
Journal of

Mechanics of
Materials and Structures

DYNAMICS OF A ROPE AS A RIGID MULTIBODY SYSTEM

Paweł Fritzkowski and Henryk Kaminski

Volume 3, Nº 6 June 2008

mathematical sciences publishers



JOURNAL OF MECHANICS OF MATERIALS AND STRUCTURES
Vol. 3, No. 6, 2008

DYNAMICS OF A ROPE AS A RIGID MULTIBODY SYSTEM

PAWEŁ FRITZKOWSKI AND HENRYK KAMINSKI

A preliminary discrete model of a rope is considered both as a scleronomic and a rheonomic system.
Numerical experiments are performed and advantages of the applied algorithm are discussed on the
basis of energy conservation. The problem of discretization of the rope is presented in terms of efficient
computational simulations. A wave-like effect is discussed with regard to energy transfer and velocity
of the model tip. The next directions of the model development are outlined.

1. Introduction

The dynamics of a rope may serve as an introduction to the problem of a cracking whip, which has
been drawing the attention of scientists for over a hundred years. In the early twentieth century the
hypothesis was advanced that the tip of the whip reaches supersonic speed at the crack time. Theoretical
explanations of the phenomenon were supported later by numerous experiments, which in fact provided
some surprising observations, for example the acceleration of the tip is up to 50000 g and its velocity is
about twice the speed of sound in the air [Pierański and Tomaszewski 2005].

Theoretical and experimental works focus not only on the motion of the whip. The dynamics of similar
bodies, such as chains and ropes, is analyzed too. However, the results of the experiments cannot be
confirmed by any accurate analytical calculations because of the complexity of the problem, which may
be approximately described with the use of a complicated system of differential equations. Nevertheless,
in such difficult cases computational methods may be very useful.

The papers by Pierański and Tomaszewski [2004; 2005] were the key papers for us on the initial stage
of our work. The authors analyze the fall of a chain using a discrete model of the body. Goriely and
McMillen [2002] consider the propagation and acceleration of waves in the motion of whips. Their paper
is also a kind of introduction to the problem with its history outline.

We concentrate on a simple model, which actually is a rigid, chain-like model and more similar to
the rope than the whip. Therefore, it plays a role of a preliminary model only, whose properties will
be modified in the future. Applying the Lagrange formulation, we present the equations of motion for
such a system both for the scleronomic and the rheonomic one. With the use of numerical methods we
obtain an approximate solution to the problem. In several experiments we simulate the behaviour of the
given body and analyze it mostly with respect to time dependencies of velocity and acceleration of the
system’s tip. Also some algorithmic matters of the simulations are considered.

2. Mechanical system and equations of motion

Below we define a discrete model of the rope, also used by Pierański and Tomaszewski [2005]. However,
for us this model is introductory as mentioned before. The discussion is made more general by including
the rheonomic case.
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Figure 1. The simplest discrete model of the rope.

2A. A system with scleronomic constraints. Let us denote length of the rope by L and its mass by M .
We divide the given body into n segments of length l and mass m each so that L = nl and M = nm. They
are connected by ideal joints (without friction). Assuming that every element is a rigid cylindrical rod as
well, we obtain the simplest discrete model of the rope which actually is a multiple physical pendulum
(Figure 1).

We focus on a special case of a mechanical system moving in a gravitational field with no external
forces acting on it. One end of the rope is attached to a stationary point whereas the other end moves
freely. Furthermore, let us assume that the motion is restricted to take place in a vertical plane only.

To specify the state of the system we introduce angular generalized coordinates. The position of the
i th element is described by a variable ϕi which defines the angle from the Y downward axis. The position
of each segment (its mass centre) in the Cartesian coordinate system may be written as follows

xi =

i−1∑
j=1

l sin ϕ j +
1
2 l sin ϕi , yi =

i−1∑
j=1

l cos ϕ j +
1
2 l cos ϕi , (2-1)

and the velocities of the i th segment in the X and Y directions are expressed by the formulas

vxi =

i−1∑
j=1

ϕ̇ j l cos ϕ j +
1
2 ϕ̇i l cos ϕi , vyi = −

i−1∑
j=1

ϕ̇ j l sin ϕ j −
1
2 ϕ̇i l sin ϕi .

Now we can write the kinetic energy of the whole mechanical system according to König’s theorem

T =
1
2 m

n∑
i=1

vi
2
+

1
2 I

n∑
i=1

ϕ̇2
i ,
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where I is the moment of inertia of each element (I = ml2/12). After some simplifications we obtain
the kinetic energy in the following form

T = ml2
n∑

i=1

3(n − i) + 1
6

ϕ̇2
i + ml2

n∑
i=1

n∑
j=i+1

2(n − j) + 1
2

ϕ̇i ϕ̇ j cos(ϕi − ϕ j ).

The potential energy of the model is given by

V = −mg
n∑

i=1

yi = −mgl
n∑

i=1

2(n − i) + 1
2

cos ϕi .

Using the terms above for the Lagrangian L = T − V we can apply the Euler-Lagrange equations to
describe behaviour of the system

d
dt

( ∂L
∂ϕ̇i

)
−

∂L
∂ϕi

= 0, i = 1, 2, . . . , n. (2-2)

After substitutions and simplifications we obtain the equations in the final form

n∑
j=1

ai j ϕ̈ j cos(ϕi − ϕ j ) +

n∑
j=1

ai j ϕ̇
2
j sin(ϕi − ϕ j ) +

g
l

bi sin ϕi = 0, i = 1, 2, . . . , n, (2-3)

where

ai j =


2(n−i)+1

2 , for j < i
3(n−i)+1

3 , for j = i
2(n− j)+1

2 , for j > i

and bi =
2(n − i) + 1

2
. (2-4)

To make it clearer, we present the equations of motion for n = 3:

a11ϕ̈1 cos(ϕ1 − ϕ1) + a12ϕ̈2 cos(ϕ1 − ϕ2) + a13ϕ̈3 cos(ϕ1 − ϕ3) + a11ϕ̇
2
1 sin(ϕ1 − ϕ1)

+ a12ϕ̇
2
2 sin(ϕ1 − ϕ2) + a13ϕ̇

2
3 sin(ϕ1 − ϕ3) + (g/ l)b1 sin ϕ1 = 0,

a21ϕ̈1 cos(ϕ2 − ϕ1) + a22ϕ̈2 cos(ϕ2 − ϕ2) + a23ϕ̈3 cos(ϕ2 − ϕ3) + a21ϕ̇
2
1 sin(ϕ2 − ϕ1)

+ a22ϕ̇
2
2 sin(ϕ2 − ϕ2) + a23ϕ̇

2
3 sin(ϕ2 − ϕ3) + (g/ l)b2 sin ϕ2 = 0,

a31ϕ̈1 cos(ϕ3 − ϕ1) + a32ϕ̈2 cos(ϕ3 − ϕ2) + a33ϕ̈3 cos(ϕ3 − ϕ3) + a31ϕ̇
2
1 sin(ϕ3 − ϕ1)

+ a32ϕ̇
2
2 sin(ϕ3 − ϕ2) + a33ϕ̇

2
3 sin(ϕ3 − ϕ3) + (g/ l)b3 sin ϕ3 = 0.

Having calculated all the coefficients according to (2-4) we obtain

7
3 ϕ̈1 +

3
2 ϕ̈2 cos(ϕ1 − ϕ2) +

1
2 ϕ̈3 cos(ϕ1 − ϕ3) +

3
2 ϕ̇2

2 sin(ϕ1 − ϕ2) +
1
2 ϕ̇2

3 sin(ϕ1 − ϕ3) +
5
2(g/ l) sin ϕ1 = 0,

3
2 ϕ̈1 cos(ϕ2 − ϕ1) +

4
3 ϕ̈2 +

1
2 ϕ̈3 cos(ϕ2 − ϕ3) +

3
2 ϕ̇2

1 sin(ϕ2 − ϕ1) +
1
2 ϕ̇2

3 sin(ϕ2 − ϕ3) +
3
2(g/ l) sin ϕ2 = 0,

1
2 ϕ̈1 cos(ϕ3 − ϕ1) +

1
2 ϕ̈2 cos(ϕ3 − ϕ2) +

1
3 ϕ̈3 +

1
2 ϕ̇2

1 sin(ϕ3 − ϕ1) +
1
2 ϕ̇2

2 sin(ϕ3 − ϕ2) +
1
2(g/ l) sin ϕ3 = 0.

2B. A system with rheonomic constraints. Now let us assume that one end of the rope is attached to a
moving support, whose position expressed in the Cartesian coordinates depends explicitly on time

x0 = x0(t) and y0 = y0(t).
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The dependencies cause some modifications of the terms (2-1)

xi = x0 +

i−1∑
j=1

l sin ϕ j +
1
2 l sin ϕi and yi = y0 +

i−1∑
j=1

l cos ϕ j +
1
2 l cos ϕi . (2-5)

Hence, the terms for the kinetic and the potential energy of the system have a more complex form:

T = ml2
n∑

i=1

3(n − i) + 1
6

ϕ̇2
i + ml2

n∑
i=1

n∑
j=i+1

2(n − j) + 1
2

ϕ̇i ϕ̇ j cos(ϕi − ϕ j )

+
1
2 mn(ẋ0 + ẏ0)

2
+ ml

n∑
i=1

2(n − i) + 1
2

ϕ̇i (ẋ0 cos ϕi − ẏ0 sin ϕi ),

V = −mg
n∑

i=1

(
2(n − i) + 1

2
l cos ϕi + y0

)
.

Still using the general form of the dynamic equations (2-2), one may obtain their final form as follows:

n∑
j=1

ai j ϕ̈ j cos(ϕi − ϕ j ) +

n∑
j=1

ai j ϕ̇
2
j sin(ϕi − ϕ j ) + bi

1
l

(g sin ϕi + ẍ0 cos ϕi − ÿ0 sin ϕi ) = 0, (2-6)

where i = 1, 2, . . . , n and the coefficients a and b are defined in (2-4).
It is important to remark that the described mechanical system is not a conservative one as its La-

grangian contains explicit time dependence because the transformation equations (2-5) involve the time
explicitly.

3. Numerical experiments

The complexity of the presented dynamic equations and tending towards maximum possible number n
of the model elements requires applying numerical methods to obtain an approximate solution to the
problem.

In our analysis we have applied the MEBDFV code developed by Abdulla and Cash of Imperial
College, London (Department of Mathematics). They implemented the modified extended backward
differentiation formulas (MEBDF) of Cash. The algorithm is designed to solve stiff initial value problems
for systems of linearly implicit differential algebraic equations (DAEs) of the form

M(q)q̇ = f(t, q), (3-1)

where the matrix M depends on q, which is a vector of dependent variables, and t is the independent
variable.

As is typical for computational methods, the system of dynamic equations should be reformulated as
a system of first-order differential equations. Such a set of 2n equations is presented below in matrix
form with initial conditions
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1 0 . . . 0 0 0 . . . 0
0 1 . . . 0 0 0 . . . 0
...

...
. . .

...
...

...
. . .

...

0 0 . . . 1 0 0 . . . 0
0 0 . . . 0 m11 m12 . . . m1n

0 0 . . . 0 m21 m22 . . . m2n
...

...
. . .

...
...

...
. . . 0

0 0 0 0 mn1 mn2 . . . mnn





ϕ̇1

ϕ̇2
...

ϕ̇n

ω̇1

ω̇2
...

ω̇n


=



ω1

ω2
...

ωn

f1

f2
...

fn


, (3-2)

ϕi (t0) = ϕi0, ωi (t0) = ωi0, i = 1, 2, . . . , n.

The elements mi j of the matrix M depend on the generalized coordinates mi j = ai j cos(ϕi − ϕ j ) with
i, j = 1, 2, . . . , n, and the components fi of the right-hand side vector are functions of the generalized
coordinates as well as the generalized velocities

fi = −

n∑
j=1

ai jω j
2 sin(ϕi − ϕ j ) − bi

g
l

sin ϕi , i = 1, 2, ..., n.

For the rheonomic system, the terms for fi contain the time as an explicit variable:

fi = −

n∑
j=1

ai jω j
2 sin(ϕi − ϕ j ) − bi

1
l

(g sin ϕi + ẍ0 cos ϕi − ÿ0 sin ϕi ) , i = 1, 2, . . . , n.

In general, the applied solver carries out integration in three stages. Firstly, a solution at the current
point is predicted and the Newton iterations are performed to improve the values. The next stage uses
them to approximate a solution at the next point where the Newton scheme is applied again. The predic-
tion process in the two phases involves the backward finite differences. The last stage plays a role of a
corrector and is based on the Newton method again. The same Jacobian matrix is used in the iterations
for all the three stages. Moreover, the code includes some strategy to reduce a number of the Jacobian
evaluations. For more details on the usage of the modified backward differentiation formulas the reader
is referred to Cash and Considine [1992].

First, we deal with the scleronomic system and discuss the simulations mostly from the algorithmic
point of view. More physical aspects are taken into account when it comes to the rheonomic constraints.
However, we focus only on the function x0(t) referring to the horizontal direction. All the simulations
are performed for the model of total length nl = 1 m and total mass nm = 0.5 kg. Additionally, zero
generalized velocities are assumed at a start point ϕ̇i (0) = 0 for i = 1, 2, . . . , n.

Experiment 1. We decided to confront results obtained in our numerical simulations with the results
described in Pierański and Tomaszewski [2005] and based on the RADAU5 code developed by Hairer
and Wanner. After performing the simulations for the scleronomic system with the same parameters
(n, L , M) and initial conditions, we analyzed configurations of the chain. As expected, there was no
difference between the compared shapes of the multibody model in certain moments of time, and the
time dependencies of the linear velocity of the tip were compatible too.

However, it was impossible to make a comparison between the results of motion in any longer time
interval. Pierański and Tomaszewski focused on very short initial phases of the chain fall (from t = 0.0
to t = 0.6 s) which included the most interesting process namely the evolution of a sharp peak in the
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Figure 2. Initial configurations of the mechanical system. Left: Experiment 1; right:
Experiment 2.

velocity time dependence of the tip. But even if they dealt with the farther stages, the agreement between
the results could be not so good.

Actually, we applied the RADAU5 on the initial stage of our work. Aiming at simulations of the
complex model motion in general (not only in a short time), we began to use the MEBDFV code. This
was due to the character of the RADAU5, which is a solver for systems of DAEs with a constant matrix
M. A consequence of this is a problem with energy conservation of the model after a short period of
good performance. Although one may update the matrix M frequently, the results do not meet the energy
conservation law. All in all, using the RADAU5 code without any significant modifications seems to be
inefficient when researching long-lasting motion of such a complex mechanical system.

To show the difference, we performed a numerical experiment using both codes, with the same initial
conditions for a catenary curve (Figure 2a) and the same parameters n = 20, M = 0.5 kg, and L = 1 m.

1 2 3 4 5
t �s�

�1.75

�1.5

�1.25

�1

�0.75

�0.5

T
ot

al
en

er
gy
�J
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Figure 3. The total energy based on results from RADAU5 (blue) and MEBDFV (red).
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Figure 4. Configurations of the chain found in the numerical experiment with the use
of the RADAU5.

Let us concentrate on the time dependence of the total energy of the model and its shape during
the motion. According to Figure 3, the results obtained with the use of the RADAU5 show a rapid
decrease in the energy around t = 1.3 s. On the other hand, the red line illustrates the quantity given
by the computation based on the other code — dependency with some small fluctuations (constant in the
numerical sense). It may serve as the reference level for the former function. The difference between
them increases with time and we can clearly see that the results provided by the solver RADAU5 do not
meet the energy conservation law.

It is necessary to remark that no procedure designed for testing fulfillment of the conservation principle
is embedded in the solvers. Both codes perform the integration process using some internal, numerical
convergence tests, which do not refer to mechanics. The user supplies the physical meaning of the
solution and involves it in the computation of such quantities as the total energy.

How do the energy losses affect the configurations of the chain? Are there any significant differences
between the results again? To answer these questions we compare the configurations related to the
RADAU5 code (Figure 4) and the MEBDFV code (Figure 5).

Figure 5. Configurations of the chain found in the numerical experiment with the use
of the MEBDFV.
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Although not all of the preceding configurations are presented, the shapes of the chain up to t = 1.2 s
are compatible. Some differences appear at point t = 1.3 s and they intensify in time similarly to the
ones between the energy dependencies. In general, the shapes of the first chain seems to be smoother,
especially in the end phase of the experiment. In the second case, the constant total energy keeps the
system going to a chaotic motion, which seems to be obvious when considering such a stiff multibody
system. Therefore, the configurations of the latter chain become less and less ordered.

In the present work we do not deal with the theory of chaos and its application to dynamics of the
chain, but we feel that this is an area which is worth further attention.

Experiment 2. Let us turn now to the problem of discretization of the rope. The question is how to
match the number of the elements of the system to make our simulations efficient?

First, the model should reflect the real body with its physical features. Here we apply the discrete
model (convenient in an algorithmic approach), which is to approximate the rope treated as continuum.
Theoretically, reaching the idea of continuum is realized when n tends to infinity (and l tends to zero).
In practice, it is possible and sufficient to choose some reasonably large number n.

However, it must be remembered that n defines a number of degrees of freedom, and thus the number
of Lagrange-Euler equations of motion. In addition, from the numerical point of view the number is
doubled when reformulating the system of equations as in (3-2). Thus, the number of the model elements
affects the computation time considerably.

In the following experiment we do not specify any optimum. All we do is comparing configurations of
the rope in simulations starting from the same initial conditions but from various n. Let us consider three
cases: n = 30, n = 45, and n = 70, with the same parameters M = 0.5 kg, L = 1 m, and the simulation
time t = 2.5 s. Initial configuration has the shape of a catenary curve (Figure 2b).

It is important to note that we omit the configuration of the rope at t = 0.5 s, because the first phase
of the motion for different number of segments n looks quite similar. We may say that the numerical
integration of the dynamic equations related strictly to a fall of the chain proceeds without any serious
problems. Some troubles appear in the next phase of motion, especially when the mechanical system
tends to the chaotic-like behaviour. Usually the solver manages to go through the difficulties (it depends
on the initial conditions) but it makes the computation time much longer.

First, we compare the shapes of the chain for n = 30 and n = 45 (Figure 6 and Figure 7). The
two initial configurations seem roughly identical. However, there is a small difference. The free end
of the model is located slightly lower in the second case (Figure 9). The reason of this is due to the

Figure 6. Configurations of the system consisting of n = 30 segments.
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Figure 7. Configurations of the system consisting of n = 45 segments.

Figure 8. Configurations of the system consisting of n = 70 segments.

discretization of the catenary which is hard to do without some small deviations. Nevertheless, it causes
no noticeable differences at least for 1 s of the motion (the fall of the folded chain). We can see such
differences from the third presented instant (t = 1.5 s). As mentioned before, the end phase of the motion
is chaotic-like. Therefore, the existing incompatibilities may be the effects of the discretization of the
material continuum and/or slightly different initial conditions. The latter ones, in the chaotic dynamics,
can produce even a completely new solution at later times.

Comparing the configurations for n = 45 and n = 70 (Figure 7 and Figure 8), we notice some differ-
ences at t = 1.5 s again. However, they do not seem so evident. More significant ones are present in the
next instant that is shown, and the last configurations differ from each other slightly.

To make our considerations more exact, we present the time dependence of the y-position of the
models’ tip (Figure 9). It should be emphasized that the dependence cannot be treated as a full measure
of the quality of the solutions and their compatibility, since it refers just to one of the body’s member
(its free end). In addition, we have taken into account the Y direction only.

Obviously, the solutions to the problem for models with identical parameters but various numbers of
segments n are more compatible for larger n. However, the number n does not have to tend to very large
values. For example, if we presented results for n = 50 and compared them with the ones for n = 70,
no significant difference would be noticed. All in all, attempts to specify some reasonable limits of the
discretization merit careful consideration.
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Figure 9. The y-positions of the chain tip for different number of segments.

Experiment 3. Now we turn to the rheonomic case and consider a free-hanging chain where the system
resting at full extension so that ϕi (0) = 0 for i = 1, 2, . . . , n. The body will be brought into motion with
the use of the following constraint function

x0(t) = A sin2(π Bt), (3-3)

where A and B are some constants. Here we take A = 0.1 [m] and B = 5 [1/s]. Actually, the attachment
point is subjected to an oscillatory motion (Figure 10) with an amplitude A. We carry out simulations
for two cases, n = 30 and n = 50, which differ in the number of degrees of freedom.

Let us start the analysis with the time dependencies of the velocity and acceleration at the free end
of the system consisting of n = 30 segments. As presented in Figure 11, the significant amount of
oscillations of the support produces numerous peaks in the tip velocity. However, the velocity increases
slowly at the beginning and the first sharp peak occurs when the support velocity reaches its maximal
value. The next peaks do not seem to be compatible with the vx0 function, since the wave-like effects of
the rheonomic constraints overlap in time and influence the tip motion with some delays.
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Figure 10. Constraint function x0(t).
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Figure 11. Velocity of the tip (red) and the function vx0 (blue) for n = 30.

Sharper peaks are visible in the acceleration dependency (Figure 12). They relate mostly to the maxima
of velocity. An important conclusion arises from the graphs. Applying a very simple constraint function
results in obtaining large values of the acceleration of the tip. For example, at time t = 0.68 s the
acceleration exceeds 500 g.

To make the behaviour of the system more imaginable, we show particular phases of motion in Figure
13. It is easy to note that initially the free end of the chain moves upwards only. After four changes
of direction of the support motion, in the time range t = 0.4–0.5 s the tip is pulled horizontally and its
acceleration goes up suddenly. Obviously, there is a simultaneous increase in the velocity. The next
phases are distinguished by growing disorder. In addition, just the tip seems to be a sort of origin of
these effects. However, the details are considered later.

When it comes to the case with n = 50 elements, the evolution of the rope motion looks quite similar.
Nevertheless, the velocity and acceleration dependencies (Figure 14 and Figure 15) show more peaks
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Figure 12. Acceleration of the tip (red) and the function ax0 times 10 (blue) for n = 30.

Figure 13. Configurations of the chain in consecutive phases of motion for n = 30. The
time is given in seconds.
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Figure 14. Velocity of the tip (red) and the function vx0 (blue) for n = 50.
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Figure 15. Acceleration of the tip (red) and the function ax0 multiplied by 10 (blue) for
n = 50.

than before. The sharpest one occurs at the end of the simulation time in the chaotic-like phase. It should
be remarked that the acceleration of the tip exceeds 2500 g at this time.

Compared with the previous case, the configurations (Figure 16) are compatible during the ordered
motion. Afterwards some differences appear (see t = 0.5–0.7 s) and the degree of compatibility depends
mainly on the difference between the number of segments in the two cases. This matter corresponds to
the problem of discretization which we outlined in Experiment 2.

As mentioned, we expect the mechanical system to be nonconservative. Due to periodicity of the
constraint function (3-3), energy is provided to the system all the time, except the moments when the
support velocity vx0 equals zero. A graph of the total energy obtained from the approximate solution
is presented in Figure 17. The irregular fluctuations on the advanced stage of motion have a numerical
source, which may be also a result of the mechanical disorder.

Figure 16. Configurations of the chain in consecutive phases of motion for n = 50. The
time is given in seconds.
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Figure 17. Total energy of the system with n = 50 segments.

Experiment 4. This experiment is very similar to the previous one. However, here we wish to show
some effects clearer. To do so, let us apply slightly different constraint function

x0(t) =

{
A sin2(π Bt) for t ≤ 1/B,

0 for t > 1/B,

where A and B remain the same, that is, A = 0.1 [m] and B = 5 [1/s]. In fact, there will be only one period
in the support motion, after which its position will be stationary. The function is presented in Figure 21.
The initial configuration of the mechanical system is the same too ϕi (0) = 0 for i = 1, 2, . . . , n. The
number of degrees of freedom n is equal to 30.

In this case we begin our considerations with the chain’s shape during the evolution. The two initial
phases of motion (Figure 18) are identical with the ones from the Experiment 3. A considerable difference
arises at the end of the support motion. A fold created from the upper part of the system is traveling
along the rope and raising the tip gradually. After the downward propagation the last segments of the
body rotate (the simple construction of the model allows them to do so) and a new fold is formed which

Figure 18. Downward travel of the fold (Experiment 4). Time given in seconds.
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Figure 19. Total energy of the segments: 5 (black), 10 (blue), 15 (yellow), 20 (green),
25 (grey), 30 (red).

tends to go up (t = 0.6 s). The upward travel is not so evident but the fold disappears completely just
after the next direction change (t = 1.1 s).

Actually, a similar situation was present in the previous simulations, but the periodic character of the
x0(t) function caused repetition and overlapping of such effects, which was confusing.

The fold travel seems to be a wave-like phenomenon. It should be remembered that in light of the
existing explanations, a shock wave runs down the whip and carries energy which is cumulated on an
increasingly smaller section of the whip. Finally, “as the length of this section decreases to zero, the end
part of the tip moves with unbounded velocity and cracks as soon as it reaches the velocity of the sound
in the air” [Goriely and McMillen 2002].

Although we do not expect such significant results, let us have a look at the energy dependencies.
Figure 19 illustrates the flow of the energy along the rope. We choose only several segments but it is
clear that as the wave goes down, it involves consecutive elements providing additional energy to them.
The greatest increase of the total energy occurs at the last element. Moreover, the inversions of flow
direction are visible too. After the second one the dependencies become less meaningful.

As it may be expected, there is a noticeable maximum in velocity of the tip which corresponds to
the transfer of energy (Figure 20). The return of the traveling fold to the tip also results in a peak,
however, it seems to start a specific series of similar peaks in the end phase of the simulation when the
fold disappears.

Finally, we turn our attention to the total energy of the whole mechanical system (Figure 21). Initially,
the magnitude increases in the manner presented in the previous experiment as long as the constraints
depend on time. Afterwards the energy of the system remains constant at the level forced by the applied
constraints. Thus, all the spectacular things connected to the wave-like effect happen in the state in which
the total energy is conserved by the system.

4. Conclusions

In the present work we have focused on the simple discrete model of the rope with two types of con-
straints, scleronomic and rheonomic. The multibody approach produces an expanded system of second
order differential equations, which actually need to be solved numerically. Particularly in the case of
the scleronomic constraints, the choice of the solver is justified by the energy principle. There is an
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Figure 20. Velocity of the tip (Experiment 2).
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Figure 21. Total energy of the system (green) next to the constraint function x0 (blue)
and its derivative vx0 (red).

agreement between our results of computation and the results of the numerical and laboratory experiments
presented in Pierański and Tomaszewski [2005]. However, in order to perform computational simulations
without significant energy losses (numerical dissipation) as well as rigorous restrictions related to time,
we excluded the assumption that the left-hand side matrix in (3-1) is constant. Hence, the solutions to
the problem obtained with the use of the MEBDFV code fulfill the energy conservation law in longer
lasting motion.

We have also discussed the problem of discretization of the rope. The performed experiments point at
possible improvements of the simulations’ efficiency, in terms of shorter computation time and sufficient
approximation of continuum by the model. Some reasonable limits of discretization, as an optimum of
the number of elements, may not be very demanding when it comes to the computation capabilities.

As shown, the use of appropriate constraint functions results in emerging wave-like effects that are
typical for the dynamics of the whip. The occurrence of sharp peaks in the time dependencies of velocity
and acceleration of the tip turned out to be a result of the energy transfer between the consecutive elements
of the discrete model.
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In fact, the considered problem is a very good test for the applied solver. It seems that the code of
Abdulla and Cash will succeed in solving dynamic equations for more complex mechanical systems
including elasticity and damping. Also the function y0(t) should be considered to perform various ma-
neuvers moving the entire body and inverting its velocity. The air resistance and the chaotic dynamics
are worth studying too.

All in all, the problem provides many possibilities of dynamics analysis, since the challenging multi-
body approach in conjunction with computational methods give insight into numerous aspects of mechan-
ics. Thus, we feel that the outlined directions of development are worth the efforts and will be realized
successively.
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