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CONCENTRATED FORCE ACTING ON A POWER LAW CREEP HALF-PLANE

JEFFREY JORDAN, IWONA JASIUK AND ALEKSANDER ZUBELEWICZ

The problem of concentrated force acting on a half-plane made of a power-law creep material is solved
analytically. In our approach, the constitutive equation that describes the process of dilatational defor-
mation is omitted. The incomplete material description is used for constructing a solution by bringing
the dilatational deformation to zero and, in this manner, making the material incompressible. We find
solutions for two cases; one solution is for a linear viscous material, while the second is for a power-law
material where the power exponent is equal to three. Solutions of the two problems are found to be very
different. While the linear viscous solution is found to be the same as the linear elastic solution, the
nonlinear solution is found to be significantly different. This result may give rise to a new experimental
technique for characterization of materials with a nonlinear creep behavior.

1. Introduction

The problem of concentrated force acting on a linear elastic and isotropic half-space was solved by Boussi-
nesq [1885] in three dimensions and by Flamant in 1892 (see [Love 1944; Malvern 1969; Timoshenko
and Goodier 1970] for details) in two dimensions. Some recent solutions addressed a concentrated force
acting on a linear elastic half-space [Jager 1997; Levy 2002; Unger 2002; Marzocchi and Musesti 2004], a
transversely isotropic elastic half-space [Liao and Wang 1999], an inhomogeneous transversely isotropic
elastic half-space [Wang et al. 2003], an elastic nonlocal half-plane [Artan 1996], a gradient elasticity
half-space [Zhou and Jin 2003; Li et al. 2004; Lazar and Maugin 2006], an elastic linear hardening
half-plane [Gao 1999], and a piezoelectric half-plane [Sosa and Castro 1994].

In this paper we focus on the problem of concentrated force acting on a half-plane made of a power-
law creep material in the context of plane strain (see Figure 1). In our approach, following [Zubelewicz
2005], we omit the constitutive equation that describes dilatancy. In this manner we are able to examine
various kinematically admissible solutions, from which we narrow our search to the solution for an
incompressible material.

Recall that in the Flamant solution the only nonzero stress term is

σrr = −
2P
π

cos θ
r
.

For the two dimensional case, the equivalent Tresca stress (the maximum shear stress) is

σeq =

∣∣∣σrr

2

∣∣∣ =
P
π

cos θ
r
.

Keywords: concentrated force, power-law material, creep, viscous material, incompressible material.
The authors acknowledge funding from the National Science Foundation, grant no. CMS-0085137 (grant monitor Dr. Ken
Chong).

697



698 JEFFREY JORDAN, IWONA JASIUK AND ALEKSANDER ZUBELEWICZ

Figure 1. Force acting on a half-plane.

In this paper, the radial stress σrr for a linear elastic case will be compared to the radial stress for a
power-law material, where the power is assumed to be one and three.

2. Problem statement

We study the problem involving a concentrated force acting on a half-plane made of a power-law creep
incompressible material in the context of plane strain (see Figure 1). Thus, the applied load P has
units of load per unit thickness. Following the technique presented in [Zubelewicz 2005], we convert
all functions from a real into a complex domain, where the complex variables are defined, as usual, by
z = x + iy and z∗

= x − iy.
The complex shear strains can be defined as

η = (εxx − εyy)+ 2iεxy, η∗
= (εxx − εyy)− 2iεxy .

The complex displacements, v = (ux + iu y) and v∗
= (ux − iu y), and the strains are coupled and satisfy

the relations

η = 2
∂v

∂z∗
, η∗

= 2
∂v∗

∂z
.

Using the above equations it is possible to express the displacements ux and u y in terms of complex
shear strains as

ux =
1
4

[∫
η dz∗

+

∫
η∗ dz

]
+

1
2
[ψv(z)+ψ∗

v (z
∗)], u y =

1
4i

[∫
η dz∗

−

∫
η∗ dz

]
+

1
2i

[ψv(z)−ψ∗

v (z
∗)],

where the additional displacement functions ψv and ψ∗
v must satisfy kinematic boundary conditions. In

order to find ux and u y , a path-dependent integration is chosen such that one of the complex variables
is kept constant while integrating with respect to the other [Vekua 1962]. Then, the rate of volumetric
change (dilatational deformation) can be defined as

İε =
1
2

[∫
∂η̇

∂z
dz∗

+

∫
∂η̇∗

∂z∗
dz

]
+ ψ̇ ′

v(z)+ ψ̇
∗

′

v (z
∗), ψυ

′
=
∂ψv

∂z
. (1)
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Equation (1) is written in a rate form, where the dot indicates that it is a time derivative. It has been shown
in [Zubelewicz 2005] that kinematical compatibility is always satisfied when the dilatant deformation is
expressed through Equation (1).

Next, the complex shear stresses are defined as τ = 1σ + 2iσxy and τ ∗
= 1σ − 2iσxy, where

1σ = σxx − σyy . The Tresca stress is equal to σeq =
1
2

√
ττ ∗.

The power-law creep equation which couples the equivalent strain rate and equivalent stress is

ėeq =3
(σeq

σo

)p
. (2)

Assuming associated flow rules, we can express the constitutive Equation (2) in terms of η̇ and τ such
that

η̇ =
3

(2σo)p τ
p+1

2 (τ ∗)
p−1

2 , η̇∗
=

3

(2σo)p τ
p−1

2 (τ ∗)
p+1

2 . (3)

The proposed formulation allows for a separation of the material response due to shear and dilatancy. As
we notice, neither the hydrostatic stress (Iσ = σxx +σyy) nor the rate of volumetric change (1) is involved
in the constitutive (3).

For completeness, the equilibrium equations are

∂τ

∂z
+
∂ Iσ
∂z∗

= 0,
∂τ ∗

∂z∗
+
∂ Iσ
∂z

= 0. (4)

We solve the equilibrium equations (4) with the use of two stress functions, ψσ (z) and �(z, z∗), where
� is a real function of complex arguments. We satisfy these equations by representing the complex
stresses as

τ = ψ∗

σ (z
∗)+

∫
∂�

∂z∗
dz, τ ∗

= ψσ (z)+
∫
∂�

∂z
dz∗, Iσ = −�. (5)

Thus there are six variables to be determined: three complex stresses (τ, τ ∗, Iσ ) and three complex
strain rates (η̇, η̇∗, İε). On the other hand, there are five equations available: the kinematical compatibility
equation (1), two constitutive equations (3), and two equilibrium equations (4). The sixth governing
equation is the requirement of material incompressibility. We enforce the condition assuming that the
dissipation energy due to volumetric change is equal to zero, while the dilatational deformation is non-
negative in all points of the material. First, we calculate the total rate of dissipation

Ẇ t
=

∫
1V

σeq ėeqdV +
1
2

∫
1V

Iσ İεdV . (6)

Then, we bring the second term in (6) to zero. This assures that there is no volumetric change and,
therefore, the material is incompressible. Our chosen stress functions are

ψσ (z)=

∑
m

Cmzλm , �=

∑
n,m

[
Dnmzα

n
m (z∗)β

n
m + D∗

nmzβ
n
m (z∗)α

n
m
]
, (7)

where λm satisfies the condition λm = αm +βm for any n,m = 1, 2, . . .∞. For an asymptotic analysis,
n is equal to 1, and can be omitted in further equations.
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Now, substituting Equation (7) into (5) leads to

τ = C∗(z∗)λ +

∑
m

( βm Dm

αm + 1
zαm+1(z∗)βm−1

+
αm D∗

m

βm + 1
zβm+1(z∗)αm−1

)
,

τ ∗
= Czλ +

∑
m

( βm D∗
m

αm + 1
(z∗)αm+1zβm−1

+
αm Dm

βm + 1
(z∗)βm+1zαm−1

)
,

Iσ = −�= −

∑
m

(
Dmzαm (z∗)βm + D∗

mzβm (z∗)αm
)
,

(8)

where C is a real constant, C∗
= C , Dm = D0

meiφm , and D∗
m = D0

me−iφm , where φm need to be defined
together with D0

m . Thus, in summary, we will find these constants through the process of minimization
of the plastic dissipation rate due to volumetric change (the second term in (6)) which results in solutions
for incompressible materials.

3. General solution

In the case of concentrated force acting on a half plane (1), there are zero tractions along the free surfaces,
thus σyy ± iσxy = 0, at θ = 0, π. In the complex domain, the conditions are σyy + iσxy =

1
2(Iσ − τ ∗)= 0

and σyy − iσxy =
1
2(Iσ − τ)= 0, where the second equation is redundant. Using the definitions of the

complex stresses given in (8), we find

− Czλ −

∑
m

[
D∗

m

( βm

αm + 1
zβm−1(z∗)αm+1

+ zβm (z∗)αm
)

+ Dm

( αm

βm + 1
zαm−1(z∗)βm+1

+ zαm (z∗)βm
)]

= 0. (9)

In a polar coordinate system z = R(cos θ + i sin θ), and z∗
= R(cos θ − i sin θ). For θ = 0, (9) reduces

to

C +

∑
m

(λ+ 1)
( Dm

βm + 1
+

D∗
m

αm + 1

)
= 0. (10)

When θ = π , the equation becomes

C(cos λπ + i sin λπ)+
∑

m

[ Dm

βm + 1
(λ+ 1)

{
cos[(αm −βm)θ ] + i sin[(αm −βm)θ ]

}
+

D∗
m

αm + 1
(λ+ 1)

{
cos[(αm −βm)θ ] + i sin[(αm −βm)θ ]

}]
= 0. (11)

Equation (10) is used to solve for C , and then (11) becomes

∑
m

(λ+ 1)
[
−

( D∗
m

αm + 1
+

Dm

βm + 1

)
(cos λπ+ i sin λπ)+

Dm

βm + 1

{
cos[(αm −βm)θ ]+ i sin[(αm −βm)θ ]

}
+

D∗
m

αm + 1

{
cos[(αm −βm)θ ] + i sin[(αm −βm)θ ]

}]
= 0. (12)

It follows from (12) that λ= − 1. Then, from (10), C is found to be equal to zero.
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Applying these conditions to the complex stresses we find

τ = −

∑
m

D0
m

[
eiφm zαm+1(z∗)βm−1

+ e−iφm zβm+1(z∗)αm−1
]
,

τ ∗
= −

∑
m

D0
m

[
eiφm (z∗)αm+1zβm−1

+ e−iφm (z∗)βm+1zαm−1
]
,

Iσ = −

∑
m

D0
m

[
eiφm zαm (z∗)βm + e−iφm zβm (z∗)αm

]
.

At this point it is convenient to convert the complex stresses into the real domain. The stress compo-
nents are found as

σxx =
1
2 R−1

∑
m

−2D0
m

[
eiφm cos [(αm −βm + 2)θ ] − eiφm sin [(αm −βm − 2)θ ]

]
,

σyy = − R−1
∑

m

D0
m

[
(− cos 2θ + 1)(eiφm cos [(αm −βm)θ ] − eiφm sin [(αm −βm)θ ]

]
,

σxy = − R−1
∑

m

D0
m

[
sin 2θ(eiφm cos [(αm −βm)θ ] − eiφm sin [(αm −βm)θ ]

]
,

and in the polar coordinate system, there is only one nonzero stress component, namely

σrr = − 2R−1
∑

m

D0
m[eiφm cos[(αm −βm)θ ] − e−iφm sin[(αm −βm)θ ]].

Recalling that αn +βn = λn = − 1 and knowing that σrr is symmetric with respect to y (at θ = π/2),
this allows us to determine the parameters αn and βn such that

(αn −βn)+
2φn

π
= 2n, αn +βn = − 1.

In the final form we find

αn = n −
φn

π
−

1
2
, βn = − n +

φn

π
−

1
2
,

where n = 1, 2, 3, . . . ,∞.

3.1. Linear case. When p = 1, the rate of volumetric change

İε =
3

4σo

(∫
∂τ

∂z
dz∗

+

∫
∂τ ∗

∂z∗
dz

)
+ ψ̇ ′

v(z)+ ψ̇
∗

′

v (z
∗)

is simplified and takes the form

İε =
3

σo
R−1

∑
m

D0
m(cos[φm + δmθ ])+ A1 sin λθ,

where the constant A1 comes from the functions ψ ′
v(z)ψ and ψ∗

′

v (z
∗). The solution is obtained by

selecting the parameters (A1, D0
m , and φm) such that the condition for material incompressibility is

satisfied. These constants are listed for reference in Table 1.
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3.2. Non-linear case ( p = 3). In the nonlinear case, the expression for the rate of volumetric change is

İε = −
3

8σ 3
o

R3λ
∑

n,m,k

D0
m D0

m D0
m

[(αn+αm+αk+1
βn+βm+βk

+
βn+βm+βk+1
αn+αm+αk

)
×cos [φn+φm+φk+(δn+δm+δk) θ]

+2
(βn +αm +αk + 1

αn +βm +βk

)
× cos [φn −φm −φk + (δn − δm − δk) θ]

+2
(βn +αm +αk + 1

αn +βm +βk

)
× cos [φn +φm −φk + (δn + δm − δk) θ]

+

(αn +βm +αk + 1
βn +αm +βk

+
βn +αm +βk + 1
αn +βm +αk

)
× cos [φn +φm −φk + (δn + δm − δk) θ]

]
+A1 sin [3λθ ] ,

where δm = αm −βm . Again, as in the linear case, the solution is obtained by determining A1, D0
m , and

φm for a material that exhibits zero dissipation energy due to dilatation. These constants are again given
in Table 1.

4. Discussion

Since incompressibility is our requirement, we evaluate the solutions at each point by comparing the
rate of the volumetric change (an error of the solution) to the shear strain rates. We generated solutions
assuming a three term series (D0

m, φm) for m = 1, 2, and 3.
The calculated constants for cases p = 1 and p = 3 are given in Table 1. A contour plot of the

maximum shear strain rate and the rate of volumetric change is presented in Figure 2 (left). The large
curve is the strain rate, while the small curve near the origin is the rate of volumetric change. As can be
seen (for example, in Figure 2, left), the rate of volumetric change is negligible compared with the shear
strain rate, with an error less than 3.5%. In the case of p = 3, the contours are very different (compare
Figure 2, left and right). As before, we are satisfied with an error less than 3.5%.

In our next step we examine stress σrr . The contour plot for the case of p = 1 is essentially the same
as that for Flamant’s solution (see Figure 3). The slight difference in the shapes is due to numerical
error. Taking higher order terms in D0

m and φm would reduce the discrepancies even further. Thus the
solution for a linear viscous case, having linear stress-strain rate relations, is the same, within numerical
accuracy, as for the linear elastic case, having linear stress-strain constitutive relations. This is expected
since the governing equations for these two cases are analogous, and thus can serve as a check of our
method. Contours of the stress σrr for a power-law material, where the power is equal to one and

p A1 D0
1 D0

2 D0
3 φ1 φ2 D3

1 −0.80 −8.16 −5.16 3.83 −0.19 3.49 5.70
3 −6.70 −149.59 −158.42 −9.42 0.78 3.89 6.65

Table 1. Calculated constants used to solve cases p = 1 and p = 3.
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Figure 2. Contours of maximum strain rate (large curve) versus change of volume
(small curve near origin) for p = 1 (left) and p = 3 (right).

Figure 3. σrr for p = 1 versus elastic case.

three, are shown in Figure 4. Again, the contours for p = 1 and p = 3 are very different. Thus, the
contours of the equivalent shear strain rate and stress for the two materials are surprisingly different (see
Figure 2 and Figure 4). In summary, the new technique provides a new way to look at the problem of a
concentrated force on a half-plane. Although the methods of finding the linear elastic and linear viscous
solutions are completely different, the results are the same. That proves the validity of the proposed
technique.

Figure 4. σrr for p = 3 versus p = 1.
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The power-law material with power three (p = 3) represents materials which have viscous-like behav-
ior, and thus are close to their melting point. One can construct a solution for higher powers such as five,
which would represent a ductile material at room temperature. The solution would be obtained in the
same manner but would involve more terms in the series and thus a more extensive algebra. The solution
obtained in this paper for a power of three could be suitable for nonNewtonian fluids, solder pastes used
in electronic packaging industry, and in geological applications involving sand or clay saturated in oil,
or other oil-like fluids with suspensions, for example.

The problem solved in this paper could also be studied experimentally. The set-up would involve
a material under a plane strain geometry constrained at the ends, with one side having a transparent
frictionless plate. The loading would be a line load perpendicular to the plane of observation. Such a
set-up would allow us to measure experimentally the rate of surface subsidence (surface velocity). In
power-law materials, given by Equation (2), where the power p is greater than one, the profile of the
out of plane surface velocity is proportional to r−(p−1). This relation between surface velocity and p
could be used to obtain p for a given viscous material from surface velocity measurements. Thus, we
conjecture that such an experimental set-up, if done successfully (meaning plane strain conditions and
frictionless boundary conditions would be achieved) could serve as a new experimental method, a two
dimensional analog to indentation techniques, to characterize a constitutive law of viscous (fluid-like)
materials which are difficult to test otherwise. We plan to test this conjecture in the future.

5. Summary

We examined a new solving scheme for ductile materials that obeyed a power-law creep behavior. We
constructed solutions for a viscous linear (p = 1) and power-law nonlinear (p = 3)material. We compared
the linear elastic (Flamant) and linear viscous solutions and have shown that both solutions produce the
same distribution of stresses, and that the strain rate corresponds one to one to strain in an elastic material.
We used this comparison to validate our approach. We are intrigued with the solution for the nonlinear
power-law material where the stress exponent p is equal to three. The two materials (p = 1 and p = 3)
have very different stress contours. The theoretical result suggests the feasibility of a two dimensional
indentation test which could be used for characterization of constitutive laws of viscous materials.
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