Vol. 3, No. 5, 2008

Download this article
Download this article For screen
For printing
Recent Issues

Volume 12
Issue 3, 249–351
Issue 2, 147–247
Issue 1, 1–146

Volume 11, 5 issues

Volume 10, 5 issues

Volume 9, 5 issues

Volume 8, 8 issues

Volume 7, 10 issues

Volume 6, 9 issues

Volume 5, 6 issues

Volume 4, 10 issues

Volume 3, 10 issues

Volume 2, 10 issues

Volume 1, 8 issues

The Journal
Editorial Board
Research Statement
Scientific Advantage
Submission Guidelines
Submission Form
Author Index
To Appear
ISSN: 1559-3959
Finite strain micromechanical analysis for thermoelastoplastic multiphase materials

Jacob Aboudi

Vol. 3 (2008), No. 5, 809–829

A micromechanical model that is based on the homogenization technique for periodic composites is developed for the prediction of the response of multiphase materials undergoing large deformations. Every one of the constituents is supposed to be either a rate-independent thermoelastoplastic material or a thermoelastic one, both of which are formulated in the framework of finite strains. Hyperelastic constituents are obtained as a special case. The resulting macroscopic (global) constitutive equations of the composite involve the instantaneous mechanical and thermal tangent tensors. The reliability of the prediction is examined by comparisons with the composite cylinder assemblage model, which is formulated for a finite strain rate-independent thermoplasticity and is valid under axisymmetric loading. Applications are given for a system of a rubber-like matrix reinforced by metallic fibers. In addition, the behavior of rate-independent elastoplastic laminated materials undergoing large deformations and subjected to in-plane loading is investigated. Finally, the response of an elastoplastic auxetic metallic material, which is capable of generating a negative Poisson’s ratio at any stage of a finite strain loading is examined by employing the proposed micromechanical model.

periodic unidirectional composites, finite Plasticity, large deformations, composite materials, high-fidelity generalized method of cells
Received: 4 December 2007
Revised: 29 March 2008
Accepted: 7 April 2008
Published: 1 July 2008
Jacob Aboudi
Faculty of Engineering
Tel Aviv University
Ramat Aviv 69978