.987 9.306 9.386 9.391
2 9.461 9.297 10.001 9.465 9.598 9.611
3 17.043 20.007 21.118 21.949 21.712 21.656

Frequency Three-dimensional beam element Presented element
e = 60 e = 240 e = 600 e = 2 e = 5 e = 10

1 8.837 10.181 10.950 10.243 10.328 10.333
2 8.868 10.411 10.989 10.507 10.661 10.676
3 18.123 20.881 22.457 23.544 23.313 23.258

Frequency Three-dimensional beam element Presented element
e = 60 e = 240 e = 600 e = 2 e = 5 e = 10

1 11.199 12.903 13.877 12.748 12.885 12.897
2 11.249 12.961 13.939 12.998 13.100 13.107
3 22.407 25.8167 27.765 29.097 28.732 28.657

Table 1. Natural frequencies (Hz) of the spring S1 (top), S1 (middle), and S3 (bottom).

spring S3: Rectangular Cross-section with a thickness e1 = 15 mm and width e2 = 20 mm and a
shear correction ratio k = 0.833 [Batoz and Dhatt 1993].

Natural frequencies are determined using two types of finite elements: The first is a three-dimensional
elastic beam finite element [Cosmos 1990]. The second is the finite element developed in this paper.

Table 1 presents the first three natural frequencies, given by the two elements, for each spring and
for a different number of elements used. In fact, according to Abid et al. [2005], these frequencies are
dangerous natural frequencies of the structure because they present high vibration amplitudes which can
cause failure of the structure. Natural frequencies presented in Table 1 correspond to the first three simple
modes of the spring which are

mode 1: bending mode around Y axis;

mode 2: bending mode around X axis;

mode 3: compression mode.

These modes are presented in Figure 3. The similarity between the two results is clear for each spring
and mode. These results confirm the efficiency of the finite element developed.

5.2. Dynamic response of a helical spring. In this study, we are interested in determining the dynamic
response of the free extremity of a clamped-free spring subjected at its free end to a harmonic compressive
excitation.
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Figure 3. The three first spring’s modes: Bending mode around Y axis (left), bending
mode around X axis (middle) and compression mode (right). Pink represents the state
case and green the vibrating case.

By varying the frequency of the excitation, the dynamic response of the free end of the spring is deter-
mined. The studied spring S3 is subjected to a harmonic force with maximum amplitude Fmax = 100 N.
We suppose that the material of the spring has a modal damping coefficient ξ = 0.01.

Results given by the present model are compared with those given by the three-dimensional elas-
tic beam finite element [Cosmos 1990]. Figure 4 show this comparison respectively for the resultant
displacement and rotation:

RD =

√
(U 2 + V 2 + W 2), R R =

√
(22

X +22
Y +22

Z )

of the top end of the spring expressed in the global coordinate system. The chosen frequency band is
between 0 and 100 Hz.

Dynamic responses given by the two methods are close to each other. The developed finite element
gives the right natural frequencies with a number of elements less than used in the first model (only 10 of
the present elements for 600 of the three-dimensional elastic finite element). This means less calculation
and programming needed for realistic results.

These figures indicate that the dangerous zone is especially located in the frequency band containing
the three first natural frequencies. The difference between the vibration amplitude given by the two finite
elements is due to the linear form of the developed finite element, but doesn’t reduce the efficiency of
the element. The helical spring is sensitive to its three first modes (two modes of bending and one of
compression): If the spring is excited with these frequencies, resonance is produced and vibrations will
have great amplitude that may damage the structure. At the other natural frequencies, the resonance

Mode 1 2 3 4 5 6 7 8
Model 1 (e = 600) 6.01424 6.61148 8.8772 9.41936 12.9729 14.0427 30.4497 31.1247
Model 2 (e = 10) 5.8720 6.1350 9.0642 9.6332 13.997 14.729 28.094 29.209

Table 2. The first eight natural frequencies of the studied system (Hz).
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Figure 6. Meshing of the studied system. three-dimensional beam elements spring mod-
eling (left); Present element modeling (right).

phenomena also manifests, but with smaller amplitudes. Thus, it is important to avoid the three first
natural frequencies in practical applications of the spring and develop technological solutions to pass
this frequency band without structural damage.

5.3. Vibrating plate. We next apply the developed and validated model to the practical example of a
vibrating plate. This system consists of a thin plate supported at each extremity by a helical spring, as
shown in Figure 5.

The thin plate has the characteristics:

length: L1 = 1m, width: L2 = 0.5m,
thickness: c = 7mm, Young’s modulus: E = 2.11011 N/m2,
Poisson ratio: υ = 0.28, mass per unit of volume ρ0 = 8000K g/m3.

With this plate we use four springs of type S1.
The modeling of this plate is done by four-node quadrilateral thin shell elements with six degrees

of freedom per node [Cosmos 1990]. The springs are modeled by the same two elements presented
in Section 5.2 (proposed element + three-dimensional element). Figure 6 presents the meshing of the
system in each method. The first eight natural frequencies of this system, given by the two modeling
methods, are presented in Table 2.

Results given by the two methods are similar. This demonstrates the efficiency of the developed
element in assembly with other types of structures. The element is not only capable of accurately the
simple spring, but also the spring in practical applications.

6. Conclusion

In the present study, we develop a finite element for the dynamic analysis of a helical spring. The mixed-
hybrid formulation is established from geometric and cinematic hypothesis and takes into account the
effect of shear strain to calculate the stiffness matrix. A simple approach is used for calculating the mass
matrix. Comparison with an other types of finite elements shows the efficiency of the element to model
simple and assembled springs. The study shows the sensitivity of the spring to its first three natural
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frequencies where the phenomena of resonance appears with large displacements and cause the damage
to the structure.

References

[Abid et al. 2005] S. Abid, M. Taktak, F. Dammak, and M. Haddar, “Étude du comportement dynamique d’un ressort héli-
coidal”, pp. 65–67 in Proceeding of 7th Congrès de Mécanique, Casablanca, Maroc, 2005.

[Batoz and Dhatt 1993] J.-L. Batoz and G. Dhatt, Modélisation des structures par éléments finis, vol. 2: Poutres et plaques,
Hermès, Paris, 1993.

[Becker and Cleghorn 1992] L. E. Becker and W. L. Cleghorn, “On the buckling of helical compression springs”, Int. J. Mech.
Sci. 34:4 (1992), 275–282.

[Becker and Cleghorn 1993] L. E. Becker and W. L. Cleghorn, “The buckling behavior of hinged circular-bar compression
springs”, in Proceeding of the 14th Canadian Congress of Applied Mechanics, 1993.

[Becker and Cleghorn 1994] L. E. Becker and W. L. Cleghorn, “The buckling behavior of rectangular-bar helical compression
springs”, J. App. Mech. (Trans. ASME) 61:2 (1994), 491–493.

[Becker et al. 2002] L. E. Becker, G. G. Chassie, and W. L. Cleghorn, “On the natural frequencies of helical compression
springs”, Int. J. Mech. Sci. 44:4 (2002), 825–841.

[Castello 1975] G. A. Castello, “Radial expansion of impacted helical springs”, J. App. Mech. (Trans. ASME) 42 (1975), 789.
[Chassie et al. 1997] G. G. Chassie, L. E. Becker, and W. L. Cleghorn, “On the buckling of helical springs under combined

compression and torsion”, Int. J. Mech. Sci. 39:6 (1997), 697–704.
[Cosmos 1990] User’s manual, Structural Research and Analysis Corporation, Los Angeles, California, 1990.
[Dahtt and Touzout 1984] G. Dahtt and G. Touzout, Une présentation de la méthode des éléments finis, 2nd ed., Maloine, Paris,
1984.

[Dammak et al. 2005] F. Dammak, M. Taktak, S. Abid, A. Dhieb, and M. Haddar, “Finite element method for the stress analysis
of isotropic cylindrical helical spring”, Eur. J. Mech. A Solids 24:6 (2005), 1068–1078.

[Guido et al. 1978] A. R. Guido, L. D. Pietra, and S. D. Valle, “Transverse vibrations of cylindrical helical springs”, Meccanica
13:2 (1978), 90–108.

[Haktanir 1994] V. Haktanir, “Analytical investigation of parameters affecting stiffness of helical springs of arbitrary shape
under compression”, pp. 473 in Proceeding of the 6th International Machine Design and Production Conference, Ankara,
1994.

[Haringx 1949] J. A. Haringx, “On highly compressible helical springs and rubber rods, and their application for vibration-free
mountings, II”, Philips Res. Rep. 4 (1949), 49–80.

[Kagawa 1968] Y. Kagawa, “On the dynamical properties of helical springs of finite length with small pitch”, J. Sound Vib. 8:1
(1968), 1–15.

[Lee and Thompson 2001] J. Lee and D. J. Thompson, “Dynamic stiffness formulation, free vibration and wave motion of
helical springs”, J. Sound Vib. 239:2 (2001), 297–320.

[Lin and Pisano 1987] Y. Lin and A. P. Pisano, “General dynamic equations of helical springs with static solution and experi-
mental verification”, J. App. Mech. (Trans. ASME) 54 (1987), 910.

[Michell 1890] J. H. Michell, “The small deformation of curves and surfaces with applications to the vibrations of a helix and
a circular ring”, Mes. Math. 19 (1890), 68–82.

[Mottershead 1980] J. E. Mottershead, “Finite element for dynamical analysis of helical rods”, Int. J. Mech. Sci. 22:5 (1980),
267–283.

[Mottershead 1982] J. E. Mottershead, “The large displacements and dynamic stability of springs using helical finite elements”,
Int. J. Mech. Sci. 24:9 (1982), 547–558.

[Pearson 1982] D. Pearson, “The transfer matrix method for the vibration of compressed helical springs”, J. Mech. Eng. Sci.
24 (1982), 163.

[Pearson and Wittrick 1986] D. Pearson and W. H. Wittrick, “An exact solution for the vibration of helical springs using a
Bernoulli–Euler model”, Int. J. Mech. Sci. 28:2 (1986), 83–96.

[Philips and Castello 1972] J. W. Philips and G. A. Castello, “Large deflection of impacted helical springs”, J. Acoust. Soc. Am.
51:3B (1972), 967–973.



658 MOHAMED TAKTAK, FAKHREDDINE DAMMAK, SAID ABID AND MOHAMED HADDAR

[Pietra 1976] L. D. Pietra, “The dynamic coupling of torsional and flexural strains in cylindrical helical springs”, Meccanica
11:2 (1976), 102–119.

[Pietra and Valle 1982] L. D. Pietra and S. D. Valle, “On the dynamic behavior of axially excited helical springs”, Meccanica
17:1 (1982), 31–43.

[Sawanbori and Fukushima 1983] T. Sawanbori and Y. Fukushima, “Analysis of dynamic behavior of coil springs”, Trans. Jpn.
Soc. Mech. Eng. 49 (1983), 422.

[Sawanobori and Fukushima 1983] T. Sawanobori and Y. Fukushima, “A finite element approach to dynamic characteristics of
helical springs (free vibration)”, Bul. JMSE 26:221 (1983), 2002–2009.

[Tabarrok and Xiong 1989] B. Tabarrok and Y. Xiong, “On the buckling equations for spatial rods”, Int. J. Mech. Sci. 31:3
(1989), 179–192.

[Tabarrok and Xiong 1992] B. Tabarrok and Y. Xiong, “A spatially curved and twisted rod element for buckling analysis”, Int.
J. Solids Struct. 29:23 (1992), 3011–3023.

[Taktak et al. 2005a] M. Taktak, S. Abid, F. Dammak, and M. Haddar, “Investigation of parameters affecting natural frequencies
of isotropic helical spring”, pp. 9–16 in Proceeding of the Second International Scientific and Pedagogical Days of Mechanics
and Energitics, Gafsa, Tunisia, 2005.

[Taktak et al. 2005b] M. Taktak, F. Dammak, S. Abid, and M. Haddar, “A mixed-hybrid finite element for three-dimensional
isotropic helical beam analysis”, Int. J. Mech. Sci. 47:2 (2005), 209–229.

[Wahl 1963] A. M. Wahl, Mechanical springs, 2nd ed., McGraw-Hill, New York, 1963.
[Xiong and Tabarrok 1992] Y. Xiong and B. Tabarrok, “A finite element model for the vibration of spatial rods under various

applied loads”, Int. J. Mech. Sci. 34:1 (1992), 41–51.
[Yildirim 1995] V. Yildirim, “Investigation of free vibration of helical spring by the stiffness matrix method”, Turkish J. Eng.
Envi. Sci. 19 (1995), 343.

[Yildirim 1996] V. Yildirim, “Investigation of parameters affecting free vibration frequency of helical springs”, Int. J. Numer.
Meth. Eng. 39:1 (1996), 99–114.

[Yildirim 1997] V. Yildirim, “Free vibration analysis of non-cylindrical coil springs by combined use of the transfer matrix and
the complementary functions methods”, Commun. Numer. Meth. Eng. 13:6 (1997), 487–494.

[Yildirim 1999a] V. Yildirim, “An efficient numerical method for predicting the natural frequencies of cylindrical helical
springs”, Int. J. Mech. Sci. 41:8 (1999), 919–939.

[Yildirim 1999b] V. Yildirim, “A numerical study on the free vibration of symmetric cross-ply laminated cylindrical helical
springs”, J. App. Mech. (Trans. ASME) 66:4 (1999), 1040–1043.

Received 17 Apr 2007. Accepted 30 Nov 2007.

MOHAMED TAKTAK: mohamed.taktak@utc.fr
Unit of Mechanics, Modelling and Manufacturing, Mechanical Engineering Department, National School of Engineers of Sfax,
BP. W-3038 Sfax, Tunisia

FAKHREDDINE DAMMAK: Dammakf@yahoo.ca
Unit of Mechanics, Modelling and Manufacturing, Mechanical Engineering Department, National School of Engineers of Sfax,
BP. W-3038 Sfax, Tunisia

SAID ABID: Said.abid@Issatgb.rnu.tn
Unit of Mechanics, Modelling and Manufacturing, Mechanical Engineering Department, National School of Engineers of Sfax,
BP. W-3038 Sfax, Tunisia

MOHAMED HADDAR: mohamed.haddar@enis.rnu.tn
Unit of Mechanics, Modelling and Manufacturing, Mechanical Engineering Department, National School of Engineers of Sfax,
BP. W-3038 Sfax, Tunisia



JOURNAL OF MECHANICS OF MATERIALS AND STRUCTURES
Vol. 3, No. 4, 2008

PERTURBATION TECHNIQUE FOR WAVE PROPAGATION ANALYSIS IN A
NOTCHED BEAM USING WAVELET SPECTRAL ELEMENT MODELING

MIRA MITRA, S. GOPALAKRISHNAN, MASSIMO RUZZENE, NICOLE APETRE AND S. HANAGUD

In this paper, spectral finite element is formulated for an Euler–Bernoulli beam with through-width notch
type defect. In spectral finite element modeling, exact shape functions are derived and finite element
procedure is followed in the transformed frequency domain. Here spectral finite element formulation is
done using Daubechies scaling function bases for temporal approximation. In comparison to the con-
ventional Fourier transform based spectral finite element method, the use of localized bases functions in
the Daubechies scaling function based spectral finite element method allows accurate wave propagation
analysis of finite length structures. The wave propagation response of the damaged beam is considered as
a perturbation of the undamaged beam response within the restriction of small damage. First, numerical
experiments are performed with narrow banded modulated pulse loading to obtain the location of damage
from wave arrival time. Next, a broad banded impulse load is considered and effects of parameters like
damage width, depth, and location on the responses are studied in time and frequency domains.

1. Introduction

Diagnostic waves are extensively used for structural health monitoring. Wave propagation problems deal
with high frequency excitations and thus help to identify the presence of very small damages. These
wave based techniques can thus be used to detect the minute defects which occur at the onset of the
damage, and then propagate, causing failure of the structure.

Numerical solution of wave equations requires high accuracy in numerical differentiation and, for
computational efficiency, it needs to have larger spatial grids and time steps. The conventional finite
element (FE) technique widely used for modeling of structures is not suitable here, mainly because the
element size should be comparable to the wavelength, which is very small at higher frequencies. This
makes FE modeling computationally prohibitive for wave propagation problems. Alternative numerical
techniques are generally adopted for such problems, and fast Fourier transform-based spectral finite
element (FSFE) [Doyle 1999] is one such method. In short, the method follows FE technique in the
transformed frequency domain. The governing partial differential equations are reduced to ordinary
differential equations (ODEs) using fast Fourier transform (FFT) in time. These ODEs are solved exactly
to derive the shape functions which are used to obtain the elemental dynamic stiffness matrix relating
the transformed nodal forces and displacements.

However, the FSFE method possesses certain serious limitations as it uses bases with global support
for temporal approximation, and thus requires the assumption of periodicity. As a consequence, the FSFE
method does not allow time domain analysis of wave propagation in finite length structures. This problem
is referred as “wrap around”. To eliminate this drawback of FSFE, a Daubechies scaling function based

Keywords: wave propagation, Euler–Bernoulli beam, spectral element, Daubechies scaling functions, perturbation technique.
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spectral finite element, referred to as a wavelet based spectral finite element [Mitra and Gopalakrishnan
2005] (WSFE), is formulated using compactly supported Daubechies scaling as bases for approximation
in time. The localized nature of the basis functions allows accurate simulation of wave propagation in
finite length waveguides. In addition, similar to FSFE, the present method is computationally efficient
and allows simultaneous frequency domain analysis [Mitra and Gopalakrishnan 2006].

In this paper, WSFE is formulated for a notched Euler–Bernoulli beam. The effect of the notch
is introduced in the formulation using perturbation technique. The wave propagation response of the
damaged beam is considered to be a perturbation of the response of the undamaged beam with the
assumption of small damage. This perturbation technique has been developed to identify the presence of
damage in beam [Luo and Hanagud 1998] and plates [Sharma et al. 2006] using curvature as the indicator;
the effect of the notch on the curvature is studied using modal analysis. It should be mentioned here that
as the analysis is restricted to damages with much smaller dimension, compared to that of the beam,
the mode conversion resulting in axial and flexural coupling is not considered in the formulation. The
present method is developed for pure flexural wave propagation and the effect of axial coupling due to
the presence of the notch is neglected.

The paper is organized as follows. In Section 2, a brief overview of Daubechies compactly supported
wavelets is provided. In the next two sections, the reduction of the wave equations and the perturbation
techniques are elaborated. Section 5 concisely describes the spectral finite element formulation. Nu-
merical experiments are presented in Section 6. The examples are provided for an aluminum cantilever
beam with through-width notches of different configurations. The effects of the presence of the notch
on the wave propagation responses due to both narrow and broad banded loading are studied in time
and frequency domains. The influences of damage parameters like width, depth, and location on the
responses are also analyzed.

2. Daubechies compactly supported wavelets

A concise review of the orthogonal bases of Daubechies wavelets [Daubechies 1992] is provided. Wave-
lets ψ j,k(t) form compactly supported orthonormal bases for L2(R). The wavelets and the associated
scaling functions ϕ j,k(t) are obtained by translation and dilation of single functions ψ(t) and ϕ(t), re-
spectively, as

ψ j,k(t)= 2 j/2ψ(2 j t − k), j, k ∈ Z,

ϕ j,k(t)= 2 j/2ϕ(2 j t − k), j, k ∈ Z.

The scaling functions ϕ(t) are derived from the dilation or scaling equation

ϕ(t)=

∑
k

akϕ(2t − k), (1)

and the wavelet function ψ(t) is obtained as

ψ(t)=

∑
k

(−1)ka1−kϕ(2t − k). (2)

ak are the filter coefficients, and they are fixed for specific wavelet or scaling function bases. For com-
pactly supported wavelets only a finite number of ak are nonzero. The filter coefficients ak are derived by



PERTURBATION TECHNIQUE FOR WAVE PROPAGATION ANALYSIS IN A NOTCHED BEAM 661

imposing certain constraints on the scaling functions, which are as follows: First, the area under scaling
function is normalized to one. Second, the scaling function ϕ(t) and its translates are orthonormal.
Finally, the wavelet function ψ(t) has M vanishing moments. The number of vanishing moments M
denotes the order N of the Daubechies wavelet, where N = 2M .

Let Pj ( f )(t) be the approximation of a function f (t) in L2(R), using ϕ j,k(t) as bases, at a certain
level (resolution) j , then

Pj ( f )(t)=

∑
k

c j,kϕ j,k(t), k ∈ Z, (3)

where c j,k are the approximation coefficients.

3. Reduction of wave equations to ODEs

The governing differential equations for a Euler–Bernoulli beam are given as

E I
∂4w

∂x4 + ρA
∂2w

∂t2 = 0, (4)

where w(x, t) is the transverse displacement. E and ρ are the Young’s modulus and mass density,
respectively, and I and A are area moment of inertia and area, respectively. The associated force boundary
conditions are

E I
∂2w

∂x2 = M and E I
∂3w

∂x3 = − V, (5)

where M and V are respectively the applied moment and the transverse force.
The first step of formulation of WSFE is the reduction of the governing differential equation given

by Equation (4) to a set of coupled ODEs by Daubechies scaling function based transformation in time
[Mitra and Gopalakrishnan 2005]. The procedure is described here in brief, for completeness. Let w(x, t)
be discretized at n points in the time window [0, t f ]. Let τ = 0, 1, . . . , n − 1 be the sampling points,
then t = 4t τ, where 4t is the time interval between two sampling points. The function w(x, t) can be
approximated a by scaling function ϕ(τ) at an arbitrary scale as

w(x, t)= w(x, τ )=

∑
k

wk(x)ϕ(τ − k), k ∈ Z,

where wk(x) (referred to as wk hereafter) is the approximation coefficient at a certain spatial dimension
x . Thus (4) can be written as

E I
∑

k

d4wk

dx4 ϕ(τ − k)+
ρA

4t2

∑
k

wkϕ
′′(τ − k)= 0. (6)

Taking the inner product of both sides of (6) with the translates of scaling functions ϕ(τ − j), where
j = 0, 1, . . . , n − 1, and using their orthogonal properties, we get n simultaneous ODEs as

E I
d4w j

dx4 +
ρA

4t2

j+N−2∑
k= j−N+2

�2
j−kwk = 0, j = 0, 1, . . . , n − 1, (7)
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where N is the order of the Daubechies wavelet, and the connection coefficients for the n-th order
derivative are defined as

�n
j−k =

∫
ϕn(τ − k)ϕ(τ − j) dτ.

For compactly supported wavelets, the first and second order connection coefficients, �1
j−k and �2

j−k ,
are nonzero only in the interval k = j − N + 2 to k = j + N − 2. The details for evaluation of the
connection coefficients for different orders of the derivative are given by Beylkin [1992].

It can be observed from the ODEs given by Equation (7) that certain coefficients w j near the vicinity
of the boundaries ( j = 0 and j = n −1) lie outside the time window [0, t f ] defined by j = 0, 1, . . . , n −1.
These coefficients must be treated properly for finite domain analysis; the wavelet based extrapolation
scheme [Williams and Amaratunga 1997] is implemented for this purpose. The above method converts
the ODEs given by (7) to a set of coupled ODEs given as

E I
{

d4w j

dx4

}
+
[
01]2 ρA{w j } = 0, (8)

where 01 is the first order connection coefficient matrix obtained after using the wavelet extrapolation
technique. It should be mentioned here that though the connection coefficients matrix, 02, for the second
order derivative can be obtained independently, here it is written as

[
01
]2, as it helps to impose the initial

conditions [Mitra and Gopalakrishnan 2005]. These coupled ODEs are decoupled using eigenvalue
analysis as 01

=858−1, where 5 is the diagonal eigenvalue matrix and 8 is the eigenvectors matrix
of 01. Let the eigenvalues be ıγ j (ı =

√
−1), then the decoupled ODEs corresponding to (8) are

E I
d4ŵ j

dx4 − ρAγ 2
j ŵ j = 0, j = 0, 1, . . . , n − 1, (9)

where ŵ j is defined as ŵ j =8−1w j .

Similarly, the transformed form of the force boundary conditions given by (5) are given as

E I
d2ŵ j

dx2 = M̂ j , E I
d3ŵ j

dx3 = − V̂ j , j = 0, 1, . . . , n − 1, (10)

where M̂ j and V̂ j are the transformed M(x, t) and V (x, t), respectively. In the following sections, the
subscript j is dropped for simplified notation and all the following equations hold for j = 0, 1, . . . , n − 1.

4. Perturbation analysis of damaged beams

Here, a through-width notch is modeled as a localized decrease in the stiffness and inertia. For a notch
of width 1L and depth hd , as shown in Figure 1, the area moment of inertia Id at the damaged location
can be written as

Id =
1

12
b(h − hd)

3
=

1
12

bh3
(

1 −
hd

h

)3
, (11)

where b and h are the width and depth of the beam, respectively. Assuming small damage, meaning
hd
h � 1, the above Equation (11) can be written as

Id ≈
1
12

bh3
(

1 − 3
hd

h

)
≈ I0

(
1 − εp

)
, εp = 3

hd

h
,
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Figure 1. Schematic for the cantilever beam with notch.

where I0 is the area moment of inertia of the undamaged beam and εp is used as the perturbation parameter
later. Similarly, the mass per unit length at the damaged location, md , can be written as

md = ρb
(

h − hd

)
= ρbh

(
1 −

hd

h

)
= m0

(
1 −

1
3
εp

)
,

where m0 is the mass per unit length of the undamaged beam. Thus, the overall flexural rigidity E I (x)
and mass per unit length m(x) of the beam with a notch of width 1L , at x = xd , can be written as a
function of x [Luo and Hanagud 1998]

E I (x)= E I0
[
1 − εp1Lδ(x − xd)

]
,

m(x)= m0
[
1 −

1
3εp1Lδ(x − xd)

]
,

(12)

where δ(x) is the Dirac delta function.
Next, the displacement w(x, t) of the damaged beam is considered as a perturbation of that of the

undamaged beam [Luo and Hanagud 1998], and is written as

w = w0
− εpw

1, (13)

where w0 is the displacement of the undamaged beam, while w1 is the first approximation of the pertur-
bation solution. The linear transformations used in the last section can be done for the variables in (13),
and the transformed equation can be written as

ŵ = ŵ0
− εpŵ

1. (14)

Substituting (12) and (14) into (9), the following equations are obtained:

1 : E I0
d4ŵ0

dx4 = γ 2m0ŵ
0, (15)

εp : E I0
d4ŵ1

dx4 = γ 2m0ŵ
1
+

1
3
γ 2m01Lδ(x − xd)ŵ

0
d − E I0

d2

dx2

[
1Lδ(x − xd)

d2ŵ0
d

dx2

]
. (16)

However, the terms associated with ε2
p are neglected. ŵ0

d and d2ŵ0
d

dx2 are the values of ŵ0 and d2ŵ0

dx2 at
x = xd , respectively. The solution of Equation (15) and the complimentary solution of Equation (16) are
obtained through the spectral finite element method described in the next section. Here the particular
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solution of (16) is required for spectral element formulation. Due to the discontinuity present in (16) it
is difficult to obtain the exact particular solution. Thus, the solution of the static part of (16) is taken as
the approximate particular solution, which is of the form,

ŵ1
=1L〈x − xd〉

d2ŵ0

dx2 −
1

18
γ 2k41L〈x − xd〉

3ŵ0
+

1
6

C1x3
+

1
2

C2x2
+ C3x + C4,

where k4
= m0/E I0 and 〈 〉 is the ramp function [Jones 1982; Lestari 2001]. C1,C2,C3 and C4 are the

constants to be calculated from the four boundary conditions as

ŵ1
1

dŵ1
1

dx

ŵ1
2

dŵ1
2

dx


=


0 0 0 1

0 0 1 0
L3

6
L2

2 L 1
L2

2 L 1 0




C1

C2

C3

C4

+



0

0

1L(L − xd)
d2ŵ0

d
dx2 −

1
18γ

2k41L(L − xd)
3ŵ0

d

1L d2ŵ0
d

dx2 −
1
6γ

2k41L(L − xd)
2ŵ0

d


.

The above equation can be rewritten more simply as

{u1
e} = [G]{C} + {R}, (17)

where

{u1
e} = {ŵ1

1
dŵ1

1

dx
(= θ1

1 )ŵ
1
2

dŵ1
2

dx
(= θ1

2 )}, ŵ1
1 ≡ ŵ1(0)

dŵ1
1

dx
≡

dŵ1(0)
dx

, ŵ1
2 ≡ ŵ1(L)

dŵ1
2

dx
≡

dŵ1(L)
dx

,

with L being the length of the beam.
Substituting the particular solution given by Equation (17) in the transformed force boundary condi-

tions, (10), we get

M̂1
= E I0

[
1Lδ(x − xd)

d2ŵ0
d

dx2 −
1
3
γ 2k41L〈x − xd〉ŵ0

d + C1x + C2

]
,

V̂ 1
= − E I0

[
1L

d
dx
δ(x − xd)

d2ŵ0
d

dx2 −
1
3
γ 2k41L H(x − xd)ŵ

0
d + C1

]
,

where H(x) is the step function. The above equations can be written in matrix form relating boundary
forces and constants {C} as

V̂ 1
1

M̂1
1

V̂ 1
2

M̂1
2

= E I0


−1 0 0 0

0 1 0 0

1 0 0 0

−L −1 0 0




C1

C2

C3

C4

+ E I0


0

0

−
1
3γ

2k41Lŵ0
d

1
3γ

2k41L(L − xd)ŵ
0
d

 ,
or

{F̂1
e } = [G]{C} + {R}, (18)

where

{F1
e } = {V̂ 1

1 M̂1
1 V̂ 1

2 M̂1
2 }, V̂ 1

1 ≡ V̂ 1(0), M̂1
1 ≡ M̂1(0), V̂ 1

2 ≡ V̂ 1(L), M̂1
2 ≡ M̂1(L).
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Using Equations (17) and (18), the boundary displacements {u1
e} can be written in terms of forces

{F̂1
e } as

{F̂1
e } = [K̂ 1

]{û1
e} − [K̂ 1

]{R} + {R}, K̂ 1
] = [G][G]

−1. (19)

However, it should be mentioned here that two spectral elements are required to model the notched
beam, and one node is located at the damage position. This is needed to account for the discontinuity of
the particular solution at x = xd .

The solutions of Equation (15) and the complimentary solution of (16) using the spectral finite element
method described in the next section is of similar form, and relates the boundary (nodal) forces and
displacements through a matrix equation. Thus the total perturbed solution ŵ1 is obtained by adding the
particular solution given by (19) to the complimentary solution.

5. Spectral finite element method

As said earlier, (15) and the complimentary part of (16) are solved for ŵ0 and ŵ1, respectively, using a
spectral finite element technique. Here the method is described in a general form considering ŵ as the
variable. The degrees of freedom (DOFs) associated with the element formulation are shown in Figure 2.
The element has two DOFs per node, which are ŵ and dŵ/dx(= θ). From the previous sections, the set of
decoupled ODEs (see (9)) are obtained, and are required to be solved exactly for ŵ. The actual solutions
w(x, t) are obtained using inverse wavelet transform. For finite length data, the wavelet transform and
its inverse can be obtained using a transformation matrix [Williams and Amaratunga 1994]. Here, the
spectral finite element technique is explained for the decoupled ODEs given by (9).

The exact interpolating functions for an element of length L , obtained by solving (9), are

{ŵ(x)}T
= [R][2]{a}, (20)

where [2] is a diagonal matrix with the diagonal terms [e−k1x ,e−k1(L X −x),e−k2x , and e−k2(L X −x)
]; [R]

is a 1 × 4 amplitude ratio matrix for each set of k1 and k2 as [R] =
[

R11 . . . . . . R14
]
. k1 and k2 are

obtained by substituting (20) into (9) and posing it as a polynomial eigenvalue problem [Chakraborty
and Gopalakrishnan 2005].

Here {a} = {A,B,C,D} are the unknown coefficients to be determined from transformed nodal dis-
placements {ûe}, where

{ûe} = {ŵ1 dŵ1/dx ŵ2 dŵ2/dx}, ŵ1 ≡ ŵ(0),

dŵ1/dx ≡ dŵ(0)/dx, ŵ2 ≡ ŵ(L),

V1j

w1j θ1j
M  1j

V 2 j

w2j

θ j2
M  j2

z

y

x

x = 0 x = L

z

y

x�� ��

Figure 2. Spectral finite element with nodal displacements and forces.
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and dŵ2/dx ≡ dŵ/dx(L) (see Figure 6 for details on the degrees of freedom the element can support).
Thus we can relate the nodal displacements and unknown coefficients as

{ûe} = [B]{a}. (21)

Substituting Equation (20) in the forced boundary conditions given by (10), the nodal forces can be
related to the unknown coefficients as

{F̂e} = [C]{a}, (22)

where {F̂e} = {V̂1 M̂1 V̂2 M̂2}, V̂1 ≡ − V̂ (0), M̂1 ≡ − M̂(0), F̂2 ≡ F̂(L), V̂2 ≡ V̂ (L), and M̂2 ≡ M̂(L)
(see Figure 2). From Equations (21) and (22) we can obtain a relation between transformed nodal forces
and displacements, similar to conventional FE,

{F̂e} = [C][B]
−1

{ûe} = [K̂e]{ûe}, (23)

where [K̂e] is the exact elemental dynamic stiffness matrix. After the constants {a} are known from the
above equations, they can substituted back into Equation (20) to obtain the transformed displacements
ŵ, dŵ/dx at any given x .

(23), corresponding to the perturbation solution, must be added to the particular solution, given by (19),
to obtain total perturbation solution. Thus, we finally have two equations relating the transformed nodal
forces to the transformed nodal displacements. For the perturbation solution, the boundary conditions
for a cantilever beam are taken as

ŵ1(0)=
dŵ1

dx
(0)= 0 and E I0

d2ŵ1

dx2 (L)= E I0
d3ŵ1

dx3 (L)= 0.

The other boundary conditions can be similarly implemented.

6. Numerical experiments

In this section, flexural wave propagation in a damaged beam, due to a narrow banded modulated pulse
and a broad banded impulse loading, are studied and compared with the responses of the undamaged
beam. In the first case of modulated pulse loading, the wave propagates nondispersively and the locations
of the damage are obtained from the arrival time of the wave reflected from the notch. The wave speeds
corresponding to the loading frequencies are obtained from the dispersion relation. This in turn helps
in validation of the present formulation. Next, the flexural wave propagation due to broad band impulse
load is studied for different damage parameters like width, 1L , depth, hd , and distance, Ld , from the
free end or tip of the cantilever beam.

In all the cases the beam considered is an aluminum cantilever beam of length L , width b = 0.05 m,
and depth h = 0.01 m. The material properties considered are Young’s modulus, E = 70GPa, Poisson’s
ratio, ν = 0.3, and mass density ρ = 2700 kg/m3. The order of the Daubechies scaling function used in
all the examples is N = 22 unless otherwise mentioned.

First, the present method is validated by comparison with two-dimensional FE results. The comparison
is made for the transverse wave velocity resulting from an impulse load of duration 500µs and frequency
content 4.4 kHz. The applied impulse load is very similar to that shown in Figure 3, however, there the
impulse load has a duration of 50µs and frequency content of 44 kHz, used for the numerical experiments
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Figure 3. Impulse load in time and frequency (inset) domains.

presented in the later part of the paper. The responses simulated using the present method and two-
dimensional FE modeling is presented in Figure 4 which shows the transverse velocity measured at the
tip of a fixed-free beam with the impulse load applied at the tip. The damage is located at a distance
of 0.5 m from the free end and has a depth of hd = 0.001 m (10% of the depth of the beam) and width
4L = 0.03 m. The two-dimensional FE simulation is done using ANSYS 10.0, with 3994, 4-noded, plane
stress quadrilateral elements and Newmark time integration with 4t = 2µs. As mentioned before, the
WSFE results are obtained using only two elements with the intermediate node at the damage location. It
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Figure 4. Transverse velocities at the tip of a cantilever beam with notch.
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Figure 5. Dispersion relation for (a) Euler–Bernoulli beam (left) and (b) modulated
sinusoidal pulse load in time and frequency (inset) domains.

can be seen that the responses match very well. The frequency content of the applied load is consciously
kept lower than that used for the other examples. This is because the two-dimensional FE modeling of
the beam always simulates the results of Timoshenko beam theory and thus predicts lower wave speed
than the Euler–Bernoulli beam theory used for the WSFE modeling. The difference in the responses
due to this difference in the wave speeds is not negligible even in the slender beam case. However, the
difference will be less for lower frequency excitation, hence a lower range of frequency is considered for
the comparison between the two-dimensional FE and present models. The small difference in the wave
speeds predicted by the two methods, observed in Figure 4, can be attributed to the reason explained
above.

In Figure 5a, the dispersion relation for the beam, the group speed with respect to the frequencies,
is plotted. The narrow banded modulated sinusoidal pulse is shown in time and frequency domains in
Figure 5b. It can be seen that this load has a very narrow frequency band and propagates nondispersively,
retaining its shape. Such a modulated pulse is widely used in health monitoring studies. Here, additional
waves result due to reflection from the damage. The damage location is obtained from the arrival time
of such a reflected wave, and the wave speed derived from the dispersion relation is shown in Figure 5a.
In the present case, the modulated pulse has a central frequency of nearly 20 kHz, and the group speed
of the flexural wave in the beam corresponding to this frequency is approximately Cg = 2716 m/s, as
calculated from Figure 5a. In Figure 6 the transverse velocities measured at the tip of the cantilever
beam with length L = 2.0 m, due to the modulated pulse applied at the tip in the transverse direction, are
plotted. Figure 6 shows these velocities for beams with though-width notches at distances Ld = 0.1, 0.25,
and 0.4 m from the free end, respectively. In all cases the notch width 1L = 0.02 and the depth hd =

10% for the beam depth h. The arrival time of the waves reflected from the notch, as obtained from
Figure 6, are, respectively, T = 75, 185, and 300µs. The locations of the damages, calculated inversely
from these arrival times, and the group speed Cg are nearly equal to those assumed for the simulations,
Ld = 0.1, 0.25, and 0.4 m. This also validates the present formulation.
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Figure 6. Transverse velocities at the tip of a cantilever beam of length L = 2.0 m with
notch of 1L = 0.02 m, depth hd = 10%, at Ld = 0.25 m (upper left), Ld = 0.5 m (upper
right), and Ld = 0.75 m (lower), compared with the response of an undamaged beam.

Next, examples are presented to study the effect of notch on the flexural wave propagation due to
broad band impulse loading. The unit impulse load is shown in Figure 3 in time and frequency domains.
The load has a time duration of 50µs and a frequency content of 44 kHz. The load is again applied at
the tip of a cantilever beam of length L = 1.0 m and the transverse velocities are measured at the tip. The
effects of damage parameters, including damage width 1L , depth hd , and location Ld from the tip, on
such responses are studied in the time and frequency domains. In Figure 7 the transverse tip velocities in
three damaged beam configurations with varying damage width 1L are plotted in the time and frequency
domains, respectively. In all cases the notch is at a distance Ld = 0.25 m from the tip and the depth is
hd = 0.1h. The 1L are varied as 0.01, 0.02, and 0.03 m. These responses are also compared with that
of the undamaged beam. It can be seen from Figure 7a that the presence of the notch results in an early
reflection of the flexural wave, which appears before the arrival of the wave reflected from the fixed end
of the cantilever beam. In addition, the increase in 1L results in an increase of the amplitude of the
wave reflected from the notch. Similar responses are studied in frequency domain in Figure 7b. It can be
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observed from the frequency domain response of the damaged and undamaged beams that the presence of
notch results in a very small change only at the higher natural frequencies, while the amplitude changes
considerably even at the lower frequencies. This is to be expected, since we are considering very small
notch dimensions, length 1L and depth hd , consistent with the assumptions made in the perturbation
analysis. The frequency responses are plotted in Figure 7b only within a small frequency range around
16.5 to 19.0 kHz. However, a small shift in the frequencies can also be observed at other frequencies.
The figure shows that the increase in 1L increases the amplitude and the shift in the frequency is nearly
the same for all the damaged responses.

Figure 8 shows the responses of the damaged beam with different depths hd of damage, with the
other parameters, 1L and Ld , remaining the same. In Figure 8a, the transverse velocities measured at
the tip of the undamaged and damaged cantilever beams with a notch of 1L = 0.01 m at Ld = 0.25 m
from the tip are presented. The depth of the notch is varied as hd = 0.1h, 0.2h, and 0.3h. Similar to
the previous example, here the amplitude of the wave resulting from reflection from the notch increases
with the increase in the depth hd . In Figure 8b, the responses are plotted in the frequency domain.
Even here, similarly to the previous example, a prominent change in the natural frequencies occurs at
the higher values of 17.0 and 18.4 kHz. Interestingly, it can be seen that the pattern of the frequency
response function within the plotted interval is very similar to that of the previous example. This is
mainly because the damage model takes into account only the overall reduction in stiffness due to the
notch, instead of the separate effect of hd and 1L .

Finally, numerical experiments are performed to study the responses of undamaged and damaged
beams with the notch at different locations, due to the broad band impulse load (see Figure 3) applied at
the tip in transverse direction. The transverse velocities measured at the tip are presented in Figure 9a.
Here the notches have a width 1L = 0.02 m and depth hd = 0.1h, but are located at distances Ld =

0.1, 0.25, and 0.4 m from the tip. It can be observed that for Ld = 0.1 m the reflection from the notch
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Figure 7. Transverse velocities at the tip of a cantilever beam of length L = 1.0 m with
Ld = 0.25 m,1L = 0.01, 0.02, and 0.03 m, and depth hd = 10% compared with response
of the undamaged beam in (a) time and (b) frequency domains.
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Figure 8. Transverse velocities at the tip of a cantilever beam of length L = 1.0 m
with Ld = 0.25 m, 1L = 0.01 m, and depth hd = 10, 20, and 30%, compared with the
response of an undamaged beam in (a) time and (b) frequency domains.

arrives much earlier than expected. However, in the case of Ld = 0.4 m, the difference in the arrival
time between the reflections from the damage and the fixed end is much less, and they are not quite
distinguishable. In addition, for the same damage size, the amplitude of the reflection from the damage
at Ld = 0.4 m is least. This is because the flexural waves are dispersive in nature, and thus the amplitude
decreases as it travels more. The corresponding frequency domain responses are shown in Figure 9b,
for frequency ranges around 21.5 kHz and 25 kHz respectively. In this case, unlike the two previous
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Figure 9. Transverse velocities at the tip of a cantilever beam of length L = 1.0 m with
Ld = 0.1, 0.25, and 0.4 m, 1L = 0.01 m, and depth hd = 10%, compared with the
response of an undamaged beam in (a) time and (b) frequency domains.



672 M. MITRA, S. GOPALAKRISHNAN, M. RUZZENE, N. APETRE AND S. HANAGUD

examples, considerable shift in frequencies occurs at two other frequencies, approximately 22.1 and
23.4 kHz.

7. Conclusions

In this paper, wave propagation characteristics in a damaged beam modeled as a Euler–Bernoulli beam
with through-width notches are studied and compared with the response of the corresponding undamaged
beam. The wave propagation of the notched beam is considered as a perturbation of the undamaged beam
response with the assumption of small damage. The modeling is done using the wavelet based spectral
finite element technique, including the perturbation solution. The wavelet based method allows efficient
analysis of finite length structure due to the use of localized Daubechies scaling functions as bases,
unlike the Fourier transform based spectral finite element method. Here the flexural wave propagation in
the damaged beam is studied for both narrow and broad banded excitations in both time and frequency
domains. For narrow banded modulated pulse loading the location of the damages, calculated inversely
from the simulated response, using the arrival time and wave speeds obtained from the dispersion rela-
tions, matches very well with that considered for the simulation. Next, the effects of different damage
parameters, including damage width, depth, and locations, on the response, due to broad band impulse
loading, are analyzed in the time and frequency domains.

In the present work, coupling of axial and flexural modes due to the presence of damage is not con-
sidered. The model is developed for pure flexural wave propagation, neglecting the effect of axial mode
conversion that may arise due to the damage. This is justified for damages with small dimensions, where
this effect is negligible. However, further work lies in including such coupling in the formulation and
studying its effects. It should also be mentioned that Timoshenko theory is more suited for the study of
wave characteristics. However, the extension of the present method to Timoshenko theory will involve
solution of a set of coupled partial differential equations, unlike Euler–Bernoulli beam theory. The
formulation for a Timoshenko beam can be considered for future work.
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INTEGRATION OF MEASURES AND ADMISSIBLE STRESS FIELDS FOR
MASONRY BODIES

MASSIMILIANO LUCCHESI, MIROSLAV ŠILHAVÝ AND NICOLA ZANI

We study the compatibility of loads for bodies made of a no-tension (masonry) material. Loads are
defined as weakly compatible if they can be equilibrated by an admissible stress field represented by
a tensor valued measure, and strongly compatible if they can be equilibrated by a square integrable
function. In the present study, we examine situations in which weak compatibility implies strong com-
patibility. For families of loads that depend on a parameter and the families of measures that equilibrate
these loads, we find that, under some conditions, averaging with respect to the parameter leads to a
measure with a square integrable density that equilibrates the loads. We illustrate the procedure on two-
dimensional rectangular panels free from gravity, clamped at the bottom, and subjected to various loads
on the free part of the boundary.

1. Introduction

We study the equilibrium problem of a body made of a no-tension (or masonry–like) material [Di Pas-
quale 1984; Anzellotti 1985; Giaquinta and Giusti 1985; Del Piero 1989; Lucchesi et al. 1994] under
given loads (s, b) where s is the force applied to the free part of the boundary and b is the body force.
The existence of equilibrium states, or at least the weaker property that the total energy functional of
the masonry body be bounded from below, is closely related to the existence of a stress field T that
is equilibrated with the applied loads and compatible with the incapability of the material to withstand
traction (see Proposition 3.1, below). The problem of finding such an admissible equilibrating stress field
T is a central problem of limit analysis [Temam 1983, Chapter 1, Section 5; Del Piero 1998; Lucchesi
et al. 2008] because these stresses can be used to determine lower bounds for the collapse load and
sometimes the collapse load itself. The loads admitting such a stress field are called compatible.

It has been shown in [Lucchesi et al. 2004; 2005a; 2005b; 2006; 2007] that the solution in concrete
cases simplifies considerably if instead of admissible equilibrating stress fields represented by ordinary
functions T one admits also stress fields T represented by tensor valued measures. This amounts to
allowing for singularities of the stress field on one or more surfaces or curves of concentrated stress. In
this paper, loads that admit an admissible equilibrating stress represented by a measure are called weakly
compatible to distinguish them from loads that admit admissible equilibrating stresses represented by a
square integrable function, which we call strongly compatible. These notions are not equivalent, as the
examples show.

Keywords: masonry bodies, compatibility of loads, stresses represented by measures.
This research has been supported by Project SP2 Metodi e modelli predittivi del comportamento strutturale di manufatti in
presenza e in assenza di danno. The support is gratefully acknowledged.
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Nevertheless, the existence of solutions to the equilibrium problem, and in particular the existence
of a lower bound for the total energy functional, is strictly related to the existence of the admissible
equilibrating stress field represented by a square integrable function by Proposition 3.1.

In the present paper, we describe a procedure that in certain cases allows us to use the information that
loads are weakly compatible to show that they are actually strongly compatible. Crucial to the procedure
is the fact that, in applications, both the loads (sλ, bλ) and the admissible equilibrating stress measure
Tλ depend on a real parameter λ. The identification of λ depends on the nature of the problem. The idea
is to take the average of the stress measure over any set (µ− ε, µ+ ε), where ε > 0 is sufficiently small
as dictated by the nature of the solution Tλ and µ is any point in the set of parameters. Averaging gives
the measure

T =
1
2ε

∫ µ+ε

µ−ε,

Tλ dλ,

and it may happen that this measure, in contrast to Tµ, is absolutely continuous (with respect to the
Lebesgue measure) with the density T , which is square integrable. If the loads (sλ, bλ) depend linearly
on the parameter λ, as is often the case, then it is automatic that T equilibrates the loads (sµ, bµ).
It is intuitively plausible that the averaging procedure smears out the singularities in Tλ if the set of
singularities changes its position with changing λ. Mathematically, the procedure is based on the coarea
formula of the geometric measure theory, which also gives the conditions under which it is really the
case.

This paper illustrates the general procedure on rectangular two-dimensional panels. We assume that
the panel is free from body forces, clamped at its bottom, and subjected to loads prescribed on the
boundary. We consider three types of the boundary loads:

(i) vertical top loads and horizontal loads on one side of the panel,

(ii) uniform vertical top loads and oblique side loads on one side of the panel,

(iii) and uniform vertical top loads and vanishing side loads on a panel with a symmetric opening.

In all cases we use the admissible equilibrating stresses represented by measures constructed in [Lucchesi
et al. 2006], and combine them with averaging to produce equilibrating stress fields represented by square
integrable functions (in fact, they are bounded in these three cases).

In Section 2 we consider families of vector valued measures, called parametric measures, that are
mappings from the set of real parameters to the space of vector valued measures. We define an integral
with respect to the parameter of such a mapping, which is the abstract counterpart of the averaging
procedure mentioned above. The result of integration is again a measure. Section 3 introduces bodies and
the loads applied to them. We define weakly and strongly equilibrating stress fields, and in Propositions
3.2 and 3.3 we describe the averaging procedure. The rest of the paper is devoted to the treatment of
the loads (i)–(iii) listed above: Sections 4–5 deal with (i), Section 6 with (ii) and Section 7 with (iii).
In general, the average of the parametric measure is difficult to calculate explicitly, and for applications
it wholly suffices to know that averaging leads to the existence of a square integrable admissible stress
field equilibrating the loads. Such is the case of the loads (i)–(iii). However, in a special subcase of case
(i), treated in Section 5, we explicitly determine the result of the averaging.

Throughout, we use the conventions for vectors and second order tensors given in [Gurtin 1981]. Thus
Lin denotes the set of all second order tensors on Rn , that is, linear transformations from Rn into itself;
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Sym is the subspace of symmetric tensors; Sym+ the set of all positive semidefinite elements of Sym;
Sym− is the set of all negative semidefinite elements of Sym. The scalar product of A, B ∈ Lin is defined
by A · B = tr(ABT) and | · | denotes the associated Euclidean norm on Lin.

2. Families of measures

If �⊂ Rn is a Borel set and V a finite-dimensional inner product space, we denote by M(�, V ) the set
of all V valued measures (of finite total variation) supported by � [Ambrosio et al. 2000, Chapter 1].
If m ∈ M(Rn, V ), we denote by |m| the total variation measure of m, and by M(m) the mass of m,
defined by M(m) = |m|(Rn). We call the elements of M(�,Sym) tensor measures. We denote by Ln

the Lebesgue measure in Rn [Ambrosio et al. 2000, Definition 1.52], and if k is an integer, 0 ≤ k ≤ n,
we denote by Hk the k-dimensional Hausdorff measure in Rn [Ambrosio et al. 2000, Section 2.8]. If φ
is a nonnegative measure or a V valued measure, we denote by φ A the restriction of φ to a Borel set
A ⊂ Rn

; if φ is a nonnegative measure, we denote by f φ the product of the measure φ by a φ integrable
V valued function f on Rn

; we refer to [Lucchesi et al. 2006, Section 2] for details. If � is an open
subset of Rn , we denote by C0(�, V ) the space of all continuous V valued functions on Rn with compact
support that is contained in �, and denote by | · |C0 the maximum norm on C0(R

n, V ).
An integrable parametric measure is a family {mλ

: λ ∈3} of V valued measures on Rn where 3⊂ R

is a L1 measurable set of parameters such that

(i) for every f ∈ C0(R
n, V ) the function λ 7→

∫
Rn f · dmλ is L1 measurable on 3;

(ii) we have

c :=

∫
3

M(mλ) dλ <∞.

We note that the function λ 7→ M(mλ) is L1 measurable on 3 as a consequence of condition (i): if
K ⊂ C0(R

n, V ) is a countable dense set then

M(mλ)= sup
{∫

Rn
f · dmλ

: f ∈ K , | f |C0 ≤ 1
}
,

and thus the function λ 7→ M(mλ) is a supremum of a countable family of L1 measurable functions.
Hence, L1 measurable.

We note that parametric measures similar to those defined above occur in the contexts of disintegration
(slicing) of measures [Ambrosio et al. 2000, Section 2.5] and Young’s measures [Müller 1999, Chapter 5].

Proposition 2.1. If {mλ
: λ∈3} is an integrable parametric measure, then there exists a unique V valued

measure m on Rn such that ∫
Rn

f · dm =

∫
3

∫
Rn

f · dmλ dλ, (1)

for each f ∈ C0(R
n, V ).

We write

m =

∫
3

mλ dλ, (2)

and call m the integral of the family {mλ
: λ ∈3} with respect to λ.
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Proof. We note that for each f ∈ C0(R
n, V ), the right hand side of Equation (1) is a well defined real

number. Indeed, ∣∣ ∫
3

∫
Rn

f · dmλ dλ
∣∣≤ ∫

3

∫
Rn

| f | d|mλ
| dλ

≤ | f |C0

∫
3

M(mλ) dλ

≤ c| f |C0 .

Thus, by the Riesz representation theorem [Ambrosio et al. 2000, Theorem 1.54], there exists a measure
m such that Equation (1) holds. �

The following two propositions give two important examples of integrable parametric measures. In
both cases the corresponding integral, Equation (2), is absolutely continuous with respect to the Lebesgue
measure.

Proposition 2.2. Let {hλ : λ ∈3} be a family of V valued functions on �⊂ Rn defined for all λ from a
L1 measurable set 3⊂ R such that the mapping (x, λ) 7→ hλ(x) is Ln+1 integrable on �×3, that is,∫

3

∫
�

|hλ(x)| dxdλ <∞. (3)

If we define a V valued measure mλ by

mλ
= hλLn �,

then {mλ
: λ ∈3} is an integrable parametric measure, and we have∫

3

mλ dλ= kLn �,

where k(x)=
∫
3

hλ(x) dλ, for Ln a.e. x ∈�.

Proof. This follows directly from Fubini’s theorem. �

Proposition 2.3. Let�0 ⊂ Rn be open, let ϕ :�0 → R be locally Lipschitz continuous, and let g :�0 → V
be Ln measurable on �0, with ∫

�0

|g||∇ϕ| dLn <∞. (4)

Then for L1 a.e. λ ∈ R, the function g is Hn−1 ϕ−1(λ) integrable. Denoting by 3 the set of all such λ,
we define the measure mλ by

mλ
:= gHn−1 ϕ−1(λ),

for each λ ∈3. Then {mλ
: λ ∈3} is an integrable parametric measure, and we have∫

3

mλ dλ= g|∇ϕ|Ln �0. (5)
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Proof. Let m be given by Equation (2). If f ∈ C0(R
n, V ), then by the coarea formula [Ambrosio et al.

2000, Section 2.12] we have∫
�0

f · g|∇ϕ| dLn
=

∫
R

∫
ϕ−1(λ)

f · g dHn−1dλ

=

∫
3

∫
Rn

f · dmλdλ

=

∫
Rn

f · dm. �

3. Equilibrated loads

We consider a continuous body represented by a Lipschitz domain [Adams and Fournier 2003] �⊂ Rn

and assume that D,S are two disjoint Borel subsets of ∂� such that D ∪ S = ∂�, where D,S will be
identified below as the set of prescribed boundary displacement and prescribed boundary force.

We set
V0 = {v ∈ C1(cl�,Rn) : v = 0 on D},

and
V = {v ∈ W 1,2(�,Rn) : v = 0 a.e. on D},

where C1(cl�,Rn) is the set of all continuously differentiable mappings v : �→ Rn such that v and
its derivative ∇v have a continuous extension to the closure cl� of �, and W 1,2(�,Rn) is the Sobolev
space of all Rn valued maps such that v and the distributional derivative ∇v of v are square integrable
on � [Adams and Fournier 2003]. We have V0 ⊂ V . For any v ∈ V we define the infinitesimal strain
tensor Ê(v) of v by

Ê(v)=
1
2(∇v + ∇vT).

The loads of the body are a pair L = (s,b) where s ∈ M(S,Rn),b ∈ M(�,Rn). Here s represents the
force applied to the boundary S and b the force applied to the bulk � of the body. Since both s and b
are measures, the definition admits concentrated forces on S and in � [Podio-Guidugli 2004; Lucchesi
et al. 2006]. See Equation (42) for an example. Below we also consider the special case when these two
measures are absolutely continuous with respect to the measures Hn−1 and Ln .

We interpret the measures T ∈ M(�,Sym) as stresses. Again, concentration effects are possible. We
say that T ∈ M(�,Sym) is admissible if T takes the values in the set Sym− of the negative semidefinite
symmetric tensors, that is, if T(A)a · a ≤ 0 for any Borel set A ⊂� and for any a ∈ Rn . We say that T
weakly equilibrates the loads (s,b) if∫

�

Ê(v) · dT =

∫
�

v · db +

∫
S

v · ds,

for any v ∈ V0. We say that the loads L = (s,b) are weakly compatible if there exists an admissible
T ∈ M(�,Sym) which weakly equilibrates them.

One can consider, in particular, the loads L = (s,b) of the form

s = sHn−1 S, b = bLn �, (6)
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where
s ∈ L2(S,Rn), b ∈ L2(�,Rn), (7)

with the first L2 space taken relative to the measure Hn−1 on S and the second relative to Ln on �. In
this case, we often identify the pair L = (s,b) with the pair L = (s, b).

One can consider, in particular, the measure T of the form T = TLn �, where T ∈ L2(�,Sym).
We say that T is admissible if T (x) ∈ Sym− for Ln a.e. x ∈ �. This is equivalent to saying that the
measure T = TLn � is admissible in the sense defined above. We say that T strongly equilibrates the
loads L = (s, b) if ∫

�

Ê(v) · T dLn
=

∫
�

v · b dLn
+

∫
S

v · s dHn−1,

for each v ∈ V . Note that this notion applies only to the special loads represented by s, b as in Equation (6).
We say that the loads L = (s, b) satisfying Equation (7) are strongly compatible if there exists an ad-
missible stress field T ∈ L2(�,Sym) strongly equilibrating them. In [Šilhavý 2008, Example 9.4], an
example is given of loads (s, b) satisfying Equation (7) (even with s bounded and b ≡ 0) such that (s, b)
are weakly compatible but not strongly compatible.

The importance of the strong compatibility arises from the following statement.

Proposition 3.1 ([Padovani et al. 2007]). Let L = (s, b) be the loads satisfying Equation (7). Define the
total energy functional I : V → R by

I (v)=

∫
�

ŵ(Ê(v)) dLn
−

∫
�

v · b dLn
−

∫
S

v · s dHn−1,

v ∈ V , where ŵ : Sym → [0,∞) is the stored energy of a no-tension material [Del Piero 1989]. Then the
loads are strongly compatible if and only if

I0 := inf{I (v) : v ∈ V }>−∞.

The condition I0 > −∞, in turn, has a dynamical significance [Padovani et al. 2007]: If I0 > −∞

then any dynamical process of a masonry body with dissipation stabilizes in the sense that the kinetic
energy tends to 0, and if the set of equilibrium states is nonempty, the process asymptotically approaches
the set of all equilibrium states. If, on the contrary, I0 = −∞, then any dynamical process exhibits a
(dynamical) collapse in the sense that the total energy approaches −∞, and the W 1,1 norm of the state
at large times converges to ∞ (at least if s and b are bounded).

One often encounters the situation in which the loads depend on a parameter λ from a subset 3 of R;
that is, one deals with the family of loads Lλ = (sλ,bλ), λ ∈3, where

{sλ, λ ∈3}, {bλ, λ ∈3}, (8)

are integrable parametric measures with values in Rn , with 3 an L1 measurable subset of R. A more
specific situation arises when the loads Lλ are of the form

sλ = s(·, λ)Hn−1 S, bλ = b(·, λ)Ln �, (9)

λ ∈3, where
s ∈ L2(S ×3,Rn), b ∈ L2(�×3,Rn), (10)
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with the first L2 space taken with respect to the measure Hn−1
⊗ L1 on S ×3 and the second relative

to the n + 1 dimensional Lebesgue measure on �×3. Each load Lλ is often weakly equilibrated by a
stress field Tλ

∈ M(�,Sym) in such a way that

{Tλ, λ ∈3} (11)

is an integrable parametric measure. In this situation, we have:

Proposition 3.2. Let 3 ⊂ R be L1 measurable, and consider the parametric measures as in Equation
(8) and Equation (11). Suppose that for L1 a.e. λ ∈3 the stress field Tλ weakly equilibrates the loads
Lλ = (sλ,bλ). Then

(i) the stress field T̄ :=
∫
3

Tλ dλ weakly equilibrates the loads L̄ := (s̄, b̄), where

s̄ =

∫
3

sλ dλ, b̄ =

∫
3

bλ dλ;

(ii) if L1(3) <∞ and if the loads are of the form Equation (9)–Equation (10), then the loads L̄ defined
in (i) are given by L̄ = (s̄, b̄), where

s̄ ∈ L2(S,Rn), b̄ ∈ L2(�,Rn), (12)

are given by

s̄(r)=

∫
3

s(r, λ) dλ, r ∈ S, b̄(r)=

∫
3

b(r, λ) dλ, r ∈�. (13)

If , additionally, ∫
3

Tλ dλ= TLn �, (14)

where T ∈ L2(�,Sym) and V0 is dense in V , then T strongly equilibrates the loads L̄ = (s̄, b̄).

We note that V0 is dense in V if � has Lipschitz boundary, and if D is closed in ∂� with Lipschitz
boundary.

Proof. (i): We have ∫
�

Ê(v) · dTλ
=

∫
�

v · dbλ +

∫
S

v · dsλ,

for any v ∈ V0 and L1 a.e. λ ∈3. Integrating over 3 and invoking the definitions of integrals of measures,
we obtain ∫

�

Ê(v) · dT̄ =

∫
�

v · db̄ +

∫
S

v · d s̄,

and thus T̄ weakly equilibrates the loads L̄.
(ii): The formulas in Equation (13) are obtained by invoking the definitions of integrals of parametric

measures, and exchanging the orders of integration with respect to r and λ. The inclusions Equation (12)
follow from the assumption Equation (10) by using Hölder’s inequality. If we have Equation (14), then
by (i), ∫

�

Ê(v) · T dLn
=

∫
�

v · b̄ dLn
+

∫
S

v · s̄ dLn−1,
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for each v ∈ V0; this extends by density to all v ∈ V . �

Consider, finally, the situation in which the loads Lλ are of the form Equation (9), and the functions
s(·, λ), b(·, λ) depend on λ linearly [Del Piero 1998]. Thus Lλ := (sλ, bλ) where

sλ = s0 + λs1, bλ = b0 + λb1, λ ∈ R, (15)

where
s0, s1 ∈ L2(S,Rn), b0, b1 ∈ L2(�,Rn).

We call s0, b0 the permanent part of the loads, s1, b1 the variable part of the loads, and λ the loading
multiplier.

If 3⊂ R is an L1 measurable set with 0< L1(3) <∞, we abbreviate∫
3

O dλ :=
1

L1(3)

∫
3

O dλ,

for any λ integrable function O on 3.

Proposition 3.3. Assume that the loads Lλ := (sλ, bλ) are given by Equation (15). Let 3 ⊂ R be a L1

measurable set such that 0< L1(3) <∞, put

µ :=

∫
3

λ dλ,

and let {Tλ
: λ ∈ 3} be an integrable parametric measure such that for L1 a.e. λ ∈ 3 the measure Tλ

weakly equilibrates the loads Lλ. Then

(i) the measure

T :=

∫
3

Tλ dλ

weakly equilibrates the loads Lµ;

(ii) if V0 is dense in V and T = TLn � where T ∈ L2(�,Sym) then T strongly equilibrates the loads
Lµ.

Proof. (i): This follows from Proposition 3.2 (i) if one notes that∫
3

sλ dλ= sµ,
∫
3

bλ dλ= bµ.

(ii): This follows from Proposition 3.2 (ii). �

4. A panel under vertical top loads and horizontal side loads

We consider the panel
�= (0, b)× (0, h)⊂ R2

and introduce a coordinate system x, y in R2 with the origin in the upper right corner of � and with the
orientation of axes as shown in Figure 1. We denote a general point of � by r = (x, y) and let i, j be
the coordinate vectors along the axes x, y, respectively. We set

D = (0, b)× {h}, S = ∂� \ D,
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Figure 1. The panel under vertical top loads and horizontal side loads.

and consider the loads Lλ = (sλ, bλ), where bλ = 0 in �, and, for r = (x, y) ∈ S,

sλ(r)=


p(x) j , on (0, b)× {0},

λq(y)i, on {0} × (0, h),

0, elsewhere,

where p, q are nonnegative continuous functions on [0, b] and [0, h], respectively. We assume that

p0 := p(0) > 0, q0 := q(0) > 0.

We denote by P, Q the primitives of p, q , respectively, satisfying P(0)= Q(0)= 0, and by P,Q the
second primitives of p, q, respectively, satisfying P(0)= P′(0)= Q(0)= Q′(0)= 0. We set

λc = P(b)/Q(h). (16)

Since p, q are nonnegative and p0 > 0, q0 > 0, the functions P, Q are strictly positive and nondecreas-
ing on the intervals (0, b) and (0, h), respectively. Consequently, P,Q are strictly positive and strictly
increasing on the intervals (0, b) and (0, h), respectively. If 0< λ≤ λc, then the range [0, λQ(h)] of λQ

is contained in the range [0,P(b)] of P. It follows that the set

γ λ = {r = (x, y) ∈ cl� : λQ(y)= P(x)},

is a graph of an increasing function ωλ : [0, tλ] → [0, h], where tλ is determined from the equation
λQ(h)= P(tλ). One easily finds that ωλ is continuously differentiable, and from ωλ(0)= 0, ωλ(tλ)= h
one deduces that γ λ is a smooth curve with one endpoint the origin 0 ∈ R2 and the other endpoint (tλ, h).
Moreover, except for the endpoints, the curve γ λ is contained in �. If r = (x, y) ∈ γ λ, we denote by
tλ(r) the unit tangent vector to γ λ at r , given by

tλ(r)=
λQ(y)i + P(x) j√
P2(x)+ λ2 Q2(y)

.
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We note that if ϕ :�→ R is defined by

ϕ(r)= P(x)/Q(y), (17)

r = (x, y) ∈�, then for any λ ∈ (0, λc) the curve γ λ is the level set of ϕ corresponding to the value λ,
that is,

γ λ = ϕ−1(λ) := {r ∈� : ϕ(r)= λ}.

We note, for future use, that ϕ is continuously differentiable, and

|∇ϕ(r)| = τ(r), (18)

where

τ(r)=

√
P′2(x)Q2(y)+ P2(x)Q′2(y)

Q2(y)
, (19)

r = (x, y) ∈�. The system of curves γ λ, λ ∈ (0, λc) forms a nonintersecting family that fully covers the
region

�0 = {r = (x, y) ∈� : P(x)/Q(y) ∈ (0, λc)} ≡ ϕ−1(0, λc).

For a λ ∈ (0, λc] the curve γ λ divides � into two open sets �λ
±

defined by

�λ
+

= {r = (x, y) ∈� : either tλ ≤ x < b or 0< x < tλ and y < ωλ(x)},

�λ
−

= {r = (x, y) ∈� : 0< x < tλ and y > ωλ(x)}, .

Proposition 4.1. Let 0< λ≤ λc and let Tλ
r :�→ Sym and Tλ

s : γ λ → Sym be defined by

Tλ
r (r)=

{
−p(x) j ⊗ j , if r ∈�λ

+
,

−λq(y)i ⊗ i, if r ∈�λ
−
,

(20)

for r = (x, y) ∈� and by
Tλ

s (r)= σ λ(r) tλ(r)⊗ tλ(r), (21)

for r ∈ γ λ, where σ λ : γ λ → R is the unique continuously differentiable function satisfying

dσ λ(r)
ds

= ρλ(r), r ∈ γ λ, (22)

σ λ(0)= 0, (23)

where ρλ : γ λ → R is defined by

ρλ(r)= −
λP(x)Q(y)

(
p(x)+ λq(y)

)
P2(x)+ λ2 Q2(y)

, (24)

r = (x, y) ∈ γ λ, and where d/ds denotes the derivative with respect to the arc length parameter s on γ λ,
measured from the origin 0. Then Tλ

r and Tλ
s are bounded functions on � and γ λ, respectively, and the

measure
Tλ

= Tλ
r L2 �+ Tλ

s H1 γ λ, (25)

is an admissible stress field weakly equilibrating the loads Lλ.
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Proof. We note that the continuity of p, q on the closed intervals [0, b] and [0, h] implies that Tλ
r is a

bounded function, hence the first term in the right hand side of Equation (25) is a well defined measure.
We note that ρλ is a continuous function on γ λ. Using the fact that for x → 0, y → 0 we have

P(x)∼
1
2 p0x2, Q(y)∼

1
2q0 y2, (26)

to within the errors o(x2), o(y2), respectively, and that

lim
r=(x,y)→0

r∈γ λ

y/x =
√

p0/λq0, (27)

one finds that
lim
r→0
r∈γ λ

ρλ(r)= −
√
λp0q0. (28)

Furthermore, trivially,

lim
r→(tλ,h)

r∈γ λ

ρλ(r)= −
λP(tλ)Q(h)

(
p(tλ)+ λq(h)

)
P2(tλ)+ λ2 Q2(h)

.

Hence σ λ is well defined, bounded, and continuous on γ λ. This shows that Tλ
s is a bounded function on

γ λ, and the second term in the right hand side of Equation (25) is a well defined measure. We further
note that Tλ

r is admissible since its density Tλ
r is a negative semidefinite tensor for L2 a.e. r ∈�. The

measure Tλ
s is admissible as well: clearly, ρλ is nonpositive everywhere on γ λ, and hence the integration

of Equation (22)–Equation (23) shows that σ λ is a nonincreasing nonpositive function. Thus Equation
(21) shows that the density Tλ

s is a negative semidefinite tensor. Consequently, Tλ is also admissible.
Finally, one has to show that Tλ weakly equilibrates the loads Lλ. Referring for the details to [Lucchesi
et al. 2006, Section 6], we note that this amounts to showing that the normal trace of Tλ equals sλ on
S, and that the weak divergence of Tλ in � vanishes. The last is equivalent to proving that the classical
divergence of T r vanishes on � \ γ λ (which is immediate), and that along γ λ the jump condition

[T r ]n − div T s = 0, (29)

holds where [T r ]n is the jump of the normal component of T r across γ λ and div T s is the linear diver-
gence of T s along γ λ. Equation (29) leads to the above described shape of γ λ and to the differential
equation, Equation (22)–Equation (23). We omit the details. �

Proposition 4.1 is now used to establish the following:

Proposition 4.2. If 0<µ< λc, then the loads Lµ are strongly compatible. In fact if 3⊂ (0, λc) is any
L1 measurable set with L1(3) > 0 such that

µ=

∫
3

λ dλ,

then {Tλ
: λ ∈3} is an integrable parametric measure, and the measure T =

∫
3

Tλ dλ is of the form

T = TL2 �,
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where T is a bounded admissible stress field on � that strongly equilibrates the loads Lµ. We have
T = T r + T s , where for r ∈�,

T r (r)=

∫
3

Tλ
r (r) dλ, (30)

T s(r)=


σ λ(r)τ (r)

L1(3)
tλ(r)⊗ tλ(r), if ϕ(r) ∈3, where λ := ϕ(r),

0, otherwise,
(31)

where ϕ and τ are defined by Equation (17) and Equation (19).

For µ= λc we have the weak compatibility of the loads Lµ by Proposition 4.1, but the above propo-
sition says nothing about the strong compatibility for this limiting value.

Proof. We write
Tλ

= Tλ
r + Tλ

s , (32)

where
Tλ

r = Tλ
r L2 �, Tλ

s = Tλ
s H1 γ λ. (33)

We note that Tλ
r is of the form considered in Proposition 2.2, where hλ is to be identified with Tλ

r . One
sees that the integrability condition of Equation (3) is satisfied, and hence for any L1 measurable set
3⊂ [0, λc], the measure

Tr :=

∫
3

Tλ
r dλ

is a measure absolutely continuous with respect to L2 �. Moreover, since the density hλ is a bounded
function on �×3, we see that the density of Tr with respect to L2 is a bounded function. Thus

Tr = T r L2 �,

where T r is a bounded function on � given by Equation (30).
The measure Tλ

s is of the form
Tλ

s = GH1 ϕ−1(λ),

where G :�0 → Sym is defined by
G(r)= Tλ

s (r)

for any r ∈�0, and where in the last formula λ is an abbreviation for ϕ(r).
We now wish to verify that the function g := G satisfies the integrability condition of Equation (4).

We shall actually prove that the product |∇ϕ||G| is bounded on �0. For this it suffices to prove that for
each λ ∈ (0, λc), the limit

L(λ) := lim
r→0
r∈γ λ

|∇ϕ(r)||G(r)|

exists, and the function L is bounded on (0, λc).
Recalling Equation (26) and Equation (27), we infer from Equation (18) and Equation (19) that

lim
r=(x,y)→0

r∈γ λ

x |∇ϕ(r)| = 2λ
√

p0 + λq0
√

p0
.
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Furthermore, combining Equation (22), Equation (23), Equation (28) and ds/dx =
√

1 + P′2(x)/λ2Q′2(y)
one finds that

lim
r=(x,y)→0

r∈γ λ

|G(r)|/x =

√
p2

0 + λp0q0,

and hence
lim
r→0
r∈γ λ

|∇ϕ(r)||G(r)| = 2λ(p0 + λq0).

This shows that the function L is bounded on (0, λc), and consequently that |∇ϕ||G| is bounded on �0.
In particular, the integrability condition of Equation (4) and Proposition 2.3 say that for any L1 mea-

surable set 3⊂ R the measure

Ts :=

∫
3

Tλ
s dλ

is L2 absolutely continuous over �, with the density given by Equation (5). In the present case, this
gives Ts = T sL2 �, where T s is given by Equation (31). Noting that V0 is dense in V , we see that a
combination of Propositions 4.1 and 3.3 completes the proof. �

5. Example: Explicit determination of the averaged stress field

The goal of this section is to determine explicitly the density T = T r + T s of the measure T from
Proposition 4.2 in a special case. The formula is in Equation (39), below.

We consider the situation of Section 4 and take in particular

p = const on [0, b], q ≡ 1 on [0, h].

Hence

sλ(r)=


p j , on (0, b)× {0},

λi, on {0} × (0, h)

0, elsewhere on S;

see Figure 2. The results of Section 4 apply directly.
We find

P(x)=
1
2 px2, Q(y)=

1
2 y2, 0 ≤ x ≤ b, 0 ≤ y ≤ h,

and Equation (16) gives λc = pb2/h2. Furthermore, if 0 ≤ λ≤ λc, then γ λ is the line segment

γ λ = {(x, y) ∈� : y =
√

p/λx}. (34)

The regions �λ
±

are given by

�λ
±

= {r = (x, y) ∈� : ±(
√

p/λx − y) > 0}.

The region �0 covered by the segments γ λ, λ ∈ (0, λc) is delimited by the main diagonal of �; in fact

�0 = {r = (x, y) ∈� : y/x > h/b}.
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Figure 2. The panel under special load conditions.

We consider the measure Tλ given by Equation (25). In the present special case we find from Equation
(20) that for r = (x, y) ∈�,

Tλ
r (r)=

{
−p j ⊗ j , if r ∈�λ

+
,

−λi ⊗ i, if r ∈�λ
−
.

Furthermore, Equation (24) and Equation (34) give ρλ(r)= − px/y, r = (x, y) ∈ γ λ, and hence

σ λ(r)= −px |r|/y, (35)

by Equation (22) and Equation (23). Consequently,

Tλ
s (r)= −

√
pλr ⊗ r/|r|,

for r ∈ γ λ, where we note that tλ(r)= r/|r| is the tangent vector to γ λ.
We now wish to determine the density T = T r + T s of the measure T. Recall that the functions T r , T s

are given by Equations (30)and (31). Let 0< µ< λc, and let ε > 0 be such that

3 := (µ− ε, µ+ ε)⊂ (0, λc),

and let
A = {r = (x, y) : px2/y2

∈3}.

We refer to Figure 2, where A is the shaded region delimited by segments γ µ−ε, γ µ+ε , and where γ µ is
the middle segment.

Let us show that from Equation (30) one obtains

T r (r)=


−p j ⊗ j , if r ∈�λ

+
\ A,

−µi ⊗ i, if r ∈�λ
−

\ A,

(2ε)−1
(
α(r)i ⊗ i +β(r) j ⊗ j

)
, if r ∈ A,

(36)
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r ∈�, where for r = (x, y) ∈ A we set

α(r)=
1
2(p

2x4/y4
− (µ+ ε)2), β(r)= p(µ− ε− px2/y2).

Let us derive the third regime of Equation (36); the derivation of the first two regimes is similar and
simpler. Thus let r = (x, y) ∈ A, and set a = px2/y2. We have

T r (r)= (2ε)−1
∫ µ+ε

µ−ε

Tλ
r (r) dλ= (2ε)−1

(∫ a

µ−ε

Tλ
r (r) dλ+

∫ µ+ε

a
Tλ

r (r) dλ
)
. (37)

If µ− ε < λ < a, then Tλ
r (r) = −p j ⊗ j; if a < λ < µ+ ε then Tλ

r (r) = −λi ⊗ i . Inserting these
values into the integrals in Equation (37), and recalling a = px2/y2, we obtain the value giving the third
regime.

To determine T s , we note that from Equation (19) we obtain

τ(r)= 2px |r|/y3,

r = (x, y) ∈�0. Consequently, we deduce from Equation (35) and Equation (31) that for r = (x, y) ∈�,

T s(r)=

{
−2p2x2r ⊗ r/2ε y4, if r ∈ A,

0, otherwise.
(38)

From Equation (36) and Equation (38) we obtain finally

T (r)=


−p j ⊗ j , if r ∈�λ

+
\ A,

−µi ⊗ i, if r ∈�λ
−

\ A,

S(r), if r ∈ A,

(39)

r ∈�, where

S(r)= (2ε)−1((p2x4/y4
− (µ+ ε)2)i ⊗ i/2 + p(µ− ε− px2/y2) j ⊗ j − 2p2x2r ⊗ r/y4).

Thus, by Proposition 3.3, the function T satisfies

T n = sµ on S, div T = 0 in �,

which can be also verified directly.

6. A panel with vertical top loads and oblique side loads

We again consider the panel
�= (0, b)× (0, h),

and assume that the top of the panel is subjected to a uniform pressure p0 while the right side of the
panel is subjected to oblique loads to be described below. We set

D = (0, b)× {h}, S = ∂� \ D,
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Figure 3. Oblique side loads.

b = 0 in �, and

s(r)=


p0 j , if r ∈ (0, b)× {0},

c(y)i + d(y) j , if r = (x, y) ∈ {0} × [0, h],

0, if r ∈ {b} × (0, h),

(40)

r ∈ S, where p0 > 0 and

c : [0, h] → (0,∞), d : [0, h] → (0,∞)

are continuously differentiable functions, see Figure 3. We make a permanent assumption that the func-
tions

y 7→ 1/c(y), y 7→ d(y)/c(y) are nondecreasing on [0, h]. (41)

If 0 ≤ λ≤ h, let ωλ : R → R be given by

ωλ(x)= α(λ)x2
+β(λ)x + λ,

x ∈ R, where

α(λ)= p0/2hc(λ), β(λ)= d(λ)/c(λ),

and let γ λ be given by

γ λ = {r = (x, ωλ(x)) ∈� : 0< x < b}.

In the following proposition we consider an auxiliary problem in which λ ∈ [0, h] is fixed and the
body is subjected to the loads (sλ, 0) with sλ given by the measure

sλ = s0H1 S +
(
c(λ)i + d(λ) j

)
δ(0,λ), (42)
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where δ(0,λ) is the Dirac measure at the point (0, λ) and where

s0(r)=

{
p0 j/h, if r ∈ (0, b)× {0},

0, if r ∈ S \ (0, b)× {0},

r ∈ S.

Proposition 6.1. Let 0 ≤ λ≤ h, and let Tλ be the measure defined by

Tλ
= Tλ

r L2 �+ Tλ
s H1 γ λ,

where Tλ
r , Tλ

s are bounded functions on � and γ λ, respectively, given by

Tλ
r (r)=

{
−p0 j ⊗ j/h, if y < ωλ(x),

0, if y > ωλ(x),

r = (x, y) ∈�, and
Tλ

s (r)= σ λ(r)tλ(r)⊗ tλ(r), (43)

r = (x, y) ∈ γ λ, where tλ(r) is the unit tangent vector to γ λ at r and

σ λ(r)= −

√
c2(λ)+

(
p0x/h + d(λ)

)2
.

If ωλ(b)≥ h then Tλ is an admissible stress field weakly equilibrating the loads (sλ, 0).

Note that one endpoint of γ λ is always (0, λ); the other endpoint can be either on the side {b}× (0, h)
or on the base [0, b] × {h}. The condition ωλ(b)≥ h then says that the latter possibility occurs.

Proof. This follows from the considerations in [Lucchesi et al. 2006, Example 2]. �

Proposition 6.2. If ω0(b) ≥ h then the loads (s, 0) are strongly compatible. In fact, there exists a
bounded admissible tensor field T on � strongly equilibrating them.

The condition ω0(b)≥ h says that the initial curve γ 0 ends on the base [0, b] × {h} of �.

Proof. One easily finds that
{Tλ

: 0 ≤ λ≤ h}, {sλ : 0 ≤ λ≤ h},

are integrable parametric measures. From conditions Equation (41), one finds that ωλ(b)≥ ω0(b). Thus
the hypothesis ω0(b)≥ h implies that ωλ(b)≥ h for all λ ∈ [0, h]. Consequently, Tλ weakly equilibrates
the loads (sλ, 0) whenever 0 ≤ λ ≤ h by Proposition 6.1. By Proposition 3.2 (i), the stress field T =∫ h

0 Tλ dλ weakly equilibrates the loads (s̄, 0), where s̄ =
∫ h

0 sλ dλ. If 0 ≤ λ≤ h and v ∈ C0(R
2,R2), then

comparing Equation (42) with Equation (40) we obtain∫
S

v · dsλ =

∫
S

v · s0 dH1
+ v(0, λ) · s(0, λ).

Hence, ∫ h

0

∫
S

v · dsλdλ= h
∫

S
v · s0 dH1

+

∫ h

0
v(0, λ) · s(0, λ) dλ=

∫
S

v · s dH1,
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which shows that

s̄ ≡

∫ h

0
sλ dλ= sH1 S.

Thus, we conclude that T weakly equilibrates the loads (s, 0).
Let us now show that T = TL2 �, where T is a bounded function on �. Decompose Tλ into

Tλ
r ,Tλ

s as in Equation (32) and Equation (33). Then T = Tr + Ts , where

Tr =

∫ h

0
Tλ

r dλ, Ts =

∫ h

0
Tλ

s dλ.

Since Tλ
r is bounded independently of λ, it is found that Tr = T r L2 � where T r is a bounded

function in the same way as in the proof of Proposition 4.2.
Next, we prove that

Ts = T sL2 �, (44)

where T s is a bounded function. Let

�0 =

⋃
{γ λ : 0< λ < h} ≡ {r = (x, y) ∈� : y > ω0(x)}.

The assumption Equation (41) and the form of ωλ imply that for each r = (x, y) ∈�0 there exists exactly
one λ such that

y = ωλ(x).

We define ϕ :�0 → R by setting ϕ(r)= λ, that is, by

y = α(ϕ(r))x2
+β(ϕ(r))x +ϕ(r),

r = (x, y) ∈�0. The implicit function theorem and the differentiability of α, β imply that ϕ is continu-
ously differentiable and the derivatives of ϕ at r = (x, y) are given by

∂ϕ

∂x
= −

2αx +β

α′x2 +β ′x + 1
,

∂ϕ

∂y
=

1
α′x2 +β ′x + 1

, (45)

where α, β, α′, β ′ are evaluated at ϕ(r). We have α′
≥ 0, β ′

≥ 0 by Equation (41) and hence the denom-
inators in Equation (45) are ≥ 1. Since the numerators are bounded as α, β are continuous on [0, h], we
see that the partial derivatives Equation (45) are bounded on �0. Hence |∇ϕ| is also bounded. We have

Tλ
s = GH1 ϕ−1(λ),

where G :�0 → Sym is given by
G(r)= Tλ

s (r),

r ∈�0, and where λ stands for ϕ(r). From the expression Equation (43), we find that G is bounded on
�0. Proposition 2.3 then says that we have Equation (44), where

T s(r)=

{
|∇ϕ(r)|G(r), if r ∈�0,

0, if r ∈� \�0,

r ∈�. Thus T s is bounded. Noting that V0 is dense in V , we see that a combination of Propositions 6.1
and 3.2 (ii) completes the proof. �
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Figure 4. Panel with a symmetric opening.

7. A panel with a symmetric opening

Let us consider a rectangular panel � with base b = b1 + 2b2, height h = h1 + h2, and a symmetric
opening of dimensions b1 and h1 (Figure 4), that is clamped at its base and subjected to a vertical load
p0, uniformly distributed on its top. We set

D = (0, b2)× {h} ∪ (b1 + b2, b)× {h}, S = ∂� \ D,

b = 0 in �,

s =

{
p0 j , on (0, b)× {0},

0, on S \ (0, b)× {0},

p0 > 0.
Let λ > 0, µ > 0, and consider the parabola

γ λ,µ = {(x, ωλ,µ(x)) ∈ R2
: b/2 −µ < x < b/2 +µ},

where ωλ,µ : (b/2 −µ, b/2 +µ)→ R is defined by

ωλ,µ(x)= λ+ (h − λ)(x − b/2)2/µ2,

b/2 −µ < x < b/2 +µ. Let

A = {(λ, µ) ∈ (0,∞)× (0,∞) : γ λ,µ ⊂�}

be the set of all pairs (λ, µ) for which the parabola γ λ,µ is wholly contained in the panel �. One has
[Lucchesi et al. 2006, Section 6]:

A is nonempty ⇔ ζ ≤ 4ξ(ξ + 1),

A has a nonempty interior ⇔ ζ < 4ξ(ξ + 1),
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where ξ := b2/b1, ζ := h1/h2. If (λ, µ) ∈ A, we define the sets �λ,µ± by

�
λ,µ
− = {r = (x, y) ∈� : |x − b/2|< µ, y > ωλ,µ(x)},

�
λ,µ
+ =� \ (�

λ,µ
− ∪ γ λ,µ).

Proposition 7.1. Let (λ, µ) ∈ A and define the measure Tλ,µ by

Tλ,µ
= Tλ,µ

r L2 �+ Tλ,µ
s H1 γ λ,µ, (46)

where Tλ,µ
r and Tλ,µ

s are bounded functions on � and γ λ,µ, respectively, given by

Tλ,µ
r (r)=

{
−p0 j ⊗ j , if r ∈�

λ,µ
+ ,

0, otherwise,

r ∈�, and Tλ,µ
s (r)= σ λ,µ(r)Tλ,µ(r)⊗ Tλ,µ(r),

where

σ λ,µ(r)= −
p0
√
µ4 + 4(h − λ)2(x − b/2)2

2(h − λ)
,

r = (x, y) ∈ γ λ,µ. Then Tλ,µ is an admissible stress field weakly equilibrating the loads (s, 0).

We emphasize that for all (λ, µ) ∈ A the stress field Tλ,µ equilibrates the same loads.

Proof. This follows from the considerations in [Lucchesi et al. 2006, Examples 3 and 4]. �

Proposition 7.2. If A has a nonempty interior, then the loads (s, 0) are strongly compatible. In fact,
there exists a bounded admissible stress field T on � strongly equilibrating them.

Proof. Let (λ0, µ0) be an interior point of A, hence (λ, µ)∈ A for all (λ, µ) sufficiently close to (λ0, µ0).
Therefore, setting

α := (h − λ0)/µ
2
0, λ̂(µ)= h −αµ2,

we have (λ̂(µ), µ) ∈ A for all µ ∈ 3 := (µ0 − ε, µ0 + ε), where ε > 0 is sufficiently small. If Tλ,µ

denotes the measure Equation (46), then by Proposition 3.2 (i), the measure

T :=

∫
3

Tλ̂(µ),µdµ

weakly equilibrates the loads (s, 0). We write T = Tr + Ts , where

Tr =

∫
3

Tµ
r dµ, Ts =

∫
3

Tµ
s dµ,

Tµ
r = T λ̂(µ),µ

r L2 �, Tµ
s = T λ̂(µ),µ

s H1 γ λ̂(µ),µ.

By Proposition 2.2, Tr = T r L2 �, where

T r (r)=

∫
3

T λ̂(µ),µ
s (r)dµ,

r ∈�. Since T λ̂(µ),µ
s is bounded independently of µ if µ0 − ε < µ < µ0 + ε, we see that T r is bounded

on �.



INTEGRATION OF MEASURES AND ADMISSIBLE STRESS FIELDS FOR MASONRY BODIES 695

Furthermore, one finds that γ λ̂(µ),µ = ϕ−1(µ), where ϕ :�→ R is defined by

ϕ(r)=

√
(x − b/2)2 + (h − y)/α,

r = (x, y) ∈�. Let

�0 =

⋃
{γ λ̂(µ),µ : µ0 − ε < µ < µ0 + ε} ≡ ϕ−1((µ0 − ε, µ0 + ε)).

The measure Tµ
s can be written as

Tµ
s = GH1 ϕ−1(µ),

where G :�0 → Sym is given by
G(r)= T λ̂(µ),µ

s (r),

r ∈�0, where µ stands for ϕ(r). One easily finds that ϕ is continuously differentiable on � with bounded
derivatives on �0; in particular, |∇ϕ| is bounded on �0. Furthermore, one has

|σ λ̂(µ),µ(r)| ≤
p0

2α

√
1 +α2b2, r ∈ γ λ̂(µ),µ,

which implies that G is bounded on �0. Proposition 2.3 then says that Ts = T sL2 �, where

T s(r)=

{
(2ε)−1

|ϕ(r)|G(r), if r ∈�0,

0, otherwise,

r ∈�, which is a bounded function by the above.
We thus conclude that

T = TL2 �,

where T = T r + T s is a bounded function on �. A reference to the density of V0 in V and to Propositions
7.1 and 3.2 (ii) then completes the proof. �
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CONCENTRATED FORCE ACTING ON A POWER LAW CREEP HALF-PLANE

JEFFREY JORDAN, IWONA JASIUK AND ALEKSANDER ZUBELEWICZ

The problem of concentrated force acting on a half-plane made of a power-law creep material is solved
analytically. In our approach, the constitutive equation that describes the process of dilatational defor-
mation is omitted. The incomplete material description is used for constructing a solution by bringing
the dilatational deformation to zero and, in this manner, making the material incompressible. We find
solutions for two cases; one solution is for a linear viscous material, while the second is for a power-law
material where the power exponent is equal to three. Solutions of the two problems are found to be very
different. While the linear viscous solution is found to be the same as the linear elastic solution, the
nonlinear solution is found to be significantly different. This result may give rise to a new experimental
technique for characterization of materials with a nonlinear creep behavior.

1. Introduction

The problem of concentrated force acting on a linear elastic and isotropic half-space was solved by Boussi-
nesq [1885] in three dimensions and by Flamant in 1892 (see [Love 1944; Malvern 1969; Timoshenko
and Goodier 1970] for details) in two dimensions. Some recent solutions addressed a concentrated force
acting on a linear elastic half-space [Jager 1997; Levy 2002; Unger 2002; Marzocchi and Musesti 2004], a
transversely isotropic elastic half-space [Liao and Wang 1999], an inhomogeneous transversely isotropic
elastic half-space [Wang et al. 2003], an elastic nonlocal half-plane [Artan 1996], a gradient elasticity
half-space [Zhou and Jin 2003; Li et al. 2004; Lazar and Maugin 2006], an elastic linear hardening
half-plane [Gao 1999], and a piezoelectric half-plane [Sosa and Castro 1994].

In this paper we focus on the problem of concentrated force acting on a half-plane made of a power-
law creep material in the context of plane strain (see Figure 1). In our approach, following [Zubelewicz
2005], we omit the constitutive equation that describes dilatancy. In this manner we are able to examine
various kinematically admissible solutions, from which we narrow our search to the solution for an
incompressible material.

Recall that in the Flamant solution the only nonzero stress term is

σrr = −
2P
π

cos θ
r
.

For the two dimensional case, the equivalent Tresca stress (the maximum shear stress) is

σeq =

∣∣∣σrr

2

∣∣∣= P
π

cos θ
r
.

Keywords: concentrated force, power-law material, creep, viscous material, incompressible material.
The authors acknowledge funding from the National Science Foundation, grant no. CMS-0085137 (grant monitor Dr. Ken
Chong).
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Figure 1. Force acting on a half-plane.

In this paper, the radial stress σrr for a linear elastic case will be compared to the radial stress for a
power-law material, where the power is assumed to be one and three.

2. Problem statement

We study the problem involving a concentrated force acting on a half-plane made of a power-law creep
incompressible material in the context of plane strain (see Figure 1). Thus, the applied load P has
units of load per unit thickness. Following the technique presented in [Zubelewicz 2005], we convert
all functions from a real into a complex domain, where the complex variables are defined, as usual, by
z = x + iy and z∗

= x − iy.
The complex shear strains can be defined as

η = (εxx − εyy)+ 2iεxy, η∗
= (εxx − εyy)− 2iεxy .

The complex displacements, v = (ux + iu y) and v∗
= (ux − iu y), and the strains are coupled and satisfy

the relations

η = 2
∂v

∂z∗
, η∗

= 2
∂v∗

∂z
.

Using the above equations it is possible to express the displacements ux and u y in terms of complex
shear strains as

ux =
1
4

[∫
η dz∗

+

∫
η∗ dz

]
+

1
2
[ψv(z)+ψ∗

v (z
∗)], u y =

1
4i

[∫
η dz∗

−

∫
η∗ dz

]
+

1
2i

[ψv(z)−ψ∗

v (z
∗)],

where the additional displacement functions ψv and ψ∗
v must satisfy kinematic boundary conditions. In

order to find ux and u y , a path-dependent integration is chosen such that one of the complex variables
is kept constant while integrating with respect to the other [Vekua 1962]. Then, the rate of volumetric
change (dilatational deformation) can be defined as

İε =
1
2

[∫
∂η̇

∂z
dz∗

+

∫
∂η̇∗

∂z∗
dz

]
+ ψ̇ ′

v(z)+ ψ̇
∗

′

v (z
∗), ψυ

′
=
∂ψv

∂z
. (1)
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Equation (1) is written in a rate form, where the dot indicates that it is a time derivative. It has been shown
in [Zubelewicz 2005] that kinematical compatibility is always satisfied when the dilatant deformation is
expressed through Equation (1).

Next, the complex shear stresses are defined as τ = 1σ + 2iσxy and τ ∗
= 1σ − 2iσxy, where

1σ = σxx − σyy . The Tresca stress is equal to σeq =
1
2

√
ττ ∗.

The power-law creep equation which couples the equivalent strain rate and equivalent stress is

ėeq =3
(σeq

σo

)p
. (2)

Assuming associated flow rules, we can express the constitutive Equation (2) in terms of η̇ and τ such
that

η̇ =
3

(2σo)p τ
p+1

2 (τ ∗)
p−1

2 , η̇∗
=

3

(2σo)p τ
p−1

2 (τ ∗)
p+1

2 . (3)

The proposed formulation allows for a separation of the material response due to shear and dilatancy. As
we notice, neither the hydrostatic stress (Iσ = σxx +σyy) nor the rate of volumetric change (1) is involved
in the constitutive (3).

For completeness, the equilibrium equations are

∂τ

∂z
+
∂ Iσ
∂z∗

= 0,
∂τ ∗

∂z∗
+
∂ Iσ
∂z

= 0. (4)

We solve the equilibrium equations (4) with the use of two stress functions, ψσ (z) and �(z, z∗), where
� is a real function of complex arguments. We satisfy these equations by representing the complex
stresses as

τ = ψ∗

σ (z
∗)+

∫
∂�

∂z∗
dz, τ ∗

= ψσ (z)+
∫
∂�

∂z
dz∗, Iσ = −�. (5)

Thus there are six variables to be determined: three complex stresses (τ, τ ∗, Iσ ) and three complex
strain rates (η̇, η̇∗, İε). On the other hand, there are five equations available: the kinematical compatibility
equation (1), two constitutive equations (3), and two equilibrium equations (4). The sixth governing
equation is the requirement of material incompressibility. We enforce the condition assuming that the
dissipation energy due to volumetric change is equal to zero, while the dilatational deformation is non-
negative in all points of the material. First, we calculate the total rate of dissipation

Ẇ t
=

∫
1V

σeq ėeqdV +
1
2

∫
1V

Iσ İεdV . (6)

Then, we bring the second term in (6) to zero. This assures that there is no volumetric change and,
therefore, the material is incompressible. Our chosen stress functions are

ψσ (z)=

∑
m

Cmzλm , �=

∑
n,m

[
Dnmzα

n
m (z∗)β

n
m + D∗

nmzβ
n
m (z∗)α

n
m
]
, (7)

where λm satisfies the condition λm = αm +βm for any n,m = 1, 2, . . .∞. For an asymptotic analysis,
n is equal to 1, and can be omitted in further equations.



700 JEFFREY JORDAN, IWONA JASIUK AND ALEKSANDER ZUBELEWICZ

Now, substituting Equation (7) into (5) leads to

τ = C∗(z∗)λ +

∑
m

( βm Dm

αm + 1
zαm+1(z∗)βm−1

+
αm D∗

m

βm + 1
zβm+1(z∗)αm−1

)
,

τ ∗
= Czλ +

∑
m

( βm D∗
m

αm + 1
(z∗)αm+1zβm−1

+
αm Dm

βm + 1
(z∗)βm+1zαm−1

)
,

Iσ = −�= −

∑
m

(
Dmzαm (z∗)βm + D∗

mzβm (z∗)αm
)
,

(8)

where C is a real constant, C∗
= C , Dm = D0

meiφm , and D∗
m = D0

me−iφm , where φm need to be defined
together with D0

m . Thus, in summary, we will find these constants through the process of minimization
of the plastic dissipation rate due to volumetric change (the second term in (6)) which results in solutions
for incompressible materials.

3. General solution

In the case of concentrated force acting on a half plane (1), there are zero tractions along the free surfaces,
thus σyy ± iσxy = 0, at θ = 0, π. In the complex domain, the conditions are σyy + iσxy =

1
2(Iσ − τ ∗)= 0

and σyy − iσxy =
1
2(Iσ − τ)= 0, where the second equation is redundant. Using the definitions of the

complex stresses given in (8), we find

− Czλ −

∑
m

[
D∗

m

( βm

αm + 1
zβm−1(z∗)αm+1

+ zβm (z∗)αm
)

+ Dm

( αm

βm + 1
zαm−1(z∗)βm+1

+ zαm (z∗)βm
)]

= 0. (9)

In a polar coordinate system z = R(cos θ + i sin θ), and z∗
= R(cos θ − i sin θ). For θ = 0, (9) reduces

to

C +

∑
m

(λ+ 1)
( Dm

βm + 1
+

D∗
m

αm + 1

)
= 0. (10)

When θ = π , the equation becomes

C(cos λπ + i sin λπ)+
∑

m

[ Dm

βm + 1
(λ+ 1)

{
cos[(αm −βm)θ ] + i sin[(αm −βm)θ ]

}
+

D∗
m

αm + 1
(λ+ 1)

{
cos[(αm −βm)θ ] + i sin[(αm −βm)θ ]

}]
= 0. (11)

Equation (10) is used to solve for C , and then (11) becomes

∑
m

(λ+ 1)
[
−

( D∗
m

αm + 1
+

Dm

βm + 1

)
(cos λπ+ i sin λπ)+

Dm

βm + 1

{
cos[(αm −βm)θ ]+ i sin[(αm −βm)θ ]

}
+

D∗
m

αm + 1

{
cos[(αm −βm)θ ] + i sin[(αm −βm)θ ]

}]
= 0. (12)

It follows from (12) that λ= − 1. Then, from (10), C is found to be equal to zero.
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Applying these conditions to the complex stresses we find

τ = −

∑
m

D0
m

[
eiφm zαm+1(z∗)βm−1

+ e−iφm zβm+1(z∗)αm−1
]
,

τ ∗
= −

∑
m

D0
m

[
eiφm (z∗)αm+1zβm−1

+ e−iφm (z∗)βm+1zαm−1
]
,

Iσ = −

∑
m

D0
m

[
eiφm zαm (z∗)βm + e−iφm zβm (z∗)αm

]
.

At this point it is convenient to convert the complex stresses into the real domain. The stress compo-
nents are found as

σxx =
1
2 R−1

∑
m

−2D0
m
[
eiφm cos [(αm −βm + 2)θ ] − eiφm sin [(αm −βm − 2)θ ]

]
,

σyy = − R−1
∑

m

D0
m
[
(− cos 2θ + 1)(eiφm cos [(αm −βm)θ ] − eiφm sin [(αm −βm)θ ]

]
,

σxy = − R−1
∑

m

D0
m
[
sin 2θ(eiφm cos [(αm −βm)θ ] − eiφm sin [(αm −βm)θ ]

]
,

and in the polar coordinate system, there is only one nonzero stress component, namely

σrr = − 2R−1
∑

m

D0
m[eiφm cos[(αm −βm)θ ] − e−iφm sin[(αm −βm)θ ]].

Recalling that αn +βn = λn = − 1 and knowing that σrr is symmetric with respect to y (at θ = π/2),
this allows us to determine the parameters αn and βn such that

(αn −βn)+
2φn

π
= 2n, αn +βn = − 1.

In the final form we find

αn = n −
φn

π
−

1
2
, βn = − n +

φn

π
−

1
2
,

where n = 1, 2, 3, . . . ,∞.

3.1. Linear case. When p = 1, the rate of volumetric change

İε =
3

4σo

(∫ ∂τ

∂z
dz∗

+

∫
∂τ ∗

∂z∗
dz
)

+ ψ̇ ′

v(z)+ ψ̇
∗

′

v (z
∗)

is simplified and takes the form

İε =
3

σo
R−1

∑
m

D0
m(cos[φm + δmθ ])+ A1 sin λθ,

where the constant A1 comes from the functions ψ ′
v(z)ψ and ψ∗

′

v (z
∗). The solution is obtained by

selecting the parameters (A1, D0
m , and φm) such that the condition for material incompressibility is

satisfied. These constants are listed for reference in Table 1.
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3.2. Non-linear case ( p = 3). In the nonlinear case, the expression for the rate of volumetric change is

İε = −
3

8σ 3
o

R3λ
∑

n,m,k

D0
m D0

m D0
m

[(αn+αm+αk+1
βn+βm+βk

+
βn+βm+βk+1
αn+αm+αk

)
×cos [φn+φm+φk+(δn+δm+δk) θ]

+2
(βn +αm +αk + 1

αn +βm +βk

)
× cos [φn −φm −φk + (δn − δm − δk) θ]

+2
(βn +αm +αk + 1

αn +βm +βk

)
× cos [φn +φm −φk + (δn + δm − δk) θ]

+

(αn +βm +αk + 1
βn +αm +βk

+
βn +αm +βk + 1
αn +βm +αk

)
× cos [φn +φm −φk + (δn + δm − δk) θ]

]
+A1 sin [3λθ ] ,

where δm = αm −βm . Again, as in the linear case, the solution is obtained by determining A1, D0
m , and

φm for a material that exhibits zero dissipation energy due to dilatation. These constants are again given
in Table 1.

4. Discussion

Since incompressibility is our requirement, we evaluate the solutions at each point by comparing the
rate of the volumetric change (an error of the solution) to the shear strain rates. We generated solutions
assuming a three term series (D0

m, φm) for m = 1, 2, and 3.
The calculated constants for cases p = 1 and p = 3 are given in Table 1. A contour plot of the

maximum shear strain rate and the rate of volumetric change is presented in Figure 2 (left). The large
curve is the strain rate, while the small curve near the origin is the rate of volumetric change. As can be
seen (for example, in Figure 2, left), the rate of volumetric change is negligible compared with the shear
strain rate, with an error less than 3.5%. In the case of p = 3, the contours are very different (compare
Figure 2, left and right). As before, we are satisfied with an error less than 3.5%.

In our next step we examine stress σrr . The contour plot for the case of p = 1 is essentially the same
as that for Flamant’s solution (see Figure 3). The slight difference in the shapes is due to numerical
error. Taking higher order terms in D0

m and φm would reduce the discrepancies even further. Thus the
solution for a linear viscous case, having linear stress-strain rate relations, is the same, within numerical
accuracy, as for the linear elastic case, having linear stress-strain constitutive relations. This is expected
since the governing equations for these two cases are analogous, and thus can serve as a check of our
method. Contours of the stress σrr for a power-law material, where the power is equal to one and

p A1 D0
1 D0

2 D0
3 φ1 φ2 D3

1 −0.80 −8.16 −5.16 3.83 −0.19 3.49 5.70
3 −6.70 −149.59 −158.42 −9.42 0.78 3.89 6.65

Table 1. Calculated constants used to solve cases p = 1 and p = 3.
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Figure 2. Contours of maximum strain rate (large curve) versus change of volume
(small curve near origin) for p = 1 (left) and p = 3 (right).

Figure 3. σrr for p = 1 versus elastic case.

three, are shown in Figure 4. Again, the contours for p = 1 and p = 3 are very different. Thus, the
contours of the equivalent shear strain rate and stress for the two materials are surprisingly different (see
Figure 2 and Figure 4). In summary, the new technique provides a new way to look at the problem of a
concentrated force on a half-plane. Although the methods of finding the linear elastic and linear viscous
solutions are completely different, the results are the same. That proves the validity of the proposed
technique.

Figure 4. σrr for p = 3 versus p = 1.
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The power-law material with power three (p = 3) represents materials which have viscous-like behav-
ior, and thus are close to their melting point. One can construct a solution for higher powers such as five,
which would represent a ductile material at room temperature. The solution would be obtained in the
same manner but would involve more terms in the series and thus a more extensive algebra. The solution
obtained in this paper for a power of three could be suitable for nonNewtonian fluids, solder pastes used
in electronic packaging industry, and in geological applications involving sand or clay saturated in oil,
or other oil-like fluids with suspensions, for example.

The problem solved in this paper could also be studied experimentally. The set-up would involve
a material under a plane strain geometry constrained at the ends, with one side having a transparent
frictionless plate. The loading would be a line load perpendicular to the plane of observation. Such a
set-up would allow us to measure experimentally the rate of surface subsidence (surface velocity). In
power-law materials, given by Equation (2), where the power p is greater than one, the profile of the
out of plane surface velocity is proportional to r−(p−1). This relation between surface velocity and p
could be used to obtain p for a given viscous material from surface velocity measurements. Thus, we
conjecture that such an experimental set-up, if done successfully (meaning plane strain conditions and
frictionless boundary conditions would be achieved) could serve as a new experimental method, a two
dimensional analog to indentation techniques, to characterize a constitutive law of viscous (fluid-like)
materials which are difficult to test otherwise. We plan to test this conjecture in the future.

5. Summary

We examined a new solving scheme for ductile materials that obeyed a power-law creep behavior. We
constructed solutions for a viscous linear (p = 1) and power-law nonlinear (p = 3)material. We compared
the linear elastic (Flamant) and linear viscous solutions and have shown that both solutions produce the
same distribution of stresses, and that the strain rate corresponds one to one to strain in an elastic material.
We used this comparison to validate our approach. We are intrigued with the solution for the nonlinear
power-law material where the stress exponent p is equal to three. The two materials (p = 1 and p = 3)
have very different stress contours. The theoretical result suggests the feasibility of a two dimensional
indentation test which could be used for characterization of constitutive laws of viscous materials.
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OPTIMIZATION OF PENETRATION INTO GEOLOGICAL AND CONCRETE
SHIELDS BY IMPACTOR WITH JET THRUSTER

GABI BEN-DOR, ANATOLY DUBINSKY AND TOV ELPERIN

High-speed penetration into soil, rock, concrete, and ice by impactors equipped with a jet thruster is
optimized using analytical and numerical methods. It is shown that using a jet thruster with optimum
burning programs bears considerable promise for increasing the depth of penetration. In this study, we
used modified Young’s penetration equations with a smooth approximation of the dependence between
the depth of penetration and impact velocity for the description of impactor-shield interaction.

1. Introduction

Optimization of jet propulsion in media with drag was considered mainly with applications to planes and
missiles. Surveys of the obtained results and references can be found in the studies by Leitmann [1962],
Kosmodemiansky [1966], and Tertychny-Dauri [2004]. Using jet thrusters for increasing the depth of
penetration into solid media was analyzed in only a few publications. Sagomonyan [1988] formulated
two problems. In the first problem, a jet thruster was assumed to operate during a fixed time interval, and,
in order to maximize the depth of penetration (DOP) of penetrator into soil, it was necessary to determine
the moment at which the jet thruster must be switched on. In the second problem, a jet thruster could
operate along a fixed length of the trajectory, and, in order to provide the maximum DOP, it was necessary
to determine the depth at which the jet thruster must be switched on. The second problem was solved for
a penetrator with a conical nose, assuming that the mass of the penetrator remains constant. Gould [1997]
suggested engineering designs whereby a rocket motor is attached to the penetrator and operates during
penetration. Ben-Dor et al. [2007] considered maximization of the DOP as an optimization problem for
a penetrator with a variable mass. They noticed a similarity between this problem and maximization of
the distance of a horizontal flight in the atmosphere. Various formulations of the latter problem were
considered in the past [Hibbs 1952; Cicala and Miele 1956; Miele 1957; Miele 1962; Krotov 1995].
However, it transpired that this similarity had limited applications because of different drag laws in the
atmosphere and soil. Only general properties of the solutions obtained for an arbitrary dependence of
drag force upon the instantaneous mass and velocity, D = D(m, v), can be used for solving penetration
optimization problems. Consequently, optimization of the penetrator with a jet thruster must be analyzed
separately. In the study by Ben-Dor et al. [2007], the authors employed the simplest penetration model
in which the drag force is a linear function of a squared velocity. Combining analytical and numerical
methods, they determined the optimum burning programs and compared the obtained results with more
simple burning programs for controlling the motion of a penetrator.

Keywords: rock, concrete, soil, penetration, optimization, jet thruster.

707



708 GABI BEN-DOR, ANATOLY DUBINSKY AND TOV ELPERIN

In the present study, we further develop the approach suggested in [Ben-Dor et al. 2007] for a penetra-
tion model with a drag force depending upon the instantaneous velocity and the instantaneous mass of the
impactor, whereby, as often happens in practice, the dependence of the drag force in different intervals of
its arguments may be determined by different formulas. As a base model, we employed the well known
set of models suggested by Young [1997] which is widely used for calculating the DOP in soil, rock,
concrete, ice, and frozen soil. The shortcoming of these models is a nonsmooth variation of the DOP
with impact velocity which is especially inconvenient in solving optimization problems. Consequently,
we suggested a new approximation which is practically as simple and accurate as the original one but
has continuous first and second derivatives. The latter renders this approximation more convenient, not
only for the goals of the present study, but also for general applications. For a drag force determined by
this modified Young’s model (MYM), we analytically found the optimal burning programs for the case
without an upper bound on the mass flux of the thruster. We suggested a numerical procedure based on
dynamic programming for the optimization of the burning program for the general case of D = D(m, v)
and a tailored version of this procedure for (MYM). Calculations presented here demonstrate that the
appropriate choice of parameters for the jet thruster allows achieving a considerable increase of the DOP.

2. Formulation of the problem

Consider a high speed normal penetration of a rigid sharp striker (a body of revolution) with a jet thruster
into a semiinfinite shield along the axis h. The coordinate h, the instantaneous depth of penetration, is
defined as the distance between the nose of the impactor and the front surface of the shield.

Since the effect of gravity during high speed penetration in a dense medium can be neglected, motion
of the impactor is governed by the following equation of motion of a projectile with a variable mass:

m
dv
dt

+ c
dm
dt

= −D(m, v), D(m, v) > 0, (1)

where v is the velocity of the impactor, c is the relative exit velocity of gases at the nozzle of a jet thruster,
m is the instantaneous mass of the impactor that varies in the range between the initial value mimp to the
final value mres, that is,

mres ≤ m ≤ mimp, (2)

and D is the drag force depending not only on m and v, but also on parameters determining mechanical
properties of the shield and the shape of the projectile.

It is assumed that the thruster is capable of delivering all mass fluxes in the range between zero and
the maximum value µmax:

−µmax ≤
dm
dt

≤ 0. (3)

The constraint imposed on the acceleration is as follows:

|dv/dt | ≤ χmaxg, (4)

where g is the acceleration of gravity, and χmax is the given upper bound for the overload of the impactor.
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Since d/dt = (d/dh) · (dh/dt) = vd/dh = v(dm/dh) · (d/dm), Equation (1) can be rewritten as
follows:

v
dm
dh
(mv′

+ c)= −D(m, v), v′
=

dv
dm

. (5)

The DOP, H , for a given impact velocity, vimp, is defined as the depth at which the velocity of the
impactor vanishes. Equation (5) implies the following expression for H :

H =

∫ mimp

mres

(mv′
+ c)v

D(m, v)
dm. (6)

We consider v to be a function of m. This is convenient because penetration is associated with a decrease
of m, and v is a single-valued function of m except for the case in which m = const (inertial, or passive
motion of the penetrator). The following conditions are valid for the initial and terminal points of the
impactor’s path:

v(mimp)= vimp, v(mres)= 0. (7)

Using Equation (5) we obtain that

dm
dt

= v
dm
dh

= −
D(m, v)
mv′ + c

, (8)

and Equation (3) can be rewritten as

0 ≤
D(m, v)
mv′ + c

≤ µmax. (9)

Using the relationship dt = −(c + mv′)dm/D(m, v) obtained from Equation (8) we can rewrite Equation
(3) in the form: ∣∣∣∣D(m, v)v′

mv′ + c

∣∣∣∣≤ χmaxg. (10)

We also assume that
v ≥ 0, v ≤ vmax, (11)

where vmax is the maximum velocity of the impactor.
The problem is to determine the function v(m) that provides the maximum DOP, H , in Equation (6),

taking into account the constraints given by Equations (7), (9), (10) and (11). Function D(m, v) and the
parameters µmax, χmax, vmax, mimp, mres, and vimp are assumed to be given.

Inequalities in Equation (9) imply two situations: the possibility of the vertical subarcs, m = const
when v′

= ∞, and the restrictions mv′
+ c ≥ D(m, , v)/µmax and mv′

+ c ≥ 0 when v′ <∞. Clearly, the
latter inequality can be omitted and we can write this constraint as follows:

mv′
+ c ≥ D(m, v)/µmax, if v′ <∞. (12)

For m = const (v′
= ∞), the constraint in Equation (10) can be simplified:

D(m, v)/m ≤ χmaxg, if m = const . (13)
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3. Generalized Young’s penetration model

Numerous simplified models were proposed for high speed penetration into different media. An overview
of these models may be found, for instance, in the recent monograph [Ben-Dor et al. 2006] and the review
[Ben-Dor et al. 2005]. In this study are employed the well known Young’s penetration equations [Young
1997] which determine the DOP into soil, rock, and concrete (SRC) shields as well as into ice and frozen
soil (IFS) in the following unified form:

P(vimp)

k
=

{
P̃a(vimp) if vimp < ṽ∗

P̃b(vimp) if vimp ≥ ṽ∗,
(14)

where

P̃a(vimp)= α̃1 ln(1 + α̃2v
2
imp), P̃b(vimp)= k1(vimp − v0), (15)

k = k0θ(m), k0 = S̃ Ñ/ Ãκ1, (16)

θ(m)=

{
σmκ1+κ2 if SRC

mκ1 ln(50 + 0.29m2) if IFS,
(17)

P is the DOP, S̃ is a coefficient depending on the mechanical properties of the shield, Ñ depends on
the shape of the impactor, Ã is the cross sectional area of the impactor, v0 = 30.5, α̃2 = 0.000215,
ṽ∗ = 2v0 = 61, other coefficients are presented in Table 1. It is assumed that the mass of the projectile
is constant. The parameters of the model are chosen such that the variables are measured in SI units
[Young 1997]. Unfortunately, this widely used model is inconvenient in theoretical analysis because it
employs the dimensional coefficients and because it is described by a discontinuous function.

Indeed, Young’s dependence in the range between P/k = P̂ and vimp for SRC is described by a
function that is discontinuous at vimp = ṽ∗, P̃a(ṽ∗) = 0.000470, Pb(ṽ∗) = 0.000549. Inaccuracy in
calculation is a plausible reason for this discontinuity, and can be corrected by choosing α̃1 such that
P̃a(ṽ∗)= P̃b(ṽ∗). Then we obtain that

α̃1/k1 = v0/ln(1 + α̃2v
2
∗
)= 51.89. (18)

The corrected values α̃1 that enforce the continuity of P̂(vimp) are presented in Table 1. However, in
our study we need a more smooth approximation of the function P̂(vimp), namely, it must have the

Shield’s material m κ1 κ2 σ α̃1 k1 α̃1, corrected

Soil
2 ≤ m < 27 0.7 0.4 0.27 0.0008 0.000018 0.0009340

m ≥ 27 0.7 0 1 0.0008 0.000018 0.0009340

Rock, Concrete
5 ≤ m < 182 0.7 0.15 0.46 0.0008 0.000018 0.0009340

m ≥ 182 0.7 0 1 0.0008 0.000018 0.0009340

Ice, Frozen Soil 0.6 0.00024 0.0000046 0.0002387

Table 1. Parameters of the models.
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continuous second derivative for all vimp > 0. Toward this end, we modify the model for the relatively
small vimp keeping the Young’s approximation for large vimp. We look for this approximation of the
function P(vimp) in the following form:

P(vimp)

k
=

{
Pa(vimp) if vimp < v∗

P̃b(vimp) if vimp ≥ v∗,
(19)

where

Pa(vimp)=
(
α2v

2
imp +α1vimp +α0

)
v2

imp, vimp ≤ v∗ (20)

v∗ = sv0, s ≥ 2. (21)

The constraint in Equation (21) follows from the fact that the function P̃b(vimp) is defined only for
vimp ≥ ṽ∗ = 2v0.

The problem is to find such α0, α1, α2, and v∗ (or s) that

Pa(v∗)= P̃b(v∗), P ′

a(v∗)= P̃ ′

b(v∗), P ′′

a (v∗)= P̃ ′′

b (v∗), v∗ = sv0, (22)

where

P ′

a(vimp)= 4α2v
3
imp + 3α1v

2
imp + 2α0vimp, P̃ ′

b(vimp)= k1,

P ′′

a (vimp)= 12α2v
2
imp + 6α1vimp + 2α0, P̃ ′′

b (vimp)= 0.
(23)

In addition, by physical reasoning, Pa must be an increasing function.
Equation (22) yields a system of linear equations with respect to α0, α1, and α2 which has the following

solution:

α0 =
3k1(s − 2)

s2v0
, α1 =

k1(8 − 3s)
s3v2

0
, α2 =

k1(s − 3)
s4v3

0

. (24)

Let us prove that for any s ≥ 2, the function Pa(vimp) increases when 0< vimp ≤ sv0. This occurs if
P ′

a(vimp) > 0 in the same range of vimp, or if ω(V ) > 0 for 0< V ≤ 1, where

ω(V )=
1

k1v0V
P ′

a(sv0V )= 4(s − 3)V 2
+ 3(8 − 3s)V + 6(s − 2), V =

vimp

sv0
. (25)

Let 2 ≤ s < 3. Since ω(0)≥ 0 and ω(1)= s > 0, the convex function ω(V ) > 0 for 0< V ≤ 1.
The discriminant of the quadratic equation ω(V )= 0 is 1(s)= 3s(16−5s). Since 1< 0 and s −3> 0

when s > 16/5, then ω(V ) > 0 for s > 16/5 = 3.2.
Let 3 ≤ s < 3.2. Then there are two different roots of the equation ω(V ) = 0, V1 and V2. The Viet

formula implies that both the roots are positive. The smaller root, V1, is

V1(s)= [3(3s − 8)−
√
1(s)]/[8(s − 3)].

It is easy to prove that V1 > 1 if 3 ≤ s < 3.2. Since ω(0) > 0 and all the roots are larger than 1, ω(V ) > 0
for 0< V ≤ 1.

In order to complete the analysis, let us consider ω(V ) for two remaining values s. If s = 3 then
ω(V )= 3(2 − V ) > 0, and if s = 3.2 then ω(V )= 0.8(V − 3)2 > 0, for 0< V ≤ 1.

Thus we proved that Pa(vimp) is an increasing function for 0< vimp ≤ sv0 when s ≥ 2.
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Smooth approximation of the function P = P(vimp) in Equation (19) allows one to determine the
dependence of the drag force, D, on the instantaneous velocity, v, that yields the following correlation
for motion of the impactor with a constant mass m:

D =
m
k

×

{
Da if v < v∗,

Db if v ≥ v∗,
(26)

where
Da(v)= v/P ′

a(v)= (4α2v
2
+ 3α1v+ 2α0)

−1,

Db(v)= v/P̃ ′

b(v)= v/k1.
(27)

The validity of this statement can be verified directly by determining the DOP from the equation of
motion of the impactor, mvdv/dh = −k D. Equation (22) implies that the function D has a continuous
derivative with respect to v. Note that a similar approach was used in [Eisler et al. 1998] for the case in
which the dependence of the DOP on vimp is determined by one analytical expression.

By physical reasoning, Da(v) must be a positive increasing function for 0 < vimp ≤ sv0. Since
v/P ′

a(v)= 1/Da(v)= (s/k1)ω(V ), where V = v/(sv0), it is sufficient to show that ω(0) > 0, ω(1) > 0
and ω′(V )= 8(s − 3)V + 3(8 − 3s) < 0 for 0< V ≤ 1. The first and the second inequalities are valid
for s > 2 because ω(0) = 6(s − 2) > 0 and ω(1) = s > 0. Since ω′(V ) is a linear function, the third
inequality is equivalent to the conditions ω′(0)= 3(8 − 3s)≤ 0, ω′(1)= −s ≤ 0 and ω′(0)+ω′(1) 6= 0.
Consequently, s ≥ 8/3 are the permissible values for s.

In order to obtain the most convenient approximation we set s = 8/3 when α1 = 0. Then

D =
m

kk1
×

{
1/(γ0 − γ2v

2) if v < v∗,

v if v ≥ v∗,
(28)

where

γ0 =
2α0

k1
=

6(s − 2)
s2v0

= 0.01844,

γ2 = −
4α2

k1
=

4(3 − s)
s4v3

0

= 0.929318 · 10−6,

v∗ = sv0 = 81.33.

(29)

The modified Young’s approximation and the proposed approximation are compared in Figure 1. In-
spection of Figure 1 shows that the difference between them is negligibly small.

We assume that Equation (28) for the drag force remains valid for motion of the penetrator with a
variable mass.

We assume also that the mass of the impactor does not exceed m ≥ 27 kg or m ≥ 182 kg in the case
of penetration into soil or rock and concrete, correspondingly. This restriction can be relaxed using a
smoother approximation of the function θ(m).

4. Analytical investigation of the limiting case

In order to estimate the upper bound for increasing the DOP by using the jet thruster, let us consider
the problem with the minimum number of constraints. In this version of the statement of the problem,
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Figure 1. Comparison of the corrected Young’s model and the proposed smooth model.

Equation (6) remains valid, and the constraints given by Equation (7), the first equation in Equation (11),
and Equation (12) with µmax = ∞, that is,

mv′
+ c ≥ 0, (30)

are taken into account.
We consider first penetration into nonfrozen soil, rock, or concrete. Then the formula for θ(m) in

Equation (17) reads:
θ(m)= σmκ , κ = κ1 + κ2, (31)

where the values κ1, κ2, and σ are presented in Table 1. We assume that m varies in the range where σ
is constant.

Using Equations (16) and (31), Equation (28) can be written as follows:

D =
m1−κ

σk0k1
×

{
1/(γ0 − γ2v

2) if v < v∗,

v if v ≥ v∗.
(32)

Using the results of [Cicala and Miele 1956] (see also [Miele 1962]) the optimum curve must consist
of the following subarcs:

subarc 1: �(m, v)= 0, where

�(m, v)= (v− c)D(m, v)+ v(cd D/dv− md D/dm), (33)

subarc 2: the subarc m = const, and

subarc 3: the subarc ṁ = −µmax where ṁ = dm/dt .

Subarc 1 represents the solution of the Euler–Lagrange equation; subarc 3 is described by Equation (30)
after replacing ≥ by =.

The above subarcs can be joined in the following sequences:
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(a) if �> 0 in some point then the only sequence m = const ⇒ ṁ = −µmax is possible in this point;

(b) if �< 0 then the inverse sequence ṁ = −µmax ⇒ m = const is permissible;

(c) if �= 0 then the joints �= 0 ⇔ m̄ = const and �= 0 ⇔ ṁ = −µmax are possible.

The arrows indicate the direction of the motion of the penetrator along the subarcs on the m, v plane.
Substituting D from Equation (32) into Equation (33), we obtain:

�=
κm1−κ

σk0k1
×

{
−γ2(γ0 − γ2v

2)−2�a(v) if v < v∗,

�b(v) if v ≥ v∗,
(34)

where
�a(v)= v3

− 3ĉv2
− γ̂0v+ γ̂0ĉ, (35)

with �b(v)= v2, ĉ = c/κ , and γ̂0 = γ0/γ2. Since

�a(−∞) < 0, �a(0) > 0,

�a(v∗)= −�b(v∗)(γ0 − γ2v
2)2/γ2 < 0, �a(+∞) > 0,

(36)

the cubic equation �a(v)= 0 has 3 real roots, but only one root, v×, is located between 0 and v∗:

v× = ĉ + 2
(
γ̂0 + 3ĉ2

3

)1/2

cos
(
ζ

3
+

4π
3

)
, ζ = cos−1

(
3ĉ2

γ̂0 + 3ĉ2

)3/2

. (37)

The dependence v× versus ĉ = c/κ is shown in Figure 2.
Taking into account this result, and that �b(v) > 0 for v ≥ v∗, we conclude that �(v) < 0 when

0 ≤ v < v×, �(v×)= 0, and �(v) > 0 when v > v×. Therefore, the conditions �(v) < 0, �(v)= 0, and
�(v) > 0 correspond to the conditions v̄ < v̄×, v̄ = v̄×, and v̄ > v̄×, respectively.

The equation of the arc 1 reads:
v = v×. (38)
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Figure 2. Solution of the equation �(v)= 0 as a function of the parameter ĉ = cκ .
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Consider a point moving along the curve v = v×, from the location with coordinates (mb, v×) to the
location with coordinates (ma, v×), where mres ≤ ma < mb ≤ mimp. Then the increase of the functional
given by Equation (6) with D determined by Equation (32) along this path reads:

1H/(k0k1)= 0m(ma,mb)= cv×(γ0 − γ2v
2
×
)

∫ mb

ma

dm
m1−κ

= cv̂×(γ0 − γ2v
2
×
)(mκ

b − mκ
a). (39)

Along the line v = v× < v∗, Equation (1) reads:

c
dm
dt

= −
m1−κ

k0k1(γ0 − γ2v
2
×)
. (40)

The solution to Equation (40) with the initial conditions m(tb)= mb is as follows:

m = [mκ
b − τ(t − tb)]1/κ , τ =

κ

ck0k1(γ0 − γ2v
2
×)
. (41)

Increase of the mass of the penetrator from mb to ma occurs up to the time t = ta where ta = tb +

(mκ
b − mκ

a)/τ .
Subarc 2 corresponds to the motion with a constant mass. Assume that the velocity of the impactor

decreases from v = vb to v = va while its mass remains constant, m = m0. Then the increase of the
functional given by Equation (6) is as follows:

1H/(k0k1)= 0(1)v (m0, va, vb)

= mκ
0

∫ vb

va

v(γ0 − γ2v
2)dv

= 0.25mκ
0(v

2
b − v2

a)[2γ0 − γ2(v
2
b + v2

a)] if vb ≤ v×,

(42)

and

1H/(k0k1)= 0(2)v (m0, va, vb)= mκ
0

∫ vb

va

dv = mκ
0(vb − va) if vb ≥ v×. (43)

Along subarc 3, ṁ =−µmax =−∞. The equation of this subarc in the coordinates (m, v) is determined
by Equation (30) after replacing ≥ by =:

mv+ c = 0. (44)

The solution of this ODE with separable variables passing through the point (mimp, v0) can be written as
follows:

v = v0 − c ln(m/mimp). (45)

This trajectory corresponds to the step change of the mass of the penetrator (the pulse burning). This
change of the mass and of the velocity of the penetrator occurs without change of its location.

Analysis of the conditions presented at the beginning of this section shows that three versions of
burning program (BP) are possible, depending on the values of the parameters ĉ and vimp.
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Figure 3. Stages of optimal burning programs for penetration into nonfrozen soil, rock,
and concrete shields, β̄min = 0.

Consider the case when vimp > v∗. Taking into account that v∗ > v×, the optimal BP includes the
following subarcs (Figure 3a) in the coordinates (m, v):

AE : m = mimp, v : vimp → v∗,

EC : m = mimp, v : v∗ → v×,

C D : v = v×, m : mimp → mres,

DB : m = mres, v : v× → 0.

(46)

The corresponding expression for the DOP reads:

H/(k0k1mκ
imp)= 0(2)v (1, v∗, vimp)+0

(1)
v (1, v×, v∗)+0m(m̄res, 1)+0(1)v (m̄res, 0, v×), (47)

with m̄res = mres/mimp. In the case vimp = v∗, the segment AE vanishes.
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If v× < vimp < v∗, then the optimal BP includes the subarcs (Figure 3b):
AC : m = mimp, v : vimp → v×,

C D : v = v×, m : mimp → mres,

DB : m = mres, v : v× → 0,

(48)

and the DOP is as follows:

H/(k0k1mκ
imp)= 0(1)v (1, v×, vimp)+0m(m̄res, 1)+0(1)v (m̄res, 0, v×). (49)

In the case vimp = v×, the segment AC vanishes.
Motion of a penetrator which is described by Equations (46) and (48) includes (in a general case) the

following stages: passive penetration when a jet thruster is turned off until the velocity slows down to the
magnitude v× (segment AC of the trajectory), motion with a constant velocity v× with an operating jet
thruster until complete exhaustion of fuel supply (segment C D of the trajectory), and passive penetration
until a penetrator slows down to zero velocity (segment DB of the trajectory).

Consider now the case when vimp < v× and the curve determined by Equation (45) with v0 = vimp

intersects with the line v = v× in the point (m×, v×), where m× > mres (Figure 3c). Then the optimal
BP includes three subarcs:

AC : v = v0 − c ln(m/mres), m : mimp → m×,

C D : v = v×, m : m× → mres,

DB : m = mres, v : v× → 0,

(50)

where m× = mimp exp((1 − v×)/c).
Equation (50) describes the following stages of the controlled motion of a penetrator: operation of a jet

thruster in the impulse regime whereby the penetrator’s velocity instantaneously changes from the initial
value, vimp, to v× by spending a mass of fuel equal to mimp − m× without the motion of a penetrator
(subarc AC); operation of a jet thruster for providing a constant velocity to the penetrator, v×, until
exhaustion of the fuel supply (segment C D); and passive penetration until a penetrator slows down to
zero velocity (segment DB of the trajectory).

The corresponding expression for the DOP is as follows:

H/(k0k1mκ
imp)= 0m(m̄res, m̄×)+0

(1)
v (m̄res, 0, v×), (51)

with m̄× = m×/mimp.
If vimp < v× and m× ≤ mres then the optimal BP includes two subarcs (Figure 3d):{

AC : v = v0 − c ln(m/mres), m : mimp → mres,

C B : m = mres, v : v1 → 0,
(52)

where v1 = vimp − c ln m̄res.
Here, a jet thruster operates in the impulse regime until exhausting the whole fuel supply. In this case

the velocity of the penetrator instantaneously changes from the initial velocity to v1 (segment AC of the
trajectory). Afterwards, this penetrator continues its motion until it slows down to zero velocity (segment
C B of the trajectory).
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 Figure 4. Normalized optimal DOP into nonfrozen soil, rock, and concrete shields ver-

sus impact velocity; H is DOP for the optimal burning program, H0 is DOP for a passive
trajectory, β̄min = 0, κ = 0.7.

The DOP is determined using only the subarc C B:

H/(k0k1mκ
imp)= 0(1)v (m̄res, 0, v1). (53)

The depth of passive penetration of the impactor with the mass mimp is as follows:

H0

k0k1mκ
imp

=

{
0
(1)
v (1, 0, vimp) if vimp ≤ v∗,

0
(2)
v (1, v∗, vimp)+0

(1)
v (1, 0, v∗), if vimp > v∗.

(54)

Some of the above relationships can be simplified by taking into account that v× ≈ v∗ for c > 2000 m/s
(Figure 2).

We use the ratio
η = H/H0, (55)

which depends on vimp, c, m̄res, and κ , for comparing the DOP with the optimal BP and the depth
of passive penetration (Figure 4). Although η can attain very large values for relatively small impact
velocities, the absolute values of the DOP, H , are reasonable. The results for the relatively high impact
velocities are the most interesting because of the feasibility for increasing the absolute DOP by using the
jet thruster.

The optimum BP for the impact velocities, vimp > v∗ ≈ 81 m/s, is simple: passive penetration up to
velocity v×, motion with constant velocity v× while the propellant is available (the consumption of the
propellant is described by Equation (41)) with ma = mres and mb = mimp, m = [mκ

res − τ(t − tres)]
1/κ),

and passive penetration until rest. This BP is valid if the constraints on mass fluxes and penetrator’s
acceleration are not taken into account. Let us determine the conditions under which these constraints
do not affect this optimum BP.

The constraints given by Equation (3) are relevant only on the path of the trajectory where v = v×.
Equation (1) implies that dm/dt = −D(m, v×)/c = −(τ/κ)m1−κ . Substituting this relationship into
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 Figure 5. Dependence λ= λ(m) in the model of penetration into ice and frozen soil.

Equation (3) we obtain the inequality m ≤ (κµmax/τ)
1/(1−κ) that must be satisfied for mres ≤ m ≤ mimp.

Since the mass decreases on this interval, the above inequality can be substituted by the following:

mimp ≤ (κµmax/τ)
1/(1−κ). (56)

The constraints given by Equation (3) are relevant only on the segment of the trajectory with a constant
mass, m = m̃. Equation (1) implies that dv/dt = −D(m̃, v)/m̃. Substituting this relationship into
Equation (3) we obtain:

D(mimp, v)≤ mimpgχmax if v× ≤ v ≤ vimp,

D(mres, v)≤ mresgχmax if 0 ≤ v ≤ v×.

Since D is an increasing function of v, these constraints are valid if

D(mimp, vimp)≤ mimpgχmax and D(mres, v×)≤ mresgχmax.

The two latter inequalities imply that

mimp ≥
vimp

k0k1gχmax
, mres ≥

1
k0k1(γ0 − γ2v

2
×)gχmax

. (57)

Let us consider the case of penetration into ice and frozen soil shields. Then

θ(m)= m0.6 ln(50 + 0.29m2)

and

D =
m0.4

k0k1 ln(50 + 0.29m2)
×

{
1/(γ0 − γ2v

2) if v < v∗,

v if v ≥ v∗.
(58)
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Substituting D from this equation into Equation (33) we obtain:

�=
m0.4

[0.6 + λ(m)]
k0k1 ln(50 + 0.29m2)

×

{
−γ2(γ0 − γ2v

2)−2�a(v) if v < v∗,

�b(v) if v ≥ v∗,
(59)

where

�a(m, v)= v3
− 3ĉv2

− γ̂0v+ γ̂0ĉ,

�b(v)= v2, γ̂0 = γ0/γ2,

ĉ =
c

0.6 + λ(m)
, λ(m)=

0.58m2

(50 + 0.29m2) ln(50 + 0.29m2)
.

(60)

The equation �(m, v) = 0 determines the subarc v = v×(m) where v×(m) is determined by Equation
(37) with ĉ = ĉ(m) from Equation (60). In contrast to the case of SRC shields, the subarc is curvilinear
in this case.

Let us investigate now the behavior of the function λ(m). Changing the variable 50 + 0.29m2
= x we

reduce the problem to analyzing the function

2(x)= λ

(√
x − 50
0.29

)
=

2(x − 50)
x ln x

. (61)

Let us calculate the derivative:

2′(x)=
2

x ln x
20(x),

20(x)= 50(ln x + 1)− x,

2′

0(x)=
50
x

− 1.

(62)

For x > 50, 2′

0(x) < 0. Hence, 20(x) decreases in this semiinfinite interval. Since 20(50) > 0 and
20(350) < 0 we conclude that the equation 20(x)= 0 has a single root which can be easily determined,
x = x0 ≈ 341.7. This point is the maximum of the function 2(x) that increases from 2(50) = 0 to
2(x0)≈ 0.293 and then decreases to 0. Therefore, 0< λ(m)≤ 0.293, and the maximum is attained for
m = m0 ≈ 31.7 kg (Figure 5). Equation (60) shows that 1.12c < ĉ ≤ 1.67c and, for c > 2000 m/s, the
value v× is very close to v∗ and practically does not vary (Figure 2). Consequently, the subarc which
is determined by equation �(m, v) = 0 is only slightly different from a straight line. Therefore, the
trajectory which is close to the optimum for all considered shield materials is the following (vimp > v∗ ≈

81 m/s): passive penetration until to velocity v∗ is attained, motion with a constant velocity v∗ while
the propellant is available, and passive penetration until rest. The analysis shows that the effect of the
material of the shield on the coefficient η is insignificant.

5. Application of dynamic programming for numerical investigation of the problem

Equations (6), (7), (10), (11), (12), and (13) describe the variational problem considered here in the
general case, and imply the following expressions which can be written using, for convenience, the
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dimensionless variables that are defined below:

H̄ =

∫ 1

m̄res

(m̄v̄′
+ c̄)v̄

D̄(m̄, v̄)
dm̄, (63)

v̄(1)= 1, v̄(m̄res)= 0, 0 ≤ v̄(m̄)≤ vmax, m̄res ≤ m̄ ≤ 1, (64)

m̄v̄′
+ c̄ ≥ β̄min D̄(m̄, v̄) if v̄′ <∞, (65)∣∣∣∣ D̄(m̄, v̄)v̄′

m̄v̄′ + c̄

∣∣∣∣≤ χ̄max if v̄′ <∞, (66)

D(m̄, v̄)/m̄ ≤ χ̄max if m̄ = const, (67)

where

v̄ =
v

vimp
, c̄ =

c
vimp

, v̄max =
vmax

vimp
, m̄res =

mres

mimp
,

m̄ =
m

mimp
, β̄min =

vimpmimp

Lµmax
, χ̄max =

Lgχmax

v2
imp

, h̄ =
h
L
,

H̄ =
H
L
, v̄′

=
d v̄
dm̄

,

D̄(m̄, v̄)=
L

v2
impmimp

D(mimpm̄, vimpv̄), (68)

and L is some characteristic length.
The problem is reduced to the optimization of the functional H̄ in Equation (63), whereas the solution

must satisfy the constraints given by Equations (64)–(66).

Dynamic programming for the general model of a drag force. Dynamic programming is an appropriate
method for determining the optimal BP. Note that optimization of the flight of an aircraft with a jet engine
was mentioned in one of the first books on dynamic programming [Bellman et al. 1958] as an example of a
possible application of dynamic programming. This method allows determining a global extremum while
taking into account constraints. In the following, we describe an application of dynamic programming
to the above formulated optimization problem that has some characteristic properties.

In order to solve the variational problem for the functional given by Equation (63), the function v̄(m̄)
can be approximated as a piecewise linear function determined by the values (Figure 6)

v̄(0) = 0, v̄(1), . . . , v̄( j), . . . , v̄(Nm−1), v̄(Nm)

w̄(0), w̄(1), . . . , w̄( j), . . . , w̄(Nm−1), w̄(Nm) = 1

in Nm + 1 equally spaced mesh points of interpolation

m̄(0)
= m̄res, m̄(1), . . . , m̄( j), . . . , m̄(Nm−1), m̄(Nm) = 1,

where m̄( j)
= m̄res + j1m̄,1m̄ = (1 − m̄res)/Nm, j = 0, 1, 2, . . . , Nm . The unknown values of the

function, v̄( j) and w̄( j) are chosen among the finite set of values 0,1v̄, 21v̄, . . . , Nv 1v̄, where 1v̄ =
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Figure 6. Discretization of the problem.

v̄max/Nv and vmax is a given upper bound for the velocity of the penetrator. Penetration of the impactor
is associated with the trajectory

(m̄(Nm), w̄(Nm))→ (m̄(Nm), v̄(Nm))→ (m̄(Nm−1), w̄(Nm−1))→ (m̄(Nm−1), v̄(Nm−1))→ · · ·

→ (m̄(1), w̄(1))→ (m̄(1), v̄(1))→ (m̄(0), w̄(0))→ (m̄(0), v̄(0)).

Since the velocity of the impactor cannot increase without burning fuel, v̄( j)
≤ w̄( j) for all j .

The equation of the straight line between the points (m̄( j−1), w̄( j−1)) and (m̄( j), v̄( j)) can be written
as follows:

v̄ = e( j)m̄ + f ( j), e( j)
=
v̄( j)

− w̄( j−1)

m̄( j) − m̄( j−1) ,

f ( j)
=

m̄( j)w̄( j−1)
− m̄( j−1)v̄( j)

m̄( j) − m̄( j−1) , (69)
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j = 1, 2, . . . , Nm . Then the integral in Equation (63) along the piecewise linear contour can be written
as follows:

H̄ = Q(0)
v +

Nm∑
j=1

(Q( j)
m + Q( j)

v ), (70)

where Q( j)
m and Q( j)

v are the components of the integral over vertical and nonvertical segments of the
trajectory, correspondingly (Figure 6),

Q( j)
v =

∫ w̄( j)

v̄( j)
G( j)
v (v̄)d v̄,

G( j)
v (v̄)=

m̄( j)v̄

D̄(m̄( j), v̄)
, j = 0, 1, 2, . . . , Nm,

(71)

Q( j)
m =

∫ m̄( j)

m̄( j−1)
G( j)

m (m̄)dm̄,

G( j)
m (m̄)=

(e( j)m̄ + c̄)(e( j)m̄ + f ( j))

D̄(m̄, e( j)m̄ + f ( j))
, j = 1, 2, . . . , Nm .

(72)

Integrals in Equation (71) can be often calculated in explicit form. Otherwise, one can use, for instance,
the trapezoid rule formula with points of interpolation, v̄( j)

ξ , in nodes of the (m̄, v̄) mesh. Then

Q( j)
v /1v̄ = 0.5

[
G( j)
v (v̄

( j)
0 )+ G( j)

v

(
v̄
( j)
n( j)
v

)]
+

n( j)
v −1∑
ξ=1

n( j)
v >1

G( j)
v

(
v̄
( j)
ξ

)
, (73)

where n( j)
v is the integral part (w̄( j)

− v̄( j))/1v̄ and

v̄
( j)
ξ = v̄( j)

+ ξ1v̄, ξ = 0, 1, . . . , n( j)
v . (74)

In a similar manner, integrals in Equation (72) can be represented as

Q( j)
m /1m̄( j)

= 0.5
[
G( j)

m (m̄( j)
0 )+ G( j)

m
(
v̄
( j)
n( j)

m

)]
+

n( j)
m −1∑
ξ=1

n( j)
m >1

G( j)
m
(
v̄
( j)
ξ

)
, (75)

where n( j)
m + 1 is the selected number of points of interpolations at the interval [m̄( j−1), m̄( j)

],

m̄( j)
ξ = m( j)

+ ξ1m̄( j), ξ = 0, 1, . . . , n( j)
m , 1m̄( j)

=1m/n( j)
m . (76)

Inequalities in Equations (65) and (66) can be written in the points of interpolations in the following
form:

A( j)
ξ ≥ β̄min, |e( j)

| ≤ χ̄max|A
( j)
ξ |, (77)
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where

A( j)
ξ =

e( j)m̄( j)
ξ + c̄

D̄(m̄( j)
ξ , e( j)m̄( j)

ξ + f ( j))
, j = 1, 2, . . . , Nm, ξ = 0, 1, . . . , n( j)

m . (78)

Inequality (67) implies the following constraints:

D̄(m̄( j), v̄
( j)
ξ )/m̄( j)

≤ χ̄max, j = 1, 2, . . . , Nm, ξ = 0, 1, . . . , n( j)
v . (79)

We do not allow regimes whereby fuel is exhausted while the velocity of the penetrator remains zero,
that is, the following condition must be satisfied:

v̄( j)
+ w̄( j−1) > 0, j = 1, 2, . . . , Nm . (80)

Unlike the standard approach (see, for example, [Pedregal 2003]), we allow vertical segments in the
optimal curve, use a more accurate approximation of the criterion on the subintervals, and take into
account the constraints in the intermediate points of the subintervals. The second factor enhances the
reliability of the analysis.

The case of the generalized Young’s penetration model. In the case of the generalized Young model we
obtain:

D̄(m̄, v̄)=
Lψ(v̄)

k0k1v
2
impϕ(m̄)

, (81)

where

ψ(v̄)=

1/(γ0 − γ2v
2
impv̄

2) if v̄ < v̄∗,

vimpv̄ if v̄ ≥ v̄∗,
(82)

ϕ(m̄)=

{
σmγ1+γ2

imp m̄γ1+γ2−1 if SRC,

mγ1
impm̄γ1−1 ln(50 + 0.29m2

impm̄2) if IFS,
(83)

v̄∗ = v∗/vimp, and it is assumed that the substitution m = mimpm̄ is made in Table 1.
For the vertical segments of the trajectory, the analysis can be performed in the exact analytical form.

Clearly, the integral in Equation (71) can be calculated:

Q( j)
v =

k0k1v
2
impm̄( j)ϕ(m̄( j))

L

∫ w̄( j)

v̄( j)

v̄d v̄
ψ(v̄)

, j = 0, 1, 2, . . . , Nm, (84)

where ∫ w̄( j)

v̄( j)

v̄d v̄
ψ(v̄)

=


8(v̄( j), w̄( j)) if w̄( j) < v̄∗,

8(v̄( j), v̄∗)+9(v̄∗, w̄
( j)) if v̄( j)

≤ v̄∗ ≤ w̄( j),

9(v̄( j), w̄( j)) if v̄∗ < v̄
( j),

(85)
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8(V̄a, V̄b, )=

∫ V̄b

V̄a

(γ0 − γ2v
2
impv̄

2)v̄d v̄

= 0.25(V̄ 2
b − V̄ 2

a )
[
2γ0 − γ2v

2
imp(V̄

2
b + V̄ 2

a )
]
,

9(V̄a, V̄b)=
1
vimp

∫ V̄b

V̄a

d v̄ = (V̄b − V̄a)/vimp.

(86)

Instead of Equation (79), the constraints in Equation (67) can be written as follows:

w̄( j)
≤ ψ−1

(k0k1v
2
impm̄( j)ϕ(m̄( j))χ̄max

L

)
, j = 0, 1, 2, . . . , Nm, (87)

where

ψ−1(z)=


√
γ0z − 1
γ2v

2
impz

if z ≤ vimpv̄∗,

z/vimp if z > vimpv̄∗,

(88)

6. Results of numerical optimization

Figure 7 shows typical results of calculations for which we selected the following data: penetration into
nonfrozen soil, rock, and concrete shields, mimp = 400 kg, mres = 200 kg, vimp = 700 m/s>v∗, χmax = ∞.

Figure 7a, b shows optimal BPs. For small values of β̄min when the constraint on the fuel flow rate
is irrelevant, the regime of motion is as follows: inertial motion until velocity v̄× is attained; motion
with a constant velocity v̄× until exhausting fuel supply, and, finally, inertial motion until rest. From
some value, the effect of β̄min on the optimal BP becomes pronounced: the regime with a maximum fuel
flow rate appears between the initial passive regime and the regime with a constant velocity v̄×. Further
increase of β̄min results in the following changes: transition from a passive penetration to the motion
with the maximum fuel flow rate at larger velocities, the regime of motion with a constant velocity v̄×

gradually vanishes, and the regime with the maximum fuel flow rate switches to the regime of inertial
penetration with mass m̄res. From some magnitude of β̄min, a solution does not exist. The latter means
that the penetrator slows down to zero velocity before exhausting the fuel supply for any BP.

In Figure 7c, we showed the dependencies of the maximum normalized DOP, η= H/H0, as a function
of parameter β̄min for different values of the dimensionless relative exit velocity of gases at the nozzle
of the thruster, c; clearly, H0 is the same when the variants with different β̄min and c are compared. The
maximum effect of using a jet thruster is observed for small β̄min. An increase of β̄min implies stronger
constraints, namely, reducing the upper bound for the admissible fuel consumption rate of the thruster.
The curves η = η(β̄min) are located higher, with an increase of c, that is, a negative effect of β̄min can be
compensated by increasing c. The fact that some curves of the dependencies η = η(β̄min) are terminated
implies that the capabilities of the thruster are inadequate, and penetration terminates before exhausting
fuel supply.
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 Figure 7. Typical optimal solution for relatively high impact velocities (penetration into

nonfrozen soil, rock, and concrete shields, mimp = 400 kg, mres = 200 kg, vimp = 700 m/s);
(a–b) optimal burning programs; (c) normalized optimal DOP versus β̄min. (H is DOP
for the optimal burning program, H0 is DOP for a passive trajectory.)

7. Concluding remarks

We suggested a mechanical model of a penetrator equipped with a jet thruster and demonstrated that ap-
propriate choice of the parameters of a jet thruster allows increasing the depth of penetration considerably
into different media. We showed that for relatively small impact velocities (about 100 m/s), penetration at
the maximum depth is attained with velocities lower than the impact velocity. Nelson [2002] emphasized
that there is a limitation on increasing impact velocity in order to attain a higher penetration depth because
of the constraints on the impact velocity required for the survival of a penetrator on impact. Using a jet
thruster is one of the possible solutions to overcome this constraint.
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A NEW TAILORING OPTIMIZATION APPROACH FOR IMPROVING
STRUCTURAL RESPONSE AND ENERGY ABSORPTION CAPABILITY OF

LAMINATED AND SANDWICH COMPOSITES

UGO ICARDI AND LAURA FERRERO

This paper is dedicated to the memory of Liviu Librescu.

In this paper a technique for tuning the energy absorption properties of laminated and sandwich com-
posites through a new tailoring concept is presented. The purpose is to minimize the energy absorbed
through unwanted modes (ones involving interlaminar strengths) and maximize that absorbed through
desired modes (ones involving membrane strengths) by finding a suited in-plane variable distribution of
stiffness properties. Herein mode is intended as a strain energy contribution, such as bending energy,
in-plane and out-of-plane shear energy, etc., and no vibration mode. This distribution is obtained making
extremal certain strain energy contributions of interest (for example, membrane, bending, in-plane, and
out-of-plane shear energies) under in-plane variation of the plate stiffness properties. The effect of this
technique is to act as an energy absorption tuning, since it minimizes or maximizes the amount of energy
absorbed by specific modes. Although the present technique could be applied to laminates or to the
face sheets of sandwich composites, in this paper a preliminary application is presented to single plies
with variable stiffness coefficients over their plane. Once incorporated into a laminate or a sandwich
composite, these layers are shown to have beneficial effects on the strength at the onset of delamination
in sample cases where laminated and sandwich composites are subjected to low velocity, low energy
impacts.

1. Introduction

As is well known, fiber reinforced and sandwich composites with laminated faces offer advantages over
conventional metallic structures in terms of specific strength and stiffness, impact resistance, containment
of explosions, protection against fragments’ projection, survivability, noise, and vibration suppression.
Beside many other, not cited favorable properties, they also offer the remarkable advantage of being
tailored to fulfill design requirements.

Unfortunately, these materials absorb a large amount of the incoming energy through local failures.
The effect of this damage accumulation usually appears at the global level as an embedded delamination.
A significant accumulation is detrimental, since it could degrade strength and stiffness, cause a deleterious
load redistribution, and reduce the service life. Obviously, an accurate assessment of the local damage
mechanisms and postfailure behavior is mandatory, in order to fully exploit the potential advantages of
these materials. The reader is referred to the review papers [Rowlands 1985; Tennyson and Wharam 1985;

Keywords: optimization of laminated and sandwich composites, impact induced damage, delamination.
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Nahas 1986; Bolotin 1996; Echaabi and Trochu 1996; Paris 2001; Icardi et al. 2007] for a comprehensive
discussion of the local failure mechanisms and residual properties of these materials, these being outside
the scope of this paper.

Various techniques have been recently published with the aim of preventing the damage accumulation,
reducing its effects, and obtaining an improved structural performance. Functionally graded materials
[Fuchiyama and Noda 1995] avoid unwise stress concentrations at interfacial material discontinuities
that conventional fiber reinforced and sandwich composites exhibit, by virtue of the gradual variation
of their physical properties. Technological skills such as stitching, lap and T joints, or short rods have
been suggested in order to improve the transverse shear strength of multilayered materials and limit the
detrimental effects of local damage and delamination propagation. These skills oppose cracks and sliding
displacements by inducing bridging tractions, as shown by Cox [1999], although at the expense of the
stress concentrations induced by the local tractions that oppose the propagation of the delamination. An
improvement in the impact and delamination resistance and in dissipation can be achieved by stacking
layers with different absorption and dissipation properties, namely, plies with customary properties and
viscoelastic layers [Suzuky et al. 2003]. Since the viscoelastic layers must be as thick and numerous
as the structural layers, this method unfortunately makes the structures too flexible and is not effective
for sandwich composites, because the number of damping layers being incorporated is lower than in
laminated composites. Moreover, the stresses in the adhesive film which bonds the viscoelastic layers to
the host structure could limit the strength and the service life.

Several studies dealing with methods which seek to simultaneously improve stiffness, energy absorp-
tion, and dissipation have been recently published. Jung [2001] seeks to comply stiffness and energy
dissipation by combining different materials with different absorption and stiffness properties. Lakes
[2002] shows that the structural hierarchy makes it possible to obtain of both the desired stiffness and
damping properties. McCoucheon [2004] shows that the energy dissipation can be increased without
remarkable stiffness loss by inserting fluid filled microtubes into a matrix material, where the fluid
flow is induced by the composite deformation. Actual tailoring, meaning the optimization of the rein-
forcement orientation and constituent materials, is preferred to these techniques because they introduce
technological complications. Recently, variable stiffness composites in which the orientation of the fibers
minimizes the stresses were studied, for example, by Pedersen [2003] and Setoodeh et al. [2005]. Other
recent studies by Zinoviev and Ermakov [1994] and Georgi [1979] investigated the effects of the fibers”
orientation (constant over the plate) for finding configurations able to dissipate a large amount of the
incoming energy, while keeping the wanted strength and stiffness properties.

In the present paper a new approach based on a variable spatial distribution of stiffness properties is
presented. Its aim is to limit the detrimental effects of damage and improve the structural performance
of fiber reinforced and sandwich composites by optimizing the energy absorption properties. With this
approach, contrasting objectives for currently available optimization techniques such as improvement of
stiffness and, contemporaneously, of delamination strength, can be conjugated. The idea proposed is
finding a variable spatial distribution that makes stationary the strain energy contributions as desired (for
example, bending, in-plane, and out-of-plane modes), in order to allow a maximization of the energy
stored in wanted modes (for example, in-plane modes and membrane strengths) and a minimization
of that stored in unwanted modes (for example, out-of-plane shears, etc.). The appropriate in-plane
distribution of plate stiffness coefficients is obtained making extremal the strain energy contributions of
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interest under in-plane variation of the plate stiffness properties, and enforcing conditions which range
from the imposition of the thermodynamic constraints, to the choice of a convex or a concave shape (in
order to minimize or maximize the energy contributions of interest), to the imposition of a mean value
for these coefficients. To account for these optimized stiffness variations either the fiber orientation, the
constituent materials, the volumetric rate of fibers, or the thickness of plies could be varied.

In this paper, a preliminary application to single plies with optimized variable stiffness coefficients is
presented, but the actual technique could be applied also to laminates or to the face sheets of sandwich
composites as well, numerically solving the Euler–Lagrange equations. Two optimized ply stiffness
distributions with complementary properties are proposed; they are based on an approximate parabolic
solution of these equations. Their mean stiffness properties are chosen to be the same as that of the
corresponding plies made of the same constituent materials having constant stiffness. The first type
allows an increased bending stiffness, at the expense of a moderate increase of transverse shear stresses;
the second type does just the opposite. In this way, the delamination damage could be increased and used
to absorb the incoming energy. The replacement of a couple of conventional, constant stiffness layers
in laminated and sandwich composites with these layers will appear able to consistently reduce the
through the thickness interlaminar stress, either keeping the bending stiffness substantially unchanged
or improving it, for all the sample cases considered in the numerical applications. In the case of low
velocity, low energy impacts they will be shown to always produce beneficial effects on the strength at
the onset of delamination for both laminated and sandwich composites with laminated faces.

The case of low velocity, low energy impacts was chosen because it is dominated by delamination
and matrix cracking and is always responsible for a relevant strength degradation, even when the barely
visible impact damage is not evident. There is a general agreement that for this kind of impact the energy
is mainly absorbed as strain energy and through local failures, thus strain rate dependent formulations
and microstructure level considerations are reputed as unnecessary; in addition, the deformation of the
projectile is considered negligible [Davies and Olsson 2004]. Since the contact duration is higher then
the stress waves’ lateral transit time, transverse shear waves reflect off the edges several times while
the contact load is still being applied, so the plate structural modeling, the plate size, and the boundary
conditions affect the response. Stress based criteria are used to predict the onset of delamination, since
it is a common opinion that they are accurate enough for this task. Three different delamination criteria,
which appeared accurate in literature, are considered in order to have mutual assessments. The effects
of the accumulated damage are accounted for, reducing the elastic properties of the layers that failed,
within the framework of the ply-discount theory. As customary for low velocity impacts, the time history
of the contact force is computed using modified versions of Hertz’s contact law; the dynamic equations
are integrated through Newmark’s technique.

Since the numerical results show that the interlaminar stresses can be consistently reduced through
a variable in-plane distribution of stiffness properties, keeping a high stiffness, future applications are
expected where the local effects are accounted for in a much more detailed way. In subsequent sections
the features of the models used will be briefly summarized, the energy storage optimization process
discussed in detail, and the numerical applications presented.
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2. Structural modeling

No attempt is made to review the ample literature about the modeling of laminated and sandwich com-
posites. We refer to the available survey papers and monographs for a comprehensive discussion of this
topic [Reddy 1982; 1990; 2003; Bert 1984; Librescu and Reddy 1986; Noor and Burton 1989; 1990;
1992; Noor et al. 1996; Reddy and Robbins 1994]. We just remind the reader that to accurately model
the energy contributions involved, the layerwise kinematics and their inherent stress fields have to be
accounted for as accurately as possible and, to limit the computational costs and storage, as efficiently
as possible. To this purpose, in this paper a three-dimensional zigzag model [Icardi 1998; 2001], and
the corresponding C◦ eight node plate element [Icardi 2005; Icardi and Zardo 2005], both based on the
five DOF of customary plate models, are employed as structural models. The three-dimensional zigzag
model has the advantage of requiring a low computational effort, like conventional single layer plate
models, with higher accuracy. This makes its use affordable within the optimization process for finding
the stiffness distribution. The finite element is based on a conventional first order shear deformation plate
element, to which a procedure for updating the strain energy to that of the three-dimensional zigzag model
and a postprocessing technique based on a high order spline representation of the nodal DOF (which is
used in place of the low order representation by shape function for obtaining integrated stresses) are
applied, which makes the computation of interlaminar stresses accurate, but saves computational and
memory storage costs. The mixed brick element with three displacements and three interlaminar stresses
as nodal DOF developed by Icardi and Atzori [2004] is used to compute the local effects of the optimized
solutions with the highest accuracy.

The capability of the present computational model to predict the local failures and the impact induced
delamination damage has been successfully assessed in a number of previously published papers [Icardi
and Zardo 2005; Icardi and Ferrero 2005; 2006a; 2006b; 2006c; 2007a; 2007b; Ferrero and Icardi 2006;
2007; Icardi 2007]. It appears from the comparison with ultrasonic inpsection detections of impact
induced delamination damage and force time history detections that this simple modeling of the impact
with a low computational effort is capable of accurate predictions of the delamination damage.

A variety of models, the so called layerwise models, have been developed. They have different features,
degree of accuracy, and computational effort. In a broad outline, they subdivide into discrete layer and
zigzag models, as aforementioned, if they impose the interfacial continuity requirements as constraint
conditions, or if they postulate an appropriate piecewise variation of displacements, respectively. Both
kinds of models are used in this paper, to exploit their complementary performance in terms of accuracy
and computational effort. Their characteristic features are briefly summarized.

Perhaps the most general zigzag representation of displacements is the one developed by Icardi [2001]
and subsequently improved in [Icardi 2007]. Unfortunately, this model is difficult to treat within the
optimization process, since a big mathematical effort is required. For this reason, a third order zigzag
model with a constant transverse displacement, which only accounts for the discrete layer effects of
transverse shears, is particularized and used within the optimization process. In order to improve the
accuracy of this model, its strain energy is updated to that of the previous model in the applications
where the response of laminates incorporating optimized layers is studied using an approach based on
the method of weighted residuals, instead of the finite element model described in the next section. This
updating is carried out as outlined by Icardi [2005], using the postprocessing technique presented therein
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to obtain a realistic prediction of interlaminar stresses. The mixed, eight node solid element used in this
study was developed by Icardi and Atzori [2004]. It has the three interlaminar stresses and the three
elastic displacements as nodal DOF, in order to fulfill the interfacial stress and displacement continuity
requirements. Characteristic feature, C ◦, trilinear, and standard serendipity shape functions are used for
interpolating the DOF across the element volume. In this way, the intraelement equilibria are met in an
approximate integral form, according to Zienkiewicz and Taylor [1994]. As customary, the required level
of variation of the layerwise quantities is obtained by increasing the number of subdivisions across the
thickness. This makes the structural model computationally intensive, but accurate, as shown by Icardi
and Atzori [2004]. The readers will find a compendium on hybrid and mixed (we reserve the term mixed
for the case where the master fields are internal fields and the term hybrid for when surface fields are
involved) finite elements for composites in the recent book by Hoa and Feng [1998], and the omitted
details on development of the present element and an assessment of its accuracy in [Icardi and Atzori
2004].

Since displacements and stresses are interpolated with the same functions, the intraelement equilibrium
conditions are met in an approximate integral form. This approach, seldom used, though efficient, makes
easier the development of mixed elements and does not compromise the accuracy [Loubignac et al. 1978;
Nakazawa 1984]. The generation of the stiffness matrix and the vector of nodal forces follows the
standard path.

The representation of the chosen nodal DOF makes the computational effort required by the present
element similar to that of displacement based counterpart solid elements, while accuracy and conver-
gence are dramatically improved [Icardi and Atzori 2004]. Furthermore, it enables the element to be
implemented into commercial finite element codes.

3. Optimization of the energy storage

As previously mentioned, the present paper aims to improve the structural performance of laminated and
sandwich composites, optimizing the energy absorption properties of the constituent layers. The concept
involved is finding optimized spatially variable stiffness properties which make stationary the bending,
in-plane, and out-of-plane contributions to the strain energy, as desired. In this way, the energy absorbed
by modes having detrimental effects (meaning, involving weak properties) is transferred to acceptable
modes by minimizing the energy contributions involved in the unwanted modes (for example, transverse
shears) and maximizing those of the acceptable ones (for example, membrane loading). As a result of
this energy “tuning”, stiffness and delamination strength, which are contrasting objectives for currently
available constant stiffness optimization techniques, can both be improved.

The optimization of the energy storage starts writing the membrane, bending, in-plane, and out-of-
plane strain energy contributions appearing in the zigzag model, for a generic laminate (herein sandwich
composites are viewed as multilayered materials). Since standard variational calculus techniques are
used, no details of these techniques are here discussed. It is just reminded that setting to zero the first
variation of a functional coming from a weak form produces a set of governing equations, the so called
Euler–Lagrange equations, that recover the strong forms of the weakened field equations and natural
boundary conditions. In the present case, the stiffness properties will represent the master field, while
the other variables not subjected to variation will represent the slave and data fields. Therefore, the
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Figure 1. Discretizations used in the optimization process with the zig zag finite ele-
ment. The multilayered plate is described in Section 4.2 and the sandwich beam analyzed
in Section 4.4.

Euler–Lagrange equations will represent the relations enabling the stiffness properties to make the strain
energy contributions extremal. The solution of these equations finds the stiffness distributions making
minimal or maximal the desired energy contributions, meaning the in-plane variable distribution of the
reinforcement fibers’ orientation, the fiber volume rate, and the constituent materials.

3.1. Stationary conditions for the strain energy contributions. The basic step for the optimization of
the energy absorption is to write the first variation of the strain energy for the zigzag model and to set
it to zero, since it represents the equilibrium condition that the optimized solutions must fulfill. This
variation is expressed in terms of stress resultants. The readers are referred to the paper by Icardi [1998]
for the explicit expressions of the numerous and quite complex stress resultants in terms of the stiffness
quantities of the zigzag model and of the continuity functions they involve.

According to the present paper’s aim, assume the elastic stiffness coefficients Qi j of each lamina to
be functions of position in the lamina (x, y) plane. Since the three principal material directions can
have a different orientation point to point, the thermodynamic constraints of Appendix A will need
to be checked and, if necessary, enforced in a pointwise sense, as outlined subsequently. Assume the
orthotropic relations hold locally at any point.

We list below the stationary conditions for each of the energy contributions of the zigzag model,
obtained under variation of the stiffness properties of layers in the x and y directions. The conditions
are expressed in terms of stiffness quantities and functional DOF derivatives, using the notation defined
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in Appendix B. The equations can be applied irrespectively of the lay-up (that is, symmetric and non-
symmetric can both be considered), since they are coupled by the large number of coupling stiffness
coefficients appearing in Appendix B.

For notational convenience, we set η = h−1.

(i) Stationary condition for the bending energy contribution:

− WR1δu(0) − WR2δv(0) − WR3δw(0) +
(
WR4 −

4
3 WR5 + WR6 + WR7

)
δγx

(0)

+
(
WR8 −

4
3 WR9 + WR10 + WR11

)
δγy

(0)
= 0. (1)

(ii) Stationary condition for the shear energy contribution in the (x, z) plane:{
XRR1 + XRa

R1 + XRd
R1 + XRR44 + XRa

R44 + XRd
S44 −

4
3η

2(XRP1 − XRP6)

−
1
2η(XR26X2+XR31X2+XR36X2+XR41X2)−

2
3η

2(XR26X3+XR31X3+XR36X3+XR41X3)
}
δu(0)

+
{

XRR2 + XRa
R2 + XRd

R2 + XRR55 + XRa
R55 + XRd

S55 −
4
3η

2(XRP2 − XRP7)

−
1
2η(XR27X2+XR32X2+XR37X2+XR41X2)−

2
3η

2(XR27X3+XR32X3 + XR37X3 + XR42X3)
}
δv(0)

+
{

XRR3 + XRa
R3 + XRd

R3 + XRR66 + XRa
R66 + XRS66 + XRd

S66 −
4
3η

2(XRP3 + XRP8)

−
1
2η(XR28X2 + XR33X2 + XR38X2 + XR43X2)−

2
3η

2(XR28X3 + XR33X3 + XR38X3 + XR43X3)
}
δw(0)

+
{

XRR4 + XRa
R4 + XRd

R4 + XRR88 + XRa
R88 + XRd

S88 − XRT 88 − XRa
T 88 − XRd

T 88

−
4
3η

2(XRP4 + XRP9)+ 4η2 XRR R1 −
1
2η(XR29X2 + XR34X2 + XR39X2 + XR44X2)

−
2
3η

2(XR29X3+XR34X3+XR39X3+XR44X3)+η(XR46X1+XR48X1)+2η2(XR46X2+XR48X2)
}
δγx

(0)

+
{

XRR5 + XRa
R5 + XRd

R5 + XRR99 + XRa
R99 + XRd

S99 − XRT 99 − XRa
T 99 − XRd

T 99

−
4
3η

2(XRP5 + XRP10)+ 4η2 XRR R2 −
1
2η(XR30X2 + XR35X2 + XR40X2 + XR45X2)

−
2
3η

2(XR30X3+XR35X3+XR40X3+XR45X3)+η(XR47X1+XR49X1)+2η2(XR47X2+XR49X2)
}
δγy

(0). (2)

(iii) Stationary condition for the shear energy contribution in the (y, z) plane:{
YRR1 + YRb

R1 + YRb
R1 + YRR44 + YRb

R44 + YRb
S44 −

4
3η

2(YRP1 − YRP6)

−
1
2η(YR26Y 2 + YR31Y 2 + YR36Y 2 + YR41Y 2)−

2
3η

2(YR26Y 3 + YR31Y 3 + YR36Y 3 + YR41Y 3)
}
δu(0)

+
{
YRR2 + YRb

R2 + YRc
R2 + YRR55 + YRb

R55 + YRc
S55 −

4
3η

2(YRP2 − YRP7)

−
1
2η(YR27X2 + YR32X2 + YR37X2 + YR41X2)−

2
3η

2(YR27X3 + YR32X3 + YR37X3 + YR42X3)
}
δv(0)

+
{
YRR3 + YRb

R3 + YRc
R3 + YRR66 + YRb

R66 + YRS66 + YRc
S66 −

4
3η

2(YRP3 + YRP8)

−
1
2η(YR28Y 2 + YR33Y 2 + YR38Y 2 + YR43Y 2)−

2
3η

2(YR28Y 3 + YR33Y 3 + YR38Y 3 + YR43Y 3)
}
δw(0)

+
{
YRR4 +YRb

R4 +YRc
R4 +YRR88 +YRb

R88 +YRc
S88 −YRT 88 −YRb

T 88 −YRc
T 88 −

4
3η

2(YRP4 +YRP9)

+4η2YRR R1−
1
2η(YR29Y 2+YR34Y 2+YR39Y 2+YR44Y 2)−

2
3η

2(YR29Y 3+YR34Y 3+YR39Y 3+YR44Y 3)

+η(YR46Y 1 + YR48Y 1)+ 2η2(YR46Y 2 + YR48Y 2)
}
δγx

(0)

+
{
YRR5 +YRb

R5 +YRc
R5 +YRR99 +YRb

R99 +YRc
S99 −YRT 99 −YRb

T 99 −YRc
T 99 −

4
3η

2(YRP5 +YRP10)

+4η2YRR R2 −
1
2η(YR30Y 2 +YR35Y 2 +YR40Y 2YR45Y 2)−

2
3η

2(YR30Y 3 +YR35Y 3 +YR40Y 3 +YR45Y 3)

+η(YR47Y 1 + YR49Y 1)+ 2η2(YR47Y 2 + YR49Y 2)
}
δγy

(0). (3)



736 UGO ICARDI AND LAURA FERRERO

The quantities X Ri j X3, Y Ri jY 3 (for i=2 and j=6, 7, 8, 9; i=3 and j=0 to 9; i = 4 and j =0 to 9),
which are not defined in Appendix B, are obtained in a straightforward way changing Equation (2) with
Equation (3) into the definitions therein reported for X Ri j X2 and Y Ri jY 2.

Homogenizing the virtual variations, so as to convert the derivatives of virtual displacements, the
Euler–Lagrange equations making extremal each of the desired strain energy contributions are obtained
in the form of partial differential equations in terms of plate stiffness quantities of the laminate.

These extremal equations have to be elaborated in order to collect all the contributions that multiply a
specific virtual displacement, since it is arbitrary inside the domain. As a result a rather intricate system
of coupled, partial differential equations in terms of the laminate stiffness quantities is obtained.

For practical reasons, since the displacements, the number of layers in the laminate, and the constituent
materials are arbitrary, as a preliminary application the optimization procedure is next applied to a single
constituent lamina of a laminated or sandwich composite. The problem turns into an extremal problem
at the ply level where we try to find optimized plies which, once incorporated in place of preexisting
layers, can improve the structural performance of laminated and sandwich composites, whatever the
lay-up, boundary conditions, and loading might be.

In the next part of this section, the stiffness distributions which make extremal the bending and shear
energy contributions of a single ply will be searched.

3.2. Optimized single ply. An approximate solution, of technical interest, to the resulting set of par-
tial differential equations (1)–(3) for a single constituent ply is the following second order polynomial
approximation for the transformed reduced stiffness coefficients,

Q11 = A1 + A2x + A3x2, (4)

Q22 = B1 + B2 y + B3 y2, (5)

Q12 = C1 + C2x + C3 y + C4x2
+ C5 y2

+ C6xy, (6)

Q66 = D1 + D2x + D3 y + D4x2
+ D5 y2

+ D6xy, (7)

Q16 = E1 + E2x + E3x2
+ E4xy, (8)

Q26 = F1 + F2 y + F3 y2
+ F4xy, (9)

Q44 = G, (10)

Q55 = L , (11)

Q45 = M, (12)

where A1, A2, . . . , B1, . . . , F1, G, L , and M are coefficients to be determined by enforcing desired
conditions. Although many other conditions could be enforced, those arising from the imposition of
means stiffness properties are considered in this paper. In consequence of their enforcement, the mean
stiffness of optimized layers is made equal to that of the customary layers they replace. In this way, the
comparison between the lay-up with optimized layers and the conventional ones can be carried out keep-
ing the average properties unchanged. In addition, the thermodynamic constraints listed in Appendix A
have to be enforced, in order to make the optimized ply a real material [Jones 1999]. Finally, convexity or
concavity have to be chosen, in order to minimize or maximize the energy contributions whose variation
is set to zero. Note that Equations (4), (5), and (8)–(12) provide an exact solution and identically fulfill
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the thermodynamic constraints, while (6) and (7) are approximate and require these constraints to be
enforced. The formulas (6) and (7) exactly fulfill the extremal conditions in the equations where only
second order derivatives of the stiffness coefficients appear. However almost all the terms involving third
and higher order derivatives vanish for an insulated lamina. As a consequence, the present solution is a
suboptimal approximation; it is motivated by the need to find a solution of technical interest, compatible
with the current technologies.

In Section 4, the performance of laminates incorporating few layers that minimize the bending strain
energy and maximize the transverse shear energy, or vice versa, will be assessed. Since the features of
the solution could depend on the model used, the set of governing equations being different from one
structural model to another, the performance of the present approximation will be tested using the mixed
solid element of Section 2 and, in a few cases, the zigzag plate model and the related energy updating,
within the framework of Galerkin’s approach. The basic features concerning the modeling of the contact
force used in the impact studies of Section 4 will be summarized.

3.3. Modeling of the impulsive loads. The impact problems can be classified according to the impactor
velocity (or energy) as a low velocity, an intermediate, a ballistic, or a hyper velocity impact [Davies and
Olsson 2004]. A different modeling has to be used in each of these cases.

Although the velocities and the energies indicated as threshold in literature can vary consistently, the
researchers agree that for low velocity impacts, the object of this paper, since they are always responsible
for a relevant strength degradation even when the so called barely visible impact damage is not evident,
the incoming energy is mainly absorbed as strain energy and through local failures. This kind of impact
is dominated by delamination and matrix cracking, rather than by penetration induced fiber breakage like
in the other cases [Joshi and Sun 1987].

Since the contact duration is higher then the stress waves’ lateral transit time, transverse shear waves
reflect off the edges several times while the contact load is still being applied. Due to this, the accuracy of
the structural modeling, the plate size, and the boundary conditions strongly affect the response. On the
contrary, strain rate effects are marginal due to the low speed, so the material properties can be assumed
unchanged from the static ones in the low velocity impacts. Although more sophisticated approaches
could be used where the impactor and the structure are discretized by three-dimensional finite elements,
the contact force can also be successfully simulated simply using modified versions of the Hertzian
contact law, provided that the involved parameters are appropriately set either by numerical and analytical
techniques, or by experiments. This is what appears in a large number of studies published in the literature
[Tan and Sun 1985; Wu and Shyu 1993; Matemilola and Stronge 1995; Yigit and Christoforou 1995;
Carvalho and Guedes Soares 1996; Lee et al. 1997; Liou 1997; Choi 2006]. The Hertzian contact law
correlates the contact force F with the indentation depth α, by a parameter called the contact stiffness Kc.
The contact region is required to be small, while the vibration of the striking mass and the frictional forces
must be negligible. The problem can be divided into three phases: loading, unloading, and reloading.
In the present paper, in the loading phase we use the relation F(t)= Kcα(t)3/2. The exponent 3/2 was
chosen because it appears in very good correlation with a great amount of experimental tests published
in the literature for carbon, Kevlar, glass reinforced, and sandwich composites (see the aforementioned
relevant samples), while Kc needs to be estimated for each case (the target and the projectile materials,
etc.). Various techniques for evaluating Kc have been proposed, which are either based on analytical
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E11 E22 (E33) G12 G13 G23 ν12 (ν23) Density

Faces 142 9.8 7.1 7.1 3.3 0.3 (0.5) 1617.3
Cores (0.138) 0.041 0.024 0.5 (0.02) 48

Table 1. Material properties of the sandwich panel, with units of GPa, except for ν,
unitless, and density, in kg/m3.

and numerical approaches or on direct derivation from laboratory tests. With the advent of recent three-
dimensional nonlinear finite elements able to accurately simulate the contact problem, the available
commercial finite element codes can be conveniently used to determine the relation between force and
indentation depth. In the present paper, the finite element code Mecalog Radioss was used for this
purpose; the constituent layers were discretized by a three-dimensional meshing, where the fibers and
matrix were described by solid elements. As the loading phase ends, a significant permanent indentation
takes place even when the composites are relatively thin. In this phase the relative motion between the
target structure and projectile changes sign, thus a new law has to be used; in the present paper, we
apply the formula, first suggested by Crook [1952], F(t)= Fm ((α−α0) / (αm −α0))

q . Fm is the load
at which the unload phase starts, αm is the relative indentation depth, both easily determined from the
loading phase curve, while α0 is the permanent indentation depth, which in the present paper has been
estimated by Mecalog Radioss. The exponent q is set to 2.5, because this value fits the experiments
presented in the literature for a variety of laminated and sandwich composites. This unloading curve has
to be used every time the contact force decreases; moreover, in the event of bounces, a reloading law is
also required.

The indentation used in the reloading phase formula is the difference between the permanent and the
current one. Because the properties are degraded after the first loading phase, the transverse material
properties, and consequently the contact rigidity, change; this is indicated by Kc′. We use the reloading
law F(t)= Kc′ (α−α0)

p , with the exponent p set to 1.5, according to experiments. The contact force
computed as outlined above is transformed into an equivalent force distributed at the nodes in the finite
element discretization.

This simplified approach for modeling the contact force was chosen because it provides results al-
ways in a good agreement with the experiments in the case of low velocity impacts, as shown by many
researchers [Tan and Sun 1985; Wu and Shyu 1993; Matemilola and Stronge 1995; Yigit and Christoforou
1995; Carvalho and Guedes Soares 1996; Lee et al. 1997; Liou 1997; Choi 2006; Icardi and Zardo 2005;
Icardi and Ferrero 2005; 2006a; 2006b; 2006c; 2007a; 2007b; Ferrero and Icardi 2006; 2007; Icardi
2007], and is easy to implement.

The Newmark implicit time integration scheme is used for solving the contact problem, because the
explicit time integration schemes need extremely small time steps to be stable. The reader is referred to
Icardi and Zardo [2005] for details about this method.

In the former applications [Icardi and Ferrero 2005; 2006a; 2006; 2006b; 2006c; 2007a; 2007b;
Ferrero and Icardi 2007; Icardi 2007] this impact model always provided a contact force time history
in good agreement with the experiments, and, where available, with the damage detected via ultrasonic
inspection. As a further assessment, in this paper the impact problem on a sandwich plate is considered.



STRUCTURAL RESPONSE AND ENERGY ABSORPTION CAPABILITY OF COMPOSITES 739

The sample case here examined was formerly investigated by Choi [2006], who assessed the accuracy
of the spring element method, with or without considering von Karman nonlinear strains, since locally
deformations can be rather large. The material properties for this sample case are reported in Table 1.
The sandwich panel has sides of 102×102, the constituent layers have a thickness of 0.175 mm, the face
sheets have a [0◦/90◦] lay-up, the core is 25.4 mm thick, and all the edges are fixed. It is impacted
by a 1.61 kg steel sphere with a velocity of 1.2 m/s. The contact force time history obtained by the
present model is reported in Figure 2, where it is compared with that of Choi [2006]. The results from
the present model have been obtained either using linear or nonlinear strain displacement relations of
the von Karman type, and two structural models, the present zigzag model and the FSDPT model. It
appears the accuracy of the zigzag model improved and the effects of nonlinearity on it were negligible.
In contrast, the accuracy of the simplified structural model by Choi [2006] is consistently improved
using nonlinear strains. Since nonlinearity was shown to have a mild effect on the zigzag model,the next
results will refer to linear strains. Many results are available in the literature which confirm that a linear
approach is also quite accurate for sandwich composites, because they have a relevant crushing at the
impact point only if the face sheets are very thin. Checks made using the model of Goldberg [2001]
have shown the strain rate effects to be negligible, due to the low velocity and energy involved in all the
sample cases considered; thus these effects will not be accounted for in the next section.

4. Numerical applications

The technique for tuning the energy absorption mechanism previously illustrated is now applied to several
sample cases of practical interest. The aim is to assess whether it enables a simultaneous improvement

Figure 2. Contact force time history for a sandwich plate. Comparison between ex-
perimental test and some numerical results, obtained with five different techniques: the
spring element method, linear and nonlinear, by Choi [2006], the current procedure with
low refined structural model (FSDPT) and refined model (zigzag), in linear and nonlinear
formulation.
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of strength, stiffness and delamination resistance pursuing a magnitude reduction of interlaminar shear
stresses, which are partly converted into membrane stresses. So, an advantage of the current technique
is to operate on quantities (such as the interlaminar stresses) which affect the delamination strength
without reducing beneficial properties such as the stiffness, as occurs with the currently available tech-
niques for improving the delamination strength through use of viscoelastic layers, since they can make
too deformable the laminates where they are incorporated. In this technique, the bending, shear, and
membrane stiffness coefficients are locally changed, keeping the global stiffness unchanged. In other
words, since the current stress based criteria consider the interlaminar stresses of primary importance for
delamination, the current energy tuning technique works on these stresses. Whether it can reduce them
and whether this fact has beneficial effects over the failure index, it can be intended as a technique for
improving delamination. Future studies have to be carried out using much more sophisticated delamina-
tion models in order to understand the role played by damping and to better describe the damage process.
Since the present technique seems to have relevant advantages, the use of much more accurate, but also
computationally more intensive, models seems justified. It is however expected that the current technique
will not considerably change the damping, because the variation of the fiber orientation involved occurs
in a range where experimental results in the literature show mild variations of damping, and because
these variations interest a couple, or very few, layers in a laminate. The loadings of interest here are
impact loadings because they cause a variety of local failures and large delaminated zones across the
thickness.

The present technique is illustrated through the following specific samples:

• Before applying them to the cases of interest, preliminary tests are presented in the Section 4.1
to assess the present technique and to illustrate its capability. A comparison is presented between
a simply supported panel in cylindrical bending, made with a classical metallic material, and its
carbon fiber, epoxy resin optimized counterpart. The aim is to limit deflections, although the mean
bending stiffness is the same in the two cases.

• In Section 4.2 multilayered, simply supported plates undergoing impact loads are compared. Dis-
placements and stresses of a lay-up with customary constant stiffness constituent layers are com-
pared with those of counterpart plates in which two layers with optimized features and the same
mean stiffness of the layers they substitute are incorporated at various positions across the thickness.

• In Section 4.3 a parametric study is reported in order to show the beneficial effects of the optimized
lay-ups for some advantageous solutions to the aforementioned problems.

• In Section 4.4 the optimized layers are incorporated in the faces of a multicore sandwich beam in
several positions, in order to further test the effectiveness of the present technique. The sandwich
beam has two external faces and an internal one, splitting the core in two parts. It is subjected to
an impulsive load and its performances are compared to those obtainable with classical layers, in
terms of transverse stress field and local failure index.

4.1. Single layer panel. Consider a simply supported, metallic plate in cylindrical bending under a uni-
formly distributed transverse loading, which will enable us to draw observations of general validity. Let
the goal be to minimize the deflection by an optimized composite layer with the same mean properties
of the metallic beam. Assume these to correspond to an Al7075 alloy (see Table 2). The equilibrium
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Type of material Application EL (GPa) ET (GPa) GLT (GPa) νLT

AL7075 alloy Isotropic plate 71.00 26.69 0.33
Carbon-HM Fibers constituent (1) 380.00 NA NA 0.69
Carbon-A Fibers constituent (2) 210.00 NA NA 0.69
Kevlar149 Fibers constituent (3) 130.00 NA NA 0.30
Epoxy resin Matrix constituent (1) 5.00 5.00 1.85 0.35
Polyethylene Matrix constituent (2) 0.05 0.05 0.02 0.30
Carbon-epoxy (1) Composite ply 138.00 138.00 5.99 0.28
Carbon-epoxy (2) Composite ply 205.00 50.00 82.00 0.25

Table 2. Materials used in the numerical applications of Section 4.

equations are solved using Gelerkin’s method and the updating process. The solution that minimizes
bending is

D11 = 6.35 × 102
+ 2.0 × 102 x

L
− 2.0 × 102

( x
L

)2
. (13)

The higher order stiffness contribution F11 is treated in the same way. The terms D22, D12, D16, D26, D66,
F12, etc., are not involved in this problem since a cylindrical deformation is considered. An application
to a plate under bidirectional sinusoidal loading which considers these contributions will be presented
later. Consider various length to thickness ratios to have an indication of the gain obtainable, defined as
the ratio gain = (wmax −w

opt
max)/ (wmax), wmax being the maximum, or central, deflection of the metallic

plate and wopt
max that of the optimized composite plate. Choose a ratio between the minimum (at the

bound) and the maximum (at the center) bending stiffnesses close to zero. The result obtained is that
the gain increases till it reaches an asymptote, observed at about L/h = 100, corresponding to a gain
of 18%, which shows that the optimization is always effective in the range of thickness variation of
technical interest. The optimized stiffness distribution of Equation (13) could be obtained by varying
the thickness of the lamina, or, more interestingly by the practical point of view, by varying the fibers
and matrix constituent materials, their relative volume fraction, or varying point by point the orientation
of fibers. If the fiber volume fraction is varied, while all the other parameters remain unchanged, the
optimal stiffness distribution is obtained as

Vfibers =

[
h3

2.20 × 101 + 4.8 × 104 x/L − 4.8 × 104 (x/L)2
1

1 − ν2 −
1

Em

](
1

E f
−

1
Em

)
,

according to the mixture rule, where Vfibers is the volumetric rate of the fibers, while Em and E f are
the elastic moduli of the matrix and of the fibers. According to previous considerations, an optimized
distribution of stiffness is conveniently obtained using low cost fibers, but a high quality matrix.

Figure 3 shows an assessment of a suboptimal, step distribution of different materials. This simple
option appears of technical interest since it decreases deflection by 40%. Furthermore, the results of
an analysis by the mixed solid element, not reported here for brevity, show that the local effects at the
transition points are mild, although E11 of the fibers steeply changes from 40 to 517 GPa. This result
shows that the use of high quality materials is effective at the center of plates, while at the bounds low
quality materials can be used.
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Figure 3. Optimized and step variation of bending stiffness, as obtained by varying the
reinforcement fibers.

Here no chemical compatibility considerations are discussed; they are left to a future study. Finally,
the optimal orientation θ of the reinforcement fibers, keeping unchanged the other material parameters,
is represented in Figure 4. It features a variation from 0◦ to 24◦, thus compatible with braiding and
filament winding techniques. It can be smoothed at the bound with no remarkable performance loss (less
than 3%), as numerically assessed.

4.2. Impacted multilayered plate. Consider a panel of length 10 cm, width 5 cm, and thickness 1 cm,
with a

[
45◦/− 45◦/0◦

2/45◦/− 45◦
]

s symmetric and balanced lay-up, which is simply supported at the
bounds and subjected to a center point impact. For this panel, the contact force time history measured

Figure 4. Variable reinforcement fiber orientation for minimizing bending.
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Panel E11 E22 G12 G13 G23 ν12 Density
130 8 5 5 2.5 0.3 1557

Impactor Nose diameter Mass Impact energy E ν

25.4 5.451 40 210 0.3

Table 3. Material properties of the laminated panel and impactor characteristics, with
E and G in GPa, ν dimensionless, density in kg/m3, nose diameter in mm, mass in kg,
and impact energy in J.

during an experiment is reported in the papers by Icardi [2005] and Icardi and Zardo [2005], to which the
readers are referred for the details here omitted. Being rather thick, this panel has interlaminar stresses
nearly of the same magnitude of the membrane stresses, so it is suited for applying the present tailoring
optimization. The material properties, the impact energy, and the impactor characteristics are reported in
Table 3, while the material strengths are reported in Table 4. The FE discretization is depicted in Figure
1. This sample has to be ascribed to the class of low velocity impacts, for which the strain rate effects

X t Yt Z t Xc Yc Zc S12 S13 – S23 Si

A 0.167 0.06 0.101 0.108 0.17 0.23 0.07 0.0700–0.069 0.069
B 0.210 0.074 0.074 0.11 0.18 0.24 0.086 0.0860–0.064 0.064
C 0.009 0.009 0.0014 0.022 0.0086–0.0064 0.064

Table 4. In plane and out-of-plane material strengths, in GPa, for the laminated and
sandwich panels. Row A is the strengths of the laminated panel, row B those of the
sandwich panel faces, and row C those of the sandwich panel cores (foam).

Lam 0 Lam A Lam B Lam C Lam D Lam E Lam F Lam G Lam H

45 a a c c 45 45 45 a
-45 c a a c -45 -45 -45 -45
0 0 0 0 0 a a 0 b
0 0 0 0 0 c a 0 0

45 45 45 45 45 45 45 a 45
-45 -45 -45 -45 -45 -45 -45 a a
-45 -45 -45 -45 -45 -45 -45 a a
45 45 45 45 45 45 45 a 45
0 0 0 0 0 c a 0 0
0 0 0 0 0 a a 0 b

-45 c a a c -45 -45 -45 -45
45 a a c c 45 45 45 a

Table 5. Stack-ups considered in the problem of Figure 8.
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Figure 5. Panels subjected to an impact force: lay-ups considered, membrane stress,
and in-plane shear stress. The dashed line shows unoptimized lay-up.

are negligible, as universally agreed by the most representative authors in the field. To assess whether
the use of optimized layers can beneficially modify unwise stress fields, we will compare its structural
performance with those of plates obtained substituting a couple of layers with optimized layers, in various
positions across the thickness. The contact force is recomputed for these stack-ups using the approach
outlined above. Consider three kinds of optimized layers:

(i) A layer that minimizes bending and maximizes membrane energy,

(ii) A layer that minimizes bending and maximizes transverse shear,

(iii) A layer that maximizes bending and minimizes transverse shear.

In any case, the mean stiffness properties are maintained equal to those of the preexisting layers that are
replaced with these optimized layers.

Type (a) is obtainable with the optimization technique shown in Section 3.1, acting on bending and
membrane energy first variations so that an energy transfer takes place from the bending mode (the
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unwanted one) to the membrane mode (the preferred one). Types (b) and (c) have been formulated
with the same technique, but the energy contributions involved are now the bending and the transverse
shear modes. In the first case the energy is transferred form bending to shear, while in the second
case the transfer takes place in the opposite direction. The choice of these layers has specific reasons,
which we will explain subsequently, since each optimized layer has some beneficial effects on the panel
performances, depending on the type and the position in the stack-up.

Now consider the effects on the impact behavior of substituting the preexisting layers in the [45◦/−45◦

/0◦

2/45◦/−45◦
]

s laminate with optimized layers (types (a) and (c)). Incorporate symmetric layers of
the previously described types across the thickness of the laminate, according to the scheme of Table 5.
In this first example, the transfer from shear to membrane energy should be underlined, so the graphs
shown in Figure 5 concern membrane stresses (they are just plotted in the x direction) and in-plane shear.
The dashed line represents the unoptimized panel (for example, Lam 0), while a label describes which
laminate has been considered (for example, from Lam A to Lam G); the stresses have been calculated
at each internal interface, at the impact point. Every optimized laminate shows an higher membrane
stress field, but a lower in-plane shear field, especially at the most critical interface, the outer internal
one. Similar observations can be drawn for the y direction.

Now consider a plate with the same dimensions of the previous one and the lay-up [0◦/45◦/90◦/−45◦

/0◦]s . Consider in this case layers (a), (b), and (c) one type at a time, and incorporate them according
to the scheme presented in Table 6. Figure 6 shows four plots pertaining to the center deflection, the
transverse normal stress across the thickness, and the transverse shear stresses σxz and σyz in the spanwise
direction, respectively, when the two outer plies are substituted with minimum bending layers of type (a).
In this case, the effect of incorporating optimized layers is to strongly reduce deflections and interlaminar
shears. In addition, it increases the membrane stresses (which help to suppress the damage spreading,
like in pressurized structures) and the in-plane shear, but these results are here omitted for length, since
their variations are not remarkable.

Basic Var1a 1b 1c Var2a 2b 2c Var3a 3b 3c Var4a 4b 4c Var5a 5b 5c

0◦ Type a b c
45◦ Type a b c
90◦ Type a b c
-45◦ Type a b c
0◦ Type a b c
0◦ Type a b c

-45◦ Type a b c
90◦ Type a b c
45◦ Type a b c
0◦ Type a b c

Table 6. Stack-ups considered for the impact problem. Blank cases represent unchanged
data with respect to the basic case with constant stiffness properties. Optimized layers
are: type (a) with minimum bending and maximum membrane; type (b) with minimum
bending and maximum shear; and type (c) with maximum bending and minimum shear.
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Figure 6. Deflection, transverse normal stress, and shear in the spanwise direction, and
transverse shear across the thickness when the two outer plies are substituted with two
minimum bending plies (type (a)). Comparison with the unoptimized lay-up.

The impact induced damage for this panel is computed at each interface nearby the impact point
using three different stress based delamination criteria: the Hou, Petrinic, Ruiz, and Hallet criteria [Hou
et al. 2000; 2001]; the Choi–Chang criteria [Choi and Chang 1992]; and the Chai–Gädke criteria [Chai
and Gädke 1999]. These criteria have been chosen because they have found a number of successful
applications in the literature to solution of this problem, and because they are easy to implement into
finite element codes. To be concise, the failure index formulae are not reported. They can be found
in [Icardi et al. 2007], to which the readers are referred also for a discussion of available delamination
criteria. It is reminded that the stress based criteria are held by the leading scientists in this field to be
accurate enough for predicting the delamination onset, but not the delamination growth. In the latter case,
accurate results can be obtained only using fracture mechanics or progressive delamination models. The
Choi–Chang criterion, which makes use of in situ properties, appears to be the most accurate criterion in
all the published applications. Thus it will be used in all the numerical applications of this paper. In this
section, the criterion of [Hou et al. 2000; 2001] will be also used, while in Section 4.4, the criterion of
Chai–Gädke, which also makes use of in situ properties, is used. These additional criteria are considered
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in order to see whether the proposed technique is effective, irrespective of the criteria used, and whether
there can be a relevant variation of the strength at the onset of delamination using different criteria.

The strength at the onset of delamination of the basic panel with constant stiffness layers is compared
to fifteen variations of it, which are obtained by replacing the preexisting layers with optimized layers,
according to the scheme reported in Table 6 (for example, var1a, var1b, . . . , var5a, . . . , var5c, and layers
(a), (b), and (c)). Table 7 reports the results by the Choi–Chang criterion, while Figure 7 presents
those by the Hou, Petrinic, Ruiz, and Hallet criteria. It appears by these results that the effects on the
impact induced delamination are beneficial across the thickness of embodying the optimized layers. It
appears that the majority of the solutions embodying optimized panels bring significant improvement
in the impact resistance with respect to the classical lay-up. It appears that improvements are obtained
especially at the most critical interfaces.

4.3. Parametric study for the laminated plate. Finally, a parametric study about the effects of variation
of thickness and stack-up is presented. This analysis is aimed at defining what thickness range allows the
best exploitation of the optimized layers and which position in the stacking sequence grants more evident
effects. Let first focus on the thickness. Figures 8 and 9 report the results pertaining a variation of the
overall thickness from 0.5 to 2 cm, with the width fixed at a value of 20 cm. In Figure 8 the deflection
in the unoptimized plate and in the optimized plate var1a (refer to Table 6) are compared; the effects of
the optimization is more evident for thin structures, but it is always effective for the deflection control.
Figure 9 shows the transverse normal stress in the unoptimized plate and in the plate var1b; it appears
that the beneficial effects of optimized plies are evident in the central region, while near the edges the
tensional field is approximately unchanged for thick samples; on the contrary, the thin plates show lower

Figure 7. Failure index (dimensionless) according to the Hou–Petrinic–Ruiz criterion,
at each interface, for the unoptimized lay-up (thick line) and for its variants, as defined
in Table 7 (only the improved cases are reported).
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Case 1 2 3 4 5 6 7 8 9

Basic 1.10E-08 5.56E-08 1.22E-07 2.18E-07 2.62E-07 2.44E-07 2.15E-07 1.41E-07 4.92E-08
var1a 3.93E-08 1.15E-07 1.07E-07 1.23E-07 1.25E-07 1.09E-07 1.05E-07 8.87E-08 5.49E-08
var1b 1.80E-08 7.42E-08 1.25E-07 1.98E-07 2.32E-07 2.14E-07 1.92E-07 1.37E-07 6.06E-08
var1c 4.95E-09 7.17E-09 1.29E-07 3.48E-07 4.38E-07 4.12E-07 3.63E-07 1.62E-07 4.65E-98
var2a 1.07E-09 5.41E-08 1.71E-07 1.90E-07 1.94E-07 1.73E-07 1.63E-07 1.40E-07 3.91E-08
var2b 7.45E-09 5.52E-08 1.34E-07 2.16E-07 2.44E-07 2.23E-07 1.95E-07 1.24E-07 4.13E-08
var2c 4.84E-08 1.18E-07 1.36E-07 2.14E-07 2.22E-07 1.95E-07 1.41E-07 5.55E-08 1.55E-08
var3a 6.80E-09 1.26E-08 9.37E-08 2.80E-07 2.92E-07 2.69E-07 2.57E-07 1.02E-07 9.27E-09
var3b 1.38E-08 6.57E-08 1.22E-07 1.99E-07 2.36E-07 2.16E-07 1.85E-07 1.24E-07 4.53E-08
var3c 9.36E-08 3.58E-07 3.85E-07 2.73E-07 1.67E-07 8.55E-08 3.64E-08 1.86E-08 7.54E-09
var4a 4.68E-09 1.46E-08 2.07E-08 2.38E-07 6.20E-07 5.96E-07 2.48E-07 4.21E-08 1.69E-08
var4b 1.03E-08 5.47E-08 1.31E-07 2.22E-07 2.52E-07 2.47E-07 2.09E-07 1.31E-07 4.66E-08
var4c 1.12E-07 5.33E-07 6.27E-07 3.87E-07 2.02E-07 4.47E-08 1.34E-08 1.90E-09 4.65E-09
var5a 7.10E-09 3.09E-08 5.93E-08 1.15E-07 4.97E-07 4.77E-07 1.20E-07 8.61E-08 3.32E-08
var5b 1.01E-08 5.38E-08 1.19E-07 2.17E-07 2.67E-07 2.46E-07 2.13E-07 1.43E-07 5.02E-08
var5c 1.37E-07 7.59E-07 9.53E-07 4.81E-07 1.13E-07 1.20E-07 2.76E-08 3.80E-08 5.18E-08

Table 7. Effects of optimized layer incorporation on delamination, according to the
Choi–Chang criterion. Failure index (dimensionless) computed at each interface (the
cases in the table) at the impact point for the basic panel with [0◦/45◦/90◦/− 45◦/0◦]s
lay-up and fifteen variants embodying optimized layers.

Figure 8. Deflection in the unoptimized plate and in the optimized plate (var1a), with
increasing the total thickness.
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Figure 9. Transverse normal stress in the unoptimized plate and in the optimized plate
(var1b) with increasing the total thickness.

tensional field also in the edges. Since the central region is the most damaged part, it can be guessed that
the optimized (type (b)) layers are able to cut down the transverse normal stress.

Some considerations are now made about the influence of the stack-up. An extensive study has been
performed in order to estimate the coupling effects, and it is possible to state that optimized structures
show a good behavior even in nonsymmetric stack-ups. Moreover symmetric stack-ups are able to
fulfill alternatively one of the two discussed aims, either the deflection control or the impact resistance
improvement, with high gain compared to the classical plate. For this purpose, in Figure 10 four cases

Figure 10. Transverse shear stress across the thickness and in the spanwise direction for
the unoptimized plate and for three nonsymmetric optimized lay-ups.
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are explored. The unoptimized plate, previously studied, is now subjected to a patch load in the four
central nodes; starting from this basic stack-up, minimum shear plies have been introduced in positions
1 and 5, 1 and 6, and 5 and 10, in nonsymmetric lay-ups. In the transverse shears plotted against both
directions, the classical plate develops the worst stress field. Meanwhile asymmetric stack-ups allow
us to fulfill both the requirements, deflection reduction and impact resistance improvement, with quite
good improvement compared to the unoptimized plates performances, but lower than what is obtainable
with symmetric ones. In particular, across the thickness the optimized panels develop a lower shear
field in the central region, where the unoptimized one reaches its maximum. Similarly, if the transverse
shear is observed in the spanwise direction, at the most critical interface, the beneficial effects of the
current technique is particularly clear near the edges, where the classical plate has a stress concentration.
However, the most important result underlined in the present section is the good behavior of the optimized
layers also when they are introduced in nonsymmetric positions, thanks to their capability to decouple
bending and shear deformations.

4.4. Impacted sandwich beam. The optimization process was above applied to laminates in order to
assess the advantages in terms of impact strength, deflection, and interlaminar stress distributions. Now
the optimization process is be applied to sandwich composites with laminated faces, which exhibit a
critical impact behavior due to their high thickness and to the deep heterogeneity of their constituent
materials. The aim of this section is to investigate the potential improvement of sandwich structures’
critical behavior due to the introduction of the optimized plies. The sample here considered is a multicore
sandwich structure made of two external faces, an internal one, and two cores (mechanical properties
given in Table 1), which is clamped at the edges and impacted at the center with a steel sphere with a
mass of 1.61 kg at speed 1.2 m/s. A 20 × 1 cm sandwich beam made up of 4 ply external faces, a 2
ply internal face, and two cores is considered. Every ply is 0.025 cm thick, while the cores are 0.5 cm
thick, thus the overall thickness is 1.3 cm. Stack-up and geometry are described in Figure 11. The FE
discretization is reported in Figure 1. Since this sample is still referring to a low velocity impact, again
the strain rate effects are negligible. The optimized plies incorporated are minimum shear layers with
properties which vary in the spanwise direction according to the law of Figure 12, where also the ratio
between optimized and mean stiffnesses is plotted. As a first step, the transverse deflection is assessed,
since it could have potential beneficial effects on the noise and vibration behavior. As shown in Figure 13,
the transverse deflection can be radically cut off when optimized minimum shear layers replace classical
plies, with a maximum gain of 35% when all the 0◦ plies are substituted. In addition, the interlaminar
stresses should be monitored, in order to define whether the optimization is effective for enhancing the
impact strength of sandwich plates. Looking at Figure 14, the transverse shear stress under the impact
point can be compared among the three analyzed beams; it can be reckoned a strong reduction in the
transverse shear, especially at the most critical interfaces, while the transverse normal stress is slightly
increased, as shown in Figure 15. The transverse shear field appears to be lowered by the optimized
ply introduction, since these plies appear able to minimize the energy stored in the shear mode and of
maximize the bending and membrane mode. This action can be seen as an energy transfer from the
unwanted out-of-plane modes to the membrane mode, as already occurred for the sample case of Section
4.2. Finally, the impact induced damage is estimated by computing stress based failure indexes close to
the impact point. For this sample case the criteria of Choi–Chang, already used in Section 4.2, and those
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Figure 11. Geometry and stack-up of the dual-core sandwich beam; classical case with
constant stiffness plies, optimized cases with minimum shear plies introduced in place
of classical ones.

Figure 12. Stiffness law of variation in the spanwise direction for the minimum shear
optimized layers.

Figure 13. Transverse deflection of the dual core sandwich beam, in the classical con-
figuration and in the optimized ones, obtained with minimum shear layers.
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Figure 14. Transverse shear stress across the interfaces under the impact point; results
for dual core sandwich beam, in the classical configuration and in the optimized ones,
obtained with minimum shear layers.

of Chai–Gädke are considered, which are both based on in situ properties (see [Icardi et al. 2007] for
a discussion and the explicit expressions of these criteria). In Figure 16, the damage computed by the
above mentioned criteria is reported across the various interfaces under the impact point for the three
analyzed structures. Comparing these cases, the effectiveness of the optimized layers can be assessed. It
appears that a failure index reduction of 50% in the internal face and of 70% in the external ones can be
obtained incorporating the optimized layers. Since the most critical aspect of sandwich structures is the
damage arising at the core face interfaces, we can guess by these results that the current optimization
technique has a beneficial effect in this region through a strain energy manipulation that reduces the
transverse shears.

5. Concluding remarks

A theoretical study dealing with a technique for tuning the energy absorbed by laminated and sandwich
composites with laminated faces in the bending, in-plane, and out-of-plane shear modes has been pre-
sented. The basic idea is to minimize the energy absorbed through unwanted modes (those involving
interlaminar strengths) and maximize that absorbed through desired modes (those involving membrane
strengths), by finding a suitable in-plane variable distribution of stiffness properties. This optimal dis-
tribution is found making the energy contributions of interest extremal under the properties’ spatial
variation. Therefore this new tailoring concept requires either the orientation of the reinforcement fibers,
the constituent materials, or the fiber volume fraction to be varied. In this way, the incoming energy can be
transferred among the modes which are made extremal, obtaining an increase or a decrease, as desired,
of the single contributions with respect to the case of customary constant stiffness constituent plies,
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Figure 15. Transverse normal stress across the interfaces under the impact point; results
for dual core sandwich beam, in the classical configuration and in the optimized ones,
obtained with minimum shear layers.

assuming the mean stiffness properties of variable stiffness layers coincide with those of these layers. As
a result, one can obtain an energy transfer from bending to in-plane and out-of-plane shear energy modes,

Figure 16. Failure index computed across the interfaces under the impact point; two
stress based criteria have been used, Choi–Chang and Chai–Gädke, both involving in
situ properties. Comparison between the optimized beam (with locally variable stiffness)
and the classical one, with constant stiffness.
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or vice versa, with respect to layers with customary properties. The optimized stiffness distribution is ob-
tained enforcing conditions which range from the imposition of thermodynamic constraints to the choice
of a convex or a concave shape (in order to minimize or maximize the energy contributions of interest),
to the imposition of their mean value. The present technique has its main advantage in the possibility of
conjugating reduced interlaminar stresses with a high stiffness, that is precluded to the currently available
methods based on interposition of compliant layers. Two structural models with complementary features
are used: a zigzag model, which is inexpensive but accurate, is used in the optimization process, while a
mixed, eight node solid element is used to accurately assess the local effects of the optimized solutions.
A preliminary application to single plies with variable stiffness coefficients is presented. Two types
are considered: the first is a layer that strongly reduces bending without increasing the shear stresses,
and the second is a layer which strongly reduces shear stresses without increasing deflections. Both
can be obtained by current manufacturing technologies, a smooth variation of the reinforcement fibers
orientation being required over their plane. The numerical applications presented concern laminated
and sandwich composites subjected to low velocity impacts. These layers appear able to consistently
reduce the through the thickness interlaminar stress concentrations and to keep the bending stiffness
substantially unchanged, when appropriately positioned across the thickness. These preliminary results
encourage future developments of the present technique.

Appendix A: Thermodynamic constraints

The stiffness coefficients are subjected to the thermodynamic constraints conditions hereafter reported
(see, Jones (1999) for details). To fulfill conservation of energy, the stiffness [Qi j ] and compliance
[Q−1

i j ] matrices must be positive definite. Thereby EL , ET , GLT and GT T must be positive. Likewise,
the following condition by Lempriere:

[
1 − ν2

32

(
E2

E3

)][
1 − ν2

13

(
E3

E1

)]
−

[
ν21

(
E1

E2

)1/2

+ ν13ν32

(
E2

E1

)1/2
]2

> 0

must be fulfilled. The compliance coefficients Si j also must fulfill following relations by Lekhnitski:

S66 =
1

G12
; S16 =

η12,1

E1
=
η1,12

G12
; S26 =

η12,2

E2
=
η2,12

G12

where

ηi,i j =
εi i

εi j
; ηi j,i =

εi j

εi i

while the transverse shears must fulfill following relations in terms of Chentsov’s coefficients ηi j,kl =

εi j/εkl :

ηi j,kl

Gkl
=
ηkl,i j

Gi j
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Appendix B: Stiffness derivatives

Recall that η is defined as h−1.

WR1 = B11,111 +B12,122 +3B16,112 +B26,222 +2B66,122

WR2 = B12,112 +B16,111 +3B26,112 +B22,222 +2B66,112

WR3 = D11,1111 +2D12,1122 +4D16,1112 +4D26,1222 +4D66,1122 +D22,2222

WR4 = D11,111 +D12,122 +3D16,112 +D26,222 +2D66,122

WR5 = (F11η
2),111 +(F12η

2),122 +3(F16η
2),112 +(F26η

2),222 +2(F66η
2),221

WR6 = Da
11,111 +Da

12,122 +3Da
16,112 +Da

26,222 +2Da
66,122

WR7 = Da
12,112 +Da

22,222 +3Da
26,122 +Da

16,111 +2Da
66,112

WR8 = D16,111 +3D26,122 +2D66,112 +D12,112 +D22,222

WR9 = (F16η
2),111 +3(F26η

2),122 +2(F66η
2),112 +(F12η

2),112 +(F22η
2),222

WR10 = Db
16,111 +3Db

26,122 +2Db
66,112 +Db

12,112 +Db
22,222

WR11 = Dc
11,111 +Dc

12,122 +3Dc
16,112 +Dc

26,222 +2Dc
66,122

Define the following quantities for the shear energy contribution in the plane (x, z):

XRR1 = B11,11 +B16,12 ; XRR2 = B16,11 +B12,12

XRR3 = D11,111 +2D16,112 +D12,122

XRR4 = R1X ,11 +R2X ,12 ; XRR5 = R3X ,11 +R4X ,12

R1X = D11 + Da
11 + Dd

16 −
4
3η

2 F11 ; R2X = D16 + Da
16 + Dd

12 −
4
3η

2 F16

R3X = D16 + Db
16 + Dc

11 −
4
3η

2 F16 ; R4X = D12 + Db
12 + Dc

16 −
4
3η

2 F12

XRa
R1 = Ba

11,11 +Ba
16,12 ; XRa

R2 = Ba
16,11 +Ba

12,12

XRa
R3 = Da

11,111 +2Da
16,112 +Da

12,122

XRa
R4 = Ra

1X ,11 +Ra
2X ,12 ; XRa

R5 = Ra
3X ,11 +Ra

4X ,12

Ra
1X = Da

11 + Daa
11 + Dad

16 −
4
3η

2 Fa
11 ; Ra

2X = Da
16 + Daa

16 + Dad
12 −

4
3η

2 Fa
16

Ra
3X = Da

16 + Dab
16 + Dac

11 −
4
3η

2 Fa
16 ; Ra

4X = Da
12 + Dab

12 + Dac
16 −

4
3η

2 Fa
12

XRd
R1 = Bd

16,11 +Bd
66,12 ; XRd

R2 = Bd
66,11 +Bd

26,12

XRd
R3 = Dd

16,111 +2Dd
66,112 +Dd

12,122

XRd
R4 = Rd

1X ,11 +Rd
2X ,12 ; XRd

R5 = Rd
3X ,11 +Rd

4X ,12

Rd
1X = Dd

16 + Dad
16 + Ddd

66 −
4
3η

2 Fd
11 ; Rd

2X = Dd
66 + Ddd

66 + Ddd
26 −

4
3η

2 Fd
66

Rd
3X = Dd

66 + Dbd
66 + Dad

16 −
4
3η

2 Fd
16 ; Rd

4X = Dd
26 + Dbd

26 + Dcd
66 −

4
3η

2 Fd
26



756 UGO ICARDI AND LAURA FERRERO

XRR44 = B16,12 +B66,22 ; XRR55 = B66,12 +B26,22

XRR66 = D16,112 +2D66,122 +D26,222

XRR88 = R9X ,12 +R10X ,22 ; XRR99 = R11X ,12 +R12X ,22

R9X = D16 + Da
16 + Dd

66 −
4
3η

2 F16 ; R10X = D66 + Da
26 + Dd

26 −
4
3η

2 F66

R11X = D66 + Db
66 + Dc

16 −
4
3η

2 F66 ; R12X = D26 + Db
26 + Dc

66 −
4
3η

2 F26

XRa
R44 = Ba

16,12 +Ba
66,22 ; XRa

R55 = Ba
66,12 +Ba

26,22

XRa
R66 = Da

16,112 +2Da
66,122 +Da

26,222

XRa
R88 = Ra

9X ,12 +Ra
10X ,22 ; XRa

R99 = Ra
11X ,12 +Ra

12X ,22

Ra
9X = Da

16 + Daa
16 + Dad

66 −
4
3η

2 Fa
16 ; Ra

10X = Da
66 + Daa

26 + Dad
26 −

4
3η

2 Fa
66

Ra
11X = Da

66 + Dab
66 + Dac

16 −
4
3η

2 Fa
66 ; Ra

12X = Da
26 + Dab

26 + Dac
66 −

4
3η

2 Fa
26

XRd
S44 = Bd

12,12 +Bd
26,22 ; XRd

S55 = Bd
26,12 +Bd

22,22

XRd
S66 = Dd

11,112 +2Dd
66,122 +Dd

22,222

XRd
S88 = Rd

13X ,12 +Ra
14X ,22 ; XRd

S99 = Rd
15X ,12 +Rd

16X ,22

Rd
13X = Dd

12 + Dad
12 + Ddd

26 −
4
3η

2 Fa
16 ; Rd

14X = Dd
26 + Dad

26 + Ddd
22 −

4
3η

2 Fa
66

Rd
15X = Dd

26 + Dbd
26 + Dcd

12 −
4
3η

2 Fa
66 ; Rd

16X = Dd
26 + Dbd

22 + Dcd
66 −

4
3η

2 Fd
22

XRT 88 = A44 − 4η2 D44 + Aa
44 + Ad

45 ; XRT 99 = A45 − 4η2 D45 + Ac
44 + Ab

45

XRa
T 88 = Aa

44 − 4η2 Da
44 + Aaa

44 + Aad
45 ; XRa

T 99 = Aa
45 − 4η2 Da

45 + Aac
44 + Aab

45

XRd
T 88 = Ad

45 − 4η2 Dd
45 + Aad

45 + Add
55 ; XRd

T 99 = Ad
55 − 4η2 Dd

55 + Acd
45 + Abd

55

XRP1 = E11,11 +E16,12 ; XRP2 = E16,11 +E12,12

XRP3 = F11,111 +2F16,112 +F12,122 ; XRP4 = R18X ,11 +R19X ,12

XRP5 = R20X ,11 +R21X ,12

R18X = F11 + Fa
11 + Fd

16 −
4
3η

2 H11 ; R19X = F16 + Fa
16 + Fd

12 −
4
3η

2 H16

R20X = F16 + Fb
16 + Fc

11 −
4
3η

2 H16 ; R21X = F12 + Fb
12 + Fc

16 −
4
3η

2 H12

XRP6 = E16,12 +E66,22 ; XRP7 = E66,12 +E26,22

XRP8 = F16,112 +2F66,122 +F26,222 ; XRP9 = R22X ,12 +R23X ,22

XRP10 = R24X ,12 +R25X ,22

R22X = F16 + Fa
16 + Fd

66 −
4
3η

2 H16 ; R23X = F66 + Fa
66 + Fd

26 −
4
3η

2 H66

R24X = F66 + Fb
66 + Fc

16 −
4
3η

2 H66 ; R25X = F26 + Fb
26 + Fc

66 −
4
3η

2 H26

XRR R1X = D44 + Da
44 + Dd

45 − 4η2 F44 ; XRR R2X = D45 + Dc
44 + Db

45 − 4η2 F45
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XR26X2 = Da
112,11 +Da

162,12 ; XR27X2 = Da
162,11 +Da

122,12

XR28X2 = Ea
112,111 +2Ea

162,112 Ea
122,122

XR29X2 = R2R1X ,11 +R2R2X ,12 ; XR30X2 = R2R3X ,11 +R2R4X ,12

R2R1X = Daa
11 2 + Dad

16 2 + Ea
112 + Eaa

11 2 + Ead
16 2 + Fa

112 + Faa
11 2 + Fad

16 2

R2R2X = Dad
12 2 + Daa

16 2 + Ead
12 2 + Ea

162 + Eaa
16 2 + Fad

12 2 + Fa
162 + Faa

16 2

R2R3X = Dac
112 + Dab

162 + Eac
122 + Ea

162 + Eab
162 + Fa

162 + Fac
112 + Fab

162

R2R4X = Dab
122 + Dac

162 + Eab
122 + Eac

162 + Fa
122 + Fac

162

XR31X2 = Dd
122,12 +Dd

262,22 ; XR32X2 = Dd
262,12 +Dd

222,22

XR33X2 = Ed
122,112 +2Ed

262,122 +Ed
222,222

XR34X2 = R2R5X ,12 +R2R6X ,22 ; XR35X2 = R2R7X ,12 +R2R8X ,22

R2R5X = Dad
12 2 + Ddd

26 2 + Ed
122 + Ead

12 2 + Edd
26 2 + Fd

212 + Fad
21 2 + Fdd

26 2

R2R6X = Ddd
22 2 + Dad

26 2 + Edd
22 2 + Ed

262 + Ead
26 2 + Fdd

22 2 + Fd
262 + Fad

26 2

R2R7X = Dcd
212 + Dbd

26 2 + Ecd
122 + Ed

262 + Ebd
26 2 + Fd

262 + Fcd
122 + Fbd

26 2

R2R8X = Dbd
22 2 + Dcd

262 + Ebd
22 2 + Ecd

262 + Fd
222 + Fcd

262

XR36X2 = Da
162,12 +Da

662,22 ; XR37X2 = Da
662,12 +Da

262,22

XR38X2 = Ea
162,112 +2Ea

662,122 +Ea
262,222

XR39X2 = R2R10X ,12 +R2R11X ,22 ; XR40X2 = R2R12X ,12 +R2R13X ,22

R2R10X = Daa
16 2 + Dad

66 2 + Ea
262 + Eaa

16 2 + Ead
66 2 + Fa

162 + Faa
16 2 + Fad

66 2

R2R11X = Dad
26 2 + Daa

66 2 + Ead
26 2 + Ea

662 + Eaa
66 2 + Fad

26 2 + Fa
662 + Faa

66 2

R2R12X = Dac
162 + Dab

662 + Eac
162 + Ea

662 + Eab
662 + Fa

662 + Fac
162 + Fab

662

R2R13X = Dab
262 + Dac

662 + Eab
262 + Eac

662 + Fa
262 + Fac

662

XR41X2 = Dd
162,11 +Dd

662,12 ; XR42X2 = Dd
662,11 +Dd

262,12

XR43X2 = Ed
162,111 +2Ed

662,112 +Ed
262,222

XR44X2 = R2R14X ,11 +R2R15X ,12 ; XR45X = R2R16,11X +R2R17X ,12

R2R14X = Dad
16 2 + Ddd

66 2 + Ed
162 + Ead

16 2 + Edd
66 2 + Fd

162 + Fad
16 2 + Fdd

66 2

R2R15X = Ddd
26 2 + Dad

66 2 + Edd
26 2 + Ed

662 + Ead
66 2 + Fdd

26 2 + Fd
662 + Fad

66 2

R2R16X = Dcd
162 + Dbd

66 2 + Ecd
162 + Ed

662 + Ebd
66 2 + Fd

662 + Fcd
162 + Fbd

66 2

R2R17X = Dbd
26 2 + Dcd

662 + Ebd
26 2 + Ecd

662 + Fd
262 + Fcd

662

XR46X2 = Ba
442 + Baa

44 2 + Bad
45 2 + Daa

44 2 + Dad
45 2 + Ea

442 + Faa
44 2 + Fad

45 2

XR47X2 = Ba
452 + Bac

442 + Bab
452 + Dac

442 + Dab
452 + Ea

452 + Fac
442 + Fab

452

XR48X2 = Bd
452 + Bad

45 2 + Bdd
55 2 + Dad

45 2 + Ddd
55 2 + Ed

452 + Fad
45 2 + Fdd

55 2

XR49X2 = Bd
552 + Bcd

452 + Bbd
55 2 + Dcd

452 + Dbd
55 2 + Ed

552 + Fcd
452 + Fbd

55 2
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The quantities for the shear energy contribution in the plane (y, z) are not reported, since they are similar
to those for the plane (x, z), replacing x with y.

References

[Bert 1984] C. W. Bert, “A critical review of new plate theories applied to laminated composites”, Compos. Struct. 2 (1984),
329–347.

[Bolotin 1996] V. V. Bolotin, “Delaminations in composite structures: its origin, buckling, growth and stability”, Compos. B:
Eng. 27 (1996), 129–145.

[Carvalho and Guedes Soares 1996] A. Carvalho and C. Guedes Soares, “Dynamic response of rectangular plates of composite
materials subjected to impact loads”, Compos. Struct. 34 (1996), 55–63.

[Chai and Gädke 1999] Y. Chai and M. Gädke, “Impact damage simulation and compression after impact of composite stiffened
panels”, Dlr report 1b 20, DLR — German Aerospace Center, Institute of Structural Mechanics„ 1999. 131–199.

[Choi 2006] I. H. Choi, “Contact force history analysis of composite sandwich plates subjected to low-velocity impact”, Com-
pos. Struct. 75 (2006), 582–586.

[Choi and Chang 1992] H. Y. Choi and F. K. Chang, “A model for predicting damage in graphite/epoxy laminated composites
resulting from low-velocity point impact”, J. Compos. Mater. 26 (1992), 2134–2169.

[Cox 1999] B. N. Cox, “Constitutive model for a fiber tow bridging a delamination crack”, Mech. Adv. Mater. Struct. 6:2 (1999),
117–151.

[Crook 1952] A. W. Crook, “A study of some impacts between metal bodies by a piezoelectric method”, pp. 377–380 in
Proceeding of the Royal Society Series A, vol. 212, London, 1952.

[Davies and Olsson 2004] G. A. Davies and R. Olsson, “Impact on composite structures”, The Aeronautical Journal 11 (2004),
541–564.

[Echaabi and Trochu 1996] J. F. Echaabi and F. Trochu, “Review of failure criteria of fibrous composite materials”, Polym.
Compos. 17 (1996), 786–798.

[Ferrero and Icardi 2006] L. Ferrero and U. Icardi, “Improving energy absorption and dissipation of composites through opti-
mized tailoring”, in Proceedings of the International Mechanical Engineering Congress and Exposition, IMECE, IMECE2006-
13329, ASME, Chicago, IL, 2006.

[Ferrero and Icardi 2007] L. Ferrero and U. Icardi, “Optimization of multi-core sandwich composites undergoing impact loads”,
in Proceeding of the International Mechanical Engineering Congress and Exposition, IMECE, IMECE2007-42851, ASME,
Seattle, WA, 2007.

[Fuchiyama and Noda 1995] T. Fuchiyama and N. Noda, “Analysis of thernal stress in a plate of functionally gradient material”,
JSAE Rev. 6 (1995), 263–268.

[Georgi 1979] H. Georgi, “Dynamic damping investigations on composites”, pp. 9.1–9.20 in Proceeding of the 48th Meeting
AGARD, Williamsbourg, 1979.

[Goldberg 2001] K. R. Goldberg, “Implementation of fiber substructuring into strain rate dependent micromechanics analysis
of polymer matrix composites”, Technical report NASA/TM-2001-210822, NASA, 2001.

[Hoa and Feng 1998] S. V. Hoa and W. Feng, Hybrid finite element method for stress analysis of laminated composites, Kluwer
Academic Publications, Boston, 1998.

[Hou et al. 2000] J. P. Hou, N. Petrinic, C. Ruiz, and S. R. Hallet, “Prediction of impact damage in composite plates”, Compos.
Sci. Technol. 60 (2000), 273–281.

[Hou et al. 2001] J. P. Hou, N. Petrinic, and C. Ruiz, “A delamination criterion for laminated composites under low velocity
impact”, Compos. Sci. Technol. 61 (2001), 2069–2074.

[Icardi 1998] U. Icardi, “Eight-noded zig-zag element for deflection and stress analysis of plates with general lay-up”, Compos.
B: Eng. 29 (1998), 435–41.

[Icardi 2001] U. Icardi, “Higher-order zig-zag model for analysis of thick composite beams with inclusion of transverse normal
stress and sublaminates approximations”, Compos. B: Eng. 32 (2001), 343–354.

[Icardi 2005] U. Icardi, “Co plate element for global/local analysis of multilayered composites, based on a 3D zig-zag model
and strain energy updating”, Int. J. Mech. Sci. 47 (2005), 1561–1594.



STRUCTURAL RESPONSE AND ENERGY ABSORPTION CAPABILITY OF COMPOSITES 759

[Icardi 2007] U. Icardi, “Co plate element based on strain energy updating and spline interpolation, for analysis of impact
damage in laminated composites”, Int. J. Impact Eng. 34:11 (2007), 1835–1868.

[Icardi and Atzori 2004] U. Icardi and A. Atzori, “Simple, efficient mixed solid element for accurate analysis of local effects
in laminated and sandwich composites”, Adv. Eng. Softw. 32:12 (2004), 843–859.

[Icardi and Ferrero 2005] U. Icardi and L. Ferrero, “A study of energy absorption in fiber-reinforced composites: transfer
form bending to shear”, in Proceedings of the 3rd International Conference on Structural Stability and Dynamics, ICSSD05,
Orlando, FL, 2005.

[Icardi and Ferrero 2006a] U. Icardi and L. Ferrero, “Impact and blast pulse: improving energy absorption of fibre-reinforced
composites through optimized tailoring”, in Proceedings of the Engineering Systems and Design Analysis Conference, ESDA,
ESDA2006-95772, ASME, Torino, Italy, 2006.

[Icardi and Ferrero 2006b] U. Icardi and L. Ferrero, “Optimization of energy absorption and dissipation of composites”, in
International E-conference Of Computer Science 2006, edited by T. Simos, Lectures Series on Computer and Computational
Sciences, Brill, 2006.

[Icardi and Ferrero 2006c] U. Icardi and L. Ferrero, “Optimized tailoring reducing interlaminar stresses accumulation in
fiber-reinforced composites”, in Proceeding of the 2nd International Congress on Computational Mechanics and Simulation,
ICCMS-06, Guwahati, India, 2006.

[Icardi and Ferrero 2007a] U. Icardi and L. Ferrero, “Modeling assessment and optimization of impacted multi-core sand-
wich composites”, in Proceeding of the Society for Advancement of Material and Process Engineering Conference, SAMPE,
Baltimore, MD, 2007.

[Icardi and Ferrero 2007b] U. Icardi and L. Ferrero, “Modeling techniques assessment and optimization of laminated and
sandwich composites undergoing impact loads”, in Proceeding of the 12th Aerospace and Sciences and Aviation Technology,
ASAT, 144, Cairo, Egypt, 2007.

[Icardi and Zardo 2005] U. Icardi and G. Zardo, “Co plate element for delmination damage analysis, based on a zig-zag model
and strain energy updating”, Int. J. Impact Eng. 31 (2005), 579–606.

[Icardi et al. 2007] U. Icardi, S. Locatto, and A. Longo, “Assessment of recent theories for predicting failure of composite
laminates”, Appl. Mech. Rev. 60:2 (2007), 76–86.

[Jones 1999] R. M. Jones, Mechanics of composite maerials, Taylor and Francis, Philadelfia, 1999.

[Joshi and Sun 1987] S. P. Joshi and C. T. Sun, “Impact-indiced fracture initiation and detailed dynamic stress field in the
vicinity of impact”, pp. 177–185 in Proceeding of the 2nd American Society of Composites Technical Conference, Newmark,
DE, 1987.

[Jung 2001] W. Y. Jung, “A combined honeycomb and solid viscoelastic material for structural damping applications”, pp.
41–43 in Thrust area 2: seismic retrofit of acute care facilities, Department of Civil, Structural & Environmental Engineering,
University at Buffalo, 2001.

[Lakes 2002] R. S. Lakes, “High damping composite materials: effect of structural hierarchy”, J. Compos. Mater. 36:3 (2002),
287–297.

[Lee et al. 1997] Y. S. Lee, K. H. Kang, and O. Park, “Response of Hybrid laminated Composite Plates under loa-velocity
Impact”, Comput. Struct. 65:6 (1997), 965–974.

[Librescu and Reddy 1986] L. Librescu and J. N. Reddy, “A critical review and generalization of transverse shear deformable
anisotropic plate theories”, pp. 32–43 in Euromech Colloqioum 219, Refined dynamical theories of beams, plates and shells
and their applications, Kassel, edited by I. Elishakoff and H. Irretier, Springer Verlag, Heidelberg, September 23–26 1986.

[Liou 1997] W. J. Liou, “Contact laws of carbon/epoxy laminated composite plate”, J. Reinf. Plast. Compos. 16:2 (1997),
155–166.

[Loubignac et al. 1978] C. Loubignac, C. Cantin, and C. Touzot, “Continuous stress fields in finite element analysis”, AIAA J.
15 (1978), 1645–1647.

[Matemilola and Stronge 1995] S. A. Matemilola and W. J. Stronge, “Impact induced dynamic deformations and stresses in
CFRP composite laminates”, Compos. Eng. 5:2 (1995), 211–222.

[McCoucheon 2004] D. M. McCoucheon, “Machine augmented composite materials for damping purposes”, Degree of master
of science thesis, Texas A&M University, 2004.



760 UGO ICARDI AND LAURA FERRERO

[Nahas 1986] M. N. Nahas, “Survey of failure and post-failure theories of laminated fibre reinforced composites”, J. Compos.
Tech. Res. 8 (1986), 138–153.

[Nakazawa 1984] S. Nakazawa, Mixed finite elements and iterative solution procedures, Iterative Methods in Non-Linear
Problems, Pineridge, 1984.

[Noor and Burton 1989] A. K. Noor and W. S. Burton, “Assessment of shear deformation theories for multilayered composite
plates”, Appl. Mech. Rev. 42 (1989), 1–13.

[Noor and Burton 1990] A. K. Noor and W. S. Burton, “Assessment of computational models for multilayered composite
shells”, Appl. Mech. Rev. 43 (1990), 67–97.

[Noor and Burton 1992] A. K. Noor and W. S. Burton, “Computational models for high-temperature multilayered composite
plates and shells”, Appl. Mech. Rev. 45 (1992), 419–444.

[Noor et al. 1996] A. K. Noor, W. S. Burton, and C. W. Bert, “Computational models for sandwich panels and shells”, Appl.
Mech. Rev. 49 (1996), 155–199.

[Paris 2001] F. Paris, “A study of failure criteria of fibrous composite materials”, Technical report NASA/CR-2001-210661,
NASA, 2001.

[Pedersen 2003] P. Pedersen, “A note on design of fiber-nets for maximum stiffness”, J. Elasticity 73:1–3 (2003), 127–145.
[Reddy 1982] J. N. Reddy, “Survey of recent research in the analysis of composite plates”, Compos. Technol. Rev. 4 (1982),
101–104.

[Reddy 1990] J. N. Reddy, “A review of refined theories of laminated composite plates”, Shock Vibr. Dig. 22 (1990), 3–17.
[Reddy 2003] J. N. Reddy, Mechanics of laminated composite plates and shells: Theory and analysis, 2nd Edition ed., CRC
Press, Boca Raton, FL, 2003.

[Reddy and Robbins 1994] J. N. Reddy and D. H. J. Robbins, “Theories and computational models for composite laminates”,
Appl. Mech. Rev. 47 (1994), 147–169.

[Rowlands 1985] R. E. Rowlands, “Strength (failure) theories and their experimental correlations”, pp. 71–125 in Handbook
of Composites, vol. 3, Elsevier Science Publ., 1985.

[Setoodeh et al. 2005] S. Setoodeh, M. M. Abdalla, Z. Gurdal, and B. Tatting, “Design of variable-stiffness composite laminates
for maximum in-plane stiffness using lamination parameters”, pp. 3473–3481 in Proceeding of the 46th AIAA/ASME/ASCE/
AHS/ASC Struc., Struct. Dynam and Appl. Conf., 13th AIAA/ ASME/ AHS Adap. Struc. Conf., 7th AIAA Non-Determ Appr.
Forum, 2005.

[Suzuky et al. 2003] K. Suzuky, K. Kageyama, I. Kimpara, and S. Hotta, “Vibration and damping prediction of laminates with
constrained viscoelastic layers”, Mech. Adv. Mater. Struct. 10:2 (2003), 43–73.

[Tan and Sun 1985] T. M. Tan and C. T. Sun, “Use of statical indentation laws in the impact analysis of laminated composite
plates”, J. Appl. Mech. (Trans. ASME) 52 (1985), 6–12.

[Tennyson and Wharam 1985] R. C. Tennyson and G. E. Wharam, “Evaluation of failure criterion for graphite-epoxy”, Tech-
nical report NASA CR-172547, NASA, 1985.

[Wu and Shyu 1993] E. Wu and K. Shyu, “Response of composite laminates of contact loads and relationship to low-velocity
impact”, J. Compos. Mater. 27:15 (1993), 1443–1464.

[Yigit and Christoforou 1995] A. S. Yigit and A. P. Christoforou, “Impact dynamics of composite beams”, Compos. Struct. 32
(1995), 187–195.

[Zienkiewicz and Taylor 1994] O. C. Zienkiewicz and R. L. Taylor, The finite element method, vol. 1, 4th Ed. ed., McGraw-Hill,
London, UK, 1994.

[Zinoviev and Ermakov 1994] P. A. Zinoviev and Y. N. Ermakov, Energy dissipation in composite materials, Technomic Pub.
Co., Lancaster, UK, 1994.

Received 21 Aug 2007. Revised 24 Jan 2008. Accepted 29 Jan 2008.

UGO ICARDI: ugo.icardi@polito.it
DIASP, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy

LAURA FERRERO: laura.ferrero@polito.it
DIASP, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy



JOURNAL OF MECHANICS OF MATERIALS AND STRUCTURES
Vol. 3, No. 4, 2008

INTERACTION BETWEEN A SCREW DISLOCATION AND A PIEZOELECTRIC
CIRCULAR INCLUSION WITH VISCOUS INTERFACE

XU WANG, ERNIAN PAN AND A. K ROY

Exact closed-form solutions in terms of elementary functions are derived for the problem of a screw
dislocation embedded in an unbounded piezoelectric matrix interacting with a piezoelectric circular in-
clusion with a linear viscous interface. By means of the complex variable method, the original boundary
value problem is reduced to an inhomogeneous first-order partial differential equation whose solution
can be expressed in terms of elementary functions. The time dependent electroelastic fields such as
stresses, strains, electric fields, and electric displacements are then obtained. In particular the image
force acting on the piezoelectric screw dislocation, due to its interaction with the circular viscous inter-
face, is presented. Some special cases of practical importance are discussed to verify and to illustrate the
obtained solution. Finally we present a specific example of a screw dislocation located in a piezoelectric
PZT-5 matrix interacting with a piezoelectric BaTiO3 fiber to graphically demonstrate the influence of
the viscosity of the interface on the mobility of the screw dislocation.

1. Introduction

Due to their intrinsic electromechanical coupling behaviors, piezoelectric ceramics have been widely
used in applications such as sensors, filters, ultrasonic generators, and actuators. More recently, the use
of piezoelectric materials has gone beyond the traditional application domain of small electric devices due
to the emergence of piezoelectric composites. Nowadays, piezoelectric materials have been employed as
integrated active structural elements. These adaptive structures are capable of monitoring and adapting
to their environments, providing a smart response to external conditions. Investigations on piezoelectric
materials in the presence of defects such as dislocations, cracks, and inclusions are many [Pak 1990a;
1990b; 1992; Meguid and Deng 1998; Liu et al. 1999; Ru and Mao 1999; Lee et al. 2000; Chen et al.
2002; Wang et al. 2003; Wang and Pan 2007; Xiao et al. 2007] due to the fact that these defects can
adversely influence the performance of the piezoelectric devices. Recently He and Lim [2003] analyzed
the electromechanical response of a piezoelectric fibrous composite with a viscous interface described
by the linear law of rheology [Ray and Ashby 1971; Suo 1997]. Their results demonstrated that the
interfacial sliding could alter the local mechanical and electrical fields in the piezoelectric composite,
and could further lead to significant change in overall electromechanical response of the composites
with time.

The present paper investigates the interaction between a screw dislocation and a piezoelectric circular
inclusion with a viscous interface described by the linear law of rheology [Ray and Ashby 1971; Suo
1997; He and Lim 2003]. The viscosity of the interface investigated in this research originates from the

Keywords: piezoelectricity, circular inclusion, screw dislocation, viscous interface, image force.
This work is supported in part by Air Force Research Laboratory (06-S531-060-C1).
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microscopically diffusion controlled sliding mechanism [Ray and Ashby 1971; Suo 1997], or from an
artificially introduced thin viscous layer for damping purpose. This study is confined to the quasistatic
assumption, ignoring the inertial force in the piezoelectric inclusion and matrix. By means of the complex
variable method, the original boundary value problem is reduced to an inhomogeneous first-order partial
differential equation for an analytic function defined within the circular inclusion. A closed-form solution
in terms of elementary functions to the partial differential equation is obtained after a transformation is
introduced. It is stressed that the usage of the complex variable combined with the real time variable is
very novel in the literature.

2. Basic formulations

Consider a circular piezoelectric inclusion (or fiber) of radius R embedded in an unbounded piezoelectric
matrix, as shown in Figure 1. Both the inclusion and matrix are of 6 mm material with symmetry about
the fiber axis. The inclusion/matrix interface is a viscous one characterized with a law of linear rheology
[Ray and Ashby 1971; Suo 1997; He and Lim 2003] (or equivalently modeled by linear dashpot [Fan and
Wang 2003; Wang and Schiavone 2007]). At time t = 0, a piezoelectric screw dislocation is introduced
into the piezoelectric matrix and fixed at point (x0, y0). The screw dislocation is assumed to be straight
and infinitely long in the x3 direction (the fiber axis), experiencing a displacement jump b and an electric
potential jump 1φ across the slip plane. The dislocation also has a line force p and line charge q
along its core. In this configuration the governing equations and constitutive equations can be simplified
considerably as follows.

• Governing field equations:

σzx,x + σzy,y = 0, Dx,x + Dy,y = 0, (1)

• Electric field/electric potential relations:

Ex = −φ,x , Ey = −φ,y, (2) 
 
 

 

x 

y 

R 
z0 

Viscous interface 

Piezoelectric circular inclusion 

Piezoelectric matrix 

Screw dislocation 
with line force and 
line charge 

Figure 1. A screw dislocation with a line force and a line charge near a piezoelectric
circular inclusion with a viscous interface.
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• Linear piezoelectric constitutive equations:[
σzy

Dy

]
=

[
c44 −e15

e15 ε11

] [
w,y

Ey

]
,

[
σzx

Dx

]
=

[
c44 −e15

e15 ε11

] [
w,x

Ex

]
, (3)

where a comma followed by x or y denotes partial derivatives with respect to x or y, respectively.
σzx and σzy are the shear stress components, Dx and Dy the electric displacement components, Ex

and Ey the electric fields, w the out of plane displacement, φ the electric potential, and c44, e15, and
ε11 are, respectively, the elastic modulus, piezoelectric constant, and dielectric permittivity. In the
following analysis the piezoelectrically stiffened elastic constant c̃44 = c44 + e2

15/ε11 will be also
used. In Equation (1) we have neglected the inertial effect of the piezoelectric material due to the
fact that the viscous response comes from the interface only.

The displacement and electric potential can be expressed in terms of an analytic function vector
f (z, t)=

[
f1(z, t), f2(z, t)

]T , z = x + iy, as[
w

φ

]
= im

{
f (z, t)

}
,

where im stands for the imaginary part. Since the viscous interface exhibits the time effect, the analytic
function vector f (z, t) depends not only on the complex variable z but also on the time t . In terms of
the analytic function vector f (z, t), the strains, electric fields, stresses, and electric displacements in the
Cartesian coordinate system can be expressed as[

γzy + iγzx

−Ey − i Ex

]
=
∂ f (z, t)
∂z

,

[
σzy + iσzx

Dy + i Dx

]
= C

∂ f (z, t)
∂z

, (4)

where the strains γzx and γzy are related to the out of plane displacement w through γzx =w,x , and γzy =

w,y, and C is the extended stiffness matrix given by

C =

[
c44 e15

e15 −ε11

]
.

The strains, electric fields, stresses, and electric displacements in the polar coordinate system can also
be expressed in terms of the analytic function vector f (z, t) as[

γzθ + iγzr

−Eθ − i Er

]
=

z
|z|
∂ f (z, t)
∂z

,

[
σzθ + iσzr

Dθ + i Dr

]
= C

z
|z|
∂ f (z, t)
∂z

. (5)

In this paper, the superscripts (1) and (2) (or the subscripts 1 and 2) will be used to denote, respectively,
the physical quantities in the inclusion and matrix. The analytic function vector defined in the inclusion
is denoted by g(z, t)=

[
g1(z, t), g2(z, t)

]T , whilst that in the unbounded matrix is denoted by h(z, t)=[
h1(z, t), h2(z, t)

]T .
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3. Complex potentials and field components

The boundary conditions on the viscous interface r = R can be expressed as [He and Lim 2003]

σ (1)zr = σ (2)zr , D(1)
r = D(2)

r ,

φ(1) = φ(2),

σ (1)zr = η
(
ẇ(2) − ẇ(1)

)
,

r = R and t > 0, (6)

where a dot over the quantity denotes differentiation with respect to time t , and η is the interface slip
coefficient, which can be measured through properly designed experiment.

Equation (6)1 for the continuity condition of traction and normal electric displacement across the
interface can be equivalently expressed as

C1 g+(z, t)+ C1 ḡ−
(
R2/z, t

)
= C2h−(z, t)+ C2h̄+(

R2/z,
)
, |z| = R,

It follows from the above expression that

h(z, t)= C−1
2 C1 ḡ

(
R2/z, t

)
+ h0(z)− h̄0

(
R2/z

)
,

h̄
(
R2/z, t

)
= C−1

2 C1 g(z, t)− h0(z)+ h̄0
(
R2/z

)
,

(7)

where

h0(z)=
[
h10(z), h20(z)

]T
=

b̂ − i C−1
2 f̂

2π
ln(z − z0),

z0 = x0 + iy0, b̂ =
[
b 1φ

]T
, f̂ =

[
p −q

]T
,

which is time independent, is the complex potential for a piezoelectric screw dislocation in a homoge-
neous piezoelectric material [Pak 1990b].

Equation (6)2 for the continuity condition of the electric potential across the interface can be equiva-
lently expressed as

g+

2 (z, t)− ḡ−

2

(
R2/z, t

)
= h−

2 (z, t)− h̄+

2

(
R2/z, t

)
, |z| = R.

It follows from the above expression that

h2(z, t)= − ḡ2
(
R2/z, t

)
+ h20(z)+ h̄20

(
R2/z

)
,

h̄2
(
R2/z, t

)
= − g2(z, t)+ h20(z)+ h̄20

(
R2/z

)
,

|z| = R. (8)
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In view of (7) and (8), the three analytic functions h1(z, t), h2(z, t), and ḡ2(R2/z, t) defined in the
matrix can be expressed in terms of a single analytic function ḡ1(R2/z, t) defined in the matrix as

h1(z, t)=
c(1)44

(
ε
(1)
11 + ε

(2)
11

)
+ e(1)15

(
e(1)15 + e(2)15

)
c(2)44

(
ε
(1)
11 + ε

(2)
11

)
+ e(2)15

(
e(1)15 + e(2)15

) ḡ1
(
R2/z, t

)
+h10(z)− h̄10

(
R2/z

)
+

2
(
ε
(2)
11 e(1)15 − ε

(1)
11 e(2)15

)
c(2)44

(
ε
(1)
11 + ε

(2)
11

)
+ e(2)15

(
e(1)15 + e(2)15

) h̄20
(
R2/z

)
,

h2(z, t)=
c(1)44 e(2)15 − c(2)44 e(1)15

c(2)44

(
ε
(1)
11 + ε

(2)
11

)
+ e(2)15

(
e(1)15 + e(2)15

) ḡ1
(
R2/z, t

)
+h20(z)+

c(2)44

(
ε
(1)
11 − ε

(2)
11

)
+ e(2)15

(
e(1)15 − e(2)15

)
c(2)44

(
ε
(1)
11 + ε

(2)
11

)
+ e(2)15

(
e(1)15 + e(2)15

) h̄20
(
R2/z

)
,

ḡ2
(
R2/z, t

)
=

c(2)44 e(1)15 − c(1)44 e(2)15

c(2)44

(
ε
(1)
11 + ε

(2)
11

)
+ e(2)15

(
e(1)15 + e(2)15

) ḡ1
(
R2/z, t

)
+

2c̃(2)44 ε
(2)
11

c(2)44

(
ε
(1)
11 + ε

(2)
11

)
+ e(2)15

(
e(1)15 + e(2)15

) h̄20
(
R2/z

)
. (9)

Similarly the three analytic functions h̄1(R2/z, t), h̄2(R2/z, t), and g2(z, t) defined in the inclusion
can be expressed in terms of a single analytic function g1(z, t) defined in the inclusion as

h̄1
(
R2/z, t

)
=

c(1)44

(
ε
(1)
11 + ε

(2)
11

)
+ e(1)15

(
e(1)15 + e(2)15

)
c(2)44

(
ε
(1)
11 + ε

(2)
11

)
+ e(2)15

(
e(1)15 + e(2)15

)g1(z, t)

+h̄10
(
R2/z

)
− h10(z)+

2
(
ε
(2)
11 e(1)15 − ε

(1)
11 e(2)15

)
c(2)44

(
ε
(1)
11 + ε

(2)
11

)
+ e(2)15

(
e(1)15 + e(2)15

)h20(z),

h̄2
(
R2/z, t

)
=

c(1)44 e(2)15 − c(2)44 e(1)15

c(2)44

(
ε
(1)
11 + ε

(2)
11

)
+ e(2)15

(
e(1)15 + e(2)15

)g1(z, t)

+h̄20
(
R2/z

)
+

c(2)44

(
ε
(1)
11 − ε

(2)
11

)
+ e(2)15

(
e(1)15 − e(2)15

)
c(2)44

(
ε
(1)
11 + ε

(2)
11

)
+ e(2)15

(
e(1)15 + e(2)15

)h20(z),

g2(z, t)=
c(2)44 e(1)15 − c(1)44 e(2)15

c(2)44

(
ε
(1)
11 + ε

(2)
11

)
+ e(2)15

(
e(1)15 + e(2)15

)g1(z, t)+
2c̃(2)44 ε

(2)
11

c(2)44

(
ε
(1)
11 + ε

(2)
11

)
+ e(2)15

(
e(1)15 + e(2)15

)h20(z). (10)

Equation (6)3 for the law of linear rheology can be equivalently expressed as

c(1)44 z g
′
+

1 (z, t)+ e(1)15 z g
′
+

2 (z, t)− c(1)44 R2z−1ḡ′
−

1
(
R2/z, t

)
− e(1)15 R2z−1ḡ′

−

2
(
R2/z, t

)
= Rη

[∂h−

1 (z, t)
∂t

−
∂ h̄+

1

(
R2/z, t

)
∂t

−
∂g+

1 (z, t)
∂t

+
∂ ḡ−

1

(
R2/z, t

)
∂t

]
, (11)

where |z| = R, and where the superscript comma means the derivative with respect to the complex
variable.
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Inserting (9) and (10) into (11), and with |z| = R, we finally obtain

c̃(1)44 c(2)44 ε
(1)
11 + c(1)44 c̃(2)44 ε

(2)
11

c(2)44

(
ε
(1)
11 + ε

(2)
11

)
+ e(2)15

(
e(1)15 + e(2)15

) zg
′
+

1 (z, t)+ Rη

(
c(1)44 + c(2)44

)(
ε
(1)
11 + ε

(2)
11

)
+
(
e(1)15 + e(2)15

)2

c(2)44

(
ε
(1)
11 + ε

(2)
11

)
+ e(2)15

(
e(1)15 + e(2)15

) ∂g+

1 (z, t)
∂t

+
2c̃(2)44 ε

(2)
11 e(1)15

c(2)44

(
ε
(1)
11 + ε

(2)
11

)
+ e(2)15

(
e(1)15 + e(2)15

) zh′

20(z)

=
c̃(1)44 c(2)44 ε

(1)
11 + c(1)44 c̃(2)44 ε

(2)
11

c(2)44

(
ε
(1)
11 + ε

(2)
11

)
+ e(2)15

(
e(1)15 + e(2)15

) R2z−1ḡ′
−

1
(
R2/z, t

)
+Rη

(
c(1)44 + c(2)44

)(
ε
(1)
11 + ε

(2)
11

)
+
(
e(1)15 + e(2)15

)2

c(2)44

(
ε
(1)
11 + ε

(2)
11

)
+ e(2)15

(
e(1)15 + e(2)15

) ∂ ḡ−

1

(
R2/z, t

)
∂t

+
2c̃(2)44 ε

(2)
11 e(1)15

c(2)44

(
ε
(1)
11 + ε

(2)
11

)
+ e(2)15

(
e(1)15 + e(2)15

) R2z−1h̄′

20
(
R2/z

)
. (12)

Apparently the left hand side of Equation (12) is analytic within the circle |z| = R, while the right hand
side of (12) is analytic outside the circle including the point at infinity. By employing Liouville’s theorem,
the left and right hand sides should be identically zero. Consequently we obtain the inhomogeneous first-
order partial differential equation for g1(z, t)

z
∂g1(z, t)
∂z

+ t0
∂g1(z, t)
∂t

= −
βz

z − z0
, |z| ≤ R, (13)

where t0 is the characteristic time and β a constant, defined, respectively, by

t0 = Rη

(
c(1)44 + c(2)44

)(
ε
(1)
11 + ε

(2)
11

)
+
(
e(1)15 + e(2)15

)2

c̃(1)44 c(2)44 ε
(1)
11 + c(1)44 c̃(2)44 ε

(2)
11

> 0, β =
e(1)15

[
c̃(2)44 ε

(2)
11 1φ− i

(
e(2)15 p + c(2)44 q

)]
π
(
c̃(1)44 c(2)44 ε

(1)
11 + c(1)44 c̃(2)44 ε

(2)
11

) .

It is of interest to notice that the resulting first-order partial differential equation (13) for a circular
viscous interface is different from that for a straight viscous interface [Wang et al. 2007; Wang and Pan
2008]. Once we introduce the transformation ζ = ln z, (13) changes into

∂g1(ζ, t)
∂ζ

+ t0
∂g1(ζ, t)
∂t

= −
βeζ

eζ − z0
, (14)

whose structure is in a sense similar to that of the resulting differential equation for a straight viscous
interface [Wang et al. 2007; Wang and Pan 2008].

Equation (14) demonstrates that it has a homogeneous solution in the form g1(ζ − t/t0). In view of
the form of the homogeneous solution to (14), the solution to the original partial differential equation
(13) can be conveniently given by

g1(z, t)= α ln(z − et/t0 z0)−β ln(z − z0), |z| ≤ R, (15)

where α is an unknown constant to be determined, and the term −αt/t0 in g1(z, t) representing the rigid
body displacement and equipotential has been ignored. It is mentioned that the first term in g1(z, t),

α ln(z − et/t0 z0)− at/t0 = α ln(e−t/t0 z − z0),
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is a homogeneous solution to (13), while the second term in g1(z, t), −β ln(z−z0), is a particular solution
to (13). At the initial moment t = 0, when the piezoelectric screw dislocation is just introduced into the
matrix, the displacement across the interface has no time to experience a jump due to the dashpot [Fan
and Wang 2003; Wang and Schiavone 2007]. Therefore at t = 0 the interface is a perfect one. As a result
we have

g1(z, 0)=
J1(C1 + C2)

−1(C2 b̂ − i f̂ )
π

ln(z − z0), J0 =
[
1 0

]
, J2 =

[
0 1

]
. (16)

In view of Equations (15) and (16), the constant α can be uniquely determined to be

α = β +
J1(C1 + C2)

−1(C2 b̂ − i f̂ )
π

. (17)

Once g1(z, t) has been determined, after some tedious but straightforward mathematical operations
we finally arrive at g2(z, t) defined in the inclusion and h1(z, t) and h2(z, t) defined in the matrix as

g2(z, t)=
α(c(2)44 e(1)15 − c(1)44 e(2)15 )

c(2)44

(
ε
(1)
11 + ε

(2)
11

)
+ e(2)15

(
e(1)15 + e(2)15

) ln
(
z − et/t0 z0

)
+
βc(1)44

e(1)15

ln
(
z − z0

)
,

h1(z, t)=
ᾱ
[
c(1)44

(
ε
(1)
11 + ε

(2)
11

)
+ e(1)15

(
e(1)15 + e(2)15

)]
c(2)44

(
ε
(1)
11 + ε

(2)
11

)
+ e(2)15

(
e(1)15 + e(2)15

) ln
( z − e−t/t0 R2/z̄0

z

)
−

[ c̃(1)44 ε
(1)
11 e(2)15 J2

c̃(1)44 c(2)44 ε
(1)
11 + c(1)44 c̃(2)44 ε

(2)
11

+
J1

2

] b̂ + i C−1
2 f̂

π
ln
( z − R2/z̄0

z

)
+

J1
(
b̂ − i C−1

2 f̂
)

2π
ln
(
z − z0

)
,

h2(z, t)=
ᾱ
(
c(1)44 e(2)15 − c(2)44 e(1)15

)
c(2)44

(
ε
(1)
11 + ε

(2)
11

)
+ e(2)15

(
e(1)15 + e(2)15

) ln
( z − e−t/t0 R2/z̄0

z

)
+

c̃(1)44 c(2)44 ε
(1)
11 − c(1)44 c̃(2)44 ε

(2)
11

c̃(1)44 c(2)44 ε
(1)
11 + c(1)44 c̃(2)44 ε

(2)
11

J2
(
b̂ + i C−1

2 f̂
)

2π
ln
( z − R2/z̄0

z

)
+

J2
(
b̂ − i C−1

2 f̂
)

2π
ln
(
z − z0

)
. (18)

Notice that the last term in the expressions of h1(z, t) and h2(z, t) is the singular part due to the screw
dislocation. If both the inclusion and the matrix are purely elastic materials, that is, e(1)15 = e(2)15 = 0, then
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g1(z, t), g2(z, t) defined in the inclusion and h1(z, t), h2(z, t) defined in the matrix are reduced to

g1(z, t)=
c(2)44 b − i p

π
(
c(1)44 + c(2)44

) ln
(
z − et/t0 z0

)
, g2(z, t)=

ε
(2)
11 1φ− iq

π
(
ε
(1)
11 + ε

(2)
11

) ln
(
z − z0

)
,

h1(z, t)=
c(1)44

(
c(2)44 b + i p

)
πc(2)44

(
c(1)44 + c(2)44

) ln
( z − e−t/t0 R2/z̄0

z

)
−

c(2)44 b + i p

2πc(2)44

ln
( z − R2/z̄0

z

)
+

c(2)44 b − i p

2πc(2)44

ln
(
z − z0

)
,

h2(z, t)=

(
ε
(1)
11 − ε

(2)
11

)(
ε
(2)
11 1φ+ iq

)
2πε(2)11

(
ε
(1)
11 + ε

(2)
11

) ln
( z − R2/z̄0

z

)
+

∈
(2)
11 1φ− iq

2πε(2)11

ln
(
z − z0

)
,

where

t0 =
Rη
(
c(1)44 + c(2)44

)
c(1)44 c(2)44

. (19)

In this special case g2(z, t) and h2(z, t) are in fact independent of the time t due to the fact that there
is no piezoelectric effect.

Substituting Equations (15) and (18) into (4) or (5), we can arrive at the explicit expressions of strains,
stresses, electric fields, and electric displacements induced by the piezoelectric screw dislocation, which
are listed in the online supplement. For example the strains, electric fields, stresses, and electric displace-
ments within the piezoelectric circular inclusion are given by

γ (1)zy + iγ (1)zx =
α

z − et/t0 z0
−

β

z − z0
,

E (1)y + i E (1)x =
α
(
c(1)44 e(2)15 − c(2)44 e(1)15

)[
c(2)44

(
ε
(1)
11 + ε

(2)
11

)
+ e(2)15

(
e(1)15 + e(2)15

)](
z − et/t0 z0

) −
βc(1)44

e(1)15

(
z − z0

) ,
σ (1)zy + iσ (1)zx =

α
(
c̃(1)44 c(2)44 ε

(1)
11 + c(1)44 c̃(2)44 ε

(2)
11

)[
c(2)44

(
ε
(1)
11 + ε

(2)
11

)
+ e(2)15

(
e(1)15 + e(2)15

)](
z − et/t0 z0

) ,
D(1)

y + i D(1)
x =

α
(
c̃(2)44 ε

(2)
11 e(1)15 + c̃(1)44 ε

(1)
11 e(2)15

)[
c(2)44

(
ε
(1)
11 + ε

(2)
11

)
+ e(2)15

(
e(1)15 + e(2)15

)](
z − et/t0 z0

) −
β c̃(1)44 ε

(1)
11

e(1)15

(
z − z0

) .

(20)

It is clearly observed from the above expression that in general the strains, electric fields, stresses, and
electric displacements inside the piezoelectric circular inclusion are time dependent due to appearance
of the term et/t0 . In addition it is found from (20)2 that the electric fields within the piezoelectric circular
inclusion will be time independent when the condition c(1)44 e(2)15 = c(2)44 e(1)15 is satisfied. As time elapses,
the strains, electric fields, stresses, and electric displacements within the piezoelectric circular inclusion
will finally arrive at the steady state

γ (1)zy + iγ (1)zx = −
β

z − z0
, E (1)y + i E (1)x = −

c(1)44

e(1)15

β

z − z0
,

σ (1)zy + iσ (1)zx = 0, D(1)
y + i D(1)

x = −
β c̃(1)44 ε

(1)
11

e(1)15 (z − z0)
, |z| ≤ R, t → ∞.
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It is observed from the above expression that the internal stresses will eventually vanish due to the
dashpot. The relationship E (1)y + i E (1)x = (γ

(1)
zy + iγ (1)zx )c

(1)
44 /e

(1)
15 observed in the above expression is just

in agreement with the vanishing internal stress condition when t → ∞.

4. Image force on the screw dislocation

Furthermore, by employing the Peach–Koehler formulation [Pak 1990b; Lee et al. 2000] and the previ-
ously derived field components in the piezoelectric matrix (see Equation A2 of the the online supplement),
it is also convenient to arrive at the image force acting on the screw dislocation due to its interaction with
the circular viscous interface. For example if we assume that the piezoelectric screw dislocation with
b 6= 0, p = q = 1φ = 0 lies on the positive real x axis (that is, x0 > R, y0 = 0), then a rather concise
closed-form expression of the time dependent image force on the screw dislocation can be finally derived
as

Fx(t)=
b2 R2

2πx0

[
2
(
c̃(1)44 c(2)44 ε

(1)
11 + c(1)44 c̃(2)44 ε

(2)
11

)[(
c(1)44 + c(2)44

)(
ε
(1)
11 + ε

(2)
11

)
+
(
e(1)15 + e(2)15

)2](et/t0 x2
0 − R2

) −
c(2)44

x2
0 − R2

]
, (21)

where Fx is the x component of the image force (the y component of the image force is zero).
It is of interest to discuss several special cases to verify and to illustrate the obtained solution.

Case 1. If the inclusion and the matrix have the same material properties and poling direction, meaning
c(1)44 = c(2)44 = c44, e(1)15 = e(2)15 = e15, and ε(1)11 = ε

(2)
11 = ε11, then it follows from Equation (21) that the image

force on the screw dislocation is

Fx(t)=
c44b2 R2x0

(
1 − et/t0

)
2π
(
x2

0 − R2
)(

et/t0 x2
0 − R2

) ≤ 0,

with t0 = 2Rη/c44.
The above expression indicates that: there is no image force on the screw dislocation at the initial

moment t = 0; the screw dislocation will always be attracted to the piezoelectric inclusion when t > 0;
and the image force is independent of the piezoelectric and dielectric properties e15 and ε11.

Case 2. If the inclusion and matrix have the same material property but are poled in opposite directions,
implying c(1)44 = c(2)44 = c44, e(1)15 = − e(2)15 = e15, and ε(1)11 = ε

(2)
11 = ε11, then it follows from (21) that the

image force on the screw dislocation is

Fx(t)=
b2 R2

2πx0

[ c̃44

et/t0 x2
0 − R2

−
c44

x2
0 − R2

]
,

with t0 = 2Rη/c̃44.
It is observed from the above expression that when

0 ≤ t < t1, t1 = t0 ln
( c̃44x2

0 −
(
c̃44 − c44

)
R2

c44x2
0

)
,

the screw dislocation will be repelled from the inclusion, meaning Fx(t) > 0, (0 ≤ t < t1). At the moment
t = t1, there is no image force on the dislocation, that is, Fx(t1)= 0. When t > t1, the screw dislocation
will always be attracted to the inclusion, meaning Fx(t) < 0, (t > t1).
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Case 3. If both the inclusion and matrix are purely elastic, that is, e(1)15 = e(2)15 = 0, then it follows from
(21) that the image force on the screw dislocation is

Fx(t)=
c(2)44 b2 R2

2πx0

( 2c(1)44

c(1)44 + c(2)44

1
et/t0 x2

0 − R2
−

1
x2

0 − R2

)
, (22)

with t0 given by Equation (19). We have carefully checked that our closed-form expression of the image
force, (22), is consistent with the numerical results from Fan and Wang [2003, Figure 7, Equation (4.12)].

At the initial time t = 0, (22) for the image force is

Fx(0)=
c(2)44 b2

2π
c(1)44 − c(2)44

c(1)44 + c(2)44

R2

x0
(
x2

0 − R2
) , (23)

which is just the result for a screw dislocation interacting with a circular inclusion with a perfect interface
[Dundurs 1967; Fan and Wang 2003]. At the time t = ∞, (22) for the image force is

Fx(∞)= −
c(2)44 R2b2

2πx0
(
x2

0 − R2
) < 0, (24)

which is the result for a dislocation interacting with a traction free circular hole. It is observed from
(22)–(24) that if the inclusion is stiffer than the matrix (that is, c(1)44 > c(2)44 ), there always exists a time
t = t2 (t2 > 0), at which Fx(t2)= 0 due to the fact that Fx(0) > 0 and Fx(∞) < 0. In addition t2 can be
determined from (22) as

t2 = t0 ln
(2c(1)44 x2

0 − R2
(
c(1)44 − c(2)44

)
x2

0

(
c(1)44 + c(2)44

) )
, c(1)44 > c(2)44 .

Furthermore, when 0 ≤ t < t2 the screw dislocation will be repelled from the inclusion, while when
t > t2 the screw dislocation will be attracted to the inclusion.

Case 4. Lastly we consider a straight interface. The straight interface can be considered as a limit of the
circular interface if we let δ = x0 − R and assume that R → ∞. Under this condition and after some
derivations, (21) is finally reduced to

Fx(t)=
b2

4πδ

[ 2
(
c̃(1)44 c(2)44 ε

(1)
11 + c(1)44 c̃(2)44 ε

(2)
11

)(
c(1)44 + c(2)44

)(
ε
(1)
11 + ε

(2)
11

)
+
(
e(1)15 + e(2)15

)2

(
1 +

t
2t̃0

)−1
− c(2)44

]
, (25)

where

t̃0 = δη

(
c(1)44 + c(2)44

)(
ε
(1)
11 + ε

(2)
11

)
+
(
e(1)15 + e(2)15

)2

c̃(1)44 c(2)44 ε
(1)
11 + c(1)44 c̃(2)44 ε

(2)
11

.

(25) is just the result derived in [Wang and Pan 2008, Equation (40)] for a straight interface.
Finally we consider a piezoelectric composite with the piezoelectric BaTiO3 being the fiber and the

piezoelectric PZT-5 being the matrix. The material properties of BaTiO3 and PZT-5 are listed in Table 1.
Figure 2 illustrates the normalized image force F̃ = (RFx)/(b2c(2)44 ) on the screw dislocation at the

four different times t/t0 = 0, 0.05, 0.5, and ∞. It is observed that at the initial time t = 0 the screw
dislocation is always repelled from the inclusion (Fx > 0), while at the times t = 0.5t0 and t = ∞ the
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Compound c44 (1010 N/m2) e15 (C/m2) ε11 (10−9 F/m) c̃44 (1010 N/m2)

PZT-5 2.11 12.3 8.1103 3.9754
BaTiO3 4.4 11.4 9.8722 5.7164

Table 1. The material properties of PZT-5 and BaTiO3 [Wang et al. 2003].

screw dislocation is always attracted to the inclusion (Fx < 0). At the time t = 0.05t0 we observe that
there exists a transient equilibrium position (Fx = 0) at the point x0 = 1.066R very close to the circular
interface. In addition, the equilibrium position is unstable due to the fact that Fx < 0 for x0 < 1.066R
and Fx > 0 for x0 > 1.066R. In fact, the relationship between time and the transient unstable equilibrium
position (Fx = 0) can be easily determined from Equation (21) as

x0

R
=

√
c − 1

c − et/t0
, c > 1, 0+

≤ t ≤ t0 ln(c),

where

c =
2
(
c̃(1)44 c(2)44 ε

(1)
11 + c(1)44 c̃(2)44 ε

(2)
11

)
c(2)44

[(
c(1)44 + c(2)44

)(
ε
(1)
11 + ε

(2)
11

)
+
(
e(1)15 + e(2)15

)2] .
In this example c = 1.4277. Then it is found that when 0+

≤ t ≤ 0.3561t0 there always exists a transient
unstable equilibrium position for the screw dislocation. We demonstrate in Figure 3 the transient unstable
equilibrium position as a function of time. One can observe from Figure 3 that as the time evolves from
t = 0+ to t = 0.3561t0 the transient unstable equilibrium position moves along the positive x direction
from x0 = R to infinity.

Figure 2. The normalized image force F̃ = (RFx)/(b2c(2)44 ) on the screw dislocation at
the four times t/t0 = 0, 0.05, 0.5, and ∞. The piezoelectric composite is composed of
the piezoelectric BaTiO3 fiber and the piezoelectric PZT-5 matrix.
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Figure 3. The transient unstable equilibrium position for the screw dislocation as a func-
tion of time. The piezoelectric composite is composed of the piezoelectric BaTiO3 fiber
and the piezoelectric PZT-5 matrix.

5. Conclusions

A theoretical analysis was performed for a screw dislocation with a line force and a line charge interacting
with a piezoelectric circular inclusion with a viscous interface described by a linear dashpot. The exact
closed-form solutions were obtained by the complex variable and analytical continuation technique. In
this investigation the screw dislocation was assumed to be within the matrix, whilst the solution to
the situation in which the dislocation is located within the circular inclusion can be identically derived.
Starting from the derived closed-form solution, we can further investigate the interaction of a matrix
crack with the circular viscous interface. Finally we mention that if the viscoelastic effect modeled by
both the linear spring and dashpot is introduced into the circular interface, a closed-form solution cannot
be obtained for the interaction problem due to the additional introduction of the linear spring. In this
case, however, infinite series form solutions to the interaction problem can be derived (see solutions in
[Fan and Wang 2003] for the Kelvin and Maxwell type viscoelastic interfaces). In fact, it is in principle
impossible to obtain closed-form solutions for the dislocation/inclusion interaction problem even when
only the linear spring model is introduced into the circular interface [Ru and Schiavone 1997].
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OPTIMAL BUCKLING DESIGN OF ANISOTROPIC RINGS/LONG CYLINDERS
UNDER EXTERNAL PRESSURE

KARAM Y. MAALAWI

Structural buckling failure due to high external hydrostatic pressure is a major consideration in designing
rings and long cylindrical shell-type structures. This paper presents a direct approach for enhancing
buckling stability limits of thin-walled rings/long cylinders that are fabricated from multiangle fibrous
laminated composite lay-ups. The mathematical formulation employs the classical lamination theory for
calculating the critical buckling pressure, where an analytical solution that accounts for the effective axial
and flexural stiffness separately as well as the inclusion of the coupling stiffness terms is presented. The
associated design optimization problem of maximizing the critical buckling pressure has been formulated
in a standard nonlinear mathematical programming problem with the design variables encompassing the
fiber orientation angles and the ply thicknesses as well. The physical and mechanical properties of the
composite material are taken as preassigned parameters. The proposed model deals with dimensionless
quantities in order to be valid for thin shells having different thickness-to-radius ratios. Useful design
charts are given for several types of anisotropic rings/long cylinders showing the functional dependence
of the buckling pressure on the selected design variables. Excellent results have been obtained for cases
of filament wound rings/long cylinders fabricated from three different types of materials: E-glass/vinyl-
ester, graphite/epoxy and S-glass/epoxy. It was shown that significant improvement in the overall stabil-
ity level can be attained as compared with a baseline shell design. In fact, the developed methodology
has been proved to be a useful design tool for selecting an optimal stacking sequence of a thin-walled
anisotropic ring/long cylinder having arbitrary thickness-to-radius ratio.

1. Introduction

Many mechanical and structural elements made of fiber reinforced composites are increasingly utilized
in aerospace, marine and civil engineering applications [Vinson 1992; Daniel and Ishai 2006]. The
most important benefits from using such advanced materials in the various structural types are the at-
tainment of high stiffness-to-weight ratio and long fatigue life. One common application is the design
of composite cylindrical shells under the action of external hydrostatic pressure, which might cause
collapse by buckling instability [Simitses 1996; Sridharan and Kasagi 1997]. Examples are the under-
ground and underwater pipelines, rocket motor casing, boiler tubes subjected to external steam pressure,
and reinforced submarine structures. The composite cylindrical vessels for underwater applications
[Davies and Chauchot 1999] are intended to operate at high external hydrostatic pressure (sometimes
up to 60 MPa). For deep-submersible long-unstiffened vessels, the hulls are generally realized using
multilayered, cross-ply, composite cylinders obtained following the filament winding process [Graham
1995]. On the other hand, previous numerical and experimental studies have shown that failure due to

Keywords: buckling instability, structural optimization, fibrous composite, laminated ring/cylindrical shell, external
hydrostatic pressure.
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structural buckling is also a major risk factor for thin laminated cylindrical shells. Anastasiadis and
Simitses [1993] studied the buckling of long laminated cylindrical shells under external radial pressure
using higher order deformation theory. Their formulation, however, was restricted to symmetric lay-ups
with respect to the mid-surface, to eliminate the coupling terms, as well as constant-directional pressure.
More conservative results for a true fluid pressure were given by Rasheed and Yousif [2001; 2005] who
applied standard energy formulation to derive the kinematics and equilibrium equations and the classical
lamination theory to express the needed constitutive equations. They developed a powerful generalized
closed form analytical formula for calculating stability limits of thin anisotropic rings/long cylinders
subject to hydrostatic pressure. Another refined treatment of the inplane buckling of rings was given by
Hodges [1999] and Hodges and Harursampath [2002]. Formulation was based on a nonlinear theory for
stretching and bending of anisotropic beams having constant initial curvature in their plane of symmetry
with the only restriction of small strain in the prebuckling state.

Considering next structural optimization, several papers appeared on the topic of buckling and sta-
bility optimization. Maalawi [2002] presented a piecewise structural model for buckling optimization
of elastic columns under mass equality constraint. He showed that the most effective design variables
that have a bearing on buckling optimization are the cross sectional area, radius of gyration and length
of each segment composing the column. Another work by Maalawi and El Chazly [2002] dealt with
both stability and dynamic optimization of multielement beam type structures. They formulated the
associated optimization problems in a standard mathematical programming solved by the interior penalty
function technique. More recently, Librescu and Maalawi [2007] considered optimization of aeroelastic
stability of composite wings. They applied the concept of material grading with the implementation
of both continuous and piecewise structural models. For fibrous laminated composite structures, the
optimization of ply angles and thicknesses could allow the properties of the laminate to be tailored to
a specific application. ZitzEvancih [1985] applied NASA buckling equations for the optimization of
orthotropic cylinders against buckling. Balanced symmetric plies, consisting of 0◦, ±45◦ and 90◦ fiber
orientations, were used to construct the laminates. The relative volume ratio of the laminates to each other
and the stacking sequence were used as the optimization design variables. Chattopadhyay and Ferreira
[1993] performed a study to investigate the maximum buckling load of a cylinder subject to ply stress
constraints using material and geometric design variables. A closed form shell equation was utilized for
the buckling load calculation. Laminates were constrained to be symmetric, and the number of plies was
included in the design variables. Results for graphite/epoxy, glass/epoxy and Kevlar/epoxy models were
found using the computer code CONMIN. Considering optimization of underwater cylindrical vessels,
Tanguy et al. [2002] dealt with the optimal design of deep submarine vehicles. They developed a genetic
algorithm procedure coupled with an analytical model to determine the laminate stacking sequences that
maximize the critical external buckling pressure. They also showed that the measured buckling pressures
for glass/epoxy and carbon/epoxy cylinders appear to be in good agreement with numerical results and
demonstrated the gains due to the optimized laminations.

The aim of the present study is to achieve enhanced stability limits of anisotropic ring/long cylindrical
shell structures subjected to hydrostatic external pressure. Based on the analytical buckling model devel-
oped by Rasheed and Yousif [2005], a useful optimization tool has been built for designing efficient con-
figurations with improved buckling stability. This allows the search for the stacking sequences that maxi-
mize the buckling pressure and at the same time takes into account the manufacturing requirements. The
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corresponding increases in the buckling pressures calculated with respect to a baseline design have been
evaluated for several configurations, including cases of orthotropic, filament wound rings/long cylinders
fabricated from three different types of composite materials, namely E-glass/vinyl-ester, graphite/epoxy
and S-glass/epoxy. It is assumed that the volume fractions of the constituent materials of the composite
structure remain constant during optimization, so that the total structural mass is held at its reference
value corresponding to the baseline design. The final results demonstrated the usefulness of the given
methodology in attaining substantial improvement in the overall stability level of thin-walled anisotropic
rings/long cylinders having arbitrary thickness-radius ratio, which is a major contribution of this paper.

2. Structural analysis

In this section, the basic structural analysis of multiangle laminated composite lay-ups that are widely
used in filament wound rings/long cylinders are considered. In order to restrict the time of calculation to
acceptable values for the developed optimization tool, the analytical formulation shall be based on the
derivation in two fruitful papers by Rasheed and Yousif [2001; 2005], which are based on the assumption
of small hoop strain and rotation of circumferential elements. Such an approach provides good sensitiv-
ity to lamination parameters, and allows the search for the needed optimal stacking sequences, which
maximize the buckling pressure in a reasonable computational time.

Following the standard procedures of the classical lamination theory [Soden et al. 1998; Reddy
2004], the matrix equation, which relates the resultant, distributed forces (Nxx , Nss, Nxs) and moments
(Mxx ,Mss,Mxs) to the strains (ε0

xx , ε
0
ss, γ

0
xa) and curvatures (κxx , κss, κxs) at the middle surface of the

shell structure, can be written as

Nxx

Nss

Nxs

Mxx

Mss

Mxs


=



A11 A12 A16 B11 B12 B16

A12 A22 A26 B12 B22 B26

A16 A26 A66 B16 B26 B66

B11 B12 B16 D11 D12 D16

B12 B22 B26 D12 D22 D26

B16 B26 B66 D16 D26 D66





ε0
xx
ε0

ss
γ 0

xs
κxx

κss

κxs


, (1)

where (x, s, z) are the axial, tangential and radial coordinates, respectively, and the matrix elements
(Ai j , Bi j , Di j ) are called the extensional, coupling and bending stiffness coefficients, respectively. They
are all defined in Appendix A, along with the necessary kinematical relations and constitutive equations
utilized in deriving (1). Actually, the kinematical relations follow the same expressions derived for thin
isotropic rings [Brush and Almroth 1975; Simitses 1976]. Both cases of laminated composite rings
and long cylindrical shells are considered. It was shown by Rasheed and Yousif [2005] that the only
significant strain components in both cases are the hoop strain ε0

ss and the circumferential curvature κss

of the mid-surface; see Appendix A. The reduced form of (1) for the two cases was shown to be(
Nss

Mss

)
=

(
Aani Bani

Bani Dani

)(
ε0

ss
κss

)
. (2)

In the case of thin rings the axial and shear forces (Nxx , Nxs) must vanish along the free edges. The
bending and twisting moments (Mxx ,Mxs) may also be neglected. Therefore, the first, third, fourth and
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sixth rows of (1) are solved for the strains and curvatures in terms of (ε0
ss, κss) to give the following

matrix relation

S1


ε0

xx
γ 0

xs
κxx

κxs

= −S2

(
ε0

ss
κss

)
,

or 
ε0

xx
γ 0

xs
κxx

κxs

= −S−1
1 S2

(
ε0

ss
κss

)
, (3)

where

S1 =


A11 A16 B11 B16

A16 A66 B16 B66

B11 B16 D11 D16

B16 B66 D16 D66

 , and S2 =


A12 B12

A26 B26

B12 D12

B26 D26

 .
Substituting (3) back into (1), we can show that(

Aani Bani

Bani Dani

)
ring

=

(
A22 B22

B22 D22

)
− ST

2 S−1
1 S2. (4)

For the case of a long cylinder, the out-of-plane displacements are restrained, that is,

ε0
xx = γ 0

xs = κxs = 0.

Therefore, the only strains to be taken into considerations are the in-plane hoop strain ε0
ss and the cir-

cumferential curvature κss . Accordingly, the reduced matrix of (2) takes the following form(
Aani Bani

Bani Dani

)
cylinder

=

(
A22 B22

B22 D22

)
. (5)

3. Analytical buckling model

The governing differential equations of anisotropic rings/long cylinders subjected to external pressure
are similar to those of the isotropic case [Brush and Almroth 1975; Simitses 1976].

They are cast in the following:

M ′

ss + R(N ′

ss −βNss)= βpR2,

M ′′

ss − R
(
Nss + (βNss)

′
+ p(w0 + v′

0)
)
= pR2,

(6)

where the prime denotes differentiation with respect to angular position ϕ, and

β =
1
R
(v 0 −w′

0).

Definitions of other parameters are given in Appendix A. Rasheed and Yousif [2001; 2005] presented two
solutions for (6): one for the prebuckled state and the other termed as the bifurcation solution obtained



OPTIMAL BUCKLING DESIGN OF ANISOTROPIC RINGS/LONG CYLINDERS. . . 779

�

Figure 1. Characteristic buckling mode of a laminated long cylinder [Simitses 1996].

by perturbing the displacements about the prebuckling solution. They finally arrived at a closed form
solution for the critical buckling pressure given by

pcr = 3
Dani

R3

(
1 −

ψ2

α

1 +α+ 2ψ

)
, ψ =

1
R

Bani

Aani
, α =

1
R2

Dani

Aani
, (7)

where the stiffness coefficients Aani, Bani and Dani can be calculated from (4) for the case of circular
rings and from (5) for long cylinders. It is to be noticed here that the formula given in (7) for calculating
pcr is only valid for thin rings/cylinders with thickness-to-radius ratio h/R ≤ 0.1 [Rasheed and Yousif
2001]. A typical buckling mode of laminated long cylinder is shown in Figure 1.

The reduced forms of (7) for some limiting cases where ψ = 0 and α � 1 are given in Table 1.

4. Optimization problem statement

The associated optimization problem shall seek maximization of the external hydrostatic pressure pcr

at which buckling instability might occur. Optimization variables include the total number of plies n,

Limiting Cases
Critical buckling pressure pcr = 3D/R3

Bending stiffness, D

Thin isotropic rings [Brush and Almroth 1975]. Eh3/12
Thin isotropic long cylinders [Simitses 1976]. Eh3/12(1 − ν2)

Thin orthotropic rings [Anastasiadis and Simitses 1993] E22h3/12
Thin orthotropic long cylindrical shells with fibers parallel
to the shell axis x [Anastasiadis and Simitses 1993] E22h3/12(1 − ν12ν21)

Table 1. Buckling pressure formulas for limiting cases ψ = 0 and α � 1.
E, ν = isotropic modulus of elasticity and Poisson’s ratio, E22 = hoop modulus,
ν12 = Poisson’s ratio for axial load, ν21 = ν12 E22/E11 (in cases with fibers perpendicular
to the shell axis, E22 should be replaced by E11)

.
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thickness hk and fiber orientation angle θk of the individual k-th ply. Side constraints are always imposed
on the design variables for geometrical, manufacturing or logical reasons to avoid having unrealistic odd
shaped optimum designs.

4A. Definition of the baseline design. It is convenient first to normalize all variables and parameters
with respect to a baseline design, which has been selected to be a unidirectional orthotropic laminated
ring/long cylinder with the fibers parallel to the shell axis x . Optimized shell designs shall have the
same material properties, mean radius R and total shell thickness h of the baseline design. Therefore,
the preassigned parameters, which are not subject to change in the optimization process, ought to be the
type of material of construction, mean radius and total thickness of the shell.

Using the formulas given in Table 1 for cases of orthotropic shells, we define expressions for calcu-
lating the critical buckling pressure Pcro of the baseline design in Table 2, which depend upon the type
of composite material utilized and the shell thickness-to-radius ratio h/R as well.

4B. Proposed optimization model. The search for the optimized lamination can be performed by cou-
pling the analytical buckling shell model to a standard nonlinear mathematical programming procedure.
The design variable vector Xd , which is subject to change in the optimization process, is defined as
Xd = (ĥk, θk)k=1,2,...,n , where the dimensionless thickness of the k-th lamina is defined by ĥk = hk/h.
Therefore, the buckling optimization problem considered herein may be cast in the following standard
mathematical programming form:

Maximize p̂cr

subject to hL ≤ ĥk ≤ hU ,

θL ≤ θk ≤ θU k = 1, 2, . . . , n
n∑

k=1

ĥk = 1,

where p̂cr = pcr/pcro is the dimensionless critical buckling pressure and hL , hU are the lower and upper
bounds imposed on the individual dimensionless ply thicknesses. According to the filament-winding
manufacturing process, each ply is characterized by its filament-winding angle θk with respect to the

Orthotropic mechanical pcrox(h/R)3 (GPa)
properties∗ (GPa)

Material Type E11 E22 G12 ν12 Rings Cylinders

E-glass/vinyl-ester 41.06 6.73 2.5 0.299 1.683 1.708
graphite/epoxy 130.0 7.0 6.0 0.28 1.75 1.757
S-glass/epoxy 57.0 14.0 5.7 0.277 3.50 3.567

Table 2. Material properties and critical buckling pressure of the baseline design (pcro).
∗Taken from [Rasheed and Yousif 2001].
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cylinder axis x . The stacking sequence is denoted by [θ1/θ2/ · · · /θn], where the angles are given in
degrees, starting from the outer surface of the shell. In addition, in a real-world manufacturing process,
the filament-winding angles θk must be chosen from a limited range of allowable lower (θL) and upper
(θU ) values according to technology references. It is important to mention here that the volume fractions
of the constituent materials of the composite structure are assumed not to significantly change during
optimization, so that the total structural mass remains constant at its reference value of the baseline
design. The effect of changing the volume fractions is now under study by the author, where the concept
of material grading will be considered [Librescu and Maalawi 2007].

This optimization problem may be thought as a search in a 2n-dimensional space for a point corre-
sponding to the maximum value of the objective function such that it lies within the region bounded by
subspaces representing the constraint functions [Vanderplaats 1994; Venkataraman 2002]. The usefulness
and efficiency of penalty methods (see Appendix B) for solving this kind of optimization problems have
been explored intensively in the literature [Maalawi and El Chazly 2002]. The constraints are taken
into account indirectly by transforming the constrained problem into a series of unconstrained problems.
Several software packages are available now for solving mathematical programming problems. The
MATLAB optimization toolbox [Venkataraman 2002] offers routines that implement the interior penalty
function method, which has a wide applicability in many engineering applications, via a built-in function
named “fminsearch”.

5. Results and discussions

The given approach discussed in previous sections shall be applied here to several cases of study of
thin-walled anisotropic rings/long cylinders subjected to external hydrostatic pressure. The materials of
construction are chosen to be E-glass/vinyl-ester, graphite/epoxy and S-glass/epoxy. The functional be-
havior of the candidate objective function, as represented by maximization of the dimensionless buckling
pressure p̂cr , is thoroughly investigated in order to see how it is changed with the optimization variables
in the selected design space. The final optimum designs recommended by the model will directly depend
on the mathematical form and behavior of the objective function.

5A. Two-layer anisotropic long cylinder. The first case study to be considered herein is a long thin-
walled cylindrical shell fabricated from E-glass/vinyl-ester composites with the lay-up composed of only
two plies (n = 2) having equal thicknesses (ĥ1 = ĥ2 = 0.5) and different fiber orientation angles. Figure 2
shows the developed level curves of the dimensionless buckling pressure p̂cr (also named isomerits or
isobars) in the θ1-θ2 design space. It is seen that the objective function is well behaved in the selected
design space with a symmetrical-shaped contours about the two lines θ1 = 0 and θ2 = 0 corresponding
to the baseline design in which p̂cr = 1.0, representing a point of global minima.

With the special case of ±63◦ angle-ply E-glass/vinyl-ester cylinder, the present model gives p̂cr =

4.23, that is, pcr = 4.23 × 1.708 × (h/R)3 GPa, depending on the shell thickness-to-radius ratio (refer
to Table 2). The actual dimensional values of the critical buckling pressure for the different thickness
ratios have been calculated from just one point in the design space of Figure 2: a significant contribution
and gain from the given optimization formulation. The corresponding values are given in Table 3 for
the cases of baseline design, helically wound [±63◦

] and [±90◦
] hoop layers. It is seen that the results

compare very well with those given by Rasheed and Yousif [2001]. The unconstrained maximum value
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Figure 2. Dimensionless buckling pressure p̂cr in the [θ1/θ2] design space. Two-ply
cylinder made of E-glass/vinyl-ester (ĥ1 = ĥ2 = 0.5).

of the critical buckling pressure occurs at any one of the corners of Figure 2 corresponding to the four
design points [θ1/θ2] = [±90◦/± 90◦

] where p̂cr = 6.1.
To examine the effect of using another type of constructional material, we show in Figure 3 the

developed isomerits for a two-ply long cylinder fabricated from graphite/epoxy composites. As seen
the shape of the level curves is similar to that of Figure 2, but with higher stability levels, reaching a
maximum value of p̂cr = 18.57 for a hoop wound construction.

Table 4 presents the solutions for the [±45◦
] angle-ply and the [90◦

] cross-ply constructions for dif-
ferent thickness-to-radius ratios. Results are compared with those in [Rasheed and Yousif 2001], which

Baseline [0◦
] Helically wound [±63◦

] Hoop plies [±90◦
]

p̂cr = 1.00 4.23 6.10
h/R

1/15 506.07 2140.69 3087.05
1/20 213.50 903.11 1302.35
1/25 109.31 462.39 666.80
1/50 13.66 57.80 83.35

Table 3. Critical buckling pressure for E-glass/vinyl-easter cylinders with different lay-
ups (pcr = p̂cr × 1.708(h/R)3 GPa).
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Figure 3. p̂cr -isomerits for a graphite/epoxy, two-layer cylinder in [θ1/θ2] design space
(ĥ1 = ĥ2 = 0.5).

were based on the assumption that adjacent [±θ ] layers are merged together with the stiffness coefficients
taken as average values from the (+θ) and (−θ) plies. These solutions are also valid for lay-ups [0◦

3]s ,
[90◦

3]s , [45◦

2/− 45◦

2]s and [45◦/− 45◦/45◦/− 45◦
]s , which were numbered 1, 8, 20 and 21 in the papers

by Anastasiadis and Simitses [1993] and Rasheed and Yousif [2001].
The case of a helically wound lay-up construction [+θ/− θ ] with unequal play thicknesses ĥ1 and

ĥ2, such that their sum is held fixed at a value of unity, has also been investigated. Computer solutions
have shown that no significant change in the resulting values of the critical buckling pressure can be
remarked in spite of the wide change in the ply thicknesses. This is a natural expected result since

Baseline [0◦
] Helically wound [±45◦

] Hoop plies [±90◦
]

p̂cr = 1.00 5.9 18.57
h/R

1/15 520.59 3071.50 9667.40
1/50 14.06 82.93 261.02
1/120 1.02 5.99 18.88

Table 4. Critical buckling pressure for graphite/epoxy cylinders with different lay-ups
(pcr = p̂cr × 1.757(h/R)3 GPa).
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Figure 4. p̂cr - isomerits for three-ply graphite/epoxy cylinder [θ1/θ2/θ1].

the stiffness coefficients Aani, Bani and Dani remain unchanged for such lay-up construction. Also, it
should be mentioned here that the optimal buckling pressure for a cylinder having stacking sequence
[+θ1/− θ1/+ θ2/− θ2] is identical to that obtained before for stacking sequence [θ1/θ2], as given in
Figures 2 and 3.

5B. Three-layer anisotropic long cylinder. Figure 4 shows the developed isomerits for a cylinder con-
structed from three equally-thicked layers with stacking sequence denoted by [θ1/θ2/θ1]. The same
behavior can be observed as before, but with slight flattening in the θ2-direction. The contours are fully
symmetrical about the mid-point corresponding to the minimal baseline value of unity. Two distinct
zones can be seen: the closed middle one containing the global minima, and the open one covering the
two ranges θ1 < −30◦ and θ1 > 30◦ in which the critical buckling pressure is not much affected by
variation in the ply angle θ2.

Other computational results for cross-ply lamination are given in Table 5, where substantial increase
in the critical bucking pressure by changing the ply angles can be observed. Similar solutions were
obtained for the stacking sequences [0◦

2/90◦
]s and [90◦

2/0
◦
]s , which corresponds to lay-up numbers 2

and 7 considered by Anastasiadis and Simitses [1993].

5C. Four-layer sandwiched anisotropic cylinder. The same graphite/epoxy cylinder is reconsidered
here with changing the stacking sequence to become ±20◦ equal-thickness layers sandwiched in between
outer and inner 90◦ hoop layers with unequal thicknesses ĥ2 = ĥ3, ĥ1 6= ĥ4, such that the thickness equality
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Figure 5. Design space for a sandwich lay-up graphite/epoxy cylinder [90◦/± 20◦/90◦
].

constraint
4∑

k=1

ĥk = 1

is always satisfied. Figure 5 shows the developed p̂cr -isomerits in the ĥ1-ĥ2 design space. The contours
inside the feasible domain, which is bounded by the three lines ĥ1 = 0, ĥ2 = 0 and ĥ1 + 2ĥ2 = 1 (that
is, ĥ4 = 0), are obliged to turn sharply to be asymptotes to the line ĥ4 = 0, in order not to violate the
thickness equality constraint. This is why they appear in the figure as zigzagged lines.

It is clear now that all tabulated results given by Rasheed and Yousif [2001] can be directly obtained
from just one design point in Figure 5, namely (ĥ1, ĥ2)= (0.25, 0.25) at which p̂cr = 16.43 (see Table 6).
As a general observation, as the thickness of the hoop layers increase, a substantial increase in the critical

Baseline [0◦

3] [0◦/90◦/0◦
] [90◦/0◦/90◦

]

p̂cr = 1.00 1.651 17.92
h/R

1/15 520.59 859.57 9331.19
1/50 14.06 23.21 251.94

1/120 1.02 1.68 18.23

Table 5. Critical buckling pressure for graphite/epoxy cylinders [θ1/θ2/θ1]

(pcr = p̂cr × 1.757(h/R)3 GPa).
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Figure 6. Butterfly-like zone containing the local minimal stability limits in [θ1/θ2]

design space for two-layer, E-glass/vinyl-easter ring (ĥ1 = ĥ2 = 0.5).

buckling pressure will be achieved; for example, at (ĥ1, ĥ2)= (0.33, 0.17), p̂cr = 17.92 representing a
percentage increase of (17.92 − 16.43)/16.43 = 9.1%.

5D. Anisotropic thin rings. In this section, some study cases of thin rings will be examined to see the
effect of anisotropy for different angle-ply stacking sequences. The first example considers a ring fabri-
cated from E-glass/vinyl-ester having two equal-thickness layers with stacking [θ1/θ2]. Figure 6 shows
the developed p̂cr -isomerits, which are symmetrical about the two lines θ1 = 0 and θ2 = 0 corresponding
to the baseline value of unity. The region in the middle resembles a butterfly containing four local minima
[±30◦/± 30◦

], where p̂cr = 0.94 representing about 6% degradation in the stability level. The butterfly
bounding contour determines stacking sequences having buckling pressure equals to that of the baseline
design (namely, p̂cr = 1). The unconstrained global maximum value of the critical buckling pressure
occurs at any one of the four design points [θ1/θ2] = [±90◦/± 90◦

] where p̂cr = 6.1. The constrained

h/R 1/15 1/20 1/25 1/50

pcr (GPa) 8553.0 3609.3 1847.5 231.0

Table 6. Critical buckling pressure for graphite/epoxy cylinders [90◦/±20◦/90◦
] ( p̂cr =

16.43, pcro = 1.757(h/R)3 GPa, pcr = p̂cr · pcro).
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[+63◦
] [+63◦/− 63◦

] [+63◦/− 63◦
]3 [+63◦/− 63◦

]∞
p̂cr = 1.754 2.166 3.134 3.234

h/R

1/20 369.00 455.67 659.32 680.35
1/50 23.62 29.16 42.20 43.54
1/100 2.95 3.65 5.27 5.44

Table 7. Critical buckling pressure for E-glass/vinyl-easter thin rings (pcr = p̂cr × 1.683(h/R)3 GPa).

solutions for the special case of ±63◦ angle-ply, which was considered by Rasheed and Yousif [2005],
are summarized in Table 7, including also the extreme cases of full anisotropy represented by the lay-up
with only [+63◦

] plies for the entire thickness and the fully orthotropic lamination consisting of many
too thin alternating balanced plies [+63◦/− 63◦

], which produce the highest possible buckling capacity.
A last example considers a thin ring fabricated from S-glass/epoxy with the mechanical properties

given in Table 2. The lay-up consists of three [+45◦/− 45◦
] balanced plies, each with equal thickness,

that is, [hk/hk]k=1,2,3 where hk is the thickness of a single lamina. Figure 7 depicts the developed p̂cr -
isomerits in the ĥ1-ĥ2 design space. As seen, the feasible domain is bounded by the three straight lines
ĥ1 = 0, ĥ2 = 0 and ĥ1 + ĥ2 = 0.5, where an infinite number of level curves are obliged to turn to be tangent
to the latter one in order not to violate the thickness equality constraint. The global optimal solution has
shown to be of equal ply thickness: ĥk = 0.167, k = 1, 2, 3, where p̂cr = 1.2593. The calculated
dimensional value of the maximum buckling pressure is given in Table 8 for different thickness to radius
ratios.

6. Conclusions

In this paper, a practical approach for enhancing the buckling stability limits of thin-walled anisotropic
rings/long cylinders has been developed. The formulation of an optimal lamination design against buck-
ling has been thoroughly investigated, where useful design charts are given for several types of anisotropic
rings/long cylinders showing the functional dependence of the critical buckling pressure on the stacking
sequence and ply thickness as well. An analytical buckling model has been implemented, which provides
good sensitivity to lamination parameters, allowing the search for the needed optimal stacking sequences
in an acceptable computational time. The proposed model deals with dimensionless quantities in order
to be applicable for handling thin shells having arbitrary thickness-to-radius ratios, which is a major
contribution of this work. Results have indicated that the optimized laminations induce significant in-
creases, always exceeding several tens of percent, of the buckling pressures with respect to the reference

h/R 1/15 1/20 1/25 1/50 1/100

pcr (KPa) 1305.94 550.94 282.1 35.26 4.41

Table 8. Maximum buckling pressure for S-glass/epoxy rings [+45◦/− 45◦
]3 ( p̂cr =

1.2593, pcro = 3.5(h/R)3 GPa, pcr = p̂cr · pcro).
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Figure 7. Global optimal stability limit in ĥ1-ĥ2 design space for a six-layer, S-
glass/epoxy ring with a stacking sequence [+45◦/− 45◦

]3.

or baseline design. It is assumed that the volume fractions of the composite material constituents do
not significantly change during optimization, so that the total structural mass remains constant. Three
types of composites were considered: E-glass/vinyl-ester, graphite/epoxy and S-glass/epoxy. It has been
shown that the overall stability level of the laminated composite shell structures under considerations can
be substantially improved by finding the optimal stacking sequence without violating any imposed side
constraints. The stability limits of the optimized shells have been substantially enhanced as compared
with those of the reference or baseline designs. The case of cylinders of finite length as well as the use
of material grading concept for maximizing buckling stability boundaries under equality mass constraint
shall be considered in the future.

Appendix A

Based upon the classical lamination theory [Reddy 2004], this appendix includes a brief derivation of
the laminate stiffness parameters, which allows for a general stacking sequence optimization.

Constitutive relations. One difference between laminated composites and traditional engineering ma-
terials is that a composite response to loads is direction dependent. In order to analyze the response
of a composite, we must be able to predict the behavior of individual unidirectional lamina, which is
characterized by having all fibers oriented in the same direction. This model allows one to treat the
lamina as an orthotropic material. In reality fibers are not perfectly straight or uniformly oriented within
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the lamina. There are generally several layers of fibers nested within a single lamina. The structural
model used to represent the composite laminate is schematically shown in Figure A-1.

1, 2 and 3 are denoted the principal directions of an orthotropic lamina, defined as follows:

- Direction 1: principal fiber direction, also called fiber longitudinal direction,

- Direction 2: in-plane direction perpendicular to fibers, transversal direction, and

- Direction 3: out-of-plane direction perpendicular to fibers, normal direction.

The reduced form of Hooke’s law for an orthotropic homogeneous lamina in a plane stress state may
be written as σ11

σ22

τ12

=

Q11 Q12 0
Q12 Q22 0
0 0 Q66

ε11

ε22

γ12

 , (A.1)

where Q is referred to as the reduced stiffeners matrix of the k-th lamina, defined in terms of material
properties:

Q11 =
E11

1 − ν12ν21
, Q22 =

E22

1 − ν12ν21
, Q12 =

ν12 E22

1 − ν12ν21
, Q66 = G12,

where ν12 E22 = ν21 E11.
As seen from the above equations, there are four independent elastic constants: the Young’s moduli

in the 1 and 2 directions, E11 and E22, the shear modulus, G12, and the major Poisson’s ratio, ν12, upon
which the stiffness matrix of a homogeneous orthotropic composite material is calculated.

�

�

�

� ������ �������������������������������������������������������������������

� �������������������������	������ �

������������������������������������������������
�����������������������������������������������

����������������������������������������������������������������������������������	������������������������

� ������� ��������������������������������

� �� �
� ��� �

� ������� �
� ���� � �

�

�

�
�

Figure A-1. Laminated composite ring/cylindrical shell under external pressure (u dis-
placement in the axial direction x , v in the tangential direction s, w in the radial
direction z).
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For a generally orthotropic material, (A.1) must be transformed to reflect rotated fiber orientation
angles. The following matrix relation reflects this transformation [Daniel and Ishai 2006]:

σxx

σss

τxs

=

 Q11 Q12 Q16
Q12 Q22 Q26
Q16 Q26 Q66

εxx

εss

γxs

 . (A.2)

The elements of the k-th lamina stiffness matrix Q, which is now referred to the reference axes of the
cylindrical shell (x, s, z), are given by

Q11 = U1 + U2 cos 2θ + U3 cos 4θ, Q22 = U1 − U2 cos 2θ + U3 cos 4θ,

Q12 = U4 − U3 cos 4θ, Q16 = 0.5 U2 sin 2θ + U3 sin 4θ,

Q26 = 0.5 U2 sin 2θ − U3 sin 4θ, Q66 = 0.5 (U1 − U4)− U3 cos 4θ,

where the invariant terms Ui are solely function of the material properties. They are defined by the
following expressions [Reddy 2004]:

U1 = 0.125 (3Q11 + 3Q22 + 2Q12 + 4Q66), U2 = 0.5 (Q11 − Q22),

U3 = 0.125 (Q11 + Q22 − 2Q12 − 4Q66), U4 = 0.125 (Q11 + Q22 + 6Q12 − 4Q66).

For classical lamination theory, it is assumed that n layers of material are perfectly bonded together, with
infinitely thin, nonshear deformable boundaries. Using Kirchoff plate theory [Simitses 1976], which
assumes that the in-plane displacements vary linearly through the thickness of the laminate, the displace-
ments of a material point distance z from the middle surface are

u(x, s, z)= u0(x, s)− z
∂w0

∂x
,

v(x, s, z)= v 0(x, s)− z
(∂w0

∂s
−
v 0

R

)
,

(
s ∼= Rϕ,

z
R

� 1
)
,

w(x, s, z)= w0(x, s),

where u0(x, s), v 0(x, s) and w0(x, s) are the displacements of a generic point (x, s) on the shell middle
surface (z = 0) in x, s and z directions, respectively.

The strain-displacement relations in terms of the middle surface strains and shell curvatures are given
in the following:

εxx = ε0
xx + zκxx ,

εss = ε0
ss + zκss,

γxs = γ 0
xs + zκxs,

or

εxx

εss

γxs

=

ε0
xx
ε0

ss
γ 0

xs

+ z

κxx

κss

κxs

 , (A.3)
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where the middle surface strains and curvatures are [Brush and Almroth 1975]

ε0
xx =

∂u0

∂x
,

ε0
ss =

∂v 0

∂s
+
w0

R
+

1
2

(∂w0

∂s
−
v 0

R

)2
,

γ 0
xs =

∂u0

∂s
+
∂v 0

∂x
,

κxx = −
∂2w0

∂x2 ,

κss = −
∂

∂s

(∂w0

∂s
−
v 0

R

)
,

κxs = 2
∂

∂x

(∂w0

∂s
−
v 0

R

)
.

Substituting for the total strains from (A.3) into (A.2) we haveσxx

σss

τxs


k

=

Q11 Q12 Q16
Q12 Q22 Q26
Q16 Q26 Q66


k

ε0
xx
ε0

ss
γ 0

xs

+ z

κxx

κss

κxs

 . (A.4)

The resultant forces and moments per unit length applied at the middle surface are defined by the
integrals

Forces:

Nxx

Nss

Nxs

=

∫ h/2

−h/2

σxx

σss

τxs

dz =

n∑
k=1

∫ zk

zk−1

σxx

σss

τxs

 dz , (A.5)

Moments:

Mxx

Mss

Mxs

=

∫ h/2

−h/2

σxx

σss

τxs

 zdz =

n∑
k=1

∫ zk

zk−1

σxx

σss

τxs

 zdz. (A.6)

Substituting for the stress-strain relationships of (A.4) into (A.5) and (A.6), we get

Nxx

Nss

Nxs

Mxx

Mss

Mxs


=



A11 A12 A16 B11 B12 B16

A12 A22 A26 B12 B22 B26

A16 A26 A66 B16 B26 B66

B11 B12 B16 D11 D12 D16

B12 B22 B26 D12 D22 D26

B16 B26 B66 D16 D26 D66





ε0
xx
ε0

ss
γ 0

xs
κxx

κss

κxs


,

where Ai j are called the extensional stiffnesses given by Ai j =

n∑
k=1

(Qi j )k(zk − zk−1). Bi j are called the
bending-extensional stiffnesses given by

Bi j =
1
2

n∑
k=1

(Qi j )k(z
2
k − z2

k−1) .

Di j are called the bending stiffnesses

Di j =
1
3

n∑
k=1

(Qi j )k(z
3
k − z3

k−1),

where n is the number of different plies in the stacking sequence.



792 KARAM Y. MAALAWI

Appendix B: The interior penalty function technique

In this method the original objective function F(Ex) is augmented with terms, called penalty terms, such
that as Ex approaches a constraint surface one term increases indefinitely. Since the algorithm seeks to
minimize the value of the objective function, it will try not to penetrate any constraint surface. Thus all
constraints are taken into consideration by representing them by penalty terms in the objective function
expression. The most commonly used interior penalty function [Vanderplaats 1994] is cast in the form

8(Ex, r)= F(Ex)− r
M∑

j=1

1
G j (Ex)

,

where8(Ex, r) is the modified objective function, G j (Ex) is the j -th constraint function and r is a multiplier.
A sequence of unconstrained minimization problems is solved with successively decreasing values of r .
The MATLAB optimization toolbox [Venkataraman 2002] offers routines that implement the interior
penalty function method via a built-in function named fminsearch.
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A PLANE STRESS PERFECTLY PLASTIC MODE I CRACK PROBLEM FOR A
YIELD CONDITION BASED ON THE SECOND AND THIRD INVARIANTS OF

THE DEVIATORIC STRESS TENSOR

DAVID J. UNGER

A statically admissible solution for the opening mode of fracture under plane stress loading conditions
is obtained for a yield condition containing both the second and third invariants of the deviatoric stress
tensor. This yield locus lies approximately midway between the Mises and Tresca yield loci in the
principal stress plane. The crack problem addressed is analogous to an earlier one investigated by John
W. Hutchinson for the Mises yield condition. A stress function approach to the present problem results
in a differential algebraic equation rather than an ordinary differential equation as in the former case. It
is found that a reduction of order is possible for this second order differential equation of the sixth degree
through a simple transformation which generates a Clairaut equation. This equation can be integrated
analytically to obtain the general solution of the governing second order differential equation for uniform
states of stress. This general solution is applicable to two of three distinct sectors of the plane crack
problem. The remaining sector in the plane is governed by the singular solution of this Clairaut equation.
The first integral of the singular solution, which is the envelope of general solution, is found through the
use of a contact transformation. This transformation aids in reduction of this equation to that of a first
order differential equation of the thirtieth degree. The primitive of this first order differential algebraic
equation is obtained by numerical solution. An approximate analytical solution to the problem is also
provided. These results are compared to those obtained previously for the analogous crack problem
under the Mises yield condition.

1. Introduction

Drucker [1949; 1962] illustrated the “truly remarkable correlation” of experimental data of an aluminum
alloy [Osgood 1947] with a yield condition based upon the second and third invariants of the deviatoric
stress tensor. Clearly what appeared to be a sizable band of experimental scatter in a plot of equivalent
stress versus octahedral strain, under both the Tresca and Mises yield criteria, became a very narrow
locus under this alternative yield condition. Despite the excellent agreement with experimental data, this
particular yield condition has been used only rarely in the literature. The probable cause of this avoidance
is the yield condition’s mathematical complexity over the Mises yield condition, which is based on the
second deviatoric stress invariant alone. However, with today’s widespread availability of both symbolic
mathematical and numerical computer software, this particular concern need not be the only deciding
factor.

Admittedly, the results obtained here may in fact turn out to be a rather fine point with limited practical
significance, as the predictions are very close to those found using the Mises yield condition, while the

Keywords: plane stress, mode I crack, perfectly plastic yield condition, second third invariants deviatoric stress tensor,
differential algebraic equation, DAE.
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Figure 1. Three different yield loci in the principal stress plane.

increase in mathematical difficulty in obtaining solution is enormous. Nevertheless, this analysis contains
some interesting and novel mathematical aspects that may aid others in their own research on either yield
criteria or on differential algebraic equations (DAE). These include the use of a contact transformation
in determining the singular solution of a DAE and the use of a phase plane analysis in determining an
approximate singular solution in the form of a Jacobian elliptic function. In this respect there is merit to
reporting the results.

The yield condition proposed by Drucker is shown in Figure 1 in the principal stress plane for a state
of plane stress loading conditions, where σ1 is the first principal stress and σ2 is the second principal
stress (σ3 = 0). In terms of the deviatoric stress invariants it assumes the algebraic form

(J2)
3
− (3J3/2)2 = (aσ0)

6, (1)

where J2 and J3 are the second and third invariants of the deviatoric stress tensor, respectively [Chakrabarty
1987], and a is the proportionality constant1 between the yield stress in pure shear τ0 and the yield stress
in tension σ0

τ0 = aσ0, a =
6
√

2/81 ≈ 0.540. (2)

1This value a is approximately midway between analogous relationships for the Tresca yield condition 0.500 and the
Mises ≈ 0.577.
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In polar coordinates, these invariants become explicitly

J2 =
1
3
(σ 2

r − σrσθ + σ 2
θ )+ τ

2
rθ ,

J3 =
σr + σθ

3

[
τ 2

rθ − (1/9)(2σr − σθ )(2σθ − σr )
]
,

(3)

where σr and σθ are the normal stresses in the radial and transverse directions respectively and τrθ is the
shear stress.

Drucker [1949] and Freudenthal and Geiringer [1958] introduce this yield condition Equation (1)
as being the simplest possible form containing both the second and third deviatoric stress invariants,
although neither reference indicates its priority.

2. General and singular solutions

By introducing a plastic stress function φ(r, θ) in polar form

φ(r, θ)= r2 f (θ), (4)

the stresses derived from it [Unger 2005; 2007]

σθ = 2 f (θ), (5)

τrθ = − f ′(θ)= −p, (6)

σr = f ′′(θ)+ 2 f (θ)= p
dp
d f

+ 2 f, (7)

will automatically satisfy the equilibrium equations in the plane, where the number of prime symbols
applied to the function f (θ) indicate the order of differentiation with respect to θ . By substituting
Equations (5)–(7) into Equation (3) and subsequently substituting those results into Equation (1), the
governing differential equation for the stress function becomes

(q2
− 6 f q + 6Q)3 − (1/12)q2(2q2

− 18 f q + 18Q)2 = (2/3)σ 6
0 , (8)

where for brevity the following notation has been adopted in Equation (8)

Q = p2/2 + 2 f 2, q = d Q/d f. (9)

Equation (8) has the form of a Clairaut differential equation [Zwillinger 1989, pp. 150–160]. As such, a
Clairaut operator U ( f ) may be defined as

U = f d Q/d f − Q( f )= f q − Q, (10)

which brings Equation (8) into the form

3(q2
− 6U )3 − q2(q2

− 9U )2 = 2σ 6
0 . (11)

The operational procedure to solve a Clairaut equation is to substitute a constant in place of the first de-
rivative of the dependent variable with respect to the independent variable and to solve for the dependent
variable. The dependent variable constitutes the solution of the problem.
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In this case q will be set equal to c with Q being identified temporarily as the dependent variable,
which is a function of f . Solving Equation (11) for U ( f ) and substituting Equation (10) into the result,
one finds that

Q( f )= c f −
c2

8
+

5c4

24 · 31/3

1
M(c, σ0)

−
M(c, σ0)

24 · 32/3 , (12)

where the constant M(c, σ0) is defined in terms of the two other parameters as

M(c, σ0)=

[
3c6

− 192σ 6
0 + 8

√
6
√

c12 − 3c6σ 6
0 + 96σ 12

0

]1/3
. (13)

Reintroducing the fundamental definition of Q from Equation (9), one may now separate variables and
integrate to obtain the following branch of the general solution of Equation (8)

f (θ)=
c
4

−
1

4 · 32/3

√
5c4

M(c, σ0)
−

M(c, σ0)

31/3 sin(2θ +α), (14)

where α represents the second constant of integration.
An additional solution to that of Equation (14) exists for Equation (8) in the form of a singular solution.

The singular solution of Equation (8) represents the envelope of the family of ellipses that Equation (14)
will generate in the phase space ( f, p) upon varying the parameter c (the choice of parameter α is
immaterial). It cannot be obtained directly from Equation (14) by simply selecting particular values of
the constants c or α.

The conventional approach to obtaining a singular solution of a Clairaut equation is to first separate
the governing equation into a function of the Clairaut operator, represented here by U , and a function of
the first derivative q . By differentiating this expression with respect to the independent variable f , a pair
of simultaneous equations results from which the first derivative can be eliminated to obtain a solution
[Zwillinger 1989].

However, in the present situation obtaining the function of U requires a solution of a cubic algebraic
equation which is cumbersome.

As an alternative, a solution technique described in [Ince 1956], as the principal of duality, will be used
here. To achieve solution, expand the parenthetic expressions in Equation (11) and rewrite the expansion
as follows, using the fundamental definition of U

2q6
− 36q4( f q − Q)+ 243q2( f q − Q)2 − 648( f q − Q)3 = 2σ 6

0 . (15)

Next, make the following substitutions for the variables appearing in Equation (15)

f = P, Q = X P − Y, q = X, (16)

where P is defined as the first derivative of the new dependent variable Y with respect to the new inde-
pendent variable X

P = dY/d X. (17)

Upon substitution of the variables defined by Equations (16) into Equation (15), one converts the differ-
ential equation into the following algebraic equation

2X6
− 36X4Y + 243X2Y 2

− 648Y 3
= 2σ 6

0 . (18)
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By differentiating Equation (18) with respect to X and by employing the definition of P , one finds upon
solving the expression for P that

P = X
24X2Y − 2X4

− 81Y 2

81X2Y − 6X4 − 324Y 2 . (19)

Now the inverse of the contact transformation, Equation (16), is given by

X = q, Y = f q − Q, P = f. (20)

By transforming Equation (19) back to the original variables one finds that

f = q
24q2( f q − Q)− 2q4

− 81( f q − Q)2

81q2( f q − Q)− 6q4 − 324( f q − Q)2
. (21)

Eliminating the common variable q between Equations (15) and (21), and then substituting the definition
for Q from Equation (9) into the result, one reduces the order of the governing equation for the singular
solution by one to:

387420489(4 f 2
+ p2)12[8 f 6

+ 51 f 4 p2
+ 24 f 2 p4

+ 8p6]
= 28697814(4 f 2

+ p2)6
[
33280 f 12

+ 163680 f 10 p2
+ 16800 f 8 p4

− 17536 f 6 p6

−16239 f 4 p8
− 2136 f 2 p10

+ 88p12
]
σ 6

0

−11337408
[
8783360 f 18

+ 30758400 f 16 p2
+ 2053440 f 14 p4

+4665120 f 12 p6
− 2198394 f 10 p8

+ 352476 f 8 p10

−147783 f 6 p12
+ 127980 f 4 p14

− 4986 f 2 p16
+ 80p18

]
σ 12

0

+1492992
[
598880 f 12

+ 436800 f 10 p2
+ 53400 f 8 p4

− 25322 f 6 p6

+29955 f 4 p8
− 6153 f 2 p10

+ 110p12
]
σ 18

0

−442368
[
2120 f 6

+ 600 f 4 p2
− 435 f 2 p4

+ 32p6
]
σ 24

0 + 262144σ 30
0 , (22)

where p is the first derivative of the function f with respect to θ , as in Equation (6).
This result, which is tedious to do by hand, was determined using the command function Eliminate

of Mathematica®.
A plot of Equation (22) is shown in Figure 2 for the first quadrant of the phase plane. The insert in

figure reveals that the complete locus of Equation (22) is barrel shaped; nearly flat on the top and bottom,
with curved lateral sides. The complete locus is shown inscribed within a circle representing the locus
of the Mises singular solution [Unger 2005].

Note that Equation (22) provides an exact relationship between stresses τrθ and σθ of the singular
solution once the associated relationships between the stress function f and its first derivative p, such
that Equations (5) and (6), are substituted into that equation. In Figure 3, this relationship is plotted as
τrθ versus σθ which generates an oval shape. An implicit plotting routine is required to find and draw
the locus of this thirtieth order algebraic relationship.
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Figure 2. Phase plane analysis of the singular solution Equation (22), its approximation
Equation (25), and the analogous Mises solution.

Now, by eliminating the common terms in parentheses f q − Q from Equations (15) and (21), one
obtains an expression that relates the remaining functions f and q . The function f is one half the value
of σθ by Equation (5). In addition, one can relate q to the sum of the normal stresses as

q = p
dp
d f

+ 4 f = σr + 2 f = σr + σθ , (23)

by using Equations (5), (7) and (9). Thus an exact relationship can determined between the stresses σr

and σθ of the singular solution as

32σ 15
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r σθ + 1587σ 13
r σ

2
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r σ
3
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4
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Yield Condition Based on 2nd Deviatoric
Stress Invariant (Mises)

a = (2/81)1/6
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Figure 3. Exact relationships among stresses for the singular solutions of two different
yield conditions.

This relationship appears as an open curve when plotted in Figure 3.
The continuous curves in Figure 3 constitute exact relationships among the stresses for the singular

solution of Equation (8), and consequently satisfy yield condition, Equation (1). For comparison, the
analogous stresses for the Mises yield condition are also plotted using dashed line segments. The greatest
difference between the two different yield criteria is in σr which is a straight line in the case of the Mises
yield condition and a curve in case of yield condition, Equation (1). The plots of σr as a function of σθ
reveal two distinct ovals for the two different yield criteria. In the case of the Mises yield condition, this
oval is also an ellipse.

3. Analytical approximation to the singular solution

The form of the differential algebraic equation, Equation (22), for the singular solution appears to be
insoluble by exact techniques. Consequently, approximate analytical and numerical methods will be
used for evaluation.

One approximation of the exact locus Equation (22), but much simpler in form, is given by

( papprox

aσ0

)2
+

( fapprox

aσ0

)3
= 1. (25)

The closeness of fit between the approximate and exact loci in the phase plane is shown in Figure 2. The
simplicity of Equation (25) also allows its exact primitive fapprox to be found as a solution of an ordinary
differential equation. This solution will serve as a useful analytical approximation to the solution of
Equation (22).
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Figure 4. Comparison of the numerical singular solution to the analytical approxima-
tion, Equation (29).

The variables of the approximate relationship Equation (25) can be separated and integrated to generate
the following relationship

θ +β =

1∫
g

du
√

1 − u3
, g =

fapprox

aσ0
, (26)

where β is a constant of integration.
The remaining integral in Equation (26) can be evaluated using [Gradshteyn and Ryzhik 1980, table

entry 3.139 2]. It is represented below as an incomplete elliptic integral of the first kind F( , ), as in

θ +β =
1

4
√

3
F(ψ, k), ψ = cos−1

√
3 − 1 + g

√
3 + 1 − g

, k = sin 75◦, (27)

where the incomplete elliptic integral F( , ) is defined below as [Gradshteyn and Ryzhik 1980, relation-
ship 8.111 2]

F(ψ, k)=

ψ∫
0

dx√
1 − k2 sin2 x

. (28)

Upon inversion of the elliptic integral appearing in Equation (27), one obtains after simplification that

fapprox = aσ0 −
√

3aσ0
1 − cn 4

√
3(θ +β)

1 + cn 4
√

3(θ +β)
, (29)

where cn( ) is a Jacobian cosine-amplitude elliptic function of modulus k. The particular value of k for
use in this approximate solution is given in Equation (27).
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The function fapprox provides a close approximation to the exact relationship between f and θ , when
compared to results from a numerical solution, which are plotted in Figure 4. However, the approximate
analytical solution should not be used for the direct determination of σr by Equation (7), as this would
require taking the second derivative of the function with respect to the angle θ . Accuracy cannot be
guaranteed by this procedure, nor will the yield condition be satisfied in general by the derived stresses.

Instead, an alternative method of stress evaluation is proposed which will ensure that the yield condi-
tion is satisfied.

A good approximation to the singular solution can be obtained by using Equation (29) to obtain an
approximate relationship between f and θ from which one uses Equation (5) to obtain σθ as a function
of θ . The same relationships used previously to generate stresses τrθ and σr as functions of σθ in Figure
3 can then be used to generate a stress field that satisfies yield condition Equation (1) for any given angle
θ .

4. Crack problem

A schematic diagram of the basic crack geometry is shown in the insert of Figure 4. The domain is
composed of three distinct sectors which cover the upper half plane 0 ≤ θ ≤ π . The semiinfinite crack
is positioned along the coordinate θ = 0. Two angles, θAO B and θAOC , mark the divisions between the
three sectors. These angles are measured counterclockwise from the crack line O A to rays O B and OC ,
respectively. Using symmetry, the solution for the lower half plane can be inferred from the solution of
the upper half plane.

A dedicated computer program was written to solve the mode I perfectly plastic crack problem for the
upper half plane under yield condition, Equation (1).

The code assumes a uniaxial state of compression in sector AO B. The stress function applicable to
region O AB is obtained by substituting the following parameters into Equation (14)

c = −σ0, α =
3π
2
. (30)

The associated stress function assumes the simple form

f AO B = −
σ0

2
sin2 θ, 0 ≤ θ < θAO B, (31)

after an elementary trigonometric identity has been introduced. This stress function generates a state of
compression of magnitude σ0 in region AO B and meets the traction-free boundary condition along the
crack surface O A as depicted in Figure 4.

Equilibrium requires that both the stress functions and their normal derivatives be continuous across
sector boundaries. An iterative process in the software determines the angles from crack line O A to rays
O B and OC as

θAO B = 0.53360 = 30.573◦, θAOC = 1.79229 = 102.69◦. (32)

The values of the parameters of Equation (14) for the middle sector BOC are found simultaneously as

c = 0.11383 σ0, α = −0.44270. (33)
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Figure 5. Comparison of perfectly plastic stress fields of the mode I fracture problem.

With these constants and Equation (14), one determines the state of stress in sector BOC using Equa-
tions (5)–(7).

The approximate singular solution Equation (29) with β = −π is used to relate the angle θ to the
function f in the leading sector C O D. The exact stresses, which were plotted previously in Figure 3,
can be parametrized in terms of the stress function f . As these stresses satisfy the yield condition exactly,
the error introduced by this procedure is limited to the approximate correlation of f to θ . The numerical
data of Figure 4 suggest that the differences are small. See the Appendix for details on the numerical
singular solution.

The stresses obtained from this analysis are plotted in Figure 5 as solid curves. Note that a stress
discontinuity exists in σr at the boundary between regions AO B and BOC , as with ray O B of Figure 4.

The use of the exact relationships among singular solution stresses, as plotted in Figure 3, are necessary
in order to duplicate the results shown in Figure 5. In this respect, the author found it computationally
expedient to solve the problem with a continuous exact stress σr and stress function f at the second
interface θAOC , rather than relying on the continuity of the stress function and its normal derivative p.
The original computational scheme, which did not employ this logic, seemed relatively insensitive to
small changes in the interface angle θAOC . This response was related to the nearly constant slope p of
the stress function in this region. As a consequence, a small stress discontinuity in σr formed at the
interface θAOC , which was unexpected. However, upon implementation of the alternative computational
scheme, the stress discontinuity was eliminated leaving the stress function f , its normal derivative p,
and the normal stress σr continuous at the second interface θAOC .

In [Hutchinson 1968] a statically-admissible solution for a perfectly plastic material under the Mises
yield condition was obtained for a traction-free semiinfinite mode I crack under plane stress loading
conditions. The stress field of Hutchinson for the Mises yield condition is plotted in Figure 5 as dashed
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lines. A stress discontinuity exists in normal stress σr on the boundary between the trailing sectors
as previously noted for yield condition, Equation (1). In the region adjacent to the crack, the stresses
are identical for the two different yield criteria. Consequently the dashed line representation of the
Hutchinson solution is indiscernible in the portion of the figure where it has been overdrawn by the solid
curve. The analogous value of the parameter a multiplying normal stresses ahead of the crack in Figure
4 is 1/

√
3 for the Mises yield condition.

In Hutchinson [1968], the crack was oriented to the left of the crack tip rather than to the right as
illustrated in Figure 4. This reflection of the semiinfinite crack about the vertical axis through the origin
O allows for a less congested plot of the three stresses σr , σθ , and τrθ as functions of the angle θ . This is
particularly true when two different solutions are superposed on the same graph as they are in Figure 5.

5. Conclusions

There are relatively few perfectly plastic solutions for the mode I crack problem using yield criteria
other than the traditional Mises (see Unger [2007] for one example). In fact, the second most commonly
used yield criterion for metals, the Tresca, does not even admit a concentrated fan of mathematical
characteristics under plane stress loading conditions from which one could determine an analogous mode
I solution to Hutchinson’s [Unger 2005]. Thus, while the predictions of the Mises and Tresca yield
conditions are often similar in nature, this conclusion cannot be universally drawn. In a similar light,
the behavior of yield condition Equation (1), as it pertains to crack problems, was unknown before the
present analysis.

As noted in the previous section, a number of similarities exist between the statically admissible
stress fields of the mode I fracture problem under the Mises yield condition and under the alternative
yield condition, Equation (1). In the case of Equation (1), the smoothness of this yield surface in the
principal stress plane is the likely source of its good correlation with the Mises. In contrast, the Tresca
is only piecewise smooth.

What stands out between Hutchinson’s mode I solution and the present analysis is the rapid rise in
the slope of σr (θ) as θ → π for the solution based on yield condition, Equation (1). Just the opposite
behavior is exhibited in Figure 5 for the solution based on the Mises yield condition where the slope of
σr (θ) tends to zero as θ → π . One might expect for microstructural defects driven by hydrostatic stress
gradients, that this difference might have a significant effect on any mathematical model describing their
distribution near the crack tip.

Nevertheless, it is anticipated that in general a slightly better fit of experimental data by Equation (1)
will not compensate for its increased complexity over the conventional Mises yield condition.

Appendix A: Numerical evaluation of the singular solution

The validity of the approximate solution fapprox is supported by the data shown in Figure 4, where a
numerical solution of Equation (22) is compared to the approximate solution Equation (29). In Equation
(29) the phase angle β of the function cn( ) was chosen as

β = −π (A.1)
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in order to meet boundary conditions on traction for a crack oriented as shown in the insert of Figure 4.
With this particular value of β, the function cn 4

√
3(θ +β) evaluates to one at θ = π , and consequently by

Equation (29) the function fapprox = aσ0. By substituting this particular value for fapprox into Equation
(25), one finds the corresponding value of papprox is zero. Collectively these values of fapprox and papprox

evaluated at θ = π fulfill the boundary conditions on traction directly ahead of the crack tip. Correspond-
ingly, along ray O D of Figure 4 the normal stress σθ has a value of 2aσ0 and the shear stress τrθ has a
value of zero.

The initial condition for the numerical evaluation of Equation (22) is

f (θ)|θ0 = f0(1.7394)= 0, (A.2)

where the value of the initial angle 1.7394 is near to the location where the function fapprox = 0 with
phase angle β given by Equation (A.1). The range on the independent variable for the numerical solution
of f will be 1.7394 ≤ θ ≤ π , which spans approximately one quarter of the function’s period.

At first glance it may seem more logical to start the numerical marching scheme at θ = π , taking the
initial value of the function f0 as aσ0 (to fulfill the boundary condition) and using negative increments in
the angle θ over the desired range. However, one can prove by direct substitution that f = aσ0 = const
is an exact solution to Equation (22). Consequently any numerical scheme initiated with this particular
value of f0 will generate this solution regardless of the starting position θ0. Other solutions of Equation
(22) having initial data near to the value aσ0, but differing slightly, will prove computationally unstable.
Because of these difficulties the alternative numerical scheme cited was adopted.

The solutions f = ±aσ0 to Equation (22) are also singular solutions, but of a different classification
than the periodic singular solution. They are extraneous solutions because they violate the yield condi-
tion. They represent mathematically the envelope (upper and lower bounds respectively) of the periodic
singular solution.

The command function NDSolve in Mathematica 5.2 was used to solve the associated differential
algebraic Equation (22), subject to the initial condition, Equation (A.2). The difference between the
numerical solution of Equation (22), subject to the initial condition (A.2), and the approximate analytical
solution, Equation (29), with β given in Equation (A.1), is nearly indistinguishable in the plot of these
two functions in Figure 4.

See Zwillinger [1989] for a short discussion and additional references on differential algebraic equa-
tions and their solution.
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