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PREFACE

BOGDAN T. MARUSZEWSKI, WOLFGANG MUSCHIK AND KRZYSZTOF W. WOJCIECHOWSKI

The International Symposia on Trends in Continuum Physics have been held every three years since
1998. The first three events took place at the Poznan University of Technology in Poznan, Poland.
The fourth and most recent one took place in Lviv, Ukraine, for the first time outside the European
Union. All the symposia were jointly planned and organized by B. T. Maruszewski (Poznan University
of Technology), W. Muschik (Technische Universität Berlin) and A. Radowicz (Kielce University of
Technology).

One of the main aims of those meetings has been to bring together scientists from Eastern Europe
working in different fields of continuum physics, widely understood, as well as those from Western
and Central European countries, in order to extend their cooperation and to create new connections and
acquaintances.

Special emphasis was placed on the representation of various concepts applied to different physical
fields interacting with each other. The scope of the Symposia includes fundamentals of continuum
physics, new trends in thermodynamics and in electrodynamics, physics of materials (encompassing
defective crystals, ferroic crystals, liquid crystals, molecular crystals, high-temperature superconductors,
semiconductors, plasma, polymers, amorphous media, smart materials, and anomalous phenomena such
as auxetics and negative thermal expansion), biophysics, multiphase systems, and multiscale problems.

The chairs of the Fourth International Symposium on Trends in Continuum Physics (TRECOP’07),
where most of the articles in this issue were presented, would like to acknowledge support by the spon-
soring institutions who made the meeting possible. They are:

• Institute of Applied Mechanics, Poznan University of Technology

• Pidstryhach Institute for Applied Problems in Mechanics, Ukrainian NAS Centre for Mathematical
Modeling, Lviv, Ukraine

• National Academy of Public Administration Office of the President of Ukraine, Lviv Regional
Institute of Public Administration, Lviv, Ukraine

• Foundation for Development of Poznan University of Technology

Krzysztof W. Wojciechowski
Chair of the Scientific Committee

Bogdan T. Maruszewski
Wolfgang Muschik
Andrzej Radowicz

Symposium Chairs
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Scientific Committee

Krzysztof W. Wojciechowski (Institute of Molecular Physics, Polish Academy of Sciences, Poznan, Poland)

Jan Awrejcewicz (Lodz University of Technology, Lodz, Poland)

Angelo M. Anile (University of Catania, Catania, Italy — deceased)

Vladimir Alshits (Institute of Crystallography, Russian Academy of Sciences, Moscow, Russia)

Arkadi Berezovski (CENS – Institute of Cybernetics, Tallinn, Estonia)

Yaroslav Burak (Institute of Applied Mathematics and Mechanics, Ukrainian National Academy of Sci-
ences, Lviv, Ukraine)

Enzo Ciancio (University of Messina, Messina, Italy)

Yevhen Czaplya (Pidstryhach Institute of Applied Problems of Mechanics and Mathematics, Ukrainian
Natonal Academy of Sciences, Lviv, Ukraine)

Juri Engelbrecht (Estonian Academy of Sciences, Tallinn, Estonia)

Karl H. Hoffmann (Chemnitz University of Technology, Chemnitz, Germany)

David Jou (University of Barcelona, Barcelona, Spain)

Jan A. Kołodziej (Institute of Applied Mechanics, Poznan University of Technology, Poznan, Poland)

Józef Kubik (Kazimierz Wielki University, Bydgoszcz, Poland)

Roman Kushnir (Pidstryhach Institute of Applied Problems of Mechanics and Mathematics, Ukrainian
National Academy of Sciences, Lviv, Ukraine)

Gerard A. Maugin (University of Paris VI, Paris, France)

Stanisław Matysiak (Warsaw University, Warsaw, Poland)

Henryk Petryk (Institute of Fundamental Technological Research, Polish Academy of Sciences, Warsaw,
Poland)

Liliana Restuccia (University of Messina, Messina, Italy)

Jeremiah Rushchitski (Institute of Mechanics, Ukrainian National Academy of Sciences, Kiev, Ukraine)

Czesław Rymarz (Institute of Fundamental Technological Research, Polish Academy of Sciences, War-
saw, Poland)

Jarosław Rybicki (Gdansk University of Technology, Gdansk, Poland)

Jeremiah Savula (Ivan Franko National University, Lviv, Ukraine)

Igor Selezov (Institute of Hydromechanics, Ukrainian National Academy of Sciences, Kiev, Ukraine)

Stanisław Sieniutycz (Warsaw University of Technology, Warsaw, Poland)

Jarosław Stefaniak (Poznan University of Technology, Poznan, Poland)

Gwidon Szefer (Cracow University of Technology, Cracow, Poland)

Alfons A. F. van de Ven (Eindhoven University of Technology, Eindhoven, The Netherlands)
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AN INTRODUCTION OF THE LOCAL DISPLACEMENTS OF MASS AND
ELECTRIC CHARGE PHENOMENA INTO THE MODEL OF THE MECHANICS

OF POLARIZED ELECTROMAGNETIC SOLIDS

YAROSLAV BURAK, VASYL KONDRAT AND OLHA HRYTSYNA

Using the fundamental principles of thermodynamics of irreversible processes and continuum mechan-
ics and electrodynamics, a complete set of equations of the thermomechanics of an electroconducting
polarized medium has been obtained by taking into account the local displacements of mass and electric
charge. To determine the thermodynamic state, two additional state parameters, namely the induced
mass and the gradient of the energy measure of mass displacement, have been introduced. Two other
parameters, the energy measure of mass displacement and the mass displacement vector, have been
coupled to the aforementioned parameters. Such an extension of the state parameter space allows one to
describe the near-surface inhomogeneity of the stress-strained state and the electric polarization as well
as the surface charges and the electromagnetic signals induced by the surface formation.

1. Introduction

The theory of coupled electro-magneto-thermo-mechanical processes in polarized media has been the
subject of many investigations, as have the applied problems of electrodynamics and mechanics of po-
larized structure [de Groot and Mazur 1962; Karnaukhov and Kirichok 1988; Maugin 1988; Nowacki
1983; Sedov 1997; Khoroshun 2006; Burak 1967]. Studying the process of electric polarization (the
local displacement of electric charge) authors usually do not take into account the accompanying local
displacement of mass, for example, the relative displacement of nuclei and electrons or of hydrogen and
oxygen atoms in a water molecule, etc. Note also that the displacement of mass can arise without electric
polarization [Hrytsyna and Kondrat 2006], for example, in the case of accelerated motion of a body with
mass asymmetric molecules. The process of the mass displacement in thermomechanical systems was
reported for the first time in [Burak 1987]. Later the studies in this direction have been concerned mostly
with interfacial phenomena including the strength of the surface layers [Burak et al. 1991; Hrytsyna et al.
2006].

The purpose of this paper is the formulation and analysis of a mathematical model for the description
of electro-magneto-thermo-mechanical processes in electroconducting polarized solids while taking into
account the displacement of electric charges (polarization) and local displacement of mass.

Keywords: coupled electro-magneto-thermo-mechanical processes, electroconducting polarized nonferromagnetic solids,
local displacements of mass and electric charges, interfacial phenomena.
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2. The model

2A. Investigation object. We consider an isotropic thermoelastic polarized nonferromagnetic solid un-
der the synergistic influence of external stresses, temperature gradients, and electromagnetic fields which
induce mechanical, thermal, and electromagnetic processes in the body (domain (V )) enclosed by sur-
face (6). The electromagnetic field causes the ordering of bound electric charges (polarizations) that is
described by densities of electric flux Jes and mass flux Jms . The mass flux is caused by the difference
in mass of bounded positive and negative charges.

All fields, which characterize the processes in solids, must satisfy the fundamental physical laws such
as the conservation laws of mass, momentum, angular momentum, entropy, and energy.

The initial relations of the proposed model are based on the Euler approach.

2B. Electrodynamics Equations. Maxwell’s equations can be written in the local form [Bredov et al.
1985; Landau and Lifshitz 1984; Tamm 1979]

∇ ·B= 0, ∇ ·D= ρe, ∇×E=−
∂B
∂t
, ∇×H= Je f , (2-1)

where E, H are the electric and magnetic fields; D, B are the vectors of electric and magnetic inductions;
for nonferromagnetic mediums B= µ0H; D= ε0E+5e, where 5e ≡ P denotes the local displacement
of electric charge (polarization); ε0, µ0 are the electric permittivity and the magnetic permeability of
vacuum (electric and magnetic constants); ρe is the density of free electric charge; Je f = Je+ Jed + Jes

is the density of the total electric current; Je is the density of electric current (convection and conduction
currents); Jed = ε0 (∂E/∂t); Jes = ∂5e/∂t is the density of current, caused by ordering of a charged
system (polarization current), and ∇ is the Hamilton operator.

We introduce the density of induced charge ρeπ [Bredov et al. 1985], and require that for an arbitrary
solid of finite size (domain (V )) the vector 5e of the local displacement of the electric charge and the
density ρeπ satisfy (see also Bredov et al. [1985])∫

(V )
5e dV =

∫
(V )
ρeπrdV, (2-2)

where r is the position vector. Taking into account the arbitrariness of the domain (V ), the independence
of Equation (2-2) from the choice of frame and the identity a ·5e= (5e ·∇) (a · r), where a is an arbitrary
constant vector, from (2-2) we deduce∫

(V )
ρeπ dV = 0, ρeπ =−∇ ·5e. (2-3)

After differentiation by time, the second relation of the set (2-3) and using Jes = ∂5e/∂t we obtain the
following equation

∂ρeπ

∂t
+∇ · Jes = 0,

which has the form of the conservation law of induced electric charges [Bredov et al. 1985]. From now
on instead of 5e we shall use the standard notation for the polarization vector P.
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2C. The mass balance equation. The mass balance equation in the integral form is given by

d
dt

∫
(V )
ρdV =−

∮
(6)

J∗ ·nd6, (2-4)

where ρ is the mass density, J∗ denotes the density of the mass flux, and n is the outward unit normal
to the surface (6). We assume that the density of mass flux J∗ is the sum of the convective component
Jmc = ρv∗, where v∗ is the average velocity of the displaced particles of the body, and the component
Jms related to the ordering of structure of a physically small element of the body. Thus the equation of
mass balance (2-4) can be written as follows

d
dt

∫
(V )
ρdV =−

∮
(6)

(
ρv∗+ Jms

)
·nd6.

We introduce the local mass displacement vector as 5m(t) =
∫ t

0 Jms(t ′)dt ′. Then, for the flux Jms we
obtain

Jms = ∂5m/∂t. (2-5)

Thus the velocity v of the center of mass is v= 1
ρ

(
ρv∗+

∂5m
∂t

)
, and the equation of mass balance can

now be written in the standard form
∂ρ

∂t
+∇ · (ρv)= 0. (2-6)

By analogy with the induced charge, we introduce the density of induced mass ρmπ , which has the
dimension of mass density, so that ρmπ , 5m , r satisfy (see Equation (2-2))∫

(V )
5m dV =

∫
(V )
ρmπrdV . (2-7)

From Equation (2-7) one deduces the following relations [Bredov et al. 1985]∫
(V )
ρmπ dV = 0, ρmπ =−∇ ·5m . (2-8)

We note that from Equation (2-5) and (2-8) one can obtain the equation

∂ρmπ

∂t
+∇ · Jms = 0,

which has the form of the conservation law of induced mass.

2D. Equation of entropy balance. The general form of the entropy balance equation is [de Groot and
Mazur 1962]

d
dt

∫
(V )
ρs dV =−

∮
(6)

Js ·nd6−
∮
(6)

ρsv ·nd6+
∫
(V )
σs dV +

∫
(V )
ρ
<

T
dV , (2-9)

where s is the specific entropy (entropy per unit mass), Js is the density of entropy flux, T is the absolute
temperature, σs is the strength of the entropy source, or the entropy production per unit volume and unit
time, and < denotes the distributed thermal sources.
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In the local form Equation (2-9) is given by

ρT
ds
dt
=−∇ · Jq +

1
T

Jq ·∇T + Tσs + ρ<. (2-10)

Here Jq = T Js is the density of heat flux and d/dt = ∂/∂t + v ·∇ is the substantive derivative.

2E. Equation of the balance of electromagnetic field energy. From the Maxwell equations (2-1), the
equation, which is known as the energy balance equation of the electromagnetic field [Bredov et al. 1985;
Landau and Lifshitz 1984; Tamm 1979], follows, namely

∂Ue

∂t
+∇ ·Se+

(
Je+

∂P
∂t

)
·E= 0, (2-11)

where Ue =
(
ε0E2
+µ0H2

)
/2 is the energy density of the electromagnetic field and Se = E×H is the

flux density of its energy.
Let us rewrite the last term in Equation (2-11) in such a way that it contains the specific polarization

p = P/ρ, the vectors E∗, P∗, Je∗ of the electromagnetic field and density of electric current in the
reference frame of the center of mass moving with speed v relatively to the laboratory reference frame,
that is,

E∗ = E+ v×B, P∗ = P+ ε0µ0v×M, Je∗ = Je− ρev.

Here M denotes the magnetization vector (in the nonmagnetic case the magnetization vector is zero) and
Je∗ is the conduction current density. Using the mass conservation law (2-6), we can rewrite the balance
equation of energy of electromagnetic field (2-11) as

∂Ue

∂t
+∇ ·Se+ Je∗ ·E∗+

[
ρeE∗+

(
Je∗+

∂(ρp)
∂t

)
×B+ ρ

(
∇E∗

)
·p
]
· v

+ ρE∗ ·
dp
dt
−∇ ·

[
ρ
(
E∗ ·p

)
I · v

]
= 0. (2-12)

2F. Equation of balance of energy for system body — electromagnetic field. We assume that for an
arbitrary moment of time, the total energy of system is the sum of internal energy ρu (u is the specific
internal energy), kinetic ρv2/2 energy, and the energy of the electromagnetic field Ue. On the other
hand, the total energy change is the result of the convective energy transport ρ

(
u+ v2/2

)
through the

surface, the work σ̂ · v of surface forces; the heat flux Jq , the electromagnetic energy flux Se, the work
µJm connected to the mass transport relative to the center of mass of the body (here Jm = ρ(v∗− v));
the work µπ∂5m/∂t related with structure ordering (local mass displacement), and the action of mass
forces F and distributed thermal sources <. One therefore has

d
dt

∫
(V )

(
ρu+Ue+

1
2ρv2)dV =

−

∮
(6)

[
ρ
(
u+ 1

2 v2)v− σ̂ · v+Se+ Jq +µJm +µπ
∂5m

∂t

]
·nd6+

∫
(V )

(
ρF · v+ ρ<

)
dV, (2-13)

where σ̂ is the Cauchy’s stress tensor, µ is the chemical potential, and µπ is the energy measure of the
influence of the mass displacement on the internal energy.
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By the use of the Ostrogradsky–Gauss theorem, the balance equations of mass (2-6), the electromag-
netic energy equation (2-12), and the entropy equation (2-10), we obtain from Equation (2-13)

ρ
du
dt
= ρT

ds
dt
+

[
σ̂ −ρ

(
E∗ ·p

)
Î
]
:

d ê
dt
+ρE∗ ·

dp
dt
−µ′π

∂∇ ·5m

∂t
−∇µ′π ·

∂5m

∂t
+ρeE∗−Je∗ ·E∗

−Jq ·
∇T
T
−Tσs+v ·

{
−ρ

dv
dt
+∇ ·

[
σ̂ −ρ

(
E∗ ·p

)
Î
]
+

(
Je∗+

∂(ρp)
∂t

)
×B+ρ

(
∇E∗

)
·p+ρF

}
, (2-14)

where µ′π = µπ −µ, ê=
[
∇u+ (∇u)T

]
/2 is the strain tensor, u is the displacement vector, and an upper

index T denotes a transposed tensor.
Introducing the specific values πm =5m/ρ and ρm = ρmπ/ρ and taking into account the mass balance

Equation (2-6), we obtain the following balance equation for the internal energy using Equation (2-14)

ρ
du
dt
= ρT

ds
dt
+ σ̂ ∗ :

d ê
dt
+ ρE∗ ·

dp
dt
+ ρµ′π

dρm

dt
− ρ∇µ′π ·

dπm

dt
+ Je∗ ·E∗− Jq ·

∇T
T

− Tσs + v ·
{
−ρ

dv
dt
+∇ · σ̂ ∗+ ρeE∗+

(
Je∗+

∂(ρp)
∂t

)
×B+ ρ

(
∇E∗

)
·p+ ρF∗

}
, (2-15)

where
σ̂ ∗ = σ̂ − ρ

(
E∗ ·p− ρmµ

′

π −πm ·∇µ
′

π

)
Î, F∗ = F+ ρm∇µ′π −πm ·∇∇µ′π .

Furthermore, when using the new thermodynamical function of the generalized Helmholtz free energy
f = u− T s−E∗ ·p+∇µ′π ·πm , we obtain from Equation (2-15)

ρ
d f
dt
=−ρs

dT
dt
+ σ̂ ∗ :

d ê
dt
− ρp ·

dE∗
dt
+ ρµ′π

dρm

dt
+ ρπm ·

d∇µ′π

dt
+ Je∗ ·E∗− Jq ·

∇T
T

− Tσs + v ·
{
−ρ

dv
dt
+∇ · σ̂ ∗+ ρeE∗+

(
Je∗+

∂(ρp)
∂t

)
×B+ ρ

(
∇E∗

)
·p+ ρF∗

}
. (2-16)

From the requirement that Equation (2-16) is invariant with respect to translations and assuming that
the free energy f is the function of scalar quantities T , ρm , vector quantities E∗ , ∇µ′π , and tensor
quantity ê (all of them are independent parameters), we obtain the generalized Gibbs equation

d f =−sdT + ρ−1σ̂ ∗ : d ê−p · dE∗+µ′πdρm +πm · d∇µ′π , (2-17)

a relation for the entropy production

σs = Je∗ ·
E∗
T
− Jq ·

∇T
T 2 , (2-18)

and the momentum equation

ρ
dv
dt
=∇ · σ̂ ∗+Fe+ ρF∗, (2-19)

where Fe = ρeE∗+
(
Je∗+ ∂(ρp)/∂t

)
×B+ ρ

(
∇E∗

)
·p is the ponderomotive force.

In this case the free energy depends not only on temperature T , strain tensor ê and electric field
E∗, but also on the parameters related to the mass displacement, namely, ρm and ∇µ′π . Note that the
introduction of both the local mass displacement and the electric charge displacement leads to additional
(ponderomotive) forces in Equation (2-19) and to the redefinition of the stress tensor.
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2G. Constitutive relations. Since the parameters T , ρm , E∗, ∇µ′π , and ê are independent, we obtain the
following relations from the Gibbs Equation (2-17)

s =−
∂ f
∂T

∣∣∣∣
ê, ρm ,∇µ′π ,E∗

, σ̂ ∗ = ρ
∂ f
∂ ê

∣∣∣∣
T, ρm ,∇µ′π ,E∗

, µ′π =
∂ f
∂ρm

∣∣∣∣
T, ê,∇µ′π ,E∗

,

p=−
∂ f
∂E∗

∣∣∣∣
T, ê, ρm ,∇µ′π

, πm =
∂ f

∂(∇µ′π )

∣∣∣∣
T, ê, ρm ,E∗

. (2-20)

Let ê = 0, T = T0, ρm = 0, E∗ = 0, ∇µ′π = 0, s = s0, σ̂ ∗ = 0, µ′π = µ
′

π0, p = 0, and πm = 0 in the
reference state, then in the linear approximation, Equation (2-20) may be written in the form

s = s0− [as
T (T − T0)+ ρ

−1
0 aeT e+ aρTρm],

σ̂ ∗ = 2aσ2 ê+ [aσ1 e+ aeT (T − T0)+ aeρρm] Î,

µ′π = µ
′

π0+ aµρ ρm + ρ
−1
0 aeρe+ aρT (T − T0),

p=−a p
E E∗− aEµ∇µ′π , πm = aπµ∇µ′π + aEµE∗, (2-21)

where e≡ ê : Î is the first invariant of the strain tensor; aσ1 , aσ2 , as
T , aµρ , a p

E , aπµ , aeT , aρT , aeρ , and aEµ are
the characteristics of material; and s0 and µ′π0 are the entropy and the reduced potential µ′π , respectively,
in the reference state.

An analysis of the Gibbs equation reveals that our model requires two additional pairs of parameters
for enabling us to describe the local thermodynamic state of the body:

(i) the induced mass ρm = −
(
∇ ·5m

)
/ρ and the energy measure µ′π of the influence of the mass

displacement on internal energy;

(ii) the vector of density of the mass displacement πm =5m/ρ and the gradient of µ′π .

These parameters are related to the local displacement of the mass. Such an extension of the state
parameters space allows one to describe near-surface inhomogeneity of the stress-strained state and
electrical polarization [Hrytsyna and Kondrat 2006; Burak et al. 1991; Hrytsyna et al. 2006]. Indeed,
according to the chosen model the electric polarization is caused not solely by the electric field but also
by the gradient of µ′π . In the near-surface region the value of |∇µ′π | can be sufficiently large to induce
essential surface polarization. This can be important in studies of electromagnetic emission caused by the
formation of a new surface within the body or an electromagnetic response of the body towards external
dynamic influence on its surface [Fursa et al. 2003]. The details of such phenomena are considered below
where we describe the near-surface inhomogeneity in an infinite polarized layer.

By using the Onsager principle and Equation (2-18) for the entropy production, one finds in the linear
approximation [de Groot and Mazur 1962]

Je∗ = σeE∗+ σeη∇T, Jq =−λ∇T +πt Je∗,

where σe and λ are electric and thermal conductivity, respectively. Here coefficients η and πt characterize
thermoelectric phenomena and are related by Tη =−πt , respectively.
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The obtained constitutive relations, the conservation laws of momentum, masses, and entropy, the
equations of electrodynamics and geometrical relations form a complete set of equations of electro-
magneto-thermo-mechanics of the polarized nonferromagnetic solids taking into account the local dis-
placements of the mass and electric charge.

Let us take the displacement vector u, temperature T , electric field E, magnetic induction B, and the
induced mass ρm as a set of basic functions. Then in the linear approximation we obtain the following
equation for ρm

1ρm +
1

aπµaµρ
ρm =−

1
aµρ

[
aeρ

ρ0
1
(
∇ ·u

)
+ aρT1T +

aEµ

aπµ
∇ ·E

]
.

It is possible to show that one may present ρm as a functional of functions u, T , and E, therefore ρm can
be eliminated from the basic set of equations and also from the constitutive relations. In this case, the
basic set of equations becomes integro-differential equations whereas the constitutive equations (2-21)
become spatially nonlocal.

3. Example

We consider an elastic polarized layer of an ideal dielectric in the region −l ≤ x ≤ l. At time t = 0 the
layer is cut from an infinite medium in such a way that at time t > 0 it is in contact with a medium which
behaves as vacuum with regards to its electromagnetic properties. The effect of temperature is neglected
while the processes of deformation, polarization, and displacement of mass are considered.

In this case the basic functions f= {u,E,p,D,πm,Ev} and g = {µ̃′π , ρm} are functions of the space
coordinate x and time coordinate t such that f= ( f, 0, 0), f = {u, E, p, D, πm, Ev}, f = f (x, t), and
g = g(x, t), where Ev is the vector of the electric field in vacuum, and µ̃′π = µ

′
π −µ

′

π0.
With this notation our basic set of equations is reduced to the set of equations for the layer −l ≤ x ≤ l

ρ0
∂2u
∂t2 =

(
aσ1 + 2aσ2 −

a2
eρ

ρ0aµρ

)∂2u
∂x2 +

aeρ

aµρ

∂µ̃′π

∂x
, µ0

(
ε0− ρ0a p

E

)∂E
∂t
− ρ0µ0aEµ

∂2µ̃′π

∂x∂t
= 0,

∂2µ̃′π

∂x2 +
1

aπµaµρ
µ̃′π =

1
aπµaµρ

aeρ

ρ0

∂u
∂x
−

aEµ

aπµ

∂E
∂x
,

where E = −∂ϕ/∂x , ϕ is the electric potential, and the set of equations for the potential ϕv of the electric
field in vacuum (x <−l, x > l) is

∂2ϕv

∂x2 − ε0µ0
∂2ϕv

∂t2 = 0, Ev =−
∂ϕv

∂x
.

The surfaces of the layer are stress-free and the potential µ′π at x =±l is zero. Therefore, taking into
account the continuity condition for electric potential, the boundary conditions and radiation conditions
become (

aσ1 + 2aσ2 −
a2

eρ

ρ0aµρ

)∂u
∂x
+

aeρ

aµρ
µ̃′π = 0, lim

x→±∞

(∂ϕv
∂x
±
√
ε0µ0

∂ϕv

∂t

)
= 0,

µ̃′π =−µ
′

π0, ϕ = ϕv.
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We suppose that at t = 0 the sought functions are zero. Neglecting the inertial forces, the solution of this
boundary problem is given by

µ̃′π =−µ
′

π0
ch(λx)
ch(λl)

θ(t), E =−λµ′π0
ρ0aEµ

ε0− ρ0a p
E

sh(λx)
ch(λl)

θ(t),

ϕ = µ′π0
ρ0aEµ

ε0− ρ0a p
E

ch(λx)
ch(λl)

θ(t), p = λµ′π0
ε0aEµ

ε0− ρ0a p
E

sh(λx)
ch(λl)

θ(t),

σyy = σzz ≡ σ =−µ
′

π0
aeρ

aµρ

[
1−

aσ1
aσ1 + 2aσ2 − a2

eρ/
(
ρ0aµρ

)(1−
a2

eρ

ρ0aµρ

)]ch(λx)
ch(λl)

θ(t)

for −l ≤ x ≤ l;

ϕv =


µ′π0

ρ0aEµ

ε0−ρ0a p
E
θ
(
t +
√
ε0µ0(x + l)

)
, if x <−l,

µ′π0
ρ0aEµ

ε0−ρ0a p
E
θ
(
t −
√
ε0µ0(x − l)

)
, if x > l,

where

λ2
=−

ρ0(aσ1 + 2aσ2 )(ε0− ρ0a p
E)[

ρ0aµρ (aσ1 + 2aσ2 )− a2
eρ
][

aπµ(ε0− ρ0a p
E)+ ρ0a2

Eµ

] .
For the density of the bound surface charge σse(±l)= ρ0 p(±l) at t > 0 one has

σse(±l)= µ′π0λaEµ
ε0ρ0

ε0− ρ0a p
E

th(λl). (3-1)

The analysis of the solution shows that the distributions of the stresses σyy , σzz , the reduced energy
measure µ̃′π and functions E , ϕ, and p exhibit inhomogeneities close to the surface. Figure 1 displays
the distributions of the stresses σ/σ ∗, the electric potential ϕ/ϕ∗, and electric polarization p/p∗ in the
layer where

ϕ∗ = µ′π0
ρ0aEµ

ε0− ρ0a p
E
, p∗ = µ′π0

ε0λaEµ

ε0− ρ0a p
E
,

σ ∗ =−µ′π0
aeρ

aµρ

[
1−

aσ1
aσ1 + 2aσ2 − a2

eρ/(ρ0aµρ )

(
1−

a2
eρ

ρ0aµρ

)]
.

As one can see, thin layers (curves 1–3 in Figure 1 are characterized by the overlay of the near-surface
inhomogeneities while there is a well-defined bulk region characterized by the uniform (constant) profile
for thicker layers (curves 4 and 5). This effect manifests itself in the dependence of the surface charge
density σse/σ

∗
se, where σ ∗se = µ

′

π0λaEµε0ρ0/(ε0− ρ0a p
E) , on the layer thickness (see Figure 2).

The bounded charge (3-1) is induced at the surfaces of the layer while in the vacuum the momentum
of the electric field arises and propagates from x = ±l to ±∞. Thus the proposed model allows the
description of the interface inhomogeneity of the stress-strained state and the surface polarization in
dielectrics, the appearance of electrical charge at surfaces as well as an electromagnetic signal caused by
the surface formation.
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Figure 1. The distributions of the stresses σ/σ ∗ , the electric potential ϕ/ϕ∗ , and elec-
tric polarization p/p∗ in the layer for λl = 1.5, 2.5, 5, 10, 30, that is, curves 1–5 respec-
tively.

Figure 2. The dependence of the surface charge density σse/σ
∗
se on the layer thickness

l∗ = λl.
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NEW CONCEPTION OF THE FEM BASE FUNCTIONS APPLIED TO SOLVING
AN INVERSE HEAT TRANSFER PROBLEM

ANDRZEJ FRĄCKOWIAK, JENS VON WOLFERSDORF AND MICHAŁ CIAŁKOWSKI

The present work shows the modified concept of the finite element method which has been applied to
the solution of the inverse problem (of Cauchy type) for heat conduction equation in a circular ring. The
main idea of the new concept consists of the application a new type of base function which cause the
vanishing of some integrals in the strong formulation. The calculation with the new base functions takes
place in the physical space, and there is no need to go to the isoparametric one. Numerical calculations
of the inverse problem confirm the good properties of a new set of base functions.

1. Introduction

The complex character of the domain and the equations depicting heat-flow problems in arbitrary bodies
impose the need for use of numerical methods such as the finite element method (FEM) for solving them.
In order to satisfy continuity of a function between particular finite elements isoparametric elements are
typically used, which, in consequence, results in increased computational costs. In order to reduce the
computational effort and satisfy continuity of the interpolated function in the entire domain at the same
time, interpolation of the solution at the element (the physical space) is proposed with the use of a new
type of base functions.

Consideration of the heat conduction equation in discretized form is conducive to some integrals that
should be numerically calculated. In order to avoid some of the integrals, test functions are introduced.
Their regularity affects accuracy of the temperature field computed this way.

The method proposed in the present paper is a generalization of the finite element methods presented
in [Gresho and Sani 2000]. Aspects of such an approach are discussed below.

2. Numerical method for solving the direct and inverse problems

In order to present the new conception let us consider the Laplace equation in the � domain, as shown
in Figure 1:

1T = 0, T ∈ C2(�i ). (2-1)

First, the neighborhood of the point Pi is considered. The elements including the point Pi form the
domain

�i =

ni⋃
α=1

�iα.

Keywords: inverse problem, finite element method.
This paper was done with support from a grant from the Ministry of Higher Education (no. 3134/B/T02/2007/33).
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Figure 1. The domain � divided into elements.

Let the test function w ∈ C2(�iα)∩C1(�i ). Multiplication of Equation (2-1) by the w function and
integration over the �i domain provides∫
�i

1T ·w ·dω=
ni∑
α=1

∫
�iα

1T ·w ·dω=
ni∑
α=1

∫
∂�iα

[div(∇T ·w)−div(T ·∇w)]·dω+
ni∑
α=1

∫
�iα

T ·1w ·dω= 0.

Application of the Gauss–Ostrogradski theorem gives

ni∑
α=1

∫
∂�iα

(
w ·

∂T
∂n
− T ·

∂w

∂n

)
· ds+

ni∑
α=1

∫
�iα

T ·1w · dω = 0, i = 1, 2, . . . . (2-2)

Taking into account continuity of the w function within the element �i and continuity of the derivative
∂T/∂n, the integral of the product w ·∂T/∂n at common boundaries ∂�iα between the elements vanishes,
so that

ni∑
α=1

∫
∂�iα

w ·
∂T
∂n
· ds =

∫
∂�i

w ·
∂T
∂n
· ds. (2-3)

The integral at the right-hand side of Equation (2-3) disappears provided that w|∂�i = 0. The essence
of the present conception consists of the formulation of such a test function that takes zero values at
the ∂�i boundary. In consequence, the number of integrals of (2-2) is reduced. Moreover, if the w
function is differentiable in the domain �i , the first sum of (2-2) disappears too. Let us consider the case
w ∈ C2(�iα)∩C1(�i )∩C0(∂�i ). There, with (2-2), the point Pi /∈ 0, shown in Figure 2a, takes the
form

−

ni∑
α=1

∫
∂�iα

T ·
∂w

∂n
· ds+

ni∑
α=1

∫
�iα

T ·1w · dω = 0, i = 1, 2, . . . . (2-4)

The condition Pi ∈ 0, shown in Figure 2b, results in w = 0 at the boundary ∂�i\0 ∈�i . This gives, for
(2-2), the form∫

0i

w ·
∂T
∂n
· ds−

ni∑
α=1

∫
∂�iα

T ·
∂w

∂n
· ds+

ni∑
α=1

∫
�iα

T ·1w · dω = 0, i = 1, 2, . . . . (2-5)
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Pi

¶ i

b)a)

i

Pi

¶ i

∂

Pi

¶ i

b)a)

i

Pi

¶ i∂

Figure 2. Neighbourhood �i of the Pi points inside (left) and outside (right) of the mesh.

The above equations form a basis for solving the stationary equation of heat conduction with FEM. An
important feature of this approach is that only an approximation of temperature function T in the �iα

domain is sufficient for solving the equation, without differentiation of the T function approximation or
other operations performed on derivatives of the function. The normal derivative of the T function at the
boundary of the � domain is considered as an independent variable and determined from the boundary
conditions. The solution of the Laplace equation in the �iα element is approximated by the function

T (P)=
m∑

i=1

Ti ·ϕiα(P), (2-6)

where the base functions ϕiα meet the condition

ϕiα(Pj )=

{
1, i = j,

0, i 6= j.
(2-7)

The base functions ϕiα are formulated on the grounds of the observation that

ϕP L(x, y)=
AL x + BL y+CL

AL x p + BL yp +CL
, (2-8)

where AL x + BL y+CL = 0 is the equation of the straight line L and (x p, yp) are the coordinates of the
point P (shown in Figure 3), satisfying the condition (2-7) and taking zero values at the line L .

The base functions ϕiα are products of the functions for various straight lines, (2-8), and the same
point P ,

ϕiα(x, y)= ϕi j1(x, y) ·ϕi j2(x, y), (2-9)

L

P(xp,yp)

Figure 3. Element line and point for base function considerations.
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Figure 4. Relationships for base functions.

where the index i is related to the point P , while the indices j1 and j2 are related to the straight lines L .
Consideration of the 6-node triangular element of the mesh as shown in Figure 4b enables us to

formulate the base function ϕiα given by Equation (2-9) for each of the nodes Pi , i = 1, 2, . . . , 6, where
the indices j1 and j2 related to the straight lines L are defined in Figure 4. More universal formulation
of this type of base functions is described in [Frąckowiak ≥ 2008].

The function ϕiα defined by (2-9) in the domain �iα , apart from having the property (2-7), takes zero
values at the sides of the mesh element including no point P . Based on this function let us define another
function ϕi (Q) continuous in �i , ϕi (Q)= ϕiα(Q), with Q ∈�iα and α = 1, 2, . . . , ni . This definition
gives evidence that the function ϕi (Q) takes zero values at the boundary ∂�i of the �i element that
bounds the neighborhood of the inner point Pi . When the point Pi is located at the outer boundary 0,
the ϕi (Q) function is nonzero at the part of the boundary 0 ∩ ∂�i .

The above property and the assumption of continuity of the function ϕi (Q) in �i provide a basis for
solving the problem with FEM.

Substitution of an approximate solution (2-6) into (2-4) and (2-5) and the use of a linear approximation
of the normal derivative between the nodes of the 0 boundary allow us to formulate a system of equations
in the matrix form

A�0T0 + A��T� = O,

A00T0 + A0�T� = B0Q0.
(2-10)

The number of nodes of the entire field is n. There are inner n� and boundary n0 (n = n0 + n�) nodes.
Determining the vector T� from the first equation of (2-10), T� = − A−1

��A�0T0, and substituting into
the other, we obtain (A00 − A0�A−1

��A�0)T0 = B0Q0. This expression is a relationship well known in
the boundary element method,

AT0 = B0Q0. (2-11)

3. Analytical solution of the inverse problem of heat conduction

The application of the new type of base functions will be illustrated using an analytical solution of an
inverse problem for a circular ring (see Figure 5).

The ring has an outer radius ro = 1 and an inner radius ri < ro. The inverse heat conduction problem
may be formulated in dimensionless coordinates by giving the distributions of temperature and heat flow
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(a) (b)
Figure 5. Temperature and heat flow density distributions at the outer boundary of the
ring C = 0.5, a = 0.4, Tc = 0.9, ri = 0.5.

density at the outer boundary of the ring [Wróblewska et al. 2008].

0o : Two = Tc, qo = C ·
1− a cosϕ

(1+ a2− 2a cosϕ)
, a ≤ ri .

Moreover, the temperatures in the neighborhoods of the outer and inner boundaries, To = 1 and Ti = 0,
are known. The objective is to determine the heat flow and temperature distributions at the inner surface
of the ring.

Solution of such a problem is achieved by power series expansion of the q0 function determined at
the outer ring boundary,

qo = C ·
1− a cosϕ

(1+ a2− 2a cosϕ)
= C ·Re

(
1

1− aeiϕ

)
= C ·Re

( ∞∑
m=0

(
a · eiϕ

)m
)
= C ·

∞∑
m=0

am cos(mϕ),

and hence

T (r, ϕ)= Tc+C · ln(r)+C ·
∞∑

m=1

1
2m

[
(ar)m −

(
a
r

)m ]
cos(mϕ). (3-1)

Based on the solution of the inverse problem (3-1) the temperature and heat flow density patterns at the
outer boundary (see Figure 5) are determined, for which the inverse problem is to be solved. For the
given temperatures outside To and inside Ti the ring distributions of normalized heat transfer coefficients
with regard to the angle,

0o : αo =
qo

(To− Two)
, 0i : αi =

qi

(Ti − Twi )
,

are shown in Figure 6.
The vectors of temperatures and heat flow at the ring domain boundary, T0 and Q0 , that appear in the

formula (2-11) are decomposed into the values related to the outer and inner ring boundaries, respectively,
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Figure 6. Distributions of heat transfer coefficients α at the inside and outside ring
boundaries C = 0.5, a = 0.4, Tc = 0.9, ri = 0.5.

as

T0 =
[

Two

Twi

]
, Q0 =

[
qo

qi

]
.

The relationship (2-11) is then transformed to obtain a solution of the inverse problem [Frąckowiak et al.
2006], [

Twi

qi

]
=
[
−Bi Ai

]I [
Bo −Ao

] [Two

qo

]
. (3-2)

This relationship may also be so transformed as to consider the third kind of boundary condition of the
direct problem [Frąckowiak et al. 2006][

Two

Twi

]
=
[
Bo+αo Ao Bi +αi Ai

]−1 [
αo Ao αi Ai

] [To

Ti

]
.

4. Results of the numerical calculation

The ring, shown in Figure 5, is divided into 450 triangular domains, see Figure 7, thus generating 200
points located at the ring boundary (100 at the inner one and 100 at the outer) and 700 inner points. The
direct and inverse problems of ring cooling have been solved according to the method proposed in the
present paper.

P1

P3

P2

i

P6

P4

P5

Figure 7. A mesh element.
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TT

(a)

TT

(b)

Figure 8. Temperature distribution at the outer (a) and inner (b) boundaries for the direct
and inverse problems.

q

q

(a)
q

q

(b)

Figure 9. Heat flow density distribution at the outer (a) and inner (b) boundaries for the
direct and inverse problems.

(a) (b)
Figure 10. Normalized heat transfer coefficient α distributions at the outer (a) and inner
(b) boundaries for the direct and inverse problems.
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Type Temperature error L2T [%] 

m f max =0 max =0.1 max =0.5 max =1 max =5 max =10 

The direct problem 0.03 0.03   0.03   0.04 0.15   0.35 

3 1.71 1.72   1.97   2,81 5.50 23.44 

5 0.16 8.29 49.73 53.14   

T
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in
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w
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o
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g

 

8 0.05      

3 1.74 1.74   1.76   1.83 3.12 5.57 

5 0.32 4.32 29.54 51.00   90

8 0.35      

3 1.74 1.74   1.75   1.81 2.47 4.55 

5 0.33 1.74 25.54 30.82   50

8 0.35      

3 1.74 1.74 1.74   1.75 2.37 3.62 

5 0.33 1.81 5.33 14.41   20

8 0.38 1.95 6.19 12.98   

3 2.77 2.77 2.76 2.77 2.88 3.50 

5 2.77 2.77 2.76 2.77 2.83 3.00 

T
h
e 

in
v
er

se
 p

ro
b
le

m
 w

it
h
 s

m
o
o
th

ed
 b

o
u
n
d
ar

y
 

co
n
d
it

io
n

s 

4

8 2.77 2.77 2.77 2.77 2.85 2.79 

Table 1. Relative error of temperature distribution at the ring boundary for various dis-
turbances of the boundary conditions with the error εmax[%], various f parameters of
the SVD algorithm, and various numbers of base functions m for smoothing of boundary
conditions.

The inverse matrix
[
−Bi Ai

]I
of the inverse problem has been computed with the SVD (singular value

decomposition) algorithm with various values of the f parameter [Frąckowiak et al. 2006]. Results of
calculation of the direct and inverse problems, for example, the distributions of temperature, heat flow
density, and surface film conductance at the inner and outer ring boundaries for undisturbed boundary
conditions, and the parameter f = 5 (with the f parameter affecting only the inverse task), are shown in
Figures 8–10.

Moreover, Tables 1 and 2 present relative errors of temperature and heat flow density at the ring
boundaries with regard to the analytical solution given by the formula

δL2T =

∫
0

(
T − Tanalyt

)2ds∫
0

T 2
analyt ds

· 100%, δL2q =

∫
0

(
q − qanalyt

)2ds∫
0

q2
analyt ds

· 100%. (4-1)

The boundary conditions (temperature and heat flow density) in both cases have been disturbed with
a relative error given by the formula

ε = εmax · (2 · random−1), (4-2)
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Type Heat flow error L2q [%]

m f max =0 max =0.1 max =0.5 max =1 max =5 max =10

The direct problem 0.35 0.35 0.39 0.55 2.42 5.04

3 18.01 18.04 18.79 21.60 27.68

5 3.80
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8 0.66

3 18.02 18.02 18.08 18.27 22.55 33.28

5 3.8690

8 13.47

3 18.02 18.02 18.05 18.22 20.35 28.91

5 3.87 34.2550

8 13.47

3 18.02 18.02 18.04 18.09 19.47 25.13

5 3.87 38.0520

8 13.83 40.52

3 22.60 22.60 22.61 22.61 23.00 24.88

5 22.60 22.60 22.60 22.61 22.80 23.55
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4

8 26.22 26.22 26.22 26.22 26.35 26.26

Table 2. Relative error of heat flow density distribution at the ring boundary for various
disturbances of the boundary conditions with the error εmax[%], various f parameters of
the SVD algorithm, and various numbers of base functions m for smoothing of boundary
conditions.

where random is a pseudorandom number in the range (0, 1).
For the inverse problem and disturbed boundary conditions the task has been computed prior to solving

it according to the formula (3-2), smoothing temperature and heat flow density at the outer boundary with
a trigonometric polynomial [Wróblewska et al. 2008]. The error values (4-1) for various numbers of the
trigonometric polynomials used for boundary condition smoothing are shown in Tables 1, 2 and Figures
11, 12.

5. Summary

The FEM method introduced in this paper consists of using base functions ϕi that take zero values at
the boundary of the mesh node neighborhood, Figure 2, belonging to the domain �. Consequently,
the function that approximates the solution of the differential equation in the element is not subject to
differentiation.

The method presented in this paper, with disturbed boundary conditions, gave very good values of
temperature and flow distributions at the ring boundaries, in the sense of the norm (4-1). In the case of
temperature it was below 1%, while for the flow density it was below 14%, with the maximal level of
boundary condition disturbance amounting to εmax = 5%.
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Figure 11. Dependence of relative error of temperature on maximal level of boundary
condition disturbance for various numbers of the base functions smoothing the boundary
conditions and the parameter f = 3.

Figure 12. Dependence of relative error of heat flow density on maximal level of
boundary condition disturbance for various numbers of the base functions smoothing
the boundary conditions and the parameter f = 3.

In case of the inverse problem the best results, in the sense of the norm (4-1), have been obtained
with the f parameter of the SVD algorithm equal to 3. For temperature it was below 2%, while for
the heat flow density below 20%, with a maximal level of temperature and heat flow disturbance at the
outer ring boundary amounting to εmax = 0.5%. Smoothing of boundary conditions with the use of linear
combination of trigonometric polynomials reduced the error of the norm (4-1). For the flow it dropped
below 20% with εmax = 5% for f = 3 and 20 trigonometric functions. In case of higher values of the
parameter f ∈ (4, 8) good results have been achieved only with undisturbed boundary conditions. In
case of 4 smoothing functions the error, in the sense of the norm (4-1), remained independent on the
parameter f, amounting to less than 3% for the temperature and less than 23% for the flow.
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[Frąckowiak et al. 2006] A. Frąckowiak, M. Ciałkowski, and J. von Wolfersdorf, “Numerical solution of a two-dimensional
inverse heat transfer problem in gas turbine blade cooling”, Arch. Thermodyn. 27:4 (2006), 1–8.



NEW CONCEPTION OF THE FEM BASE FUNCTIONS 1057

[Gresho and Sani 2000] P. M. Gresho and R. L. Sani, Incompressible flow and the finite element method, Wiley, New York,
2000.

[Wróblewska et al. 2008] A. Wróblewska, M. Ciałkowski, and F. A., “Numerical solution of a direct and inverse stationary
problem of heat transfer with a modified method of elementary balances”, Arch. Thermodyn. 29:1 (2008), 3–18.

Received 7 Feb 2008. Revised 26 Mar 2008. Accepted 2 Apr 2008.
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DYNAMICS OF A ROPE AS A RIGID MULTIBODY SYSTEM

PAWEŁ FRITZKOWSKI AND HENRYK KAMINSKI

A preliminary discrete model of a rope is considered both as a scleronomic and a rheonomic system.
Numerical experiments are performed and advantages of the applied algorithm are discussed on the
basis of energy conservation. The problem of discretization of the rope is presented in terms of efficient
computational simulations. A wave-like effect is discussed with regard to energy transfer and velocity
of the model tip. The next directions of the model development are outlined.

1. Introduction

The dynamics of a rope may serve as an introduction to the problem of a cracking whip, which has
been drawing the attention of scientists for over a hundred years. In the early twentieth century the
hypothesis was advanced that the tip of the whip reaches supersonic speed at the crack time. Theoretical
explanations of the phenomenon were supported later by numerous experiments, which in fact provided
some surprising observations, for example the acceleration of the tip is up to 50000 g and its velocity is
about twice the speed of sound in the air [Pierański and Tomaszewski 2005].

Theoretical and experimental works focus not only on the motion of the whip. The dynamics of similar
bodies, such as chains and ropes, is analyzed too. However, the results of the experiments cannot be
confirmed by any accurate analytical calculations because of the complexity of the problem, which may
be approximately described with the use of a complicated system of differential equations. Nevertheless,
in such difficult cases computational methods may be very useful.

The papers by Pierański and Tomaszewski [2004; 2005] were the key papers for us on the initial stage
of our work. The authors analyze the fall of a chain using a discrete model of the body. Goriely and
McMillen [2002] consider the propagation and acceleration of waves in the motion of whips. Their paper
is also a kind of introduction to the problem with its history outline.

We concentrate on a simple model, which actually is a rigid, chain-like model and more similar to
the rope than the whip. Therefore, it plays a role of a preliminary model only, whose properties will
be modified in the future. Applying the Lagrange formulation, we present the equations of motion for
such a system both for the scleronomic and the rheonomic one. With the use of numerical methods we
obtain an approximate solution to the problem. In several experiments we simulate the behaviour of the
given body and analyze it mostly with respect to time dependencies of velocity and acceleration of the
system’s tip. Also some algorithmic matters of the simulations are considered.

2. Mechanical system and equations of motion

Below we define a discrete model of the rope, also used by Pierański and Tomaszewski [2005]. However,
for us this model is introductory as mentioned before. The discussion is made more general by including
the rheonomic case.

Keywords: multibody dynamics, discrete model, differential-algebraic equations, energy conservation.
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Figure 1. The simplest discrete model of the rope.

2A. A system with scleronomic constraints. Let us denote length of the rope by L and its mass by M .
We divide the given body into n segments of length l and mass m each so that L = nl and M = nm. They
are connected by ideal joints (without friction). Assuming that every element is a rigid cylindrical rod as
well, we obtain the simplest discrete model of the rope which actually is a multiple physical pendulum
(Figure 1).

We focus on a special case of a mechanical system moving in a gravitational field with no external
forces acting on it. One end of the rope is attached to a stationary point whereas the other end moves
freely. Furthermore, let us assume that the motion is restricted to take place in a vertical plane only.

To specify the state of the system we introduce angular generalized coordinates. The position of the
i th element is described by a variable ϕi which defines the angle from the Y downward axis. The position
of each segment (its mass centre) in the Cartesian coordinate system may be written as follows

xi =

i−1∑
j=1

l sinϕ j +
1
2 l sinϕi , yi =

i−1∑
j=1

l cosϕ j +
1
2 l cosϕi , (2-1)

and the velocities of the i th segment in the X and Y directions are expressed by the formulas

vxi =

i−1∑
j=1

ϕ̇ j l cosϕ j +
1
2 ϕ̇i l cosϕi , vyi =−

i−1∑
j=1

ϕ̇ j l sinϕ j −
1
2 ϕ̇i l sinϕi .

Now we can write the kinetic energy of the whole mechanical system according to König’s theorem

T = 1
2 m

n∑
i=1

vi
2
+

1
2 I

n∑
i=1

ϕ̇2
i ,
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where I is the moment of inertia of each element (I = ml2/12). After some simplifications we obtain
the kinetic energy in the following form

T = ml2
n∑

i=1

3(n− i)+ 1
6

ϕ̇2
i +ml2

n∑
i=1

n∑
j=i+1

2(n− j)+ 1
2

ϕ̇i ϕ̇ j cos(ϕi −ϕ j ).

The potential energy of the model is given by

V =−mg
n∑

i=1

yi =−mgl
n∑

i=1

2(n− i)+ 1
2

cosϕi .

Using the terms above for the Lagrangian L = T − V we can apply the Euler-Lagrange equations to
describe behaviour of the system

d
dt

( ∂L
∂ϕ̇i

)
−
∂L
∂ϕi
= 0, i = 1, 2, . . . , n. (2-2)

After substitutions and simplifications we obtain the equations in the final form

n∑
j=1

ai j ϕ̈ j cos(ϕi −ϕ j )+

n∑
j=1

ai j ϕ̇
2
j sin(ϕi −ϕ j )+

g
l

bi sinϕi = 0, i = 1, 2, . . . , n, (2-3)

where

ai j =


2(n−i)+1

2 , for j < i
3(n−i)+1

3 , for j = i
2(n− j)+1

2 , for j > i

and bi =
2(n− i)+ 1

2
. (2-4)

To make it clearer, we present the equations of motion for n = 3:

a11ϕ̈1 cos(ϕ1−ϕ1)+ a12ϕ̈2 cos(ϕ1−ϕ2)+ a13ϕ̈3 cos(ϕ1−ϕ3)+ a11ϕ̇
2
1 sin(ϕ1−ϕ1)

+ a12ϕ̇
2
2 sin(ϕ1−ϕ2)+ a13ϕ̇

2
3 sin(ϕ1−ϕ3)+ (g/ l)b1 sinϕ1 = 0,

a21ϕ̈1 cos(ϕ2−ϕ1)+ a22ϕ̈2 cos(ϕ2−ϕ2)+ a23ϕ̈3 cos(ϕ2−ϕ3)+ a21ϕ̇
2
1 sin(ϕ2−ϕ1)

+ a22ϕ̇
2
2 sin(ϕ2−ϕ2)+ a23ϕ̇

2
3 sin(ϕ2−ϕ3)+ (g/ l)b2 sinϕ2 = 0,

a31ϕ̈1 cos(ϕ3−ϕ1)+ a32ϕ̈2 cos(ϕ3−ϕ2)+ a33ϕ̈3 cos(ϕ3−ϕ3)+ a31ϕ̇
2
1 sin(ϕ3−ϕ1)

+ a32ϕ̇
2
2 sin(ϕ3−ϕ2)+ a33ϕ̇

2
3 sin(ϕ3−ϕ3)+ (g/ l)b3 sinϕ3 = 0.

Having calculated all the coefficients according to (2-4) we obtain

7
3 ϕ̈1+

3
2 ϕ̈2 cos(ϕ1−ϕ2)+

1
2 ϕ̈3 cos(ϕ1−ϕ3)+

3
2 ϕ̇

2
2 sin(ϕ1−ϕ2)+

1
2 ϕ̇

2
3 sin(ϕ1−ϕ3)+

5
2(g/ l) sinϕ1 = 0,

3
2 ϕ̈1 cos(ϕ2−ϕ1)+

4
3 ϕ̈2+

1
2 ϕ̈3 cos(ϕ2−ϕ3)+

3
2 ϕ̇

2
1 sin(ϕ2−ϕ1)+

1
2 ϕ̇

2
3 sin(ϕ2−ϕ3)+

3
2(g/ l) sinϕ2 = 0,

1
2 ϕ̈1 cos(ϕ3−ϕ1)+

1
2 ϕ̈2 cos(ϕ3−ϕ2)+

1
3 ϕ̈3+

1
2 ϕ̇

2
1 sin(ϕ3−ϕ1)+

1
2 ϕ̇

2
2 sin(ϕ3−ϕ2)+

1
2(g/ l) sinϕ3 = 0.

2B. A system with rheonomic constraints. Now let us assume that one end of the rope is attached to a
moving support, whose position expressed in the Cartesian coordinates depends explicitly on time

x0 = x0(t) and y0 = y0(t).
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The dependencies cause some modifications of the terms (2-1)

xi = x0+

i−1∑
j=1

l sinϕ j +
1
2 l sinϕi and yi = y0+

i−1∑
j=1

l cosϕ j +
1
2 l cosϕi . (2-5)

Hence, the terms for the kinetic and the potential energy of the system have a more complex form:

T = ml2
n∑

i=1

3(n− i)+ 1
6

ϕ̇2
i +ml2

n∑
i=1

n∑
j=i+1

2(n− j)+ 1
2

ϕ̇i ϕ̇ j cos(ϕi −ϕ j )

+
1
2 mn(ẋ0+ ẏ0)

2
+ml

n∑
i=1

2(n− i)+ 1
2

ϕ̇i (ẋ0 cosϕi − ẏ0 sinϕi ),

V =−mg
n∑

i=1

(
2(n− i)+ 1

2
l cosϕi + y0

)
.

Still using the general form of the dynamic equations (2-2), one may obtain their final form as follows:

n∑
j=1

ai j ϕ̈ j cos(ϕi −ϕ j )+

n∑
j=1

ai j ϕ̇
2
j sin(ϕi −ϕ j )+ bi

1
l
(g sinϕi + ẍ0 cosϕi − ÿ0 sinϕi )= 0, (2-6)

where i = 1, 2, . . . , n and the coefficients a and b are defined in (2-4).
It is important to remark that the described mechanical system is not a conservative one as its La-

grangian contains explicit time dependence because the transformation equations (2-5) involve the time
explicitly.

3. Numerical experiments

The complexity of the presented dynamic equations and tending towards maximum possible number n
of the model elements requires applying numerical methods to obtain an approximate solution to the
problem.

In our analysis we have applied the MEBDFV code developed by Abdulla and Cash of Imperial
College, London (Department of Mathematics). They implemented the modified extended backward
differentiation formulas (MEBDF) of Cash. The algorithm is designed to solve stiff initial value problems
for systems of linearly implicit differential algebraic equations (DAEs) of the form

M(q)q̇= f(t,q), (3-1)

where the matrix M depends on q, which is a vector of dependent variables, and t is the independent
variable.

As is typical for computational methods, the system of dynamic equations should be reformulated as
a system of first-order differential equations. Such a set of 2n equations is presented below in matrix
form with initial conditions
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1 0 . . . 0 0 0 . . . 0
0 1 . . . 0 0 0 . . . 0
...
...
. . .

...
...

...
. . .

...

0 0 . . . 1 0 0 . . . 0
0 0 . . . 0 m11 m12 . . . m1n

0 0 . . . 0 m21 m22 . . . m2n
...
...
. . .

...
...

...
. . . 0

0 0 0 0 mn1 mn2 . . . mnn





ϕ̇1

ϕ̇2
...

ϕ̇n

ω̇1

ω̇2
...

ω̇n


=



ω1

ω2
...

ωn

f1

f2
...

fn


, (3-2)

ϕi (t0)= ϕi0, ωi (t0)= ωi0, i = 1, 2, . . . , n.

The elements mi j of the matrix M depend on the generalized coordinates mi j = ai j cos(ϕi − ϕ j ) with
i, j = 1, 2, . . . , n, and the components fi of the right-hand side vector are functions of the generalized
coordinates as well as the generalized velocities

fi =−

n∑
j=1

ai jω j
2 sin(ϕi −ϕ j )− bi

g
l

sinϕi , i = 1, 2, ..., n.

For the rheonomic system, the terms for fi contain the time as an explicit variable:

fi =−

n∑
j=1

ai jω j
2 sin(ϕi −ϕ j )− bi

1
l
(g sinϕi + ẍ0 cosϕi − ÿ0 sinϕi ) , i = 1, 2, . . . , n.

In general, the applied solver carries out integration in three stages. Firstly, a solution at the current
point is predicted and the Newton iterations are performed to improve the values. The next stage uses
them to approximate a solution at the next point where the Newton scheme is applied again. The predic-
tion process in the two phases involves the backward finite differences. The last stage plays a role of a
corrector and is based on the Newton method again. The same Jacobian matrix is used in the iterations
for all the three stages. Moreover, the code includes some strategy to reduce a number of the Jacobian
evaluations. For more details on the usage of the modified backward differentiation formulas the reader
is referred to Cash and Considine [1992].

First, we deal with the scleronomic system and discuss the simulations mostly from the algorithmic
point of view. More physical aspects are taken into account when it comes to the rheonomic constraints.
However, we focus only on the function x0(t) referring to the horizontal direction. All the simulations
are performed for the model of total length nl = 1 m and total mass nm = 0.5 kg. Additionally, zero
generalized velocities are assumed at a start point ϕ̇i (0)= 0 for i = 1, 2, . . . , n.

Experiment 1. We decided to confront results obtained in our numerical simulations with the results
described in Pierański and Tomaszewski [2005] and based on the RADAU5 code developed by Hairer
and Wanner. After performing the simulations for the scleronomic system with the same parameters
(n, L ,M) and initial conditions, we analyzed configurations of the chain. As expected, there was no
difference between the compared shapes of the multibody model in certain moments of time, and the
time dependencies of the linear velocity of the tip were compatible too.

However, it was impossible to make a comparison between the results of motion in any longer time
interval. Pierański and Tomaszewski focused on very short initial phases of the chain fall (from t = 0.0
to t = 0.6 s) which included the most interesting process namely the evolution of a sharp peak in the
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Figure 2. Initial configurations of the mechanical system. Left: Experiment 1; right:
Experiment 2.

velocity time dependence of the tip. But even if they dealt with the farther stages, the agreement between
the results could be not so good.

Actually, we applied the RADAU5 on the initial stage of our work. Aiming at simulations of the
complex model motion in general (not only in a short time), we began to use the MEBDFV code. This
was due to the character of the RADAU5, which is a solver for systems of DAEs with a constant matrix
M. A consequence of this is a problem with energy conservation of the model after a short period of
good performance. Although one may update the matrix M frequently, the results do not meet the energy
conservation law. All in all, using the RADAU5 code without any significant modifications seems to be
inefficient when researching long-lasting motion of such a complex mechanical system.

To show the difference, we performed a numerical experiment using both codes, with the same initial
conditions for a catenary curve (Figure 2a) and the same parameters n = 20, M = 0.5 kg, and L = 1 m.
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Figure 3. The total energy based on results from RADAU5 (blue) and MEBDFV (red).
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Figure 4. Configurations of the chain found in the numerical experiment with the use
of the RADAU5.

Let us concentrate on the time dependence of the total energy of the model and its shape during
the motion. According to Figure 3, the results obtained with the use of the RADAU5 show a rapid
decrease in the energy around t = 1.3 s. On the other hand, the red line illustrates the quantity given
by the computation based on the other code — dependency with some small fluctuations (constant in the
numerical sense). It may serve as the reference level for the former function. The difference between
them increases with time and we can clearly see that the results provided by the solver RADAU5 do not
meet the energy conservation law.

It is necessary to remark that no procedure designed for testing fulfillment of the conservation principle
is embedded in the solvers. Both codes perform the integration process using some internal, numerical
convergence tests, which do not refer to mechanics. The user supplies the physical meaning of the
solution and involves it in the computation of such quantities as the total energy.

How do the energy losses affect the configurations of the chain? Are there any significant differences
between the results again? To answer these questions we compare the configurations related to the
RADAU5 code (Figure 4) and the MEBDFV code (Figure 5).

Figure 5. Configurations of the chain found in the numerical experiment with the use
of the MEBDFV.
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Although not all of the preceding configurations are presented, the shapes of the chain up to t = 1.2 s
are compatible. Some differences appear at point t = 1.3 s and they intensify in time similarly to the
ones between the energy dependencies. In general, the shapes of the first chain seems to be smoother,
especially in the end phase of the experiment. In the second case, the constant total energy keeps the
system going to a chaotic motion, which seems to be obvious when considering such a stiff multibody
system. Therefore, the configurations of the latter chain become less and less ordered.

In the present work we do not deal with the theory of chaos and its application to dynamics of the
chain, but we feel that this is an area which is worth further attention.

Experiment 2. Let us turn now to the problem of discretization of the rope. The question is how to
match the number of the elements of the system to make our simulations efficient?

First, the model should reflect the real body with its physical features. Here we apply the discrete
model (convenient in an algorithmic approach), which is to approximate the rope treated as continuum.
Theoretically, reaching the idea of continuum is realized when n tends to infinity (and l tends to zero).
In practice, it is possible and sufficient to choose some reasonably large number n.

However, it must be remembered that n defines a number of degrees of freedom, and thus the number
of Lagrange-Euler equations of motion. In addition, from the numerical point of view the number is
doubled when reformulating the system of equations as in (3-2). Thus, the number of the model elements
affects the computation time considerably.

In the following experiment we do not specify any optimum. All we do is comparing configurations of
the rope in simulations starting from the same initial conditions but from various n. Let us consider three
cases: n = 30, n = 45, and n = 70, with the same parameters M = 0.5 kg, L = 1 m, and the simulation
time t = 2.5 s. Initial configuration has the shape of a catenary curve (Figure 2b).

It is important to note that we omit the configuration of the rope at t = 0.5 s, because the first phase
of the motion for different number of segments n looks quite similar. We may say that the numerical
integration of the dynamic equations related strictly to a fall of the chain proceeds without any serious
problems. Some troubles appear in the next phase of motion, especially when the mechanical system
tends to the chaotic-like behaviour. Usually the solver manages to go through the difficulties (it depends
on the initial conditions) but it makes the computation time much longer.

First, we compare the shapes of the chain for n = 30 and n = 45 (Figure 6 and Figure 7). The
two initial configurations seem roughly identical. However, there is a small difference. The free end
of the model is located slightly lower in the second case (Figure 9). The reason of this is due to the

Figure 6. Configurations of the system consisting of n = 30 segments.
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Figure 7. Configurations of the system consisting of n = 45 segments.

Figure 8. Configurations of the system consisting of n = 70 segments.

discretization of the catenary which is hard to do without some small deviations. Nevertheless, it causes
no noticeable differences at least for 1 s of the motion (the fall of the folded chain). We can see such
differences from the third presented instant (t = 1.5 s). As mentioned before, the end phase of the motion
is chaotic-like. Therefore, the existing incompatibilities may be the effects of the discretization of the
material continuum and/or slightly different initial conditions. The latter ones, in the chaotic dynamics,
can produce even a completely new solution at later times.

Comparing the configurations for n = 45 and n = 70 (Figure 7 and Figure 8), we notice some differ-
ences at t = 1.5 s again. However, they do not seem so evident. More significant ones are present in the
next instant that is shown, and the last configurations differ from each other slightly.

To make our considerations more exact, we present the time dependence of the y-position of the
models’ tip (Figure 9). It should be emphasized that the dependence cannot be treated as a full measure
of the quality of the solutions and their compatibility, since it refers just to one of the body’s member
(its free end). In addition, we have taken into account the Y direction only.

Obviously, the solutions to the problem for models with identical parameters but various numbers of
segments n are more compatible for larger n. However, the number n does not have to tend to very large
values. For example, if we presented results for n = 50 and compared them with the ones for n = 70,
no significant difference would be noticed. All in all, attempts to specify some reasonable limits of the
discretization merit careful consideration.
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Figure 9. The y-positions of the chain tip for different number of segments.

Experiment 3. Now we turn to the rheonomic case and consider a free-hanging chain where the system
resting at full extension so that ϕi (0)= 0 for i = 1, 2, . . . , n. The body will be brought into motion with
the use of the following constraint function

x0(t)= A sin2(πBt), (3-3)

where A and B are some constants. Here we take A = 0.1 [m] and B = 5 [1/s]. Actually, the attachment
point is subjected to an oscillatory motion (Figure 10) with an amplitude A. We carry out simulations
for two cases, n = 30 and n = 50, which differ in the number of degrees of freedom.

Let us start the analysis with the time dependencies of the velocity and acceleration at the free end
of the system consisting of n = 30 segments. As presented in Figure 11, the significant amount of
oscillations of the support produces numerous peaks in the tip velocity. However, the velocity increases
slowly at the beginning and the first sharp peak occurs when the support velocity reaches its maximal
value. The next peaks do not seem to be compatible with the vx0 function, since the wave-like effects of
the rheonomic constraints overlap in time and influence the tip motion with some delays.
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Figure 10. Constraint function x0(t).
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Figure 11. Velocity of the tip (red) and the function vx0 (blue) for n = 30.

Sharper peaks are visible in the acceleration dependency (Figure 12). They relate mostly to the maxima
of velocity. An important conclusion arises from the graphs. Applying a very simple constraint function
results in obtaining large values of the acceleration of the tip. For example, at time t = 0.68 s the
acceleration exceeds 500 g.

To make the behaviour of the system more imaginable, we show particular phases of motion in Figure
13. It is easy to note that initially the free end of the chain moves upwards only. After four changes
of direction of the support motion, in the time range t = 0.4–0.5 s the tip is pulled horizontally and its
acceleration goes up suddenly. Obviously, there is a simultaneous increase in the velocity. The next
phases are distinguished by growing disorder. In addition, just the tip seems to be a sort of origin of
these effects. However, the details are considered later.

When it comes to the case with n = 50 elements, the evolution of the rope motion looks quite similar.
Nevertheless, the velocity and acceleration dependencies (Figure 14 and Figure 15) show more peaks
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Figure 12. Acceleration of the tip (red) and the function ax0 times 10 (blue) for n = 30.

Figure 13. Configurations of the chain in consecutive phases of motion for n = 30. The
time is given in seconds.
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Figure 14. Velocity of the tip (red) and the function vx0 (blue) for n = 50.
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Figure 15. Acceleration of the tip (red) and the function ax0 multiplied by 10 (blue) for
n = 50.

than before. The sharpest one occurs at the end of the simulation time in the chaotic-like phase. It should
be remarked that the acceleration of the tip exceeds 2500 g at this time.

Compared with the previous case, the configurations (Figure 16) are compatible during the ordered
motion. Afterwards some differences appear (see t = 0.5–0.7 s) and the degree of compatibility depends
mainly on the difference between the number of segments in the two cases. This matter corresponds to
the problem of discretization which we outlined in Experiment 2.

As mentioned, we expect the mechanical system to be nonconservative. Due to periodicity of the
constraint function (3-3), energy is provided to the system all the time, except the moments when the
support velocity vx0 equals zero. A graph of the total energy obtained from the approximate solution
is presented in Figure 17. The irregular fluctuations on the advanced stage of motion have a numerical
source, which may be also a result of the mechanical disorder.

Figure 16. Configurations of the chain in consecutive phases of motion for n = 50. The
time is given in seconds.
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Figure 17. Total energy of the system with n = 50 segments.

Experiment 4. This experiment is very similar to the previous one. However, here we wish to show
some effects clearer. To do so, let us apply slightly different constraint function

x0(t)=

{
A sin2(πBt) for t ≤ 1/B,

0 for t > 1/B,

where A and B remain the same, that is, A= 0.1 [m] and B= 5 [1/s]. In fact, there will be only one period
in the support motion, after which its position will be stationary. The function is presented in Figure 21.
The initial configuration of the mechanical system is the same too ϕi (0) = 0 for i = 1, 2, . . . , n. The
number of degrees of freedom n is equal to 30.

In this case we begin our considerations with the chain’s shape during the evolution. The two initial
phases of motion (Figure 18) are identical with the ones from the Experiment 3. A considerable difference
arises at the end of the support motion. A fold created from the upper part of the system is traveling
along the rope and raising the tip gradually. After the downward propagation the last segments of the
body rotate (the simple construction of the model allows them to do so) and a new fold is formed which

Figure 18. Downward travel of the fold (Experiment 4). Time given in seconds.
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Figure 19. Total energy of the segments: 5 (black), 10 (blue), 15 (yellow), 20 (green),
25 (grey), 30 (red).

tends to go up (t = 0.6 s). The upward travel is not so evident but the fold disappears completely just
after the next direction change (t = 1.1 s).

Actually, a similar situation was present in the previous simulations, but the periodic character of the
x0(t) function caused repetition and overlapping of such effects, which was confusing.

The fold travel seems to be a wave-like phenomenon. It should be remembered that in light of the
existing explanations, a shock wave runs down the whip and carries energy which is cumulated on an
increasingly smaller section of the whip. Finally, “as the length of this section decreases to zero, the end
part of the tip moves with unbounded velocity and cracks as soon as it reaches the velocity of the sound
in the air” [Goriely and McMillen 2002].

Although we do not expect such significant results, let us have a look at the energy dependencies.
Figure 19 illustrates the flow of the energy along the rope. We choose only several segments but it is
clear that as the wave goes down, it involves consecutive elements providing additional energy to them.
The greatest increase of the total energy occurs at the last element. Moreover, the inversions of flow
direction are visible too. After the second one the dependencies become less meaningful.

As it may be expected, there is a noticeable maximum in velocity of the tip which corresponds to
the transfer of energy (Figure 20). The return of the traveling fold to the tip also results in a peak,
however, it seems to start a specific series of similar peaks in the end phase of the simulation when the
fold disappears.

Finally, we turn our attention to the total energy of the whole mechanical system (Figure 21). Initially,
the magnitude increases in the manner presented in the previous experiment as long as the constraints
depend on time. Afterwards the energy of the system remains constant at the level forced by the applied
constraints. Thus, all the spectacular things connected to the wave-like effect happen in the state in which
the total energy is conserved by the system.

4. Conclusions

In the present work we have focused on the simple discrete model of the rope with two types of con-
straints, scleronomic and rheonomic. The multibody approach produces an expanded system of second
order differential equations, which actually need to be solved numerically. Particularly in the case of
the scleronomic constraints, the choice of the solver is justified by the energy principle. There is an
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Figure 20. Velocity of the tip (Experiment 2).
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Figure 21. Total energy of the system (green) next to the constraint function x0 (blue)
and its derivative vx0 (red).

agreement between our results of computation and the results of the numerical and laboratory experiments
presented in Pierański and Tomaszewski [2005]. However, in order to perform computational simulations
without significant energy losses (numerical dissipation) as well as rigorous restrictions related to time,
we excluded the assumption that the left-hand side matrix in (3-1) is constant. Hence, the solutions to
the problem obtained with the use of the MEBDFV code fulfill the energy conservation law in longer
lasting motion.

We have also discussed the problem of discretization of the rope. The performed experiments point at
possible improvements of the simulations’ efficiency, in terms of shorter computation time and sufficient
approximation of continuum by the model. Some reasonable limits of discretization, as an optimum of
the number of elements, may not be very demanding when it comes to the computation capabilities.

As shown, the use of appropriate constraint functions results in emerging wave-like effects that are
typical for the dynamics of the whip. The occurrence of sharp peaks in the time dependencies of velocity
and acceleration of the tip turned out to be a result of the energy transfer between the consecutive elements
of the discrete model.
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In fact, the considered problem is a very good test for the applied solver. It seems that the code of
Abdulla and Cash will succeed in solving dynamic equations for more complex mechanical systems
including elasticity and damping. Also the function y0(t) should be considered to perform various ma-
neuvers moving the entire body and inverting its velocity. The air resistance and the chaotic dynamics
are worth studying too.

All in all, the problem provides many possibilities of dynamics analysis, since the challenging multi-
body approach in conjunction with computational methods give insight into numerous aspects of mechan-
ics. Thus, we feel that the outlined directions of development are worth the efforts and will be realized
successively.
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THE OPTIMAL SHAPE PARAMETER OF MULTIQUADRIC COLLOCATION
METHOD FOR SOLUTION OF NONLINEAR STEADY-STATE HEAT

CONDUCTION IN MULTILAYERED PLATE

JAN ADAM KOŁODZIEJ AND MAGDALENA MIERZWICZAK

This paper deals with the numerical solution of the nonlinear heat transfer problem in a multilayered
plate. Kansa’s meshless method is used for the solution of this problem. In this approach, the unknown
temperatures in layers are approximated by the linear combination of radial basis functions, while the
governing equation and the boundary conditions are imposed directly at the collocation points. The
multiquadrics [MQ] are used as the radial basis functions. In the presented method the radial basis func-
tions contains a free parameter C, called the shape parameter. Usually, in the application of radial basis
functions, this parameter is chosen arbitrarily depending on the author’s experience. In the presented
paper, special attention is paid to the optimal choice of the shape parameter for the radial basis functions.
This optimal value of the shape parameter is obtained using a formula given by other authors for solution
of the linear case.

1. Introduction

In the last two decades, meshless methods were introduced to computational mechanics. The essential
feature of these methods is that they only require a set of unconnected nodes to construct the approxi-
mation functions. Among all the meshless methods, Kansa’s method [1990a; 1990b] has become quite
popular due to its simplicity. In this approach, the solution is approximated by a linear combination of
the radial basis functions, while the governing equation and the boundary conditions are imposed directly
at the collocation points. The most popular radial basis functions are multiquadrics [Hardy 1971]. In
the presented method, the radial basis functions contain a free parameter C, called the shape parameter.
Usually in the application to radial basis functions this parameter is chosen arbitrarily, depending on
the author’s experience. However, the shape parameter affects both the accuracy of the approximation
and the conditioning of the system of equation, and there are papers in which this parameter is chosen
optimally in proposed algorithms of solution, for example, [Golberg et al. 1996; Rippa 1999; Wertz et al.
2006; Huang et al. 2007].

The purpose of this paper is to determine the optimal choice of the shape parameter for the radial
basis functions when a nonlinear heat conduction problem in multilayered solid structures is consid-
ered. Walls of heat treatment furnaces usually consist of several layers of different materials, with a
different temperature inside and outside of the furnace. There are some electronic devices in which
heat flow exists in the multi-layered device materials. Accurate thermal analysis of the high-temperature

Keywords: meshless method, heat transfer, Kansa’s method, temperature-dependent thermal conductivity, optimal shape
parameter, residual error.
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devices must take into account the dependence of the thermal conductivity on the temperature. Usually,
for problems with temperature-dependent thermal conductivity, the Kirchhoff transformation is used
to convert a nonlinear heat equation into a linear one with nonlinear boundary conditions. However,
in the multilayered walls, the nonlinear boundary conditions appear between layers, which makes this
transformation generally problematic. In the paper [Bonani and Ghione 1995], the heat flow in only
two layers has been considered. Moreover, the authors assumed that the thermal conductivity in layers
is linearly dependent, which permits them to use the Kirchhoff transformations. Similarly, in the paper
[Pesare et al. 2001], the authors linearized the boundary conditions between layers and used the Fourier
transformation.

In this paper we apply Kansa’s method for the numerical solution of nonlinear heat transfer in multi-
layered solid structures. Special attention is paid to the optimal choice of the shape parameter for radial
basis functions. This optimal value of the shape parameter is obtained using the formula given in the
paper [Huang et al. 2007], which was used in the two-dimensional linear case. Here, this formula is
examined for the nonlinear one-dimensional case.

2. Formulation of the problem

Let’s consider three cases of multi-layer walls as shown in Figure 1:

(1) constant thermal conductivity of layers λ(i) = AW (i),

Figure 1. Plane multi-layer wall.
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(2) linear temperature-dependent thermal conductivity λ(i) = AW (i)+ BW (i)T (i),

(3) temperature-dependent thermal conductivity of layers

λ(i) = AW (i)+ BW (i)T (i)
+CW (i)(T (i))2, i = 1, 2, . . . ,M, (2-1)

where T (i)(x) is the temperature field in i th layer, and AW (i), BW (i), and CW (i) are known constants
for each layer. On the left and the right hand of the walls the temperatures are TL and TR respectively.

The one-dimensional governing equation for steady state heat transfer in multi-layered walls with
thermal conductivity dependent on temperature is given as

d
dx

[
λ
(
T (i)) dT (i)

dx

]
= 0, for x ∈ [Y (i) , Y (i + 1)] , i = 1, . . . ,M. (2-2)

Equation (2-2) can be expressed as

d2T
dx2 = −

1
λ
(
T (i)

) dλ
dT (i)

(
dT (i)

dx

)
. (2-3)

Substituting Equation (2-1) into Equation (2-3) we have

d2T
dx2 = −

BW (i)+ 2CW (i)T (i)

AW (i)+ BW (i)T (i)+CW (i)(T (i))2

(
dT (i)

dx

)2

. (2-4)

Equation (2-4) should be solved with the following boundary conditions:

(1) on the left boundary:
T (1)
= TL for x = Y (1), (2-5)

(2) on the right boundary:
T (M)

= TR for x = Y (M + 1), (2-6)

(3) continuity of temperature and heat flux between layers:

T (i)
= T (i+1),

λ
(
T (i)) dT (i)

dx
= λ

(
T (i+1)) dT (i+1)

dx
, (2-7)

for x = Y (i + 1) , i = 1, 2, . . . ,M.

We introduce the nondimensional variables in the form T̆ (i) = T (i)/TL , x̆ (i) = x (i)/D, where D =
Y (M + 1)− Y (1) is the width of a wall. Now, the nondimensional thermal conductivity has the form

λ̆(i) = 1+
BW (i)
AW (i)

TL T̆ (i)
+

CW (i)
AW (i)

(TL T̆ (i))2 (2-8)

= 1+ B̆W (i)T̆ (i)+ C̆W (i)(T̆ (i))2, (2-9)

where B̆W (i)=
BW (i)
AW (i)

TL , C̆W (i)=
CW (i)
AW (i)

(TL)
2.
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The governing Equation (2-4), in the nondimensional thermal conductivity, is now the following:

d2T̆ (i)

dx̆2 = −
B̆W (i)+ 2C̆W (i)T̆ (i)

1+ B̆W (i)T (i)+ C̆W (i)(T (i))2

(
dT̆ (i)

dx̆

)2

, (2-10)

and is solved with the following boundary conditions in dimensionless form:

(1) on the left boundary:

T̆ (1)
= 1, for x̆ =

Y (1)
D

, (2-11)

(2) on the right boundary:

T̆ (M)
=

TR

TL
, for x̆ =

Y (M + 1)
D

, (2-12)

(3) continuity between layers:

T̆ (i)
= T̆ (i+1),

λ̆
(

T̆ (i)
) dT̆ (i)

dx̆
= β(i+1)

· λ̆
(

T̆ (i+1)
) dT̆ (i+1)

dx̆
, (2-13)

x̆ =
Y (i + 1)

D
, i = 1, 2, . . . ,M,

where β(i+1)
=

AW (I + 1)
AW (I )

.

3. Method of solution

According to Kansa’s method the approximate solution is assumed in the form

T̆ (i)
=

N∑
j=1

D(i, j)φ j (x̆, x̆w(i, j),C), i = 1, 2, . . . ,M, (3-1)

where φ j (x̆, x̆w(i, j),C)=
√
(x̆ − x̆w(i, j))2+C2 are multiquadrics as radial basis functions, D(i, j)

are coefficients to be determined, i is related to i th layer, j is related to interpolation nodes, N is the
number of interpolation points in each layer, x̆w(i, j) are interpolation points which are determined by
the formula

x̆w(i, j)=

(Y (i+1)
D

−
Y (i)

D

)
· ( j − i)

N − 1
+

Y (i)
D
,

and C is the shape factor for which the optimal value will be determined by using error estimation.
Then we can write the solution, Equation (3-1), as

T̆ (i)
=

N∑
j=1

D(i, j)
√
(x̆ − x̆w(i, j))2+C2, i = 1, 2, . . . ,M, (3-2)

The problem can be solved if the coefficients D(i, j), i = 1, 2, . . . ,M, j = 1, 2, . . . , N , are known.
These N G = M · N unknown coefficients will be determined with the following equations:
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(1) from determination of boundary condition (2-11) at the left side of wall:

T̆ (1)(x̆w(1, 1)) = 1, (3-3)

(2) determination of boundary condition (2-12) at the right side of wall:

T̆ (M)(x̆w(M, N )) =
TR

TL
, (3-4)

(3) from the continuity conditions (2-13) between layers, which lead to 2(M − 1) equations in the form

T̆ (i)(x̆w(i, N )) = T̆ (i+1)(x̆w(i + 1, 1)), (3-5)

λ̆(T̆ (i))
dT̆
d x̆

∣∣∣
x̆w(i,M))

= β(i+1)λ̆(T̆ (i+1))
dT̆ (i+1)

dx̆

∣∣∣
x̆w(i+1, j)

. (3-6)

(4) from pointwise satisfaction of Equation (2-10) in the inner nodes on each layer, which leads to
M (N−2) equations of the form

d2T̆ (i)

dx̆2

∣∣∣
x̆w(i, j))

=

{
−

B̆W (i)+ 2C̆W (i)T̆ (i)

1+ B̆W (i)T (i)+ C̆W (i)(T (i))2

(
dT̆ (i)

dx̆

)2}∣∣∣∣∣
x̆w(i, j))

, (3-7)

where i = 1, 2, . . . ,M and j = 2, . . . , N − 1.

Together we have 1+ 1+ 2(M−1)+M (N−2)= M N nonlinear equations, the same as the number
of unknowns D(i, j).

In the presented method, the radial basis functions contain a free parameter C called the shape parame-
ter. Usually in the application of radial basis functions this parameter is chosen arbitrarily, depending on
author’s experience. However, the shape parameter affects both the accuracy of the approximation and the
conditioning of the system of equations, and there are papers in which this parameter is chosen optimally
in a proposed algorithm of solution, for example, [Rippa 1999]. For MQ collocation, the shape factor in
the basis functions should be increased to its limit. When we push C→∞, the theoretical accuracy can
be achieved but condition number of solutions matrix becomes huge which leads to the loss of accuracy.
We establish an error estimate of

ε ≈ O
(
exp(aC3/2

+ (ln λ)C1/2h−1)
)
, with 0< λ < 1and a > 0,

given in [Huang et al. 2007]. A finite C value for which the error is minimized exists. This optimal value
is found to be Copt = Cmax = − ln λ/(3ah). To determine Copt, knowledge of the constants λ and a in
the error estimate is needed. In a real world problem, the error is not known because the true solution
is not given. Without data, λ and a cannot be determined. This difficulty is overcome by utilizing the
residual error, which is a good measure of the error trend, but not the error magnitude. Using residual
errors corresponding to a number of C and h values, these two constants λ and a can be estimated by
least square data fitting.

For numerical experiments we solve three cases: constant, linear, and nonlinear temperature-dependent
thermal conductivity of layers. In order to verify the exactness of the proposed method, as a first example,
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one layer with known temperature at the left and right walls and linearly temperature-dependent thermal
conductivity λ(T )= AW + BW · T was considered. The analytical solution is

T (x)=
−AW +

√
AW 2− 2BW (κ1 · x + κ2)

BW
,

where

κ1 =
AW (TR − TL)+

1
2 BW (T 2

K − T 2
L )

G
and κ2 = AW TL +

1
2 BW T 2

L ,

and we can make a comparison of the result from the MQ collocation method with the optimal shape
factor and check the accuracy of the method using the maximum error

εmax = max
q=1,...,N−1

|T (xrq)− T̆ (xrq)|

Tmax
,

and square error

εsqr =

√√√√ 1
N − 1

N−1∑
q=1

[T (xrq)− T̆ (xrq)]2

Tmax
.

4. Residual error

In a real life problem, we have no knowledge about the exact solution; hence we do not have error data
to use at all. We need to find an alternative to the above procedure and estimate the residual error. If we
check the residual error at a node xrq not belonging to the collocation set,

εR(xrq)=
d

dx

(
λT̆ (xrq)

dT̆ (xrq)

dx

)
,

the error is generally not zero. The residual error can be used as a good indication of error trend, but it
does not give the error magnitude. We can write the estimate of residual error as follows: εr = Aε , where
A is a constant of an unknown order of magnitude. For a given grid h, we can perform two computations
using two different C values, Ck and Ck+1, to obtain the residual errors εr (Ck) and εR(Ck+1). With two
such data points, their ratio gives the following linear equation in the two unknowns a and ln λ:

ln
εR(Ck)

εR(Ck+1)
= (C3/2

k −C3/2
k+1)a−

C1/2
k −C1/2

k+1

h
ln λ,

The three computations with different C’s can form two equations for the determination of a and ln λ .
In practice, it is better to obtain a larger number of data points to perform the least squares fitting. Then
the obtained constants can be used to determine the Copt value for a finer grid.

5. Numerical results

Linear temperature-dependent thermal conductivity of one layer. In these cases, the exact solutions
are unknown so we can estimate the method error magnitude (maximum and square error). In these
numerical calculations, 11 and 21 collocation points in one layer were chosen and 10−4 for maximal
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C ln εR
1.6 0.00121982413
1.8 0.000886213166
2.0 0.000691965229
2.2 0.000571502605
2.4 0.00048876342
2.6 0.000562506018
2.8 1.6346723
3.0 2.36810104

Copt ln εR
2.45619734 0.00046022506

Table 1. Residual error as a function of the shape parameter C for linear temperature-
dependent thermal conductivity.

C ln εR
0.005 0.792708032
0.155 0.629296421
0.305 0.0521441337
0.455 0.00555486248
0.605 0.000754166689
0.755 0.000130104558

Copt ln εR
0.786010956 0.000104694988

Table 2. Residual error as a function of the shape parameter C for linear temperature-
dependent thermal conductivity.

error in Newton’s method was accepted. The first approximation was the solution to the temperature
distribution for a constant thermal conductivity coefficient (independent of the temperature).

For 11 collocation points the optimal shape factor is Copt = 2.45619734 for which the residual error
εR = 0.00046 and maximum and square error between approximated and analytic solution is, εmax =

3.81× 10−005, εsqr = 2.27× 10−005 respectively (Table 1).
For 21 collocation points Copt = 0.786010956, εR(Copt) = 0.0001047, εmax = 3.46× 10−005, εsqr =

2.84× 10−005 (Table 2). The values of maximum and square errors show that the accuracy of the method
is high and the approximate solution agrees with the theoretical solution. The above figures show that
the numerical and theoretical solutions are similar and the MQ collocation method with optimized shape
procedure is an effective tool to solve heat transfer problems.

Constant thermal conductivity of multilayer plane. We considered three cases:
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C ln εR
0.05 3.0710643
0.2 0.447483879
0.35 0.150444561
0.5 0.086741511
0.65 0.065856967
0.8 0.057433939
0.95 0.053670263
1.1 0.051987961
1.25 0.095730805
1.4 0.074601817
1.55 0.064468031

Copt ln εR
0.594536825 0.000310218

C ln εR
0.1 2.64531052
0.2 0.53068379
0.3 0.174990457
0.4 0.09438661
0.5 0.068759911
0.6 0.058639665
0.7 0.054148311
0.8 0.052033416
0.9 0.05100849
1.0 0.050664394
1.1 0.08348719

Copt ln εR
0.386502402 0.015555844

Table 3. Residual error as a function of the shape parameter C for constant thermal
conductivity. Left: one-layer wall with 21 collocation points. Right: two-layer wall with
11 collocation points.

The first case experiment is performed at one layer with 21 collocation points. The calculated shape
factor is Copt = 0.594536825 for which the residual error is εR(Copt)= 0.00031 (Table 3, left).

In the second case, a two layer wall is taken with 11 collocation points. The calculated shape factor
is Copt = 0.386502402 for which the residual error is εR(Copt)= 0.01556 (Table 3, right).

In the third case, a three layer wall is considered with 11 collocation points. The optimal shape factor
is Copt = 0.687803178 and the residual error is εR(Copt)= 0.0328 (Table 4).

C ln εR C ln εR C ln εR
0.1 1.97888189 0.35 0.042408028 0.6 0.033871399
0.15 0.532822138 0.4 0.037617988 0.65 0.056527116
0.2 0.177169659 0.45 0.035414293 0.7 0.074507336
0.25 0.083325356 0.5 0.034366375 0.75 0.19534613
0.3 0.053618929 0.55 0.033893021 0.8 0.886799178

Copt ln εR
0.687803178 0.032803874

Table 4. Residual error as a function of the shape parameter C for constant thermal
conductivity, for a three-layer wall with 11 collocation points.
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C ln εR
0.01 1.53630798
0.11 1.41237822
0.21 0.246053512
0.31 0.048526885
0.41 0.010647406
0.51 0.00258324
0.61 0.000698235
0.71 0.000209848
0.81 0.00048872

Copt ln εR
0.791210985 8.34× 10−05

C ln εR
0.005 2.11501089
0.13 1.66547618
0.255 0.168228737
0.38 0.023131902
0.505 0.004399075
0.63 0.001125429
0.755 0.000375851
0.88 0.000161322
1.005 0.066491517

Copt ln εR
0.812596263 0.000245721

Table 5. Residual error as a function of the shape parameter C . Left: one-layer wall
with 21 collocation points. Right: two-layer wall with 11 collocation points.

Temperature-dependent thermal conductivity of layers. Next we considered the nonlinear temperature-
dependent thermal conductivity, so we solved the nonlinear system using Newton’s method.

In the first case, the experiment is performed at one layer with 21 collocation points. The calculated
shape factor is Copt = 0.791210985 for which the residual error is εR(Copt) = 8.34× 10−005 (Table 5,
left).

In the second case, a two layer wall is taken into account with 11 collocation points. The calculated
shape factor is Copt = 0.812596263 for which the residual error is εR(Copt) = 2.46× 10−04 (Table 5,
right).

In the third case, a three layer wall is taken into account with 11 collocation points. The optimal shape
factor is Copt = 0.618039263 and the residual error is εR(Copt)= 1.11× 10−04 (Table 6).

C ln εR
0.005 4.89989774
0.13 0.910910183
0.255 0.0331283856
0.38 0.00237394996
0.505 0.000305350558
0.63 0.00172510558

Copt ln εR
0.618039263 0.000111371465

Table 6. Residual error as a function of the shape parameter C , for a three-layer wall
with 11 collocation points.
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6. Conclusion

In this paper, the meshless method has been successfully used to solve the nonlinear heat transfer problem
in multilayer wall insulation with a temperature-dependent thermal conductivity. Special attention was
paid to the optimal choice of the shape parameter for the radial basis functions. For a calculated optimal
value Copt=−(ln λ)/(3ah), we can minimize the solution error. We find a constant ln λ using the residual
error and least square method. The proposed method can be very easily implemented. The proposed
algorithm of calculation is based on the Kansas’s method, which numerically leads to a relatively simple
nonlinear system of algebraic equations. The use of the calculated optimal shape factor guarantees a
quick convergence with Newton’s method for nonlinear system equations.
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THE APPLICATION OF THE METHOD OF FUNDAMENTAL SOLUTIONS TO A
SIMULATION OF THE TWO-DIMENSIONAL SLOSHING PHENOMENON

JAN ADAM KOŁODZIEJ AND MAGDALENA MIERZWICZAK

This paper describes the application of the method of fundamental solutions (MFS) and the collocation
method to the simulation of the sloshing phenomenon on an ideal fluid in a two-dimensional rectangular
vessel. The phenomenon is governed by the Laplace equation with respect to the velocity potential. The
equation is solved with nonlinear boundary conditions. The velocity potential is approximated by a linear
superposition of fundamental solutions with the appropriate coefficients at each time step.

1. Introduction

Free surface fluctuation, also called liquid sloshing, is the most prominent phenomenon of liquid motion
in either stationary or moving tanks subjected to forced external perturbations. The problem of liquid
sloshing inside of moving or stationary containers remains of great concern to the aerospace, civil, and
nuclear engineers, physicists, and designers of road or ship tankers. This phenomenon can be observed
on the oil vessel of a tanker sailing on the ocean; as the tanker oscillates, the oil may spill. Another
example is the cooling of a water vessel in an atomic power reactor that is oscillated by an earthquake.
It is important to study the motion of a liquid fuel inside a tank during a rocket launch. Excessive liquid
sloshing may cause structural failure and manipulation loss, which can lead to loss of economic, human,
and environmental resources.

Usually the sloshing problem is formulated as a two-dimensional initial boundary-value problem in
terms of the velocity potential, assuming that the fluid is inviscid, incompressible, and that the flow is
irrotational (such that the viscosity, which causes the rotational motion, may be negligible). In such
a case, the governing equation is the Laplace equation, which is solved with the appropriate boundary
conditions. The surface profile and the boundary conditions on the free surface are updated from the
potential value and its derivatives. Due to the nonlinear boundary conditions on the free surface and
because the free surface is not known a priori, this problem is difficult and is usually solved numerically.
This phenomenon has been simulated by using boundary and finite element methods [Abe and Sakuraba
1999; Hamano et al. 2003; Cho and Lee 2004; Sriram et al. 2006].These methods, however, have some
difficulties. The finite element method needs remeshing at each time step, and the computational time
is very extensive. When we use the boundary element method with the boundary discretization alone,
and therefore the mesh regeneration cost is cheaper, another difficulty arises due to the singularity of the
fundamental solutions, and the calculation of the potential derivatives is somewhat troublesome.

Keywords: method of fundamental solutions (MFS), collocation points, source points, substantive (material) derivative,
sloshing phenomenon.
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Figure 1. Rectangular vessel.

To overcome these difficulties, we propose using the meshless method of fundamental solutions (MFS).
The velocity potential is approximated by the superposition of the fundamental solutions with unknown
parameters that will be determined from the boundary condition. The calculation of the first and second
derivatives is relatively easy. Therefore, we can treat the nonlinear boundary condition with Euler’s
extended algorithm [Kita et al. 2004].

2. The governing equation’s boundary and initial conditions

Let’s consider an ideal fluid contained in a rectangular tank in two dimensions (Figure 1). For free
vibrations of the fluid, the initial displacement of the free surface is assumed to be known. The object
domain occupied by the fluid, the free surface of the fluid, and the wall of the vessel are indicated by
�,01, 02, respectively. The x and y axes of the Cartesian coordinates are taken in the horizontal and
vertical directions, respectively. The origin of coordinates is located in the center, at the bottom of
the tank. The width of the tank is D, the height of the undisturbed fluid is H , η(x, t) is the vertical
displacement of the fluid surface (displacement from the undisturbed fluid level), and ξ(x, t) is the
horizontal displacement of a fluid element on the free surface. By simplifying the flow problem (the
fluid is incompressible, the flow irrotational, and forces due to viscosity are neglected), fluid flow can be
defined by the Laplace equation involving a velocity potential 8(x, y),

∂28

∂x2 +
∂28

∂y2 = 0. (2-1)

The boundary conditions are as follows:

(1) The bottom and lateral walls are rigid and flat, so that

∂8

∂y
= 0 for y =−H,

∂8

∂x
= 0 for x =±

D
2
.
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(2) The kinematic condition on the free surface states that a particle of fluid which is at some time on the
free surface will always remain on the free surface. Since the equation of the surface is y− η = 0,
it follows that

D
Dt
(y− η)= 0.

This equation may be expanded to give

∂η

∂t
+
∂8

∂x
∂η

∂x
−
∂8

∂y
= 0. (2-2)

(3) The dynamic condition on the free surface is implemented through the Bernoulli equation for un-
steady irrotational motion:

∂8

∂t
+

P
ρ
+

1
2∇8 ◦∇8+ gη = 0.

When the atmospheric pressure is taken as zero, the P will be zero, and

∂8

∂t
+

1
2

((
∂8

∂x

)2
+

(
∂8

∂y

)2
)
+ gη = 0. (2-3)

The initial conditions are the following (the initial displacement of the free surface is assumed to be
known):

ξ (x, 0)= ξ0 (x) , η (x, 0)= η0 (x) . (2-4)

3. Solving the sloshing phenomenon

The solution for the two-dimensional Laplace Equation (2-1) is given as follows:

8(x, y, t)=
N∑

i=1

Ai (t) ln
√
(x − xsi )

2
+ (y− ysi )

2, (3-1)

where (xsi , ysi ) are the source points placed outside of the considered domain, N is the total number
of source points, {A1 (t) , A2 (t) , . . . , An (t)} denotes the vector of unknown functions of time, which is
determined by the satisfaction of the appopriate boundary condition by means of the collocation method
and initial conditions. It is easy to calculate the potential first and second-derivatives:

∂8

∂x
=

N∑
i=1

Ai (t)
(x − xsi )

(x − xsi )
2
+ (y− ysi )

2 ,
∂8

∂y
=

N∑
i=1

Ai (t)
(y− ysi )

(x − xsi )
2
+ (y− ysi )

2 ,

∂28

∂x2 =

N∑
i=1

Ai (t)
(y− ysi )

2
− (x − xsi )

2(
(x − xsi )

2
+ (y− ysi )

2)2 ,
∂28

∂y2 =

N∑
i=1

Ai (t)
(x − xsi )

2
− (y− ysi )

2(
(x − xsi )

2
+ (y− ysi )

2)2 ,

∂28

∂x∂y
=

N∑
i=1

Ai (t)
−2 (x − xsi ) (y− ysi )(
(x − xsi )

2
+ (y− ysi )

2)2 ,
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Let’s consider a collocation point in the free surface which moves from
(
ξ k, ηk

)
at time t to a new position(

ξ k+1, ηk+1
)

at time t +4t . If the time interval is small, the new position and the associated velocity
potential can be obtained by Taylor series expansion:

8k+1
=8k

+1t
D8
Dt
+

1
2 (1t)2

D28

Dt2 ,

ξ k+1
= ξ k
+1t

Dξ
Dt
+

1
2 (1t)2

D2ξ

Dt2 , (3-2)

ηk+1
= ηk
+1t

Dη
Dt
+

1
2 (1t)2

D2η

Dt2 .

The substantive derivatives are estimated as follows:

D8
Dt
=

1
2∇8 ◦∇8− gη,

Dη
Dt
=
∂8

∂y
= vy,

Dξ
Dt
=
∂8

∂x
= vx , (3-3)

D2η

Dt2 =
D
Dt

(
Dη
Dt

)
=
∂

∂y

(
∂8

∂t

)
+
∂8

∂x
∂28

∂x∂y
+
∂8

∂y
∂28

∂y2 ,

D2ξ

Dt2 =
D
Dt

(
Dξ
Dt

)
=
∂

∂x

(
∂8

∂t

)
+
∂8

∂x
∂28

∂x2 +
∂8

∂y
∂28

∂x∂y
, (3-4)

D28

Dt2 =
D
Dt

(
1
2
∇8 ◦∇8− gη

)
= vx

D2ξ

Dt2 + vy
D2η

Dt2 − gvy,

The time derivative ∂8/∂t =8t is calculated by solving the following boundary value problem using
MFS, where the time derivative velocity potential is approximated by a linear combination of appropriate
functions: 

∇
28t = 0 (in �),

8t =−
1
2

(
v2

x + v
2
y

)
− gy (on 01),

∂8t/∂n = 0 (on 02),

(3-5)

Computational accuracy is checked using the conservation of the fluid volume V in the container and
of the total energy E , using the equations

V =
∫
�

dV, E =
∫
�

( 1
2∇8 · ∇8+ gy

)
dV . (3-6)

4. The algorithm

(1) Specify the initial profile of the free surface and the initial velocity potential on the free surface:

80 =−gη0.

(2) Initialize the time step: k← 0.

(3) Substitute 8k←80, ηk← η0, ξk← ξ0.
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(4) Solve the boundary-value problem for 8 give by
∇

28= 0 (in �),

8=80 (on 01),

∂8/∂n = 0 (on 02).

(4-1)

(5) Estimate the derivatives

∂8

∂x
,

∂8

∂y
,

∂28

∂x2 ,
∂28

∂y2 ,
∂28

∂x∂y
.

(6) Solve the boundary-value problem for 8t given by
∇

28t = 0 (in �),

8t =−
1
2

(
v2

x + v
2
y

)
− gy (on 01),

∂8t/∂n = 0 (on 02).

(4-2)

(7) Estimate the derivatives given in Equation (3-4):

D2η

Dt2 ,
D2ξ

Dt2 ,
D28

Dt2 .

(8) Use Equation (3-2) to calculate 8k+1, ξ k+1, ηk+1.

(9) Smooth the free surface profile using cubic spline interpolation.

(10) Correct the vertical positions of free surface fluid particles with respect to the constant volume of
the fluid.

(11) Update the free surface profile and the boundary condition on it:

8←8k+1, η← ηk+1, ξ ← ξ0.

(12) Increment the time step k← k+ 1.

(13) Go to step (4).

5. Numerical examples

We consider a two-dimensional rectangular vessel with an ideal fluid. The width of the tank is D = 1 m,
and the height of the undisturbed fluid is H = 1 m. The initial form of the free surface is sinusoidal (Figure
1), and the initial amplitude is A = 0.1 m. The collocation and source points are placed uniformly on the
whole boundary. The distance from the source points to the boundary walls or free surface is s = 0.1 m.
Simulations are performed using different time-steps 4t , and different numbers of source and collocation
points on the free surface and on the boundary tanks.
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Figure 2. Top: Fluctuation of energy (left) and fluid volume (right) as a function of
time. Bottom: Vertical displacement of point number 5 in the free surface. A total of 44
collocation and source points were used (see text).

6. Results

For a set of simulations with 11 collocation and source points on each of the tank’s three walls plus the
free surface (for a total of 44 collocation points), we compare simulation results for time step 4t = 0.01
and4t = 0.001. Figure 2 shows the history of volume, the change in energy, and the vertical displacement
for a free surface point, for different time steps. We see that the results are similar, and for equal time
steps we obtained good results.

For the next case, when 4t = 0.005 and 11 (source, collocation) points are placed on the free surface
and 7 (source, collocation) points are placed on the bottom, right, and left walls of the tank (for a total
of 31 collocation and source points), the results are presented in Figure 3. Whether or not we observe
fluctuations in the total fluid volume or energy, the algorithm is stable for many time steps.

When we take a time step of 4t = 0.01 and 15 (source, collocation) points in free surface, 11 (source,
collocation) points on the bottom, right and left wall of the tank (for a total of 48 collocation and source
points), the algorithm loses its stability after a number of time steps (see Figure 4).

Taking the last time step equal to 4t = 0.001 with the same numbers of collocation and source points,
the algorithm is still unstable after some time steps, at which point the total energy rapidly increases
(Figure 5).
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Figure 3. Same as Figure 2, but with 31 collocation points.
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Figure 4. Same as Figure 2, but with 48 collocation points.
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Figure 5. Same as Figure 4, but with 4t = 0.001.

0

0.0002

0.0004

0.0006

0.0008

0.001

0.0012

0.0014

0.0016

0 10 20 30 40 50

C
h

a
n

g
e

 o
f 

v
o

lu
m

e

Time[s]

0.0000

0.0005

0.0010

0.0015

0.0020

0.0025

0.0030

0.0035

0.0040

0 10 20 30 40 50

C
h

a
n

g
e

 o
f 

e
n

e
rg

y
  

Time[s]

-0.10

-0.08

-0.06

-0.04

-0.02

0.00

0.02

0.04

0.06

0.08

0.10

0 10 20 30 40 50

V
e

rt
ic

a
l 

d
is

p
la

ce
m

e
n

t(
2

) 

Time[s]

Figure 5. Same as Figure 4, but with 60 collocation points.
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The algorithm becomes stable when we increase the number of collocation and source points (15) on
the bottom, right and left wall of the tank at 4t = 0.01 (see Figure 5).

7. Conclusions

We applied a meshless numerical method to simulate the sloshing phenomenon. The method is ”meshless”
or ”element-free”, thus simplifying the geometric representation of the solution domain and eliminating
the need for constructing and booking element connectivity. This comes in handy particularly when a
moving boundary is involved, which may require frequent remeshing. Using the fundamental solution
of the Laplace equation and locating the source points outside the computational domain, the problem is
solved by collocation of a few boundary points. We used a mixed Eulerian and Lagrangian method (ALE).
The numerical simulation was validated by checking the accuracy, including the errors in total volume
and energy, and the convergence of the simulation was studied by changing the number of collocation and
source points while varying the time interval. The results presented show that for some input parameters
the algorithm is stable (Figures 2 and 3), but for others, after some number of time steps (300), the
algorithm becomes unstable (Figures 4 and 5). In the last example, we observed damping of the change
of energy and damping of the free surface motion for many time steps (Figure 5). We suppose that the
reason for this simulation behavior is the lack of an energy correction. In future algorithms, conservation
of energy will also be investigated.

References

[Abe and Sakuraba 1999] K. K. Abe and S. Sakuraba, “An hr-adaptive boundary element for water free-surface problems”,
Engineering Analysis with Boundary Elements 23 (1999), 223–232.

[Cho and Lee 2004] K. J. R. Cho and H. W. Lee, “Numerical study on liquid sloshing in baffled tank by nonlinear finite element
method”, Comput. Methods Appl. Mech. Engrg 193 (2004), 2581–2598.

[Hamano et al. 2003] K. Hamano, S. Murashige, and K. Hayami, “Boundary element simulation of large amplitude standing
waves in vessels.”, Engineering Analysis with Boundary Elements 27 (2003), 565–574.

[Kita et al. 2004] K. E. Kita, J. Katsuragawa, and N. Kamiya, “Application of Trefftz-type boundary element method to simu-
lation of two-dimensional sloshing phenomenon”, Engineering Analysis with Boundary Elements 28 (2004), 677–683.

[Sriram et al. 2006] K. V. Sriram, S. A. Sannasiraj, and V. Sundar, “Simulation of two-dimensional nonlinear waves using finite
element method with cubic spline approximation”, Journal of Fluids and Structures 22 (2006), 663–681.

Received 7 Feb 2008. Accepted 28 Apr 2008.

JAN ADAM KOŁODZIEJ: jan.kolodziej@put.poznan.pl
Institute of Applied Mechanics, Poznan University of Technology, ul. Piotrowo 3, 60-965 Poznan, Poland

MAGDALENA MIERZWICZAK: magdalena.mierzwiczak@wp.pl
Institute of Applied Mechanics, Poznan University of Technology, ul. Piotrowo 3, 60-965 Poznan, Poland



JOURNAL OF MECHANICS OF MATERIALS AND STRUCTURES
Vol. 3, No. 6, 2008

PROPAGATION OF A SURFACE WAVE IN A VORTEX ARRAY
ALONG A SUPERCONDUCTING HETEROSTRUCTURE

BOGDAN T. MARUSZEWSKI, ANDRZEJ DRZEWIECKI AND ROMAN STAROSTA

We analyze the propagation conditions and dispersion relations for SH surface waves (Love-like waves)
running along a vortex array in a supercoducting heterostructure consisting of a layer and a half-space.
Investigations allowed us to estimate a new interval for the wave phase velocity values different from the
classical estimate and to show that the structure has filtering properties.

1. Introduction

Superconductors generally fall into two classes. A type-I superconductor expels magnetic flux from the
material and hence is in the Meisser state. That is possible only at an applied magnetic field strength less
than the determined critical value. In contrast a type-II superconductor behaves in another way. For an
applied field less than the lower critical field a type-II superconductor will exhibit the usual Meisser effect.
Applied fields greater than the upper critical field strength destroy the superconductivity altogether. In
between the lower Hc1 and upper Hc2 magnetic field strengths the superconductor is in the mixed or vortex
state. The second variable that determines the existence of that state is the temperature T < Tc, where
Tc denotes the critical phase transition temperature [Tilley and Tilley 1974; Tinkham 1975; Orlando
and Delin 1991; Cyrot and Pavuna 1992; Blatter et al. 1994; Brandt 1995; Lüthi 2005; Fossheim and
Sudbø 2004]. Magnetic flux can penetrate a type-II superconductor in the form of Abrikosov vortices
(also called flux lines, flux tubes, or fluxons) each carrying a quantum of magnetic flux. These tiny
vortices of supercurrent tend to arrange themselves in a triangular or quadratic flux-line lattice [Cyrot
and Pavuna 1992; Fossheim and Sudbø 2004] which is more or less pertubed by material inhomogeneties
that pin the flux lines. Pinning is caused by imperfections of the crystal lattice, such as dislocations,
point defects grain boundaries, etc. Hence a honeycomb-like pattern of the vortex array presents some
thermomechanical properties.

In the natural state of any superconductor the thermomechanical field comes from atomic and/or
molecular interactions both within crystalline (solid) and amorphous (fluid) states of the material in the
presence of temperature changes. Such a situation transfers itself to the vortex state as well.

Since the vortices are formed by the applied magnetic field and the supercurrent flows around each
vortex, there are also Lorenz force interactions among the vortices. Those interactions form an origin
of an additional thermomechanical (stress) field occurring in the type-II superconductor. Near the lower
critical magnetic intensity limit Hc1, this field has an elastic character. However, if the density of the
supercurrent is above its critical value and/or the temperature is sufficiently high, a flow of vortex lines
occurs in the superconducting body. Within such a situation vortices behave rather as a fluid than as an

Keywords: magnetic vortex array mechanics, superconductivity, surface waves in unconventional media.
The paper has been partially supported by MEiN 1101/T 02/2006/30 grant.
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elastic lattice. The fluidity of the vortex array is also observed when the applied magnetic field tends to
its upper critical limit Hc2 (same references as on page 1097). In this way we meet a very interesting
situation in a type-II superconduntor. We can say that there are two coexisting thermomechanical fields
in the medium. One field is of a pure thermoelastic character coming from the mechanical properties
of the crystal lattice of the superconductor. The second field comes from the vortex array, which keeps
its thermoelastic character near the lower magnetic field strength limit Hc1 and transfers smoothly into
a ”fluid” near the upper magnetic field strength limit Hc2. The above phenomenon (transfer and coex-
istence) occurs in the {(H(T ), T ) : Hc1 < H < Hc2, T < Tc} space. However, the vortex field also has
a viscous character. The motion of vortices is damped by a force proportional to the vortex velocity.
There are two reasons for that damping. The first reason comes from simultaneous interactions among
magnetic, mechanical, and thermal fields. The second reason occurs because the resistivity in area of
vortex creep is the same as the resistivity of a current which would flow inside the vortex core. Hence
the viscosity coefficient reads, from [Cyrot and Pavuna 1992],

η =
80µ0 Hc2

ρn
, (1)

where 80 is the magnetic flux, µ0 denotes the permeability of vacuum, and ρn is the resistivity in the
normal state.

Since the vortices may be described within a macroscopic phenomenology, except for the descrip-
tion presented in [Blatter et al. 1994; Ketterson and Song 1999], an unconventional model of magne-
tothermomechanical processes running in the vortex array in a continuous manner has been proposed
[Maruszewski and Restuccia 1999; Maruszewski 1998; 2007; Maruszewski et al. 2007]. Following that
model, field equations have been obtained and their form shows that not only diffusion, creep, or flow
of the vortices are possible in the superconducting material but also wave propagation (transmission of
singnals) [Restuccia and Maruszewski 1998; 1999; Maruszewski and Restuccia 2001; Drzewiecki et al.
2002a; 2002b].

This paper deals with Love’s wave propagation along the superconducting heterostructure consisting
of two II-type superconductors (the layer on the half-space) placed in an external magnetic field per-
pendicular to characteristic planes of the structure. The analysis has been based on [Achenbach 1976;
Maruszewski et al. 2007; Maruszewski and van de Ven 1995; Drzewiecki et al. 2004]. We focus only on
magnetoelastic interactions within the vortex lattice (the applied magnetic field intensity is close to the
lower magnetic field limit Hc1, satisfying the inequality H 0 > Hc1).

2. Magnetoelastic Love’s waves

Let us consider a superconducting heterostructure consisting of a layer of thickness h and a half-space.
That heterostructure is placed in an external constant magnetic field H= [H 0, 0, 0]. Along the interface
between the structure components Love’s wave propagates with a velocity v. The propagation direction
is x2. The complete geometry of the problem is presented in Figure 1.

The general linearized equations describing the propagation of harmonic waves in the above hetero-
structure (solely in the vortex field) read as follows (see [Maruszewski and Restuccia 1999; Maruszewski
2007; Maruszewski et al. 2007; Maruszewski and van de Ven 1995; Restuccia and Maruszewski 1999;
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Figure 1. Geometry of the problem.

Drzewiecki et al. 2002a]):

µui, j j + ηu̇i, j j + (λ+µ)u j,i j +
1
3ηu̇ j,i j +µ0(hr,i − hi,r )H 0

r − ρüi = 0, (2)

λ2
0hi,kk − hi + ui,k H 0

k − uk,k H 0
i = 0.

Since the viscosity coefficient (1) is very small we neglect the damping features in the vortex field in the
sequel. The linearization has been done assuming the total magnetic field in the structure of the form

H=H0
+h, |h| �

∣∣H0∣∣, H0
=
[
H 0

1 , 0, 0
]
, H 0

1 = const, (3)

where h is the small contribution to the total magnetic field H coupled with the displacement vector
u. Lamé’s constants, λ and µ, have been calculated from H 0 and Hc1 [Blatter et al. 1994; Ketterson
and Song 1999], µ0 is the permeability of vacuum, and λ0 is the London penetration depth. Note that
Equations (2) are valid simultaneously for both arrays 1 and 2 in Figure 1.

Now assuming that the solutions of (2) in the geometry shown in Figure 1 are in the following form

f (x1, x2, t)= f (x1) exp[ı(ωt − kx2)], (4)

where f (x1, x2, t) stands for all fields in (2), that is,

f (x1, x2, t)=
{0u3,

0h3
}
(x1, x2, t), (5)

where Love’s mode concerns only the u3 component, Equations (2) may be rewritten in the form (see
[Achenbach 1976; Maruszewski and van de Ven 1995])

µK uK
3, j j −µ0hK

3,1 H 0
1 − ρK üK

3 = 0 and λ0h0
3, j j − kK

3 + uK
3,1 H 0

1 = 0 both with j = 1, 2, (6)

where K = 1, 2 distinguishes the layer (1) from the half-space (2).
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To facilitate the investigation of (6) and the analysis of its solutions, we convert the above formula to
a dimensionless form with the help of the relations

x1 = hx, x2 = hy, x3 = hz, t = T τ , T = h
√
ρ1

µ1
=

h
vT 1

,

H 0
1 = Hc1 H0, hK

3 = Hc1hK
z , uK

3 = huK
z , �= ωT, V =

v

vT 1
,

k =
ω

v
=
�

vT
=
�

V h
, ρ̃K =

ρK h2

T 2µ1
, λ̃K =

λK

µ1
, µ̃K =

µK

µ1
, µ̃0 =

µ0 H 2
c1

µ1
, λ̃

2
0K =

λ2
0K

h2 ,

(7)

where vT K denotes the transverse elastic mode phase velocity in the layer and the substrate.
Recasting the set (6) dimensionless form using Equations (4), (5), and (7), we obtain

µ̃K
d2uK

z

dx2 +
�2

V 2

(
V 2ρ̃K − µ̃K

)
uK

z + µ̃0 H0
dhK

z

dx
= 0,

λ̃0K
d2h2

z

dx2 −

(
λ̃

2
0K
�2

V 2 + 1
)

hK
z + H0

duK
z

dx
= 0.

(8)

The boundary and jump conditions for the variables in (7) across the characteristic planes of the hetero-
structure are

at x =−1 :

{
h1

z = 0 (continuity of the tangent component of the magnetic field),

u1
z,x = 0 (the plane is stress free),

and

at x = 0 :


[|hz|] = h1

z − h2
z = 0,

[|uz|] = u1
z − u2

z = 0 (continuity of displacements),

[|uz,x |] = u1
z,x − u2

z,x = 0 (continuity of stress).

The characteristic equation of (8) for both layer and substrate reads

λ2
0KµK p4

+
[
λ2

0K BK (�, V )− FK (�, V )µK −µ0 H 2
0
]

p2
− FK (�, V )BK (�, V )= 0, (9)

where the solutions of (8) were assumed to be in the form{
uK

z , hK
z
}
=
{0uK

z ,
0hK

z
}
epx (10)

and

BK (�, V )=
�2

V 2

(
V 2ρ̃K − µ̃K

)
, FK (�, V )= λ̃2

0K
�2

V 2 + 1> 0.

The waves under consideration propagate if the solutions of (10), u1
z and h1

z , are convergent, that is, the
squares of the roots p1 and p2 of the characteristic equation (9) in the layer are both real and p3 and p4

in the substrate are of opposite signs. To avoid divergence of solutions (10) in the substrate, we assume
additionally that u2

z and h2
z vanish if x→∞. The requirements above for p1–p4 are satisfied, if for

p1, p2 : B1(�, V ) < 0→ V 2 < µ̃1/ρ̃1,

p3, p4 : B2(�, V ) > 0→ V 2 > µ̃2/ρ̃2.
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Hence we obtain a very important condition for Love’s phase velocity wave if its propagation is possible

µ̃2/ρ̃2 < V 2 < µ̃1/ρ̃1 (dimensionless form)

or
vT 2 < v < vT 1 (dimensional form). (11)

That is a new result and it differs from the classical result for the elastic Love’s wave propagation condi-
tion which run along interface between two elastic materials (layer and substrate); see [Achenbach 1976].
For the latter case the inequality (11) is reciprocal.

As a result, the solutions (10) for the layer are, in detailed form,

u1
z = S1ep1x

+ S2e−p1x
+ S3ep2x

+ S4e−p2x (12)

and

h1
z =−M(p1, �, V )S1ep1x

+M(p1, �, V )S2e−p1x
−M(p2, �, V )S3ep2x

−M(p2, �, V )S4e−p2x , (13)

where
M(pi , �, V )=

pi

µ̃0 H0
+
�2(V 2

− 1)
V 2 H0 pi

, i = 1, 2. (14)

For the substrate the solutions are

u2
z = S5e−p3x , h1

z = N
(

p3, �, V
)
S5e−p3x , where N (p3, �, V )=

µ̃2 p3

µ̃0 H0
+
�2(V 2ρ̃2− µ̃2)

V 2µ̃0 H0 p3
.

Now using solutions (12)–(15) for the boundary and jump conditions, we arrive at the homogeneous
algebraic equations

Wmn(�, V )Sn = 0, m, n = 1, . . . , 5. (15)

Equation (15) has nontrivial solutions only if its determinant satisfies the relation below

det Wmn(�, V )= 0. (16)

We have thus proved that Love’s waves can propagate in a superconducting heterostructure and that their
dispersion relation is given by (16).

3. Numerical results

The numerical analysis of the problem considered in the paper has been done for the superconducting
heterostructure consisting of two ceramics, YBa2Cu3O6+x (YBCO) as the layer and La1−x Srx CuO4 as
the half-space. All the necessary data are collected in Table 1. The results of using these data in the
dispersion relation (16) are presented in Figures 2–3.

The first very important result from Equation (16) is that the waves considered are able to propagate
only if the thickness of the layer satisfies

10−7 < h < 10−5. (17)

Then from Figures 2–3 it is seen that there are two frequency regions where waves are nondispersive.
This means that they can be stably modulated in order to transmit signals carrying information. Between
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Quantity YBa2Cu3O6+x La1−x Srx CuO4 Unit

λ0 4·10−7 2.5·10−7 m
ρ 10−6 5·10−6 kg/m3

Hc1 0.01/µ0 0.01/µ0 A/m
Hc2 120/µ0 120/µ0 A/m
ξ 10−9 1.5·10−9 m
Hc Hc2ξ/(λ0

√
2) Hc2ξ/(λ0

√
2) A/m

c11 µ0 H 02
1 /4π µ0 H 02

1 /4π N/m2

c66 (H 2
c /16π)(1−0.29b)(1−b)2b (H 2

c /16π)(1−0.29b)(1−b)2b N/m2

b µ0 H 0
1 /Hc2 µ0 H 0

1 /Hc2 Vs/Am
µ c66 c66 N/m2

λ c11−2c66 c11−2c66 N/m2

µ0 4π ·10−7 4π ·10−7 Vs/Am

Table 1. Data for the superconducting heterostructure.

Figure 2. Dispersion for various intensities of applied magnetic field and fixed layer
thickness h = 10−7 m for the dimensionless (top) and dimensional (bottom) version.
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Figure 3. Dispersion for various layer thicknesses and fixed magnetic field intensities
H 0

1 = 20Hc1.

those regions there is a forbidden interval (for frequencies)

108 < ω < 1012, (18)

where strong dispersion of Love’s wave is observed.
These properties are not typical if we compare them to those related to classical ones, concerning

waves in a elastic material heterostructure.

4. Conclusions

(i) The paper proves that Love’s waves can propagate within a vortex array existing in a superconducting
heterostructure.

(ii) The anomalous range of the phase velocity of (11) indicates that in this case the layer should have a
higher vortex density and the substrate should have a lower vortex density contrary to the classical
elastic material case.

(iii) The thickness of the layer allowing wave propagation is limited; see Equation (17).

(iv) There are two dispersionless regions concerning Love’s modes in the structure. The similar property
has been observed in the case of bulk waves in the vortex array existing in the superconducting space
[Drzewiecki et al. 2002a; 2004].

(v) There is a forbidden region where the dispersion is very high.

(vi) The waves under consideration propagate with an acoustic phase velocity and an optical wave fre-
quency. This is another anomalous feature about them.
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ON NONLINEAR KINETIC EFFECTS IN THE VORTEX ARRAY IN
SUPERCONDUCTORS

BOGDAN T. MARUSZEWSKI

The motion of vortices in a type II superconductor is accompanied by a heat flux coming from the vortices
themselves. It leads to such thermogalvanomagnetic effects like the Nernst, Ettingshausen and Righi–
Leduc effects. Moreover, besides the linear thermoelectric Seebeck and Peltier effects, the Hall effect
also occurs. That situation seems to be very interesting because it does not take place during common
electric conductivity processes but during diffusion and/or creep of magnetic vortices in superconductors.
It is known that each vortex line carries a quantum of magnetic field and around it a supercurrent flows.
But inside the vortex core a normal current exists. Therefore, the above kinetic linear and nonlinear
effects are possible in the vortex array. The paper aims at the formulation of an unconventional thermo-
dynamical model of the above kinetic phenomena including their relaxation properties. As a result we
have obtained forms of the constitutive laws related to those processes.

1. Introduction

Magnetic flux can penetrate a type II superconductor in the form of Abrikisov vortices (also called flux
lines, flux tubes or fluxons) each carrying a quantum of magnetic flux [Tilley 1974; Tinkham 1975;
Orlando and Delin 1991; Cyrot and Pavuna 1992; Blatter et al. 1994; Brant 1995]. These tiny vortices
tend to arrange themselves in a triangular or quadratic flux-line lattice, which is more or less perturbed
by material inhomogeneities that can pin those flux lines. Pinning is caused by imperfections of a crystal
lattice of a superconducting material, such as dislocations, point effects, grain boundaries, etc. Hence
a honeycomb or quadratic pattern of the vortex array presents some mechanical properties. They come
mainly from force interactions observed in the field of vortices. Indeed, the vortices are created by the
applied magnetic field which penetrates the superconductor. Now, around each vortex the supercurrent
flows, so there are Lorentz-like force interactions among those lines. Such a situation is a cause of
the previously mentioned mechanical (stress) field occurring in the medium, besides the common one
coming from the type II superconducting material itself. That field near the lower critical magnetic
intensity limit HC1 is also of an elastic character. However, if the intensity of the supercurrent is above
its critical value, the temperature is sufficiently high, and/or the value of the applied magnetic field tends
to its upper critical limit HC2, a flow (creep or diffusion) of the vortices occurs. The vortex array then
loses its configuration and behaves as a fluid.

It has been observed that the vortex motion is accompanied by an energy dissipation. That motion is
damped by a force proportional to the velocity of the vortex field point. Hence, except for the elastic
properties, the vortex field is also of a viscous character. The resistivity in area of the vortex motion is
the same as the resistivity of a current which would flow inside the vortex core where the material is

Keywords: nonlinear kinetics in magnetic vortices, thermodynamical modelling of vortex field, superconductivity.
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in the normal state and where Ohm’s law holds true. The result of the above superconducting material
properties is a temperature gradient along the vortices and a heat flux that occurs in the vortex field.

In superconductors the vortex lattice mostly consists of a parallel straight vortex line set whose cross
section forms the previously mentioned symmetries [Orlando and Delin 1991; Cyrot and Pavuna 1992].
However, recent research shows that the vortex lines can be curved or even tangled along the material
[Blatter et al. 1994; Brant 1995]. Moreover, since the vortices form, among others, sets called twisted
triplets, twisted quadruplets, single loops or pairs [Schönenberger et al. 1997], the vortex field can be
considered even in three dimensions. Because of the fact that each vortex line has a sign (has the definite
vorticity), lines of the opposite signs annihilate.

In the paper we focus solely on the kinetic part of interactions occurring in the vortex field of the type
II superconductor. The subject of our considerations are the reciprocal links between normal current,
supercurrent, heat flux and vortex diffusion flux in the vortex array. Those links are the source of
kinetic laws, both linear (Fourier’s, Fick’s, Ohm’s, London’s, Soret’s, Dufour’s, Seebeck’s, Peltier’s,
etc.) and nonlinear (Righi–Leduc’s, Ettingshausen–Nernst’s, Hall’s, etc.), all of which describe thermo-
galvanoelectromagnetic effects extended on interactions with the supercurrent [Maruszewski 1984; 1988;
Sirotin and Šaskolskaya 1979; Freimuth 2002]. All these laws have a purely kinetic character but from
the thermodynamical model presented in the paper laws of relaxation-kinetic nature like the general-
ized Maxwell–Cattaneo equation, the generalized Fick–Nonnemacher equation, and the generalized first
London’s equation result as well [Kluitenberg 1981; Restuccia and Kluitenberg 1987].

2. The unconventional thermodynamical model

Let us consider the elastic vortex array that exists in the type II superconductor placed in an external mag-
netic field. For the sake of simplicity we deal solely with soft (depinned) vortices to avoid direct material
connections between the superconducting medium and the vortex medium (to ensure our description is
related only to the vortex array).

Following the above properties the unconventional (extended-like) thermodynamical model for the
viscoelastic field of vortices in the type II superconductor is presented below. We have assumed that
the mass density ρ of the vortex field concerns the density of the material in the normal state as the
counterpart in the mixed type II superconductor [Kopnin 2002] (that is, the mass of the normal part of
the body related to the total volume of the material), and the energy dissipation occurs only because of
the Ohmic-like resistivity (normal-state resistivity) inside the vortex core [Blatter et al. 1994]. Hence
the general form of the state vector (the set of independent variables) reads [Maruszewski and Restuccia
1999; Schönenberger et al. 1997]

C = {εi j , ϕ, Ai , T, T,i , c, c,i , ψ,ψ∗, ψ,i , ψ∗,i , qi , j c
i , j S

i }, (1)

where εi j denotes the strain tensor, ϕ and Ai are the scalar and vector potentials, respectively, T is the
absolute temperature, ψ is the order parameter (the wave function of a Cooper pair) and ψ∗ is its complex
conjugate, j S

i is the supercurrent density, j c
i is the diffusion flux of vortices and qi is the heat flux in the

vortex field. c denotes the concentration of vortices defined as c = ρ
ρtot

, where ρtot is the density of the
superconducting material.
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The fundamental laws, which govern the set (1), are the balances

ρċ+ j c
k,k=0, ρv̇k−σ jk, j−∈ki j ji B j− fk=0, ∈i jk σ jk=0, ρU̇−σ j ivi, j+qk,k− ji Ei−ρr=0, (2)

the evolution equations

∗

qk − Qk(C)= 0,
∗

j c
k − j c

k (C)= 0,
∗

j S
k − j S

k (C)= 0, ψ̇ −9(C)= 0, ψ̇∗−9∗(C)= 0, (3)

where the superimposed asterisk denotes the Zaremba–Jaumann time derivative, Maxwell’s equations

∈i jk Ek, j +
∂Bi

∂t
= 0, ∈i jk Hk, j − ji = 0, Dk,k = 0, Bk,k = 0, (4)

where ji = j N
i + j S

i , and the balance of superelectrons [van de Ven 1991]

∂nS

∂t
+ j S

k,k = N S(C), j S
k,k − N S(C)= (ψ∗ψ,k +ψψ∗,k)− [ψ

∗9(C)+ψ9∗(C)]. (5)

Here vk denotes the velocity of the vortex field point, σik is the viscoelastic stress tensor, j N
i is the

normal current, B j is the magnetic induction and H j is the magnetic field strength, fk is the body
force, U is the internal energy density, Ei is the electromotive intensity in a moving frame and Ei is
the electromotive intensity in a resting frame, r is the heat source distribution, and nS is the number
density of superelectrons (Cooper pairs). The sets (2), (3), (4), and (5) consist of the equation whose
form ensures conservation of the vortex mass in the sense indicated above, the momentum balance in
the vortex field where elastic interactions are due to the Lorentz force, the equation determining the
symmetry of the stress tensor, the internal energy balance of the vortex field where the dissipation term
comes only from the Joule-like heat produced by the total current, the first law of thermodynamics, the
evolution equation for heat flux, the evolution equation for diffusion flux, the evolution equation for
supercurrent, the evolution equations for Cooper pairs wave function as the order parameter (internal
variable) evolution equations, the electromagnetic field evolution equations, and the balance equations
for superelectrons. Such equations form the structure of an unconventional thermodynamical model
based on extended thermodynamics with internal variables [Maruszewski 1990]. The extended-like ther-
modynamical description has been chosen here since all the interactions run within low temperatures.
Moreover, for the electromagnetic field quantities the following relations hold

Dk =∈ Ek, Bk = µ0 Hk, Ek =−ϕ,k −
∂Ak

∂t
, Bk =∈i jk A j,i , Ei = Ei+ ∈i jk v j Bk .

In the sequel we follow the assumption that ϕ vanishes because of gauging [Orlando and Delin 1991;
Yeh and Chen 1993].

The use of the second law of thermodynamics in the form of entropy inequality is to ensure solutions
of the set (2)–(5) to be related to description of real physical processes.
The entropy inequality is taken in its classical form

ρ Ṡ+8k,k −
ρr
T
≥ 0, (6)

where S is the entropy density and 8k denotes the entropy flux.
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Now, the inequality (6) gives us a possibility of determining all the constitutive functions which in
our case form the set of dependent variables

Z = {σi j , µ
c,U, Qk, 9,9

∗, J c
k , J S

k , N S, S,8k}, Z = Z(C). (7)

We omit from now on investigations and analysis of the above thermodynamical structure for laws
concerning states of the vortex field [Maruszewski 2007; Maruszewski et al. 2007]. Our attention is
focused only on laws dealing with processes running in the vortex array, that is, kinetic relations.

A detailed analysis of the entropy inequality and the introduction of the free energy density

F =U − T S, F = F N (εi j , T, c, qi , j c
i , j S

i )+ F S(εi j , T, c, Ai , ψ,ψ
∗, ψ,k, ψ

∗

,k)

[van de Ven 1991; Maruszewski 1998; Maugin 1992] lead us to the residual inequality

−
1
T

qk T,k − hc j c
k c,k + j N

i Ei − ρ
∂F
∂qi

q̇i − ρ
∂F
∂ j c

i
j̇ c
i − ρ

∂F
∂ j S

i
j̇ S
i

−

[
ρ
∂F
∂ψ
−

(
ρ
∂F
∂ψ,k

)
,k

]
∂ψ

∂t
−

[
ρ
∂F
∂ψ∗
−

(
ρ
∂F
∂ψ∗,k

)
,k

]
∂ψ∗

∂t
≥ 0, (8)

which stands for the kinetic part of the modelled and described interaction among the elastic, thermal,
diffusion, and electromagnetic fields in the vortex array. Here hc = ∂µ

c/∂c [Maruszewski 1997], where
µc is the vortex chemical potential,

As we see, the residual inequality has a bilinear form and can be presented as follows:

JαXα ≥ 0, (9)

where Jα are the generalized fluxes and Xα denote generalized forces. Based on the irreversible thermo-
dynamical model, the relation between generalized fluxes and forces is linear

Jα = `αβXβ, (10)

where the phenomenological coefficients `αβ satisfy Onsager–Casimir’s reciprocity relations

`αβ = `βα. (11)

The use of (9), (10), and (11) in (8) allows us to determine matrices of generalized fluxes, forces and
phenomenological coefficients, as follows:

Jα =



qk

j c
k

j N
k

q̇k

j̇ c
k

j̇ S
k

ψ̇

ψ̇∗



, Xβ =



−(1/T )T,k
−hcc,k

Ei

−ρ ∂F/∂qi

−ρ ∂F/∂ j c
i

−ρ ∂F/∂ j S
i

−
[
ρ ∂F/∂ψ −

(
ρ ∂F/∂ψ,k

)
,k

]
−
[
ρ ∂F/∂ψ∗−

(
ρ ∂F/∂ψ∗,k

)
,k

]


, (12)
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`αβ =



`11 `12 `13 0 0 0 0 0
`21 `22 `23 0 0 0 0 0
`31 `32 `33 0 0 0 0 0
0 0 0 `44 `45 `46 0 0
0 0 0 `54 `55 `56 0 0
0 0 0 `64 `65 `66 0 0
0 0 0 0 0 0 `77 `78

0 0 0 0 0 0 `87 `88


. (13)

The basic thermogalvanomagnetic effects and effects which include relaxation features of the con-
sidered processes can be described, in the first approximation, if the phenomenological coefficients
are assumed in the following form [Maruszewski 1984; Sirotin and Šaskolskaya 1979] `αβi j (Hk) =

`
αβ(0)
i j +`

αβ(1)
i jk Hk . After laborious but routine calculations, the final forms of the expected kinetic relations

both without and with relaxation properties (for the sake of simplicity and easy interpretation we present
them in the isotropic form assuming that `αβ(0)k j = `αβ(0)δk j , `

αβ(1)
k jl = `

αβ(1)
∈k jl, [Orlando and Delin 1991;

Cyrot and Pavuna 1992;Maruszewski 1984; 1988; 1990; 1997;Sirotin and Šaskolskaya 1979; Freimuth
2002; Kluitenberg 1981; Restuccia and Kluitenberg 1987]) become the generalized Fourier law

q=−κ∇T +
1
T
`∇T ×H− hcκ

c
∇c+ hc K c

∇c×H+ κeE+ NE×H, (14)

the generalized Fick law

jc
=−

1
T
κc
∇T +

1
T

K c
∇T ×H− ρD∇c+Mhc∇c×H+6cE+0cE×H, (15)

the generalized Ohm law

jN
=−

1
T
κe
∇T +

1
T

N∇T ×H− hc6
c
∇c+ ρD∇c+ hc0

c
∇c×H+ σE+ RE×H, (16)

the generalized Maxwell–Cattaneo law

τ q q̇= κ∇T −
1
T
`∇T × H + hcκ

c
∇c− hc K c

∇c×H+ κeE− NE×H−q− Dcjc
− DSjS, (17)

the generalized Fick–Nonnenmacher law

τ c j̇c
=

1
T
κc
∇T −

1
T

K c
∇T ×H+ρD∇c−Mhc∇c×H+6cE−0cE×H− Dqq− jc

− DSq jS, (18)

and the generalized first London equation

τ S j̇S
= PT T∇T−

1
T

RT
∇T×H+Pc

∇c−hc Rc
∇c×H+

1
µ0λ

2
0

E−ReE×H−Dq Sq−jS
−DcSjc. (19)

In Eqs. (14), (15), (16), (17), (18), and (19) we recognize the following phenomena and effects
described by definite coefficients:

κ heat conductivity Dc thermodiffusive constant
` Righi–Leduc effect coefficient DS thermosupercurrent constant
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hc diffusion constant [Sirotin and Šaskolskaya 1979] τ c diffusive relaxation time
κc Dufour–Soret effect coefficient Dq diffusive-thermal constant
K c magnetothermodiffusive kinetic coefficient DSq diffusive-supercurrent constant
κe Peltier effect coefficient τ S supercurrent relaxation time
N Ettingshausen–Nernst effect coefficient PT superthermal constant
D diffusion coefficient RT supermagnetothermal constant
M magnetodiffusive kinetic coefficient Pc superdiffusive constant
6c electrodiffusive kinetic coefficient Rc supermagnetodiffusive constant
0c electromagnetodiffusive kinetic coefficient Re superelectromagnetic constant
σ electric conductivity Dq S superthermal kinetic constant
R Hall constant DcS superdiffusive kinetic constant
τ q thermal relaxation time

In addition, (3), (12), and (13) still yield the generalized Ginzburg–Landau kinetic equation as well
[Orlando and Delin 1991; Maruszewski 1998]. Since we have, however, decided that the gauge can be
chosen such that the scalar electric potential vanishes [Yeh and Chen 1993], then we use the experimental
observations that the supercurrent exists reasonably long in time and we assume that the local density of
Cooper pairs to be constant (this approach is true in many practical situations where the local fluctuations
of the density of superelectrons in steady state are of such length and time scales that they are too small to
be of engineering interest [Orlando and Delin 1991]). That fact leads to the conclusion that X7 = X8 = 0
in (12). Hence, we assume that the generalized Ginzburg–Landau equation in such a situation (within
the model of interactions presented in the paper) can be neglected.

3. Conclusions

The paper has proved, in the opinion of the author, that the dynamics of the vortex field in a type II
superconductor is very rich in interesting phenomena. The kinetic part of interactions and processes
running in that array show that reciprocal links among heat transfer, diffusion of vortices and normal
electron conduction (the Ohmic-like current) with relaxation of heat flux, diffusion flux, and supercurrent
result in known and unknown linear and nonlinear kinetic effects. Those effects, particularly nonlinear
ones, demand detailed physical analysis and interpretation. Finally, experimentation should verify and
answer the fundamental question: do all the effects presented in (14)–(19) really exist?
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THERMODYNAMICS OF INHOMOGENEOUS FERROELECTRICS

GERARD A. MAUGIN AND LILIANA RESTUCCIA

In a previous paper within the framework of the theory of inhomogeneities, the balance law of the so-
called pseudomomentum for ferroelectrics was worked out exploiting the presence of material forces.
Electric polarization density per unit mass and its gradient were introduced as state variables in the state
vector. In this paper, starting from the pseudomomentum balance equation, we construct, in a systematic
way, the material energy balance law for ferroelectrics which plays a crucial role in applications related
to the study of fracture.

1. Introduction

Ferroelectrics are dielectric materials which possess the essential property of exhibiting a local sponta-
neous electrical polarization. Ferroelectricity generally disappears above a certain temperature, called
the transition temperature or Curie point θc, at which a ferroelectric crystal passes from a polarized
state of low temperature to a nonpolarized state of high temperature. Thermic agitation tends to destroy
ferroelectric order. Ferroelectric crystals which don’t have a Curie point exist, because they melt before
reaching a ferroelectric phase. Rochelle salt has two Curie points, one higher and one lower, between
which this crystal is ferroelectric. Ferroelectrics have applications in computer science, in the technology
of integrated circuits, and in the fields of electronic microscopy, electronic sensors, optoelectronics, and
other technological sectors. Ferroelectric media are characterized by the fact that two ordered structures
coexist in them: a crystalline structure which has as order parameter the deformation of the elementary
cell (tensorial parameter), and the ferroelectric order parameter consisting of the specific polarization
vector. We use in our description a phenomenological approach to deformable ferroelectric crystals,
derived in [Maugin 1977a; 1977b; Maugin and Pouget 1980]. Dissipative processes in ferroelectrics were
investigated in [Francaviglia et al. 2004]. Electric polarization density per unit mass, possessing its own
dynamics and inertia, and its gradient, responsible for nonlocal interactions and the typical ferroeletric
ordering, are introduced as state variables in the state vector. In this paper, within the framework of
the theory of inhomogeneities [Maugin 1993], from the pseudomomentum balance equation, worked
out in [Restuccia and Maugin 2004], the material energy balance law is constructed for inhomogeneous
ferroelectrics in the presence of configurational forces. This law plays a crucial role in applications
related to the fracture study and the computation of the so-called energy-release rate (energy dissipated
at the phase-transition fronts). Inhomogeneities can be caused by abrupt changes of material properties
such as density, module of elasticity, and existence of different elements and parts, and by the presence
of transition fronts, dislocations, and defects such as cavities, cracks, and inclusions, which can self-
propagate during the processes of fabrication because of changed conditions or surrounding conditions

Keywords: Eshelbian mechanics, material inhomogeneities, fracture mechanics.
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that are favorable [Cherepanov 1979]. Such defect propagation can provoke a premature fracture [Maugin
1992]. A crack is one of the most common defects, and it can self-propagate when a critical threshold of
a certain strength is reached. To prevent this fracture criteria for propagation of a crack can be introduced
in the study of the mechanics of solids [Maugin 1992]. The critical threshold of propagation of a crack
can be evaluated by introducing, for instance, the rate of energy restitution and the contour integral
(more precisely, Rice’s integral). This critical threshold is a precise breaking condition because of the
fracture instability of a fractured medium. Fracture criteria were introduced long ago for elastic materials
(Lhemon, 1888, on the mesomorphic phase of the matter; Volterra, 1907, on distortions in matter). The
technological evolution of the science of materials has introduced new materials into industry that exhibit
an interaction between mechanical stress elastic fields and polarization field. One of the first works on
inhomogeneities is by Eshelby [1951] (see also [Eshelby 1969; Maugin 1995]), who studied a particular
case of inhomogeneity: the presence of a defect in an elastic material. He introduced a fictitious force
(the material force) in order to give a more detailed description of energy variation related to a position
of imperfection. This force is not to be confused with surface and bulk forces. Eshelby showed that
this force can be obtained starting with a contour integral on any surface surrounding the defect. In the
absence of a defect, this integral becomes zero and reduces itself to a strict conservation law. Following
Maugin, the material force of inhomogeneity is put into evidence by projecting the balance equations
of a continuum body onto a material frame [Maugin 1992]. Also Kalpakides and Agiasofitou [2002],
Vukobrat [1994] and Huang and Batra [1996] investigated ferroelectrics where the gradient of electric
polarization or electric fields is considered.

2. Governing equations for ferroelectrics

We use the standard Cartesian tensor notation in rectangular coordinate systems. The general nonlinear
deformation of a body, between a configurational reference KR and a current configuration Kt at the time
t , is represented by the diffeomorphism

x= χ(X, t), X= χ−1(x, t),

where x represents Eulerian coordinates and X the material coordinates of the same material particle P.
We have the following relations: F i

K = ∂x i/∂X K
= x i

,K (denoting the components of the deforma-
tion gradient F), (F−1)K

j = ∂X K/∂x j = X K
, j , JF = det(F i

K ) > 0 (the Jacobian of F), x i
,K X K

, j = δ
i
j ,

F i
K (F

−1)K
j = δ

i
j , X K

,i x i
,L = δ

K
L , (F−1)K

i F i
L = δ

K
L . From the kinematic description one defines the physical

and material velocities by vi
= (∂x i/∂t)

∣∣
X, V K

= (∂X K/∂t)
∣∣
x, where we have explicitly indicated the

time derivatives at fixed X (the so-called “material derivative”) and at fixed x. Now consider in a current
configuration Kt the general equations that govern the quasielectrostatics of thermoelastic ferroelectric
insulators [Maugin and Pouget 1980; Restuccia and Maugin 2004]. Suppose that the material may
present continuously distributed material inhomogeneities, that the range of the considered temperatures
is much below the Curie ferroelectric phase-transition temperature θc, and that the body occupies the
simply connected material volume Vt with regular boundary ∂Vt having unit outward normal n in Kt ,
while it occupies the volume VR with regular boundary ∂VR having unit outward normal N in KR .

We now discuss the governing equations.
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Maxwell equations in the quasielectrostatic approximation. Let E, B, D, H, P and M denote the elec-
tric field, the magnetic induction, the electric displacement, the magnetic field, the electric polarization
and the magnetization per unit volume, all evaluated in a fixed Galilean frame at time t . In the quasielec-
trostatic case Maxwell’s equations read [Maugin 1988]

∇×E= 0, ∇×H= 0, ∇ ·D= 0, ∇ ·B= 0,

where Lorentz–Heaviside units are used and neither currents nor electric charge are present. Further

D= E+P, H= B, M= 0,

and the associated jump conditions on ∂Vt are:

n×[[E]] = 0, n · [[B]] = 0, n×[[H]] = 0, n · [[D]] = 0,

where [[A]] = A+−A−, A+ and A− being the field limits as the boundary is approached from outside
and from inside. In the Galilean approximation, calling E, B, H, P and M the same fields as E, B,
H, P and M, but referring to an element of matter at time t in a frame Kc(x, t), we have

E = E+ c−1u×B, B= B− c−1u×E, H=B−M=B, D =D, M= 0, P = P, (1)

where u is the velocity of the reference Kc with respect to the current reference Kt . In the quasielec-
trostatic approximation, terms in u are irrelevant. Further, let π denote the polarization vector per unit
mass in Kt :

π = π(X, t)= P/ρ,
where ρ(x, t) is the mass density.

Conservation of mass. This equation reads

ρ̇+ ρ∇ · v= 0 in Vt , (2)

where ρ̇(X, t)=
∂ρ(X, t)
∂t

∣∣∣
X

is the material time derivative of ρ and v=
∂χ (X, t)

∂t

∣∣∣
X

. Moreover,

∂ρ0

∂t

∣∣∣
X
= 0, i.e., ρ0(X)= JFρ, in VR. (3)

Relation (3)2 indicates that ρ0 depends at most on X. It depends on X when the considered body presents
inertial material inhomogeneities.

Motion equation. In the absence of body force (of purely mechanical origin) this equation reads

div t+ fem
= ρv̇ in Vt , (4)

with the boundary condition
ti j n j = T em

i on ∂Vt ,

where fem and Tem are, in the quasielectrostatic approximation, the volume ponderomotive force in a
nonrelativistically moving nonmagnetizable dielectric medium and the corresponding surface traction of
purely mechanical origin, given by

f em
i = PjEi, j , fem

= (P ·∇)E =−(∇ ·P)E +∇ · (E ⊗P), Tem
=

[[
E ⊗P+E⊗E− 1

2(E
2)1

]]
·n,
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and t i j is the nonsymmetric Cauchy stress tensor defined by

t i j
= σ i j

+ (t int)[i j]. (5)

In (5) σ i j is the intrinsic stress tensor (the symmetric Cauchy tensor)

σ i j
= σ j i

and (t int)i j is the interaction stress tensor defined by

(t int)i j
= ρ LE iπ j

−
LEEi pπ j

,p, with t [i j]
= (t int)[i j]. (6)

This equation is the local statement of the balance of moment of momentum.
In Equation (6)1

LE≡ (LE i ) is called the local electric field vector and represents the electric anisotropy
field, accounting for the interaction between the polarization of different molecular species with the
crystal lattice, while LEE≡

(
LEEi p

)
accounts for polarization gradients and has the name of shell-shell

interaction tensor, by identification or analogy with results from the lattice theory of alkali halides. LEE
is responsible for the typical ferroelectric ordering. In fact, in this phenomenological model, derived
in [Maugin 1977a; 1977b; Maugin and Pouget 1980], it is assumed that the medium is formed by n
coexisting molecular species α = 1, 2, . . . , n, each one of them giving rise to a field of electric dipoles,
which when suitably averaged is represented by a volume density Pα of electrical polarization. Then, the
polarization vector per unit volume is the sum of the polarization vectors per unit volume of each molec-
ular species: P=6αPα. Letting ρα be the density of α molecules, cα ≡ ρα/ρ being the corresponding
concentration, we define πα ≡ Pα/ρα , where Pα and πα are the polarization vectors per unit volume and
mass in Kt for the molecular species α.

Balance equation for the polarization vector. A theorem in [Maugin and Pouget 1980] states that the
balance equation for the polarization vector in a deformable nonmagnetizable ferroelectric medium reads
(see also [Maugin 1977a; 1977b; Maugin and Pouget 1980])

E i
+

LE i
+ ρ−1 LEE

i j
, j = I π̈ i in Vt , (7)

where I is the so-called polarization inertia and E is the electromotive intensity due to external sources;
see (1)1. This equation resembles Newton’s law of motion.

After the introduction of the symmetric stress tensor Et i j (elastic stress tensor) defined by

Et i j
= σ i j

− ρ LE (iπ j)
+

LEE(ikπ
j)
,k =

Et j i ,

Equation (5) reads

t i j
=

Et i j
+ ρLE iπ j

−
LEEikπ

j
,k =

Et i j
+ (t int)i j . (8)

Conservation of energy. The first law of thermodynamics, in the absence of a heat source by radiation,
reads

ρė = t j ivi, j − ρ
LE i π̇i +

LEEi j (π̇i ), j − qk
,k . (9)
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Entropy inequality and Clausius–Duhem inequality. In this paper we use the following form of the
entropy inequality:

ρη̇+∇ · js ≥ 0,

where η is the entropy per unit mass and js is the entropy flux , defined by js = q/θ .
Introducing Helmholtz’s free energy per unit mass ψ = e−ηθ by a Legendre transformation and using

the energy balance equation, the following Clausius–Duhem inequality is obtained:

−ρ(ψ̇ + ηθ̇)+ t j ivi, j − ρ
LE i π̇i +

LEEi j (π̇i ), j − θ
−1qkθ,k ≥ 0,

where 0< θ � θc.

3. A thermodynamical model for ferroelectrics

In [Restuccia and Maugin 2004], following the general philosophy exposed in the theory of the inho-
mogeneities [Maugin 1993], in order to put in evidence the material force of inhomogeneity, balance
equations of continuum were projected onto KR material frame, effecting the following Piola transfor-
mations (see also [Maugin and Pouget 1980; Lax and Nelson 1976]):

T= JF F−1
· t, T K i

= JF (F−1)K
j t j i ,

ET= JF F−1
·

Et, ET K i
= JF (F−1)K

j
Et j i ,

LEEE= JF F−1
·

LEE, LEEEK i
= JF (F−1)K

j
LEE j i ,

Q= JF F−1
·q, QK

= JF (F−1)K
j q j ,

Js = JF F−1
· js, J K

s = JF (F−1)K
j j j

s ,

LE= FT
·

LE, LEK =
LEi F i

K ,

LE s
= δ si LEi = δ

si (F−1)K
i

LEK ,

EE= FT E, EEK = Ei F i
K ,

5= JF F−1
·P, 5K

= JF (F−1)K
j P j .

Multiplying (8) by JF (F−1)K
l , the following Piola transformation was derived:

T K i
=

ET K i
+ ρ0(F−1)K

l
LE lπ i

−
LEEEKlπ i

,l, (10)

where T is the first Piola–Kirchhoff stress.
Further, multiplying the balance of energy by JF , we obtain

Ė = (T K iδi j )Ḟ
j

k − ρ0δ
is(F−1)K

s
LEK π̇i +

LEEEi K (π̇i ),K − QK
,K , (11)

where E = ρ0e; doing the same to the entropy inequality and the Clausius–Duhem inequality we get

θ Ṡ ≥−QK
,K + θ

−1 QK θ,K ,

−(Ẇ + Sθ̇ )+ (T K iδi j )Ḟ
j

K − ρ0δ
is(F−1)K

s
LEK π̇i +

LEEEi K (π̇i ),K − θ
−1 QK θ,K ≥ 0,

where S = ρ0η and W = ρ0ψ = E − Sθ .
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In [Restuccia and Maugin 2004] a thermodynamical model for materially inhomogeneous thermoe-
lastic ferroelectric insulators was proposed, choosing the following state vector

C = C(F,π ,∇Rπ , θ,∇R θ;X), (12)

where the physical fields π and ∇Rπ are responsible for the internal structure of the medium, the relax-
ation properties of the thermal field are taken into account, and the explicit dependence on X reflects
the material inhomogeneity. In (12) the symbol ∇R denotes the gradient operator in material space. The
constitutive dependent variables of the set

Z= Z(W, S,T, LE, LEEE,Q),

were determined as functions of the set C , that is, Z= Z(C), and using the expression

W =W (F,π ,∇Rπ , θ,∇R θ;X)

and the Clausius–Duhem inequality, the nonlinear constitutive equations, the dissipation inequality , and
other results were worked out:

T K i
=
∂W

∂F j
K

δ j i , LEK =−ρ
−1
0
∂W
∂πi

(F)iK ,
LEEEi K

=
∂W
∂πi,K

, (13)

S =−
∂W
∂θ

,
∂W
∂θ,K

= 0, −θ−1 QK θ,K ≥ 0. (14)

Then
W =W (F,π ,∇Rπ , θ;X),

but
QK
= QK (F,π ,∇Rπ , θ,∇R θ;X),

with lim∇R θ→0 QK (F,π ,∇Rπ , θ,∇Rθ;X)= 0 (continuity condition).
From (11), using the constitutive relations and the Legendre transformation W = E − Sθ , the energy

equation can be rewritten as

θ
∂S
∂t

∣∣∣
X
+∇R ·Q= 0, or

∂S
∂t

∣∣∣
X
+∇R · Js =−θ

−2 QK θ,K . (15)

4. Material energy balance

In [Restuccia and Maugin 2004], following the philosophy of the theory of the inhomogeneities exposed
in [Maugin 1993], in order to place the presence of material forces and to obtain the balance of material
momentum (called balance of pseudomomentum), the motion equation (4) was projected onto the ma-
terial manifold M3 by applying the operator JF FT at the left of equation (4). This operation is called
convection or pull-back. First, by multiplying Equation (4) by JF , the following Piola–Kirchhoff form
was obtained:

T K
i,K + JF f em

i = JFρv̇i = ρ0v̇i , divR T+ JF fem
=
∂pR

∂t

∣∣∣
X
, (16)

where pR = ρ0v is defined as the physical linear momentum per unit volume in KR .
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Next, applying the pull-back operator (FT ) on the left-hand side of (16)1,

F i
L T K

i,K + JF F i
L f em

i = F i
L
∂

∂t
(ρovi )

∣∣∣
X
,

the following balance of pseudomomentum projected on M3 was obtained:

∂P
∂t

∣∣∣
X
− divR b̂= f inh

+ f th
+ f fer, (17)

where
P =−ρ0FT

· v− (∇Rπ) ·
(
ρ0 I π̇

)
,

b̂=−
(
L̂1R +T ·F+ (∇Rπ) ·

LEEE
)
,

L̂= ρ0 (X)
( 1

2 v2
+

1
2 I π̇2

+E ·π
)
−W (F,π ,∇Rπ , θ;X),

f inh
=∇Rρ0 (X)

( 1
2 v2
+

1
2 I π̇2

+E ·π
)
−∇RW|expl,

f th
= S∇R θ,

f fer
= ρ0π ·∇RE −FT

· (5 ·∇R)E .

(18)

In these expressions P is the pseudomomentum, a material covector onM3, b̂ is referred to as the Eshelby
(material) stress tensor accounting for ferroelectric exchange effects, f inh is the material inhomogeneity
force, f th is called the thermal material force, and f fer is a new material force which reflects the presence
of ferroelectric effects (see also [Maugin and Pouget 1980]). The inhomogeneity force f inh here has its
canonical definition

f inh
=
∂L̂
∂X

∣∣∣
expl
,

where the potential L̂ would be the Lagrangian density if irreversible processes were not present. Now,
although (11) already provides an expression of the local energy equation, we construct the expression
of the material energy balance that plays a crucial role in applications related to the study of fracture in a
medium. Using the already obtained results, upon scalar multiplication of (17) by the material velocity,
we obtain

∂P
∂t

∣∣∣
X
·V−

(
divR b̂

)
·V= f inh

·V+ f th
·V+ f fer

·V. (19)

We evaluate each contribution separately, systematically using the following relations (see [Fomethe and
Maugin 1996]):

V=
∂χ−1(x, t)

∂t

∣∣∣
x
, vi

=−F i
K V K , V K

=−(F−1)K
i v

i ,

Ȧ (X, t)=
∂A (X, t)

∂t

∣∣∣
X
, Ȧ=

∂A
∂t

∣∣∣
x
+ v · ∇A,

∂A
∂t

∣∣∣
x
= Ȧ+V · ∇RA,

Ai
,K = Ai

, j F j
K , Ai

, j = Ai
,K (F

−1)K
j , v · ∇A=

∂A
∂t

∣∣∣
X
−
∂A
∂t

∣∣∣
x
, V · ∇RA=

∂A
∂t

∣∣∣
x
−
∂A
∂t

∣∣∣
X
,

Ḟ i
K = v

i
,K = v

i
, j F j

K , vi
, jv

j
=
∂vi

∂t

∣∣∣
X
−
∂vi

∂t

∣∣∣
x
,

∂ρ0

∂t

∣∣∣
X
= 0,
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where the objective vector field A is a geometrical time-dependent object which is form invariant under
rigid-body changes of coordinate frames in Kt and its components transform tensorially. Then, from
equations (18) and (19) we have

∂

∂t
(−ρ0FT

· v)
∣∣∣
X
·V=

∂

∂t
(ρ0v

2)

∣∣∣
X
− ρ0

∂

∂t

(1
2v

2) ∣∣∣
x

(20)

and

−
∂

∂t

[
∇Rπ ·

(
ρ0 I π̇

)] ∣∣∣
X
·V=−(ρ0 I π̈ iπi,L + ρ0 I π̇ i π̇i,L)V L

=−ρ0 I π̈ i ∂πi

∂t

∣∣∣
x
+ ρ0 I π̈ i ∂πi

∂t

∣∣∣
X
− ρ0 I π̇ i ∂π̇i

∂t

∣∣∣
x
+ ρ0 I π̇ i ∂π̇i

∂t

∣∣∣
X
. (21)

The second term on the left-hand side of (19) gives

(divR b̂) ·V=−L̂,L V L
−

(
T K

i F i
L +

LEEEi Kπi,L
)
,K V L. (22)

Evaluating the contributions in the right side of (22) we have

−L̂,L V L
=−

∂L̂
∂t

∣∣∣
x
+
∂L̂
∂t

∣∣∣
X
,

where

−
∂L̂
∂t

∣∣∣
x
=
∂W

∂F j
K

∂F j
K

∂t

∣∣∣
x
+
∂W
∂πi

∂πi

∂t

∣∣∣
x
+

∂W
∂πi,K

∂πi,K

∂t

∣∣∣
x
+
∂W
∂θ

∂θ

∂t

∣∣∣
x
+
∂W
∂X L

∣∣∣
expl

∂X L

∂t

∣∣∣
x

−
( 1

2v
2
+

1
2 I π̇2

+E ·π
)∂ρ0

∂t

∣∣∣
x
− ρ0

∂

∂t

( 1
2v

2
+

1
2 I π̇2

+E ·π
)∣∣∣

x
(23)

and
∂L̂
∂t

∣∣∣
X
=
∂

∂t

[
ρ0(X)

( 1
2v

2
+

1
2 I π̇2

+E ·π
)] ∣∣∣

X
−
∂W
∂t

∣∣∣
X
. (24)

In the following, we use the constitutive equations (13) and (14)1 at fixed x in the term (∂L̂/∂t)
∣∣
x. We

further have

−
(
T K

i F i
L
)
,K V L

= T K
i,Kv

i
− T K

i
∂F i

K

∂t

∣∣∣
x
+ T K

i vi,K =∇R · (T · v)− T K
i
∂F i

K

∂t

∣∣∣
x
, (25)

−
(LEEEi Kπi,L

)
,K V L

=−
LEEEi K

,K
∂πi

∂t

∣∣∣
x
+

LEEEi K
,K
∂πi

∂t

∣∣∣
X
−

LEEEi K ∂πi,K

∂t

∣∣∣
x
+

LEEEi K ∂πi,K

∂t

∣∣∣
X
, (26)

LEEEi K
,K
∂πi

∂t

∣∣∣
X
+

LEEEi K ∂πi,K

∂t

∣∣∣
X
=∇R · (

LEEE · π̇), (27)

f inh
·V=

( 1
2v

2
+

1
2 I π̇2

+E ·π
)∂ρ0

∂t

∣∣∣
x
−
∂W
∂t

∣∣∣
expl
, (28)

and
f th
·V= Sθ,L V L

= S
∂θ

∂t

∣∣∣
x
− Sθ̇ = S

∂θ

∂t

∣∣∣
x
+ Ẇ − Ė −∇R ·Q, (29)

where we have used the relation −Sθ̇ = Ẇ − Ė −∇R ·Q, obtained by the Legendre transformation
W = E − Sθ and the entropy balance equation (15)1.
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Finally, using the relations

ρ0π
iEi,L V L

= ρ0
(
π iEi

)
,L V L

− ρ0Eiπ
i
,L V L, f fer

·V= ρ0π
iEi,L V L

− F i
L5

KEi,K V L,

ρ0 I π̈ i ∂πi

∂t

∣∣∣
X
= ρ0 I π̇ i ∂π̇i

∂t

∣∣∣
X
= ρ0

∂

∂t

( 1
2 I π̇2) ∣∣∣

X
,

the balance equation for the polarization vector (7) multiplied by ρ0
∂πi
∂t

∣∣∣
x
,

ρ0E i ∂πi

∂t

∣∣∣
x
+ ρ0

LE i ∂πi

∂t

∣∣∣
x
+

L EEEi K
,K
∂πi

∂t

∣∣∣
x
= ρ0 I π̈ i ∂πi

∂t

∣∣∣
x
,

operating some transformations and substituting all the contributions (20)–(29) in (19), we obtain the
energy balance equation in the form

∂

∂t

[
E + ρ0(X)

( 1
2v

2
+

1
2 I π̇2

−E ·π
)] ∣∣∣

X
−∇R ·

(
T · v+ LEEE · π̇ −Q

)
= H, (30)

where
H =−ρ0π · Ė − FT

· (5 ·∇R)E · V . (31)

In the left-hand side of (30) there appear the partial time derivatives at fixed X of the internal energy
E , the kinetic energy of the material lattice, the kinetic energy of the polarization vector that has own
inertia, the interaction energy between the electric and the polarization fields and the material energy
fluxes related to the Piola–Kirchoff stress T, the shell-shell interaction tensor LEEE and the negative of
the heat flux. In the right-hand side there are energy sources due to material forces which reflect the
presence of ferroelectric effects.

Next we have

f fer
·V= ρ0π

iEi,L V L
− F i

L5
KEi,K V L

=−ρ0π
i (

F−1) L
qv

qEi,L − ρ0 F i
L(F

−1)K
j π

jEi,K V L

=−ρ0π
iEi,qv

q
+ ρ0π

jEi, jv
i
=−ρ0π

iv j (Ei, j − E j,i )= 0,

where we have taken into consideration that ∇ ×E = 0 (we are in quasielectrostatic approximation) and

5K
= JF (F−1)K

j P j
= ρ JF (F−1)K

j π
j
= ρ0(F−1)K

j π
j .

Then f fer
·V≡ 0. That means f fer has no dissipative content. Now we transform H :

H =−ρ0π · Ė − FT
· (5 ·∇R)E ·V=−ρ0π

i Ėi − F j
L5

KE j,K V L

=−ρ0π
i Ėi − ρ0 F j

L

(
F−1)K

q π
qE j,K V L

=−ρ0π
i Ėi + ρ0π

iEi, jv
j
=−ρ0π

i
(
∂Ei
∂t

)∣∣∣
x
.

Using the relations E =−∇ϕ(x, t) and ρ0π ·∇ ≡5 ·∇R , we then obtain

H = ρ0π ·∇
(∂ϕ
∂t

)∣∣∣
x
= (5 ·∇R)

(∂ϕ
∂t

)∣∣∣
x
=∇R ·

(
5
∂ϕ

∂t

∣∣∣
x

)
− (∇R ·5)

∂ϕ

∂t

∣∣∣
x
. (32)

Finally, using (32) the energy balance equation (30) reads

∂

∂t

[
E + ρ0(X)

(1
2
v2
+

1
2

I π̇2
−E ·π

)]∣∣∣
X
+∇R ·

(
T · v+5

∂ϕ

∂t

∣∣∣
x
+

LEEE · π̇ −Q
)
= H, (33)
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with

H =− (∇R ·5)
∂ϕ

∂t

∣∣∣
x
, E = Ē(F,π ,∇Rπ , θ;X). (34)

Although it is not given as a strict conservation law, this expression of the energy conservation is of
interest because (i) it can be used directly for the evaluation of the energy-release rate in the fracture
study (compare to the case of classical dielectric-piezoelectrics in [Maugin and Dascalu 1993]), and (ii)
it makes the comparison with classical electroelasticity easy in the appropriate reduction.

Indeed, in this simplified case we have

I = 0, LEEE= 0

and, for quasielectrostatics, equations (33) and (34) yield

∂

∂t

[
E − ρ0(X)E ·π

]
−∇R ·

(
T · v+5

∂ϕ

∂t

∣∣∣
x
−Q

)
=−(∇R ·5)

∂ϕ

∂t

∣∣∣
x
. (35)

Simultaneously, equations (7) and (13)2 yield E i
+

LE i
= 0,

Ei =−
LEi =−(F−1)K

i
LEK = ρ

−1
0
∂W
∂π j

(F−1)K
i F j

K , Ei = ρ
−1
0
∂W
∂πi

.

Thus, E − ρ0π ·E =W + Sθ − ρ0π ·E . Setting

W̄ =W (F,π , θ)− ρ0π ·E = W̄ (F,E, θ;X), π j = ρ
−1
0
∂W̄
∂E j

,

we finally obtain from equation (35)

∂

∂t
W̄ (F,E, θ;X)

∣∣∣
X
−∇R ·

(
T · v+5

∂ϕ

∂t

∣∣∣
x
−Q

)
=− (∇R ·5)

∂ϕ

∂t

∣∣∣
x
,

which is equation (21) in [Maugin and Dascalu 1993] if we discard the temperature effect.
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EXPLOITATION OF THE DISSIPATION INEQUALITY, IF SOME BALANCES
ARE MISSING

WOLFGANG MUSCHIK, VITA TRIANI AND CHRISTINA PAPENFUSS

The balance equations of continuum thermodynamics need constitutive equations in order to solve them
under the constraint that the entropy production appearing in the entropy balance equation must be not
negative. This dissipation inequality represents the second law of thermodynamics. There are two pro-
cedures which exploit the dissipation inequality to obtain constitutive equations which are in agreement
with the second law: the Coleman–Noll and the Liu techniques. Here we use the Liu technique in the
special case in which not all balance equations are taken into account when exploiting the dissipation
inequality. This case is of interest because often not all balances are known, or only the energy balance
is considered. It is also proved that in this abridged exploitation of the dissipation inequality, thermody-
namic restrictions for the constitutive equations are obtained, so that these satisfy the second law. These
restrictions represent a smaller class of materials than that obtained when all balances are taken into
account.

1. Introduction

The balance equations of continuum thermodynamics have the shape

Ẋ+∇ ·Y= R. (1)

The fields X(x, t), Y(x, t), and R(x, t) can be divided into three classes [Muschik et al. 2001]: They may
be wanted (or basic) fields, they may be constitutive equations which are defined on the chosen state
space Z spanned by the fields of the state space variables z(x, t),

z(x, t) ∈ Z, X(z(x, t)), Y(z(x, t)), R(z(x, t)), (2)

and they may be external given fields X(x, t),Y(x, t),R(x, t).
A special balance is that of the local entropy density s(x, t)

σs = ṡ+∇ · Js − rs ≥ 0. (3)

This inequality represents the second law of continuum thermodynamics, and is called the dissipation
inequality. The fields of the entropy production density σs(Z), of the entropy flux density Js(Z), and
of the entropy supply density rs(Z) are constitutive equations. Consequently, according to Equation (2),
these fields depend on the state space variables z(x, t), and consequently depend indirectly on space-time.

Keywords: dissipation inequality, reduced set of balances, abridged exploitation of the dissipation inequality, second law
exploitation, Coleman–Noll procedure, Liu procedure.

The paper was prepared during Triani’s stay at the Institut für Theoretische Physik, TU Berlin, and was partly delivered by
Muschik at TRECOP’07, Trends in Continuum Physics, Sept. 16–20, 2007, Lviv/Briukhovichi, Ukraina.
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Performing the derivatives in Equation (1), we obtain terms which are linear in the so-called higher
derivatives

y := (ż,∇z), (4)

which are outside the state space, and we obtain other terms from R in (1) which are independent of the
higher derivatives. Consequently, after having performed the derivatives in (1) and (3), we obtain the
so-called balances on the state space [Muschik 1990] and the dissipation inequality, which both have the
shape of an algebraic system which is linear in the higher derivatives, (4), and are given as

A · y= C, B · y≥ D. (5)

Here A and B are constitutive equations A(z(x, t)),B(z(x, t)), and C and D also consist of constitutive
equations, or are given external fields C(x, t), D(x, t)).

We now have to exploit the dissipation inequality, (5)2. For this reason, we use the second law in the
Coleman–Mizel formulation [1964] (see also [Muschik et al. 2001]):

{∧y |A · y= C} −→ B · y≥ D, (6)

This can be proved by an amendment of the second law, “Except in equilibrium subspace, no reversible
process directions exist” [Muschik and Ehrentraut 1996], and it shows the material selectivity of the
second law; A, B, C, and D are not arbitrary, but have to satisfy the second law, (6).

Two celebrated procedures for the exploitation of the second law (in Coleman–Mizel formulation) are
the Coleman–Noll procedure [Truesdell and Noll 1965] and the Liu technique [Liu 1972; Muschik and
Ehrentraut 1996]. These procedures are different from a mathematical point of view, but are equivalent
if all balance equations are taken into account in both procedures [Triani et al. 2008]. Using the Liu
procedure, by which the higher derivatives y are removed from the balances (5)1 and from the dissipation
inequality (5)2, we obtain

3 ·A= B, 3 ·C≥ D. (7)

The so-called Lagrange parameters 3 are functions on the chosen state space (2).
If the matrix A has maximal rank, there exists a right-hand reciprocal of A,

A · Ā= 1, (8)

and we obtain from (7) the Lagrange parameters

3= B · Ā. (9)

Inserting this into (7)2, we obtain the constraints on the constitutive equations in form of an inequality,

B · Ā ·C≥ D. (10)

We now ask the question of what happens when we make an abridged exploitation of the dissipation
inequality by not taking all balance equations into account, a procedure which is often performed [Erick-
sen 1991] (this occurs because people forget some balance equations or do not know all balances). In this
paper we prove that an abridged exploitation of the second law restricts the class of materials [Muschik
1990], but this restricted class does satisfy the second law. This means that neglecting balance equations
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in the exploitation procedure does not result in mistakes with respect to the second law, but the found
class of materials is too small with respect to that class derived by taking all balances into account.

2. The general case

We start out with the balances on the state space (5)1 and with the corresponding dissipation inequality
(5)2, both in matrix formulation. Because there are more higher derivatives y than balance equations the
matrix A is singular, which means there exists a set of y0 spanning the nonvanishing kernel of A,

y0
∈ ker A↔ A · y0

= 0, dim(ker A) < n. (11)

We now introduce a projector P as

ker P 6=∅, P · Ĉ= 0, Ĉ 6= 0, (12)

which reduces the number of balances which are taken into account, P ·A · y = P ·C. The projected
balances have other solutions Y than (5)1,

P ·A ·Y= P ·C. (13)

The dissipation inequality (5)2 transforms into another inequality,

BP ·Y≥ DP , (14)

which belongs to the projected balances (13). First of all, the connection between (B, D) and (BP , DP )
remains open. The reduced system of balances on the state space (13) and of the dissipation inequality
(14) now replaces the original ones, (5)1 and (5)2. The consequences of this replacement are investigated
in this paper.

Next we ask the question, if Ĉ in (12) is a solution of (5)1, then

A · ŷ= Ĉ. (15)

According to (11), all solutions of this set of balance equations can be written down in the form

ŷ= Ā · Ĉ+ y0, (16)

where Ā is the existing right-hand reciprocal (8) of A (because A has less rows than columns and is
presupposed to have maximal rank). Introducing (16) into (15) results, by using (11), in

A · Ā · Ĉ= Ĉ.

According to (8), this shows that (16) is a solution of (15). Because of (12)3, we state that for all solutions
of (15)

ŷ 6∈ ker A, (17)

is valid.
Applying the projector to (15) and using (12)2, we obtain P ·A · ŷ= P · Ĉ= 0, which means that

ŷ ∈ ker(P ·A). (18)



1128 WOLFGANG MUSCHIK, VITA TRIANI AND CHRISTINA PAPENFUSS

Because of
A · y0

= 0 → P ·A · y0
= 0, (19)

we obtain
y0
∈ ker A → y0

∈ ker(P ·A).

From (18) and (17), it follows that there are ŷ with the property

ŷ 6∈ ker A ← ŷ ∈ ker(P ·A).

Consequently, we obtain for the dimension of the kernels

dim(ker(P ·A)) > dim(ker A). (20)

This means that if the balance equations are neglected the dimension of the kernel belonging to the set of
the new balance equations becomes greater. This fact also has consequences for the dissipation inequality
(5)2.

The balance equations on state space are related to the dissipation inequality by the Coleman–Mizel
formulation of the second law [Coleman and Mizel 1964]: “Each solution of the balance equations
satisfies the dissipation inequality.” This is also true for the projected balances (13) on state space.
Consequently, we have the inductions

A · (y∗+ y0)= C → B · (y∗+ y0)≥ D,

P ·A · (Ȳ+ Ŷ)= P ·C → BP · (Ȳ+ Ŷ)≥ DP .

Because y0 and Ŷ are arbitrary elements of the kernels of A and P ·A, we obtain, in order to maintain
the dissipation inequalities,

B · y0
= 0 → B⊥ ker A,

BP · Ŷ= 0 → BP ⊥ ker(P ·A).
This results in

dim(span B)+ dim(ker A)= n,

dim(span BP)+ dim(ker (P ·A))= n.

Subtracting both the equations from each other,

dim(span B)− dim(span BP)+ dim(ker A)− dim(ker(P ·A))= 0,

and according to (20) this results in

dim(span B) > dim(span BP). (21)

The inequality (21) can be interpreted as follows: If balance equations are not taken into account when
exploiting the dissipation inequality, the found class of materials [Muschik et al. 2001] becomes smaller
and the dissipation inequality remains valid. Neglecting balance equations in the process of exploiting the
dissipation inequality does not result in violations of the second law, but the acquired class of materials is
too small. Correct exploitation, considering all balance equations, results in a greater class of materials
than when we neglect some of the balances.
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3. An example

3.1. Unabridged system of balances. We consider a state space [Muschik et al. 2001; Muschik 2004]
spanned by the internal energy density ε and by two additional vector fields, z and w,

Z= {ε, z,w}. (22)

The local balances (3), of internal energy ε and entropy s, read

ε̇+∇ · q− r = 0, ṡ+∇ · Js − rs ≥ 0, (23)

where q is the heat flux density and r the heat supply density. The second law of thermodynamics forces
the entropy production (3) to be nonnegative.

The set of governing equations for z and w is assumed to have balance form, and represent constraints
for the state space variables

ż+∇ ·9 = π, ẇ+∇ ·1= δ. (24)

Here 9 is the flux of z, 1 is the flux of w, and π and δ are their productions and supplies, respectively.
The relaxation equations of z and/or w are included by setting 9 ≡ 0 and/or 1≡ 0.

Let us now introduce two additional constitutive functions M and W, which are not in the state space,
and for which we also have balances

Ṁ(ε, z,w)+∇ ·ϒ(ε, z,w)=6(ε, z,w), (25)

Ẇ(ε, z,w)+∇ ·4(ε, z,w)=�(ε, z,w). (26)

The balance laws (23)–(26) and the entropy inequality (3) can be written in matrix formulation
[Muschik et al. 2001], with the shape of (5)1 and (5)2, as

A · y= C, B · y≥ D, (27)

where y represents the higher derivatives of the chosen state space (22), y= {ε̇, ż, ẇ,∇ε,∇z,∇w}. The
matrices A and C follow from the five balance equations (23)–(26),

A=



1 0 0 ∂q
∂ε

∂q
∂z

∂q
∂w

0 1 0 ∂9
∂ε

∂9
∂z

∂9
∂w

0 0 1 ∂1
∂ε

∂1
∂z

∂1
∂w

∂M
∂ε

∂M
∂z

∂M
∂w

∂ϒ
∂ε

∂ϒ
∂z

∂ϒ
∂w

∂W
∂ε

∂W
∂z

∂W
∂w

∂4
∂ε

∂4
∂z

∂4
∂w

 , C=



r

π

δ

6

�

 . (28)

From the entropy balance (23)2, it follows that

B=
[
∂s
∂ε

∂s
∂z

∂s
∂w

∂Js
∂ε

∂Js
∂z

∂Js
∂w
]
, D = rs . (29)

The balances and the dissipation inequality (27) are now exploited by the Liu procedure [Liu 1972;
Muschik and Ehrentraut 1996], by which the higher derivatives are removed. We introduce the so-called
Lagrange parameters,

3 := { λε λz λw λM λW }, (30)
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and, taking (28)–(29) into account, the Liu equations, (7)1, become

λε + λM ∂M
∂ε
+ λW

·
∂W
∂ε
=
∂s
∂ε
,

λz
+ λM ∂M

∂z + λ
W
·
∂W
∂z =

∂s
∂z ,

λw
+ λM ∂M

∂w + λ
W
·
∂W
∂w =

∂s
∂w ,

λε
∂q
∂ε
+ λz
·
∂9

∂ε
+ λw

·
∂1

∂ε
+ λM ∂ϒ

∂ε
+ λW

·
∂4

∂ε
=
∂Js
∂ε
,

λε
∂q
∂z + λ

z
·
∂9

∂z + λ
w
·
∂1

∂z + λ
M ∂ϒ

∂z + λ
W
·
∂4

∂z =
∂Js
∂z ,

λε
∂q
∂w + λ

z
·
∂9

∂w + λ
w
·
∂1

∂w + λ
M ∂ϒ

∂w + λ
W
·
∂4

∂w =
∂Js
∂w ,

(31)

and the residual inequality, (7)2, becomes

λεr + λz
·π + λw

· δ+ λM6+ λW
·�≥ rs . (32)

The Liu equations (31) and the residual dissipation inequality (32) represent the constraints on the con-
stitutive equations M,W,q, 9,1,ϒ, and 4 caused by the second law.

According to (8) and (7)1 the Lagrange parameters are given by (9), and the constraints on the consti-
tutive equations have the form of an inequality, as in (10).

3.2. Reduced system of balances. Now we introduce the matrix projector P, cutting the balance (26) as

P=


1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 0

 . (33)

The original system of balances, (27), is now replaced by the system (13)

P ·A ·Y= P ·C, Y 6= y, dim(span Y) > dim(span y), dim(span (P ·C)) < dim(span C).

With this replacement we are not taking into account the balance of the constitutive function W according
to (33). The Liu equations and the residual dissipation inequality, obtained by using the Liu technique
[Muschik et al. 2001], have the same algebraic form as (7) in the case of complete exploitation, consid-
ering all balances,

3P ·P ·A= BP , 3P ·P ·C≥ DP . (34)

According to (30) we have

3P = { λ
ε
P λz

P λw
P λM

P λW
P }, 3P ·P= { λεP λz

P λw
P λM

P 0 } =:30
P . (35)

The projected balances of (34),

30
P ·A= BP , 30

P ·C≥ DP , (36)
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differ from (7) by setting λW formally to zero. Consequently, (36) becomes, if (31) and (32) are taken
into account,

λεP + λ
M
P
∂M
∂ε
=
∂s
∂ε

∣∣∣
P
,

λz
P + λ

M
P
∂M
∂z =

∂s
∂z

∣∣∣
P
,

λw
P + λ

M
P
∂M
∂w =

∂s
∂w

∣∣∣
P
,

λεP
∂q
∂ε
+ λz

P ·
∂9

∂ε
+ λw

P ·
∂1

∂ε
+ λM

P
∂ϒ

∂ε
=
∂Js
∂ε

∣∣∣
P
,

λεP
∂q
∂z + λ

z
P ·
∂9

∂z + λ
w
P ·
∂1

∂z + λ
M
P
∂ϒ

∂z =
∂Js
∂z

∣∣∣
P
,

λεP
∂q
∂w + λ

z
P ·
∂9

∂w + λ
w
P ·
∂1

∂w + λ
M
P
∂ϒ

∂w =
∂Js
∂w

∣∣∣
P
,

(37)

and

λεPr + λz
P ·π + λ

w
P · δ+ λ

M
P 6 ≥ rs

P . (38)

The equations (37) and the dissipation inequality (38) are the thermodynamic constraints due to the
second law, if the balance (26) of the constitutive function W is not taken into account. These relations
are analogous to (31) and to (32). We will compare them in the next section.

3.3. Comparison. A comparison of the original Liu equations, (31), with the projected ones, (37), shows
how different spaces are generated by the Lagrange parameters. Because, according to (30) and (35)2,
5= dim(span 3) > dim(span 30

P)= 4 is valid, we obtain, according to the maximal rank of A and to
(7)1 and (36)1, dim(span B) > dim(span BP), the inequality (21), which was expected according to the
considerations of the general case.

The class of materials becomes smaller by the reduction of the balances. This yields a comparison of
the projected balances, (37), with the original ones, (31). All solutions of the projected balance equations
are also solutions of the original balance equations in the case of λW

= 0.

3.3.1. The supplies. Comparing the dissipation inequalities (32) and (38), we see that the energy supply
r is insensitive to canceling (26). The same is presupposed for the entropy supply

r P
s
.
= rs . (39)

Because energy supply and entropy supply are connected by the temperature 2,

rs =
r
2
, (40)

and we obtain from (32) and (38) with (39) and (40)[
λε −

1
2

]
r + λz

·π + λw
· δ+ λM6+ λW

·�≥ 0,
[
λεP −

1
2

]
r + λz

P ·π + λ
w
P · δ+ λ

M
P 6 ≥ 0.
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Because the energy supply is independent of all the other quantities which appear in these dissipation
inequalities and because the sign of the energy supply can be positive or negative, we obtain

λε =
1
2
= λεP .

In the next section it is proved that the entropy production is sensitive to the reduction of the balance
equations.

3.3.2. The entropy production. We now calculate relations between (B, D) and (BP , DP ). From (7) and
(34) we obtain

B=3 ·A, BP =3P ·P ·A, 3 ·C≥ D, 3P ·P ·C≥ DP ,

which results, by use of (35)2, in
B−BP = (3−3

0
P) ·A. (41)

Because A is of maximal rank, and 3 6= 30
P follows from (30) and (35)2, we obtain from (41) that

B 6= BP .

Starting out with (30)2 and (36)2, and taking (29)2 and (39) into account,

3 ·C≥ D = rs, 30
P ·C≥ DP = r P

s = rs,

and we obtain for the entropy production

σ =3 ·C− rs, σP =3
0
P ·C− rs −→ σ 6= σP . (42)

Taking (9) and the corresponding relation, 30
P =BP · Ā, into account, (42) results in σ =B · Ā ·C−rs ≥ 0

and σP = BP · Ā ·C− rs ≥ 0. We have proved that the entropy production changes when the balance
equations are reduced. But it is not clear that the entropy production becomes smaller in the reduced
case compared with the original one. Comparing (32) with (38), we do not know that λW

·� is positive.
Beyond that, we do not know the values of the remaining terms in which 3 is replaced by 30

P .

4. Conclusion

It is well known that the second law represents a constraint on the constitutive equations of a system
under consideration [Muschik et al. 2001], which means the second law, represented by the dissipation
inequality, is material-selective. When exploiting the dissipation inequality by the Liu technique, usually
one has to take into account all balance equations of the system [Triani et al. 2008]. There are several
reasons why not all balances would be included in the exploitation of the dissipation inequality: not all
balance equations are known, only the energy balance is taken into account [Ericksen 1991], or some
balances are forgotten. In these cases, an interesting question arises: What happens if not all balances
are taken into account when exploiting the dissipation inequality? The answer is that we obtain a smaller
class of materials than in the nonreduced case! This smaller class of materials does obey the second
law. Therefore, no mistakes appear with respect to the second law, if we forget some balances in its
exploitation: we are punished with a smaller class of materials, which has a different nonnegative entropy
production than in the nonreduced case. This result is important with respect to the fact that there are
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former papers in which an abridged exploitation of the dissipation inequality was performed without any
comment or notice.

The results mentioned above are obtained by choosing an abstract large state space (no after-effects)
[Muschik et al. 2001] on which the constitutive equations are defined, starting out with the Coleman–
Mizel formulation of the second law [Coleman and Mizel 1964; Muschik and Ehrentraut 1996], using
the Liu procedure for exploiting the dissipation inequality [Liu 1972; Muschik and Ehrentraut 1996],
and by presupposing that the entropy supply is insensitive to reducing the number of balances.
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VARIATIONAL PRINCIPLES FOR HEAT CONDUCTION
IN DISSIPATIVE CONTINUA

STANISŁAW SIENIUTYCZ

Applying some results of nonequilibrium statistical mechanics obtained in the framework of Grad’s
theory we evaluate nonequilibrium corrections 1s to the entropy s of resting incompressible continua
in terms of the nonequilibrium density distribution function, f . To find corrections 1e to the energy e
or kinetic potential L we apply a relationship that links energy and entropy representations of thermody-
namics. We also evaluate the coefficients of the wave model of heat conduction, such as relaxation time,
propagation speed, and thermal inertia. With corrections to L we then formulate a quadratic Lagrangian
and a variational principle of Hamilton’s (least action) type for a fluid with heat flux, or other random-
type effect, in the field or Eulerian representation of the fluid motion. Results that are significant in
the hydrodynamics of real incompressible fluids at rest and their practical applications are discussed.
In particular, we discuss canonical and generalized conservation laws and show the satisfaction of the
second law of thermodynamics under the constraint of canonical conservation laws. We also show the
significance of thermal inertia and so-called thermal momentum in the variational formulation.

Glossary of symbols

φ, 9 Lagrange multipliers pi probabilities
0 momentum density P pressure
ρe energy density Q energy flux
τ relaxation time q heat flux
θ thermal inertia R gas constant
ε equilibrium energy density R j resistance of j th process
A action r j rate of j th process
C peculiar velocity S total entropy
c0 propagation speed Sv = ρs entropy density
e specific energy s specific entropy
f distribution function T temperature
G jk matter tensor T αβ stress tensor
g inertial factor u macroscopic velocity
H Hamiltonian v diffusion velocity
j flux density V potential function
kB Boltzmann constant W total work

Keywords: wave equations, variational principles, thermal inertia, conservation laws.
The author acknowledges a support from the Warsaw TU grant: Simulation and optimization of thermal and mechanical sepa-
ration processes in 2007/2008.
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L kinetic potential w specific work
m mass of microobject x radius vector
n particle number z Pontryagin’s adjoint

1. Introduction

In this research we embed variational principles of heat transfer into the framework of extended thermo-
dynamics and discuss what can be obtained from statistical theories when describing local disequilibria
and evaluating kinetic or flux-dependent terms in energies and macroscopic Lagrangians. Assuming an
incompressible continuum in the case of fluids we consider them locally at rest, which let us eliminate
the effects of hydrodynamic velocity and focus on the heat transfer and the only phenomenon of interest.
Sections 2–4 treat statistical aspects of thermodynamic and transport properties of nonequilibrium fluids
with heat flow by applying an analysis that uses Grad’s results [1958] to determine nonequilibrium
corrections 1s or 1e to the energy e or entropy s in terms of the nonequilibrium density distribution
function f . To find corrections to the energy e or kinetic potential L we use corrections 1s and a rela-
tionship that links energy and entropy representations of thermodynamics. We also evaluate coefficients
of the wave model of heat conduction, such as relaxation time, propagation speed and thermal inertial
factors, g and θ . With these data we discuss in Sections 5–7 a variational principle of Hamilton’s (least
action) type for incompressible continua with heat flux in the field or Eulerian representation. We display
an approach that adjoins a given set of constraints to a kinetic potential L and transfers the original
variational formulation to the space of associated Lagrange multipliers. Also, we evaluate canonical
(physical) and formal (Noether’s) components of the energy-momentum tensor along with associated
conservation laws. We show that despite of the generally noncanonical form of the conservation laws
produced by Noether’s theorem the approach that adjoints constraints to given kinetic potential works
efficiently. In fact, the approach leads to exact embedding of constraints in the potential space of Lagrange
multipliers, implying that the appropriateness of the constraining set should be verified by physical rather
than mathematical criteria. In fact, the approach is particularly useful in the field (Eulerian) description of
transport phenomena, where equations of the thermal field follow from variational principles containing
state adjoints rather than original physical variables. An example of the process is hyperbolic heat transfer,
but the approach can also be applied to coupled parabolic transfer of heat, mass, and electric charge. With
various gradient or nongradient representations of physical fields in terms of state adjoints (quantities
similar to those used by Clebsch in his velocity representation [Sieniutycz 1994]), useful action-type
criteria emerge. Symmetry principles are effective, and components of the formal energy-momentum
tensor can be evaluated. While we focus on heat flow in incompressible continua our work represents,
in fact, a quite general approach that shows the methodological advantage of approaches borrowed from
the optimal control theory in variational descriptions of irreversible transport phenomena.

2. Information obtained from statistical theories

For irreversible thermodynamic systems statistical theories may be useful [Grad 1958] to evaluate non-
equilibrium corrections to energy and other thermodynamic potentials in situations when a continuum is
inhomogeneous and this inhomogeneity is associated with presence of irreversible fluxes. To illustrate
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benefits resulting from suitable findings in the field of nonequilibrium statistical thermodynamics, heat
transfer processes in locally nonequilibrium fluids can be analyzed [Sieniutycz and Berry 1989].

Quite essential in these analyses is the connection between various representations of thermodynamics
of nonequilibrium fluids and a relationship that links energy and entropy representations (resembling the
Gouy–Stodola law). Thanks to this relationship nonequilibrium corrections to the energy function can
be found from those known for the entropy function of Grad’s theory. These energy corrections will next
be used to construct suitable kinetic potentials L and formulate variational principles.

In this paper we work in the energy and Lagrangian representations of thermodynamics and focus on
the formulation of a linear variational description for heat transfer in incompressible continua. While
the linearity of the theory is certainly an approximation, it is simple and lucid enough to illustrate the
effectiveness of a (relatively unknown) variational approach based on adjoining known process equations
as constrains to a kinetic potential which is the integrand of the action functional.

The present approach differs from more conventional variational ones in that the action functional
is systematically constructed rather than assumed from the beginning. Once a variational theory is
developed for an assumed kinetic potential L it can easily be modified for improved kinetic potentials
which take more subtle effects into consideration. Equations of constraints (reversible or irreversible)
follow in the form of their representations in the space of Lagrange multipliers as extremum conditions
of a composite (constraint involving) Lagrangian 3 or its gauge counterparts. We show that as long as
representations describing physical variables of state are known in their explicit form, which expresses
these variables in terms of Lagrange multipliers, the whole variational formalism can be transferred to
the adjoint space of these multipliers, that is, a variational principle can be formulated in this (adjoint)
space. We also show how to use the Lagrangian of the problem to obtain the energy-momentum tensor
for the continuum with heat flow and formulate associated conservation laws. Finally we discuss the
coincidence conditions for formal and canonical conservation laws.

3. Thermodynamics of heat flow in energy and entropy representations

Here we recall some basic knowledge on the thermodynamics of heat flow without local equilibrium.
A process description will be developed that will next be used to construct suitable Lagrangians, vari-
ational principles, and conservation laws. We work in the framework of extended thermodynamics of
fluids [Jou et al. 2001]. We restrict ourselves to an incompressible, one-component continuum with heat
flow. In absence of an external magnetic field the rotation of the system does not change the form of
nonequilibrium function e(s, ρ, j s) which depends then only on the length of the vector j s .

Restricting to second order terms, the following is the McLaurin expansion of e with respect to j s = 0:

e(s, ρ, j s)
∼= e(s, ρ, 0)+ 1

2(∂
2e/∂ j s

2)ρ,s j s
2, (1)

where e(s, ρ, 0) = e(s, ρ) is the familiar equilibrium function of specific energy. Since (∂e/∂ js)ρ,s
vanishes at equilibrium, the first-order term is absent in expansion (1), thus the first nonvanishing term is
that quadratic with respect to j s . This notion pertains, of course, to any variable vanishing at equilibrium.
Clearly, as the second derivative (∂2e/∂ j2

s ) in (1) is determined at constant s and ρ, it depends on these
quantities as parameters.
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With Equation (1) and for j s as an independent variable describing nonequilibrium deviations, and
not too far from the equilibrium, the following equation for the perfect differential of the specific internal
energy e is deduced:

de(s, ρ, j s)=
[
T (s, ρ)+1T (s, ρ, j s)

]
ds+

[
ρ−2 P(s, ρ)+1ρ−2 P(s, ρ, j s)

]
dρ+as(s, ρ, j s)·d j s, (2)

where as = (∂
2e/∂ j s

2)ρ,s j s , from Equation (1). As, roughly, entropy flux j s is proportional to its
momentum density (thermal momentum [Sieniutycz and Berry 1989]), the vector quantity as is a measure
of the associated velocity of entropy diffusion, v= us−u, where us is the absolute velocity of the entropy
transfer and u is the hydrodynamic (barycentric) velocity. The latter is, of course zero in the case of the
resting fluid we consider. Equation (2) contains corrections 1T and 1ρ which should be added to
equilibrium intensities T (ρ, s) and ρ−2 P(ρ, s) to obtain proper nonequilibrium values T (ρ, s, j s) and
ρ−2 P(ρ, s, j s). From Equation (2) one obtains the quantities called nonequilibrium temperatures and
pressures. They are limited in the sense that they are only measures of partial derivatives of the energy
with particular nonequilibrium variables chosen to be held constant in a particular frame of variables

T (s, ρ, j s)= ∂e(s, ρ, j s)ρ, j s
/∂s and P(s, ρ, j s)= ρ

2∂e(s, ρ, j s)ρ, j s
/∂ρ.

The last quantity we define is the vector variable as(s, ρ, j s) adjoint with respect to the entropy flux j s
such that

as(s, ρ, j s)= ∂1e(s, ρ, j s)ρ,s/∂ j s,

where 1e = e(s, ρ, j s)− e(s, ρ, 0). We will also use the entropy flux adjoint based on the correction to
the energy of unit volume 1ρe

i s(s, ρ, j s)= ∂1ρe(s, ρ, j s)ρ, j s
/∂ j s, (3)

which has units of momentum per unit entropy and is more important than as . A discussion on the role
of as and i s in the definition of invariant nonequilibrium temperatures is given in Sieniutycz and Berry
[1989]. Restricted to the quadratic approximation of 1e in Equation (1) in the case of small flux j s , on
the basis of Equations (2), (3), (4) and (5), the nonequilibrium corrections 1T and 1P caused by the
presence of flux j s are

1T (s, ρ, j s)=
1
2

(
∂31e(s, ρ, j s)/∂ j2

s∂s
)

eq j2
s , (4)

with an analogous formula for 1P . These are quadratic functions of j s . From Equations (1) and (3) the
entropy flux adjoint i s is

i s(s, ρ, j s)=
(
∂2ρe(s, ρ, j s)/∂ j2

s
)

eq j s . (5)

The equilibrium subscript in Equations (4)–(6) means that the corresponding derivatives are evaluated at
the limit of j s = 0.

When the curvature of the Gibbs’ surface can be neglected, corresponding to the near-equilibrium
situation, the energy and entropy excesses are linked by an equality resembling the Gouy–Stodola law

(e− eeq)s,ρ =−T (s− seq)e,ρ . (6)

Equation (6) is derived in [Callen 1998, Appendix]. As Figure 1 shows if q is close to zero, an approx-
imation of the same temperature in points A, B, and C can be made. While heat flux densities can be
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energy
ρ = constant

q = constant

e = constant

Gibbs equilibrium
surface

q = 0

entropy

s = constant

A

B

C

D

Figure 1. For a given nonequilibrium state, point A, two equilibrium reference states
at points B and C correspond, respectively, to the energy and entropy representation. A
researcher knowing energy e formulates his description of state A in terms of equilibrium
parameters at C for a set of nonequilibrium variables (here heat flux q). However, a re-
searcher who knows entropy s (for example from distribution function f corresponding
to A) can base his modeling on the equilibrium properties at B. When point A moves the
background, equilibrium states (B and C) vary. The conventional picture of motion in
terms of Hamilton’s principle corresponds to following the behavior of B and the kinetic
energy of entropy flux, whereas the kinetic theory view corresponds to tracking of C and
the deviation of entropy from equilibrium. The transition from one view to the other is
possible [Sieniutycz and Berry 1989].

finite, they must be small and they are always small otherwise the definition of temperature will lose it
meaning. Therefore the small-flux approximation makes sense. Equation (6) is thus interpreted in Figure
1 in the case when the curvature of the line B DC can be neglected and a common temperature T can
be attributed to all reference points (B, C , or D) which is allowed for not-too-large distances of point A
from equilibrium. The equation states that the energy released during the isoentropic relaxation equals
the product of the absolute temperature and the entropy deficiency in the system caused by the presence
of an ordered quantity such as the heat flux q or the entropy flux, j s .

4. Corrections to energy or entropy in terms of nonequilibrium distribution function f

It is the entropy representation that is assumed in the formalism of the kinetic theory of Grad. The
function φ1 obtained in Grad’s method when the system’s disequilibrium is maintained by a heat flux q
is

φ1 =
2
5

(
m/Pk2

B T 2)(1
2 mC2

−
5
2 kB T

)
C · q, (7)

where m is the mass of a molecule. Hence one obtains for the entropy deviation

1s =− 1
5(m/ρPkB T 2)q2. (8)
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See [Grad 1958; Sieniutycz and Berry 1989; Jou et al. 2001] for more information about Equations (7)
and (8). Now Equation (6) is applied to evaluate the related energy deviation in terms of the entropy flux
j s = qT−1

1e = 1
5(m

2/kBρ
2) j2

s =
1
2ρ
−2g j2

s . (9)

Equations (8) and (9) hold to the accuracy of the thirteenth moment of the velocity [Grad 1958]. When
passing from Equation (8) to (9) the state equation P = ρkB T m−1 is used and the constant g of the
Taylor expansion of (9) defined as g(ρ, s)≡ ρ2

eq(∂
2e/∂ j2

s )eq is obtained in the form

g ≡
2mTρ
5PkB

=
2m2

5k2
B
. (10)

Here we have abandoned the entropy representation and use the energy representation.
The knowledge of inertial coefficients, such as g, from statistical mechanics considerations helps

calculate two basic quantities in the model of heat transfer in continua with finite wave speed. They
are thermal relaxation time τ and the propagation speed, c0. Of the several formulae available that link
quantities τ and g, probably the following expression

τ = kg(ρT )−1 (11)

is the most useful [Sieniutycz 1994, p. 199]. Its virtue is that it holds not only for fluids but for arbitrary
continua. It links thermal relaxation time τ with thermal conductivity k, inertia g, and thermodynamic
state parameters of the system.

As, by definition, the propagation speed of the thermal wave c0 = (a/τ)1/2, where a = k/(ρcp) is the
thermal diffusivity, the quantity c0 satisfies the formula

c0 =

(a
τ

)1/2
=

( T
cpg

)1/2
.

Substituting to this expression the ideal gas data, that is, g of Equation (10) and cp = 5kB/(2m), yields
the propagation speed in the ideal gas

c0 =

( T
cpg

)1/2
=

(kB T
m

)1/2
. (12)

Thus the results of nonequilibrium statistical mechanics help to estimate numerical values of damped-
wave model of heat transfer. The data of τ and c0 are used below in a variational principle for wave heat
transfer. One more coefficient that is quite useful in the wave theory of heat is the coefficient describing
a thermal mass per unit of entropy θ = T c−2

0 . For the ideal gas, Equation (12) yields the coefficient
θ = mk−1

B . We can now establish a variational principle for linear wave heat flow (Cattaneo model).

5. Adjoining a given set of constraints to a kinetic potential

For a heat conduction process described in the entropy representation by the Cattaneo equation of heat
and the conservation law for internal energy, the set of constraints is

∂q
c2

0∂t
+

q
c2

0τ
+∇ρe = 0 and

∂ρe

∂t
+∇ · q = 0, (13)
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where the density of equilibrium thermal energy ρe satisfies dρe = ρcvdT , c0 is propagation speed for
the thermal wave, τ is thermal relaxation time, and D = c2

0τ is the thermal diffusivity.
The energy-representation of the Cattaneo equation

∂ j s

c2
s ∂t
+

j s

c2
s τ
+∇T = 0 (14)

uses diffusive entropy flux j s instead of heat flux q. The coefficient cs is defined as cs ≡ (ρcvθ−1)1/2,
where θ = T c−2

0 , and thermal diffusivity k ≡ ρcvc2
0τ . Equation (14) is Kaliski’s equation [Sieniutycz

1994]. For an incompressible medium one may apply this equation in the form

∂ j s

c2
0∂t
+

j s

c2
0τ
+∇ρs = 0, (15)

which uses the entropy density ρs a and the propagation speed c0 instead of cs .
An action is assumed that absorbs constraints (13) by the Lagrange multipliers, the vector ψ and the

scalar φ. Its kinetic potential L , Equation (17) below, has a Hamilton’s form

A =
∫ t2

t1,V
ε−1

{
1
2

q2

c2
0
−

1
2
ρ2

e −
1
2
ε2
+ψ ·

( ∂q
c2

0∂t
+

q
c2

0τ
+∇ρe

)
+φ

(∂ρe

∂t
+∇ · q

)}
dV dt. (16)

Since the continuum is at rest, no kinetic energy appears in the above equation. As the kinetic potentials
can be diverse (with accuracy to a four-divergence), the conservation laws for energy and momentum
substantiate the form (16). In (16) ε is the energy density at an equilibrium reference state, the constant
which ensures the action dimension for A but otherwise is unimportant. We assume that the actual
energy density ρe is close to ε so that the variable ρe can be identified with the constant ε in suitable
approximations.

We call the multiplier-free term of the integrand of Equation (16) the kinetic potential of Hamilton
type for heat transfer

L ≡ 1
2ε
−1{q2/c2

0− ρ
2
e − ε

2}. (17)

It is based on the quadratic form of an indefinite sign, and it has the usual units of the energy density.
Remember that we deal with a nonrelativistic theory and in nonrelativistic theories kinetic potentials are
always assumed and then tested on their outcomes, never derived. This is what one should remember
before he decides to do a variational work. Yet, there may be a hint from Hamilton’s principle to define
the structure of L in the Hamiltonian form as the difference between the kinetic and static (internal)
energy. Functional (17) satisfies this property in the framework of a linear theory that we develop first,
because it leads to an explicit analytical solution. It may be shown that Equation (17) is a quadratic
approximation of the more exact Hamilton’s functional (32) below. This approximation is obtained after
the Taylor expansion of the internal energy density around and the subsequent rejection of terms linear
in ρe which do not influence the extremum conditions of the action integral (16).

Vanishing variations of action A with respect to multipliers ψ and φ recover constraints, whereas
those with respect to state variables q and ρe yield representations of state variables in terms of ψ and
φ. For the accepted Hamilton-like structure of L , Equation (17), the Euler–Lagrange equations yield

q =
∂ψ

∂t
−
ψ

τ
+ c2

0∇φ
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and

ρe =−∇ψ −
∂φ

∂t
. (18)

6. Variational formulation in the space of Lagrange multipliers

In terms of the adjoints ψ and φ, the action A, Equation (16), assumes the form

A =

t2∫
t1,V

ε−1
{

1
2c2

0

(∂ψ
∂t
−
ψ

τ
+ c2

0∇φ
)2
−

1
2

(
∇ ·ψ +

∂φ

∂t

)2
−

1
2ε

2
}

dV dt. (19)

Its Euler–Lagrange equations with respect to ψ and φ are respectively

∂

∂t

{
1
c2

0

(∂ψ
∂t
−
ψ

τ
+ c2

0∇φ
)}
+

1
τc2

0

(∂ψ
∂t
−
ψ

τ
+ c2

0∇φ
)
−∇

(
∇ ·ψ +

∂φ

∂t

)
= 0 (20)

and

−
∂

∂t

(
∇ ·ψ +

∂φ

∂t

)
+∇ ·

(∂ψ
∂t
−
ψ

τ
+ c2

0∇φ
)
= 0. (21)

It is easy to see that (20) and (21) are the original equations of the thermal field, Equations (13), in terms
of the potentials ψ and φ. Their equivalent form below shows the damped wave nature of the transfer
process. In fact, Lagrange multipliers ψ and φ of this (sourceless) problem satisfy certain inhomogeneous
wave equations. In terms of the modified quantities ψ and 8 satisfying 9 = ψτc2

0 and 8 = −φτc2
0;

these equations are

∇
2ψ −

∂2ψ

c2
0∂t2
+

∂ψ

τc2
0∂t
= q and ∇

28−
∂28

c2
0∂t2
+

∂8

τc2
0∂t
= ρe.

As both original state variables (q, ρe) and adjoints (ψ, φ) appear in these equations, they represent, in
fact, mixed formulations of the theory. Still they are interesting as they show that for given densities
q and ρe thermal energy transfer can be broken down to potentials. The situation is similar to that in
electromagnetic theory or in gravitation theory, where the specification of sources defines the behavior
of the field potentials.

Numerical simulation of thermal fields described by (20) and (21) involves the above equations for
known potential functions ψ(x, t) and φ(x, τ ) and given coefficients of wave model, c0 and τ . The way
to calculate the fields ψ(x, t) and φ(x, τ ) is provided by the variational principle (19). The principle
ensures, in fact, optimal values of thermal fields ψ(x, t) and φ(x, τ ) that are simultaneously solutions of
Cattaneo and energy balance equations. In particular, the simulation can involve behavior of imperfect
fluids, the application case being polymeric fluids where the quantitative role of relaxation terms is
pronounced. Of course, in case of these fluids one should no longer use the ideal gas data but general
thermodynamic formulae for coefficients of the wave model, that is, Equation (11), should be applied.

7. Source term in internal energy equation

However, while simple and useful, the method of construction of a suitable action A in the space of
potentials by the direct substitution of the representation equations to the kinetic potential L is limited
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to cases with linear constraints that do not contain sources. This may be exemplified when the internal
energy balance contains a source term a′q2, where a′ is a positive constant. The augmented action
integral, generalizing Equation (16), should now contain the negative term −a′q2 in its φ term

−∇ · q =
∂ρe

∂t
− a′q2. (22)

The energy representation is unchanged, but the heat flux representation follows in a generalized form

q = (1− 2a′φc2
0)
−1
(∂ψ
∂t
−
ψ

τ
+ c2

0∇φ
)
. (23)

Substituting Equations (18) and (23) into action A of Equation (16) (L of (17)) shows that in terms
of the potentials the action acquires the form

A =
∫ t2

t1,V
ε−1

{
1

2c2
0
(1− 2a′φc2

0)
−2
(∂ψ
∂t
−
ψ

τ
+ c2

0∇φ
)2
−

1
2

(
∇.ψ +

∂φ

∂t

)2
−

1
2
ε2
}

dV dt. (24)

However, the Euler–Lagrange equations for this action are not the process constraints in terms of
potentials, that is, the method fails to provide a correct variational formulation for constraints with sources.
The way to improve the situation is to substitute the obtained representations to a transformed augmented
action in which the only terms rejected are total time or space derivatives. The latter can be selected via
partial differentiation within the integrand of the original action A. (As we know from the theory of
functional extrema the addition of negative terms with total derivatives and divergences do not change
extremum properties of a functional.) When this procedure is applied to the considered problem and
total derivatives are rejected, a correct action follows in the form

A =
∫ t2

t1,V
ε−1

{
1

2c2
0
(1− 2a′φc2

0)
−1
(∂ψ
∂t
−
ψ

τ
+ c2

0∇φ
)2
−

1
2

(
∇ ·ψ +

∂φ

∂t

)2
−

1
2
ε2
}

dV dt. (25)

This form differs from that of Equation (24) only by the power of the term containing the constant
a′, related to the source. With the related representation equations (18) and (23), action (25) yields the
proper Cattaneo constraint (13) (left) and the generalized balance of internal energy which extends (13)
(right) by the source term a′q2.

Equation (24) proves that four-dimensional potential space (ψ, φ) is sufficient to accommodate an
exact variational formulation for the problem with a source. Yet, due to the presence of this source,
the formulation does not exist in the original four-dimensional original space (q, ρe), and, if somebody
insists to exploit this space plus possibly a necessary part of the potential space, the following action is
obtained from Equations (18), (23), and (25)

A =
∫ t2

t1,V
ε−1

{
(1− 2a′φc2

0)
q2

2c2
0
−

1
2
ρ2

e +
1
2
ε2
}

dV dt. (26)

This form of A shows that, when original state space is involved, the state space required to accom-
modate the variational principle must be enlarged by inclusion of the Lagrange multiplier φ as an extra
variable. In fact, Equation (26) proves that original state space (physical space) is lacking sufficient
symmetry (Vainberg’s theorem [Sieniutycz 1994]). Yet, as Equation (26) shows, the adjoint space of
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potentials (ψ, φ), while also four-dimensional as space (q, ρe), can accommodate the variational for-
mulation. Why is this so? Because the representation equations do adjust themselves to the extremum
requirement of A at given constraints, whereas the given constraints without controls cannot exhibit any
flexibility.

Somewhat surprisingly, it follows that a source term in the internal energy balance, as in Equation (22),
should be the necessary property of the Cattaneo model, else the energy conservation will be violated.
Indeed, aimed at the evaluation of energy conservation we multiply the nontruncated Cattaneo formula

∂q
c2

0∂t
+

q
c2

0τ
+∇ρe = 0

by the heat flux q. The result is an equation

∂q2

2εc2
0∂t
−
ρe

ε
∇ · q+∇ · (ε−1qρe)=−

q2

εc2
0τ
, (27)

which describes an energy balance We observe that the combination of this balance with the sourceless
balance of internal energy,

∂ρe

∂t
+∇ · q = 0,

leads to a differential result

∂q2

2εc2
0∂t
+
ρe

ε

∂ρe

∂t
+∇ · (ε−1qρe)=−

q2

εc2
0τ
,

which — under the linear approximations of the present theory — does not yield a conservation law for
the total energy but a balance formula with an energy source

∂

∂t

( q2

2εc2
0
+ ρe

)
+∇ · (ε−1qρe)=−

q2

εc2
0τ
.

This shows violation of the total energy conservation for the sourceless internal energy of the model,
and leads to the conclusion that the model composed of the Cattaneo equation and sourceless balance of
internal energy is physically admissible only in the reversible case of an infinite τ . Certainly, this is not a
demanded property of the energy transfer model, thus a further analysis is required. The solution of the
dilemma seems to admit a sufficiently large, yet a nonvanishing, source in the internal energy balance.

Admitting a source of the internal energy, as in Equation (22), and using Equation (22) in Equation
(27) we find

∂q2

2εc2
0∂t
+
ρe

ε

∂ρe

∂t
−
ρe

ε
a′q2
+∇ · (ε−1qρe)=−

q2

εc2
0τ
.

From this formula we observe that for a′ satisfying

a′ =
1

ρc2
0τ
=

1
ρcvDhT

=
1

kT
. (28)
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and — under the approximation of the linear theory — conservation of total energy is satisfied by the
sourceless equation

∂

∂t

( q2

2εc2
0
+ ρe

)
+∇ · (ε−1qρe)= 0. (29)

The positive value of a′ in Equation (28) implies generation of the internal energy in the heat transfer
process, as described by Equation (22). Still, the internal energy equation with the positive source caused
by the quadratic heat flux is a dubious structure. Nonetheless, it is a step forward in comparison with
sourceless internal energy balance as we may observe that this generation awkwardly mimics the entropy
production with the coefficient a = T a′= 1/k. This finally leads us to the conclusion that it is the entropy
balance with the source j2/k and that it should replace Equation (22).

Replacing Equation (22) with a′ of Equation (28) by its conserved counterpart expressed in entropy
terms T ∂ρs

∂t =−∇ · q, where ρs is equilibrium entropy density, we expect to obtain better results. After
rearranging

∂ρs

∂t
=−∇ ·

( q
T

)
+ q · ∇T−1

and using in this result a suitable form of the Cattaneo equation (13) (left)

−
τ

λT 2

∂q
∂t
+∇T−1

−
q
λT 2 = 0,

we obtain
∂ρs

∂t
=−∇ ·

( q
T

)
+ q ·

( τ

λT 2

∂q
∂t
+

q
λT 2

)
,

and hence the second law balance for the entropy of extended thermodynamics is

∂

∂t

(
ρs −

τ

2λT 2 q2
)
+∇ · (qT−1)=

q2

λT 2 .

The total energy is conserved in the linearized form (29) or in an exact form

∂

∂t

(T τ j2
s

2k
+ ρe

)
+∇ · (T j s)= 0. (30)

We shall now see what can be obtained in the energy representation.

8. Action and extremum conditions in variables js and ρs

The theory developed so far gives an important hint on how to proceed to a more general formulation
which is capable of including the effects of hydrodynamic motion and compressibility of the continuum.
Here we shall only outline this problem restricting the variational formulation to the case of resting fluids
and relegating all details of the generalized variations to a future paper. In the generalized description
we shall proceed to the energy representation, where the constraining set includes Kaliski’s counterpart
of the Cattaneo equation, Equation (15), and the entropy balance with a source

∂ρs

∂t
+∇ · (ρsu+ j s)= a j2

s . (31)
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The coefficient a is a positive constant, equal to the reciprocal of thermal conductivity k. The form (31)
is valid in both classical and extended thermodynamics. The virtue of using the energy representation is
that in this frame there is no need to restrict to the special quadratic form of Equation (17). In fact, here
is the proper context to include hydrodynamic effects and to design quite diverse nonlinear expressions
of Hamilton’s type describing the difference between kinetic and internal energies. Assuming as before
the absence of external fields, the kinetic potential L of a general process with hydrodynamic effects
follows in the form

L = ρ
u2

2
+

j2
s

2c2
s
− ρe(ρs, ρ), (32)

where a variable mass density of the fluid is ρ. Equation (32) contains the same kinetic energy of heat
which is present in Equation (17), but here this energy is expressed in terms of the entropy flux rather
than heat flux. Below we outline the related resting-medium theory.

For a resting medium with a constant density ρ the composite action A assumes the form

A =
∫ t2

t1,V

{
j2

s

2c2
s
− ρe(ρs, ρ)+ η

(∂ρs

∂t
− a j2

s +∇ · j s

)
+ψ ·

( ∂ j s

c2
0∂t
+

j s

c2
0τ
+∇ρs

)}
dV dt. (33)

Again, the Lagrange multipliers, scalar η and vector ψ , absorb the process constraints. Equation (33) is
a truncated form of a more general action that describes the heat and fluid flow in the case when mass
density changes and a finite mass flux (represented by the convection velocity u) is present. This general
action is not considered here. The simplified form (33) is sufficient to our present purpose; it selects the
heat transfer as the basic process of investigation.

The representations of physical variables in terms of ψ , η and φ follow from the stationarity conditions
of A. These are

δ j s : (c
−2
s − 2aη) j s =

∂ψ

c2
0∂t
−
ψ

c2
0τ
+∇η, (34)

δρs : T (ρs, ρ)=−∇ ·ψ −
∂η

∂t
. (35)

From Equation (34) we obtain a nongradient representation of the diffusive entropy flux in terms of the
Lagrange multipliers

j s = (c
−2
s − 2aη)−1

( ∂ψ
c2

0∂t
−
ψ

c2
0τ
+∇η

)
. (36)

The Lagrange multipliers are potentials in terms of which a variational formulation is constructed. Yet,
there is no theoretical argument to assume that the extremum properties of the action applying the above
representations in the kinetic potential (32) should generally be the same as those of the augmented
quantity (33). The constraint term (with multipliers), while vanishing, also contributes to the extremum
properties. What is possible, however, is the partial integration, which ensures that the Euler–Lagrange
equations of the augmented and transformed functional are the same. For the functional (33) the partial
integration yields the transformed action

A′ =
∫ t2

t1,V

{
j2

s

2c2
s
− ρe(ρs, ρ)− ρs

∂η

∂t
− ηa j2

s − j s · ∇η− j s ·
∂ψ

c2
0∂t
+
ψ · j s

c2
0τ
− ρs∇ ·ψ

}
dV dt. (37)
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Since the mass density is not varied, we obtain with the representations (35) and (36) a transformed
action that includes the free energy density fe = ρe− Tρs

A′ =
∫ t2

t1,V

{
(2aηc2

s − 1)
j2

s

2c2
s
− (ρe− Tρs)

}
dV dt. (38)

Taking into account that the case of nonvaried mass density corresponds here to the vanishing chemical
potential µ, it may be shown that this quantity constitutes a particular type of the pressure action similar
to that known in perfect fluid theory. Yet the action obtained includes the Lagrange multiplier η of the
entropy balance with the positive source a j2

s . The situation is similar to that in the process with a source
of internal energy, Equation (25). Namely, to obtain an action functional for an irreversible process
of heat transfer, associated with a finite entropy source, the state space required to accommodate the
variational principle must be enlarged by inclusion of the Lagrange multiplier η as an extra variable. Yet,
in the adjoint space only Lagrange multipliers (potentials) and their derivatives are the arguments of the
action integrand. The potential representation of action (38) has the form

A′ =
∫ t2

t1,V

{
−

c2
s

2(1− 2aηc2
s )

( ∂ψ
c2

0∂t
−
ψ

c2
0τ
+∇η

)2
− fe

(
−∇ ·ψ −

∂η

∂t
, ρ
)}

dV dt. (39)

Its Euler–Lagrange conditions are Equations (15) and (31) with variables ρs and j s expressed in terms
of η and ψ , Equations (35) and (36). Thus the variational principle is established.

9. Energy conservation and source term in entropy equation

For Equation (31), the entropy source satisfies σs =−∂L ′/∂η. The total entropy production correspond-
ing to action (39) assures the satisfaction of the second law of thermodynamics

Sσ =−
∂A′

∂η
=

∫ t2

t1,V

{
ac4

s

(1− 2aηc2
s )

2

( ∂ψ
c2

0∂t
−
ψ

c2
0τ
+∇η

)2
}

dV dt =
∫ t2

t1,V
a j2

s dV dt.

Let us analyze the differential entropy source in some detail. After transforming the variational sta-
tionarity condition of action (37) with respect to ψ

∂ j s

c2
0∂t
+

j s

c2
0τ
+∇ρs = 0

to the form
∂ j s

c2
0∂t
+

j s

c2
0τ
=−ρcv∇T−1,

and using the relation between coefficients cs and c0, c2
s = c2

0(ρcvT−1), we obtain Kaliski’s equation of
entropy transfer [1965] with the explicit temperature gradient

∂ j s

c2
s ∂t
+

j s

c2
s τ
+∇T = 0.

After multiplying Kaliski’s equation above by j s we find

∂ j2
s

2c2
s ∂t
+∇ · (T j s)− T∇ · j s =−

j2
s

c2
s τ
. (40)
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Under the assumption of the entropy conservation Equation (40) would yield an equation

∂ j2
s

2c2
s ∂t
+∇ · (T j s)+ T

∂ρs

∂t
=−

j2
s

c2
s τ
,

thus leading to the following energy balance

∂

∂t

( j2
s

2c2
s
+ ρe

)
+∇ · (T j s)=−

j2
s

c2
s τ
.

This result implies a nonvanishing source of the energy and means that the assumption of the conserved
entropy would result in the violation of the energy conservation law.

Yet, for the physical entropy satisfying the nonconserved balance

−∇ · j s =
∂ρs

∂t
− a j2

s , (41)

with the coefficient a equal to the reciprocal of thermal conductivity

a =
1

T c2
s τ
=

1
k
. (42)

Total energy balance follows from Equations (40)–(42) in a form that is conservative because the two
source terms mutually cancel:

∂

∂t

( j2
s

2c2
s
+ ρe

)
+∇ · (T j s)− T a j2

s =−
j2

s

c2
s τ
. (43)

The action A′ that assures the energy conservation is

A′ =
∫ t2

t1,V

{(2η− T τ
k

) j2
s

2
− (ρe− Tρs)

}
dV dt.

Importantly, even when the conservation laws are satisfied in irreversible processes in their canonical
form, the related extremum action and potential representations of physical variables do explicitly contain
potentials not only their derivatives.

We may thus claim that whenever a irreversible process occurs with the coefficient a satisfying Equa-
tion (42), canonical conservation laws can be obtained from Noether’s theorem. In particular the energy
conservation law has the form

∂

∂t

( j2
s

2c2
s
+ ρe

)
+∇ · (T j s)= 0.

As the coefficient c2
s = k(T τ)−1, the above equation is equivalent with Equation (30)

∂

∂t

(T τ j2
s

2k
+ ρe

)
+∇ · (T j s)= 0.

In conclusion, the mathematical scheme obtained preserves the conservation of energy and simultaneous
production of the entropy in accordance with laws of thermodynamics.
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10. Concluding remarks

Our statistical evaluation of corrections 1L to the kinetic potential L has lead to the variational wave
model of heat conduction containing relaxation time, propagation speed, and thermal inertia as the basic
coefficients. Applying the corresponding action functional and the variational principle of Hamilton’s
type we have proved generalized conservation laws for energy and momentum which include terms
responsible for the effects associated with the heat inertia and obtained the associated second law of
thermodynamics. The most important properties of the generalization are a finite momentum of heat and
the nonclassical terms in the stress tensor caused by the heat flux. With all this one still has both the
first and the second law satisfied. Here the product of temperature T and the positive entropy source of
Equation (41) (quadratic in j s) emerges as the kinetic energy of heat in the energy balance (43). While
this result is simple, its role is nontrivial for the existence of the variational formulation. Let us recall
that in the variational dynamics of real fluids it is always extremely difficult to simultaneously satisfy
both laws of thermodynamics (the classical Hamilton’s principle holds only for reversible processes, that
is, those without entropy production).

In irreversible situations, it may be necessary to absorb more constraints in the action functional. In
fact, thermodynamic irreversibility complicates potential representations of physical fields in comparison
with the representations describing the reversible evolution.

The problem of thermal energy transfer can be broken down to the problem of related potentials, as
in the case of electromagnetic and gravitational fields. We have displayed inhomogeneous equations
describing heat transfer in terms of thermal potentials and sources of the field. These equations show
that sources of the thermal field are heat flux q and energy density ρe. In heat transfer theory, these results
yield a situation similar to that in electromagnetic or gravitational field theories, where specification of
sources (electric four-current or the matter tensor, respectively) defines the behavior of the potentials.
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NON-NEWTONIAN FLUID FLOW IN A POROUS MEDIUM

ANITA USCILOWSKA

This paper presents the properties of non-Newtonian fluid flow in a porous medium. A numerical study
on Brinkman flow is considered. It is assumed that the flow is isothermal. The governing equations
are included. The steady-state problem is considered. The problem is nonlinear, described by coupled
equations and boundary conditions. To solve the problem, a method based on the method of fundamental
solutions for solving nonlinear boundary problems is proposed. The numerical experiment is performed
and results are discussed.

1. Introduction

Dynamic porous media analysis is a powerful tool used for solving many everyday engineering problems,
such as earthquake engineering, soil-structure interaction, biomechanics, et cetera. Moreover, the non-
Newtonian fluid flow in porous media is very important due to its practical engineering applications, such
as oil recovery, food processing, and materials processing. NonNewtonian fluids in porous media exhibit
a nonlinear behaviour that is different from that of Newtonian fluids. An analysis of flow behaviour of
non-Newtonian fluids is presented by Skerget and Sames [1999]. The boundary domain integral method
for the numerical simulation of unsteady incompressible Newtonian fluid flow is extended to analyse the
effects of available non-Newtonian viscosity. The method was applied to the Rayleigh–Benard natural
convection problem. The problem mentioned above was solved also in [Huang et al. 1999] using the
finite element method. In [Bernal and Kindelan 2007] the problem of injecting a non-Newtonian fluid
into a thin cavity was considered. Using the Hele–Shaw approximation the problem reduces to a moving
boundary problem in which the pressure is described by a two-dimensional nonlinear, elliptic equation.
Mesh-free methods are very well suited for the numerical solution of moving boundary problems since no
remeshing is needed at each time step to correctly represent the boundary. Among these methods, Bernal
and Kindelan [2007] have chosen the asymmetric RBF collocation method (Kansa’s method), a mesh-
free method. The numerical experiment is performed to test different boundary conditions. The other
method to simulate the turbulent non-Newtonian flow was proposed in [Rudman and Blackburn 2006]. A
spectral element Fourier method for direct numerical simulation of the turbulent flow of non-Newtonian
fluids is described and the particular requirements for non-Newtonian rheology are discussed.

For non-Newtonian fluids the phenomena of natural convection in porous media has attracted more
attention during recent years. The problem is discussed in the literature by many authors [Hadim 2006;
Cheng 2006]. Some numerical methods have been proposed for solving the considered problem. The
purpose of [Jecl and Skerget 2003] was to present the use of the boundary element method in the analysis
of the natural convection in the porous cavity saturated by the non-Newtonian fluid. The results of

Keywords: non-Newtonian fluid, porous media, fundamental solutions method, Carreau model, Brinkman equation, method of
fundamental solutions.
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hydrodynamic and heat transfer evaluations were reported for the configuration in which the enclosure
is heated from a side wall while the horizontal walls are insulated. The flow in the porous medium was
modelled using the modified Brinkman extended Darcy model taking into account the nonDarcy viscous
affects. Sarler et al. [2004] described the solution of a steady natural convection problem in porous media
by the dual reciprocity boundary element method. The boundary element method for the coupled set of
mass, momentum and energy equations in two dimensions was structured by the fundamental solution
of the Laplace equation. Numerical examples were presented. The solution was assessed by comparison
with reference results of the fine-mesh finite volume method.

The main purpose of this work is to consider an isothermal flow of non-Newtonian fluid in a porous
medium. The problem is described by the equation of mass conservation and Brinkman equation. These
equations give boundary value problem consisted of a system of nonlinear coupled equations and non-
linear coupled boundary conditions. The method of fundamental solutions (MFS) is implemented to
solve the nonlinear problem. The algorithm for the nonlinear coupled equations with nonlinear boundary
conditions is proposed and applied to the considered problem.

2. Problem description

The steady-state problem in a porous medium is considered. The porous medium is saturated with non-
Newtonian fluid. The considered region is presented in Figure 1. The edges of the considered reservoir
are insulated, except for two pieces of edge which are open. There is a difference between pressure on
two open edges that causes the fluid to flow. The following assumptions are made:

(i) the only phase flowing is the fluid of constant composition;

(ii) The fluid is non-Newtonian;

(iii) flow is isothermal;

(iv) the permeability of the porous medium is constant and uniform;

(v) gravitational forces are neglected.

Figure 1. Geometry of the porous medium.



NON-NEWTONIAN FLUID FLOW IN A POROUS MEDIUM 1153

3. The non-Newtonian fluid

To introduce the equations governing the non-Newtonian fluid flow, some general auxiliary parameters
are described. The shear-thinning non-Newtonian fluids are ones whose rheology is described by a
generalised Newtonian model. Such fluids have an isotropic viscosity that is a function of flow properties.
Extra stress tensor S is commonly known as a tensor which is related to the deformation rate by the
constitutive equation

Si j = αδi j +βGi j + γGi j Gi j , (1)

where α, β and γ are functions of three scalar invariants of Gi j

I1 = Gi i , I2 = Gi j G j i , I3 = Gi j G jk Gki , (2)

so
α = α(I1, I2, I3), β = β

(
I1, I2, I3), γ = γ

(
I1, I2, I3), (3)

and the deformation rate tensor (the rate of strain tensor) is defined as

G=∇v+
(
∇v
)T
, (4)

where v is the velocity field.
Equation (1) is the most general formula for the extra stress of the viscous shear flow. Such fluids

are usually called Reiner–Rivlin fluids. For incompressible materials, I1 equals zero and α, β and γ
are considered as functions of I2 and I3. It is recognised that it is far too general to solve a specific
flow problem. In order to numerically solve different types of flow problems, there have been many
constitutive models in the fluid flow literature proposed by investigators. There is, however, a fairly
large category of fluids for which the velocity is not independent of the rate of shear and these fluids are
referred to as non-Newtonian. If the viscosity is considered as a function of the invariant I2 many more
practical flow problems can be solved. Then S = η(I2)G, which represents a generalised Newtonian

fluid. The shear rate is defined by γ̇ =
√

1
2 I2.

Several models are known for non-Newtonian fluids, such as power law fluids or Carreau fluids. In
this paper the Carreau fluid is considered. The viscosity for the model is described by the formula

µ= µ∞+
(
µ0−µ∞

)(
1+ (Aγ̇ )2

) B−1
2 ,

where µ0 and µ∞ are asymptotic viscosities (measured in Pa) at large and small strain rates, respectively.
A, B are fluid-specific constants (measured in s−1) determined by plotting the observed viscosity as a
function of strain rate on a log-log plot, for example. The Carreau model is particularly well-suited for
certain dilute, aqueous, polymer solutions and melts.

4. The equations of non-Newtonian fluid flow in porous media

The motion of the fluid in porous media is described by the Brinkman equation for a viscous incom-
pressible isothermal fluid (the momentum equation), the continuity equation and the thermal diffusion
equation. The Brinkman equation is in the form

ρ0
∂v
∂t
=−∇ p+∇ · S+

η

k
v+F, (5)
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where ρ0 is the mass density of the fluid, v is the velocity field, p is the pressure, µ is the viscosity, k is
the permeability of the porous structure. In the case of incompressible fluid the equation of the continuity
reads

∇ · v= 0. (6)

The considered problem is two-dimensional, so the system of equations (5), (6) has the form

η∇2v1 =−
∂p
∂x1
+ 2

(
∂η

∂x1

∂v1

∂x1
+
∂η

∂x2

(∂v1

∂x2
+
∂v2

∂x1

))
−
η

k
v1,

η∇2v2 =−
∂p
∂x2
+ 2

(
∂η

∂x2

∂v2

∂x2
+
∂η

∂x1

(∂v1

∂x2
+
∂v2

∂x1

))
−
η

k
v2,

∇
2 p = 2

(
∂2η

∂x2
1

∂v1

∂x1
+
∂2η

∂x2
2

∂v2

∂x2
+

∂2η

∂x1∂x2

(∂v1

∂x2
+
∂v2

∂x1

))
+
∂η

∂x1

(
∇

2v1+
∂2v1

∂x2
2
+
v1

k

)
+
∂η

∂x2

(
∇

2v2+
∂2v2

∂x2
1
+
v2

k

)
.

(7)

The boundary conditions are detailed below. For the boundaries of the region the no-slip condition is
applied. This means that

v1 = 0, v2 = 0, (8)

for{
(x, y) |

(
(b < x < a)∩ (y = 0)

)
∪
(
(x = a)∩ (0< y < a)

)
∪
(
(0< x < a− b)∩ (y = a)

)
∪
(
(x = 0)∩ (0< y < a)

)}
.

The velocities on the open edges should meet the conditions

∂v1

∂n
= 0,

∂v2

∂n
= 0, (9)

for
{
(x, y) |

(
(0< x < b)∩ (y = 0)

)
∪
(
(a− b < x < a)∩ (y = a)

)}
. The boundary condition for the

pressure field at insulated edges is

∇ p−∇ · η
(
∇v+

(
∇v
)T )
= 0, (10)

for{
(x, y) |

(
(b < x < a)∩ (y = 0)

)
∪
(
(x = a)∩ (0< y < a)

)
∪
(
(0< x < a− b)∩ (y = a)

)
∪
(
(x = 0)∩ (0< y < a)

)}
,

where v =
(
v1, v2

)
. The flow is imposed by pressure difference on both open edges. Therefore, the

boundary conditions are

p = p1 for
{
(x, y) |

(
(0< x < b)∩ (y = 0)

)}
, (11)

p = p2 for
{
(x, y) |

(
(a− b < x < a)∩ (y = a)

)}
. (12)
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Moreover, the condition p1 > p2 has to be introduced. The problem consisting of equations (7) and
boundary conditions (8)–(12) was solved in this paper using the method of fundamental solutions sup-
ported by Picard iterations.

5. Method of fundamental solutions for nonlinear problems

The nonlinear problem is written in a general form

Anu(x)= fn(x), (13)

for x ∈�, where Ne is the number of equations, n = 1, . . . , Ne, An is a nonlinear partial differential op-
erator, fn are known functions and � is a region in which the equations are determined. The coordinates
of the points are given by x=

(
x1, . . . , xN

)
. The solution requires to calculate u(x)=

(
u1(x), . . . uNe(x)

)
.

For the considered problem the boundary conditions are given by

Blu(x)= gl(x), (14)

for x ∈ 0 and l = 1, . . . , Nbc, where 0 is the boundary of the region � and Nbc is a number of all
boundary conditions defined for the considered problem.

In the case that the nonlinear operator can be written as a sum of linear and nonlinear operators, the
method of Picard iterations is applied. The nonlinear operator An is rewritten as

An = Ln + Nn, (15)

where Ln is the linear partial differential operator of An and Nn is a nonlinear partial differential operator.
The system of differential equations (13) is written as a system of linear differential equations. The
nonlinearity of equation is added to the inhomogeneous part of the equation. Therefore, the considered
system of equations has the form

Lnu(x)= fn(x)− Nnu(x), (16)

for x ∈�, where n = 1, . . . , Ne. Of course, the boundary conditions (14) are still valid. The proposed
transformation of the system of coupled nonlinear equations gives the system of quasilinear equations in
implicit form. In order to solve such a system of equations the Picard iterations are implemented. The
iterative fashion of the considered system of equations is given as

Lnu(k)(x)= fn(x)− Nnu(k−1)(x), (17)

for x ∈�, where n = 1, . . . , Ne and k = 1, 2, . . .. Each of the equations determined in k-th iteration step
is solved with the method of fundamental solutions with boundary conditions

Blu(k)(x)= gl(x), (18)

for x ∈ 0 and l = 1, . . . , Nbc. The inhomogeneous part of each equation is approximated by radial basis
functions and polynomials.

The iterative process begins with initial approximations of the solution, which is obtained by solving
the auxiliary boundary value problem

Lnu(0)(x)= fn(x), (19)
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for n = 1, . . . , Ne. The set of equations (19) can be viewed as a system of uncoupled linear equations.
Each equation is solved by method of fundamental solutions with proper boundary condition

Blu(0)(x)= gl(x), (20)

for x ∈ 0 and l = 1, . . . , Nbc. If the functions fn(x) do not equal zero, they are approximated by radial
basis functions and polynomials. The iterative process has to be stopped if the obtained results reach
demanded accuracy. There are some criteria. In this paper the convergence is defined by thresholding
the error of obtained solution

Ea = max
1≤i≤NC

max
1≤n≤Ne

∣∣∣u(k)n
(
xC

i
)
− u(k−1)

n
(
xC

i
)∣∣∣, (21)

where
{
xC

i

}NC

i=1 is a set of trial points with arbitrary chosen number of trial points NC . Than the condition
to stop the iteration problem is

Ea < ε, (22)

where ε denotes a threshold which a small number such as 10−5.

6. Numerical experiment

For considered problem of non-Newtonian fluid flow in porous media the following notation is introduced

x= (x1, x2), u(x)=
(
u1(x), u2(x), u3(x)

)
=
(
v1(x), v2(x), p(x)

)
. (23)

Then, the set (13) is rewritten as

A1u= f1(x), A2u= f2(x), A3u= f3(x), (24)

with proper boundary conditions. The boundary conditions (14) are the conditions coupling the flow
velocities and pressure in porous media. Moreover, one of these conditions consists of a nonlinear
operator. Therefore, at every iteration step it is modified using the solution of previous iteration step. In
the considered method the set (17) is rewritten in the form of iterative equations

∇
2u(k)1 (x)= f1(x)− N1u(k−1)(x),

∇
2u(k)2 (x)= f2(x)− N2u(k−1)(x),

∇
2u(k)3 (x)= f3(x)− N3u(k−1)(x),

(25)

for k = 1, 2, . . ..
Equation (25) are Poisson equations. The inhomogeneous part in each equation is a sum of the

functions of independent variables ( f1(x), f2(x), f3(x)) and the part determined by nonlinear operators
(N1u(x), N2u(x), N3u(x)). The system of equations (25) is solved with modified boundary conditions at
each iteration step. At the k-th step of procedure the boundary conditions are computed with equations
given above. On the boundary the no-slip condition is

u(k)1 = 0, u(k)2 = 0,

∇u(k)3 −∇ · η
(
∇(u(k)1 , u(k)2 )+

(
∇(u(k)1 , u(k)2 )

)T
)
= 0, (26)
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for{
(x, y) |

(
(b < x < a)∩ (y = 0)

)
∪
(
(x = a)∩ (0< y < a)

)
∪
(
(0< x < a− b)∩ (y = a)

)
∪
(
(x = 0)∩ (0< y < a)

)}
.

In the case of an open edge on a boundary the normal flow is defined with

∂u(k)1

∂y
= 0,

∂u(k)2

∂y
= 0, (27)

for
{
(x, y) |

(
(0< x < b)∩ (y = 0)

)
∪
(
(a− b < x < a)∩ (y = a)

)}
. Pressure is given as

u(k)3 = p1, (28)

for
{
(x, y) |

(
(a− b < x < a)∩ (y = a)

)}
. At the beginning of the iterative procedure the initial values

of unknown variables are set. In the considered case initial values are chosen as

u(0)1 = 0, u(0)2 = 0, u(0)3 = 0, (29)

∂u(0)1

∂x
= 0,

∂u(0)1

∂y
= 0,

∂u(0)2

∂x
= 0,

∂u(0)2

∂y
= 0. (30)

Then the system of Poisson equations is obtained

∇
2u(1)1 = f1(x), ∇

2u(1)2 = f2(x), ∇
2u(1)3 = f3(x)− N3u(1)(x), (31)

with the boundary conditions (26)–(28) applied with k = 1.
The solution is obtained in five iterations. Figures 2, 3 and 4 show, respectively, the vertical component

of a velocity field, the horizontal component of the velocity field and the pressure field in a porous
medium. It can be observed on the graphs that the boundary conditions for velocity and pressure are
met.

Figure 2. Component v1 of velocity of non-Newtonian fluid in the porous medium.



1158 ANITA USCILOWSKA

Figure 3. Component v2 of velocity of non-Newtonian fluid in the porous medium.

The velocity of a non-Newtonian fluid flow in a porous medium, presented in Figure 2 and Figure
3, has the maximum value at the centre point of the considered region. On the boundary with a no-
slip condition, velocity equals zero. This fact is observed in Figures 2 and 3. This shows that the
implemented method meets the imposed boundary conditions. Near the open edges the component of
velocity has positive values, indicating the direction of the flow. Of course, the fluid flows from the edge
of higher pressure to the edge of lower pressure. At some distance from the open edges the component
changes sign and becomes negative. This results in turbulence. Figure 4, consisting of the pressure
field in considered region, confirms fulfilling boundary conditions determined in the problem. On the
open edges, the values of pressure have been imposed and kept during implementation of method of
fundamental solutions.

The results of numerical experiment show that the numerical method implemented for considered
problem is sufficient and correct for nonlinear problems. The method is supported by Picard iterations and

Figure 4. Pressure field in the porous medium.
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method of fundamental solutions. For the considered problem the iteration process has been convergent.
The satisfactory precision of obtained results has been achieved in five iterations. The presented results
are compatible with expected ones.

7. Conclusions

In this paper the flow of non-Newtonian fluid in a porous medium has been considered. The governing
equations were written and applied for two dimensional problem. Than the numerical algorithm has
been proposed to solve the considered problem. The implementation of the method of fundamental
solutions for the system of nonlinear coupled equations with nonlinear coupled boundary conditions has
been presented. The numerical experiment, performed for the considered problem gives proper results,
compatible with expected ones.
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INTERNAL ENERGY IN DISSIPATIVE RELATIVISTIC FLUIDS

PÉTER VÁN

Liu procedure is applied to special relativistic fluids. It is shown that a reasonable relativistic theory
is an extended one, where the basic state space contains the momentum density. This property follows
from the structure of the energy-momentum balance and the Second Law of thermodynamics. Moreover,
we derive that the entropy depends on both the energy density and the momentum density in a specific
way, indicating that the local rest frame energy density cannot be interpreted as the internal energy, and
that the local rest frame momentum density should be considered, too. The corresponding constitutive
relations for the stress and the energy flux are derived.

1. Introduction

Nonrelativistic nonequilibrium thermodynamics separates the dissipative and nondissipative parts of the
evolving physical quantities. This separation is based on the construction of the internal energy balance
[Eckart 1940a; Groot and Mazur 1962; Gyarmati 1970]. According to the classical interpretation, the
internal energy is the difference of the total energy and the special energies of known type. The en-
tropy function depends directly on the internal energy. The internal energy is distributed equally among
the molecular degrees of freedom. The process by which other energy types are converted to internal
energy is called dissipation. This approach is common in all theories of nonequilibrium thermodynam-
ics, including classical irreversible thermodynamics, where the hypothesis of local equilibrium applies.
However, there is no internal energy in this sense in relativistic irreversible thermodynamics. In fact,
there is practically no relativistic irreversible thermodynamics at all because the local equilibrium theory
is plagued by serious inconsistencies. Only extended theories, theories beyond local equilibrium, are
considered as viable. The reason for this is that the classical theory of Eckart [1940b] is for relativistic
fluids simple and elegant, but produces generic instabilities [Hiscock and Lindblom 1985]. The more
developed extended theories incorporate the theory of Eckart, but suppress the instabilities [Hiscock and
Lindblom 1987; Geroch 1995; Lindblom 1996].

In this paper we investigate the possibility of local equilibrium in relativistic hydrodynamics by
methods of continuum thermodynamics. In Section 2 the balances of energy-momentum and entropy
are introduced. In Section 3, we calculate the dissipation inequality for first-order (local equilibrium)
relativistic hydrodynamics using the Liu procedure. The need of second-order (extended, or weakly
nonlocal) theories is indicated by the emergent structure. A new concept of relativistic internal energy
follows. Based on these results, Section 4 shows the constitutive equations of the simplest extended
theory by the heuristic arguments of irreversible thermodynamics.

Keywords: relativistic nonequilibrium thermodynamics, Liu procedure, relativistic internal energy.
This work has been supported by the Hungarian National Science Fund OTKA (T49466, T48489), by the EU-I3HP project, and
by a Bolyai scholarship of the Hungarian Academy of Sciences.

1161



1162 PÉTER VÁN

2. Basic balances of relativistic fluids

For the metric (Lorentz form) we use gµν = diag(−1, 1, 1, 1), employing the usual convention that the
speed of light c = 1. Therefore, for a four-velocity uα we have uαuα =−1. 1αβ = gαβ + uαuβ denotes
the u-orthogonal projection. With these conventions in mind, we proceed to form the basic balances of
energy-momentum and entropy.

The energy-momentum density tensor is given with the help of the rest-frame quantities

T αβ
= euαuβ + uαqβ + uβqα + Pαβ, (1)

where e = uαuβT αβ is the density of the energy, qβ = −uα1
β
γ T αγ is the energy flux or heat flow,

qα=−uβ1αγ T γβ is the momentum density, and Pαβ =1αγ1
β
µT γµ is the pressure tensor. The momentum

density, energy flux, and pressure are spacelike in the comoving frame, therefore uαqα = 0, uβqβ = 0,
and uαPαβ = uαPβα = 0β . The energy-momentum tensor is symmetric, because we assume that the
internal spin of the material is zero. In this case, the energy flux and the momentum density are equal.
Let us emphasize that the form (1) of the symmetric energy-momentum tensor is completely general for
one-component fluids, but it is expressed by the local rest frame quantities.

Now the conservation of energy-momentum ∂βT αβ
= 0 is expanded to

∂βT αβ
= ėuα + euα∂βuβ + eu̇α + uα∂βqβ + qβ∂βuα + q̇α + qα∂βuβ + ∂β Pαβ, (2)

where ė = d
dτ e = uα∂αe denotes the derivative of e by the proper time τ . Its timelike part in a local rest

frame gives the balance of the energy

−uα∂βT αβ
= ė+ e∂αuα + ∂αqα + qαu̇α + Pαβ∂βuα = 0. (3)

The spacelike part in the local rest frame describes the balance of the momentum

1αγ ∂βT γβ
= eu̇α + qα∂βuβ + qβ∂βuα +1αγ q̇γ +1αγ ∂β Pγβ = 0α. (4)

The entropy density and flux can also be combined into a four-vector, using local rest frame quantities:

Sα = suα + Jα, (5)

where s =−uαSα is the entropy density and Jα = Sα−uαs =1αβSβ is the entropy flux. The entropy flux
is u-spacelike, therefore uα Jα = 0. In this framework, the Second Law of thermodynamics is expressed
by the following inequality

∂αSα = ṡ+ s∂αuα + ∂α Jα ≥ 0. (6)

3. Thermodynamics

The thermodynamical background in relativistic theories is usually based on analogies with nonrelativis-
tic thermostatics. However, nonequilibrium thermodynamics has developed beyond the simple, ‘let us
substitute everything into the entropy balance and see what happens’ theory since Eckart. It is important
to check the dynamic consistency of the Second Law, considering the evolution equations as constraints
for the entropy balance. This method of nonequilibrium thermodynamics is constructive, gives important
information for new theories, and reveals some deeper interrelations. Here we exploit the Second Law
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by Liu’s procedure [Liu 1972], introducing a first-order weakly nonlocal state space in all basic variables,
and thus restricting ourselves to a local equilibrium theory. One can find a general treatment of nonrela-
tivistic classical and extended irreversible thermodynamics from this point of view in [Ván 2003]. Our
aim here is to investigate the relativistic fluids with similar methods, and to get the relativistic equivalent
of the classical Fourier–Navier–Stokes system of equations for one component fluids.

Our most important assumption regarding relativistic thermodynamics is that the constitutive equations
are local rest frame expressions. As material interactions are local, this is natural from a physical point
of view.

The basic state space of the theory is spanned by the energy density e and by the velocity field
uα. The constitutive state space is spanned by the basic state variables and their first derivatives, is
therefore first-order weakly nonlocal. Hence, the constitutive functions depend on the variable set C =
(e, uα, ∂αe, ∂αuβ). The constitutive functions are the energy flux/momentum density qα, the pressure
Pαβ , the entropy density s and the entropy flux Jα. The derivatives of the constitutive functions are
denoted by the number of the corresponding variable in the constitutive space, for example, ∂s

∂(∂αe) = ∂3s.
With this notation we can distinguish easily between the derivatives by the constitutive and spacetime
variables. A nonequilibrium thermodynamic theory is considered to be solved if all other constitutive
quantities are expressed by the entropy density and its derivatives.

According to the procedure of Liu, the balance of energy-momentum (2) is a constraint to the entropy
balance (6) with the Lagrange–Farkas multiplier 3α,

∂αSα −3α∂βT αβ
≥ 0. (7)

Let us remember that here, the spacelike components of the four quantities and the entropy density are
the constitutive quantities depending on the introduced constitutive variables C . Therefore, in the above
inequality we can develop the derivatives of the composite functions. The coefficients of the derivatives
that are not in the constitutive space must be zero. As a result, we get the following Liu-equations:

∂αβe : (∂3Sα)β −3µ(∂3T µα)β = 0αβ,

∂αβuγ : (∂4Sα)βγ −3µ(∂4T µα)βγ = 0αβγ .
(8)

The simple structure of the Liu equations suggests the assumption that the Lagrange multiplier is a
local function, and does not depend on the derivatives of the basic state variables

3γ =3γ (n, e). (9)

A general solution of (8) is

Sα −3γ T γα
− Aα = 0α, (10)

where Aα = Aα(n, e) is an arbitrary local function.
Let us introduce the splitting of the vector multiplier and the four-vector Aα into spacelike and timelike

parts in the local rest frame as

3α =−3uα + lα,

Aα = Auα + aα,
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where for the spacelike components uαlα = uαaα = 0. Now, Equation (10) gives

uα(s−3e− lγ qγ − A)+ (Jα −3qα − lγ Pγα − aα)= 0α. (11)

Here both the timelike and spacelike parts are zero, resulting in

s =3e+ lγ qγ + A, (12)

Jα =3qα + lγ Pγα + aα. (13)

After the identification of the Liu equations, we expand the dissipation inequality as

∂αe
[
(∂1s)uα + ∂1 Jα −3uα −3∂1qα − lγ ∂1 Pγα − lγ ∂1qγ uα

]
+ ∂αuβ

[(
s−3e− lγ qγ

)
1αβ + (∂2s)βuα + (∂2 Jα)β

− lβeuα − lβqα −3(∂2qβ)α −3γ (∂2 Pγα)β −3γ uα(∂2qγ )β
]
≥ 0. (14)

Here we exploited the fact that partial differentiation by e can be exchanged with a multiplication by
the four velocity uα.

In the dissipation inequality one should consider the solution of the Liu equations. Substituting (12)
and (13) into (14) we get

∂αe
[
(∂1s−3− lγ ∂1qγ )uα + qα∂13+ Pγα∂1lγ + ∂1aα

]
+∂αuβ

[
A1αβ + qα(∂23)

β
+ Pγα(∂2lγ )β + (∂2aα)β

+uα
(
(∂2s)β − lγ (∂2qγ )β − lβe−3qβ

)
− lβqα −3Pαβ

]
≥ 0, (15)

where the following identities

uγ ∂uβqγ = ∂uβ (uγ qγ )− qγ ∂uβuγ =−qγ1 β
γ =−qβ,

uγ ∂uβ Pγα = ∂uβ (uγ Pγα)− Pγα∂uβuγ =−Pγα1 β
γ =−Pβα.

were applied to simplify the last term (∂2 = ∂uβ ).
Observing the first term in the last form of the dissipation inequality, one can eliminate the direct

velocity dependence of the entropy function, recognizing that the entropy may depend on the energy flux
in the form

s(e, uα, ∂αe, ∂αuβ)= ŝ(e, qγ (e, uα, ∂αe, ∂αuβ)). (16)

Therefore, the entropy is local, and is independent of the derivatives of the basic state space variables
and the velocity field. Entropy does, however, depend on the energy flux, which can depend on the
derivatives because it is, according to our initial assumptions, a constitutive function. Taking this into
account, the Lagrange–Farkas multipliers are determined by the entropy derivatives

∂e ŝ =3, ∂qα ŝ = lα. (17)

We introduce a temperature T as

∂e ŝ =3=
1
T
. (18)
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We recognize that a full thermostatic compatibility requires that in (12), A := p
T , where p is the pressure.

This consequence is completely analogous to the results of the nonrelativistic nonequilibrium thermody-
namic theory, where thermostatics arises from the structure of the balance form evolution equations used
as constraints to the Second Law.

Finally, we assume that entropy flux is classical, and the additional term aα [Müller 1967] is zero

aα = 0α. (19)

The dissipation inequality, then, reduces to the following simple form

qα∂α
1
T
−

1
T

(
Pαβ + T lβqα − p1αβ

)
∂αuβ − Pαγ ∂αlγ −

(qα

T
+ elα

)
u̇α ≥ 0. (20)

As we do not want an acceleration-dependent entropy production, we require that the last term vanishes.
According to (17) and (18)

e∂qα ŝ+ qα∂e ŝ = 0. (21)

The general solution of (21) can be given as

ŝ = s̃(e2
− qαqα)+ B, (22)

where B=const. The entropy must depend on the energy density e and the momentum density qα in a
very particular but simple way. As a consequence of this functional form of the entropy function, the
Gibbs relation can be given with the help of the entropy derivatives (17) as

de−
qα

e
dqα = T ds. (23)

We may require first-order homogeneity of the entropy density (extensivity) in (22) without loss of
generality. To do so, we introduce E =

√
|e2− qαqα| as a variable of the entropy density. In this way, the

entropy is a first-order homogeneous functions both of the energy density e and the momentum density
qα. With this property, it is unique.

The corresponding potential relation can be constructed according to the first-order homogeneity (ex-
tensivity) of the physical quantities as

e−
qαqα

e
= T s− p. (24)

The previous thermostatic relations require the interpretation of E as internal energy. On the other
hand, let us recognize that E is the absolute value of the energy vector

E = ‖Eα‖ = ‖− uβT βα
‖ = ‖euα + qα‖ =

√
|e2− qαqα|. (25)

One should note that the 1/T introduced in (18) is not the derivative of the entropy function according
to E .

Finally, the entropy flux from (13) and (19) is

Jα =
1
T

qα −
qγ
eT

Pγα. (26)
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The final form of the dissipation inequality is

qα∂α
1
T
−

1
T

(
Pαβ +

qβqα

e
− p1αβ

)
∂αuβ − Pαγ ∂α

qγ
T e
≥ 0. (27)

The last term in this expression with a derivative of one of the constitutive quantities indicates that
we cannot give proper thermodynamic fluxes and forces as a solution of the inequality. Another problem
appears with (21), because lα, the spacelike part of the Lagrange multiplier in a local rest frame, was
assumed independent of the derivatives of e and uα. Thus, the Fourier heat conduction is excluded as a
possible constitutive function. Both problems indicate that a complete theory may exist only either in an
enlarged constitutive space or in an extended basic state space. One possible means of resolution is to
introduce higher order derivatives of the basic state space into the constitutive state space, and construct a
second-order weakly nonlocal theory. Another possibility is to enlarge the basic state space and construct
an extended theory. In both cases, the key that may lead beyond the traditional Müller–Israel–Stewart
theory is the new internal energy E .

4. Extended irreversible thermodynamics of relativistic fluids

Motivated by the results of the previous section we calculate the entropy production by a direct substi-
tution of the balance of the energy into the entropy balance. We are to construct an extended theory,
introducing qα as an independent variable, but exploiting the fact that the entropy depends both on the
energy and momentum densities in the specific way derived above.

The entropy flux is assumed to have the essentially classical form

Jα =
1
T

qα. (28)

Substituting the energy balance (3) into the entropy balance equation, we arrive at the following
entropy production formula:

∂αSα = ṡ(e2
+ qαqα, s)+ s∂αuα + ∂α Jα

=−
1
T
(e∂αuα + ∂αqα + qαu̇α + Pαβ∂βuα)+

qα

T e
q̇α + s∂αuα + ∂α

( 1
T

qα
)

=−
1
T

(
Pαβ − (−e+ sT )1αβ

)
∂αuβ + qα

(
∂α

1
T
−

u̇α

T
−

q̇α

eT

)
≥ 0. (29)

In isotropic continua, the above entropy production results in constitutive functions assuming a linear
relationship between the thermodynamic fluxes and forces. The thermodynamic fluxes are the viscous
stress 5αβ

=
(
Pαβ − (sT − e)1αβ

)
, and the energy flux qα. For these, we get

5αβ
= Pαβ −1αβ

(
p−

qβqβ
e

)
=−2η(1αγ1βµ∂γ uµ)s0

− ηv∂γ uγ1αβ, (30)

qα =−λ
1

T 21
αγ
(
∂γ T + T u̇α +

T q̇α

e

)
, (31)

where s0 denotes the symmetric traceless part of the corresponding second order tensor, for example

(Ai j )s0
=

1
2(A

i j
+ A j i )− 1

3 Allδi j ,
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and we have introduced the scalar thermostatic pressure according to (24), making p 6= Pαα /3. Equations
(30) and (31) are the relativistic generalizations of the Newtonian viscous stress function and the Fourier
law of heat conduction. The shear and bulk viscosity coefficients, η and ηv, and the heat conduction
coefficient, λ, are nonnegative according to the inequality of the entropy production (29).

Equations (3) and (4) are the evolution equations of a relativistic, heat conducting ideal fluid, together
with the constitutive functions (30) and (31). As special cases we can get the relativistic Navier–Stokes
equation by substituting (30) into (4) and assuming qα = 0, or the relativistic heat conduction equation
by substituting (31) into (3) and assuming that 5αβ

= 0. The heat conduction part results in a special
extended theory, where only the energy flux appears as an independent variable.

5. Summary and discussion

In the first part of the paper we investigated the local equilibrium theory of special relativistic fluids. We
saw that there may be no such theory that could give a complete solution of the entropy inequality with
the conditions that there be

(i) local Lagrange–Farkas multipliers;

(ii) local entropy (16);

(iii) no additional term in the entropy flux (19).

The first two assumptions were necessary to get a particular solution of the Liu equations and the
dissipation inequality. On the other hand, they are natural in local equilibrium.

We conclude that either an extension of the basic state space or an enlargement of the constitutive state
space may give a complete solution. Our investigations indicate a particular dependence of the entropy
on the energy and momentum densities, leading to a distinction of internal and total energy densities of
relativistic fluids.

The local rest frame energy density e = uαT αβuβ is usually interpreted as internal energy in ther-
modynamic theories. However, the symmetry of the energy-momentum tensor can hide fact that while
energy flux is related to dissipation, momentum density is not. This is a property of the relativistic theory,
and not apparent in the nonrelativistic case because the nonrelativistic limit results in asymmetric energy-
momentum. According to the previous investigations, the total energy density e (minus the time-timelike
part of the energy-momentum tensor) is not a suitable internal energy, and the entropy density should
be a function of the absolute value of the energy vector Eα =−uβT αβ , the timelike part of the energy
momentum.

To compare our proposal to the traditional Müller–Israel–Stewart theory [Israel 1976; Israel and Stew-
art 1980], it is instructive to expand the internal energy into the series, assuming that e2 > qαqα:

E =
√
|e2− qαqα| ≈ e−

q2

2e
+ . . . . (32)

The last, quadratic term in the above expression is what appears in the Müller–Israel–Stewart theory.
However, in our case the corresponding relaxation time is fixed τ = 1/e; the quadratic term is only the
first approximation; and only the energy flux is introduced as an independent variable in our extended
theory, with no need for viscous stress.
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The series expansion is an instructive comparison to nonrelativistic hydrodynamics. Therein, the
internal energy is the difference of the total energy and the relative kinetic energy. In (32) the quadratic
expression is what one could consider as a kind of energy of the flow, considering only the local rest
frame momentum density without any connection to an external observer. In a sense, our expression
shows that by introducing E as internal energy, we declared that the momentum of the flow does not
make a dissipative contribution.

The extension of the present calculations considering the balance of particle number is straightforward.
Moreover, one can show that the above system of equations gives a stable homogeneous equilibrium in
linear stability investigations, contrary to the theory of Eckart [Ván and Bı́ró 2008], and can therefore be
considered as a minimal viable extension of the local equilibrium theory. The advantages of our approach
over the Müller–Israel–Stewart one are that there are no additional material parameters compared to the
Eckart theory and the stability of the homogeneous equilibrium does not require additional assumptions
beyond the inequalities of thermodynamic stability.
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A CONTINUOUS MODEL FOR AN ARTERIAL TISSUE, INCORPORATING
REMODELING AND VOLUMETRIC GROWTH

FONS VAN DE VEN AND IHOR MACHYSHYN

A continuum-mechanics approach for the derivation of a model for the behavior, that is, the growth and
remodeling, of an arterial tissue under a mechanical load is presented. This behavior exhibits an interplay
between two phenomena: continuum mechanics and biology. The tissue is modeled as a continuous
mixture of two components: elastin and collagen. Both components are incompressible, but the tissue
as a whole can show volumetric growth due to the creation of collagen. Collagen is a fibrous structure,
having a strain-induced preferred orientation. Remodeling of the tissue incorporates degradation of
elastin and strain-induced creation and degradation of collagen fibers. Both elastin and collagen are
considered to be nonlinear elastic media; elastin as a neo-Hookean material and collagen fibers behaving
according to an exponential law. The modeling is based on the classical balance laws of mass and
momentum.

1. Introduction

An aneurysm is a localized dilatation or ballooning of blood vessels. The size of an aneurysm was
considered to be a critical indicator of the rupture potential and need for medical intervention. However,
size is no longer considered to be an accurate parameter as there have been incidents of small aneurysms
rupturing and large ones remaining intact. It is now believed that aneurysms rupture when the hemody-
namically induced wall stress exceeds the wall strength. This necessitates a mechanical analysis of the
biological tissue.

In modeling aneurysms and other cardiovascular pathologies, we will encounter the interplay of two
phenomena: continuum mechanics and biology. Whereas traditional engineering materials passively
respond to a change in their environment, biological tissues adapt to their environment by changing their
configuration and material properties.

In this paper (originally presented at the TRECOP’07 conference on continuum physics) we will not
aim at a physiological justification of our tissue model, but when needed we will use partial results from
existing models in the literature. In contrast to many of these models, we will base our model strictly on
the basic principles of continuum mechanics. Moreover, we refrain from giving an extensive literature
review; for this we refer to the forthcoming [Machyshyn 2008]. Here, we only mention [Humphrey and
Rajagopal 2002; Kroon and Holzapfel 2007; Baek et al. 2005; 2006].

We will present a continuous model for a tissue based on the basic laws of continuum mechanics
coupled with considerations on the biological behavior of arterial vessels. A tissue of an arterial vessel is
mainly built up of two components: elastin and collagen. Elastin behaves as an isotropic nonlinear elastic
solid medium, and has as a special feature that it degrades (vanishes) during the formation of an aneurysm.

Keywords: arterial tissue, volumetric growth, strain-induced orientation, elastin, collagen.
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Collagen has an anisotropic fibrous structure that can take up stresses in a nonlinear elastic way. Collagen
remodels in two ways. On one hand collagen fibers can weaken, in that they elongate or disappear. On
the other, new collagen can be laid down or passive fibers can become active, strengthening the collagen
as a whole. We will propose a continuous mixture model for an arterial tissue in which remodeling is
modeled by taking into account degradation of elastin, local changes of mass of collagen and elastin –
resulting in volumetric growth of the tissue – and stress- or strain-induced preferred directions for the
lay-down of collagen fibers. In order to more basically incorporate the idea of a distributed lay-down of
fibers, Muschik et al. [2000] introduced the concept of mesoscopic continuum physics. This is a very
elegant concept that also accounts for thermodynamical effects. However, these effects are not considered
in this paper.

2. Basic model of a tissue

Our basic model for an arterial tissue is a three-dimensional continuous mixture of two components:
elastin and collagen. These two components are both intrinsically incompressible, but the mixture as a
whole can show volumetric growth caused by mass production. This is due to the degradation of elastin,
modeled as vanishing of elastin particles, and the continuous creation (or lay-down) of new collagen
fibers and degradation (removal) of old ones. By these processes, the total amount, or mass, of elastin
and collagen continuously changes in time, which can result in growth or shrinkage of the tissue.

Two important state variables for the analysis to come are the volumetric fractions, ne and nc, of
elastin and collagen, respectively. They are defined as the relative amount of elastin or collagen in the
mixture; they are dimensionless and they sum up to one, so

ne+ nc = 1. (1)

The elastin is modeled as an isotropic nonlinear elastic solid, and its elastic constitutive behavior is
described by an incompressible neo-Hookean model. As elastin can only degrade, the amount of elastin
is monotone decreasing once degradation has started.

On the other hand, collagen is an anisotropic fibrous medium. The elastic fibers can only take up
stresses in their fiber direction. As constitutive equation for these elastic stresses we will adapt a nonlinear
exponential law. Important fiber properties are their orientation (direction) and prestretch. At each
moment in time, and thus at each configuration of the tissue, the fiber directions are described by a
distribution function for the fiber orientations. This distribution function changes continuously in time,
governed by the state of stretch of the tissue. A specific choice for this distribution function (see Section
6), which was first introduced by Baek et al. [2005; 2006], will be given further on.

Initially in an unloaded state, the collagen fibers are crimped, in which state they do not contribute to
the strength of the tissue. When the tissue is loaded, the elastin will be stretched, and there will come a
state in which the collagen fibers become uncrimped; the tissue stretch in this state in the direction of a
collagen fiber is called the recruitment stretch. Here, we will consider the recruitment stretch as a state
variable, which in some sense governs the adaptation of the newly created collagen fibers to the state of
stretch of the tissue. This adaptation is modeled such that a newly laid-down collagen fiber is always in
the same state of preferred stretch, called the attachment stretch. In contrast to the variable recruitment
stretch, the attachment stretch is a constant material parameter in our model.
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Before degradation of elastin starts, the tissue is in its healthy state. This is a loaded equilibrium state,
in which the tissue is stretched and in which the collagen is always stretched to its attachment stretch
λa . The total amount of elastin (no degradation) and collagen do not change, and thus there is no mass
production or volumetric growth in this state. However, also in this state there is a continuous turnover
(creation and degradation) of collagen, but in such a way that the amount of degraded collagen is always
equal to that of newly created collagen, thus keeping the total mass (and volume) of collagen constant.

Finally, for later use, we define the metabolic equilibrium state as the state in which the stretch in each
collagen fiber is equal to the attachment stretch λa .

3. Basics of volumetric growth for a one-component medium

In this section, we try to explain the peculiar behavior of a medium with internal mass production and
volumetric growth by considering, as an example, a simple or single-component medium (not a mixture,
as this case will be dealt with in the remainder of this paper). In so doing, we follow the approach of
Kuhl et al. [2007].

To introduce volumetric growth due to mass production, we consider a one-component intrinsic in-
compressible medium having as reference configuration: Gr with reference position vector X, and as
deformed current configuration: G = G(t) with current (at time t) position vector x = x(X, t). The
density ρ of the medium is contant and uniform. The deformation gradient is F(X, t)= ∂x/∂X, and the
associated Jacobian is J = det F= J (X, t).

A material partial volume b with configuration g = g(t) at the current time t , and reference configu-
ration gr , is defined as a part of the whole body across the boundary of which no mass flux takes place.
However, inside b, mass sources can be active, causing changes of the total mass contained in b.

The volume of b is
V (t)=

∫
g(t)

dv =
∫

gr

J (X, t)dvr , (2)

and its mass is
M(t)=

∫
g(t)

ρdv = ρ
∫

gr

J (X, t)dvr . (3)

Since this mass M = M(t) is not constant, the balance of mass yields

d
dt

M(t)=
d
dt

[
ρ

∫
gr

J (X, t)dvr

]
= ρ

∫
gr

J̇ (X, t) dvr = ρ

∫
g(t)

J̇
J

dv =
∫

g(t)
ṁ dv , (4)

where ṁ = ṁ(X, t) is the mass source, the rate of mass production per unit of current volume (in
kg/m3sec). This leads to the local mass equation

ρ
dJ
dt
= J ṁ . (5)

The balance of momentum for a medium with volumetric growth reads

d
dt

∫
g(t)

ρvdv =
∫
∂g(t)

tdS+
∫

g(t)
ρbdv , (6)
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where now, however, the total body force must be split up into a purely mechanical part, ρ bm , (the
external body force) and a part due to the growth of mass, according to

ρ b= ρ bm + ṁ v , (7)

where v is the velocity.
Using successively the equalities

d
dt

∫
g(t)

ρvdv =
d
dt

∫
gr

ρvJ dvr =

∫
gr

ρ(v̇J + v J̇ ) dvr =

∫
g(t)
(ρv̇+ ṁv) dv , (8)

Cauchy’s stress law
t= Tn , (9)

and (7), we obtain the local momentum balance

ρv̇+ ṁv= divT+ ρbm + ṁv , (10)

or
ρv̇= divT+ ρbm , (11)

revealing that the effect of mass production in the local momentum balance has disappeared, and that
the local momentum equation takes its classical form.

In (9), t is the stress vector, or traction, T is the stress tensor, and n is the unit outward normal vector
on the boundary ∂g of g.

4. Configurations and deformations

In this section, we consider the four different configurations depicted in Figure 1:

(1) The unloaded state Gr,0: in this state both the elastin and the collagen are unloaded, but it is assumed
that the collagen is not crimped, meaning that λrec,0 = 1.

(2) The healthy state Gr : this state is an equilibrium state under a given external load; equilibrium
implies here that the collagen stretch is equal to the attachment stretch λa; this healthy state is
assumed to be known, and this state is in our further analysis considered as the reference state (note

X0 X ξ x

Gr,0 Gr G(τ) G = G(t)

unloaded state healthy state intermediate state current state

t = 0 time τ ∈ [0, t] time t

Figure 1. Configurations of tissue body B.
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that this is not an undeformed or stress-free state). At the initial time t = 0, the tissue is in its healthy
state and then the degradation followed by remodeling and volumetric growth starts.

(3) The intermediate state G(τ ): the intermediate time τ ranges from t = 0 to the current time t , and at
each τ new collagen fibers are laid down.

(4) The current state G = G(t): this is the final deformed state we wish to determine.

To describe the deformation of the tissue B, we consider an infinitesimal material volume element
containing the material point P. The position of P in Gr,0 is given by its position vector X0, and further
by X in Gr , by ξ in G(τ ), and by x in G. Here, we consider ξ and x as functions of X and τ , and of X
and t , respectively,

ξ = ξ(X, t) , x= x(X, t) . (12)

Recalling that the total deformation gradient of the tissue, or the elastin, from Gr,0 to G is Ftot, then

Ftot =
∂x
∂X0
=
∂x
∂X

∂X
∂X0
= FF0 , (13)

where F= F(X, t).
The partial deformation from ξ to x is described by

F̂(X, t, τ )=
∂x
∂ξ
=
∂x
∂X

∂X
∂ξ
= F(X, t)F−1(X, τ ) , (14)

or

F(X, t)= F̂(X, t, τ )F(X, τ ) . (15)

Consider a collagen fiber created at time τ in direction γ with initial stretch λa , having the initial
direction vector

e(0)c (X, τ, γ )= cos γ v1(X, τ )+ sin γ v2(X, τ ) , (16)

with v1,2 in the principal directions of F(X, τ ). How the distribution of e(0)c depends on the state of
deformation at τ will be explained further on. The unit vectors v1 and v2 span a surface in which the
main stretching takes place; in the third direction there is only shrinking. For instance, for an arterial
tissue modeled as a tube under internal pressure and axial stretch, v1 and v2 are in the azimuthal and
axial direction, while the radial direction is the third direction in which compression takes place.

Let ec,0 be the direction vector representing e(0)c in the unloaded state Gr,0, then

ec,0(X, τ, γ )=
F−1

tot (X, τ )e
(0)
c (X, τ, γ )

‖F−1
tot (X, τ )e

(0)
c (X, τ, γ )‖

. (17)

The elastin stretch λ at time τ in the direction e(0)c is

λ(X, τ, γ )= ‖Ftot(X, τ ) ec,0(X, τ, γ )‖ =
1

‖F−1
tot (X, τ ) e(0)c (X, τ, γ )‖

, (18)

where in the latter step we have used (17).
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Since the collagen stretch λc at the moment it is laid down is equal to λa , we obtain for the recruitment
stretch

λrec(X, τ, γ )=
λ(X, τ, γ )

λa
=

1

λa ‖F
−1
tot (X, τ ) e(0)c (X, τ, γ )‖

. (19)

Hence, λrec is not a function of the current time t , and we will use the above relation to eliminate λrec

from our further calculations.
The collagen stretch λc(X, t, τ, γ ) at the current time t of the fiber laid down at time τ in the direction

e(0)c is thus

λc(X, t, τ, γ )=
λ(X, t, γ )
λrec(X, τ, γ )

= λa
‖F−1

tot (X, τ ) e(0)c (X, τ, γ )‖
‖F−1

tot (X, t) e(0)c (X, τ, γ )‖
. (20)

Let the initial direction at τ , e(0)c (X, τ, γ ), deform to the current direction vector ec at time t , then

ec(X, t, τ, γ )=
F̂(X, t, τ ) e(0)c (X, τ, γ )
‖F̂(X, t, τ ) e(0)c (X, τ, γ )‖

. (21)

5. Mass balances

The tissue is here considered as a mixture of two components: elastin and collagen. Let b be a material
partial volume of B containing both elastin and collagen particles. In a material volume there is no
mass flux across the boundaries of the volume, but due to the degradation and production of elastin
and collagen, the mass of b is not necessarily conserved. Moreover, although both elastin and collagen
are modeled as intrinsically incompressible, the volume of b is not conserved: there is a volumetric
growth due to the mass production. This volumetric growth is represented by the value of the Jacobian
J = det F, which is greater than one in case of positive volumetric growth, and less than one in case of
tissue resorption. Because J is related to the volumetric growth, we replace J by Jg = Jg(X, t). Since
no volumetric growth takes place in the healthy phase, J0 = det F0 = 1.

Let g = g(t) be the configuration of b at time t , with gr its reference configuration in Gr . The volume
of b is given by

V (t)=
∫

g(t)
dv =

∫
gr

Jg(X, t)dvr , (22)

which is comparable to Section 3.
The total mass of b consists of the mass of elastin, Me, and that of collagen, Mc. With ρe and ρc the

constant intrinsic densities of elastin and collagen, respectively, and ne and nc their volume fractions, we
have for the total mass of b

M(t)= Me(t)+Mc(t), (23)

where

Me(t)=
∫

g(t)
ρene(X, t)dv = ρe

∫
gr

ne(X, t)Jg(X, t)dvr , (24)

and

Mc(t)=
∫

g(t)
ρcnc(X, t)dv = ρc

∫
gr

nc(X, t)Jg(X, t)dvr . (25)
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We denote the rates of mass production per unit of current volume for elastin and collagen by ṁe and
ṁc (kg/m3sec), respectively. The change of elastin mass is only due to degradation, meaning that ṁe is
negative, and is given by

Ṁe(t)=
∫

g(t)
ṁe(X, t)dv =

∫
gr

ṁe(X, t)Jg(X, t)dvr . (26)

For collagen, the situation is somewhat more complex: here, we have collagen production at every
time τ from t = 0 to the current time t , but meanwhile the collagen produced at τ is monotone decreasing
during the period from τ to t , which is described by the monotone decreasing degradation function of
collagen qc = qc(t). Here, we have assumed that the degradation function qc is uniform over B.

Let us introduce a new rate of production of volume fraction of collagen νc = νc(X, t, τ ), such that
νc(X, t, τ )dτ is the volume fraction of collagen in V (t) at t produced from τ to τ + dτ in V (τ ) and still
surviving at t . Thus, equating the rate of change of the collagen in V (t) due to the production in V (τ )
from τ to τ + dτ multiplied by the collagen degradation function from τ to t , we obtain

ρc

∫
g(t)

νc(X, t, τ )dv dτ = ρc

∫
gr

νc(X, t, τ )Jg(X, t)dvr dτ

=

∫
g(τ )

ṁc(X, τ )dv(τ) dτ qc(t − τ)

=

∫
gr

ṁc(X, τ )Jg(X, τ )dvr qc(t − τ) dτ , (27)

which, after localization, yields

νc(X, t, τ )=
ṁc(X, τ )Jg(X, τ )

ρc Jg(X, t)
qc(t − τ) . (28)

The latter relation implies that the total collagen mass of b at the current time t is given by

Mc(t)= Mc,r +

∫ t

0
ρc

∫
g(t)

νc(X, t, τ )dv dτ

= Mc,r +

∫ t

0

∫
gr

ṁc(X, τ )qc(t − τ)Jg(X, τ )dvr dτ , (29)

where Mc,r is the collagen mass in b in the healthy state Gr .
Differentiating this relation with respect to t and using that, by normalization, q(0)= 1, we find that

the change of the collagen mass in b from t = 0 to the current time t is given by

Ṁc(t)=
∫

gr

ṁc(X, t)Jg(X, t)dvr +

∫ t

0

∫
gr

ṁc(X, τ )q̇c(t − τ)Jg(X, τ )dvr dτ . (30)

Taking the time derivatives of Me(t) and Mc(t) according to (26) and (30) in terms of the integrals over
gr , equating the results to (25) and (26), respectively, and realizing that these results hold for arbitrary b,
we arrive at the local mass balance equations

ρe
d
dt

(
Jgne

)
= Jgṁe , (31)
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for elastin, and

ρc
d
dt

(
Jgnc

)
= Jgṁc+

∫ t

0
ṁc(X, τ )q̇c(t − τ)Jg(X, τ )dτ , (32)

for collagen. Note that d/dt stands for the material time derivative, so

d
dt

f =
∂ f (X, t)
∂t

, (33)

where f is arbitrary.
The initial conditions for (31) and (32) are ne(X, 0)= ne,r and nc(X, 0)= nc,r . Dividing (31) by ρe

and (32) by ρc, adding them together and using the trivial relation

ne(X, t)+ nc(X, t)= 1, (34)

we obtain the integro-differential equation for Jg:

J̇g =
1
ρe

Jgṁe+
1
ρc

Jgṁc+
1
ρc

∫ t

0
ṁc(X, τ )q̇c(t − τ)Jg(X, τ )dτ , (35)

with the initial condition Jg(X, 0)= 1.
At this point, we have derived four equations for the four unknowns Jg, ne, nc, and νc, successively

(35), (31), (32), and (28), under the momentary assumption that the production rates ṁe and ṁc are given.
Inspection, especially with use of (30), shows us that

nc(X, t)= nc,r +

∫ t

0
νc(X, t, τ ) dτ . (36)

However, in contrast to what we said above, the production rates ṁe and ṁc are not explicitly given;
we need constitutive equations for these quantities. We will not derive these constitutive equations herein,
but rather use constitutive equations found in the literature; see specifically [Driessen 2006; Baek et al.
2005; 2006].

The elastin rate we choose here is constant and uniform, that is,

ṁe(X, t)=−µe, (37)

for t running from t = 0 to the final time t = t f ; before t = 0 and after t f there is no degradation of
elastin. Here, µe is a given constant material parameter.

The collagen rate we split into two parts as

ṁc(X, t)= ṁh
c (X, t)+ ṁe

c(X, t), (38)

where the superindices ‘h’ and ‘e’ stand for ‘healthy’ and ‘extra’, respectively.
For the first term we take

ṁh
c (X, t)=

ρc

Qc
nc(X, t) , Qc =

∫ t

−∞

qc(t − τ) dτ =
∫
∞

0
qc(τ ) dτ . (39)

This term is chosen in such a way that the net collagen mass production in the healthy state is zero.
The ‘extra’ production term can be related to either the state of stress or stretch of the collagen. Baek

et al. [2005, Eq. (16)] use a stress-induced growth-rate relation, while the same authors discuss [2006]
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three possible cases, the last of which is a stretch-induced growth-rate relation. In this study, we opt for
the latter, and take for this the specific relation

ṁe
c(X, t)= Kg

(
λ̄c(X, t)− λa

)
, (40)

where λ̄c is a kind of averaged collagen stretch, averaged over the set of collagen fibers in the current
state G = G(t) and defined as

λ̄c(X, t)− λa =
1

πnc(X, t)

∫ t

0
νc(X, t, τ )

∫ π/2

−π/2
λc(X, t, τ, γ ) dγ dτ . (41)

We see that the constitutive equation contains the unknown collagen stretch λc, which is in turn related
to the unknown deformation gradient F according to (20). For the determination of F, we need the
momentum equation as derived in Section 3. However, we will first discuss how to model the distribution
of the collagen fibers over their different directions.

Finally, we make the following choice for the collagen degradation function qc:

qc(t)= e−t/T , (42)

where T (in sec) is a time constant that is characteristic for the rate of degradation of the collagen. We
note that the time scale t f for the elastin degradation is much larger than that of remodeling, so T � t f .

For this choice, the coefficient Qc becomes

Qc =

∫
∞

0
e−τ/T dτ = T . (43)

6. Distribution of collagen fibers

At each intermediate time τ a new generation of collagen fibers is continuously created. These fibers are
laid down in a plane spanned by the two unit vectors v1 and v2, the principal directions of the deformation
gradient F= F(X, τ ) (see Equation (16)), such that for λ ∈ R,

Fv= λv. (44)

The direction of each individual fiber is given by γ , the angle between the fiber direction and the v1-axis.
The distribution of these directions is assumed to be governed by a kind of double normal distribution
D(X, τ, γ ) defined as

D(X, τ, γ )= e−1/σ
(

exp
cos[2(γ −µ)]

σ
+ exp

cos[2(γ +µ)]
σ

)
, (45)

where ±µ=±µ(X, τ ) are the mean fiber directions, and σ = σ(X, τ ) is the width of the distribution.
The value of γ runs from −π/2 to π/2; γ = 0 corresponds with the v1-direction, and γ =±π/2 with
the ±v2-direction. A plot of a specific distribution function of the type (45) is shown in Figure 2.

Let Nc(X, t, τ, γ )dτ denote the volume fraction of collagen at time t that is created at time τ , from τ

to τ + dτ , having the direction γ and surviving at t (hence, Nc is not so much the volume fraction, but
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Figure 2. Distribution function D as function of γ for µ= 0.8 and σ = 0.2.

rather the rate of change thereof). Then, clearly,

νc(X, t, τ )=
∫ π/2

−π/2
Nc(X, t, τ, γ ) dγ . (46)

Since the distribution of Nc is governed by D, the latter relation implies that

Nc(X, t, τ, γ )= D̄(X, τ, γ )νc(X, t, τ ) , (47)

with

D̄(X, τ, γ )=
D(X, τ, γ )∫ π/2

−π/2 D(X, τ, γ ) dγ
. (48)

The mean µ and width σ are related to the principal stretches of F(X, τ ) in the state G(τ ). The larger
principle stretch λ1 = λ1(X, τ ) corresponds to the first principle direction v1 = v1(X, τ ), while smaller
one, λ2, corresponds to v2. Moreover, since we only consider tissues that are principally stretched, we
always have λ1 > 1. Following [Driessen 2006, Sect. 8.2.2], we take

µ(X, τ )= arctan
(g2

g1

)
, σ (X, τ )=

k
g1/g2− 1

, (49)

where the so-called stimulus functions g1 and g2 are related to their corresponding principle stretches as

g1(X, τ )= λ1(X, τ )− 1, and g2 =

{
λ2(X, τ )− 1, λ2 > 1,
0, λ2 < 1.

(50)

The volume fraction due to the distribution Nc, as given in (47), will turn up in a constitutive equation
for the stress given in the next section.

7. Momentum equation and stresses

Following Humphrey and Rajagopal [2002, p. 421] and many others in this field, we assume that we may
consider the mixture of elastin and collagen as a constrained mixture that is homogenized with regard
to the stresses. This implies that we only need to satisfy the overall momentum law for the mixture as
a whole, and not the two partial momentum laws for the components separately. As we have shown in
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Section 3, this relation keeps its classical form; see (11). In the following, we shall neglect inertia terms
(the deformations we consider are extremely slow) and we exclude external body forces, by which the
local momentum equation reduces to the simple equilibrium equation

divT= 0. (51)

We now need a constitutive equation for the stress tensor T. For the constrained mixture we consider
here, we may adapt a rule-of-mixture relation for the stress, stating that the partial stresses due to elastin
or collagen are proportional to their volumetric fractions ne or nc, respectively. Accordingly, we assume
that the total stress in the tissue in the current configuration at time t is built up of elastin stress and
collagen stress according to

T(X, t)=−p(X, t)I+Te(X, t)+Tc(X, t) , (52)

where p is a pressure term, needed to account for the incompressibility of elastin and collagen, and I is
the unit tensor. The elastin is modeled as an incompressible isotropic neo-Hookean material with

Te(X, t)= ce(B(X, t)−I) , (53)

where ce is the elastin shear modulus and B= FFT is the left Cauchy–Green tensor.
For the collagen stress, we follow van Oijen [2003, Sect. 3.2.4]. The collagen fibers can only take

up tensile stress in their fiber direction, and the nonlinear stress-strain behavior of the collagen fibers is
captured by an exponential form for the fiber stress. This leads to the formulation

Tc(X, t)=
∫ t

0

∫ π/2

−π/2

{
Nc
[
τ f (λc)− ec ·Te ec

]
ec⊗ ec

}
(X, t, τ, γ ) dγ dτ , (54)

where
τ f (λc)= 2k1λ

2
c(λ

2
c − 1) exp[k2(λ

2
c − 1)2] , (55)

with k1 and k2 as material constants and λc = λc(X, t, τ, γ ) given by (20). For the Te in the integral in
(54) one must read Te(X, τ ).

In (52)–(54), the contribution of neTe is split into Te and −ncTe, with the latter taken up in (54).
However, in (54) this is only done in the fiber direction and not in the transverse direction. The reason
for this is that the stress perpendicular to the fiber direction is uncoupled from the fiber fraction, which
would mean that the transversal properties of the tissue are not affected by the fibers. This is not logical,
as then the tissue would become unnaturally weak in the transverse direction leaving only the elastin to
contribute to its stiffness. Oijen [2003] compensated for this by taking in the transverse direction the
full Te, and not the partial neTe. Mechanically, this means that he gives the collagen fibers a transverse
stiffness that is equal to that of the elastin. The stress perpendicular to the fiber direction is uncoupled
from the fiber fraction, meaning that the transversal properties of the tissue are not affected by the fibers.

8. One-dimensional example

We consider as a first example a one-dimensional problem for a slender circular rod loaded by a fixed
uniaxial tensile stress. Let e3 be the axial direction of the rod, then the axial normal stress T33 = S is
given, while all other stresses are zero, that is, Ti j = 0, (i, j) 6= (3, 3). All collagen fibers are in the
e3-direction, so the distribution of the fibers does not play a role here.



1182 FONS VAN DE VEN AND IHOR MACHYSHYN

In the unloaded state G0 the tissue is unstretched, whereas in the healthy state the rod is loaded and
stretched such that the collagen stretch λc,r is equal to its attachment stretch λa . By the (not very relevant)
assumption that λrec = 1 in the healthy state, we see that the stretch of the tissue, and the elastin, in the
e3-direction is equal to λa . Since there is no volumetric growth in the healthy state, det F0 = 1 and thus
the matrix of F0 is of the form (also accounting for rotational symmetry of the problem)

F0 =

 λ
−1/2
a 0 0
0 λ

−1/2
a 0

0 0 λa

 . (56)

We consider next the current state G = G(t). This state is here a homogeneous state, so there is no
dependence on X in this example. The total deformation gradient is Ftot(t)= F(t)F0, implying that the
tissue stretch in the e3-direction is

λ(t)= ‖Ftot(t)e3‖ = ‖F(t)F0e3‖ = ‖F(t)λae3‖ = λa F33 . (57)

Due to the rotational symmetry: F11 = F22, and thus the matrix of F(t) is

F(t)=

 F11(t) 0 0
0 F11(t) 0
0 0 λ(t)/λa

 . (58)

Since det F0 = 1, the Jacobian in G is equal to

Jg(t)= det F(t)=
λ(t)
λa

F2
11(t) , (59)

yielding

F11(t)=

√
λa

λ(t)
Jg(t) . (60)

In the intermediate state G(τ ) we have

F̂(t, τ )= F(t)F−1(τ )=

 F11(t)/F11(τ ) 0 0
0 F11(t)/F11(τ ) 0
0 0 λ(t)/λ(τ)

 . (61)

Moreover, the collagen stretch of a fiber created at time τ is

λc(t, τ )= λa
λ(t)
λ(τ )

. (62)

From (35), we obtain with ṁe(t)=−µe and ṁc(t)= ṁh
c (t)+ ṁe

c(t), where ṁh
c (t)= ρcnc(t)/T , and

ṁe
c(t)= Kg(λ̄c(t)− λa). The ordinary differential equation for Jg(t) is

J̇g(t)=−
µe

ρe
Jg(t)+

1
T

Jg(t)nc(t)+
Kg

ρc
(λ̄c(t)− λa) Jg(t)−

1
T

Jg(t)nc(t)

=

[
−
µe

ρe
+

Kg

ρc
(λ̄c(t)− λa)

]
Jg(t) . (63)
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For this one-dimensional problem, λ̄c follows from (41) as

λ̄c(t)− λa =
1

nc(t)

∫ t

0
νc(t, τ )λc(t, τ ) dτ , (64)

where, according to (28)

νc(t, τ )=
Jg(τ )

ρc Jg(t)

[ρc

T
nc(τ )+ Kg(λ̄c(τ )− λa)

]
e−(t−τ)/T . (65)

Substituting (65) and (62) into (64), we obtain the following integral equation for λ̄c(t):

λ̄c(t)− λa =
λaλ(t)

ρc Jg(t)nc(t)

∫ t

0

[ρc

T
nc(τ )+ Kg(λ̄c(τ )− λa)

] Jg(τ )

λ(τ )
e−(t−τ)/T dτ . (66)

Further, we find from (36) that

nc(t)= nc,r +
1

ρc Jg(t)

∫ t

0

[ρc

T
nc(τ )+ Kg(λ̄c(τ )− λa)

]
Jg(τ ) e−(t−τ)/T dτ . (67)

At this point, we have with (63), (66) and (67) three equations for the four unknowns J̇g(t), λ̄c(t), nc(t)
and λ(t). The missing equation for λ(t) will follow from the equations for the stresses. Since we have
here a homogeneous stress situation, the equilibrium equations are trivially satisfied. The pressure p
will follow from the condition that T11 = T22 = 0, while the remaining equation T33 = S will yield the
equation for λ(t) we are looking for.

The stresses T11 and T22 do not contain a collagen part, and they are give by

T11 = T22 =−p(t)+ ce(F2
11(t)− 1)=−p(t)+ ce

( λa

λ(t)
Jg(t)− 1

)
, (68)

Hence, T11 = T22 = 0 yields

p(t)= ce

( λa

λ(t)
Jg(t)− 1

)
. (69)

Next, T33 follows from (52)–(54) as

T33(t)=−p(t)+ ce(F2
33(t)− 1)+

∫ t

0
νc(t, τ )

[
τ f (λc)− Te,33

]
(t, τ ) dτ

= ce

[λ2(t)
λ2

a
−
λa

λ(t)
Jg(t)

]
+

∫ t

0
νc(t, τ )

[
τ f (λc(t, τ ))− τe(τ )

]
dτ , (70)

with νc as given by (65), τ f (λc) by (55), and λc by (62), while τe stands for

τe(τ )= Te,33(t)= ce

(λ2(τ )

λ2
a
− 1

)
. (71)

The missing equation for λ(t) is the simple one

T33(t)= S. (72)

Hence, we now have three equations for our three fundamental unknowns: Jg(t), nc(t) and λ(t); the
auxiliary variables νc(t, τ ), λc(t, τ ) and λ̄c(t) are determined by (65), (62), and (66), respectively.
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However, even for this most simple example this set of equations is already very complex and cannot
be solved analytically. Therefore, this set, which has only one independent variable, the time t , must
be solved by numerical integration. At this stage, we refrain from doing this; it remains an option for
further research.

9. Discussion and perspectives

In this paper, we have constructed a model for remodeling and volumetric growth in an arterial tissue,
considered as a constrained mixture of elastin and collagen and based on a continuum-mechanics ap-
proach. This is in contrast to several other approaches, for example, [Machyshyn 2008] and [Driessen
2006], who built their models in a more discrete way, both in time and space, directly aiming at a finite
element implementation. As far as we could compare the present continuous model with the discrete
model developed in [Machyshyn 2008], we found complete correspondence.

We established a complete system for the four essential unknowns in the problem of a loaded tissue:
the volumetric fraction of collagen, the Jacobian of the deformation (characteristic for the volumetric
growth), the stretch of the collagen fibers, and the stretch of the tissue. The derivation is based on the
classical balance laws of mass and momentum. Our model incorporates mass production, volumetric
growth, degradation of elastin, strain-induced preferred fiber orientation and collagen creation, isotropic
nonlinear (neo-Hookean) elastic behavior of elastin, and anisotropic (fibrous) nonlinear (exponential)
elastic behavior of collagen.

In this paper, we gave the general derivation of the continuous model, but only applied it to a simple
one-dimensional example. We did not perform explicit numerical calculations. This, together with a
treatment of more complex examples, was beyond the scope of this article. In the near future, we hope to
apply this model to more complex (tube-like) structures, and to do the necessary numerical calculations,
with the ultimate goal of an adequate model for the growth of aneurysms in cerebral blood vessels.
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