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MASONRY BODIES

MASSIMILIANO LUCCHESI, MIROSLAV ŠILHAVÝ AND NICOLA ZANI

We study the compatibility of loads for bodies made of a no-tension (masonry) material. Loads are
defined as weakly compatible if they can be equilibrated by an admissible stress field represented by
a tensor valued measure, and strongly compatible if they can be equilibrated by a square integrable
function. In the present study, we examine situations in which weak compatibility implies strong com-
patibility. For families of loads that depend on a parameter and the families of measures that equilibrate
these loads, we find that, under some conditions, averaging with respect to the parameter leads to a
measure with a square integrable density that equilibrates the loads. We illustrate the procedure on two-
dimensional rectangular panels free from gravity, clamped at the bottom, and subjected to various loads
on the free part of the boundary.

1. Introduction

We study the equilibrium problem of a body made of a no-tension (or masonry–like) material [Di Pas-
quale 1984; Anzellotti 1985; Giaquinta and Giusti 1985; Del Piero 1989; Lucchesi et al. 1994] under
given loads (s, b) where s is the force applied to the free part of the boundary and b is the body force.
The existence of equilibrium states, or at least the weaker property that the total energy functional of
the masonry body be bounded from below, is closely related to the existence of a stress field T that
is equilibrated with the applied loads and compatible with the incapability of the material to withstand
traction (see Proposition 3.1, below). The problem of finding such an admissible equilibrating stress field
T is a central problem of limit analysis [Temam 1983, Chapter 1, Section 5; Del Piero 1998; Lucchesi
et al. 2008] because these stresses can be used to determine lower bounds for the collapse load and
sometimes the collapse load itself. The loads admitting such a stress field are called compatible.

It has been shown in [Lucchesi et al. 2004; 2005a; 2005b; 2006; 2007] that the solution in concrete
cases simplifies considerably if instead of admissible equilibrating stress fields represented by ordinary
functions T one admits also stress fields T represented by tensor valued measures. This amounts to
allowing for singularities of the stress field on one or more surfaces or curves of concentrated stress. In
this paper, loads that admit an admissible equilibrating stress represented by a measure are called weakly
compatible to distinguish them from loads that admit admissible equilibrating stresses represented by a
square integrable function, which we call strongly compatible. These notions are not equivalent, as the
examples show.

Keywords: masonry bodies, compatibility of loads, stresses represented by measures.
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Nevertheless, the existence of solutions to the equilibrium problem, and in particular the existence
of a lower bound for the total energy functional, is strictly related to the existence of the admissible
equilibrating stress field represented by a square integrable function by Proposition 3.1.

In the present paper, we describe a procedure that in certain cases allows us to use the information that
loads are weakly compatible to show that they are actually strongly compatible. Crucial to the procedure
is the fact that, in applications, both the loads (sλ, bλ) and the admissible equilibrating stress measure
Tλ depend on a real parameter λ. The identification of λ depends on the nature of the problem. The idea
is to take the average of the stress measure over any set (µ − ε, µ + ε), where ε > 0 is sufficiently small
as dictated by the nature of the solution Tλ and µ is any point in the set of parameters. Averaging gives
the measure

T =
1
2ε

∫ µ+ε

µ−ε,

Tλ dλ,

and it may happen that this measure, in contrast to Tµ, is absolutely continuous (with respect to the
Lebesgue measure) with the density T , which is square integrable. If the loads (sλ, bλ) depend linearly
on the parameter λ, as is often the case, then it is automatic that T equilibrates the loads (sµ, bµ).
It is intuitively plausible that the averaging procedure smears out the singularities in Tλ if the set of
singularities changes its position with changing λ. Mathematically, the procedure is based on the coarea
formula of the geometric measure theory, which also gives the conditions under which it is really the
case.

This paper illustrates the general procedure on rectangular two-dimensional panels. We assume that
the panel is free from body forces, clamped at its bottom, and subjected to loads prescribed on the
boundary. We consider three types of the boundary loads:

(i) vertical top loads and horizontal loads on one side of the panel,

(ii) uniform vertical top loads and oblique side loads on one side of the panel,

(iii) and uniform vertical top loads and vanishing side loads on a panel with a symmetric opening.

In all cases we use the admissible equilibrating stresses represented by measures constructed in [Lucchesi
et al. 2006], and combine them with averaging to produce equilibrating stress fields represented by square
integrable functions (in fact, they are bounded in these three cases).

In Section 2 we consider families of vector valued measures, called parametric measures, that are
mappings from the set of real parameters to the space of vector valued measures. We define an integral
with respect to the parameter of such a mapping, which is the abstract counterpart of the averaging
procedure mentioned above. The result of integration is again a measure. Section 3 introduces bodies and
the loads applied to them. We define weakly and strongly equilibrating stress fields, and in Propositions
3.2 and 3.3 we describe the averaging procedure. The rest of the paper is devoted to the treatment of
the loads (i)–(iii) listed above: Sections 4–5 deal with (i), Section 6 with (ii) and Section 7 with (iii).
In general, the average of the parametric measure is difficult to calculate explicitly, and for applications
it wholly suffices to know that averaging leads to the existence of a square integrable admissible stress
field equilibrating the loads. Such is the case of the loads (i)–(iii). However, in a special subcase of case
(i), treated in Section 5, we explicitly determine the result of the averaging.

Throughout, we use the conventions for vectors and second order tensors given in [Gurtin 1981]. Thus
Lin denotes the set of all second order tensors on Rn , that is, linear transformations from Rn into itself;
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Sym is the subspace of symmetric tensors; Sym+ the set of all positive semidefinite elements of Sym;
Sym− is the set of all negative semidefinite elements of Sym. The scalar product of A, B ∈ Lin is defined
by A · B = tr(ABT) and | · | denotes the associated Euclidean norm on Lin.

2. Families of measures

If � ⊂ Rn is a Borel set and V a finite-dimensional inner product space, we denote by M(�, V ) the set
of all V valued measures (of finite total variation) supported by � [Ambrosio et al. 2000, Chapter 1].
If m ∈ M(Rn, V ), we denote by |m| the total variation measure of m, and by M(m) the mass of m,
defined by M(m) = |m|(Rn). We call the elements of M(�, Sym) tensor measures. We denote by Ln

the Lebesgue measure in Rn [Ambrosio et al. 2000, Definition 1.52], and if k is an integer, 0 ≤ k ≤ n,
we denote by Hk the k-dimensional Hausdorff measure in Rn [Ambrosio et al. 2000, Section 2.8]. If φ

is a nonnegative measure or a V valued measure, we denote by φ A the restriction of φ to a Borel set
A ⊂ Rn

; if φ is a nonnegative measure, we denote by f φ the product of the measure φ by a φ integrable
V valued function f on Rn

; we refer to [Lucchesi et al. 2006, Section 2] for details. If � is an open
subset of Rn , we denote by C0(�, V ) the space of all continuous V valued functions on Rn with compact
support that is contained in �, and denote by | · |C0 the maximum norm on C0(R

n, V ).
An integrable parametric measure is a family {mλ

: λ ∈ 3} of V valued measures on Rn where 3 ⊂ R

is a L1 measurable set of parameters such that

(i) for every f ∈ C0(R
n, V ) the function λ 7→

∫
Rn f · dmλ is L1 measurable on 3;

(ii) we have

c :=

∫
3

M(mλ) dλ < ∞.

We note that the function λ 7→ M(mλ) is L1 measurable on 3 as a consequence of condition (i): if
K ⊂ C0(R

n, V ) is a countable dense set then

M(mλ) = sup
{∫

Rn
f · dmλ

: f ∈ K , | f |C0 ≤ 1
}

,

and thus the function λ 7→ M(mλ) is a supremum of a countable family of L1 measurable functions.
Hence, L1 measurable.

We note that parametric measures similar to those defined above occur in the contexts of disintegration
(slicing) of measures [Ambrosio et al. 2000, Section 2.5] and Young’s measures [Müller 1999, Chapter 5].

Proposition 2.1. If {mλ
: λ ∈ 3} is an integrable parametric measure, then there exists a unique V valued

measure m on Rn such that ∫
Rn

f · dm =

∫
3

∫
Rn

f · dmλ dλ, (1)

for each f ∈ C0(R
n, V ).

We write

m =

∫
3

mλ dλ, (2)

and call m the integral of the family {mλ
: λ ∈ 3} with respect to λ.
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Proof. We note that for each f ∈ C0(R
n, V ), the right hand side of Equation (1) is a well defined real

number. Indeed, ∣∣ ∫
3

∫
Rn

f · dmλ dλ
∣∣ ≤

∫
3

∫
Rn

| f | d|mλ
| dλ

≤ | f |C0

∫
3

M(mλ) dλ

≤ c| f |C0 .

Thus, by the Riesz representation theorem [Ambrosio et al. 2000, Theorem 1.54], there exists a measure
m such that Equation (1) holds. �

The following two propositions give two important examples of integrable parametric measures. In
both cases the corresponding integral, Equation (2), is absolutely continuous with respect to the Lebesgue
measure.

Proposition 2.2. Let {hλ
: λ ∈ 3} be a family of V valued functions on � ⊂ Rn defined for all λ from a

L1 measurable set 3 ⊂ R such that the mapping (x, λ) 7→ hλ(x) is Ln+1 integrable on � × 3, that is,∫
3

∫
�

|hλ(x)| dxdλ < ∞. (3)

If we define a V valued measure mλ by

mλ
= hλLn �,

then {mλ
: λ ∈ 3} is an integrable parametric measure, and we have∫

3

mλ dλ = kLn �,

where k(x) =
∫
3

hλ(x) dλ, for Ln a.e. x ∈ �.

Proof. This follows directly from Fubini’s theorem. �

Proposition 2.3. Let �0 ⊂ Rn be open, let ϕ :�0 → R be locally Lipschitz continuous, and let g :�0 → V
be Ln measurable on �0, with ∫

�0

|g||∇ϕ| dLn < ∞. (4)

Then for L1 a.e. λ ∈ R, the function g is Hn−1 ϕ−1(λ) integrable. Denoting by 3 the set of all such λ,
we define the measure mλ by

mλ
:= gHn−1 ϕ−1(λ),

for each λ ∈ 3. Then {mλ
: λ ∈ 3} is an integrable parametric measure, and we have∫

3

mλ dλ = g|∇ϕ|Ln �0. (5)
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Proof. Let m be given by Equation (2). If f ∈ C0(R
n, V ), then by the coarea formula [Ambrosio et al.

2000, Section 2.12] we have∫
�0

f · g|∇ϕ| dLn
=

∫
R

∫
ϕ−1(λ)

f · g dHn−1dλ

=

∫
3

∫
Rn

f · dmλdλ

=

∫
Rn

f · dm. �

3. Equilibrated loads

We consider a continuous body represented by a Lipschitz domain [Adams and Fournier 2003] � ⊂ Rn

and assume that D, S are two disjoint Borel subsets of ∂� such that D ∪ S = ∂�, where D, S will be
identified below as the set of prescribed boundary displacement and prescribed boundary force.

We set
V0 = {v ∈ C1(cl �, Rn) : v = 0 on D},

and
V = {v ∈ W 1,2(�, Rn) : v = 0 a.e. on D},

where C1(cl �, Rn) is the set of all continuously differentiable mappings v : � → Rn such that v and
its derivative ∇v have a continuous extension to the closure cl � of �, and W 1,2(�, Rn) is the Sobolev
space of all Rn valued maps such that v and the distributional derivative ∇v of v are square integrable
on � [Adams and Fournier 2003]. We have V0 ⊂ V . For any v ∈ V we define the infinitesimal strain
tensor Ê(v) of v by

Ê(v) =
1
2(∇v + ∇vT).

The loads of the body are a pair L = (s, b) where s ∈ M(S, Rn), b ∈ M(�, Rn). Here s represents the
force applied to the boundary S and b the force applied to the bulk � of the body. Since both s and b
are measures, the definition admits concentrated forces on S and in � [Podio-Guidugli 2004; Lucchesi
et al. 2006]. See Equation (42) for an example. Below we also consider the special case when these two
measures are absolutely continuous with respect to the measures Hn−1 and Ln .

We interpret the measures T ∈ M(�, Sym) as stresses. Again, concentration effects are possible. We
say that T ∈ M(�, Sym) is admissible if T takes the values in the set Sym− of the negative semidefinite
symmetric tensors, that is, if T(A)a · a ≤ 0 for any Borel set A ⊂ � and for any a ∈ Rn . We say that T
weakly equilibrates the loads (s, b) if∫

�

Ê(v) · dT =

∫
�

v · db +

∫
S

v · ds,

for any v ∈ V0. We say that the loads L = (s, b) are weakly compatible if there exists an admissible
T ∈ M(�, Sym) which weakly equilibrates them.

One can consider, in particular, the loads L = (s, b) of the form

s = sHn−1 S, b = bLn �, (6)
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where
s ∈ L2(S, Rn), b ∈ L2(�, Rn), (7)

with the first L2 space taken relative to the measure Hn−1 on S and the second relative to Ln on �. In
this case, we often identify the pair L = (s, b) with the pair L = (s, b).

One can consider, in particular, the measure T of the form T = TLn �, where T ∈ L2(�, Sym).
We say that T is admissible if T (x) ∈ Sym− for Ln a.e. x ∈ �. This is equivalent to saying that the
measure T = TLn � is admissible in the sense defined above. We say that T strongly equilibrates the
loads L = (s, b) if ∫

�

Ê(v) · T dLn
=

∫
�

v · b dLn
+

∫
S

v · s dHn−1,

for each v ∈ V . Note that this notion applies only to the special loads represented by s, b as in Equation (6).
We say that the loads L = (s, b) satisfying Equation (7) are strongly compatible if there exists an ad-
missible stress field T ∈ L2(�, Sym) strongly equilibrating them. In [Šilhavý 2008, Example 9.4], an
example is given of loads (s, b) satisfying Equation (7) (even with s bounded and b ≡ 0) such that (s, b)

are weakly compatible but not strongly compatible.
The importance of the strong compatibility arises from the following statement.

Proposition 3.1 ([Padovani et al. 2007]). Let L = (s, b) be the loads satisfying Equation (7). Define the
total energy functional I : V → R by

I (v) =

∫
�

ŵ(Ê(v)) dLn
−

∫
�

v · b dLn
−

∫
S

v · s dHn−1,

v ∈ V , where ŵ : Sym → [0, ∞) is the stored energy of a no-tension material [Del Piero 1989]. Then the
loads are strongly compatible if and only if

I0 := inf{I (v) : v ∈ V } > −∞.

The condition I0 > −∞, in turn, has a dynamical significance [Padovani et al. 2007]: If I0 > −∞

then any dynamical process of a masonry body with dissipation stabilizes in the sense that the kinetic
energy tends to 0, and if the set of equilibrium states is nonempty, the process asymptotically approaches
the set of all equilibrium states. If, on the contrary, I0 = −∞, then any dynamical process exhibits a
(dynamical) collapse in the sense that the total energy approaches −∞, and the W 1,1 norm of the state
at large times converges to ∞ (at least if s and b are bounded).

One often encounters the situation in which the loads depend on a parameter λ from a subset 3 of R;
that is, one deals with the family of loads Lλ

= (sλ, bλ
), λ ∈ 3, where

{sλ, λ ∈ 3}, {bλ
, λ ∈ 3}, (8)

are integrable parametric measures with values in Rn , with 3 an L1 measurable subset of R. A more
specific situation arises when the loads Lλ are of the form

sλ
= s(·, λ)Hn−1 S, bλ

= b(·, λ)Ln �, (9)

λ ∈ 3, where
s ∈ L2(S × 3, Rn), b ∈ L2(� × 3, Rn), (10)
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with the first L2 space taken with respect to the measure Hn−1
⊗ L1 on S × 3 and the second relative

to the n + 1 dimensional Lebesgue measure on � × 3. Each load Lλ is often weakly equilibrated by a
stress field Tλ

∈ M(�, Sym) in such a way that

{Tλ, λ ∈ 3} (11)

is an integrable parametric measure. In this situation, we have:

Proposition 3.2. Let 3 ⊂ R be L1 measurable, and consider the parametric measures as in Equation
(8) and Equation (11). Suppose that for L1 a.e. λ ∈ 3 the stress field Tλ weakly equilibrates the loads
Lλ

= (sλ, bλ
). Then

(i) the stress field T̄ :=
∫
3

Tλ dλ weakly equilibrates the loads L̄ := (s̄, b̄), where

s̄ =

∫
3

sλ dλ, b̄ =

∫
3

bλ dλ;

(ii) if L1(3) < ∞ and if the loads are of the form Equation (9)–Equation (10), then the loads L̄ defined
in (i) are given by L̄ = (s̄, b̄), where

s̄ ∈ L2(S, Rn), b̄ ∈ L2(�, Rn), (12)

are given by

s̄(r) =

∫
3

s(r, λ) dλ, r ∈ S, b̄(r) =

∫
3

b(r, λ) dλ, r ∈ �. (13)

If , additionally, ∫
3

Tλ dλ = TLn �, (14)

where T ∈ L2(�, Sym) and V0 is dense in V , then T strongly equilibrates the loads L̄ = (s̄, b̄).

We note that V0 is dense in V if � has Lipschitz boundary, and if D is closed in ∂� with Lipschitz
boundary.

Proof. (i): We have ∫
�

Ê(v) · dTλ
=

∫
�

v · dbλ
+

∫
S

v · dsλ,

for any v ∈ V0 and L1 a.e. λ ∈ 3. Integrating over 3 and invoking the definitions of integrals of measures,
we obtain ∫

�

Ê(v) · dT̄ =

∫
�

v · db̄ +

∫
S

v · d s̄,

and thus T̄ weakly equilibrates the loads L̄.
(ii): The formulas in Equation (13) are obtained by invoking the definitions of integrals of parametric

measures, and exchanging the orders of integration with respect to r and λ. The inclusions Equation (12)
follow from the assumption Equation (10) by using Hölder’s inequality. If we have Equation (14), then
by (i), ∫

�

Ê(v) · T dLn
=

∫
�

v · b̄ dLn
+

∫
S

v · s̄ dLn−1,
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for each v ∈ V0; this extends by density to all v ∈ V . �

Consider, finally, the situation in which the loads Lλ are of the form Equation (9), and the functions
s(·, λ), b(·, λ) depend on λ linearly [Del Piero 1998]. Thus Lλ

:= (sλ, bλ) where

sλ
= s0 + λs1, bλ

= b0 + λb1, λ ∈ R, (15)

where
s0, s1 ∈ L2(S, Rn), b0, b1 ∈ L2(�, Rn).

We call s0, b0 the permanent part of the loads, s1, b1 the variable part of the loads, and λ the loading
multiplier.

If 3 ⊂ R is an L1 measurable set with 0 < L1(3) < ∞, we abbreviate∫
3

O dλ :=
1

L1(3)

∫
3

O dλ,

for any λ integrable function O on 3.

Proposition 3.3. Assume that the loads Lλ
:= (sλ, bλ) are given by Equation (15). Let 3 ⊂ R be a L1

measurable set such that 0 < L1(3) < ∞, put

µ :=

∫
3

λ dλ,

and let {Tλ
: λ ∈ 3} be an integrable parametric measure such that for L1 a.e. λ ∈ 3 the measure Tλ

weakly equilibrates the loads Lλ. Then

(i) the measure

T :=

∫
3

Tλ dλ

weakly equilibrates the loads Lµ
;

(ii) if V0 is dense in V and T = TLn � where T ∈ L2(�, Sym) then T strongly equilibrates the loads
Lµ.

Proof. (i): This follows from Proposition 3.2 (i) if one notes that∫
3

sλ dλ = sµ,

∫
3

bλ dλ = bµ.

(ii): This follows from Proposition 3.2 (ii). �

4. A panel under vertical top loads and horizontal side loads

We consider the panel
� = (0, b) × (0, h) ⊂ R2

and introduce a coordinate system x, y in R2 with the origin in the upper right corner of � and with the
orientation of axes as shown in Figure 1. We denote a general point of � by r = (x, y) and let i, j be
the coordinate vectors along the axes x, y, respectively. We set

D = (0, b) × {h}, S = ∂� \ D,
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Figure 1. The panel under vertical top loads and horizontal side loads.

and consider the loads Lλ
= (sλ, bλ), where bλ

= 0 in �, and, for r = (x, y) ∈ S,

sλ(r) =


p(x) j , on (0, b) × {0},

λq(y)i, on {0} × (0, h),

0, elsewhere,

where p, q are nonnegative continuous functions on [0, b] and [0, h], respectively. We assume that

p0 := p(0) > 0, q0 := q(0) > 0.

We denote by P, Q the primitives of p, q , respectively, satisfying P(0) = Q(0) = 0, and by P, Q the
second primitives of p, q, respectively, satisfying P(0) = P′(0) = Q(0) = Q′(0) = 0. We set

λc = P(b)/Q(h). (16)

Since p, q are nonnegative and p0 > 0, q0 > 0, the functions P, Q are strictly positive and nondecreas-
ing on the intervals (0, b) and (0, h), respectively. Consequently, P, Q are strictly positive and strictly
increasing on the intervals (0, b) and (0, h), respectively. If 0 < λ ≤ λc, then the range [0, λQ(h)] of λQ

is contained in the range [0, P(b)] of P. It follows that the set

γ λ
= {r = (x, y) ∈ cl � : λQ(y) = P(x)},

is a graph of an increasing function ωλ
: [0, tλ

] → [0, h], where tλ is determined from the equation
λQ(h) = P(tλ). One easily finds that ωλ is continuously differentiable, and from ωλ(0) = 0, ωλ(tλ) = h
one deduces that γ λ is a smooth curve with one endpoint the origin 0 ∈ R2 and the other endpoint (tλ, h).
Moreover, except for the endpoints, the curve γ λ is contained in �. If r = (x, y) ∈ γ λ, we denote by
tλ(r) the unit tangent vector to γ λ at r , given by

tλ(r) =
λQ(y)i + P(x) j√
P2(x) + λ2 Q2(y)

.
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We note that if ϕ : � → R is defined by

ϕ(r) = P(x)/Q(y), (17)

r = (x, y) ∈ �, then for any λ ∈ (0, λc) the curve γ λ is the level set of ϕ corresponding to the value λ,
that is,

γ λ
= ϕ−1(λ) := {r ∈ � : ϕ(r) = λ}.

We note, for future use, that ϕ is continuously differentiable, and

|∇ϕ(r)| = τ(r), (18)

where

τ(r) =

√
P′2(x)Q2(y) + P2(x)Q′2(y)

Q2(y)
, (19)

r = (x, y) ∈ �. The system of curves γ λ, λ ∈ (0, λc) forms a nonintersecting family that fully covers the
region

�0 = {r = (x, y) ∈ � : P(x)/Q(y) ∈ (0, λc)} ≡ ϕ−1(0, λc).

For a λ ∈ (0, λc] the curve γ λ divides � into two open sets �λ
±

defined by

�λ
+

= {r = (x, y) ∈ � : either tλ
≤ x < b or 0 < x < tλ and y < ωλ(x)},

�λ
−

= {r = (x, y) ∈ � : 0 < x < tλ and y > ωλ(x)}, .

Proposition 4.1. Let 0 < λ ≤ λc and let Tλ
r : � → Sym and Tλ

s : γ λ
→ Sym be defined by

Tλ
r (r) =

{
−p(x) j ⊗ j , if r ∈ �λ

+
,

−λq(y)i ⊗ i, if r ∈ �λ
−
,

(20)

for r = (x, y) ∈ � and by
Tλ

s (r) = σ λ(r) tλ(r) ⊗ tλ(r), (21)

for r ∈ γ λ, where σ λ
: γ λ

→ R is the unique continuously differentiable function satisfying

dσ λ(r)
ds

= ρλ(r), r ∈ γ λ, (22)

σ λ(0) = 0, (23)

where ρλ
: γ λ

→ R is defined by

ρλ(r) = −
λP(x)Q(y)

(
p(x) + λq(y)

)
P2(x) + λ2 Q2(y)

, (24)

r = (x, y) ∈ γ λ, and where d/ds denotes the derivative with respect to the arc length parameter s on γ λ,
measured from the origin 0. Then Tλ

r and Tλ
s are bounded functions on � and γ λ, respectively, and the

measure
Tλ

= Tλ
r L2 � + Tλ

s H1 γ λ, (25)

is an admissible stress field weakly equilibrating the loads Lλ.
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Proof. We note that the continuity of p, q on the closed intervals [0, b] and [0, h] implies that Tλ
r is a

bounded function, hence the first term in the right hand side of Equation (25) is a well defined measure.
We note that ρλ is a continuous function on γ λ. Using the fact that for x → 0, y → 0 we have

P(x) ∼
1
2 p0x2, Q(y) ∼

1
2q0 y2, (26)

to within the errors o(x2), o(y2), respectively, and that

lim
r=(x,y)→0

r∈γ λ

y/x =
√

p0/λq0, (27)

one finds that
lim
r→0
r∈γ λ

ρλ(r) = −
√

λp0q0. (28)

Furthermore, trivially,

lim
r→(tλ,h)

r∈γ λ

ρλ(r) = −
λP(tλ)Q(h)

(
p(tλ) + λq(h)

)
P2(tλ) + λ2 Q2(h)

.

Hence σ λ is well defined, bounded, and continuous on γ λ. This shows that Tλ
s is a bounded function on

γ λ, and the second term in the right hand side of Equation (25) is a well defined measure. We further
note that Tλ

r is admissible since its density Tλ
r is a negative semidefinite tensor for L2 a.e. r ∈ �. The

measure Tλ
s is admissible as well: clearly, ρλ is nonpositive everywhere on γ λ, and hence the integration

of Equation (22)–Equation (23) shows that σ λ is a nonincreasing nonpositive function. Thus Equation
(21) shows that the density Tλ

s is a negative semidefinite tensor. Consequently, Tλ is also admissible.
Finally, one has to show that Tλ weakly equilibrates the loads Lλ. Referring for the details to [Lucchesi
et al. 2006, Section 6], we note that this amounts to showing that the normal trace of Tλ equals sλ on
S, and that the weak divergence of Tλ in � vanishes. The last is equivalent to proving that the classical
divergence of T r vanishes on � \ γ λ (which is immediate), and that along γ λ the jump condition

[T r ]n − div T s = 0, (29)

holds where [T r ]n is the jump of the normal component of T r across γ λ and div T s is the linear diver-
gence of T s along γ λ. Equation (29) leads to the above described shape of γ λ and to the differential
equation, Equation (22)–Equation (23). We omit the details. �

Proposition 4.1 is now used to establish the following:

Proposition 4.2. If 0 < µ < λc, then the loads Lµ are strongly compatible. In fact if 3 ⊂ (0, λc) is any
L1 measurable set with L1(3) > 0 such that

µ =

∫
3

λ dλ,

then {Tλ
: λ ∈ 3} is an integrable parametric measure, and the measure T =

∫
3

Tλ dλ is of the form

T = TL2 �,
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where T is a bounded admissible stress field on � that strongly equilibrates the loads Lµ. We have
T = T r + T s , where for r ∈ �,

T r (r) =

∫
3

Tλ
r (r) dλ, (30)

T s(r) =


σ λ(r)τ (r)

L1(3)
tλ(r) ⊗ tλ(r), if ϕ(r) ∈ 3, where λ := ϕ(r),

0, otherwise,
(31)

where ϕ and τ are defined by Equation (17) and Equation (19).

For µ = λc we have the weak compatibility of the loads Lµ by Proposition 4.1, but the above propo-
sition says nothing about the strong compatibility for this limiting value.

Proof. We write
Tλ

= Tλ
r + Tλ

s , (32)

where
Tλ

r = Tλ
r L2 �, Tλ

s = Tλ
s H1 γ λ. (33)

We note that Tλ
r is of the form considered in Proposition 2.2, where hλ is to be identified with Tλ

r . One
sees that the integrability condition of Equation (3) is satisfied, and hence for any L1 measurable set
3 ⊂ [0, λc], the measure

Tr :=

∫
3

Tλ
r dλ

is a measure absolutely continuous with respect to L2 �. Moreover, since the density hλ is a bounded
function on � × 3, we see that the density of Tr with respect to L2 is a bounded function. Thus

Tr = T r L2 �,

where T r is a bounded function on � given by Equation (30).
The measure Tλ

s is of the form
Tλ

s = GH1 ϕ−1(λ),

where G : �0 → Sym is defined by
G(r) = Tλ

s (r)

for any r ∈ �0, and where in the last formula λ is an abbreviation for ϕ(r).
We now wish to verify that the function g := G satisfies the integrability condition of Equation (4).

We shall actually prove that the product |∇ϕ||G| is bounded on �0. For this it suffices to prove that for
each λ ∈ (0, λc), the limit

L(λ) := lim
r→0
r∈γ λ

|∇ϕ(r)||G(r)|

exists, and the function L is bounded on (0, λc).
Recalling Equation (26) and Equation (27), we infer from Equation (18) and Equation (19) that

lim
r=(x,y)→0

r∈γ λ

x |∇ϕ(r)| = 2λ

√
p0 + λq0
√

p0
.
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Furthermore, combining Equation (22), Equation (23), Equation (28) and ds/dx =
√

1 + P′2(x)/λ2Q′2(y)

one finds that

lim
r=(x,y)→0

r∈γ λ

|G(r)|/x =

√
p2

0 + λp0q0,

and hence
lim
r→0
r∈γ λ

|∇ϕ(r)||G(r)| = 2λ(p0 + λq0).

This shows that the function L is bounded on (0, λc), and consequently that |∇ϕ||G| is bounded on �0.
In particular, the integrability condition of Equation (4) and Proposition 2.3 say that for any L1 mea-

surable set 3 ⊂ R the measure

Ts :=

∫
3

Tλ
s dλ

is L2 absolutely continuous over �, with the density given by Equation (5). In the present case, this
gives Ts = T sL2 �, where T s is given by Equation (31). Noting that V0 is dense in V , we see that a
combination of Propositions 4.1 and 3.3 completes the proof. �

5. Example: Explicit determination of the averaged stress field

The goal of this section is to determine explicitly the density T = T r + T s of the measure T from
Proposition 4.2 in a special case. The formula is in Equation (39), below.

We consider the situation of Section 4 and take in particular

p = const on [0, b], q ≡ 1 on [0, h].

Hence

sλ(r) =


p j , on (0, b) × {0},

λi, on {0} × (0, h)

0, elsewhere on S;

see Figure 2. The results of Section 4 apply directly.
We find

P(x) =
1
2 px2, Q(y) =

1
2 y2, 0 ≤ x ≤ b, 0 ≤ y ≤ h,

and Equation (16) gives λc = pb2/h2. Furthermore, if 0 ≤ λ ≤ λc, then γ λ is the line segment

γ λ
= {(x, y) ∈ � : y =

√
p/λx}. (34)

The regions �λ
±

are given by

�λ
±

= {r = (x, y) ∈ � : ±(
√

p/λx − y) > 0}.

The region �0 covered by the segments γ λ, λ ∈ (0, λc) is delimited by the main diagonal of �; in fact

�0 = {r = (x, y) ∈ � : y/x > h/b}.
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Figure 2. The panel under special load conditions.

We consider the measure Tλ given by Equation (25). In the present special case we find from Equation
(20) that for r = (x, y) ∈ �,

Tλ
r (r) =

{
−p j ⊗ j , if r ∈ �λ

+
,

−λi ⊗ i, if r ∈ �λ
−
.

Furthermore, Equation (24) and Equation (34) give ρλ(r) = − px/y, r = (x, y) ∈ γ λ, and hence

σ λ(r) = −px |r|/y, (35)

by Equation (22) and Equation (23). Consequently,

Tλ
s (r) = −

√
pλr ⊗ r/|r|,

for r ∈ γ λ, where we note that tλ(r) = r/|r| is the tangent vector to γ λ.
We now wish to determine the density T = T r + T s of the measure T. Recall that the functions T r , T s

are given by Equations (30)and (31). Let 0 < µ < λc, and let ε > 0 be such that

3 := (µ − ε, µ+ ε) ⊂ (0, λc),

and let
A = {r = (x, y) : px2/y2

∈ 3}.

We refer to Figure 2, where A is the shaded region delimited by segments γ µ−ε, γ µ+ε , and where γ µ is
the middle segment.

Let us show that from Equation (30) one obtains

T r (r) =


−p j ⊗ j , if r ∈ �λ

+
\ A,

−µi ⊗ i, if r ∈ �λ
−

\ A,

(2ε)−1
(
α(r)i ⊗ i + β(r) j ⊗ j

)
, if r ∈ A,

(36)
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r ∈ �, where for r = (x, y) ∈ A we set

α(r) =
1
2(p2x4/y4

− (µ + ε)2), β(r) = p(µ − ε − px2/y2).

Let us derive the third regime of Equation (36); the derivation of the first two regimes is similar and
simpler. Thus let r = (x, y) ∈ A, and set a = px2/y2. We have

T r (r) = (2ε)−1
∫ µ+ε

µ−ε

Tλ
r (r) dλ = (2ε)−1

(∫ a

µ−ε

Tλ
r (r) dλ +

∫ µ+ε

a
Tλ

r (r) dλ
)
. (37)

If µ − ε < λ < a, then Tλ
r (r) = −p j ⊗ j; if a < λ < µ + ε then Tλ

r (r) = −λi ⊗ i . Inserting these
values into the integrals in Equation (37), and recalling a = px2/y2, we obtain the value giving the third
regime.

To determine T s , we note that from Equation (19) we obtain

τ(r) = 2px |r|/y3,

r = (x, y) ∈ �0. Consequently, we deduce from Equation (35) and Equation (31) that for r = (x, y) ∈ �,

T s(r) =

{
−2p2x2r ⊗ r/2ε y4, if r ∈ A,

0, otherwise.
(38)

From Equation (36) and Equation (38) we obtain finally

T (r) =


−p j ⊗ j , if r ∈ �λ

+
\ A,

−µi ⊗ i, if r ∈ �λ
−

\ A,

S(r), if r ∈ A,

(39)

r ∈ �, where

S(r) = (2ε)−1((p2x4/y4
− (µ + ε)2)i ⊗ i/2 + p(µ − ε − px2/y2) j ⊗ j − 2p2x2r ⊗ r/y4).

Thus, by Proposition 3.3, the function T satisfies

T n = sµ on S, div T = 0 in �,

which can be also verified directly.

6. A panel with vertical top loads and oblique side loads

We again consider the panel
� = (0, b) × (0, h),

and assume that the top of the panel is subjected to a uniform pressure p0 while the right side of the
panel is subjected to oblique loads to be described below. We set

D = (0, b) × {h}, S = ∂� \ D,
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Figure 3. Oblique side loads.

b = 0 in �, and

s(r) =


p0 j , if r ∈ (0, b) × {0},

c(y)i + d(y) j , if r = (x, y) ∈ {0} × [0, h],

0, if r ∈ {b} × (0, h),

(40)

r ∈ S, where p0 > 0 and

c : [0, h] → (0, ∞), d : [0, h] → (0, ∞)

are continuously differentiable functions, see Figure 3. We make a permanent assumption that the func-
tions

y 7→ 1/c(y), y 7→ d(y)/c(y) are nondecreasing on [0, h]. (41)

If 0 ≤ λ ≤ h, let ωλ
: R → R be given by

ωλ(x) = α(λ)x2
+ β(λ)x + λ,

x ∈ R, where

α(λ) = p0/2hc(λ), β(λ) = d(λ)/c(λ),

and let γ λ be given by

γ λ
= {r = (x, ωλ(x)) ∈ � : 0 < x < b}.

In the following proposition we consider an auxiliary problem in which λ ∈ [0, h] is fixed and the
body is subjected to the loads (sλ, 0) with sλ given by the measure

sλ
= s0H1 S +

(
c(λ)i + d(λ) j

)
δ(0,λ), (42)
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where δ(0,λ) is the Dirac measure at the point (0, λ) and where

s0(r) =

{
p0 j/h, if r ∈ (0, b) × {0},

0, if r ∈ S \ (0, b) × {0},

r ∈ S.

Proposition 6.1. Let 0 ≤ λ ≤ h, and let Tλ be the measure defined by

Tλ
= Tλ

r L2 � + Tλ
s H1 γ λ,

where Tλ
r , Tλ

s are bounded functions on � and γ λ, respectively, given by

Tλ
r (r) =

{
−p0 j ⊗ j/h, if y < ωλ(x),

0, if y > ωλ(x),

r = (x, y) ∈ �, and
Tλ

s (r) = σ λ(r)tλ(r) ⊗ tλ(r), (43)

r = (x, y) ∈ γ λ, where tλ(r) is the unit tangent vector to γ λ at r and

σ λ(r) = −

√
c2(λ) +

(
p0x/h + d(λ)

)2
.

If ωλ(b) ≥ h then Tλ is an admissible stress field weakly equilibrating the loads (sλ, 0).

Note that one endpoint of γ λ is always (0, λ); the other endpoint can be either on the side {b}× (0, h)

or on the base [0, b] × {h}. The condition ωλ(b) ≥ h then says that the latter possibility occurs.

Proof. This follows from the considerations in [Lucchesi et al. 2006, Example 2]. �

Proposition 6.2. If ω0(b) ≥ h then the loads (s, 0) are strongly compatible. In fact, there exists a
bounded admissible tensor field T on � strongly equilibrating them.

The condition ω0(b) ≥ h says that the initial curve γ 0 ends on the base [0, b] × {h} of �.

Proof. One easily finds that
{Tλ

: 0 ≤ λ ≤ h}, {sλ
: 0 ≤ λ ≤ h},

are integrable parametric measures. From conditions Equation (41), one finds that ωλ(b) ≥ ω0(b). Thus
the hypothesis ω0(b) ≥ h implies that ωλ(b) ≥ h for all λ ∈ [0, h]. Consequently, Tλ weakly equilibrates
the loads (sλ, 0) whenever 0 ≤ λ ≤ h by Proposition 6.1. By Proposition 3.2 (i), the stress field T =∫ h

0 Tλ dλ weakly equilibrates the loads (s̄, 0), where s̄ =
∫ h

0 sλ dλ. If 0 ≤ λ ≤ h and v ∈ C0(R
2, R2), then

comparing Equation (42) with Equation (40) we obtain∫
S

v · dsλ
=

∫
S

v · s0 dH1
+ v(0, λ) · s(0, λ).

Hence, ∫ h

0

∫
S

v · dsλdλ = h
∫

S
v · s0 dH1

+

∫ h

0
v(0, λ) · s(0, λ) dλ =

∫
S

v · s dH1,
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which shows that

s̄ ≡

∫ h

0
sλ dλ = sH1 S.

Thus, we conclude that T weakly equilibrates the loads (s, 0).
Let us now show that T = TL2 �, where T is a bounded function on �. Decompose Tλ into

Tλ
r , Tλ

s as in Equation (32) and Equation (33). Then T = Tr + Ts , where

Tr =

∫ h

0
Tλ

r dλ, Ts =

∫ h

0
Tλ

s dλ.

Since Tλ
r is bounded independently of λ, it is found that Tr = T r L2 � where T r is a bounded

function in the same way as in the proof of Proposition 4.2.
Next, we prove that

Ts = T sL2 �, (44)

where T s is a bounded function. Let

�0 =

⋃
{γ λ

: 0 < λ < h} ≡ {r = (x, y) ∈ � : y > ω0(x)}.

The assumption Equation (41) and the form of ωλ imply that for each r = (x, y) ∈ �0 there exists exactly
one λ such that

y = ωλ(x).

We define ϕ : �0 → R by setting ϕ(r) = λ, that is, by

y = α(ϕ(r))x2
+ β(ϕ(r))x + ϕ(r),

r = (x, y) ∈ �0. The implicit function theorem and the differentiability of α, β imply that ϕ is continu-
ously differentiable and the derivatives of ϕ at r = (x, y) are given by

∂ϕ

∂x
= −

2αx + β

α′x2 + β ′x + 1
,

∂ϕ

∂y
=

1
α′x2 + β ′x + 1

, (45)

where α, β, α′, β ′ are evaluated at ϕ(r). We have α′
≥ 0, β ′

≥ 0 by Equation (41) and hence the denom-
inators in Equation (45) are ≥ 1. Since the numerators are bounded as α, β are continuous on [0, h], we
see that the partial derivatives Equation (45) are bounded on �0. Hence |∇ϕ| is also bounded. We have

Tλ
s = GH1 ϕ−1(λ),

where G : �0 → Sym is given by
G(r) = Tλ

s (r),

r ∈ �0, and where λ stands for ϕ(r). From the expression Equation (43), we find that G is bounded on
�0. Proposition 2.3 then says that we have Equation (44), where

T s(r) =

{
|∇ϕ(r)|G(r), if r ∈ �0,

0, if r ∈ � \ �0,

r ∈ �. Thus T s is bounded. Noting that V0 is dense in V , we see that a combination of Propositions 6.1
and 3.2 (ii) completes the proof. �
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Figure 4. Panel with a symmetric opening.

7. A panel with a symmetric opening

Let us consider a rectangular panel � with base b = b1 + 2b2, height h = h1 + h2, and a symmetric
opening of dimensions b1 and h1 (Figure 4), that is clamped at its base and subjected to a vertical load
p0, uniformly distributed on its top. We set

D = (0, b2) × {h} ∪ (b1 + b2, b) × {h}, S = ∂� \ D,

b = 0 in �,

s =

{
p0 j , on (0, b) × {0},

0, on S \ (0, b) × {0},

p0 > 0.
Let λ > 0, µ > 0, and consider the parabola

γ λ,µ
= {(x, ωλ,µ(x)) ∈ R2

: b/2 − µ < x < b/2 + µ},

where ωλ,µ
: (b/2 − µ, b/2 + µ) → R is defined by

ωλ,µ(x) = λ + (h − λ)(x − b/2)2/µ2,

b/2 − µ < x < b/2 + µ. Let

A = {(λ, µ) ∈ (0, ∞) × (0, ∞) : γ λ,µ
⊂ �}

be the set of all pairs (λ, µ) for which the parabola γ λ,µ is wholly contained in the panel �. One has
[Lucchesi et al. 2006, Section 6]:

A is nonempty ⇔ ζ ≤ 4ξ(ξ + 1),

A has a nonempty interior ⇔ ζ < 4ξ(ξ + 1),
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where ξ := b2/b1, ζ := h1/h2. If (λ, µ) ∈ A, we define the sets �
λ,µ
± by

�
λ,µ
− = {r = (x, y) ∈ � : |x − b/2| < µ, y > ωλ,µ(x)},

�
λ,µ
+ = � \ (�

λ,µ
− ∪ γ λ,µ).

Proposition 7.1. Let (λ, µ) ∈ A and define the measure Tλ,µ by

Tλ,µ
= Tλ,µ

r L2 � + Tλ,µ
s H1 γ λ,µ, (46)

where Tλ,µ
r and Tλ,µ

s are bounded functions on � and γ λ,µ, respectively, given by

Tλ,µ
r (r) =

{
−p0 j ⊗ j , if r ∈ �

λ,µ
+ ,

0, otherwise,

r ∈ �, and Tλ,µ
s (r) = σ λ,µ(r)Tλ,µ(r) ⊗ Tλ,µ(r),

where

σ λ,µ(r) = −
p0

√
µ4 + 4(h − λ)2(x − b/2)2

2(h − λ)
,

r = (x, y) ∈ γ λ,µ. Then Tλ,µ is an admissible stress field weakly equilibrating the loads (s, 0).

We emphasize that for all (λ, µ) ∈ A the stress field Tλ,µ equilibrates the same loads.

Proof. This follows from the considerations in [Lucchesi et al. 2006, Examples 3 and 4]. �

Proposition 7.2. If A has a nonempty interior, then the loads (s, 0) are strongly compatible. In fact,
there exists a bounded admissible stress field T on � strongly equilibrating them.

Proof. Let (λ0, µ0) be an interior point of A, hence (λ, µ) ∈ A for all (λ, µ) sufficiently close to (λ0, µ0).
Therefore, setting

α := (h − λ0)/µ
2
0, λ̂(µ) = h − αµ2,

we have (λ̂(µ), µ) ∈ A for all µ ∈ 3 := (µ0 − ε, µ0 + ε), where ε > 0 is sufficiently small. If Tλ,µ

denotes the measure Equation (46), then by Proposition 3.2 (i), the measure

T :=

∫
3

Tλ̂(µ),µdµ

weakly equilibrates the loads (s, 0). We write T = Tr + Ts , where

Tr =

∫
3

Tµ
r dµ, Ts =

∫
3

Tµ
s dµ,

Tµ
r = T λ̂(µ),µ

r L2 �, Tµ
s = T λ̂(µ),µ

s H1 γ λ̂(µ),µ.

By Proposition 2.2, Tr = T r L2 �, where

T r (r) =

∫
3

T λ̂(µ),µ
s (r)dµ,

r ∈ �. Since T λ̂(µ),µ
s is bounded independently of µ if µ0 − ε < µ < µ0 + ε, we see that T r is bounded

on �.
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Furthermore, one finds that γ λ̂(µ),µ
= ϕ−1(µ), where ϕ : � → R is defined by

ϕ(r) =

√
(x − b/2)2 + (h − y)/α,

r = (x, y) ∈ �. Let

�0 =

⋃
{γ λ̂(µ),µ

: µ0 − ε < µ < µ0 + ε} ≡ ϕ−1((µ0 − ε, µ0 + ε)).

The measure Tµ
s can be written as

Tµ
s = GH1 ϕ−1(µ),

where G : �0 → Sym is given by
G(r) = T λ̂(µ),µ

s (r),

r ∈ �0, where µ stands for ϕ(r). One easily finds that ϕ is continuously differentiable on � with bounded
derivatives on �0; in particular, |∇ϕ| is bounded on �0. Furthermore, one has

|σ λ̂(µ),µ(r)| ≤
p0

2α

√
1 + α2b2, r ∈ γ λ̂(µ),µ,

which implies that G is bounded on �0. Proposition 2.3 then says that Ts = T sL2 �, where

T s(r) =

{
(2ε)−1

|ϕ(r)|G(r), if r ∈ �0,

0, otherwise,

r ∈ �, which is a bounded function by the above.
We thus conclude that

T = TL2 �,

where T = T r + T s is a bounded function on �. A reference to the density of V0 in V and to Propositions
7.1 and 3.2 (ii) then completes the proof. �
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