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SPATTIAL BEHAVIOUR FOR CONSTRAINED MOTION OF A CYLINDER
MADE OF A STRONGLY ELLIPTIC ANISOTROPIC MATERIAL

VINCENZO TIBULLO AND MASSIMO VACCARO

This paper studies the spatial behaviour for the motion of a semi-infinite cylinder composed of an
anisotropic linear elastic material and subject to zero body force and zero lateral boundary conditions.
The elasticity tensor is strongly elliptic, with motion induced by a time-dependent displacement specified
pointwise over the base.

1. Introduction

We consider a semi-infinite prismatic cylinder occupied by an anisotropic linear elastic material and
subject to zero body force, zero lateral boundary conditions, and zero initial conditions. The motion is
induced by a time-dependent displacement specified pointwise over the base. The elasticity tensor is
strongly elliptic.

The primary purpose of this paper is to examine how the solutions evolve with respect to the axial
variable. To this end, we make an association with the solution of the initial boundary value problem of an
appropriate time-weighted cross-section power function, and prove that the strong ellipticity conditions
assure this to be an acceptable measure. We then establish a set of differential inequalities that describe
the spatial behavior of the measure in concern. This proves that there is a positive constant y such that
the whole activity is zero in that part of the cylinder where the axial distance to the loaded end is greater
than yr (that is, a domain influence result holds true), while in the remaining part an exponential decay
estimate of Saint Venant type holds true. The results are illustrated for transversely isotropic materials
as well as for the rhombic systems.

2. Formulation of problem

Consider a semi-infinite prismatic cylinder B C R* whose bounded uniform cross section D C R? has
a piecewise continuously differentiable boundary d D. The origin of a rectangular Cartesian coordinate
system is located in the cylinder’s base, and the positive x3—axis is directed along that of the cylinder.
It is convenient to introduce the further abbreviation

B,={xeB:z>x3}. 2.1

Moreover, we employ D (x3, t) to indicate that relevant quantities are to be evaluated at time ¢ over the
cross section whose distance from the origin is x3.

The cylinder is occupied by an anisotropic elastic material and is subject to a deformation in which
the displacement field u (x, ¢) is a smooth vector function satisfying the requirements of the classical
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dynamical theory [Gurtin 1972]. The corresponding stress tensor S (x, ¢) has Cartesian components
given by
Sij = Cijritti,i, (2.2)
where the constant elasticities C;jx; possess the symmetries
Cijki = Cuij = Cjini (2.3)
and satisfy the strong ellipticity condition

Cijumimgn;n; > 0 for all nonzero vectors (m1, my, m3), (n1,na, n3). 2.4)

The cylinder is set in motion with a pointwise prescribed base displacement, zero body force, zero
initial conditions, and zero displacement on the lateral surface. Furthermore, the prescribed displace-
ments are such that a classical solution exists on the interval [0, co). Consequently, the problem to be
considered is specified by

(Ciwtura).j = piis, (x.1) € B x [0, 00), 25)
u;(x,0) =0, i;(x,00=0, xeB, (2.6)
ui(x,1) =0, (x,1) € 3D x [0, 00) x [0, 00), 2.7)
ui(x,t) = fi(x1, x2, 1), (x,1) € D(0) x [0, 00), (2.8)

where the dots denote differentiation with respect to time, a subscript comma indicates partial differen-
tiation, p is the constant positive mass density, and f; (x1, x2, t) is a prescribed differentiable function
compatible with the initial and lateral boundary conditions.

3. Transversely isotropic materials

Many natural and man made materials are classified as transversely isotropic (or hexagonal). Such
materials are characterized by the fact that one can find a line that allows a rotation of the material about
it without changing its properties. The plane, which is perpendicular to this line (the axis of rotational
symmetry) is called a plane of elastic symmetry or plane of isotropy. A modern example of such a material
is a laminate made of randomly oriented, chopped fibers that are in general placed in a particular plane.
The effective material properties for a bundled structure have no preferred direction in that plane, which
makes it a plane of elastic symmetry. Each plane that contains an axis of rotation is a plane of symmetry.
Therefore, transversely isotropic materials admit an infinite number of elastic symmetries.

Necessary and sufficient conditions for strong ellipticity to hold for a transversely isotropic linearly
elastic solid are established by Merodio and Ogden [2003] and Chirita [2006]. In this connection we
recall the standard notation

cij = Ciijj, i,j€{1,2,3} (notsummed),
1
cp=ci1, €3=c13, c4=0cs55=C3=0C1313, c66=Cra12=75(c11 —c12), (3.1

corresponding to the direction of transverse isotropy coinciding with the x3 coordinate axis. Apart from
terms obtained by use of the symmetries (2.3), these are the only nonzero components C;jy;. Then the
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necessary and sufficient conditions for strong ellipticity to hold are [Merodio and Ogden 2003; Chirita
2006; Chiritd and Ciarletta 1999]

ci1 >0, 33>0, c¢55>0, c11>cio, (3.2)
lc13 +c55] < €55 + 4 /cr1633. (3.3)

Moreover, equations (2.5) become

piip = criur,11 + (c12 + ce6) U221 + coslt1,22 + (€13 + €55) U3 31 + c55U1 33,
piiy = (c12 + Cop) U1,12 + CosU2,11 + C11U2,22 + (€13 + C55) U3 30 + C55U2 33, (3.4)

piiz = css (M3,11 + M3,22) + (c13 +¢s5) (M1,1 + M2,2)3 +c33u3,33.

By a straightforward calculation from the basic equations (3.4) we obtain

at{l e [ piiti; + o1 (ur 1 +u20)? + ces (12 — uzp)? +633u33+655(u3 1 +M3 5+ ud 3+u2 3)
+2(c13 + c55) (U1 33,1 + u,3u32) + 2(cestt 1 242),1 — 2(Copit1,142) 21}
+ %Ue_m[pl;iil:li +er1 (U1 +ua2)* +eop(uro—ua)? +C33M§,3 +055(M%,1 +M%,2+M%,3 +M%,3)
+2(c13 +¢s5) (w1 3u3,1 +uz 3u32) + 2(cestt1,2u2),1 — 2(coptt1,1142) 2]
= e il (cr3 +ess)us 1 +cssur 314wl (13 +css)us 2 + essua 3]+ exstizus 3§
+ e~ inleriury 4 (cr2 + cee)ua 2] + copn, 1tz + tizlessus 1 + (13 + 055)141,3]},1
+ e~ cepu1 211 + 12 (c12 + cop)u1,1 + criuz ]+ uizlessuz a4 (c13 + 655)M2,3]}y2, (3.5)
where o is a strictly positive parameter at our disposal.

In view of our null initial and lateral boundary conditions (2.6) and (2.7), and by direct integration of
(3.5) over D (x3,1) x [0, t], we get

1
—oty . 2 2 2
= ettt +cr1 (w1 +u22)” + co6(ur 2 —u2,1)” +c33u3 3
D(x3,1)

2
+055(M§ 1+ M% )+ u% 3+ M% 3) +2(c13 +¢s5) (w1 3u3,1 +uz 3u32)] da

// e~ [ptiit; + c11(ur.1 +u22)* + cop(ur2 —ua1)? +C3%M33
D(x3,s)
+C55(u3 1 —|—u3 2+u1 3 +u2 3) +2(c13 +C55)(u1 U3+ Uy 3us, 2)]dads

= (/ / e "itg[(c13 + c55)u3,o + c5514,3] + 331313 3} da ds) . (3.6)
D(x3,s)

3

Moreover, on the basis of the lateral boundary condition (2.7), we have

/ e uy quzzda = <[ e " ug qu3 da) —I—f e " ug3u3.q da. (3.7)
D(x3,1) D(x3,1) 3 D(x3,1)
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Employing the initial condition (2.6) gives

/ e uaaug da—/ / uaau3+uaau3—ou3ua a) dads
D(x3.1) D(x3, S)
/ / —liqU3,q + Ugoll3 — OU3Uy o) dads. (3.8)
D(x3, s)

Therefore, relations (3.7) and (3.8) imply

/ e ug quzzda
D(x3,1)

(f f —UgU3,q + Uy gll3 — O U3 a) da ds) —l—/ e ugsuz g da. (3.9)
D(x3, Y) 3 D(x3,1)

By combining relations (3.6) and (3.9) we obtain the identity

1
— f e " pu;u; da
2 Jp(xs.n)

1

+ 3 / e Men (ury +uzp)? +cos(urn—usg)? +C33M%,3 +2(c13+2x)(uy,1 +uzp)uz3lda
D(x3.1)

1
+ —/ [Css(ug 1 +M3 2+M1 3 +M2 3) +2(css — x) (w1 3u3,1 +uz3uz )l da
D(x3, l‘)

/ / 7% ou;n; da ds
D(x3, Y)

—// e [er1 (ur1+un o) +ces (U1,2—ua 1) +e33u3 3+2(c13+%) (w1 +uz2)uz 31 da ds
D(x3,s)
g —os 2 2 2 2 9 )] da d
5 N )e [ess(us | +u3, +uyz+us3)+2(css — x)(uy 3us) +uz3uz2)]dads
X3,8

= (/ / e " itg[(css — 1)Uz o + cs510, 31+ 3[c33u3,3 + (€13 + #)Ug o1} da dS) K (3.10)
D(x3,s) ’

where x € (0, 2c¢s5) is a positive parameter at our disposal.

This identity suggests that we treat the spatial behaviour of solutions by introducing the following
function

t
J (x3,1) = — / / e {ig [(c55 — %) uz o + Css51a3] + 103 [c33u3 3+ (€13 + %) U |} dads,
D(x3,s)
’ G.11)
with domain x3 € [0, 00), t € [0, 00).

Theorem 1. Let u;(x, t) be a solution of the initial boundary value problem defined by (3.4), (2.6), (2.7)
and (2.8). Then J,, (x3,t) as defined by (3.11) represents a measure of the solution, and, for each t > 0,
evolves as follows. There is a positive constant y , depending on the elastic constants, such that
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(a) for x3 = yt we have J,, (x3,t) =0 so that
u;(x1,x2,x3,t) =0 forall x3 > yt; (3.12)
(b) for x3 < yt, the spatial behavior is described by
0<J, (3, 1) < J, (0, 1) exp(—%x3>. (3.13)

Proof. From (3.10) and (3.11), we can deduce

daJ,
- ”(x3’t)
X3
1
= —/ e_”’pitib't,' da
2 Jpan
1 _
+§/ e ‘”[Cu(M1,1+u2,2)2+c66(u1,2—u2,1)2+C33M%,3+2(C13+%)(M1,1+u2,2)u3,3]da
D(x3,1)
l —ot 2 2 2 2 2 . d
+2 e “less(uy ) +uz, +ui s +uys) +2(ess — ) (uy 3u3 1 +uz3uz2)lda
D(x3,1)

o t
o5 . -
+—// e “’pu;u; dads
2 Jo Jpe.n

o t
+E / / €™ o1y (ur,1+up0) Feos(n 2 —ua, 1) > +e33u3 3 +2(ci3+) (1 +us 2)uz 31 da ds
0 JD(x3,s)

o [! B
+5// e " [ess(u3 | +u3 o+ ut 5 +u33) +2(css — x) (U 3uz1 +uzzuz ) dads.  (3.14)
0 JD(x3,s)

Now, in view of (3.3), we can choose x € (0, 2c¢55) so that

max(—cy3 — /1133, 0) < % < min(2css, —c13 + 4/C11¢33) (3.15)
and hence to have
|css — x| < cs5. (3.16)
Consequently, we obtain
ess(u3 g U3, +uis+u33)+2(css — x)(uy3uzg +uzzusp) = viu3, +us,+uis+uiz)  (3.17)
and

2 2 2
cri(uiy +uz2)” +cee(u,2 —uz,1)” +e33us 3+ 2(ci3 +x) (U1, +uz2)us 3

> wol(ur,) +uz)* +ui;l, (3.18)

where

vy =min (2cs5 — %, %), V2= %(011 +e33—v(en —e3)?+4 (e +%)2>- (3.19)
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With these in mind, we can see that

0J,
8x

1 .. 1 _
1> 3 / e pujii da + = / e "' wol(ur,1 +u22)* +u331da
D(x3,t) D(x3,t)
1 —ot 2 2 2 2 o [ —os o -
+ = e “'vi(uztuz,tuyztusz)da+ — e 7 pu;u; da ds
2 Jp@sn 2 Jo Jp@s,s)
o t
—/ f e 7 v2[(u +u2,2)2+u%,3]da ds
D(x3,s)
o [’ 2 2 2 2
+5/ </D( )e_asvl(u&] +u3’2+u1’3+u2’3) da dS
X3,

>0, (3.20)

On the other hand, by direct differentiation in (3.11) we obtain

= (x3,1) = —/ e~ ital(css — %) u3 o + Cssta,3] + tislessus 3 + (€13 + %) Ua o]} da. (3.21)
ot D(x3,t)

Furthermore, by means of the arithmetic—geometric and Schwarz inequalities, we obtain

9Jy

a_ (X}, t)

_ L. 1
/ e ! {max(|C55 — x|, css)erttqltq + —— U3,0U3 o + Ug 3Ua3)]
D(x3.1) 2¢ey

.. 1
+ max(|ci3 + x|, ¢s5)[e21t3U3 + g(ua,aup,p + u§’3)]} da, (3.22)
2

so that, by setting &) = / and & = / , we get

9Jx Nl < css f [,ou o +v (u U3z, + g 3u )] da
ot \/2’72 D(x%t) ally 1 3,3« o,3%a,3
max (,/C11€33, C55 1 _ . .
+ (\/2,07 ) > / e ! [pu3u3 + vy (ua,aup,p + u%’3)] da. (3.23)
2 D(x3,t)

Thus, if we set

Y = max ( Css  max («/011033, Css)) , (3.24)

V2pv1 V20V

by means of the relations (3.20) and (3.23) we obtain the first-order partial differential inequality

aJ, 9 Jy
—— (3, )| < —y— (3,1, (x3,1) €[0,00) x [0, 00). (3.25)
ot 0x3

Using an estimating procedure like the one above we obtain the first-order differential inequality

% 7, (x3, 1), (xa.1) €0, 00) x [0, 00). (3.26)
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We now proceed to find the spatial behavior of solutions as described by the differential inequalities
above. We start with the study of differential inequality (3.25) and note that it is equivalent to

10J, 0J,
;7( 3, )+—(X3,t)<0 (x3,1) € [0, 00) x [0, 00) (3.27)
and
19J, 0J,
———— (3, )+ —(x3,1) <0, (x3,1) €[0, 00) x [0, 00). (3.28)
y ot 0x3
Let us fix 7o > 0 and assume that xg > y1o. If we set x3 = xg + v (¢t — tp) in relation (3.27), we deduce
d 0t B9 )] <o (3.29)
X3, =V, .
dx3 3, 10
so that, recalling that 0 < x3 = xg —cty < xg , we have
T (x5, t0) < T (x§ — cto, 0) = 0. (3.30)

Moreover, by setting x3 = x3 y (t — 1) in (3.28), we obtain

d 0
il |:Jx (xs, to— 2 x3)] <0, (3.31)
dx3 14

0= J, (x3+yt0,0) < J, (x3, 10) . (3.32)
Thus, by making xg — oo in relations (3.30) and (3.32), we get

and hence we have

Jy (00, 1) = xgnoo Jy (x3,19) = 0. (3.33)

Consequently, by using the relations (3.14) and (3.32), we obtain

J%(X3, t)
1
= —f e " puju; dv
2 JBGx3.n)

1 _

+§/ e ’”[011(M1,1+M2,2)2+666(M1,2—u2,1)2+C33u%,3+2(013+%)(ul,1+M2,2)u3,3]dU
B(xs,1)

1

+3 / e 7' [ess(u3 g + U3, +ui 5 +u33) +2(css — x) (U 3us,1 +uz3u3 )] dv
B(x3,1)

o t
+—/ / e " pu;n; dvds
2 Jo JBs.0)

o t
—// e [en1 (uy,1+uz,2) +ees (1 2—uz,1) > +c33u3 3+2(ci3+2) (ur1+uz2)usz 3] dv ds
B(x3,s)

/ f 055(u3 1+ u3 5+ ul 3 +u2 3) +2(c55 — x) (U 3u3,1 +uz3u32)]dvds
D(x3, s)
(3.34)
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This proves that J,, (x3, t) represents an acceptable measure for the solution in concern.
Further, we choose ¢ > 0 and x3 > yt. By setting x3 = y¢ in (3.27) we obtain

d
o [/ (yt,0)] <0 (3.35)
and hence we have
Ju (yt, 1) < J, (0,0) =0. (3.36)
On the other hand, in view of relation (3.20) and recalling that x3 > yr we have
o (x3,8) < Jy (yt, 1) <0. (3.37)

Consequently, the relations (3.34) and (3.37) imply relation (3.12). Moreover, the integration of the
differential inequality (3.26) leads to the spatial estimate (3.13) and the proof of theorem is complete. [

4. Rhombic systems

Suppose the cylinder is filled by a rhombic elastic material with the group 63 generated by R7,, R7,
(here Rf is the orthogonal tensor corresponding to a right-handed rotation through the angle 6 € (0, 27),
about an axis in the direction of the unit vector e). According to Gurtin [1972], such class of materials

is characterized by

Ci1123 = Ci1131 = Cr112 = Co203 = €231 = C212 =0,
C3323 = C3331 = C3312 = C2331 = C2312 = C3112 =0,

cii=Crn, cn= Cr, c33 = C3333,
ci2 = Cri22, c23= C2233, c31 = Cs311,
caa = Co323, cs5= C1313, ce6 = C1212.

The strong ellipticity condition (2.4) becomes

2.2 2.2 2.2 2 2
crinymy + caanyms + c33nymsz + cee(n1ma +namy)” + caq(n3my +nams)
+ c55(nyms + n3m1)2 + 2cipniminomy + 2cpznomonsms + 2cyinzmznymy > 0, (4.1)

for all nonzero vectors (mp, my, m3) and (ny, ny, n3). It is equivalent to the conditions (see [Chiritd and
Ciarletta 1999])

Cc11 > 0, Cyp > 0, c33 > 0, C44 >0, C55 > 0, Co6 > O,
—2c66 + #4x/Cl1C0 < €12 < X5\/Clicn,
—2cqs + 2} Jeanc33 < €23 < 2%} \Jeanca3,
—2cs5+ x5 \/cric33 < €13 < %54/c11C33,

where (], x}), (3¢}, »3) and (x4, x3) are solutions with respect to x, y and z of the equation

4.2)

X+ yr+z = 2xyz—1=0, (4.3)
with
x| <1, Iyl <1, lz| <1,
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re { 3 c3+2c4 } c { c13 13+ 2css } . { ci2 ¢+ 2ce6
9 9 9
€033 /20033 Jeiess  L/ciiess Jeien  LJ/cien

} . 44

The statement above is equivalent with relation (4.2), and all points P (x, y, z) bounded by (4.4) and
(4.4) lie inside the surface S(x, y, z), defined by relation (4.3) above.
The basic equations (2.5) become

CriU1, 11 + Coslt1,22 + 551133 + (C12 + Co6) U2 21 + (€13 + C55) U3 31 = piiy,
(c12 4 c66) U112 + Coplt2,11 + C22U2 22 + CaaU2 33 + (€23 + Caa) U3 32 = pli2, 4.5)

(c13+¢55) 1,13 + (€23 + €44) U223 + C55U3 11 + Ca4U3 22 + €33U3 33 = pii3,

and consequently we have the identity

%{%[pﬂiﬂi +eriu g 4 cu3, +e33u3 3+ coo(Ul 5+ 13 ) +ess (U3 +ui 3) + caa(3, +u3 3)
+2(c12+23)ur 1uzn + 2(co6 — 23)un puz,1 +2(c13 + x2)uy 1u3 3
+2(css — x2)u 3u3,1 + 2(c3 + 1)Uz 2u3.3 + 2(cas — x1)uz,3u32 | }
={u[cssuy 3+ (css—x2)us 1 1+uz[cagur 3+ (caa—r1)uz 21+us[(c13+2x2)ur,1+(ca3+2x1)uz 2 +c33u3 31} 3
Hailenur 1+ (cr2tx3)uz 2+ (cr3+x2)us 31+uzlcesua, 1+ (co6—x3)u1 2] +uslessusz 1+ (css—x2)uy 3131
1 [eest1 2+ (co6—23)uz 11+l (cra+2x3)ur 1 +canuz o+ (co3+x1 )usz 314uslcaqus o+ (cas—x1)uz 313 2,

(4.6)

where x|, »x; and x3 are positive parameters at our disposal.
So we have to introduce the function

t
Ky(x3,1) =— / / e i [(cs5s — x2)uz 1 +cssuy 3]+ ual(cas — 21)uz 2 + casutr 3]
0 JD(x3,s) .
’ +is[(c13 +x2)ur 1 + (23 +x)uz s +e3uzzldads  (4.7)

and note that identity (4.6) implies that

0K 1
—— 23, t) == / e " puju; da
0x3 2 Jpsn
1 _
+§ / e UI[CHM%J —I-szu%’z + 033u§’3
D(x3,1)
+2(c12 +x3)uy1uz 2 +2(c13 + x2)uy 1uz 3+ 2(co3 + x)uz 2u3 31 da
1 —ot 2 2
) e 7 lces(uy o +uj 1) +2(ce6 — 2x3)u1,2u2,1]da
D(x3,1)
1 —ot 2 2
+§ e “'[caa(us 5 +u3,) +2(cas — x1)uz 3u3 2] da
D(x3,t)
1 —ot 2 2
+5 e 7'less(uz g +ui3) +2(css — x2)uy 3uz1]da
D(x3,1)
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o t
+—/ / e % pu;n; da ds
2 Jo Jp@xs.s)

t
g —os 2 2 2
+—/ / e lenuy +cnuy, +c33usz s
2 Jo Jp@s,se)
+2(c12 + 3 )ur1u22 +2(c13 + x0)uy 1u3 3 + 2(co3 + x1)u pu3 31 da ds

o [! B

+—/ / e " [ces (Ut o +13.1) +2(ce6 — #3)u1 212,11 da ds
2 Jo s,
o [! 2 2

+—= / f e ¢ [C44(M2’3 + M3’2) +2(cqq — %1)142731/!3,2] da ds
2 Jo s

o ' —os 2 2
+—= e [6‘55(1/!3’1 +M1’3)+2(C55 —xz)u173u3,1]da ds. 4.8)
2 Jo Jp(as.s)

In view of the assumptions (4.2) we can choose x| € [0, 2c44], 22 € [0, 2¢55], %3 € [0, 2¢c66] so that
P(x,y, z), with coordinates

23+ X1 c13txo ci2+x;3
X = , y= , = ,
A/ €22€33 A/ €11€33 A/ C11€622

lies inside the region limited by the surface S(x, y, z). Then the Sylvester criterion provides a straight-

forward way toward conditions of positivity of the quadratic form

F (ui,;) =[cnut | +enud y+c33u3 342 (o + x3) uy 1uz o +2 (c13 + x2) uy,1u3 342 (c23 + x1) uz 013 3
+ [ce6 (] 5+ 13 1) +2 (co6 — 23) w1 2121 | + [cas (u3 3 +u35) +2 (cas — x1) Uz 3u3 2]
+ [ess (u3,) +uf3) +2 (css — x2) ur 3us,1] (4.9)

in terms of u; ;. Therefore, we have
Pty jui ;< F (urs) < wati juij, (4.10)

where w,, and py are the positive minimum and maximum eigenvalues of the positive quadratic form
F (ui, j). Thus, the relations (4.8) to (4.10) qualify K, (x3,t) as a valuable measure of the solution.
Further the analysis for evolution of the measure K, (x3, t) follows the procedure developed in the above
section, thus leading to a spatial behavior like that described by the Theorem 1. Consequently, we can
state the following result.

Theorem 2. Let u;(x,t) be a solution of the initial boundary value problem defined by (4.5), (2.6), (2.7)
and (2.8). Then K, (x3, t) as defined by (4.7) represents a measure of the solution and, for each t > 0, it
evolves as follows. There is a positive constant v, depending on the elastic constants, such that

(a) for x3 > vt we have K, (x3,t) = 0 and hence
uj (x3,t) =0 forall x3 > vt; “4.11)
(b) for x3 < vt, the spatial behavior is described by

0= Ky (x3,0) = Ky (0, 0y exp (—x3) (4.12)
V
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5. Conclusions

The spatial behavior of solutions to the initial boundary value problems in linear elastodynamics has been
established based on the assumption of strong ellipticity of the elasticity tensor. A domain of influence
theorem has been obtained proving that the whole activity is zero in that part of the cylinder whose
axial distance from the loaded end is greater than a critical value. Moreover, inside of the influence
domain, a spatial estimate of Saint Venant type has been established, which describes the exponential
decay of solutions with respect to the distance from the loaded end. However, these results have been
obtained for transversely isotropic and rhombic elastic materials only, since the necessary and sufficient
conditions characterizing the strong ellipticity have been discovered recently. Extension to the whole
class of anisotropic materials seems to be impossible as long as the characterization of their strong
ellipticity remains an open problem.

We have to point out that the influence domain result (relations (3.12) and (4.11)) is independent of
the parameter o entering in the definition of the functions J,, and K,, while it appears in the exponential
estimates (3.13) and (4.12) as a scaling parameter. Our analysis works when o = 0 to prove the influence
domain result, but the exponential estimates (3.13) and (4.11) fail to give information on the spatial
evolution of solutions. In such case we have to apply the method developed by Chirita [1997] for the
model of linear viscoelasticity. It is worthwhile to point out that we cannot make o — oo, because in
this case the functions J,, and K, cannot be considered as measures of solutions.
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